KIT | KIT-Bibliothek | Impressum | Datenschutz

Seismic Imaging with the Elliptic Radon Transform in 3D: Analytical and Numerical Aspects

Grathwohl, Christine

Abstract (englisch):
A well-established method to investigate subsurface material parameters is to generate pressure waves on the surface and measure their reflections returning there at different points.

In this thesis, we consider a scanning geometry with constant distance from source to receiver in three space dimensions.
After linearisation this situation is modelled by the elliptic Radon transform which integrates over ellipsoids.

As an inversion formula of this transform is unknown, we propose a certain imaging operator appropriate to apply the method of the approximate inverse and develop a migration scheme to reconstruct singularities in the speed of sound.
Further, we calculate the top order symbol of the imaging operator as a pseudodifferential operator and analyse its behaviour in different situations.
We use the obtained results to achieve reconstructions of the subsurface, which are relatively independent of the distance to the surface and the offset.
Last, we present numerical experiments and test our implementation with data generated by solving the wave equation numerically.

Open Access Logo


Volltext §
DOI: 10.5445/IR/1000105093
Veröffentlicht am 21.01.2020
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte und Numerische Mathematik (IANM)
Publikationstyp Hochschulschrift
Publikationsjahr 2020
Sprache Englisch
Identifikator KITopen-ID: 1000105093
Verlag KIT, Karlsruhe
Umfang VI, 165 S.
Abschlussart Dissertation
Fakultät Fakultät für Mathematik (MATH)
Institut Institut für Angewandte und Numerische Mathematik (IANM)
Prüfungsdatum 06.11.2019
Referent/Betreuer Prof. A. Rieder
Projektinformation SFB 1173/1 (DFG, DFG KOORD, SFB 1173/1 2015)
Schlagwörter seismic imaging, inverse problems, acoustic wave equation, imaging operator, Radon transform, pseudodifferential operators
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page