High-fidelity multiphysics simulations for Light Water Reactors in the McSAFE H2020 project

L. Mercatali (KIT), V. H. Sanchez-Espinoza (KIT), M. Garcia (KIT), D. Ferraro (KIT), U. Imke (KIT), J. Leppänen (VTT), V. Valtavirta (VTT), S. Kliem (HZDR), P. Van Uffelen (JRC)

Contents

• The McSAFE H2020 project
• High-fidelity multiphysics
• Coupling approaches
• Depletion
• Conclusions
Introduction

- **Predictive simulations** = backbone of nuclear reactor safety
- Most of the tools developed when **computing** resources and capabilities were limited
- Shift **towards high-fidelity methods** taking advantage of progress in computing (hardware/software)
- Reactor operating closer to their safety limits due to less conservative safety evaluations
- Core analysis relies mainly on deterministic neutronic codes (daily work)
- Alternative/supplementary option:
 - Use **MC codes** capable of simulating the neutron transport without approximations
 - Obtain **reliable data** for any core state **at fuel pin level** (experimental data at pin level is scarce and not easy to be measured)
 - Potential use taking advantage of **HPC** and **parallelization**
The McSAFE H2020 project

- Three-year project (09.2017 - 08.2020)
- Participants:
 - 9 research institutions: KIT, VTT, HZDR, JRC, CEA, NRI, KTH, DNC, Wood
 - 3 industry partners: EKK, CEZ, EdF
- High-fidelity multiphysics for safety analysis of LWRs:
 - Monte Carlo neutron transport: Serpent2, Tripoli4, MCNP, MONK
 - Subchannel thermalhydraulics: SUBCHANFLOW (SCF)
 - Fuel-performance analysis: TRANSURANUS (TU)
- Main developments
 - Serpent2-SCF(-TU) coupling for steady-state, burnup and transient problems
 - Optimization of steady-state and transient capabilities for HPC
 - Optimization for massive (full-core pin-by-pin) depletion problems
- Validation with plant data
 - PWR-Konvoi
 - VVER-1000
McSAFE project structure

WP1: Management (KIT)

WP2: Methods for full core MC-depletion and optimized TH-Feedback Integration (VTT)

WP3: Code Integration and coupling methods (KIT)

WP4: Development of Dynamic MC-methods for transient analysis (DNC)

WP5: Validation using test and plant data (UJV)

WP6: Dissemination, Exploitation and Communication (KTH)
High-fidelity multiphysics

- **Main objectives:**
 - **Avoid approximations** (multi-scale approach) in neutronics
 - **Calculate local safety parameters directly:**
 - Burnup cycle.
 - Transient scenarios.
 - Provide **reference solutions for lower order methods**

- **Neutronics:**
 - Continuous-energy Monte Carlo neutron transport
 - Pin-by-pin power tallying and burnup calculation

- **Thermal-hydraulics:**
 - Pin-level subchannel thermal-hydraulics
 - Coolant and fuel safety parameters

- **Fuel performance:**
 - Pin-level thermomechanical analysis
 - Fuel safety parameters
Software design

- **Master-slave internal coupling:**
 - SCF and TU (slaves) modularized and embedded in Serpent2 (master).
 - Traditional approach, reference for performance.

- **Object-oriented coupling:**
 - Serpent2, SCF and TU modularized and coupling scheme implemented in a separate supervisor program.
 - More innovative approach, potential benefits from the object-oriented design.
 - Main features:
 - Inheritance-based APIs.
 - Object-oriented supervisor.
 - Mesh-based feedback.

- **Numerical method:**
 - Operator splitting.
 - Picard iterations.
 - Pin-by-pin feedback.
Mesh-based field exchange

- **Serpent2:**
 - Multiphysics interfaces based on superimposing meshes on the tracking geometry to set densities and temperatures and get power
 - Internal meshes represented as unstructured meshes for feedback exchange
Mesh-based field exchange

SUBCHANFLOW:
- Subchannel model defined by hydraulic parameters and connectivity
- Channel and rod geometry given by coolant and fuel unstructured meshes for feedback exchange and interpolation

\[\rho_{\text{cool}}, T_{\text{cool}} \]

\[P \]

\[T_{\text{fuel}} \]
Mesh-based field exchange

TRANSURANUS:
- Solution scheme independent for each rod
- Rod mesh to manage input and output between the multiphysics interface and each solver instance
Depletion calculations
Serpent2-SCF: steady-state calculation

- Standard steady-state neutronic-thermalhydraulic coupling:
 - Power calculated by Serpent2 and used in SCF as heat source
 - Cooling conditions calculated by SCF and ρ_{cool}, T_{cool} and T_{fuel} used in Serpent2
 - Iterative scheme with pin-by-pin feedback

- Verification with the VERA Core Physics Benchmark (PWR) [1]

<table>
<thead>
<tr>
<th>Result</th>
<th>Keff</th>
<th>ΔKeff (pcm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VERA-CS</td>
<td>1.16361</td>
<td>-</td>
</tr>
<tr>
<td>RMC-CTF</td>
<td>1.16239±0.00010</td>
<td>-90</td>
</tr>
<tr>
<td>MC21-CTF</td>
<td>1.16424±0.00003</td>
<td>47</td>
</tr>
<tr>
<td>MCNP6-CTF</td>
<td>1.16500±0.00006</td>
<td>103</td>
</tr>
<tr>
<td>Serpent2-SCF (OO)</td>
<td>1.16552±0.00003</td>
<td>141</td>
</tr>
<tr>
<td>Serpent2-SCF (MS)</td>
<td>1.16560±0.00003</td>
<td>147</td>
</tr>
</tbody>
</table>

Serpent2-SCF: burnup scheme

- Monte Carlo depletion scheme with thermalhydraulic feedback:
 - Burnup calculation integrated in Serpent2
 - Predictor-corrector and Stochastic Implicit Euler (SIE) methods
 - Iterative quasi-stationary scheme with pin-by-pin feedback
- Verification with TVSA-type fuel assemblies (VVER-1000) [2]

Serpent2-SCF-TU: motivation

- Fuel behavior during burnup:
 - Extremely complex multi-physics problem
 - Important for safety assessment
 - Potential impact on the Doppler feedback

- SCF approach:
 - Thermal properties: \(c_p(T), k(T), \alpha_T(T) \)
 - Gap width: thermal expansion, cracking and swelling dependent on burnup
 - Gap conductance: radiation and conduction

- TU approach:
 - Full thermomechanic analysis
 - Main relevant physics
 - Validated extensively
 - Reference solution
Serpent2-SCF-TU: burnup scheme

- **Main features [3]:**
 - Semi-implicit burnup scheme
 - Fully coupled neutronics, depletion, thermalhydraulics and thermomechanics
 - Independent depletion in Serpent2 (detailed) and TU (simplified)
 - SCF simple fuel-rod solver replaced by TU thermomechanical analysis

- **Verification [4]:**
 - PWR depletion problem based on the VERA Benchmark
 - Comparison with Serpent2-SCF (w/o TU)

Serpent2-SCF-TU: depletion analysis

- Gap temperatures:
 - Minor differences in cladding temperatures due to material properties
 - Significant differences in fuel outer temperatures relative to the temperature step in the gap

![Graph showing temperature changes over burnup (BU) for S2-SCF and S2-SCF-TU, with differences highlighted.](image-url)
Serpent2-SCF-TU: depletion analysis

- Gap properties:
 - Heat transfer coefficient underpredicted by SCF (~50% on average)
 - Gap width over predicted by SCF (~0.005mm)
 - Larger gap temperature increase for SCF
Serpent2-SCF-TU: depletion analysis

- Fuel temperatures:
 - Significant underprediction by SCF
 - Differences mostly due to conductivity degradation with burnup
Serpent2-SCF-TU: depletion analysis

- Neutronic solution:
 - Very small impact on multiplication factor
 - No improvement using radial temperatures
 - Power dominated by statistical uncertainty
Fuel-performance results:

- Xe release
- Gap conductance (EOC)

Graph showing Xe release (max.) and Xe release (mean) against BU (MWd/kg).
Takeaways from fully coupled burnup

- **Gap behavior:**
 - Significant improvement in the conductivity and width using TU.
 - Reference solution for SCF to improve correlations

- **Fuel temperatures:**
 - Underprediction in SCF up to ~350K (centerline) and ~175K (average)
 - Reference solution for SCF to improve material properties

- **Neutronics:**
 - Minor impact in local and global results

- **Safety parameters:**
 - No significant impact on neutronics
 - No impact on DNBR calculation
 - Large improvement in fuel temperatures
 - Pin-by-pin fission gas release
 - Pellet-cladding interaction modelled
Towards full-core pin-by-pin depletion

- Massive computational requirements [5]:
 - \(\sim 10^9 \) neutrons per transport cycle
 - \(\sim 1-5 \text{TB} \) of memory, mainly for burnable materials

Collision-based Domain Decomposition

- Traditional parallel scheme for Monte Carlo transport:
 - Particle-based parallelism with domain replication
 - Usually excellent speedup, but no memory scalability
- Collision-based domain decomposition:
 - Data decomposition for burnable materials
 - Memory scalability, acceptable speedup

Multithread memory requirement

Parallel scalability
Full-core steady-state calculations

- Verification with the X2 VVER-1000 benchmark [6]:
 - ~150 pcm agreement with measured data at EOC (critical state)
 - Good agreement in global results

Subchannel coarsening

- Coarsening method [7]:
 - Build the subchannel model
 - Superimpose a mesh defining zones
 - Merge subchannels and condense hydraulic data for each coarse channel

Transient analysis (1/2)

- **Goal**: Monte Carlo simulations of transients with feedback
 → “move towards high fidelity calculations”

- **Development of dynamic MC-methods for transients analysis**
 - Development of **time-dependent dynSERPENT-SCF** e.g. implementation of methods to account for the prompt neutron and gamma heat deposition in the coolant
 - Development of **time-dependent dynTRIPOLI-SCF**
 - Development of **time-dependent dynMCNP-SCF**
 - **Variance reduction for MC-codes with dynamic capability** to improve the efficiency of time-dependent MC solutions e.g. Uniform Fission Sites (UFS)
 - **Methods for optimal parallel scalability** of MC-TH codes for dynamic simulations to take profit of massively parallel environments in the frame of industry-like applications
 - **Verification** of developed tools on 3x3 pin cluster or PWR minicore (3x3 FA)
Transient analysis (2/2)

- Code-to-code verification with Tripoli4-SCF [8]

- Validation with SPERT-IIIE experiments [9]

Dissemination

- User Group
- Synthesis reports
- Newsletters
- Training Course
 - March 25-27, 2020 (KIT)
Summary

- Development stage (first two years) almost over
- Serpent2-SCF(-TU) coupling implemented and optimized
- Validation stage (last year) beginning, preparation of experimental data and core specifications in progress
- Depletion calculations:
 - Serpent2-SCF-TU fully-coupled depletion scheme:
 - Improvement in the modelling of the fuel during irradiation
 - Minor impact on the neutronic solution
 - Large impact on safety parameters such as gap behavior and fuel temperature
 - Optimization for full-core pin-by-pin problems:
 - Subchannel coarsening methodology for SCF and CDD for Serpent2
- The project will deliver **improved** and **validated high-fidelity numerical simulations tools** that can be used by different end-users to provide **reference solutions to deterministic codes for safety demonstration**