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A B S T R A C T

In the past decades, hydrology has evolved from an engineering
discipline to a fully established earth system science build upon
physical principles. This evolution is mirrored by the research ques-
tions hydrology is dealing with today which range from infiltration
experiments at the pore scale to simulations of the water cycle at a
global scale. While hydrology made great scientific progress in the
last decades, many hydrological models, especially outside the realm
of science, remain largely empirical and founded on strong physical
simplifications (e.g. unit hydrograph). If sufficiently long observation
time series are available and if stationary conditions can be assumed,
using such models for practical reasons seems fair. This changes,
however, as soon as the focus shifts to predictions under change or to
ungauged basins. Here are models which represent the physics of a
hydrological system in a more exhaustive manner a more promising
choice. While this is rarely questioned in hydrology there is currently
neither consensus on how an appropriate physical system description
in hydrology might look like nor which details a hydrological model
needs to represent to be called ”physically-based”.

James Dooge observed the lack of a commonly accepted theoret-
ical foundation in catchment hydrology already in his seminal paper
in 1986. He argued that in order to minimize the necessity of model
calibration and empiricism to improve its ability to make predictions,
hydrology needs to identify and derive a comprehensive theoretical
framework on which its models and its corresponding hypothesis are
based. My thesis is motivated by exactly this search for an improved
theoretical underpinning of hydrology with an emphasis on hydro-
logical models for meso-scale catchments. The goal of this thesis is
thereby not to propose a fundamentally new theoretical framework
for hydrology but to acknowledge and advance the existing theoretical
basis. I draw largely from two related scientific theories, information
theory and thermodynamics, and use the concepts of information and
energy to shed new light on well-established hydrological research
questions.

In chapter 2, I develop a model concept called ”representative hills-
lope” which was designed to represent meso-scale catchments in an
effective top-down manner, however with a 2d bottom-up hillslope
model. To test the concept, two representative hillslope models are
set up based on an extensive environmental database in two catch-
ments that differ distinctively with respect to their dominant runoff
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processes. The models are based on macroscopic model parameters
which were derived from a mosaic of point measurements as well as
from qualitative information, for instance about the occurrence and
relevance of macropores or subsurface water ponds. Both models are
optimized within a few trial and error runs on streamflow and tested
carefully against soil moisture measurements and sap flow velocities.
The results indicate that representative hillslopes are a promising way
to represent meso-scale catchments with bottom-up models, but they
also point out several limitations of the approach itself and the chosen
model. Nevertheless, the study shows that representative hillslopes
are a logical starting point for any distributed modeling task and
a first attempt to bridge the gap between top-down and bottom-up
models.

In chapter 3 I continue with one of the main objectives of this thesis to
improve the way meso-scale catchments are represented with hydro-
logical models. More specifically, I attempt to identify functional units
that could serve as elementary spatial units for a distributed model or
a hydrological measurement network. I approach this question by di-
viding a catchment into 105 hillslopes and representing each hillslope
with a 2d bottom-up model. These 105 models differ only with respect
to parameters that are derived from a digital elevation model (DEM)
- the hillslope’s form and aspect – to examine the specific influence
that surface topography has on the function of each sub-unit. The 105

models are run with the same climatic forcing for one hydrological
year and the discharge as well as storage simulations are analyzed by
means of the Shannon entropy. The results show that the simulations
are highly redundant and that a compressed catchment model that
consists of six instead of 105 hillslopes was able to produce similar
discharge simulations as the entire ensemble. However, the compress-
ibility (redundancy of the simulations) of the model ensemble and
hence the ”optimal” number of hillslopes varied strongly in time
and depended on the target variable (streamflow or water storage).
This highlights that hydrological similarity is controlled not only by
the function but also by the state of a given landscape element. An
”optimal” spatial division of a catchment into hydrologically similar
units needs hence to be specific to a given function and to a given
state. The latter requires a flexible approach which can adapt itself in
time.

In chapter 4 I identify hydrological similar landscape units based
on the available geo-data without the detour and uncertainties using
a distributed model entails. The goal of chapter 4 is hence to develop
similarity index which is able to identify functional units directly on
the available topographic information. The resulting index rDUNE
(reduced dissipation per unit length) is an energy-centered reinter-
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pretation and enhancement of the well-established index HAND
(height above the nearest drainage). It is fundamentally based on
the observation that the majority of the incoming potential energy of
precipitation is dissipated when rainfall becomes runoff. rDUNE is
tested against catchment-wide distributions of HAND and of the topo-
graphic wetness index (TWI). The results show that rDUNE is indeed
superior to the other indices if the goal is to identify catchments with
similar dominant runoff processes based on their topography. Our
analysis indicates that accounting for both, the driver and resistance
term of flux generation law, provides a promising approach to develop
similarity indices in hydrology. The study ends with the questions
why the majority of the potential energy is dissipated at the hillslope
scale although it is frequently reported that hydrological structures
evolve in a way that energy dissipation is minimized.
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Z U S A M M E N FA S S U N G

In den letzten Jahrzehnten hat sich die Hydrologie von einer Inge-
nieurdisziplin zu einer etablierten Erdsystemwissenschaft entwickelt,
die auf physikalischen Prinzipien beruht. Diese Entwicklung spiegelt
sich auch in den aktuellen, hydrologischen Fragestellungen wider
die von Infiltrationsexperimenten auf der Porenskala bis hin zu Si-
mulationen des weltweiten Wasserkreislaufs reichen. Während die
Hydrologie in den letzten Jahren große wissenschaftliche Fortschritte
gemacht hat und immer vielfältiger wurde, sind viele, besonders in
der Praxis angewendeten hydrologische Modelle (z. B. die Einheits-
ganglinie), größtenteils noch immer empirische Konzepte, die auf
starken physikalischen Vereinfachungen beruhen. Solche Ansätze
eignen sich für Fragestellungen bei denen ausreichend lange Beobach-
tungszeitreihen vorliegen und stationäre Bedingungen angenommen
werden können. Sie sind jedoch tendenziell ungeeignet, sobald der
Fokus auf instationären Bedingungen oder auf Gebiete mit wenigen
oder schlechten Daten gerichtet wird. In solchen Fällen sind stärker
physikalisch-basierte Modelle eine vielversprechende Alternative.
Während letzteres in der Hydrologie kaum angezweifelt wird, gibt
es bis heute jedoch keinen Konsens darüber, wie genau ein adäquat
physikalisch-basiertes Model aussieht und welche Details und physi-
kalische Gesetze in ihm abgebildet werden müssen.

Diese Uneinigkeit kann zumindest teilweise darauf zurückgeführt
werden, dass es in der Hydrologie bis heute keine allgemein ak-
zeptierten theoretischen Grundlage gibt. James Dooge erkannte das
bereits im Jahr 1986 und argumentierte, dass die hydrologische Ge-
meinschaft zusammen einen klaren theoretischen Rahmen ableiten
müsse, auf dem ihre Modelle sowie die entsprechenden Hypothesen
beruhen. Diese gemeinsame theoretische Grundlage würde dann die
Notwendigkeit von Modellkalibrierungen und die damit verbundene
Empirie in hydrologischen Modellen minimieren und schlussendlich
zu belastbareren Vorhersagen führen.

Diese Dissertation knüpft an diesen Punkt an und beschäftigt sich
mit der Verbesserung der theoretischen Grundlage hydrologischer
Modelle, mit Schwerpunkt auf mesoskalige Einzugsgebiete. Ziel
dieser Arbeit ist es dabei nicht, eine umfassende, neue theoreti-
schen Grundlage einzuführen, sondern die bestehenden theoretischen
Grundlagen a) anzuerkennen und b) weiter zu entwickeln. Dazu
nutze ich weitgehend zwei verwandte wissenschaftliche Theorien,
die Informationstheorie und die Thermodynamik und verwende

xvii



damit die Konzepte von Information und Energie, um Forschung zu
betreiben sowie neue Blickwickel auf etablierte Fragestellungen zu
erhalten.

In Kapitel 2 entwickle ich das Modellkonzept ”Representative Hillslo-
pes”, welches eine Kombination aus top-down und bottom-up Model
darstellt. Um das Konzept zu testen, werden zwei repräsentative Hang-
modelle in zwei meso-skaligen Einzugsgebieten auf grundlage einer
umfrangreichen Umweltdatenbank aufgesetzt. Die Modelparameter
stützen sich dabei überwiegend auf makroskopische Gebietseigen-
schaften, die aus einem Mosaik von Punktmessungen abgeleitet
wurden sowie auf qualitativen Informationen, wie beispielsweise In-
formationen über das Vorkommen und die Relevanz von Makroporen
oder von unterirdischen Wasserspeichern. Beide Modelle wurden mit-
tels weniger Testläufe anhand des Abflusses kalibriert und sorgfältig
in Bezug auf Bodenfeuchte- (storage) und Saftflussmessungen (transpi-
ration) getestet. Die Ergebnisse zeigen zum einen, dass repräsentative
Hänge ein vielversprechender Weg sind, mesoskalige Einzugsgebiet
mit bottom-up Modellen abzubilden, aber auch, dass Limitationen
im entwickelten Ansatz und gewählten Modell, wie die verwendeten
Fließgesetze in den Drainagestrukturen, vorliegen. Schlussendlich
zeigt sich aber, dass repräsentative Hänge ein logischer Startpunkt
sind um a) räumlich verteilte bottom-up Modelle aufzusetzen und b)
ein erster Versuch sein könnten, um die Kluft zwischen top-down und
bottom-up Modellen zu schließen.

Im Kapitel 3 fahre ich mit einem der Hauptziele dieser Arbeit fort, Si-
mulationen und die generelle Abbildung mesoskaliger Einzugsgebiete
mittels hydrologischer Modelle zu verbessern. Dafür versuche ich
funktionale Einheiten zu identifizieren, die als elementare räumliche
Basis für verteilte Modelle oder ein hydrologisches Messnetzwerk
dienen könnten. Dazu teile ich ein Einzugsgebiet in 105 Hänge ein
und repräsentiere jeden Hang mit einem 2d bottom-up Modell. Die-
se 105 Hangmodelle unterscheiden sich dabei ausschließlich durch
Parameter, die aus einem digitalen Höhenmodell (DEM) abgeleitet
wurden - die Hangform und dessen geographische Ausrichtung - um
den spezifischen Einfluss der Oberflächentopographie auf die Funk-
tion der einzelnen Untereinheiten (Hänge) zu untersuchen. Die 105

Modelle werden mit den gleichen Klimadaten für ein hydrologisches
Jahr simuliert und die Abfluss- sowie Wasserspeichersimulationen
mit Hilfe der Shannon-Entropie analysiert. Die Ergebnisse zeigen,
dass die Simulationen stark redundant sind und dass ein kompri-
miertes Einzugsgebietsmodell, das aus sechs anstelle von 105 Hängen
besteht, ähnliche Simulationen wie das gesamte Ensemble erzeu-
gen kann. Die Kompressibilität (Redundanz der Simulationen) des
Ensembles und damit die ”optimale”Anzahl der Hänge variierte
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dabei jedoch zeitlich sowie je nach Zielvariable (Abfluss oder Spei-
cherung) stark. Dies zeigt, dass hydrologische Ähnlichkeit von der
Funktion und vom Zustand eines Landschaftselements abhängt. Eine
”optimale”räumliche Unterteilung eines Einzugsgebiets in hydrolo-
gisch ähnliche Einheiten muss daher für eine bestimmte Funktion
aber auch für unterschiedliche Zustände in der Zeit angepasst werden.

In Kapitel 4 versuche ich hydrologisch ähnliche Landschaftsein-
heiten auf der Grundlage der verfügbaren Geodaten zu identifizie-
ren, ohne die Umwege und Unsicherheiten, die mit der Verwen-
dung eines Modelles einhergehen. Ziel von Kapitels 4 ist es, einen
Ähnlichkeitsindex zu entwickeln, mit dem räumliche Einheiten direkt
anhand der verfügbaren topografischen Informationen identifiziert
werden können. Der entwickelte Index (reduced dissipation per unit
length; rDUNE) ist dabei eine energiezentrierte Neuinterpretation
des etablierten Index HAND (height above the nearest drainage) und
basiert im Wesentlichen auf der Beobachtung, dass der Großteil der
potentiellen Energie des Niederschlags dissipiert wird, wenn Nie-
derschlag zu Abfluss wird. rDUNE wird gegen einzugsgebietsweite
Verteilungen von HAND und vom topographic wetness index (TWI)
getestet. Die Ergebnisse zeigen, dass rDUNE den anderen geteste-
ten Indizes in der Tat überlegen ist, wenn das Ziel darin besteht,
Einzugsgebiete mit ähnlich dominanten Abflussprozessen anhand
ihrer Topographie zu identifizieren. Die Analyse zeigt auch, dass die
Einteilung von Landschaftsfaktoren in Treiber und Widerstandsterme
einen vielversprechenden Ansatz darstellt, um Ähnlichkeitsindizes in
der Hydrologie zu entwickeln. Die Studie endet mit der Frage, warum
sich Landschaften so entwickeln, dass der größte Teil der potenziellen
Energie auf der Hangskala dissipiert wird, obwohl schon oft gezeigt
wurde, dass Energiedissipation innerhalb von Flussnetzen minimiert
wird.
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Part I

I N T R O D U C T I O N





1
I N T R O D U C T I O N

1.1 motivation

The increased probability of extreme precipitation events and conse-
quently the higher chance of flash floods and erosion of fertile lands,
the depletion of available water stocks by irrigation as well as water
quality issues related to the excessive use of pesticides are only a
few challenges hydrology is facing in the 21

st Century. What these
challenges have in common is that they are all caused or at least highly
influenced by human activities. This implies that the impact they have
on society can be reduced if the socio-hydrological management of
available water resources is improved (e.g. Montanari et al., 2013). In The importance of

meso-scale
catchments in
hydrology.

this context it is interesting to note that many management decisions
in hydrology are designed and outlined neither at the plot scale of
several square meters nor on the scale of entire large scale watersheds
(> 250 km2) but on the scale of meso-scale catchments (5 to 250 km2).
This is the case as, at least in humid regions, water amounts and
fluxes in meso-scale catchments have reached dimensions that they
are large enough that relevant infrastructure like power plants or
drinking water wells either depend or are impacted by their function
and state.

Despite of the importance of meso-scale catchments for manage-
ment decisions it is exactly this spatial scale on which up to date
neither a unifying hydrological theory (Sivapalan, 2003) nor a gen-
eral accepted modeling approach (Hrachowitz and Clark, 2017) has
been established. It was James Dooge who first acknowledged this
discrepancy in his landmark publication in 1986 where he stated that
hydrology as a science should shift its focus to the derivation of new
hydrological laws and modeling approaches for meso-scale catchments
rather than investing its energy on model calibration (Dooge, 1986). Looking for

hydrologic laws.Although Dooge’s seminal paper has been published more than 30

years ago his general statements are still relevant and valid today. In
the following I will hence shortly re-visit the arguments proposed in
Dooge (1986) from an updated, however obviously subjective position.

Systems of organized complexity

The line of argument in the commentary of Dooge (1986) is to a large
extent founded on the work of Weinberg (1975), a system theorist, Weinberg’s system

categories.who classified physical systems into three types of systems to better
explain why it is so challenging to adapt theoretical solutions to real

3



4 introduction

world problems. Weinberg’s first class of systems is thereby defined
as systems of organized simplicity. The dynamics of these systems canSystems of organized

simplicity. be approximated in a deterministic, reversible and continuous way,
under the condition that the initial states are known, that it is possible
to keep track of all state changes in time as well as that the dynamic
laws describing the state changes are known. Arguably the most
prominent example of this class is our solar system and the somewhat
idealized movements of the planets around the sun. For instance, by
observing the current trajectories (position and velocity) of the planets
in our solar system we are able to apply the law of gravity and make
astonishingly precise approximations about the state of the system
in the future as well as in the past. For instance, the next total solar
eclipse over Karlsruhe (Southern Germany) is going to be on the third
of September in the year 2081 at 9:07 a.m. These kind of predictions
are based on a concept which is sometimes referred to as locality.
Locality means in this context that we can neglect certain forces and
features in our consideration if they only slightly change our ap-
proximations. Despite these simplifications predictions in systems of
organized simplicity are remarkably accurate, especially if compared
to our current ability to predict the next flood or drought in hydrology.

The majority of the history of physics, starting with the qualita-
tive description of nature from Thales, Herakles and Archimedes in
ancient Greece up to the early 18

th century, including the development
of the famous Newtonian laws in the 17

th century, is concerned almost
exclusively with systems of organized simplicity (branch of physics
referred to as classical mechanics). However, this exclusive way ofThe origin of

statistical mechanics
and thermodynamics.

examining systems changed rather fundamentally in the late 18
th

and early 19
th century as a result of the experiments and theoretical

essays trying to explain the phenomena of temperature and pressure
(historical context e.g. Ben-Naim, 2008). The early 19

th century marks
thereby a clear milestone in the history of physics. Especially the work
of Maxwell, Boltzmann, Gibbs and later Heisenberg and Bohr funda-
mentally introduced the concept of probability and consequently also
the concept of uncertainty into physics (Lindley, 2007) and Feynman
once stated appropriately: ”In its efforts to learn as much as possible about
nature, modern physics has found that certain things can never be ”known”
with certainty. Much of our knowledge must always remain uncertain. The
most we can know is in terms of probabilities.” (Feynman, 1963). The two
terms, uncertainty and predictability, are hence always inseparably
linked to each other and the knowledge about their connection is
especially in the field of statistical mechanics which deals after Wein-
berg with systems of unorganized complexity the key to make predictions.

The most common example for systems of unorganized complexity is
a cylinder filled with millions of moving molecules. Describing the
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evolution of such a system contains the paradox that the movements
as well as the interactions of its single features still follows classical
mechanics, but the sheer quantity of features prevent bookkeeping
of their trajectories making predictions in a classical mechanics way
impossible (e.g. Popper, 1959). A requirement to make predictions
in such systems is hence a switch in perspective, from the micro- to
the macroscale. This means that the focus needs to shift from the
single particle to the entire gas filled cylinder and that the description
of the system are based on aggregated (macroscopic) states rather
than on fixed microscopic features and states. Furthermore, if it is Systems of

unorganized
complexity.

possible to assume that the behavior of the microscopic features is
to a certain extent random it enables to apply statistical concepts
such as the ”Law of Large Numbers” from Jakob Bernoulli, following
the convention that ”[. . . ] the larger the population involved the more
likely we are to observe values that are close to the predicted average values”
(Dooge, 1986). This makes predictions in systems of unorganized
complexity - similar to the case of systems of organized simplicity -
quite accurate if it is possible to identify the integral system properties
(e.g. the average kinetic energy and mass of the molecules) and the
macroscopic driving potentials (e.g. the concentration gradient), for
instance to estimate the time until two liquids are perfectly mixed by
diffusion.

In contrast to the great advances modern physics has made to Hydrological systems
belong to neither of
the two above sketch
categories.

describe systems of organized simplicity and those of unorganized
complexity, most systems an engineer or earth scientist may work
with neither belong to one of the two categories. This is, to put it
mildly, unfortunate as almost all physical theories and consequently
most physical laws an earth scientist might apply were established
for these two types of systems. Weinberg and Dooge argue hence
that there is a third category of systems called systems of organized
complexity. These systems fill the space between systems of organized Systems of organized

complexity.simplicity and unorganized complexity and can neither be treated
exclusively in a mechanistic nor statistical manner. This is the case
because the number of features within the system is already too high
that the system can be treated in a deterministic way, but not high
enough that it can be assumed that the behavior of the individual
compartments is entirely random. This hampers the identification of
macroscopic gradients and system properties. Dooge (1986) argued
that most hydrological systems belong to exactly this category and
particularly meso-scale catchments “[. . . ] exhibit a considerable degree
of both spatial organization and stochastic heterogeneity, being too large
for a fully deterministic treatment yet too small for a simplified conceptual
treatment.” as re-visited by Zehe et al. (2014). There is hence a clear
lack of theory on the scale on which most hydrological decisions are made.
This lack of a distinct theoretical foundation explains to some extent
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why mid- and long-term predictions as well as uncalibrated model
predictions are so uncertain in hydrology (e.g. Hrachowitz et al., 2013),
especially if changing boundary conditions and evolving systems
need to be considered. It is hence, at least since the work of DoogeLack of a general

accepted theoretical
basis in catchment

modeling.

(1986), a long standing vision in hydrology that these limitations can
only be overcome if we take one step back and re-visit existing theory
as well as develop new laws and modeling approaches for meso-scale
catchments (Clark et al., 2016; Dooge, 1986; Sivapalan et al., 2003;
Zehe et al., 2014).

This thesis is motivated and framed by exactly this quest to im-
prove the theoretical underpinning of hydrology as a science with
the overall goal to enhance our system understanding as well as our
ability to make predictions at the catchment scale. The emphasis is
thereby on the development and analysis of hydrological models
and on the question how to build, test and distribute models for
catchments of the meso-scale. The thesis is structured as follows:

I introduce a modeling concept called ”representative hillslopes”
in chapter 2. This concept was developed for catchments that areChapter II:

Representative
hillslopes - A

modeling concept for
the meso-scale.

already too large to be represented in a fully-distributed way (lack of
computer power) but in which a significant body of data is available,
making the use of more parsimonious empirical approaches imprac-
tical as they are unable to process the available information about
the system. I continue the journey to improve our ability to represent
meso-scale catchments by models chapter 3. Here, I investigate howChapter III:

Identifying
hydrological

similarity to build
better distributed

models.

the concept of landscape organization and hydrological similarity can
support our search for an optimum spatial model structure. I use
novel concepts taken from information theory which have not or rarely
been applied in hydrology and show how the connection between
data compression and landscape organization can be a guidance
when setting up environmental models. Founded on the findings in
chapter 3 I develop a topographic index based on a straightforward
thermodynamic argumentation to improve our ability to divide a
landscape into hydrologically similar units in chapter 4. This index canChapter IV:

Topographic
similarity to explain

hydrological
function.

eventually be the foundation for new spatially distributed models and
can help us to reduce model complexity a-priori. Finally, in chapter 5,
I discuss and synthesize the key findings from the different topics
in chapters 2-4 and I identify challenges and opportunities for future
research.

CAOS - catchments as organized systems

This thesis is embedded and motivated within the DFG research
unit ”Catchments As Organized Systems” (CAOS, Zehe et al., 2014).The CAOS project.

Within this project, a 256 km2 research catchment located in west-
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ern Luxembourg (the Attert basin) was extensively monitored for a
period of more than 6 years. Among the observation network were
46 meteorological stations, 400 soil moisture probes, 200 piezometers
and up to 116 sap flow sensors (Hassler et al., 2017). Furthermore,
several geo- and soil-physical measurement campaigns were carried
out in the years 2012, 2013 and 2014 collecting in total more than 150

soil cores samples (Jackisch, 2015), around 100 drilling cores (Sprenger
et al., 2015) as well as various 2d profiles of the subsurface measured
by means of electric resistivity tomography (ERT), refraction seismic
and ground penetrating radar (GPR).

The Attert basin was chosen as research environment because of
its special geological and climatic properties. The catchment is divided The Attert

catchment, a close to
”perfect” natural
research
environment.

into three main geological settings (schist, marl and sandstone; Bos et
al., 1996) which are all characterized by distinctly different dominant
runoff processes (Wrede et al., 2015) while contrasts in the climatic
forcing play only a minor role (Pfister et al., 2018). These properties
make the Attert catchment a close to perfect natural environment
for hydrological research with a focus on runoff generation as the
climatic differences between the contrasting geological units do not
superimpose their hydrological functions.

All hypotheses formulated in this thesis are tested within the Attert
basin. A detailed site description can hence be found in each chapter
with an individual focus on the different sub-basins used for the
research question in the corresponding chapter. In the following, I
introduce the different parts of my thesis in more detail.

1.2 chapter 2 : the complementary merits of top-down

and bottom-up models

All models are simplified system representations, and can accordingly
be classified – similar to physical systems - into models starting either Top-down and

bottom-up models.with a macroscopic (top-down) or microscopic (bottom-up) system
perspective on catchments (e.g. Gao et al., 2019; Hrachowitz and Clark,
2017; Savenije, 2009).

Models following a bottom-up perspective (also referred to as
physically-based or reductionist models in hydrology) are based
on the concept that each process in a catchment is represented in an
explicit manner (Freeze and Harlan, 1969). A typical starting point Bottom-up,

physically-based or
reductionist models.

for such models is a classical mechanistic, eulerian description of the
flow system in a soil column. Other processes are then added to the
soil domain until the desired level of process diversity is reached.
Bottom-up models in hydrology are typically based on the Darcy-
Richards equation to simulate water flow in the unsaturated zone, the
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Penman-Monteith equation to approximate the net evapotranspiration,
a kinematic wave approach to simulate surface runoff and the Darcy
law to simulate water fluxes in the saturated zone. To represent the
function of an entire catchment with a bottom-up model, numerous
soil columns are coupled and spatially distributed using different
techniques and resolutions, thereby increasing the dimensions to 2 d
or 3 d. In general, the driving potential differences (e.g. resulting
from topographic differences) as well as the corresponding dissipative
energy losses (e.g. related to the friction at the water-solid interface) of
a given process depend on the local system configuration and on the
individual location of the soil column with respect to its neighbors.
Both the driver and corresponding resistance term can hence vary
greatly within a given landscape. At least theoretically it is possible
to identify the model parameters of bottom-up model based on mea-
surements and observations. However, as a result of our inability to
measure especially the subsurface at the scale of interest in combina-
tion with the fact that bottom-up models are founded on laws not
appropriate under some conditions (e.g. Darcy-Richards; Beven and
Germann, 1982, 2013), bottom-up models often have numerous modelHow

physically-based can
a bottom-up models

be?

parameters which are difficult to assess a-priori by observations. This
ambiguity and uncertainty of model parameters makes calibration of
bottom-up models often a necessary evil especially if the goal is to
produce results with an acceptable performance. Prominent examples
of classical bottom-up models are MIKESHE (Hughes and Liu, 2008),
HydroGeoSphere (Brunner and Simmons, 2012) and CATFLOW (Zehe
et al., 2001). The latter is used in chapter 2 and 3.

Modeling approaches following a top-down perspective (also re-
ferred to as conceptual or bucket models in hydrology) start at the
other end of the spectrum with the delineation of catchment. The mostTop-down,

conceptual or bucket
models.

elementary type of a top-down model is a single linear reservoir repre-
senting an entire catchment which embodies a closed control volume
with respect to the mass balance. Usually, several reservoirs and lag
functions are combined until the desired level of system and process
complexity is reached (Gupta et al., 2012). As a result of the macro-
scopic system representation, driving potential differences as well as
the corresponding resistance terms are also of macroscopic nature. For
instance, the water table differences within a linear reservoir is can act
as a driver for runoff generation, encountered by model parameters
which represent integrated system properties that hamper the flow of
water in a catchment. As these macroscopic potentials and controls
cannot be measured directly on the scale of interest they normally
need to be inferred from observed time series of system forcing and
response, typically streamflow and rainfall, again requiring model
calibration, as it is the case for most bottom-up models. ProminentThe necessity to

calibrate top-down
models.

examples of top-down models are HBV (Bergström and Forsman,
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1973), FLEX-topo (Fenicia et al., 2011) or TOPMODEL (Beven and
Kirkby, 1979).

It is important to note that the border between the different modeling
approaches is at best vague, and the plurality of hydrological models
certainly spans the entire range between bottom-up and top-down
approaches. However, the majority of hydrological models still follows
either a top-down or bottom-up perspective especially considering the
roots of their development (Gao et al., 2019).

To improve our ability to make predictions on the catchment scale
Savenije (2009) and Hrachowitz and Clark (2017) proposed that a
promising way forward is to better link and combine top-down
(macroscopic perspective) with bottom-up (microscopic perspective)
model concepts . This means to identify models which balance com- The combination of

top-down and
bottom-up models. A
way forward?

plexity with simplicity (Savenije, 2010; Schoups et al., 2008; Zehe
et al., 2014), to find better way to integrate and use new observations
in hydrological models and finally to facilitate the communication
between the two somewhat separated scientific modeling communities
in hydrology.

The concept of representative hillslopes

Following the line of thoughts proposed by Hrachowitz and Clark Representative
hillslopes are
bottom-up models
which are set up in a
top-down manner.

(2017) I introduce the modeling concept of representative hillslopes
in chapter 2. This modeling concept tries to bridge the gap between
top-down and bottom-up model approaches by investigating that a
single spatially-aggregated 2 d numerical hillslope model can repre-
sent an entire meso-scale catchment in a top-down approach using a
bottom-up model. Chapter 2 is thereby divided into two main sections:

In the first section, I develop two perceptual models which rep-
resent the hydrological functioning of two distinctly different catch-
ments in a top-down manner. The perceptual models are thereby
grounded on numerous field observations (e.g. Jackisch et al., 2016),
on reported findings about the functioning of the catchment (e.g.
Martı́nez-Carreras et al., 2016) as well as on the qualitative knowledge
of field hydrologists, geo-physicists and biologists which worked in
the Attert basin during the CAOS project.

In the second section, I translate the two perceptual models into
two bottom-up hillslope models. This is done by deriving macro-
scopic model parameters based on the available mosaic of point
measurements as well as on qualitative information, for instance Parameterization of

the representative
hillslopes.

about the occurrence of macropores or subsurface water ponds. These
macroscopic relationships cannot be measured directly within the



10 introduction

two research environments but where derived based on the diversity
of point measurements available with the overall goal to represent
the function of the two catchments. The hillslope models are set up
and tested against discharge time series within a few trial and error
runs and are finally compared against sap flow velocities (proxy
for catchment transpiration) and soil moisture observations (proxy
for catchment storage). The results of chapter 2 highlight that the
concept of representative hillslopes is indeed promising, especially
in catchments where more information about the system is available
than rainfall and runoff. However, they also point out the limitations
of our spatially aggregated modeling concept as well as of the used
bottom-up model itself.

1.3 chapter 3 : functional units and landscape organi-
zation

The fact that the hydrological functioning of a 20 km2 large catch-
ment can be represented with a single spatially aggregated model
is impressive, especially considering the seemingly overwhelming
heterogeneity of the subsurface properties in the two experimental
catchments (e.g. Jackisch et al., 2017). The results are, however, in line
with the findings of chapter 4 where I show that geologically similar
sub-basins also share almost identical specific discharges despite
the fact that their areas range from 0.5 to 30 km2. The two findings
that we are on one hand able to represent the runoff generation of
an entire catchment with a spatially-aggregate hydrological model
and on the other hand that the hydrological functioning of a 0.5 km2

catchment can be almost identically to 30 km2 catchment give rise
to the well established research question if catchments located in a
similar natural area are also organized in a hydrological similar way.Functional groups,

the basis for
representative

hillslopes.

The identification of hydrological similar landscape entities is thereby
the key for any ”optimal” measurement network, the foundation of a
representative hillslope as well as the basis for any distributed model
strategy. This is the case as it allows us to transfer knowledge from
one location to another and by that minimize the chances that we miss
either important details or produce redundancy in our observations
and simulations.

In chapter 3, I investigate the question how the concept of hydrological
similarity and the phenomenon of landscape organization can be used
to build sophisticated hydrological models. Before, I shortly re-visit
the origin of the term ”organization” and explain its connection to the
concept of ”entropy” from a science historical perspective.
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Organization, entropy and hydrological similarity

The term ”organization” and the quantity ”entropy” are scientifically
inevitably linked to each other (Tolman, 1938). Entropy as a physical The link between

entropy and
organization.

quantity was introduced by Clausius in 1854 when he studied the
Carnot cycle, essentially trying to explain why heat flows from warm
to cold. In its classical thermodynamic definition, entropy reflects the
thermal energy per unit temperature of a system that cannot be used
to perform mechanical work. The entropy of an isolated system can,
following the second law of thermodynamics, only increase which is
as shown by Boltzmann a matter of probability, as any system will
evolve to the most probable state for which its inner gradients get
depleted as long as it is not forced otherwise by its environment. The
depletion of gradients and the maximization of entropy are thereby
manifested through a re-organization of a system from an unlikely
to a more likely state. The term ”organization” refers thus to (a) a Organization can

refer to a process as
well as to a state.

process of how a system will adapt its internal states or structure to
given persisting gradient (self-organization) and to (b) a state of its
structural properties measured by distance of the system from its
entropy maximum (degree of organization).

Similar to the example with the cylinder filled with a gas, catchments
can be seen as a box consisting of functionally partly independent
sub-units (e.g. Zehe et al., 2014). The number of functional elements
needed to represent a catchment depends thereby on the degree of
landscape organization. In a wide range of catchments around the The limited degrees

of freedom of
landscape evolution.

world it was found that this degree can be surprisingly high and that
the number of needed functional units to represent a catchment low
(Tucker and Bras, 2000; Yoshida and Troch, 2016). This is the case
as land-use, geology and soil properties always evolve together as a
team rather than being independent variables meaning that the degree
of freedom a hydrological landscape has to evolve its function and
structure on the macroscale might be smaller than expected on first
glance (see also section 1.4).

A series of different approaches have been proposed in hydrol-
ogy to divide a landscape into similarly organized sub-units like
the representative elementary area (REA) concept by Sivapalan et al.
(1987), the hydrological response units (HRU) by Flügel (1996), the
representative elementary watersheds (REW) by Reggiani et al. (1998)
or the elementary functional units (EFU) by Zehe et al. (2014). While
these concepts are all motivated and based on different assump-
tions, the key idea remains the same: to identify spatial entities of
a landscape which function hydrologically similar so that a single
unit can represent its entire functional group. The advantage of this Why functional

units?spatial division is two-fold. First, a valid classification can improve
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our ability to set up distributed hydrological models which are spa-
tially as parsimonious as possible but as complex as necessary (Zehe
et al., 2014). Second, functional units can help to identify a minimum
number of necessary observation points to capture the hydrological
functioning of a landscape, thus avoiding redundant measurements.
However, despite these promises, no approach to identify and divide
a landscape into hydrological similar units has yet become a standard
in hydrology.

The dynamic nature of hydrological similarity

In chapter 3 I shift my focus to the research question how functionally
similar landscape units can be identified. To assess this issue I divide
a catchment into 105 hillslopes based on an existing river network
and represent each hillslope with a hydrological model. These models
differ only with respect to parameters that are typically derived from
a digital elevation model (DEM) - the hillslope form and aspect - with
the goal to examine the specific influence that surface topography
has on the function of each sub-unit. The simulations are analyzedData compression to

identify functional
similarity.

by means of Information Theory (Cover and Thomas, 2005) and the
results show that the combination of information theory and thermo-
dynamic reasoning provides a promising set of methods to identify
hydrological similar landscape units. This is further underpinned by
the fact that the identified functional groups could be used to set
up a compressed catchment model which consists of 6 instead of
105 hillslopes without losing predictive power. Finally do the results
indicate that the definition of hydrologically similar areas cannot be
time invariant as hydrological systems move from unorganized to
organized states in time. An ”optimal” spatial division of a catchment
into hydrological similar units therefore also needs to be time variant.

1.4 chapter 4 : hydrological similarity explained by to-
pographic similarity

The results presented in chapter 3 are encouraging, both for identi-
fying hydrologically similar landscape units and for an improved
definition of the term model complexity in hydrology. Especially theHow to identify

functional units
directly on the

available geo-data.

capabilities of information theory, as a diagnostic tool, and thermody-
namics, for hydrological reasoning, proved to be exceedingly valuable.
However, taking a practical viewpoint on model building, the task to
set up, run and finally compress a distributed hydrological model as
done in chapter 3 is very time-consuming. A long-standing vision in
hydrology is hence to identify similar functioning units directly on the
available geo-data (e.g. Beven and Kirkby, 1979) without the detour
and uncertainties that come along when using a hydrological model.
Especially topographic maps are promising here as they are available
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in a decent resolution around the world and reflect the function of a
landscape to a certain extent.

In this regard it is interesting to recall that the different sub-basins
located in the Attert catchment function hydrologically almost identi-
cally as long as they are located within the same geological setting.
As stated above we might wonder if the different catchments within
the same geological settings have evolved in a similar fashion and are
hence also organized alike with respect to their function.

The evolution of a landscape on long-time scales is a constant process
of continental uplift and erosion. Its pace and magnitude is controlled Surface topography

as fingerprint of a
hilly landscape.

by the amount of free energy which is available to perform work and
by system properties like soil texture, vegetation cover and parent
material (Kleidon et al., 2013). Surface topography reflects maybe the
most obvious consequence of this constant evolution and the distribu-
tion of wetlands, river valleys and hillslopes mirrors the interaction
between the past incoming mass and energy as well as the initial
geological setting of a landscape. The energy balance of a catchment
is thereby dominated by the solar radiation, nevertheless, in humid
regions it is mainly the influx of energy by precipitation which drives
landscape evolution and forms channel networks, erodes hillslopes
or provides energy to create subsurface preferential flow paths (Zehe
et al., 2013). The influx of energy added is thereby determined by
the mass and the kinetic energy of precipitation as well as by the
surface topography of a catchment. The latter implies that a water
drop falling on a mountain top has more potential energy than a
water drop falling close to outlet of a catchment. This spatial energy
distribution mirrors a unique fingerprint of a landscape and not only
reflects the past evolution of a landscape but also controls its recent
development and hence its future appearance.

Landscape evolution, surface topography and the available energy
to perform work are highly intertwined processes and structural
properties (Langbein and Leopold, 1964). It seems hence reasonable
to apply an energy-centered perspective on hydrological similarity
if our goal is to identify hydrologically similar units based on the
topography (e.g Zehe et al., 2014).

Linking surface topography and runoff generation by means of energy dissi-
pation

In chapter 4 I derive a topographic index with the goal to identify
functional groups based on surface topography. The new index (re-
duced Dissipation per unit length; rDUNE) is an energy-centered re-
interpretation and enhancement of the well-established index HAND
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(Height Above the Nearest Drainage; Rennó et al., 2008) and funda-
mentally based on the observation that the majority of the incoming
potential energy of precipitation is dissipated when rainfall becomes
runoff. I test rDUNE against catchment-wide distributions of the topo-Energy-centered

re-interpretation of
HAND.

graphic wetness index (TWI, Kirkby, 1976) and HAND and show that
rDUNE is indeed a meaningful tool to identify landscapes which are
organized similarly and hence function alike. This shows once more,
(Zehe et al., 2018), that an energy-centered perspective on hydrology
could serve as a general scheme to define a set of closely related mea-
sures to improve our ability to identify functionally similar landscape
units a priori a modeling task or measurement campaign.
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P I C T U R I N G A N D M O D E L I N G C AT C H M E N T S W I T H
R E P R E S E N TAT I V E H I L L S L O P E S

abstract

This study explores the suitability of a single hillslope as parsimonious
representation of a catchment in a physically based model. We test
this hypothesis by picturing two distinctly different catchments in per-
ceptual models and translating these pictures into parametric setups
of 2d physically based hillslope models. The model parametrizations
are based on a comprehensive field data set, expert knowledge and
process-based reasoning. Evaluation against stream flow data high-
lights that both models predicted the annual pattern of stream flow
generation as well as the hydrographs acceptably. However, a look
beyond performance measures revealed deficiencies in streamflow
simulations during the summer season and during individual rainfall-
runoff events as well as a mismatch between observed and simulated
soil water dynamics. Some of these shortcomings can be related to
our perception of the systems and to the chosen hydrological model,
while others point to limitations of the representative hillslope concept
itself. Nevertheless, our results corroborate that representative hills-
lope models are a suitable tool to assess the importance of different
data sources as well as to challenge our perception of the dominant
hydrological processes we want to represent therein. Consequently,
these models are a promising step forward in the search of the optimal
representation of catchments in physically based models.

17
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2.1 introduction

The value of physically based hydrological models has been doubted
(e.g. Beven, 1989; Savenije and Hrachowitz, 2017) since their idea was
introduced by Freeze and Harlan (1969). Physically based models like
MikeShe (Refsgaard and Storm, 1995) or CATHY (Camporese et al.,
2010) typically rely on the Darcy-Richards concept for soil water dy-
namics, the Penman–Monteith equation for soil-vegetation-atmosphere
exchange processes and hydraulic approaches for overland and stream
flow. Each of these concepts is subject to limitations arising from our
imperfect understanding of the related processes and is afflicted by
the restricted transferability of process descriptions from idealized
laboratory conditions to heterogeneous natural systems (Grayson
et al., 1992; Gupta et al., 2012).

Nevertheless the usefulness of physically based models as a learning
tool to explore how internal patterns and processes control the integral
behavior of hydrological systems has been corroborated in several
studies. For example Pérez et al. (2011) used Hydrogeosphere (Brun-
ner and Simmons, 2012), together with a regularization scheme for its
calibration, to infer how changes in agricultural practices affect the
streamflow generation in a catchment. Hopp and McDonnell (2009) ex-
plored the role of bedrock topography in the runoff generation using
HYDRUS 3-D (Simunek et al., 2006) at the Panola hillslope. Coenders-
Gerrits et al. (2013) used the same model structure to examine the
role of interception and slope in the subsurface runoff generation.
Bishop et al. (2015), Wienhöfer and Zehe (2014) and Klaus and Zehe
(2011) used physically based models to investigate the influence of
vertical and lateral preferential flow networks on subsurface water
flow and solute transport, including the issue of equifinality and its
reduction. These and other studies (e.g. Ebel et al., 2008; Scudeler
et al., 2016) show that physically based models can be set up using a
mix of expert knowledge and observed parameters and may be tested
against a variety of observations beyond streamflow – such as soil
moisture observations, groundwater tables or tracer breakthrough
curves. Such studies are, on the one hand, an option to increase our
limited understanding of the processes underlying physically based
models (Loague and VanderKwaak, 2004), and on the other hand
reveal whether a model allows consistent predictions of dynamics
within the catchment and of its integral response behavior (Ebel and
Loague, 2006).

Setting up a classical physically based model in a heterogeneous
environmental system is, however, a challenge as it requires an
enormous amount of highly resolved spatial data, particularly on
subsurface characteristics. Such data sets are rare and only available in
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rather homogeneous systems or in environmental system simulators
such as Biosphere 2 LEO (Hopp and McDonnell, 2009). Therefore, it
has been a long standing vision to replace fully distributed physically
based models with aggregated yet physically based model concepts,
for instance the Hillslope Storage Boussinesq approach (HSB, Berne
et al., 2005; Troch et al., 2003), the REW approach (Representative
Elementary Watershed, e.g. Reggiani and Rientjes, 2005; Zhang and
Savenije, 2005) or different dual-continuum approaches (Dusek et al.,
2012). The key challenge in applying these concepts to real catchments
is the assessment of a closure relationship, which parametrizes (a)
hydrological fluxes (Beven, 2006a) and (b) soil water characteristics
in an aggregated effective manner (Lee et al., 2007; Zehe et al., 2006).
Furthermore, it is not completely clear whether the entire range of
variability in subsurface characteristics is relevant for hydrological
simulations (Dooge, 1986; Zehe et al., 2014). There are, however,
promising concepts emerging, for example the work of Hazenberg
et al. (2016), who recently developed a hybrid model consisting of the
HSB model in combination with a 1-D representation of the Richards
equation for the unsaturated zone.

Regardless of whether one favors physically based, hybrid or more
statistical model approaches, a perfect representation of a hydrological
system should balance the necessary complexity with the greatest
possible simplicity (Zehe et al., 2014). The former is necessary to
avoid oversimplification. The latter attempts to avoid the drawbacks
of overparametrization (Schoups et al., 2008). In principle there are
two ways one can try to reach this optimum model structure: either
by starting with a complex system representation, for instance a full
3d catchment model, and simplifying the model structure as much
as possible, or by starting at the other end of the spectrum, with the
most parsimonious model structure, and proceeding towards higher
complexity. In conceptual rainfall–runoff models which follow the
HBV concept (Bergström and Forsman, 1973) the most parsimonious
model structure for simulating the behavior of a catchment is a single
reservoir. In the case of physically based models there is more than
one starting point. In flatland catchments without dominant lateral
flow processes in the soil one might choose a single soil column. This
”null model” could be refined into multiple parallel acting columns,
to capture variability in vegetation and soil properties. This represents
the first generation of land surface components in meteorological
models (e.g. Niu et al., 2011) and the first generation of models for the
catchment-scale dynamics of nitrate (Refsgaard et al., 1999).

However, in hilly or mountainous terrain the smallest meaning-
ful unit is a hillslope including the riparian zone, because rainfall and
radiation input depend on slope and aspect, as well as on downslope
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gradients which cause lateral fluxes in the unsaturated zone (e.g.
Bachmair and Weiler, 2011; Zehe et al., 2007). This is the reason why
hillslopes are often regarded as the key landscape elements controlling
transformation of precipitation and radiation inputs into fluxes and
stocks of water (e.g. Bronstert and Plate, 1997), energy (Zehe et al.,
2010, 2013) and sediments (Mueller et al., 2010).

The most parsimonious representation of a small catchment in a
physically based model could thus be a single representative hillslope.
However, the challenge of how to identify such a hillslope has rarely
been addressed. This reflects the fact that the identifiability of a
representative hillslope has been strongly questioned since the idea
was born. For example, (Beven, 2006b) argues that the hillslope form
is not uniquely defined nor is it clear whether it is the form that
matters, the pattern of saturated areas Dunne and Black (1970) or
the subsurface architecture. The enormous spatial variability of soil
hydraulic properties and preferential flow paths in conjunction with
process non-linearity are additional arguments against the identifi-
ability of representative hillslope models (Beven and Young, 2013).
Nevertheless, hillslopes act as miniature catchments (Bachmair and
Weiler, 2011), which made Zehe et al. (2014) postulate that structurally
similar hillslopes act as functional units for the runoff generation
and might thereby be a key unit for understanding catchments of
organized complexity (Dooge, 1986). Complementarily, Robinson
et al. (1995) showed that the behavior of catchments up to the lower
mesoscale (5–50 km2) are strongly dominated by the hillslope behavior,
and Kirkby (1976) highlighted that in catchments extending up to
50 km2 random river networks had the same explanative power for
runoff generation as the real river network. He concluded that as long
as river networks are not dominant, the characteristic areas of the
catchment hold the key to understanding its functioning.

In this context it is of interest to which extent the parameters of
a representative hillslope model can be derived by averaging various
structural properties of several hillslopes or plots in a catchment. A
promising avenue is to set up the representative hillslope based on a
perceptual model which is in turn a generalized and simplified picture
of the catchment structure and functioning. This is because perceptual
models provide a useful means of facilitating communication between
field researchers and modelers (Seibert and McDonnell, 2002) and
additionally often represent catchments as hillslope-like cross sections.
The general idea to translate a perceptual model into a model structure
is not new and has already been applied within a conceptual rain-
fall–runoff model framework even within the same area (Wrede et al.,
2015). The scientific asset of using a physically based model is that the
perceptual model provides important information on typical ordinal
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differences in the hydraulic conductivity of different subsurface strata
and the nature and qualitative locations of the dominating preferential
flow paths. This information can be implemented in hillslope models
in a straight-forward manner. The transformation of a qualitative
model structure into a quantitative parametrization of the model
depends, however, strongly on the chosen hydrological model and the
quality and amount of available data.

Objective and approach

We hypothesize that a single hillslope in a physically based model is a
parsimonious representation of a small hilly catchment. The objective
of this study is to test this hypothesis in a two-step approach:

• First we derive a qualitative model structure of a representative
hillslope from our perception of the dominant processes and the
related dominant surface and subsurface characteristics in the
catchment.

• In the second step we transform this qualitative model struc-
ture into a quantitative model structure without the use of an
automatic parameter allocation.

The challenge in deriving a qualitative model structure lies in the
separation of the important details from the idiosyncratic ones. This
process is to a large extent independent of the chosen hydrological
model and is strongly related to the available expert knowledge and
quality of the data. The transformation of a qualitative to a quan-
titative model structure on the other hand depends on the chosen
model and whether it is for example based on 2d or 3d hillslope
module or how rapid flow paths are represented. For this reason the
objective of our study is not to ”sell” our particular model, but to
share the way how we distilled the quantitative model setups in our
target catchments from available data and to evaluate the ability of
this parsimonious physically based model to accurately simulate mul-
tiple state and flux variables. During the model setup we intendedly
avoided using an optimization algorithm to fit the model to the data.
In contrary, we relied on various available observations, process-based
reasoning, and appropriate literature data for conceiving our percep-
tual models and parameterizing the representative hillslope models
as their quantitative analogues. More specifically, we use geophysical
images to constrain subsurface strata and bedrock topography and
derived representative soil-water retention curves from a large data set
of undisturbed soil samples. Furthermore, we use observations from
soil pits, dye staining experiments and observed leaf area indices (LAI)
for our model parametrization. Finally, we benchmark the hillslope
models against normalized double mass curves, the hydrograph as
well as against distributed soil moisture and sap flow observations.
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Figure 2.1: Map of the Attert basin with the two selected headwater catch-
ments of this study (Colpach and Wollefsbach). In addition, the
cluster sites of the CAOS research unit are displayed.

2.2 study area , database and selected model

We focus our model efforts on two different catchments, the Colpach
and the Wollefsbach, located in the Attert experimental basins in Lux-
embourg (Fig. 2.1, Pfister et al., 2000). These sites offer comprehensive
laboratory and field data collected by the CAOS (Catchments As Or-
ganized Systems) research unit (Zehe et al., 2014). Besides standard
hydrometeorological data the model setup is based on (a) observed
soil hydraulic properties of a large number of undisturbed soil cores,
(b) 2d electric resistivity profiles in combination with soil pits and
augering to infer on bedrock topography, and (c) flow patterns from
dye staining experiments and soil ecological mapping of earthworm
burrows, to infer the nature and density of vertical preferential flow
paths. The representative hillslopes for the two catchments were each
set up as a single 2d hillslope in the CATFLOW model (Zehe and
Flühler, 2001). The following subsections will provide detailed infor-
mation on the perceptual models and on the water balance of both
catchments. We will shortly refer to the key data and those parts of
the model which are relevant for the quantitative model setup, while
the appendix provides additional details on both.
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2.2.1 The Attert experimental basin

The Attert basin is located in the mid-western part of the Grand Duchy
of Luxembourg and has a total area of 288 km2. Mean monthly tem-
peratures range from 18

◦C in July to a minimum of 0
◦C in January;

mean annual precipitation in the catchment varies around 850 mm
(1971–2000; Pfister et al., 2000). The catchment covers three geological
formations, the Devonian schists of the Ardennes massif in the north-
west, Triassic sandy marls in the center and a small area of sandstone
(Jurassic) in the southern part of the catchment (Martı́nez-Carreras
et al., 2012). Our study areas are headwaters named Colpach in the
schist area and Wollefsbach in the marl area. As both catchments are
located in distinctly different geologies and land use settings, they
differ considerably with respect to runoff generation and the domi-
nant controls (e.g. Bos et al., 1996; Fenicia et al., 2013; Jackisch, 2015;
Martı́nez-Carreras et al., 2012; Wrede et al., 2015).

Colpach catchment: perceptual model of structure and functioning

The Colpach catchment has a total area of 19.4 km2 and elevation
ranges from 265 to 512 m a.s.l. It is situated in the northern part of the
Attert basin in the Devonian schists of the Ardennes massif (Fig. 2.1 a).
Around 65 % of the catchment is forested, mainly the steep hillslopes
(Fig. 2.2 a). In contrast, the plateaus at the hilltops are predominantly
used for agriculture and pasture. Several geophysical experiments
and drillings showed that bedrock and surface topography are dis-
tinctly different. The bedrock is undulating and rough with ridges,
depressions and cracks (compare the perceptual model in Fig. 2.3 a
and the ERT image in Fig. 2.6 b). Depressions in the bedrock inter-
face are filled with weathered, silty materials which may form local
reservoirs with a high water holding capacity. These reservoirs are
connected by a saprolite layer of weathered schist which forms a rapid
lateral flow path on top of the consolidated bedrock. Rapid flow in
this ”bedrock interface” is the dominant runoff process (Wrede et al.,
2015) and the specific bedrock topography is deemed to cause typical
threshold-like runoff behavior similar to the fill-and-spill mechanism
proposed by Tromp-Van Meerveld and McDonnell (2006). Further
indication that fill-and-spill is a dominant process is given by the fact
that the parent rock is reported as impermeable, which makes deep
percolation through unweathered schist layers into a large groundwa-
ter body unlikely (Juilleret et al., 2011). Furthermore, surface runoff
has rarely been observed in the catchment, except along forest roads,
which suggests a high infiltrability of the prevailing soils (Bos et al.,
1996). This is in line with distributed permeameter measurements
and soil sampling performed by (Jackisch, 2015). Moreover, numerous
irrigation and dye staining experiments highlight the important role
of vertical structures in rapid infiltration and subsequent subsurface



24 representative hillslopes

Figure 2.2: (a) Typical steep forested hillslope in the Colpach catchment;
(b) soil profile in the Colpach catchment after a Brilliant Blue
sprinkling experiment was conducted. The punctual appearance
of blue color illustrates the influence of vertical structures on
soil water movement in this schist area. (c) Plain pasture site of
the Wollefsbach catchment; (d) soil profile in the Wollefsbach
catchment after a Brilliant Blue experiment showing the influence
of soil cracks and vertical structures on the soil water movement.

runoff formation (Jackisch, 2015; Fig. 2.2). These vertical preferential
flow paths, the saprolite layer on top of the impermeable bedrock, the
bedrock topography as well as the absence of a major groundwater
body are regarded as the dominant structures for the representative
hillslope model (Fig. 2.3 a and c).

Wollefsbach catchment: perceptual model of structure and functioning

The Wollefsbach catchment is located in the Triassic sandy marls for-
mation of the Attert basin. It has a size of 4.5 km2 and low topographic
gradients, with elevation ranging from 245 to 306 m a.s.l. The catch-
ment is intensively used for agriculture and pasture (Fig. 2.2 c); only
around 7 % are forested. Hillslopes are often tile-drained (compare
the perceptual model sketch in Fig. 2.3 b). The heterogeneous marly
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Figure 2.3: Perceptual models of the (a) Colpach and (b) Wollefsbach and
their translation into a representative hillslope model for CAT-
FLOW. It is important to note that only small sections of the
model hillslope are displayed (C Colpach; D Wollefsbach) and
not the entire hillslope.

soils range from sandy loams to thick clay lenses and are generally
very silty with high water holding capacities. Similar to the Colpach
catchment, vertical preferential flow paths play a major role in the
runoff generation, their origin, however, is distinctly different between
the seasons. Biogenic macropores are dominant in spring and autumn
due to the high abundance of earthworms. Because earthworms are
dormant during midsummer and winter, their burrows are partly dis-
connected by ploughing, shrinking and swelling of the soils (Fig. 2.2
d; see also Fig. 2.4). Soil cracks emerge during long dry spells in mid-
summer due to the considerable amount of smectite clay minerals
in these soils, which drastically increase soil infiltrability in summer
(Fig. 2.4). The seasonally varying interaction of both types of preferen-
tial flow paths with a dense man-made subsurface drainage network
is considered the reason for the flashy runoff regime of this catchment,
where discharge rapidly drops to baseflow level when precipitation
events end. This is the key feature that needs to be captured by the
representative hillslope model. However, as the exact position of the
subsurface drainage network and the worm burrows as well as the
threshold for soil crack emergence are unknown, the specific influence
of each structure on runoff generation in a hydrological model is
difficult to estimate.
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Figure 2.4: Emergent structures in the Wollefsbach catchment for the sam-
pling dates (plot size is 1 m2). In May macropore flow through
earthworm burrows dominates infiltration, while in July clearly
visible soil cracks occur. In contrast, a more homogenous infil-
tration pattern is visible in November, especially at 3 cm depth.
Figure

Water balance and seasonality

The water balance of the Colpach and Wollefsbach catchments for sev-
eral hydrological years is presented in Fig. 2.5 as normalized double
mass curves. Normalized double mass curves relate cumulated runoff
to cumulated precipitation, both divided by the sum of the annual
precipitation (Pfister et al., 2002; Seibert et al., 2016). Annual runoff co-
efficients in the Colpach catchment vary around 0.51± 0.06 among the
4 hydrological years (Fig. 2.5 a). Annual runoff coefficients are smaller
in the Wollefsbach catchment than in the Colpach catchment, and vary
across a wider range, from 0.26 to 0.46 (Fig. 2.5 b). In both catchments
the winter period is characterized by step-like changes which reflect
fast water release during rainfall events partly due to rapid subsurface
flow. In contrast, the summer regime is characterized by a smooth
and almost flat line when vegetation is active. Accumulated rainfall
input is not transformed into additional runoff, but is either stored
in the system or released as evapotranspiration (Jackisch, 2015). As
suggested by Seibert et al. (2017), we used a temperature index model
from Menzel et al. (2003) to detect the bud break of the vegetation and
to separate the vegetation-controlled summer regime from the winter
period in these curves.
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Figure 2.5: Normalized double mass curves for each hydrological year from
2010 to 2014 in the Colpach catchment (a) and from 2011 to 2014

in the Wollefsbach catchment (b). The transition period marks
the time of the years when the catchment shifts from the winter
period to the vegetation period. The separation of the seasons is
based on a temperature index model from Menzel et al. (2003).
Since the season shift varies between the hydrological years the
transition period is displayed as an area.

2.2.2 Database

Surface topography and land use

Topographic analyses are based on a 5 m LIDAR digital elevation
model which was aggregated and smoothed to 10 m resolution. Land
use data from the Occupation Biophysique du Sol are based on
CORINE land use classes analyzed by color infrared areal images
published in 1999 by the Luxembourgian surveying administration,
Administration du cadaster et de la Topographie, at a scale of 1 : 15 000.

Subsurface structure and bedrock topography

We used hillslope-scale 2d electrical resistivity tomography (ERT) in
combination with augerings and soil pits to estimate bedrock topog-
raphy in the schist area. Our auger profiles revealed, in line with
Juilleret et al. (2011) and Wrede et al. (2015) that the vertical soil setup
comprises a weathered silty soil layer with a downwards increasing
fraction of rock fragments, which is underlain by a transition zone of
weathered bedrock fragments and by non-weathered and imperme-
able bedrock. Based on a robust inversion scheme as implemented in
Res2Dinv (Loke, 2003) and additional expert knowledge, the subsur-
face was subdivided into two main layers of unconsolidated material
and solid bedrock. The bedrock interface was picked by the 1500 Ω m
isoline, as explained in detail in the appendix. For our study we used
seven ERT profiles from the Colpach area (for an example, see Fig. 2.6
b). Due to the very different geological setting in the marl region (high
clay content and alternating sedimentary layering), we could not estab-
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Figure 2.6: (a) Profile of all hillslopes extracted from a DEM in the Colpach
catchment. Hillslope profile we used in this study high- lighted
in blue. (b) Bedrock topography of a hillslope in the schist area
measured using ERT. The contour line displays the 1500 Ωm
isoline which is interpreted as the soil–bedrock interface.

lish a relation between bedrock depth and the electrical conductivity
data for this region. Therefore, the available ERT data do not provide
information on depth to bedrock for this geological setting and we
had to rely on auger profiles to estimate the average soil depth.

Soil hydraulic properties

We determined soil texture, saturated hydraulic conductivity and the
soil water retention curve for 62 soil samples in the schist area and 25

in the marl area. Particularly for the soil hydraulic functions, Jackisch
(2015) and Jackisch et al. (2017) found large spatial variability, which
was neither explained by slope position nor by the soil depth at which
the sample was taken (Fig. 2.7). As our objective was to assess the
most parsimonious representative hillslope model, we neglected this
variability but used effective soil water characteristics for both catch-
ments instead. These were not obtained by averaging the parameters
of the individual curves, but by grouping the observation points of
all soil samples for each geological unit and averaging them in steps
of 0.05 pF. We then fitted a van Genuchten–Mualem model using a
maximum likelihood method to these averaged values (Table 2.1 and
Fig. 2.7). The appendix provides additional details on measurement
devices and on the dye staining experiments.
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Meteorological forcing and discharge

Meteorological data are based on observations from two official me-
teorological stations (Useldange and Roodt) provided by the Admin-
istration des services techniques de l’agriculture Luxembourg. Air
temperature, relative humidity, wind speed and global radiation are
provided with a temporal resolution of 1 h, while precipitation data
are recorded at an interval of 5 min. Precipitation was extensively
quality checked against six disdrometers which are stationed within
the Attert basin and by comparing several randomly selected rainfall
events against rain radar observations, both using visual inspection.
Discharge observations are provided by the Luxembourg Institute of
Science and Technology (LIST).

Sap flow and soil moisture data

The Attert basin is instrumented with 45 automated sensor clusters. A
single sensor cluster measures inter alia rainfall and soil moisture in
three profiles with sensors at various depths. In this study we use 38

soil moisture sensors located in the schist area and 28 sensors located
in the marl area, at depths of 10 and 50 cm. Furthermore we use sap
flow measurements from 28 trees at 11 of the sensor cluster sites. The
measurement technique is based on the heat ratio method (Burgess
et al., 2001); sensors are East 30 Sensors three needle sap flow sensors.
As a proxy for sap flow we use the maximum sap velocity of the
measurements from three xylem depths (5, 18 and 30 mm) as recorded
by each sensor. To represent the daytime flux, we use 12 h daily means
between 08:00 and 20:00 lt. For further technical details on the sap
flow measurements, see Hassler et al. (2017).

2.2.3 Physically based model CATFLOW

Model simulations were performed using physically based hydro-
logical model CATFLOW (Maurer, 1997; Zehe and Flühler, 2001).
CATFLOW consists of a 2d hillslope module which can optionally
be combined with a river network to represent a catchment (with
several hillslopes). The model employs the standard physically based
approaches to simulate soil water dynamics, optional solute transport,
overland and river flow and evapotranspiration, which were already
mentioned in the introduction and are described in more detail in the
Appendix. In the following we will only explain the implementation
of rapid flow paths in the model, as this aspect differs greatly from
model to model.
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Table 2.1: Hydraulic and transport parameter values used for different mate-
rials in the model setups.

Type of
struc-
ture

Hydrau.
conductiv-
ity

Total
porosity

Residual
para.

Alpha
value

Shape
para.

Ks(m s−1) θs(−) θr(−) α(m−1) n(−)
Colpach

Soil layer 5 x 10
−4

0.57 0.05 2.96 1.25

Macropores
&

1 x 10
−3

0.25 0.1 7.5 1.5

soil bedrock interface

Bedrock 1 x 10
−9

0.2 0.05 0.5 2

Wollefsbach

Soil layer 2.92 x 10
−4

0.46 0.05 0.66 1.05

Drainage system 1 x 10
−3

0.25 0.1 7.5 1.5

Bedrock 1 x 10
−9

0.2 0.05 0.5 2

Figure 2.7: Fitted soil water retention curves and measured soil water re-
tention relationships for the Colpach (a) and Wollefsbach (b)
catchments.
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Generation of rapid vertical and lateral flow paths

Vertical and lateral preferential flow paths are represented as a porous
medium with high hydraulic conductivity and very low retention.
This approach has already been followed by others (Castiglione et al.,
2003; Lamy et al., 2009; Nieber and Sidle, 2010; Nieber and Warner,
1991), and is one of many ways to account for rapid flow paths in
physically based models. However, it is important to note that such a
macropore representation is obviously not an image of the real macro-
pore configuration given the typical grid size of a few centimeters,
but a conceptualization to explicitly represent parts of the subsurface
with prominent flow paths and the adjacent soil matrix in an effec-
tive way. The approach includes the assumption that preserving the
connectedness of the rapid flow network (Fig. 2.3) is more important
than separating rapid flow and matrix flow into different domains.
Implementations of this approach with CATFLOW were successfully
used to predict hillslope-scale preferential flow and tracer transport in
the Weiherbach catchment, a tiledrained agricultural site in Germany
(Klaus and Zehe, 2011), and at the Heumöser hillslope, a forested site
with fine textured marly soils in Austria (Wienhöfer and Zehe, 2014).
The locations of vertical macropores may either be selected based on
a fixed distance or via a Poisson process based on the surface den-
sity of macropores. From these starting points the generator stepwise
extends the vertical preferential pathways downwards to a selected
depth, while allowing for a lateral step with a predefined probability
of typically 0.05 to 0.1 to establish tortuosity. Lateral preferential flow
paths to represent either pipes at the bedrock interface or the tile
drains are generated in the same manner: starting at the interface
to the stream and stepwise extending them upslope, again with a
small probability of a vertical upwards or downwards step to allow
for tortuosity (Fig. 2.3 c and d).

2.3 parametrization of the representative hillslope

models

2.3.1 Colpach catchment

Surface topography and spatial discretization

We extracted 241 hillslope profiles based on the available DEM in the
Colpach catchment using Whitebox GIS (Lindsay J.B., 2014) following
the LUMP approach (Landscape Unit Mapping Program, Francke
et al., 2008). Based on these profiles (Fig. 2.6 a) we derived a repre-
sentative hillslope with a length of 350 m, a maximum elevation of
54 m above the stream, and a total area of 42 600 m2. The hillslope
has a mean slope angle of 11.6 ◦ and faces south (186

◦), similar to the



32 representative hillslopes

average aspect of the Colpach catchment. The first step in generat-
ing the representative hillslope profile was to calculate the average
distance to the river of all 241 extracted hillslope profiles as equal to
380 m. In the next step all elevation and width values of the profiles
were binned into 1 m ”distance classes” from the river ranging up to
the average distance of 380 m. For each class the median values of
the (a) elevation above the stream and (b) the hillslope width were
derived and used for the representative hillslope profile (Fig. 2.6 a). For
numerical simulation the hillslope was discretized into 766 horizontal
and 24 vertical elements with an overall hillslope thickness of 3 m.
The vertical grid size was set to 0.128 m, with a reduced vertical grid
size of the top node of 0.05 m. Grid size in the downslope direction
varied between 0.1m within and close to the rapid flow path and 1 m
within reaches without macropores (Fig. 2.3 c). The hillslope thickness
of 3 m was chosen to reflect the average of the deepest points of the
available bedrock topographies extracted from ERT profiles, which
was 2.7 m. Boundary conditions were set to the atmospheric boundary
at the top and the no flow boundary at the right margin. At the left
boundary of the hillslope we selected the seepage boundary condi-
tion, where outflow only occurs under saturated and no flow under
unsaturated conditions. A gravitational flow boundary condition was
established for the lower boundary. We used spin-up runs with initial
states of 70 % saturation for the entire hydrological year of interest and
used the resulting soil moisture pattern for model initialization. This
initialization approach was also used for the Wollefsbach catchment.

Land use and vegetation parametrization

According to the land use maps, the hillslopes are mostly forested.
As the hilltop plateaus account for only a very small part of the
representative hillslope, the land use type for the entire hillslope is set
to forest (Fig. 2.2 a). The start and end of the vegetation period were
defined using the temperaturedegree model of Menzel et al. (2003),
which allowed successful identification of the tipping point between
the winter and vegetation season in the double mass curves of the
Colpach and of the Wollefsbach (compare Fig. 2.5 a and b).We further
used observed LAI to parametrize the evapotranspiration routine.
However, since only 14 single measurements at different positions
are available for the entire schist area and vegetation period, we use
the median of all LAI observations from August as a constant value
of 6.3 for the vegetation period. To account for the annual pattern
of the vegetation phenology we interpolate the LAI for the first and
last 30 days of the vegetation period linearly between zero and 6.3,
respectively. The other evapotranspiration parameters are displayed in
Table 2.2 and were taken from Breuer et al. (2003) or Schierholz et al.
(2000).
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Bedrock topography, permeability and soil hydraulic functions

We used the shape of the bedrock contour line of the ERT image
(Fig. 2.6) to constrain the relative topography of the bedrock interface
in the hillslope model as follows. We scaled the 100 m of bedrock
topography to the hillslope length of 380 m. We then used the average
depth to bedrock from all seven available ERT measurements (2.7 m)
to scale the maximum depth to bedrock in our model. To this end
we divided the average depth of 2.7 m by the deepest point of the
bedrock in Fig. 2.6 b (3.3 m) and used the resulting factor of 0.88 to
reduce the bedrock depth of Fig. 2.6 b relatively at all positions. As
a result, the soil depths to the bedrock interface vary between 1 and
2.7 m, with local depressions that form water holding pools. Since
no major groundwater body is suspected and no quantitative data on
the rather impermeable schist bedrock in the Colpach are available,
we use a relatively impermeable bedrock parametrization suggested
by Wienhöfer and Zehe (2014) (Table 2.1). It is important to note that
due to this bedrock parametrization water flow through the hillslope
lower boundary tends to zero. The silty soil above the bedrock was
modeled with the representative hydraulic parameters obtained from
field samples listed in Table 2.1. Since there was no systematic variation
of hydraulic parameters of the individual soil samples with depth,
soil hydraulic parameters were set constant over depth, except for
porosity, which was reduced to a value of 0.35 m3 m−3 at 50 cm depth
to account for the increasing skeleton fraction of around 40 % in deeper
soil layers.

Rapid subsurface flow paths

Macropore depths were drawn from a normal distribution with a
mean of 1 m and a standard deviation of 0.3 m. These values are in
agreement with the mean soil depth and correspond well to the results
of dye staining experiments performed by Jackisch (2015) and Jackisch
et al. (2017). Additionally, macropores were slightly tortuous, with
a probability of a lateral step of 5 %. Since no observations for the
macropore density were available, we use a fixed macropore distance
of 2 m. The macropore distance was chosen rather arbitrarily to reflect
their relative density in the perceptual model and to establish a partly
connected network of vertical and lateral rapid flow paths. The vertical
flow paths were parametrized using an artificial porous medium with
high hydraulic conductivity and low retention properties proposed by
Wienhöfer and Zehe (2014) (Table 2.1). Also, the weathered periglacial
saprolite layer which is represented by a 0.2m thick layer above the
bedrock was parametrized as a porous medium following (Wienhöfer
and Zehe, 2014). The estimated saturated hydraulic conductivity of
1 x 10

3 m s−1 corresponds well to the velocities described by Anger-
mann et al. (2017). This ensures that the Reynolds number is smaller
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Table 2.2: Vegetation parameter values for the different land use forms in the
model setup.

Start-
end of
the veg.
period

LAI
Root
depth

Through-
fall rate

Plant
height

Inter-
ception

Max.
stomata
conduc-
tance

Albedo

(doy) (-) (m) % (m) (mm) (mm s−1) (-)

Colpach

Forest
(Fagus
sylvat-
ica)

97-307 6.34 1.8 95 244 2 5 0.2

Wollefsbach

Corn 97-307 42 1.21 100 2 3 2.5 0.2

(Zea mays)

Drainage 97-274 62 1.33 100 0.4 3.13 2.5 0.2

system
1Value for gley brown soils 2 mean value (Breuer et al., 2003) 3 Trifolium spec. 4 observed

than 10, implying that flow can be considered laminar and that the
application of Darcy’s law is still appropriate (Bear, 1972).

2.3.2 Wollefsbach catchment

Surface topography and spatial discretization

Since only eight relatively similar hillslope profiles were derived from
the DEM in the Wollefsbach, we randomly chose one of those with a
length of 653 m, a maximal elevation above the river of 53 m and an
area of 373 600 m2. The hillslope has a mean slope angle of 8.1 ◦ and
faces south (172

◦). The hillslope was discretized into 553 horizontal
and 21 vertical elements with an overall hillslope thickness of 2 m
(Fig. 2.3 d). The vertical grid size was set to 0.1 m, with a reduced top
and bottom node spacing of 0.05 m. Grid size in the lateral direction
varied between 0.2 m within and close to the rapid flow paths and 2 m
within reaches without macropores (Fig. 2.3 b and d).

Land use and vegetation parametrization

Land use was set to grassland within the steeper and lower part of the
hillslope, and set to corn for larger distances to the creek (> 325 m).
Due to the absence of local vegetation data we used tabulated data
characterizing grassland and corn from Breuer et al. (2003). The start
and end points of the vegetation period for the grassland and the start
point for the corn cultivation were again identified by the temperature
index model of Menzel et al. (2003). The vegetation period for the
corn cultivation ends at the beginning of October since this is the
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typical period for harvesting. The intra-annual vegetation dynamics
were taken from Schierholz et al. (2000).

Bedrock topography, permeability and soil hydraulic functions

In contrast to the Colpach, geophysical measurements and augerings
revealed bedrock and surface to be more or less parallel. Soil depth
was set to a constant 1m and the soil was parametrized using the
representative soil retention curves shown in Fig 2.7. The bedrock was
again parametrized according to values Wienhöfer and Zehe (2014)
proposed for the impermeable bedrock at the Heumöser hillslope in
Austria (Table 2.1), which is also in a marl geology.

Rapid subsurface flow paths

Based on the perceptual model (Fig. 2.3 b and d) and the reported
vertical and lateral drainage structures in the catchment, we generated
a network of fast flow paths. The depths of the vertical flow paths were
drawn from a normal distribution with a mean of 0.8 m and a standard
deviation of 0.1 m. The tile drain was generated at the standard depth
of 0.8 m extending 400 m upslope from the hillslope–creek interface.
Due to the apparent changes in soil structure either by earthworm
burrows or emergent soil cracks (Fig. 2.4), we used different macro-
pore setups for the winter and vegetation seasons. For the winter
setup we implemented vertical drainage structures every 4 m. In the
summer setup we added fast flow paths every 2 m to account for
additional cracks and earthworm burrows. The positions of the con-
ceptual macropores were selected again arbitrarily to create an image
of the perceptual model and to ensure that the soil surface and the tile
drain were well connected. Vertical flow paths and the tile drain were
parametrized similarly to the Colpach with the same artificial porous
medium (Table 2.1). Boundary conditions of the hillslope, initialization
and the spin-up phase were the same as described for the Colpach
model.

2.3.3 Model scenarios

Both hillslope models were set up within a few test simulations to
reproduce the normalized double mass curves in both catchments
of the hydrological year 2014. Within those trials we compared for
instance setups without and with an arbitrary selected density of
macropores, but we did not perform an automated parameter alloca-
tion as stated above. We choose the normalized double mass curves
as a fingerprint of the annual pattern of runoff generation since it
is particularly suitable for detecting differences in the inter-annual
and seasonal runoff dynamics of a catchment (Jackisch, 2015). Model
performance was judged by visual inspection as well as by using the
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Kling–Gupta efficiency (KGE, Gupta et al., 2009).

In a second step we compared the simulated overland flow and
subsurface storm flow across the left hillslope boundary to observed
discharge. Water leaving the hillslope through the lower boundary
was neglected from the analysis because in both setups the total
amount was smaller than 1 % of the overall hillslope outflow.We com-
pared the specific discharge of the hillslopes to the observed specific
discharge of the two catchments in mm h−1 by dividing measured and
simulated discharge by the area of the catchments and the hillslopes.
Our goal was to test whether our hillslope models represented the
typical subsurface filter properties which are relevant for the runoff
generation in both selected hydrological landscapes (schist and marl
areas in the Attert basin). We measured the model performance with
respect to discharge, again based on the KGE. Since it is advisable
to calculate and display various measures of model performance
(Schaefli and Gupta, 2007), we calculated the Nash–Sutcliffe efficiency
(NSE; a measure of model performance with emphasis on high flows)
and the logarithmic NSE (logNSE; a performance measure suited
for low flows). As both catchments are characterized by a strong
seasonality, we further separated the simulation period into winter
and vegetation periods and calculated the KGE, NSE as well as the
logNSE separately for each of the seasons. In addition, we followed
Klemeš (1986) and performed a proxy-basin test to check whether
the runoff simulation is transposable within the same hydrologi-
cal landscape and conducted a split sampling to examine whether
the models also work in the hydrological year of 2013. Finally, we
judged the model goodness visually for selected rainfall–runoff events.

In a third step we evaluated the model setups against available
soil moisture observations. A natural starting point for a modeling
study would be to classify the available soil moisture observations for
instance by their landscape position. However, similar to the case of
the soil water retention properties, the small-scale variability of the
soil properties seems to be too dominant, as grouping according to
hillslope position was not conclusive (Jackisch, 2015; Appendix A4).
We therefore extracted simulated soil moisture at 20 virtual observa-
tion points at different downslope positions at the respective depths
of the soil moisture observations (10 and 50 cm), and compared the
median of the simulated virtual observations against the 12 h rolling
median of the observed soil moisture using the KGE and the Spearman
rank correlation. Finally, we analyzed simulated transpiration of the
Colpach model by plotting it against the 3-day rolling median of the
daily sap flow velocities observed in the schist area of the Attert basin.
As sap flow is a velocity and transpiration is a normalized flow, they
are not directly comparable. This is why we normalized both observed
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Figure 2.8: Simulated and observed normalized double mass curves of (a)
the Colpach catchment and (b) the Wollefsbach catchment. The
double mass curves are separated into a winter period and a
vegetation period following Menzel et al. (2003)

sap flow and simulated transpiration by dividing their values by their
range and only discuss the correlation among the normalized values.
The visual inspection shows additionally to which extent maximum
and minimum values of both normalized time series coincide. This
cannot be inferred from the correlation coefficient.

2.4 results

2.4.1 Normalized double mass curves and discharge

The hillslope models reproduce the typical shape of the normalized
double mass curves – the steep, almost linear increase in the winter
period and the transition to the much flatter summer regime - in both
catchments very well (Fig. 2.8 a and b). In both catchments subsurface
flow is at 99 % in the Colpach and at 94 % in the Wollefsbach, the
dominant form of simulated runoff.

The KGEs of 0.92 and 0.9 obtained for the Colpach and the Wollefs-
bach, respectively, confirm that within the error ranges both double
mass curves are explained well by the models. As a major groundwa-
ter body is unlikely in both landscapes, a large inter-annual change
in storage is not suspected and we hence state that the hillslope
models closely portray the seasonal patterns of the water balance of
the catchments. This is further confirmed by the close accordance of
simulated and observed annual runoff coefficients. We obtain 0.52

compared to the observed value of 0.55 in the Colpach and 0.39

compared to an observed value of 0.42 in the Wollefsbach.

In addition to the seasonal water balances, both models also match
observed discharge time series in an acceptable manner (KGE 0.88 and
0.71; Table 2.3). A closer look at the simulated and observed runoff
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time series (Figs. 2.9 and 2.10) reveals that the model performance
differs in both catchments between the winter and summer seasons.
Generally we observe a better model accordance during the wet winter
season, when around 80 % of the overall annual runoff is generated
in both catchments. In contrast, there are clear deficiencies during
dry summer conditions. This is also highlighted by the different
performance measures which are in both catchments higher during
the winter period than during the vegetation period (Table 2.3).

The Colpach model misses especially the steep and flashy runoff
events in June, July and August, and underestimates discharge in
summer. It also misses the characteristic double peaks of the catch-
ment as highlighted by runoff events 2 and 3 (Fig. 2.9). Although
the model simulates a second peak, it is either too fast (event 2) or
the simulated runoff of the second peak is too small (event 3). This
finding suggests that our perceptual model of the Colpach catchment
needs to be revised, as further elaborated in the discussion. Another
shortcoming is the missing snow routine of CATFLOWwhich can be
inferred from event 1 (Fig. 2.9, top left panel). While snow is normally
not a major control of runoff generation in the rather maritime climate
of the Colpach catchment, the runoff event 1 happened during tem-
peratures below zero and was most likely influenced by snowfall and
subsequent snowmelt, which might explain the delay in the observed
rainfall–runoff response.

In the Wollefsbach model the ability to match the hydrograph also
differed strongly between the different seasons (Table 2.3; Fig. 2.10).
The flashy runoff response in summer is not always well captured by
the model, as for example for a convective rainfall event with rainfall
intensities of up to 18 mm 10 min s−1 in August (Fig. 2.10, event 2). On
the contrary, runoff generation during winter is generally simulated
acceptably (KGE= 0.74). Yet, the model strongly underestimates
several runoff events in winter too (Fig. 2.10, event 1). As temperatures
during these events were close to zero, this might again be a result of
snow accumulation, which cannot be simulated with CATFLOW due
to the missing snow or frozen soil routine. It is of key importance to
stress that we only achieve acceptable simulations of runoff production
in the Wollefsbach when using two different macropore setups for
the winter and the summer periods to account for the emergence of
cracks (Fig. 2.4) by using a denser 2 m spacing of macropores. When
using a single macropore distance of either 2 m (summer setup) or 4 m
(winter setup) in the entire simulation period, the model shows clear
deficits with a KGE of 0.61 and 0.53, respectively. Furthermore, we are
able to improve the performance of the Wollefsbach model if we use
values of saturated hydraulic conductivity faster than 1 x 10

3 m s−1
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Figure 2.9: Observed and simulated runoff of the Colpach catchment. More-
over, three rainfall–runoff events are highlighted and displayed
separately.

for the drainage structures. However, this violates the laminar flow
assumption and the application of Darcy’s law becomes inappropriate.

2.4.2 Model sensitivities, split sampling and spatial proxy test

Sensitivity tests for the Colpach reveal that the model performance
of matching the double mass curves is strongly influenced by the
presence of connected rapid flow paths. A complete removal of either
the vertical macropores or the bedrock interface from the model
domain decreases the model performance considerably (KGE 0.71

or 0.72, respectively). In contrast, reducing the density of vertical
macropores from 2 to 3 or 4 m only leads to a slight decrease in
model performance (KGE 0.85 and 0.82, respectively). In an additional
sensitivity test we changed the bedrock topography from the one
inferred from the ERT data to a surface parallel one, which reduces
model performance with respect to discharge (KGE< 0.6).

The temporal split sampling reveals that the representative hill-
slope model of the Colpach also performs well in matching the
hydrograph of the previous hydrological year 2012–2013 (KGE= 0.82).
Furthermore, the parameter setup was tested within uncalibrated
simulations for the Weierbach catchment (0.45 km2), a headwater
of the Colpach in the same geological setting. This again leads to
acceptable results (KGE= 0.81, NSE= 0.68). The same applies to the
representative hillslope model of the Wollefsbach, which also performs
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Figure 2.10: Observed and simulated runoff of the Wollefsbach catchment.
Two rainfall–runoff events are highlighted and displayed sepa-
rately

Table 2.3: Benchmarks for simulated double mass curves and simulated
discharge for all model setups used in this study.

Model setup Double mass curve Discharge

KGE KGE NSE logNSE

Colpach models

Reference Colpach model 0.92 0.88 0.79 0.25

Performance winter 0.95 0.88 0.75 0.93

Performance summer 0.49 0.52 0.51 0.62

Wollefsbach models

Reference Wollefsbach model 0.9 0.71 0.68 0.87

Performance winter 0.85 0.74 0.7 0.84

Performance summer 0.74 0.28 0.33 0.57
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well in matching the hydrograph of the previous year (KGE= 0.7).
Furthermore, the parameter setup was tested within an uncalibrated
simulation for the Schwebich catchment (30 km2), a headwater of the
Attert basin in the same geological setting as the Wollefsbach, and
again with acceptable results (KGE= 0.81, NSE= 0.7).

Figure 2.11: Observed soil moisture at 10 and 50 cm depths in the schist (a,
b) and marl (c, d) areas of the Attert catchment. Additionally
the 12 h rolling median (black) derived from the soil moisture
observations and the simulated soil moisture dynamics at the
respective depths (red Colpach; orange Wollefsbach) are dis-
played.

2.4.3 Simulated and observed soil moisture dynamics

We compare the ensemble of soil moisture time series from the virtual
observation points to the ensemble of available observations (Fig. 2.11).
In the Colpach, soil moisture dynamics are matched well (Spearman
rank correlation rs = 0.83). This is further confirmed when comparing
this value to the median Spearman rank correlation coefficient of all
sensor pairs (rs = 0.66). However, simulated soil moisture at 10 cm
depth was systematically higher than the average of the observations.
The predictive power in matching the observed average soil mois-
ture dynamics was small (KGE= 0.43; Fig. 2.11 a). In contrast to the
positive bias, the total range of the simulated ensemble appears, at
0.1 m3 m−3, much smaller than the huge spread in the observed time
series (0.25 m3 m−3). In line with the model performance in simulating
discharge, the model has deficiencies in capturing the strong declines
in soil moisture in June and July. Simulated soil moisture at 50 cm
depth exhibits a strong positive bias and again underestimates the
spread in the observed time series. The predictive power is slightly
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Figure 2.12: Normalized observed average sap velocities of 28 trees in the
Colpach catchment (green) and normalized simulated transpi-
ration from the Colpach model smoothed with a 3-day rolling
mean (dashed blue). Additionally the ensemble of all 28 sap flow
measurements is displayed in grey.

better (KGE= 0.51), while simulated and observed average dynamics
are in good accordance (rs = 0.89). In contrast to what we found for
the Colpach, the ensemble of simulated soil moisture at 10 cm for the
Wollefsbach falls into the state space spanned by the observations; it
only slightly underestimates the rolling median of the observed soil
moisture (Fig. 2.11 c). The predictive power is higher (KGE= 0.67) than
in the Colpach, while the match of the temporal dynamics is slightly
lower (rs = 0.81). Again the model fails to reproduce the strong decline
in soil moisture between May and July. It is, however, interesting to
note that the model is nearly unbiased during August and September.
This is especially interesting since the Wollefsbach model does not
perform too well in simulating discharge during this time period.
Simulated soil moisture at 50 cm depth shows similar deficiencies
as found for the Colpach, while the predictive power was slightly
smaller (KGE= 0.44), and the dynamics is also matched slightly worse
(rs = 0.79). When recalling the soil water retention curves (Fig. 2.7),
one can infer that a soil water content of 0.2 m3 m−3 corresponds to
pF around 3.8 in the Colpach and to pF around 4.1 in the Wollefsbach.
That in mind it is interesting to note that some observed soil moisture
values are below this threshold throughout the entire year. This is
particularly the case for soil moisture observation at 50 cm depth in
the Colpach, where almost 50 % of the sensors measure water contents
close to the permanent wilting point throughout the wet winter period.
This also holds true for eight sensors at 10 cm depth.
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2.4.4 Normalized simulated transpiration versus normalized sap flow veloc-
ities

As sap flow provides a proxy for transpiration, we compared nor-
malized, averaged sap flow velocities of beech and oak trees to the
normalized simulated transpiration of the reference hillslope model
of the Colpach. The 3-day rolling mean of sap flow data stays close
to zero until the end of April and starts to rise after the bud break
of the observed trees. The Colpach model is able to match the bud
break of the vegetation well. Furthermore, the simulated and observed
transpiration fluxes and observations are in good accordance during
midsummer. In the period between August and October the simu-
lations underestimate the observations, while in April and May the
simulations are too high (Fig. 2.12). Nevertheless, the model has some
predictive power (KGE= 0.65), and is able to mimic the dynamics well
(rs = 0.75).

2.5 discussion

The results partly corroborate our hypothesis that single representative
hillslopes might serve as parsimonious and yet structurally adequate
representations of two distinctly different lower mesoscale catchments
in a physically based model. The setups of the representative hillslopes
were derived as close images of the available perceptual models and
by drawing from a variety of field observations, literature data and ex-
pert knowledge. The hillslope models were afterwards tested against
streamflow data, including a split sampling and a proxy basin test,
and against soil moisture and against sap flow observations. From the
fact that streamflow simulations were acceptable in both catchments
when being judged solely on model efficiency criteria, one could con-
clude that the hillslopes portray the dominant structures and processes
which control the runoff generation in both catchments well. A look
beyond streamflow-based performance measures revealed, however,
clear deficiencies in streamflow simulations during the summer season
and during individual rainfall–runoff events as well as a mismatch
in simulated soil water dynamics. In the next sections we will hence
discuss the strengths and weaknesses of the representative hillslope
model approach. More specifically, in Sect. 5.1 we will focus on the
role of soil heterogeneity, preferential flow paths and the added value
of geophysical images. In Sect. 5.2 we will discuss the consistency of
both models with respect to their ability to reproduce soil moisture
and transpiration dynamics. Finally, in Sect. 5.3 we discuss whether
the general idea to picture and model a catchment by a single 2d rep-
resentative hillslope is indeed appropriate to simulate the functioning
of a lower-mesoscale catchment.
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2.5.1 The role of soil heterogeneity in discharge simulations

By using an effective soil water retention curve, instead of accounting
for the strong variability of soil hydraulic properties among different
soil cores (Sect. 2.2.3), we neglect the stochastic heterogeneity of the
soil properties controlling storage and matrix flow. This simplification
is a likely reason why the model underestimates the spatial variabil-
ity in soil moisture time series (compare Sect. 5.2.1). However, our
approach does not perform too badly in simulating the normalized
double mass curves as well as the runoff generation, at least to some
extent, in both catchments. Especially during the winter, when around
80 % of the runoff is generated, runoff is reproduced acceptably well.
As our models do not represent the full heterogeneity of the soil water
characteristics but are still able to reproduce the runoff dynamics in
winter, we reason in line with Ebel and Loague (2006) that hetero-
geneity of soil water retention properties is not too important for
reproducing the streamflow generation in catchments. In this context
it is helpful to recall the fact that hydrological models with three to
four parameters are often sufficient to reproduce the streamflow of
a catchment. This confirms that the dimensionality of streamflow is
much smaller than one could expect given the huge heterogeneity
of the retention properties. This finding has further implications for
hydrological modeling approaches as it once more opens the question
on the amount of information that is stored in discharge data and how
much can be learned when we do hydrology backwards (Jakeman and
Hornberger, 1993). Our conclusion should, however, not be misinter-
preted that we claim the spatial variability of retention properties to be
generally unimportant. The variability of the soil properties of course
plays a key role as soon as the focus shifts from catchment-scale runoff
generation to, e.g., solute transport processes, infiltration patterns or
water availability for evapotranspiration.

2.5.2 The role of drainage structures and macropores in discharge simula-
tions

By representing preferential flow paths as connected networks con-
taining an artificial porous medium in the Richards domain, we
assume that preserving the connectedness of the network is more
important than the separation of rapid flow and matrix flow into
different domains. The selected approach was successful in reproduc-
ing runoff generation and the water balance for the winter period
in the Wollefsbach and Colpach catchments. Simulations with a dis-
connected network, where either the saprolite layer at the bedrock
interface or the vertical macropores were removed, reduced the model
performance in the Colpach model from KGE= 0.88 to KGE= 0.6 and
KGE= 0.71, respectively. We hence argue that capturing the topology
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and connectedness of rapid flow paths is crucial for the simulation
of streamflow release with representative hillslopes. We furthermore
showed that a reduction in the spatial density of macropores from a
2 to 4 m spacing did not strongly alter the quality of the discharge
simulations. This insensitivity can partly be explained by the fact that
several configurations of the rapid flow network may lead to a similar
model performance. From this insensitivity and the equifinality of
the network architecture (Klaus and Zehe, 2010; Wienhöfer and Zehe,
2014) we conclude that it is not the exact position or the exact extent
of the macropores which is important for the runoff response, but
the bare existence of a connected rapid flow path (Jakeman and
Hornberger, 1993).

However, our results also reveal limitations of the representation
of rapid flow paths in CATFLOW. For instance, model setups with
higher saturated hydraulic conductivities (>10

3 m s−1) of the macrop-
ore medium clearly improved the model performance in the Wollefs-
bach but violated the fundamental assumption of Darcy’s law of pure
laminar flow. This was likely one reason why capturing rapid flow
was much more difficult with the selected approach for the Wollefs-
bach. Another reason was the emergence of cracks, implying that the
relative importance of rapid flow paths for runoff generation is not
constant over the year, as highlighted by the findings of dye staining
experiments (Fig. 2.4). Given this non-stationary configuration of the
macropore network it was indispensable to use a summer and winter
configuration to achieve acceptable simulations. This indicates that
besides the widely discussed limitations of the different approaches
to simulating macropore flow, another challenge is how to deal with
emergent behavior and related non-stationary hydrological model
parameters. This is in line with the work of Mendoza et al. (2015), who
showed that the agility of hydrological models is often unnecessarily
constrained by using static parametrizations. We are aware that the
use of a separate model structure in the summer period is clearly only
a quick fix, but it highlights the need for more dynamic approaches to
account for varying morphological states of the soil structure during
long-term simulations.

2.5.3 The role of bedrock topography and water flow through the bedrock

The Colpach model was able to simulate the double peak runoff events
which are deemed typical for this hydrological landscape. However,
the model did not perform satisfactorily with regard to peak volume
and timing. A major issue that hampers the simulation of these runoff
events is that the underlying hydrological processes are still under
debate. While Martı́nez-Carreras et al. (2015) attribute the first peak to
water from the riparian zone and the second to subsurface storm flow,
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other researchers (Angermann et al., 2017; Graeff et al., 2009) suggested
that the first peak is caused by subsurface storm flow and the second
one by release of groundwater. The representative hillslope model in its
present form only allows simulation of overland flow and subsurface
storm flow and not the release of groundwater because of the low
permeability of the bedrock medium of 10

−9 m s−1. The deficiency
of this model in reproducing double peak runoff events shows that
neglecting water flow through the bedrock is possibly not appropriate
(Angermann et al., 2017) and that both the perceptual model and the
setup of the representative hillslope for the Colpach need to be refined.
We hence suggest that the representative hillslope approach provides
an option for a hypothesis-driven refinement of perceptual models,
within an iterative learning cycle, until the representative hillslope
reproduces the key characteristics one regards as important. The
importance of bedrock topography for the interplay of water flow and
storage close to the bedrock was further highlighted by the available
2d electric resistivity profiles. A model with surface-parallel bedrock
topographies performed considerably worse in matching streamflow
in terms of the selected performance measures and particularly did
not produce the double peak events. This underlines the value of
subsurface imaging for process understanding, and is a hint that the
Colpach is indeed a fill-and-spill system (Tromp-Van Meerveld and
McDonnell, 2006). It also shows that 2d electric resistivity profiles can
be used to constrain bedrock topography in physically based models
(Graeff et al., 2009), which can be of key importance for simulating
subsurface storm flow (Hopp and McDonnell, 2009; Lehmann et al.,
2007). Although we used constrained bedrock topography only in a
straightforward, relative manner in this study, our results corroborated
the added value of ERT profiles for hydrological modeling in this kind
of hydrological landscape. Nevertheless, we are aware of the fact that
a much more comprehensive study is needed to further detail this
finding.

2.5.4 Integration and use of multi-response and state variables

Storage behavior and soil moisture observations

Both hillslope models reveal much clearer deficiencies with respect
to soil moisture observations. While average simulated and observed
soil moisture dynamics are partly in good accordance, both models
are biased, except for the Wollefsbach model at 10 cm depth. In the
Wollefsbach catchment this might be explained by the fact that we use
a uniform soil porosity for the entire soil profile, although porosity
is most likely lower at larger depths, for instance due to a higher
skeleton fraction. This is no explanation for the Colpach catchment
as porosity was reduced in deeper layers with respect to the skeleton
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fraction. In this context it is interesting to note that quite a few of the
soil moisture observations are suspiciously low, with average values
of around 0.2. The resulting pF values of around 3.8 and 4.1 in the
Colpach and Wollefsbach, respectively, indicate dry soils even in the
wet winter period. This fact has two implications: the first is that the
chosen model is almost not capable of simulating such small values,
because root water uptake stops at the permanent wilting point and
is small at these pF values. The second is that these sensors may
have systematic measurement errors, possibly due to entrapped air
between the probe and the soil. This entrapped air decreases the
dielectric permittivity close to the sensor (Graeff et al., 2010), which
implies that measured values will be systematically too low. From
this we may conclude that the average soil moisture dynamics in both
catchments might be higher and the spatial variability of soil moisture
time series in turn lower, as it appears from the measurements. The
obvious mismatch between the observed moisture maxima and the
laboratory measurements could justify a reduction of the porosity
parameter in the models, which would lead to even better fits.
In addition to the mismatch of the soil moisture simulations, the
model fails in reproducing the strong decline in observed soil moisture
between May and July 2014. A likely reason for this is that plant roots
in the model extract water uniformly within the root zone, while this
process is in fact much more variable (Hildebrandt et al., 2016).

Simulated transpiration and sap velocities

It is no surprise that evapotranspiration in our two research catchments
is – with a share of around 50 % of the annual water balance – equally
important as streamflow. It is also no surprise that evapotranspiration
is dominated by transpiration, as both catchments are almost entirely
covered by vegetation. However, measuring transpiration remains a
difficult task, and a lack of reliable transpiration data often hinders the
evaluation of hydrological models with respect to this important flux.
While it is possible to calculate annual or monthly evapotranspiration
sums based on the water balance, more precise information about the
temporal dynamics of transpiration is difficult to obtain. Therefore
we decided to evaluate our transpiration routine with available sap
flow velocity data, because although the absolute values are somewhat
error-prone, the dynamics are quite reliable. We tried to account for
the uncertainties of the measurements by deriving a 3-day rolling
median of 28 observations instead of using single sap flow velocity
measurements. As we are comparing sap flow velocity to the simulated
transpiration as a normalized flow, we only compare the dynamics
of both variables. It is remarkable that despite the uncertainties in
the sap flow velocity measurements and our ad hoc parametrization
of the vegetation properties, the comparison of sap flow velocity
and simulated transpiration provides additional information, which
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cannot be extracted from the double mass curve or discharge data.
For example, based on the comparison with sap flow velocities we
were able to evaluate whether the bud break of the dormant trees was
specified correctly by the temperature index model of Menzel et al.
(2003); this was not the case when using the default and pre-defined
vegetation table of CATFLOW (not shown). Additionally, we could
identify that the spring and autumn dynamics of transpiration, in
April as well as in August and September, are matched poorly by
the model, while the pattern corresponds well in May, June and July.
We attribute this discrepancy to the lack of measured LAI values in
spring and autumn and to our simple vegetation parametrization
which includes several parameters like root depth or plant albedo
that are held constant throughout the entire vegetation period.We are
aware that this comparison of modeled transpiration with sap flow
velocity is only a first, rather simple test; however, it encourages the
use of sap flow measurements for hydrological modeling. It shows
furthermore that the concept of a representative hillslope offers various
opportunities for integrating diverse field observations and testing the
model’s hydrological consistency, for example evaluating it against
soil water retention data and sap flow velocities.

2.5.5 The concept of representative hillslope models

The attempt to model catchment behavior using a 2d representative
hillslope implies a symmetry assumption in the sense that the water
balance is dominated by the interplay of hillslope parallel and vertical
fluxes and the related driving gradients (Zehe et al., 2014). This as-
sumption is corroborated by the acceptable yet seasonally dependent
performance of both hillslope models with respect to matching the wa-
ter balance and the hydrographs. We particularly learn that the timing
of runoff events in these two catchments is predominantly controlled
by the structural properties of the hillslopes. This is remarkable for
the Colpach catchment, which has a size of 19.4 km2, but in line with
Robinson et al. (1995), who showed that catchments of up to 20 km2

can still be hillslopedominated. An example of the limitations of our
single hillslope approach is the deficiency of both models in captur-
ing flashy rainfall–runoff events in the vegetation period. Besides the
existence of emergent structures, these events might likely be caused
by localized convective storms, probably with a strong contribution of
the riparian zones (Martı́nez-Carreras et al., 2015) and forest roads in
the Colpach catchment, and by localized overland flow in the Wollefs-
bach catchment (Martı́nez-Carreras et al., 2012). Such fingerprints of a
non-uniform rainfall forcing are difficult to capture by a simulation
with a spatially aggregated model, and might require an increase
in model complexity. Nevertheless, we suggest that a representative
hillslope model provides the right start-up for parametrization of a
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functional unit when setting up a fully distributed catchment model
consisting of several hillslopes and an interconnecting river network.
Simulations with distributed rainfall and using the same functional
unit parametrization for all hillslopes would tell how the variability
in response and storage behavior can be explained compared to the
single hillslope. If different functional units are necessary to reproduce
the variability of distributed fluxes and storage dynamics, these can for
example be generated by stochastic perturbation. We further conclude
that the idea of hillslope-scale functional units, which act similarly
with respect to runoff generation and might hence serve as building
blocks for catchment models, has been corroborated. This is particu-
larly underpinned by the fact that the parametrization of both models
was – without tuning – successfully transferred to headwaters in the
same geological setting and also worked well for other hydrological
years.

2.6 conclusions

The exercise to picture and model the functioning of an entire catch-
ment by using a single representative hillslope proved to be successful
and instructive. The picturing approach allowed us to consider both
quantitative and qualitative information in the physically based mod-
eling process. This concept made an automated parameter calibration
unnecessary and led to overall acceptable streamflow simulations in
two lower-mesoscale catchments. A closer look, however, revealed
limitations arising from the drawn perceptual models, the chosen
hydrological model or the applicability of the concept itself. Distilling
a catchment into a representative hillslope model obviously cannot
reflect the entire range of the spatially distributed catchment char-
acteristics. But as the streamflow dynamics of the catchments were
simulated reasonably well and the models were even transferable to
different catchments, it seems that the use of physically based models
and the large heterogeneities in subsurface characteristics must not
prevent meaningful simulations. Additionally, our results highlight the
importance of considering non-stationarity of catchment properties
in hydrological models on seasonal timescales and emphasize once
more the value of multiresponse model evaluation. A representative
hillslope model for a catchment is, hence, perhaps less accurate than
a fully distributed model, but in turn also requires considerably less
data and reduced efforts for setup and computation. Therefore, this
approach provides a convenient means to test different perceptual
models, and it can serve as a starting point for increasing model
complexity through a combination of different hillslopes and a river
network to model a catchment in a more distributed manner.
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O N T H E D Y N A M I C N AT U R E O F H Y D R O L O G I C A L
S I M I L A R I T Y

abstract

The increasing diversity and resolution of spatially distributed data on
terrestrial systems greatly enhances the potential of hydrological mod-
eling. Optimal and parsimonious use of these data sources requires,
however, that we better understand a) which system characteristics
exert primary controls on hydrological dynamics and b) to what level
of detail do those characteristics need to be represented in a model.

In this study we develop and test an approach to explore these
questions that draws upon information theoretic and thermodynamic
reasoning, using spatially distributed topographic information as
a straightforward example. Specifically, we subdivide a meso-scale
catchment into 105 hillslopes and represent each by a two dimensional
numerical hillslope model. These hillslope models differ exclusively
with respect to topography related parameters derived from a digital
elevation model; the remaining setup and meteorological forcing for
each are identical. We analyze the degree of similarity of simulated
discharge and storage among the hillslopes as a function of time by
examining the Shannon information entropy. We furthermore derive
a ”compressed” catchment model by clustering the hillslope models
into functional groups of similar runoff generation using normalized
mutual information as a distance measure.

Our results reveal that, within our given model environment, only a
portion of the entire amount of topographic information stored within
a digital elevation model is relevant for the simulation of distributed
runoff and storage dynamics. This manifests through a possible com-
pression of the model ensemble from the entire set of 105 hillslopes
to only 6 hillslopes, each representing a different ”functional group”,
which leads to no substantial loss in model performance. Importantly,
we find that the concept of hydrological similarity is not necessarily
time-invariant. On the contrary, the Shannon entropy as measure for
diversity in the simulation ensemble shows a distinct annual pattern,
with periods of highly redundant simulations, reflecting coherent
and organized dynamics, and periods where hillslopes operate in
distinctly different ways.

We conclude that the proposed approach provides a powerful frame-
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work for understanding and diagnosing how and when process orga-
nization and functional similarity of hydrological systems emerges in
time. Our approach is neither restricted to the model, nor to model
targets or the data source we selected in this study. Overall, we pro-
pose that the concepts of hydrological systems acting similarly (and
thus giving rise to redundancy) or displaying unique functionality
(and thus being irreplaceable) are not mutually exclusive. They are
in fact of complementary nature, and systems operate by gradually
changing to different levels of organization in time.
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3.1 introduction

3.1.1 Motivation

This paper addresses the question ”How important is spatial vari-
ability of terrestrial system characteristics and meteorological forcing
when viewed from the perspective of stream flow generation and
distributed water storage?” While this question has motivated hy-
drologists since the early days of our science, it gained substantial
attention with the development of distributed hydrological models,
and it seems fair to say that attempts to address the question still lie
at the heart of every distributed model application (e.g. Beven, 1989;
Freeze and Harlan, 1969; Hrachowitz and Clark, 2017; Refsgaard, 1997).
Needless to say, this question has not found easy answers. Besides the
lack of sufficient process understanding (in part due to the difficulty
of gathering relevant data about hydrologic systems), there is also the
uncertainty we unavoidably encounter when dealing with the steadily
growing and changing pool of geo-information (Musa et al., 2015). For
instance land surface digital elevation information is now available at
a resolution of 25 m globally (Farr et al., 2007). Similarly, weather radar
coverage is available for large parts of Europe, providing accumulated
15 min precipitation estimates at 4 km resolution (Huuskonen et al.,
2014). Despite the huge potential for model improvement provided
by these new and diverse pools of information, a danger associated
with their use is that we can ”miss the forest for the trees” unless
we are able to determine which information contained in the data is
of relevance to the questions we seek to answer. We therefore now
face the problem of how to discriminate important details about the
hydrological landscapes from idiosyncratic ones, and hence must deal
with the challenge of how to identify which characteristics explain
hydrological similarity (Blöschl and Sivapalan, 1995). This study is
largely motivated by the ”power” view introduced by Wagener and
Gupta (2005) which advocates ”a need to develop better methods for
characterizing and extracting relevant information from data” (see
also Gupta and Nearing, 2014). Our specific objective is to propose
an approach addressing this issue, by drawing upon an information
theoretic perspective to extract and quantify the relevant informa-
tion for spatially distributed hydrological modeling, and by using
thermodynamic reasoning to explain why only a portion of the full
information content available in the data is relevant.

3.1.2 Background

From a thermodynamic perspective, streamflow generation is driven
by differences in potential energy between the upslope catchment
areas and the stream channel. The majority of this available energy
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is dissipated during runoff concentration and infiltration, while the
remaining part is exported from the catchment as the kinetic energy
of streamflow (Kleidon and Renner, 2013). These potential energy
differences depend largely on catchment topography, and on the
space-time patterns of precipitation (Zehe et al., 2013). Accordingly,
we might be naturally drawn to expect that large spatial variations in
both characteristics will result in large spatial variations in runoff gen-
eration. However, when exactly should spatial variation be considered
“large” enough that we need to explicitly account for it?

In the context of spatially distributed rainfall, this latter question
has received considerable attention (e.g. Arnaud et al., 2002; Das
et al., 2008; Obled et al., 1994; Tetzlaff et al., 2005; Zehe et al., 2005).
In general, the predominant view that seems to emerge from these
studies is that the impact (on runoff simulations) of spatial distri-
bution in rainfall increases with size of the area considered. This
is often traced back to the growing importance of flood routing, in
combination with the average spatial extent of typical rain storms (e.g.
Lobligeois et al., 2014; Smith et al., 2004). Nevertheless, no consensus
has yet emerged as to whether this statement is generally valid,
and no guidelines exist regarding under which conditions the use
of information regarding the spatially distributed nature of rainfall
becomes inevitable (Emmanuel et al., 2015). Similarly, the question
of how strongly the spatial resolution of a DEM affects the results
of a distributed model application has been investigated in various
studies (e.g. Schoorl et al., 2000; Sørensen et al., 2006; Thompson
et al., 2001). For instance Zhang and Montgomery (1994) varied the
resolution of their DEM and reported that spatial resolutions finer
than 10 m did not result in significant improvements to the simulation
results of their hydrological model. Chaubey et al. (2005) tested the
influence of DEM spatial resolution on simulation results of the Soil
Water and Assessment Tool (SWAT) and reported that grid size has a
significant influence on different watershed responses, as well as on
the sub-basin classification implemented in SWAT. However, as with
the case of distributed rainfall, the results of these studies do not point
to a generic approach, nor to any general conclusions regarding the
importance of DEM-resolution for distributed hydrological modeling.

Overall, this lack of a coherent image certainly reflects the vary-
ing sensitivities of different model structures (Das et al., 2008), the
dependence on scope and scale of the model exercise (Blöschl and
Sivapalan, 1995) and on differences among hydrological landscapes
(Beven, 2000). It seems, therefore, that an investigation of the role of
distributed information in hydrological modeling may benefit from a
more generic and systematic approach, one that may be generalized
to different spatially distributed data sources and models, and that
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is able to cope with interactions among them in a straightforward
manner. In contrast to much of the aforementioned work, which
has relied primarily on statistical methods, the purpose of the work
reported here is to investigate the extent to which information theory
(Cover and Thomas, 2005) is able to provide instructive measures that
are suitable for this purpose.

More specifically the main objective of this study is to present
and test an approach to quantify the relevance of spatially distributed
data sources for hydrological simulations drawing from information
theory. We exemplify this approach using catchment topography as
distributed information source as well as stream flow and soil water
storage as modeling targets, however, the general mindset of the
approach is applicable to any distributed information source such as
spatially distributed rainfall or geology as well as to a wide range of
arbitrary model target and different distributed models.

3.1.3 The role of surface topography in hydrological modeling

Despite the fact that DEM’s provide the basis for identifying water-
shed boundaries, river networks and potential energy differences in
the landscape, several studies have concluded that topography alone
is a weak descriptor for inferring similarity in hydrological behavior.
For instance, Zehe et al. (2005) showed that the topographic wetness
index Beven and Kirkby (1979), a popular topographic similarity
measure, failed to explain soil moisture variability and similarity in
runoff generation in a lower mesoscale catchment. Fenicia et al. (2016)
and Jackisch (2015) showed that topography alone might be a poor
guide for subdividing a 256 km2 catchment into different functional
units, and questioned the explanatory power of the topography in
this respect. Our own work, Loritz et al. (2017), has shown that an
”effective” representation of two different catchments by a single
representative hillslope was able to provide successful simulations
of their inter-annual runoff responses and annual storage dynamics.
Together, these findings suggest that an informationally ”compressed”
representation of the topographic map may be able to preserve the
relevant information regarding geopotential differences that drive
runoff generation.

In line with these findings, we therefore pose the hypothesis that
”although a highly-resolved DEM contains a large amount of informa-
tion about topography, not all of this spatially distributed information
is relevant for the generation of hydrological predictions”. Following
Weijs et al. (2013a), it seems reasonable that information theory may
provide a natural framework for dealing with such compression of
information in hydrologic science. The term ”compression” was origi-
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nally coined by Claude Shannon to refer to the quantification, storage
and communication of information (Shannon, 1948). In environmental
science, information-theoretic concepts such as the ”Shannon entropy”
have found widespread use in various applications (e.g. (Brunsell,
2010; Weijs et al., 2013b; Yakirevich et al., 2013), ranging from uncer-
tainty assessment in 3-D geological models (Schweizer et al., 2017)
to the delineation of water resource zones in Japan (Kawachi et al.,
2001). For an introduction to, and detailed review of, information
theoretic concepts we refer the reader to Cover and Thomas (2005),
Singh (2013), and Weijs et al. (2013a).

With respect to the above finding it is important to note that compress-
ibility relates to order or organization (Davies, 1990). The identification
of relevant information within distributed system characteristics is
therefore closely linked to the identification of spatial organization
and thus with the identification of hydrological similar functioning
areas (Sivapalan, 2005). As pointed out by Zehe et al. (2014), these
”functional units” may be straightforwardly defined in thermody-
namic terms as any flux is driven by a specific gradient while it
performs work against a specific flow resistance. Similarity of both
the relevant drivers and the resistance terms is a sufficient criterion to
expect that two systems behave similarly with respect to the genera-
tion of a flow, and with regard to the associated entropy production.
If we transfer this concept to runoff generation, differences in the
geopotential (topography) act as driver since runoff is driven by
gravity. The resistance term, on the other hand depends either on
surface roughness (and thus for instance on the vegetation in case of
overland flow), on the pattern of subsurface conductance, apparent
preferential pathways and in case of matrix flow on the capacity of
the system to store water. Yet, the gradient flux-resistance relation
is non-unique, because a twice as large driver in combination with
a twice as large resistance results in exactly the same flux. It is this
non-uniqueness, which explains why two hillslopes with distinctly
different topographies may still produce the same runoff when these
differences are compensated by their associate resistances.

However, while a physical explanation of the phenomena ”land-
scape organization” is crucial to our understanding, for practical
modeling applications we need to step beyond that and actually
identify these functional units in the landscape. One avenue is surely
to detect these gradients and resistance terms directly based on the
available landscape characteristics (Seibert et al., 2017). However, it
is often difficult to know a-priori which characteristics dominate the
function of a landscape element (Oudin et al., 2010). Another approach
is, hence, to identify functional units a-posteriori directly based on
their function, and to subsequently identify which characteristics dom-
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inate the hydrological processes, and at which scale (Sivapalan, 2003).
It is exactly here that an information theoretic perspective might be
particularly valuable as, despite the more qualitative and descriptive
nature of the concept of landscape organization, compressibility is
actually quantifiable. For instance two hillslopes showing a similar
function with respect to a given process can be compressed and hence
combined into a larger landscape element without losing informa-
tion about the spatial distribution of processes in a catchment. The
identification of functional similar areas is hence directly connected
to both statistical physics (organization) and information theory
(compressibility). For this reason we believe that concepts such as
maximum (Shannon)-entropy (Jaynes, 1957) and information theoretic
variables like the ”mutual information” and ”Kullback-Leibler diver-
gence” (Cover and Thomas, 2005; Weijs et al., 2013a; Weijs and Giesen,
2013) provide an excellent framework for connecting the generic
informational concepts of statistical inference and compression of
data with the specific domain concepts of landscape organization and
hydrological similarity.

3.1.4 Objectives and scope

The main objective of this study is to propose and test a generic
approach, based on information theory and to quantifying the rele-
vance and value of spatially distributed data sources for hydrological
simulations. Our approach is developed and tested using catchment
topography as the source of spatially distributed information, and
stream flow and soil water storage as the modeling targets. Specifically,
we subdivide a 19.4 km2 catchment into 105 hillslopes and represent
each of these contributing spatial units with a hydrological hillslope
model. Following Loritz et al. (2017), the hillslope models are iden-
tically parametrized with respect to soils, bedrock topography and
vegetation, and differ only with respect to the values of their topogra-
phy dependent parameters such as aspect, slope and elevation above
and distance to the river. Each of these hillslope models is driven by
the same meteorological forcing for one hydrological year yielding
105 independent runoff and storage time series. In the first part of
this manuscript we analyze the distributions of runoff and storage
simulations at each time step by means of the Shannon information
entropy. With this approach we are able to reveal different levels of
redundancy in our simulated output in time and try to answer the
question whether we can identify the necessary spatial complexity
of our chosen model structure. In the second part of this manuscript
we evaluate the similarities of the runoff time series simulated by
the hillslope models in terms of their mutual information. We use
this as a basis for compressing them into a smaller set of functional
groups, such that in each group the members are to a certain extent
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predictable from each other in terms of runoff generation. Here we
choose the average Shannon entropy of the simulation period to de-
termine the number of different functional groups. Based on this we
construct different time invariant realizations of a compressed catch-
ment model and test those against observations and the simulation
with the uncompressed model. Finally, we reiterate that the overall
approach presented here is applicable to a variety of different spa-
tially distributed information such as spatially distributed rainfall or
land-use, as well as to most modeling target and to a wide range
of spatially distributed hydrological models available. This paper is,
however, restricted to development and testing of the approach using
only catchment topography and one numerical hillslope model.

3.2 study area and model realizations

In this section we introduce the study area, the database used, and the
general model setup of the different hillslopes.

3.2.1 The Colpach catchment

The 19.4 km2 Colpach catchment is situated in the northern part of the
Attert basin in the Devonian schists of the Ardennes massif, and has an
elevation ranging from 265 to 512 m a.s.l. (Figure 3.1 a). Approximately
65 % of the catchment is forested, mainly on the steep hillslopes.
In contrast, the plateaus at the hilltops are predominantly used for
agriculture and pasture. The dominant runoff process is rapid flow
in a highly permeable saprolite layer above the bedrock, and the
catchment is characterized as a fill-and-spill system (Wrede et al.,
2015). Besides the importance of lateral flow along the bedrock, several
irrigation and dye staining experiments have highlighted the role of
vertical structures for infiltration and subsequently for subsurface
runoff formation (Jackisch et al., 2017). For a more detailed description
please see Loritz et al. (2017) and Wrede et al. (2015) and Jackisch
(2015).

3.2.2 The CATFLOW model

The spatially-distributed hillslope-scale model CATFLOW (Maurer,
1997; Zehe and Flühler, 2001) is based on the subdivision of a catch-
ment into several hillslopes connected by a drainage network. Each
hillslope is discretized along a 2-dimensional cross section using curvi-
linear orthogonal coordinates. Each surface model element extends
over the width of the hillslope, and these widths may vary along the
hillslope. Evapotranspiration is represented using an advanced SVAT
approach based on the Penman-Monteith equation, which accounts for
tabulated vegetation dynamics, albedo as a function of soil moisture,
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and the impact of local topography on wind speed and radiation. Soil
water dynamics and solute transport are simulated based on the mixed
form of the Darcy-Richards equation, solved using mass conservative
Picard iteration and adaptive time stepping (Celia et al., 1990). The
hillslope module is designed to simulate infiltration excess runoff,
saturation excess runoff, re-infiltration of surface runoff, lateral water
flow in the subsurface, return flow and solute transport.

3.2.3 Hillslope setup, forcing and model evaluation

The topographic analysis was based on a 5 m Lidar digital elevation
model, aggregated and smoothed to 10 m resolution. GRASS GIS
(Neteler et al., 2012) was used to subdivide the catchment into 105

hillslopes (Figure 3.1 a) using a classical hydrological terrain analysis
algorithm r.watershed. This approach generates a stream network
after the user sets a threshold for the minimum size of an exterior
watershed basin. We identified this value by varying this threshold
across a range of values trying to reproduce the official stream network
which was available from the Luxembourg Institute of Technology
(LIST) by visual inspection. Following the standard procedure of
r.watershed each stream segment has two corresponding hillslopes
(left and right side of the stream). We use the landscape units mapping
program (LUMP; Francke et al., 2008) and again GRASS GIS to derive
the hillslope profiles, including properties such as the elevation and
distance to the river, and the mean aspect and width function of each
hillslope (Figure 3.1 b). On average the hillslopes lie 67 m above the
river, are 446 m wide, and cover an area of 0.16 km2. The maximum
area of a hillslope is 0.86 km2 while the smallest hillslope covers an
area of 0.12 km2.

With respect to soils, bedrock topography and vegetation, the 105

hillslope models were identically parameterized using a parameter
set, macropore distribution and subsurface stratification tested and
derived by Loritz et al. (2017) when representing the entire Colpach
catchment by a single effective hillslope model. Accordingly the
hillslopes differ only in the values of parameters that are extracted
from the digital elevation model (hillslope profile and length, width
and aspect). All hillslope models are 2 m deep, where the upper 1 m
is classified as soil followed by a 0.2 m lateral saprolite layer and
an 0.8 m deep almost impermeable bedrock (see soil parameter and
structure in Tab. 1 in Loritz et al. (2017)). The porosity of the upper
1 m of soil is assumed to reduce linearly with depth, with the lowest
value being 0.3 at a depth of one meter from the surface. In order
to account for reported preferential flow in this area (Jackisch et al.,
2017) we added additionally, every 4 m, a 0.1 m wide rapid flow path
(vertical flow structure) with an depth of 1 m. The entire soil setup
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follows the findings of Loritz et al. (2017) in which it was shown that a
representative hillslope was able to provide successful simulations of
various hydrological fluxes. The discretization of the hillslope in the
downslope direction varies between a maximum of 1 m and minimum
of 0.1 m, where the latter occurs close to rapid flow paths. The vertical
grid size was set to 0.1 m, with a reduced vertical grid size of the top
node of 0.05 m (Figure 3.1 c).

Boundary conditions were set to an atmospheric boundary at the top,
no flow boundary conditions at the upslope, and a gravitational flow
boundary condition at the lower boundary. At the hill foot of the
hillslope we selected a seepage interface for the upper 0.4 m, where
outflow only occurs under saturated and no flow under unsaturated
conditions. For the lower 1.6 m of the downslope boundary we selected
a no flow boundary to mimic a saturated zone close to the river. All of
the hillslopes are covered entirely by forest and the evapotranspiration
routine is parameterized similarly to the one described in detail
in Loritz et al. (2017). Figure 3.1 c shows an example of a typical
CATFLOW hillslope grid and soil setup divided into soil, rapid flow
paths and bedrock.

Figure 3.1: a) Digital elevation model of the Colpach catchment and its delin-
eation into 105 hillslopes b) all hillslope profiles extracted using
the LUMP approach c) example of a CATFLOW hillslope grid.

Model forcing and application

Meteorological input data are recorded at an official meteorological
station (Roodt), and were provided by the “Administration des Ser-
vices Techniques de l’Agriculture Luxembourg”. All hillslope models
were forced with identical meteorological inputs. This implies, for in-
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stance, that we neglect observed variations of rainfall and wind speed
within the catchment. We compared simulated and observed specific
runoff by dividing the respective values by the relevant contributing
areas; i.e., either by the area of the hillslope or of the Colpach catch-
ment. Similarly, we calculated the area specific water storage (average
water content per m2) for each hillslope. The simulation period is the
hydrological year 2014 from October 2013 to October 2014. This is
preceded by a model spin-up of one year with initial states of 70 %
saturation.

Model evaluation

The intention of the model evaluation performed here was not to infer
whether we have identified the best performing model structure, but
to evaluate and quantify differences in modelled runoff and storage
arising from underlying differences in hillslope topography. Therefore,
while this exercise does not require a comparison to observations,
we nevertheless do so to demonstrate that the different models (and
in particular the entire ensemble) produces meaningful simulations
that are consistent with observed hydrological storage and streamflow
dynamics. We inspected the runoff simulations both visually and by
comparison to the observed specific discharge using the normalized
mutual information (NMI, specified below; see also Michaels et al.,
1998). In addition, we use the Kling–Gupta efficiency (KGE, Gupta
et al., 2009) to highlight that the NMI provides a consistent picture
and is able to identify differences between hydrographs. Furthermore,
we use the NMI in our functional classification because it is symmet-
ric and satisfies the mathematical requirements of a distance metric
(see section 2.6; for a further comparison of the NMI as well as the
Appendix C). Additionally, we calculated the KGE and NMI between
the area weighted median of the runoff simulations and the observed
specific discharge of the catchment. By simply using the area weighted
median instead of a river network routing scheme we assume, in line
with Robinson et al. (1995) and our own findings (Loritz et al., 2017),
that the Colpach catchment is hillslope dominated and that the timing
of the routing is small enough to be neglected. With respect to the
storage dynamics, we estimated the average amount of water within
the hillslope (in mm for each hillslope) and compared these values
against the median of storage estimates calculated from available soil
moisture measurements in 10, 30 and 50 cm, which have been collected
at different locations throughout the catchment (for detailed informa-
tion of the soil moisture sensors and observations please see Loritz
et al. (2017)). As the model and the observations estimates are based at
largely different scales, we believe that any comparison more detailed
than the comparison of their temporal dynamics is in-appropriate.
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3.3 theoretical background, approach and methods

In the following section we provide a detailed review of the important
concepts from information theory, and discuss how we used these
concepts to address the study objectives.

3.3.1 Information theory and Shannon information entropy

The field of Information theory originally developed within the con-
text of communication engineering, deals with the quantification
of information with respect to a concept called ”surprise” (Apple-
baum, 1996). For a discrete random variable X that can take on
several values X ∈ x1; x2; x3...xi with associated prior probabilities
p(x1); p(x2); p(x3)...p(xi) the surprise or information content of receiv-
ing/observing a specific value X = xi is defined as:

I = −logk(p(xi)) (3.1)

where I is the information content, k is the base of the logarithm and
p(xi) the prior probability that X can exist in the state x. The loga-
rithm in this definition assures that information is an additive quantity.
When the base k of the logarithm is chosen to be 2, information is
measured in ”bits” (abbreviated from binary digit). While different k
values can be used to calculate the information content of a random
discrete variable, here we stick with the logarithm to the base 2.
To calculate the average information content associated with the ran-
dom variable X we can estimate the Shannon entropy H(X) defined
(by taking its expectation) as:

H(X) = − ∑
x∈X

p(xi) log2(p(xi)) (3.2)

where p(xi) is again the probability that X can be in the state x.
In this study we computed the Shannon entropy of the probability
distribution of the 105 runoff and storage simulations for each hourly
time step. In addition to computing the Shannon entropy for a single
random variable (also called self-information), we compute the joint
entropy H(X, Y) of a set of variables X and Y as follows:

H(X, Y) = − ∑
x∈X

∑
y∈Y

p(xi, yi) log2(p(xi, yi)) (3.3)

where p(xi, yi) is the joint probability. The joint entropy is used to
estimate the mutual information (described below) between two ran-
dom variables. For more detailed discussion of information theoretic
concepts and variables please see Applebaum (1996) and Cover and
Thomas (2005).
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3.3.2 The appropriate binning for estimating discrete probability density
functions

A crucial step in the computation of Shannon entropy and/or mutual
information of discrete distribution (see section 3.1 and 3.2) is a
careful choice of the bin widths used to construct the probability
density functions (pdf; Gong et al., 2014; Pechlivanidis et al., 2016).
Various guidelines are available regarding how to properly estimate
the bin width from the viewpoint of statistical rigor (e.g. Scott, 1979).
However, Weijs et al. (2013a) also point out that the bin width for
a pdf should always be chosen based on considerations related to
the question one wishes to answer. For instance, hydrologists often
evaluate their models against measured soil moisture or discharge
data. As such observations always imply the existence of measurement
errors, observational differences smaller than the typical size of such
errors should not be afforded physically meaningful importance. (To
infer on the sensitivity of the Shannon entropy to different bin width
please see the appendix B).

Accordingly, for calculation of the entropy of the runoff and the
storage simulations we propose that the smallest meaningful bin
width should be greater than or equal to the measurement error.
Consequently, we choose the mean relative error of the rating curve
(8.5 %, see appendix A) to estimate the Shannon entropy of the runoff
simulations and the measurement error of the installed capacitive
soil moisture probe soil moisture probes of 1 Vol. % for the storage
simulations (Decagon 5TE; ± 1 - 2 % volumetric water content for cali-
brated soils; manufacture information). For the runoff simulations, we
started with a bin width of 0.01 mm and then progressively increased
the bin width by a factor of 8.5 %. This results in a non-uniform
bin width distribution with constantly increasing bin sizes for larger
discharge values as the uncertainty in the measurements increases
with higher flows. In contrast, for the storage simulations, we used
a constant bin width of 10 mm because the measurement errors of
our soil moisture probes do not depend on the magnitude of the
measured value. We transferred the error of the soil moisture probes
to our storage simulations as follows. The 1 m thick soil domain has a
porosity of 0.57 m3m−3, having a total storage volume of 570 mm. We
hence use a constant bin width of 10 mm, corresponding to 1 % vol,
with bins ranging from 10 mm (1 % vol) to 570 mm (57 % vol)

3.3.3 Upper and lower boundary of the Shannon entropy – perfect versus
no organization

Isolated systems evolve, according to the second law of thermodynam-
ics, to a state of maximum entropy in which all gradients are depleted
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and each microstate of the system is equally likely (Kondepudi and
Prigogine, 1998). This implies maximum uncertainty about the mi-
crostate and the absence of any organization/order in the system.
Jaynes (1957) transferred this fundamental insight into a method of
statistical inference, stating ”when making inferences based on in-
complete information, the best estimate for the probabilities is the
distribution that is consistent with all information, but maximizes
uncertainty”. This condition is reflected by a uniform distribution
where all outcomes are equally likely (Weijs et al., 2010). With respect
to our model ensemble, a state of maximum entropy implies that each
of the 105 hillslopes models produces a unique output that cannot be
guessed given knowledge regarding the output of any other hillslope.
Accordingly, we can calculate the theoretic maximum entropy for our
model as:

Hmax = log2(N) (3.4)

where N = 105 is the number of hillslope models. This maximum
reflects a theoretical state of zero spatial organization in the catchment,
where each hillslope provides a unique contribution to stream flow
and storage dynamics due to its specific. A further compression of
the catchment subdivision, for instance by leaving out or merging
certain hillslopes, is not possible without losing precision. At the
other end of the spectrum, one may have a state of perfect spatial
organization in which all 105 hillslope models are within the error
margin of observations perfectly predictable from each other. This
would correspond to zero entropy and implies that the compression
of the spatially distributed model is trivial as any arbitrarily selected
hillslope will represent it equally well.

It is important to note that Hmax is (in our virtual experiment) a
theoretical upper limit as the hillslope models would, given our bin
width, need to simulate discharge values as high as 48.3 mm hr−1 to
reach this theoretical limit. We thus distinguish between the maxi-
mum entropy of our model ensemble given the spatial discretization
of the model and the maximum entropy of our experiment given
the uncertainties and physical limits of our discharge and storage
simulations and observations. The difference becomes clear if one
imagines a simple thought experiment in which one would like to
study a dice with six possible outcomes. The maximum entropy of
this dice is linked to the number of possible states of the ”system”
and hence is log2(6) = 2.58. Now depending on our investigation, we
might change our question and only ask for values larger or smaller
than 3. In this case the maximum entropy of our ”experiment” would,
with two possible outcomes, be log2(2) = 1.
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3.3.4 Mutual information as similarity measure

To compare simulated runoff time series generated by different hill-
slopes, we calculate their pair-wise mutual information of each simu-
lated runoff time series as a similarity measure. Mutual information
I(X, Y) between two discrete random variables X and Y is a mea-
sure of the strength of their informational correspondence, defined by
Cover and Thomas (2005) as:

I(X, Y) = − ∑
x∈X

∑
y∈Y

p(x, y) log2
p(x, y)

p(x)p(y)
(3.5)

where p(x, y) is the joint probability of X and Y and p(x) and p(y) are
their marginal probabilities. Equivalently, mutual information can also
be calculated directly as a difference between the sum of the entropies
of X and Y minus the joint entropy of X and Y (Figure 3.2).

I(X, Y) = H(X) + H(Y)− H(X, Y) (3.6)

While Shannon entropy is used to determine the information redun-
dancy or compressibility between the 105 simulated discharge time
series at a certain time steps, we now show how mutual information
can be used to see how similar or dissimilar two discharge simulations
are.

Figure 3.2: Sketch of the relation between information entropy, joint entropy
and mutual information displayed as bar diagram.

Mutual information quantifies the amount of information that one
variable reveals about another and thus the strength of their co-
dependence. If the mutual information is zero, the two variables are
independent while larger values correspond to stronger relationships.
When using the binary logarithm mutual information, Shannon en-
tropy and joint entropy share the same unit ”bits”. Here, we seek to
use the mutual information between different hillslope runoff simu-
lations as a measure of similarity or distance between the hillslope
models. However, since the value of mutual information depends
on the absolute magnitude of joint entropy between the two chosen
variables, it is not appropriate to use mutual information directly as a
distance function for relative comparisons (if the joint entropy of two
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variables is low the value of mutual information will also be low even
if the two variables are perfectly related). Hence, following Michaels
et al. (1998), we normalize I(X, Y) using the larger of the entropies of
the two random variables X and Y. It is important to note that this
normalization can also be done using the smaller of the entropies
of the two random variables X and Y or the joint entropy of X and
Y. Depending on the objective this can be an important choice (see
appendix C). In this study we follow the avenue recommended by
Michaels et al. (1998) and use the maximum.

NMI(X, Y) =
I(X, Y)

max[H(X), H(Y)]
(3.7)

Accordingly, the normalized mutual information (NMI) ranges from
0 to 1, with higher values corresponding to stronger relationships
(higher mutual information content). Further, to make the NMI easier
interpretable we subtract the NMI from 1 as typical distance functions
are normally closer to zero in case of a stronger similarity (see Ap-
pendix C for a comparison of the NMI with the Pearson correlation
coefficient and the Euclidean distance).

3.3.5 Functional classification of hillslopes with similar runoff behavior

Using NMI as distance metric, we classified the 105 hillslope mod-
els into functional groups of similar runoff behavior based on the
105 runoff time series, using a hierarchical cluster analysis based on
Ward’s minimum variance method (Hastie et al., 2009; Murtagh and
Legendre, 2014). As a first guess of a physically meaningful num-
ber of functional groups we used the mean annual entropy of all
105 discharge simulations (further discussed in section 4.2).

No. o f f unctional groups = 2mean annual entropy (3.8)

This choice is inspired by the fact that the Shannon entropy of a ran-
dom variable X is closely related to the maximum compressibility of
the information about this variable. This is because, when the Shannon
entropy is calculated using the binary logarithm, it relates to the mini-
mum number of binary ”yes or no questions’ necessary to determine
the actual value of xi from X. In the special case where the distribution
of the random variable is dyadic, the value of the Shannon entropy
H(X) and the expected minimum number of questions are equivalent,
while if this is not the case the expected number of questions lies
between the computed value of the entropy H and its increment H + 1
(for further details see Cover and Thomas, 2005).

H(X) ≤ Expected Questions < H(X) + 1 (3.9)

So, in general, if the entropy of a discrete random variable X is H(X) =

2, we know that the expected number of binary (Yes/No) questions
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needed to quantify x lies between 2 and 3. This implies that the
number of possible outcomes lies somewhere between 2

2 = 4 and 2
3 =

8, as every binary question can have two possible answers.

3.3.6 Compression of the catchment model based on functional groups

Having grouped the hillslope models into time-invariant functionally
similar groups, we test whether this grouping provides a solid basis
to compress the model structure of 105 hillslopes into a less redun-
dant one that yet produces results of similar quality as the full set
of hillslopes but at much smaller computational cost. There are at
least three avenues to do so. The first one is to simply calculate the
area weighted median or average of all runoff simulations within a
functional group. This, however, means that all 105 runoff simulations
are necessary to build this compressed model and we cannot run the
compressed model in a forward mode. The second avenue is to take
functionally united hillslopes and derive for each functional unit an
effective, spatially aggregated hillslope in a similar fashion as done
in Loritz et al. (2017). Though this is most likely the most promising
way to come up with a compressed catchment model, it is beyond the
scope of this manuscript. Instead, to simplify this attempt in this study
we use a third option and develop a compressed model structure
using a bootstrap-like approach. For this we randomly select a single
hillslope from each functional group, and calculate the area weighted
median of the simulated discharge time series of the six randomly
selected hillslope models (Compressed catchment model; Figure 3.3).
The weight assigned to each of the selected discharge time series corre-
sponds to the areal fraction of all hillslopes in the respective functional
group. This assures mass conservation because runoff of each hillslope
is equal to its area times the simulated specific discharge. We use ran-
dom selection because each group member is regarded as equivalent
to represent the runoff generation of the corresponding functional
group. To account for sampling variability, as simulated runoff differs
slightly among the hillslopes within a functional group, we repeat
this random selection 1000 times. In a final step, we compare those
values individually as well as the median of all realizations against
the observed runoff of the Colpach using the KGE. This reveals the
performance spread of the randomly generated compressed models
compare to the area-weighted median of the entire 105 hillslopes.

3.4 results

3.4.1 Runoff and storage simulations

The overall model performance of the area weighted median of all
hillslopes is decent, with a KGE of 0.76. The ability of different
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Figure 3.3: Sketch of the approach for compression and performance evalua-
tion for the compressed catchment models.
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hillslope models to reproduce the observed runoff dynamics of the
Colpach catchment varies substantially (see Figure 3.4 a), with KGE
values ranging between 0.44 and 0.92. This apparent spread in model
performance among the hillslopes corroborates the sensitivity of
simulated discharge to those parameters derived from the DEM. A
similar pattern is revealed when model ”goodness” is expressed by
means of the normalized mutual information (NMI) between each
hillslope model and the observed runoff. NMI values range from 0.51

to 0.71 and show a strong linear correlation to the corresponding
KGE values (with a Pearson correlation coefficient of 0.89). This good
correspondence of NMI with the KGE performance measure reinforces
the notion that NMI is a suitable measure of similarity, or difference,
between time series of hydrological variables.

The temporal patterns of total area specific storage for each hill-
slope model are shown in Figure 3.4 b. The skill of different hillslopes
to reproduce the temporal dynamics of observed median storage is
rather stable, with a Spearman rank correlation coefficient ranging
from 0.77 to 0.86, with the ensemble median having a value of 0.82.
Visual comparison of the simulated storage time series reveals that
differences in hillslope topography result mainly in a parallel shift of
the respective time series. This parallel spreading is stronger during
the wet season and less pronounced during dry conditions. The latter
might be due to the identical vegetation parameterization of each
hillslope and hence a result of highly similar root water uptake which
dominates storage dynamics during dry conditions in summer.

3.4.2 Entropy of the model simulations

If all 105 of the hillslope models were to produce unique simulations
of equal importance, their entropy would be the theoretical maximum
value of log2(105) = 6.7. However, in our study the maximum entropy
of our discharge simulations given the chosen binning size and the
maximum simulated discharge value of 0.75 mm hr−1 is log2(54) = 5.7
and for the storage simulation given a minimum simulated soil mois-
ture close to 200 mm and a maximum around 400 mm log2(21) = 4.4.
On the other side of the spectrum the minimum of the Shannon
entropy associated with a perfectly redundant set of hillslopes, is 0.

As seen in Figure 3.4 c and d, the entropy of the ensemble of runoff
simulations starts at a rather low value at the beginning of our simula-
tion period, increases with the first rainfall events in autumn, stays
at a high level (ranging between 3 and 4) during the winter period,
and starts to decrease towards 0 in May. During the summer, the
entropy reacts much more strongly to the different rainfall events
than in winter, and peaks at a value of 4.9 in August (35 from 54
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Figure 3.4: (a) Observed and simulated runoff of the Colpach catchment. The
red lines correspond to individual hillslope models and the yellow
line to area weighted median of all hillslopes. (b) Simulated total
area specific storage of each hillslope in red and the median of all
models in yellow. The median of the 141 observed soil moisture
time series is smoothed with a 12 hour rolling mean (for more
detail to the soil moisture observation we refer to Loritz et al.
(2017) (c) Shannon entropy in turquoise for the runoff simulations
as well as the corresponding mean and (d) a similar plot for the
storage simulations (red).
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bins allocated) when stream flow production grows again after a
long dry period of low flow. It is interesting to note that the entropy
in simulated stream flow is highly dynamic in time, implying that
the required structural resolution of the model changes with time,
with the 105-hillslope model structure being less redundant during
periods of high entropy and more strongly redundant when entropy
approaches 0 (see also Appendix D).

For the ensemble of storage simulations, the entropy varies be-
tween 1.5 and 2.9, which indicates less temporal variability compared
to runoff. This is consistent with the visual impression that differences
in topography result mainly in a parallel shift of the time series to a
different annual mean. Nonetheless, the entropy time series exhibits
weak annual dynamics, with a peak in mid-November when the wet
season starts. This peak coincides with the entropy peak of the runoff
simulations. In spring and summer, the entropy decreases slowly
until it reaches the overall minimum of 1.71 in October. Note that this
could be very different in case of (for instance) land-use differences or
distributed rainfall among the hillslopes causing a likely increase of
entropy during summer and autumn.

3.4.3 Functional group and their typical runoff and storage dynamics

The mean annual entropy of the runoff simulations is 2.5 (Figure 3.4
c), which implies that (on average) the number of functional groups
or bins that can be distinguished lies between 22.5 ≈ 6 and 23.5 ≈ 10.
In line with one of our goals to use information theoretic measures
to define similar acting landscape elements and to compress the full
catchment model into functional groups without substantial loss of
information we took the lower value and used a hierarchical cluster
analysis to classify the hillslopes into six functional groups using nor-
malized mutual information (1-NMI) as distance metric. The median
discharge for each functional group is shown in Figure 3.5 a, while
the corresponding set of hillslope profiles is displayed in Figure 3.5 b.
In general it seems that the functional groups 1, 2 and 6 exhibit the
strongest differences with respect to their median runoff time series
as well as with respect to the geopotential profiles whereas the classes
3, 4 and 5 appear much more similar in both aspects. The median of
the storage simulation of each functional group is displayed in Fig-
ure 3.5 c. Consistently with simulated runoff, the storage time series of
functional groups 1, 2 and 6 show the greatest differences. However,
in contrast to the runoff simulations also the functional groups 3, 4

and 5 are better separable at least during the wet period. Consistent
with the decline of the Shannon entropy in Figure 3.4 d these differ-
ences diminish in summer. Especially in June, July and August all of
the functional groups simulate essentially identical storages as their
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differences are getting closer to the error margins of the soil moisture
measurements. Again, we stress that this convergence could be ex-
plained by the dominant role of evapotranspiration and the identical
land-use parameterization of all hillslopes. Note that functional group
6, showing the strongest and fastest overall runoff reaction and has
the lowest overall storage simulation. Consistent with that, functional
group 1 and 2, showing the slowest runoff reaction are characterized
by the highest overall storage.

Figure 3.5: Median runoff of the six functional groups; b) corresponding
hillslope profiles with the elevation to river on the y axis and
distance to river on the x axis for each functional group. c) Median
storage of the six functional groups.

3.4.4 Performance of the compressed catchment models

Figure 3.6 shows the cumulative frequency distribution of KGE values
for the 1000 randomly selected model compressions using the afore-
mentioned functional groups of similar runoff generation (Table 1).
The median of all 1000 KGE values of all trials is 0.78 and corroborates
that the compressed model structures perform on average slightly
better than the area weighted median of the 105 hillslope models,
which has a KGE of 0.76. However, the range of 0.66 to 0.88 in the KGE
values indicates that the performance of a particular single realization
of the compression depends on the actual combination of hillslopes



3.5 discussion 75

Table 3.1: Number of member as well as the mean and max values of the
runoff simulation of each functional group.

Functional group Gr. 1 Gr. 2 Gr. 3 Gr. 4 Gr. 5 Gr. 6

member 9 8 27 20 20 21

(n)

mean annual runoff 0.051 0.052 0.053 0.054 0.056 0.065

(mmh−1)

max runoff 0.22 0.34 0.42 0.43 0.64 0.75

(mmh−1)

mean storage 289.6 295.7 281.7 277.1 273.7 267.7

(mm)

max storage 338.6 349.1 323.7 316.2 312.8 307.2

(mm)

selected for each group. As each realization of the compressed catch-
ment model would in principle only use six hillslope models and if
we assume that all hillslopes have the same run time this could, in
theory, reduce the computational costs of our model application by a
factor of 17.5.

Figure 3.6: Distribution of model performances of the different realizations
of the compressed catchment model (blue). The two dashed lines
correspond to the median of the KGE values of all realization
of the compressed catchment model (blue) as well as to the area
weighted median of all 105 hillslope models (red).

3.5 discussion

The results presented above provide strong evidence that information
theoretic concepts are powerful tools to quantify and explain the rel-
evance of different system characteristics for distributed modeling.
Following this overall result, we will start to discuss our main finding
that the amount of topographic information relevant for distributed
modeling is not constant but time variant. Furthermore in a second
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step, we address the closely related issue that we are able to compress
the ensemble of hillslope models into functionally similar groups, and
that a stronger compressibility implies a higher degree of functional
organization in a heterogeneous environment. This discussion leads
naturally to a short reflection on the advantages that concepts from
information theory offer for exploring and explaining how spatial
complexity and functional similarity of hydrological systems are con-
nected. Finally, we conclude by revisiting the seeming antagonism
between landscape organization (Dooge, 1986) and functional similar-
ity (Wagener et al., 2007) against the recurring finding of heterogeneity
and randomness and hence uniqueness of hydrological places (Beven,
2000) and provide an outlook on how to generalize the approach
presented here.

3.5.1 Temporarily varying importance of topography for distributed model-
ing

The relevance of spatially variable but yet time-invariant topographic
information on hydrological simulations was found to be strongly
time dependent. The different topographic information used within
the models led to complex temporal dynamics of the information
content of the probability distribution of the discharge and storage
simulations at a given time step. These temporal dynamics were
furthermore distinctly different for the two target variables. The
Shannon entropy of the discharge simulations revealed that there are
alternating periods of high redundancy and of high diversity among
the hillslope responses. This resulted in several local maxima and
minima of the Shannon entropy in time. These maxima and minima
are not easily explained by simply attributing them to high and low
flow conditions (see Appendix D). For example the global maximum
of 4.9 (close to the theoretical maximum of our experiment 5.8) was
observed in August, when the system rapidly switched from low to
high streamflow conditions in response to a strong convective rainfall
event. In contrast, the Shannon entropy of storage simulation exhibited
a distinctly different pattern compared to the discharge simulations
with a much stronger autocorrelation, two clear identifiable maxima
in winter, and overall lower values of the Shannon entropy in summer.

The overall differences between the two target variables, the dy-
namics of the information content within the discharge and storage
simulations, and hence the changing maximal compressibility of the
model ensemble, highlights that the relevant topographic information
for distributed modeling depends firstly on the modeling target and
secondly on the time, and thus on the prevailing forcing as well
as on the state of the system. In other words, spatially distributed
information about topography has a time varying impact on the model
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ensemble. Hence, the necessary complexity (Schoups et al., 2008) of a
distributed model to capture this information is time dependent as
well.

If we try to generalize and transfer this finding from the model
world to a real hydrological system keeping in mind all the issues that
go along such an approach, these results imply that different landscape
entities may either function similarly or dissimilarly depending on the time.
Hydrological similarity can therefore, rather than being static, be a
dynamic attribute that depends on the ”hydrological context”. Inter-
estingly, this context dependence can be straightforwardly explained
by the generally dissipative nature of hydrological processes (Kleidon,
2010). Rainfall and radiation push and pull the hillslopes away from
their local thermodynamic equilibrium, thereby generating internal
system gradients in either potential energy or capillary binding energy.
These gradients get depleted during system relaxation towards the
equilibrium either through release of water from hillslopes to the
stream or through recharge and capillary rise (Zehe et al., 2014).
However, the generation and depletion of these gradients is controlled
by a large variety of meteorological and hydrological processes inter-
acting across a hierarchy of spatial and temporal scales (Blöschl and
Sivapalan, 1995). Exactly the varying dominance of these processes,
and hence the changing importance of the corresponding landscape
control, is the key to understanding the time varying relevance of
different system characteristics for distributed hydrological modeling,
and explains the varying relevance of (in our case) topography for
hydrological modeling even though topography is quasi static at
classical hydrological time scale.

3.5.2 Compressibility of time series and functional similarity of hillslopes

As indicated in the section above, both of the target variables, storage
and discharge, never reached the theoretical maximum value of the
Shannon entropy implying that the model ensemble was producing
redundancy and thus was compressible during the entire year. Based
on this general finding we came up with the idea of a compressed
catchment model which was built upon a straightforward clustering
of all hillslope models into functional groups of similar annual runoff
behavior. This compressed model consisted in a single realization of 6

instead of 105 hillslopes, which were then randomly drawn from each
functional group. It is of interest that by reducing the model ensemble
to a smaller set of hillslope models we were still able to match on
average the observed annual streamflow in the catchment. This result
agrees with the findings of Fenicia et al. (2016) who stated that spatial
variations of the geopotential are too small in this landscape to have
a dominant influence on the annual runoff generation, and with the
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findings of a foregoing study where we show that the annual runoff
dynamics of the Colpach catchment can be simulated using a single
effectively compressed hillslope model (Loritz et al., 2017).

Neglecting all the issues that occur when we compare distributed
model applications with spatially aggregated models (e.g. Beven and
Freer, 2001; Obled et al., 1994; Pokhrel et al., 2012) our comparison
of the differently strong compressed catchment models matches with
the conclusion of Pokhrel and Gupta (2010) that as long as we are not
interested in the representation of the spatial distribution of hydro-
logical fluxes or state variables, a spatially aggregated model which
compresses the spatial variability of the landscape properties might be
sufficient for predicting macroscopic variables (Hrachowitz and Clark,
2017). However, as soon as our focus shifts to the representation of
the spatial distribution of a hydrological process, information entropy
bears the key to defining and diagnosing the minimum adequate
complexity of a distributed model (Schoups et al., 2008), particularly
as it could help guide an approach to reducing computational costs
without losing information (in our case by a factor of almost 17.5).
However, the assessment of a meaningful compression that leads to a
less redundant and yet well performing distributed model structure
is not at all a straightforward exercise. This is corroborated by the
strongly variable performance of the 1000 randomly generated com-
pressions, which highlights that the individual performance depends
strongly on the model realization. From this we conclude that, con-
trary to our assumption, not each hillslope model represents stream
flow generation of a functional unit equally well, as our classification
is based on mutual information between the annual discharge time
series. The fact that two hillslope models may yet act differently at
certain time steps explains why every random realization of the model
compression performs slightly different. The second and maybe more
general shortcoming is that our proposed compression is based on a
fixed number of groups, inferred from the average annual entropy.
As the average annual entropy of simulated streamflow reflects the
annual average maximal compressibility of the discharge simulation,
our choice for the number of functional groups seems legitimate as a
first attempt on an annual scale. However, as shown in Figure 3.4 c the
Shannon entropy of the discharge simulations deviates substantially
from this value. This implies that our model structure is either too
simple in periods where the entropy is larger than the average or
redundant in periods where the entropy is smaller. A best possible
compression of a distributed catchment model, defined as the one
that avoids any loss of information and also avoids any redundancy
(also referred as lossless compression e.g. Weijs and Giesen, 2013) will
therefore require a time variant number of functional groups. Such
an effort to do simulations with a higher spatial model resolution in
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times of high spatial complexity and with a coarser spatial model
resolution in times of low spatial complexity, as is for example done
with different adaptive time stepping schemes in numerical model
implementations (e.g. Clark and Kavetski, 2010) or in adaptive model
grid refinements (Faigle et al., 2014), points to new challenges that are
not only beyond the scope of this study but likely also beyond the
capabilities of most currently available model systems.

3.5.3 Information theoretic measures to quantify similarity

The venture to link complexity of spatially distributed catchment
characteristics to functional similarity led us naturally to the concepts
of information and (physical) entropy (Ben-Naim, 2008; Davies, 1990).
Similarity of runoff, or storage of hillslopes, implies that their con-
tribution to streamflow is redundant and hence does not change the
information entropy within the simulations beyond its areal share (at
least as long as the timing of the routing is not dominant). Removing
this redundancy means to compress (Weijs et al., 2013b), and in our
specific case to aggregate hillslopes to larger similar functioning
landscape elements which we called functional groups in relation to
the definition of functional units by Zehe et al. (2014). Although it is
evident that this partitioning of similar acting units into larger groups
does not require the use of information theory (e.g. Berghuijs et al.,
2014; Sawicz et al., 2011; Wood et al., 1988, we believe that, besides
the maybe more general assets of an information theoretic perspective
on different hydrological issues (e.g. Ehret et al., 2014; Gupta and
Nearing, 2014; Nearing et al., 2016; Weijs et al., 2013a), it has also
major technical advantages for a variety of different tasks as shortly
discussed in the following.

First, information theoretic measures like Shannon entropy and
mutual information, when calculated with the same logarithmic base,
share the same units, in our case ”bits”. This facilitates the inter-
comparison of the different variables, in our case storage and runoff,
with respect to their diversity in the model ensemble. Furthermore,
if calculated in the discrete form, a careful choice of the bin width
according to the measurement error can also be interpreted as physical
meaningful definition of the minimum separable difference between
observations or simulations of the same state variable or flux. For
instance, in this study, we used the inherent measurement errors of
the soil moisture probes as well as the uncertainty in our rating curves
to define the minimum separable differences of storage and runoff.

Another key advantage of the information theoretic perspective
is that not only the minimum but also maximum information content
and hence the maximal complexity or functional disorganization that
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a distributed model can produce in its responses is well defined.
The latter corresponds to the state of maximum Shannon entropy
which implies that each time series, either modelled or observed,
contributes in a unique (non-redundant) fashion to the ensemble. We
are therefore able to derive a theoretical upper and lower bound which
reflects naturally the minimum and maximum reachable complexity
of state/output response that our model can produce. The lower
boundary represented by a zero entropy, corresponds to a situation
where all model elements produce with respect to the corresponding
observation error the same output and hence act identically. The
upper boundary or maximum entropy, in our case 6.7, corresponds
to a situation where all model units produce a unique output and to
a situation of no redundancy at all. Given these two margins we can
judge whether different model elements, in our case hillslopes, of a
chosen model provide largely independent stream flow contributions.

3.6 conclusion and outlook

Based on the evidence presented here, we conclude that the proposed
information theoretic measures and concepts provide a powerful
framework for understanding and diagnosing how landscape organi-
zation and functional similarity of hydrological systems are connected.
We are aware that the specific findings of the present work are nec-
essarily constrained by the a-priori settings of the model ensemble,
which exclusively focused on a spatially variable topography, while
land-use, precipitation and the soil parameters were identical among
the 105 hillslopes. The application of these concepts and the general
mindset is, however, by no means restricted to this specific model
neither to topography. On the contrary, it may be generalized either
by additional data sources such as land-use, bedrock topography and
distributed rainfall data as well as to any ensemble of time series,
modeled or observed. This opens new opportunities to systematically
explore how spatial variations of different landscape characteristics
and meteorological forcing affect hydrological processes. Furthermore,
as we only tested first order changes of topography and the influence
on distributed modeling here, it also opens the possibility to test
whether second order effects arise from combinations of several
distributed characteristics.

Finally, in line with Clark et al. (2016) we argue that a compre-
hensive answer to the simple question stated in the introduction
”when is the spatial variation of a system characteristic large enough
that we need to account for it” is not at all straightforward, but
requires a solid theoretical framework. Following thermodynamic
reasoning and information theory, the key to explain why hydrological
systems often act so comprehensibly is that they are dissipative and
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highly organized (Zehe et al., 2014). This implies that organized
simplicity might emerge when we move up to larger scales in space
(Dooge, 1986; Savenije and Hrachowitz, 2017). Our results reveal,
however, that simplicity manifests not only in space when moving
to larger scales, but also manifests when ”the system moves through
time” as functional similarity emerges in time. We therefore propose
that the concepts of landscape areas that act either similarly and are
thus redundant (Wagener et al., 2007) or show unique functioning and
are thus irreplaceable (Beven, 2000) are consequently not mutually
exclusive. They are in fact of complementary nature, and systems
operate by gradually changing to different levels of organization in
which their behaviors are partly unique and partly similar.
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abstract

Surface topography is an important source of information about the
functioning and form of a hydrological landscape. Because of its key
role in explaining hydrological processes and structures, and also
because of its wide availability at good resolution in the form of
digital elevation models (DEM), it is frequently used to inform hy-
drological analyses. Not surprisingly, several hydrological indices and
models have been proposed to link geomorphic properties of a land-
scape with its hydrological functioning; a widely used example is
the ”Height Above the Nearest Drainage” (HAND) index. From an
energy-centered perspective HAND reflects the gravitational potential
energy of a given unit mass of water located on a hillslope, with the
reference level set to the elevation of the nearest corresponding river.
Given that potential energy differences are the main drivers for runoff
generation, HAND distributions provide important proxies to explain
runoff generation in catchments. However, as expressed by the second
law of thermodynamics, the driver of a flux explains only one aspect of
the runoff generation mechanism, with the driving potential of every
flux being depleted via entropy production and dissipative energy
loss. In fact, such losses dominate when rainfall becomes runoff, and
only a tiny portion of the driving potential energy is actually trans-
formed into the kinetic energy of streamflow. In recognition of this,
we derive a topographic index named reduced dissipation per unit
length (rDUNE) by re-interpreting and enhancing the HAND index
following a straight forward thermodynamic argumentation. We com-
pare rDUNE with HAND, and with the frequently used topographic
wetness index (TWI), and show that rDUNE provides stronger discrim-
ination of catchments into groups that are similar with respect to their
dominant runoff processes. Our analysis indicates that accounting for
both the driver and resistance aspects of flux generation provides a
promising approach to linking the architecture of a system with its
functioning and hence develop similarity indices in Hydrology.

85



86 a topographic index explaining hydrological similarity

4.1 introduction

The key role that surface topography plays in Hydrology has long
been recognized (e.g. Horton, 1945). Topography provides information
about the interplay between uplift, weathering and erosion, and hence
about the past morphological development of a landscape. Further, it
provides a strong constraint for future hydrological and geomorphic
changes and, importantly for hydrology, is the key driver and control
associated with runoff generation and several other hydrological
processes.

This insight about the past, present and future roles played by
topography is surely one reason why almost all key landscape entities
in Hydrology, such as watershed boundaries, hillslopes and channel
networks, are derived from properties of the land-surface topography.
In support of this, digital elevation models (DEM) are available at
fairly high resolution across the globe (Farr et al., 2007), helping to
fuel the growing popularity of spatially explicit hydrologic models
(e.g. Beven, 2001).

It is therefore no surprise that hydrology does not suffer from a
lack of models or indices linking geomorphic properties of a land-
scape with its hydrological functioning. The most popular approach is
arguably the topographic wetness index (TWI) proposed by Kirkby
(1975) and Beven and Kirkby (1979). As a function of the local slope
with the upslope contributing area per contour length, the TWI was
originally developed to classify areas of similar functioning within
a catchment and has been applied (e.g. Grabs et al., 2009), refined
(e.g. Barling et al., 1994) and tested (e.g. Rodhe and Seibert, 1999) in
numerous studies. However, other indices have also been proposed
to link land surface topography with its runoff response. Hjerdt et al.
(2004) developed the ”down slope topographic wetness index” (also
called the tanβ index) that reflects the local hydraulic gradient in
the case that flow is exclusively driven by gravity and under the
assumptions of a fixed drop in elevation. They claimed that this index
represents groundwater level gradients in a manner that is superior
to the classical TWI approach, and showed it to be less sensitive to
the quality of the DEM used to estimate the local slope. Adopting
a hydraulics framework, Lyon and Troch (2010) developed an index
called the catchment Péclet number, that is a volume or area weighted
version of the hillslope Péclet number. The latter was derived by Berne
et al. (2005) to characterize hillslopes by subsurface runoff formation,
based on the relative importance of advective and diffusive flows,
using the hillslope storage Boussinesq equation (Troch et al., 2003).
Lyon and Troch (2010) showed that in a set of 400,000 synthetically
generated and four real world catchments the catchment Péclet num-
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ber provided a meaningful link between hydrological response and
the geomorphic properties of a landscape.

An approach that has recently gained considerable attention is
the ”height above the nearest drainage” index (HAND) developed
by Rennó et al. (2008), and under a different name ”elevation dif-
ference (DZ)” by Crave and Gascuel-Odoux (1997). This approach
assumes that water follows the steepest descent along the surface
topography and, based on these drainage paths, the corresponding
elevation of each raster cell above the nearest corresponding river cell
is estimated. HAND has thereby been successfully applied and tested
in numerous studies in a wide range of different landscapes. For
instance, Gharari et al. (2011) compared a collection of hydrological
similarity indices, their sensitivity to the DEM resolution as well as
their ability to identify three visually pre-classified landscape types
(wetlands, hillslopes, plateaus). Their results highlight the sensitivity
of HAND to the chosen DEM resolution and show that HAND in
combination with the slope lead to the ”best” result with respect to
match pre-classified observation points. Also Gao et al. (2014) used
HAND in combination with the slope (additionally they also used the
aspect) to identify hydrological similar areas in a model comparison
study. They showed that a semi-distributed model setup which was
based on a HAND landscape classification scheme outperformed a
lumped and semi-distributed (based on the forcing data) hydrological
model with respect to matching the hydrograph. The same leading
author (Gao et al., 2019) further exploited the role surface topography
plays when rainfall becomes runoff and used HAND to infer model
parameters of a conceptual hydrological model showing that their
developed runoff generation module performed almost as good as
fully calibrated models. Finally, Zehe et al. (2018) used HAND as a
proxy for the gravity potential for calculating potential energy of soil
water and showed that their approach is ”well suited to distinguishing
the typical interplay of gravity and capillarity controls on soil water dynamics
in different landscapes.”

The above mentioned studies highlight the large potential of the
topographic index HAND and its relevance for hydrological research.
From a theoretical point of view, HAND reflects thereby the grav-
itational potential energy of a given unit weight of water with the
reference level set to the elevation of the nearest corresponding river.
Given that differences in potential energy act as drivers for overland
and subsurface storm flow, the distribution of HAND across a land-
scape represents a predominant control on the lateral distribution and
redistribution of water in a catchment. However, because surface and
subsurface water flows are also highly dissipative (e.g. Kleidon et al.,
2013), similarity with respect to HAND distribution is not sufficient
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to ensure similarity with respect to runoff generation. This is due to
the fact that the driving potential is only one of the important factors,
with every flux encountering frictional losses along its flow path.

This latter insight recognizes the essential role of the second law
of thermodynamics, based on which Zehe et al. (2014) postulated that
equifinality is inherent to most of our governing equations, because
every flux is unavoidably the result of the interplay between a driving
potential and a resistance term. Accordingly, the overall flux through
a system can remain unaffected when the driving potential is doubled
if the corresponding frictional resistance losses are also doubled. From
this perspective, only landscapes having similar combinations of
characteristics controlling both the driver and resistance terms should
satisfy a sufficiency condition for hydrological similarity (in terms of
runoff generation). In recent years the importance of thermodynamic
principles has increasingly gained attention in Hydrology. The Oxford
dictionary defines thermodynamics as a ”branch of physical science that
deals with the relations between heat and other forms of energy (such as
mechanical, electrical, or chemical energy), and, by extension, of the relation-
ships between all forms of energy.” Given that all fluxes are driven by
potentials, and that fluxes are necessarily ”dissipative” (meaning that
they produce entropy following the second law of thermodynamics
(e.g. Kondepudi and Prigogine, 2014) it seems logical that thermo-
dynamic concepts are relevant in Hydrology. However, although an
energy-centered view has been applied to a variety of different issues
in sub-disciplines such as groundwater hydrology (Hubbert, 1940)
and soil physics (Babcock and Overstreet, 1955) it has not become
established practice in classical rainfall-runoff centered surface water
hydrology. This is likely due to the strong engineering context in
which the understanding of surface hydrology was historically devel-
oped, with its overt focus on practical problem solving (Sivapalan,
2018). One interesting early exception is the work of Leopold and
Langbein (1962), who showed that the concept of ”entropy” in its
probabilistic form (see Kondepudi and Prigogine, 2014) can be used
in combination with a random walk term to infer the most probable
state of a drainage network. Along the same lines, Howard (1990) and
Rodrı́guez-Iturbe et al. (1992) showed how thermodynamic optimality
principles can be used to derive realistic synthetic river networks. Such
work motivated Hergarten et al. (2014) and others to apply similar
concepts to explain subsurface flow patterns.

However, a thermodynamic perspective can be much more general,
and is by no means limited to the explanation of optimal drainage
densities. As examples, Zehe et al. (2013) showed that a thermody-
namic optimum density of macropores maximizing dissipation of free
energy during recharge events allowed an acceptable prediction of the
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rainfall-runoff response of a lower mesoscale catchment; Hildebrandt
et al. (2016) used an energy-centered approach to explain how plants
extract water from the soil, Zhang and Savenije (2018) how salt and
fresh water mixing in estuaries can be described in energetic terms
and Zehe et al. (2018) discussed how an energetic perspective on soil
water movement can improve our general understanding of catchment
hydrology. The above discussion highlights the considerable potential
of a thermodynamic perspective to improve our understanding of
hydrological functioning across a range of important issues. One
reason that an energy-centered perspective on runoff generation
remains the exception, rather than the rule, in catchment hydrology
may be that the connection between the laws of thermodynamics and
issues underlying questions of practical importance in hydrology is
not always readily evident. A motivating rationale of this study is,
therefore, to bridge this gap by showing how the fundamental con-
cepts of thermodynamics can be applied to develop a solution to the
classical hydrological question ”How can the geomorphic properties of a
landscape be used to identify hydrological units that have similar hydrological
functioning”.

In this study, we propose a topographic index that accounts for
both the driving potential energy difference and the accumulated
dissipative loss along the flow path following straightforward ther-
modynamic arguments. Our index, (reduced dissipation per unit
length index) is thereby an energy-centered re-interpretation and
enhancement of the well-established topographic index HAND. In the
following, we discuss its similarities to other geomorphic indices used
in Hydrology and test whether it provides sufficient information to
enable distinguishing between two landscapes which differ distinctly
with respect to their dominate runoff processes. Furthermore, are we
comparing our index against a small subset of topographic indices
namely its origin HAND and the frequently used TWI. Based on our
findings we conclude that one meaningful way to build similarity
indices in Hydrology is to acknowledge both the driving potential
and the resistance term separately and hence identify the driving
potentials and dissipative losses separately.

4.2 approach and methods

Here, we derive a topographic index based on the energy balance
associated with runoff generation from a hillslope. This involves two
steps: i) inferring which properties of a DEM provide information
about the forces driving runoff generation, and ii) identifying how
much resistance to the flow of water is offered by the landscape. As
benchmarks for comparison, we briefly explain the well-established
TWI and HAND indices.
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4.2.1 Energy balance of streamflow generation

One of the most important steps in any thermodynamic approach is
a proper system definition. Given that hillslopes are often described
as the key landscape elements controlling runoff generation (e.g.
Bachmair and Weiler, 2011), a starting point to describe the runoff
generation of an entire catchment is to examine the energy balance
of a hillslope with respect to the total energy of all fluids located on
that hillslope. The total energy relevant for streamflow generation
at the hillslope scale is thereby the sum of the influx of potential
energy by water Jpot (energy flux in W), the export of kinetic energy
by water Jkin (W), and the amount of energy D (W) dissipated due
to friction along the flow path to the river (see Kleidon et al., 2013).
In this regard, it is interesting to note that typically observed kinetic
energies associated with overland flow are quite small compared
to their driving potential energies. To get a sense of this, imagine a
catchment having an average height above the runoff recording gauge
of 20 m and a typical flow velocity of 1 m s−1. In this case, only 0.5 %
of the average potential energy is transformed into kinetic energy,
while by far the largest amount (99.5 %) is dissipated due to friction at
the fluid-solid interface along the flow path. This irreversible process
implies an accumulative loss of free energy along its flow path, and
hence a potential decrease in the ability of the fluid to perform work
(Freeze and Cherry, 1979; Kleidon et al., 2013). The reason for this
is that the potential and kinetic energies primarily determine how
the fluid moves, while temperature differences within the fluid are
of only minor importance. Accordingly, streamflow generation is
accompanied by the conversion of potential energy into kinetic energy,
and finally into heat (Currie, 2003; Song, 1992).

Fundamentally, the phenomenon of energy dissipation was first
described through the second law of thermodynamics, which states
that entropy can be produced but not consumed, implying that the
sum of all processes in our universe proceed in a direction of entropy
increase, meaning that they necessarily dissipate free energy and
hence reduce the capacity of the system to perform work (Schneider
and Kay, 1994). An elementary consequence of this is the negative
sign in a diffusive flux law, which implies that heat flows from warm
to cold temperatures, water flows downslope (more generally from
higher to lower potential energy), and air moves from high-pressure
to low-pressure. Mathematically this can be formulated as the flux
gradient law, which states that any flux ~q is the product of a gradient
∇ϕ and the inverse of an effective resistance term R which hampers
the flux.

~q = ∇ϕR−1 (4.1)
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This equation was the basis for the statement by Zehe et al. (2014)
that when dealing with the identification of hydrologically similar
landscape entities we must consider the driving potential and the
resistance terms separately. In the subsequent sections we explore
each of these terms.

The driving potential

The main drivers for streamflow generation at the hillslope scale are
the geo-potential differences between the upslope catchment areas and
the stream channel, resulting from the gravitational energy of the mass
of the water relative to its position (Bear, 1972; Kleidon, 2016). These
potential energy differences driving streamflow generation are largely
dependent on topographic differences, and on the space-time pattern
of precipitation (Blöschl and Sivapalan, 1995). If the topography of a
catchment is known, we can (in theory) calculate the potential energy
associated to all water on the surface of a hillslope simply by applying
Newtonian mechanics:

Epot = mgh (4.2)

where Epot is the potential energy of the water on the hillslope (J), m
its mass (kg), g represents the gravitational acceleration (m s−2), and
h is the relative height of the water above a reference (m). Given Eq. 2

we can compute the influx of potential energy by water associated
with a grid cell of a DEM by accounting for the spatial extension of the
grid cell and the precipitation accumulated over a given time period.
Accordingly, for each grid cell i of a DEM, we replace the mass term
by the volumetric flux of water multiplied by its density ρ (kg m−3),
the former computed as the summed total precipitation depth per
time Pi (m s−1) within that grid cell multiplied with its area Ai (m2):

Jpot,i = Pi Aiρigihi (4.3)

Jpot,i quantifies the influx of potential energy for a given grid cell i
and for a given time period. To finally calculate the influx of potential
energy we need to set a reference level against which to quantify
hi. In this study, we will focus on catchments smaller than 50 km2,
and will therefore treat all of them as being ”hillslope dominated”,
implying that channel routing is of only minor importance in the
development of runoff generation (Kirkby, 1976; Robinson et al., 1995).
By neglecting the stream network and assuming that water follows
the surface topography along the steepest gradient, we can set the
reference level to zero at the point where the hillslope connects to the
nearest drainage, and thereby estimate hi for each cell in our DEM
(hi = HAND). To summarize Jpot,i quantifies the influx of potential
energy by water within a given raster cell i, thereby providing an
energy-centered interpretation of the well-established HAND concept.
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The sum of Jpot,i over a hillslope or catchment represents thereby the
total influx of energy by water available to perform work in a given
time period. It is hence straightforward to calculate Jpot,i associated
with, for instance, the long-term climatic precipitation if relevant
information about the region of interest is available.

Identifying the structures controlling dissipation

While differences in geo-potential energy drive runoff generation,
most of the available potential energy is dissipated during runoff
generation. At the land surface this is controlled mainly by surface
roughness (i.e. friction per unit length), which in turn depends on the
nature of the vegetation, soil texture and the micro-topography. On
the other hand, frictional losses within the subsurface are controlled
by soil hydraulic conductivity, soil water content and (in case of
deep percolation) by bedrock topography and conductivity. In both
domains, additionally connected flow networks (such as rills, or
vertical and lateral macropores) dramatically reduce frictional losses
per flow volume, by providing a larger hydraulic radius (Hergarten
et al., 2014; Howard, 1990).

The difficulty associated with estimating frictional losses, is that
a variety of different runoff processes can occur within a hydrological
year, all having different occurrence probabilities that are in turn con-
trolled by different landscape properties of the hillslope. It is precisely
this diversity of different spatio-temporal controls that makes it so
difficult to upscale small scale processes to the scale of the entire
catchment (Sivapalan et al., 2003). However, despite this variabil-
ity, dissipation remains accumulative along the flow path (Kleidon
et al., 2013; Rodrı́guez-Iturbe et al., 1992), offering the opportunity
to define a ”dissipation length” as a surrogate for the macroscopic
flow resistance in the flux-gradient relationship (Eq. 1) as long as the
pedo-geological setting does not change significantly along the flow
path. For simplicity, we henceforth assume that the dissipation of
the geo-potential energy during runoff production is proportional
to the flow path length to the river. This assumption is in line with
those made by Rodrı́guez-Iturbe et al. (1992) in the context of stream
networks, and is based on the observation that the export of kinetic
energy by water (Jkin) is often negligible small compared to the influx
of potential energy by water (Jpot). The majority of available potential
energy is hence dissipated (D) when rainfall becomes runoff:

D = Jpot given Jkin � Jpot (4.4)
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A given mass of water traveling from a specific location (grid cell i) to
the stream will dissipate its potential energy over its travel distance
leading to:

Di

li
= Pi Aiρg

hi

li
(4.5)

With li being the flow length of a given raster cell i to the nearest
drainage (m) and hi the height above the nearest drainage (m) of that
raster cell i. To assure that the developed index depend exclusively on
information about the topography stored within a DEM we normalize
Eq. (5) by the mass flux of precipitation and divide it by the gravity
constant g, the resolution Ai, and by the density of water ρ, to obtain
a dimensionless index:

rDUNE =
hi

li
(4.6)

This reduced dissipation per unit length index (rDUNE) is an esti-
mate of the potential energy gradient at the surface topography of
a given raster cell under the assumption of gravitational flow, and
is similar to the index proposed by Hjerdt et al. (2004) but without
the need to arbitrarily define the drop in elevation. Here we have
chosen to multiply rDUNE with minus one as well as use the natural
logarithm transformation to make the rDUNE more easily comparable
with the TWI as well as to transform the skewed distributions to be
more normally distributed and thereby make its patterns more easily
interpretable.

rDUNE = −ln(
hi

li
) (4.7)

rDUNE is defined in a range from −∞ till ∞, is zero if the flow length
and height to the nearest drainage are equal, positive if the flow length
is larger and negative if the flow length is shorter than the height to
the nearest drainage. High rDUNE values mean that the dissipation
of potential energy is reduced compared to landscapes with lower
rDUNE values. This reduction could for instance stem from higher
hydraulic conductivities of the prevailing soils or from the occurrence
of different forms of preferential flow paths.

4.2.2 Topographic wetness index (TWI) and height above the nearest
drainage (HAND)

We compute the frequency distributions of grid cell TWI and HAND
indices for comparison with the rDUNE distributions. The TWI is
defined for each raster cell as:

TWI = ln(
a
b
) (4.8)
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where α is the upslope accumulated area and tan(β) the local slope
angle (the TWI is usually divided by the resolution of the DEM before
the logarithm is taken, to make it dimensionless). Meanwhile HAND
is based on the concept that water follows the steepest gradient along
the surface topography, and hence both a river network and as a
flow direction map are required for its calculation. To better compare
HAND with TWI and rDUNE, we again use its natural logarithm
(ln(HAND)).

Measuring divergences between distributions

Measuring the similarity or dissimilarity of frequency distributions
without resorting to statistical moments is not straightforward. Here
we use a less well known measure, called Jensen-Shannon divergence
(JSD, Lin, 1991) to estimate how similar catchments are with respect
to their ln(HAND), TWI and rDUNE distributions. JSD is a non-
negative, finite and bounded distance measure developed to quantify
the divergence between probability distributions. It was introduced
into Hydrology by Nicótina et al. (2008) and is strongly, but not
necessarily, motivated by Information Theoretic considerations (for
details on Information Theory please see Cover and Thomas (2005).
JSD is based on the well-known Kullback-Leibler divergence (KLD;
sometimes referred as relative entropy) defined as:

DKL(X||Y) = ∑
x∈X

p(xi)log2
p(xi)

p(yi)
(4.9)

where p(xi) and p(yi) are the probabilities that X and Y are respec-
tively in the states xi and yi. In brief, KLD quantifies the information
loss when the probability density function of Y is used in place of
X, and has been applied in hydrology by Weijs et al. (2010) to evalu-
ate hydrological ensemble predictions. However, because KLD is not
a classical distance measure, being neither symmetric nor bounded
(Majtey et al., 2005) it is not well suited to the simple comparison
of distributions. To overcome this issue Lin (1991) and Rao (1982)
developed a symmetric and bounded version of KLD that, when sub-
jected to a square root transformation, satisfies the triangle inequality
condition required of a distance metric (Endres and Schindelin, 2003).
This is accomplished by computing the sum of the KLD of (X||Y) and
(Y||X), thereby making it symmetric, as was originally proposed by
Kullback and Leibler (1951) as the ”J divergence”. In its general form
for N distributions, the J divergence can be written as:

JKL =
N

∑
i=1

(Xi||Yi) (4.10)



4.2 approach and methods 95

From this, the JSD is developed, by comparing each distribution to
the ”mid-point” distribution M, defined as:

M =
1
N

N

∑
i=1

(Xi + Yi) (4.11)

Accordingly, the JSD represents the average divergence of N proba-
bility distribution from their mid-point distribution, defined as:

JSD =
1
N

N

∑
i=1

DKL(Xi||M) (4.12)

If we calculate the JSD using logarithms to the base 2 the JSD associ-
ated with two distributions is bounded between zero and unity, while
for N distributions it is bounded between zero and the maximum
entropy log2N (Jaynes, 1957). This is because the mid-point distribu-
tion M converges to a uniform distribution in the case of maximum
dissimilarity between the distributions.

Derivation of probability distributions

To calculate the JSD it is necessary to convert the frequency distribu-
tions of ln(HAND), TWI and rDUNE into probability density functions.
This step requires a careful choice of bin width (Gong et al., 2014). Vari-
ous guidelines to properly estimate the bin width have been proposed,
one of the earliest and most frequently used having been proposed by
Scott (1979):

W = 3.49σN−
1
3 (4.13)

where W is the bin width, σ is the standard deviation of the dis-
tribution and N is the number of available samples belonging to the
distribution. In our study, however, the optimal bin width turns out to
be different for each distribution as a result of its shape and the num-
ber of samples (size of the catchment). This is inconsistent with the
need to use the same binning for each case to facilitate comparisons
of the different distributions. Accordingly, we decided to use only the
largest bin width calculated for each similarity index – which is 0.5
for the TWI distributions, 0.2 for the ln(HAND) distributions and 0.15

for the rDUNE distributions (please note the JSD values between the
distributions change only slightly if calculated with the smallest bin
size; see appendix A1). Finally, as recommended by Darscheid et al.
(2018), for any bin indicating zero probability (no data samples are
found to fall in that bin) we treated it as though it contained a single
sample, thereby associating that bin with a very low probability of
occurrence.
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4.3 study area

The 288 km2 Attert catchment, located in Luxembourg, has a mean
annual precipitation of 850-1100 mm and mean monthly temperatures
varying between 0

◦C in January to 18
◦C in July. Detailed descriptions

of the climatology and hydrology of the catchment can be found in a
series of studies (e.g. Bos et al., 1996; Jackisch, 2015; Martı́nez-Carreras
et al., 2016; Wrede et al., 2015. An important – and particularly relevant
– characteristic of the catchment is that it consists of two major geolog-
ical formations. Devonian schists dominate the Ardennes massif in the
northern and western part, and Triassic sandy marls dominate the rest
of the catchment, interrupted by several small areas of sandstone in
the south and north-west. To test the functional discrimination ability
of the rDUNE, TWI and ln(HAND) indices, we selected six head-
water catchments of different sizes (see Fig. 4.1), three in the Schist
area (Platen 40 km2; Colpach 19.4 km2; and Weierbach 0.45 km2), and
three in the Marl area (Schwebich 30 km2; Niederpallen 32.2 km2; and
Wollefsbach 4.4km2).

4.3.1 Hydrological regimes and runoff generation

Important to this study is that the six catchments share similar hydro-
climatic regimes (Jackisch, 2015), which can be separated into winter
and vegetation seasons, during which either runoff or evapotranspira-
tion respectively are the dominant water fluxes leaving the catchments
(Loritz et al., 2017). Annual runoff coefficients vary from 30 - 60 %
indicating distinct differences between the years; this is most likely
the result of annual climatic variations (Pfister and Kirchner, 2017).

However, the way how the catchments transform rainfall to runoff,
varies significantly between the different geological formations (Bos
et al., 1996). The Schist region is characterized by a ”fill and spill”
runoff generation mechanism, wherein water flows along or within
the bedrock comprise the dominant runoff process. On the other hand,
in the Marl regions, saturated areas and preferential flow paths within
macrospores and soil crack dominate how water is distributed.

Differences between the runoff regimes are highlighted in Fig. 4.2 for
a series of rainfall-runoff events in the winter, summer, and autumn of
2012 and 2013. The runoff response in the Marl catchments is rather
rapid and more peaked (but with less volume) than in the Schist
catchments (Loritz et al., 2017). It is noteworthy that although all of
the Marl catchments are of different size, they exhibit very similar
patterns of runoff generation. On the other hand, the behaviours
of the Schist catchments are quite different from each other, with
Platen producing (over the long term) ∼ 30 % less discharge than the
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other two. A possible explanation for this is that around 30 % of the
Platen catchment belongs to a sandstone formation that tends to be
less responsive with regards to runoff and has deeper groundwater
stores (Bos et al., 1996). Despite these differences, and in spite of the
fact that their sizes differ by a factor of 10, the Schist catchments
exhibit surprisingly similar runoff responses (with Spearman rank
correlations above 0.9). This is highlighted by the characteristic double
peaked nature of the runoff events in all three Schist catchments
during the winter (Martı́nez-Carreras et al., 2016).

To summarize, the two geological formations share rather simi-
lar hydro-climatic regimes, but differ significantly with respect to
dominant runoff processes and hence how they transform rainfall to
runoff. We should therefore expect that any catchment similarity index,
developed for the purpose of identifying and explaining differences
in hydrological functioning (in terms of runoff generation), should
be able to clearly distinguish these two geological areas from each
other. It is important to note that we picked this set of catchments
on purpose, because the climatic differences between the catchments
are rather small and the corresponding catchments share a rather
clear geological setting. This was possible due to the fact that the
Attert catchment and sub-basins were setup for research purposes
rather than for management reasons. Larger data sets with catchments
fulfilling the conditions of comparable climatic and geological settings
are rare, making the definition of functional similarity challenging
in catchment comparative studies as well as our assumption that the
pedo-geological setting does not change significantly along the flow
path.

4.3.2 Spatial analysis and the stream network

For our topographic analyses we used a 5 m LIDAR digital elevation
model, aggregated and smoothed to 10 m resolution. All spatial anal-
ysis were conducted using GRASS GIS (Neteler et al., 2012) and the
GRASS GIS extension r.stream* (Jasiewicz and Metz, 2011). The latter
was used to derive the distance-to-the-river and elevation-to-the-river
(HAND) maps, used as the spatial basis for all subsequent analyses.
Because the calculation of these maps is very sensitive to the extension
and shape of the river network it is important to derive the stream net-
work with care; for this analysis we used the stream network created
by Loritz et al. (2018), by separately varying the minimum contribut-
ing area thresholds, depending on the geological setting, to match
the official stream network available from the Luxembourg Institute
of Technology (LIST). In addition, the stream network was evaluated
against orthophotos and manually adjusted in close collaboration with
field hydrologists working in the Attert region.
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Figure 4.1: Map of the Attert basin with the six selected headwater catch-
ments. In the northern part of the Attert catchment the three
schist dominated catchments (blue: Platen, Colpach, Weierbach)
are highlighted and in the southern part, the three marl domi-
nated catchments (green: Schwebich, Niederpallen, Wollefsbach).

Figure 4.2: Observed specific discharge and precipitation with different ordi-
nate scales for a time period in summer 2012 autumn 2012 and
winter 2013 in the six catchments (orange: marl catchments and
blue schist catchments.). This figure highlights that the two geo-
logical formations have a distinctly different hydrological function
with respect to how they transform rainfall to runoff throughout
the year.
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4.4 results

Fig. 4.3 displays the frequency distributions and corresponding cumu-
lative density functions of TWI, ln(HAND) and rDUNE for the six
catchments examined in this study. In general, the TWI distributions
do not indicate strong differences between the two geologies. For all
six catchments, the distributions tend to be approximately Gaussian,
with mean values close to 8 (see also Table 4.1). Visually, only the
Platen and Colpach differ slightly from the other catchments, with
distributions shifted somewhat to the left (lower means). That these
six TWI distributions are indeed rather similar is also indicated by the
JSD (Fig. 4.4), the values of which are all rather small indicating low
divergence between the distributions. This similarity of the TWI dis-
tributions in spite of geological differences may, on first glance seem
somewhat surprising given that the Schist catchments are generally
much steeper than the Marl ones. However, in the Marl regions the
water flow along the surface tends to be much less convergent, and
consequently the flow accumulations tend to be lower than in the
Schist regions.

The corresponding comparison of the ln(HAND) distributions indi-
cates a greater degree of divergence between the two runoff regimes.
In particular, the Platen and the Colpach catchments (both in the
Schist region) differ from the other catchments with ln(HAND). This
visual impression is reinforced by the average values of ln(HAND)
(Tab. 4.1), with both the Colpach and the Platen catchments exhibiting
similar average values close to 3 (ln(m)). In general, however, the
index does not indicate a very distinct separation between the two
geologies, and does not clearly distinguish between the Weierbach
(Schist) and Niederpallen (Marl) catchments. The JSD values further
reinforce the fact that the differences between the distributions tend
to be quite small. For instance, the Platen (Schist) and Schwebich
(Marl) catchments have very small JSD values (∼ 0.042), while the
Wollefsbach catchment that is within the same geological formation
(Marl) as the Schwebich has a JSD value of 0.11.

In contrast, the rDUNE distributions reveal a rather different picture.
Visually, the rDUNE index clearly distinguishes between the two
geologies. In particular, the shapes of the cumulative density functions
indicate that the Marl catchments tend to have lower rDUNE values
than the Schist catchments. The mean values of the rDUNE distribu-
tions (Tab. 4.1) are around 1.94 - 2.18 for the Schist catchments, and
around 2.9-3.5 for the Marl catchments. Meanwhile, the JSD between
all three Schist catchments are below 0.1, while being as large as 0.49

when computed against the Marl catchments.
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Figure 4.3: Frequency distributions and cumulative density functions of the
TWI, ln(HAND) and rDUNE for the six research catchments. In
blue the schist catchments (Platen ,Colpach, Weierbach) and in
green the marl catchments (Schwebich, Niederpallen, Wollefs-
bach).

Table 4.1: Average (∅) and standard deviation (std) of the TWI, ln(HAND)
and the rDUNE for each experimental catchment.

∅TWI+std ∅ ln(HAND)+std ∅ rDUNE+std

[-] [ln(m)] [-]

Schist

Platen 7.77±1.9 3.03±0.9 2.18±0.5

Colpach 7.54±1.9 3.21±0.9 1.94±0.6

Weierbach 8.05±1.6 2.85±0.7 2.17±0.6

Marl

Niederpallen 8.3±2 2.77±0.8 2.93±0.7

Schwebich 8.1±1.9 2.88±1.0 2.9±0.7

Wollefsbach 8.67±1.8 2.66±0.6 3.52±0.6
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Figure 4.4: JSD values for the six research catchments (Schist: Platen (pla),
Colpach (col), Weierbach (wei); Marl: Niederpallen (nie), Schwe-
bich (sch), Wollefsbach (wol)). Panel a JSD of the TWI, b of the
ln(HAND) and c of the DUNE. A high JSD value indicates a high
divergence between the distributions with a maximum of 1.

4.5 discussion

4.5.1 Potential energy differences as the driver for runoff generation

The reduced dissipation per unit length index (rDUNE) is a straight-
forward energy based enhancement of the frequently used HAND
approach (Rennó et al., 2008). The small, but significant, difference
is that rDUNE is computed by dividing HAND by the flow path.
This is motivated by the fact that almost all of the potential energy
is dissipated within the runoff generation process. Though this ex-
tension might seem incremental, rDUNE thereby accounts for both
the driving potential energy difference and the dissipative energy
losses associated with the production of runoff. The latter is likely
of particular importance when examining environments having a
distinct topography where runoff generation is not limited by the
available potential energy but by dissipation, and therefore facilitating
preferential flow structures dominate surface and subsurface runoff
generation. Accordingly, rDUNE should help to improve the classifica-
tion of catchments into functionally similar spatial units, particularly
for headwater catchments having moderate to steep topographies
(Montgomery and Dietrich, 1988).

The first indication that rDUNE is indeed a useful addition to
the variety of available topographic indices in Hydrology is high-
lighted by our results which show that rDUNE distributions stronger
discriminate catchments with two distinctly different runoff regimes
as it is the case using HAND or the TWI (Fig. 4.4). Furthermore, the
fact that rDUNE values are on average higher in the marl region
compared to schist catchments is physical reasonable considering
the circumstances that soil cracks and worm burrows (in general
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preferential flow e.g. Loritz et al., 2017) play an important role in
the way how the catchments transform potential energy in kinetic
energy. This is the case as these structures reduce the dissipation of
energy along the flow path and higher rDUNE values are expected in
landscapes in which the dominant runoff process are characterized by
flow through preferential flow path.

Despite these first promising results a full analysis of rDUNE and its
sensitivity to different DEMs resolutions, flow direction algorithms as
well as terrain smoothing functions is needed, as it has been shown in
detail for the TWI and HAND by Gharari et al. (2011). However, as
rDUNE is rather an extension and an energy-centered re-interpretation
of HAND we would expect that the findings from Gharari et al. (2011)
about the meaningful range of raster resolutions can be, at least partly,
transferred to rDUNE. Exactly this relationship between HAND and
rDUNE is hence rather a strength as a weakness and it would be an
interesting avenue to test how and if the landscape classifications
and model results of Gao et al. (2014) and Gao et al. (2019) change if
HAND is replace by rDUNE.

Additionally, we speculate that our energy-centered re-interpretation
of HAND may, besides improving its theoretical underpinning, further
open the possibility to dynamically classify landscapes over time. This
is because the incoming potential energy and the energy-centered
foundation of rDUNE (Eq. 5 (J m−3)) can be instead calculated with a
mass flux rather than with a total mass, for instance using an hourly
precipitation time series. As discussed in Loritz et al. (2018) this
kind of dynamic classification may provide the key to successfully
partitioning a catchment into similar functioning landscape entities,
as hydrological systems move from complex to organized states. As a
consequence, rDUNE in its current time invariant form will always be
limited to identifying hydrological similar landscape units.

4.5.2 Sensitivity to drainage density

The fact that the rDUNE frequency distributions varied across the two
geologies is clearly due to the fact that different accumulation values
were used to derive the channel network in the different geologies.
Changing the accumulation threshold means that water will start to
flow sooner or later at the surface and hence that the flow length and
the elevation to the nearest drainage will increase or decrease. The
origination point of the channel network is thereby controlled by a
variety of structural and climatic controls, and often varies depending
on the prevailing season Montgomery and Dietrich (1992). However,
varying the accumulation threshold within a reasonable range mainly
changes the flow length in headwater catchments, and the flow length
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and elevations along the main river (where we are rather certain about
the position of the channel network) will not change dramatically.

Another point, more specific to our tested geological formations,
is that flow directions are more parallel in the Marl regions as a
result of the smoother topography. Therefore, water will start to flow
later at the surface within the stream network even if we choose the
same flow accumulation threshold in both geologies. This can, of
course, depends on the chosen flow direction algorithm (Seibert and
McGlynn, 2007). Nevertheless, the fact that the accumulation area
needed to form a channel is, in general, larger in the Marl region
where slopes are more gentle compared to the Schist regions, matches
the observation by Montgomery and Dietrich (1988) that there is a
strong inverse relationship between the average length of a hillslope
and its slope.

Finally, leaving aside the technical details of extracting a river network
based on a DEM and the uncertainties that go along with such an
approach, we note that the stream network we use in this study was
carefully extracted based on an official stream network, and on several
visits to the area, and was checked using orthophotos. This means
that we are confident that we have correctly captured the overall
picture of the perennial channel network, even if we are not able to
examine every location where water under typical conditions begins
to form a channel. The fact that the drainage densities of a catchment
provide important information about the hydrological functioning of
a landscape has been shown by several studies (e.g. Mutzner et al.,
2016). This is because the extension of the stream network reflects the
interplay of the climatic forcing and the hydro-pedological setting
of a landscape and therefore the interaction of the driving poten-
tial of runoff generation and the resistance which works against it.
This observation was previously made by Montgomery and Dietrich
(1988), who postulated that it is logical to use the information stored
within the extension of a channel network and the average hillslope
length and height (slope) for developing models that try to explain
hydrological similarity based on the topography.

4.5.3 Topographic similarity and hydrological similarity

Our comparison of TWI, ln(HAND) and rDUNE indicates that
the rDUNE is more able to detecting differences between the two
runoff regimes tested here. However, there exist a variety of other
topography-based indices in use which we do not test in this study,
ranging from simple comparison of the mean slopes of a catchment
to approaches based on assumptions that are rather similar to those
made in this study. A prominent example is the work of McGuire
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et al. (2005) who used the median flow path length (L), the median
flow path gradient to the river (G) and the ratio of both (among other
variables) to analyze how much of the inter-catchment variability of
residence times of tracers can be explained by geomorphic properties.
They found that the ratio of the flow path and the slope was superior
to other variables in explaining hydrological dynamics. McGuire
et al. (2005) stated that ”. . . the correlation of residence time with L/G
is significantly better than the correlation of residence time with flow path
length (L) or flow path gradient (G) individually. This suggests that both
factors are important controls on residence time.”

Interestingly, Harman et al. (2009) gave exactly this index, under
a different name, a theoretical basis when they derived the Boussinesq
equation within their hillslope similarity study. It is remarkable that
their topographic index (L/G) is rather similar to the rDUNE or the
tan β index (Hjerdt et al., 2004), although they use the median of the
local slopes as proxy for the driving potential instead of the potential
energy and further altered the ratio by dividing the flow path length
by the gradient and not vice versa. The similarity between the three
indices is, however, still evident as both include a surrogate for the
driver of a flux and a surrogate for the friction term working against it.

In this context it is interesting to note that also the system prop-
erties represented in our governing equations are rarely independent
but rather act in conjunction (Bárdossy, 2007). Because most similarity
indices are derived upon those governing equations, we can find the
aforementioned pattern in many other successful hydrological indices.
For instance, also the TWI combines the driving potential (local slope)
with an estimate of the conductivity of a given area (in the form of the
upslope accumulation area). These assumptions might be appropriate
for northern England (where TWI originally was developed) and
may also work in many other environments, but will likely fail if the
driver or the resistance term are not appropriately estimated. This
highlights the fact that the concept of combining system properties
driving a flow with properties that hamper flow might indeed be one
meaningful way to link the hydrological functioning of a system with
its architecture (Zehe et al., 2014). As the physical foundation for this
perspective is based on thermodynamics it might be an advantage to
routinely consider runoff generation not exclusively as a mass flux but
as an energy driven and dissipative process, as this perspective may
help us to better generalize our findings and identify the limitations
of our concepts and models.
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4.6 conclusion

The dissipation per unit length index developed here is an energy-
centered re-interpretation of the HAND index. Its use enabled us to
use DEM data to detect differences between two sets of catchments
having distinctly different dominant runoff processes and, in this
regard exhibited superior performance to the TWI and HAND ap-
proaches. Our results indicate that a promising way to link system
architectures with their functioning is to identify system properties in
such a way that we can account separately for both the drivers of a
flux and the properties that act to resist it.

The general idea behind this study is thereby the observation that the
majority of the incoming potential energy associated with water flow
within a hillslope is dissipated and only a fraction of it reaches the
stream network as kinetic energy. This highlights the important role
energy dissipation plays when rainfall is transformed to runoff within
a catchment. Establishing a proxy for the structures that control energy
dissipation is thus the key to functionally classifying environments
that are not limited by the available potential energy and therefore
have distinct topographies. Finally, by taking an energy-centered
perspective on runoff generation, we can begin to address the question
of why landscapes evolve in such a way that most of the potential
energy is dissipated at the hillslope scale, although it is frequently
reported that energy dissipation is minimized within river networks
(Kleidon et al., 2013; Rinaldo et al., 1992; Rodrı́guez-Iturbe et al., 1992;
Zehe et al., 2010).





Part V

S U M M A RY A N D S Y N T H E S I S

In following chapter, I condense the key findings and re-
sults I obtained in this thesis. Furthermore I propose oppor-
tunities for further research and discuss the key findings
and their general relevance for hydrological modeling.
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S U M M A RY A N D S Y N T H E S I S

5.1 summary of the key findings

A large body of the hydrological research has well documented the
role heterogeneity and process complexity play when the connection
between hydrological function and structure is examined (McDonnell
et al., 2007). A frequent finding is that particularly at the catchment
scale it is challenging to distinguish between idiosyncratic and relevant
system details (e.g. Sivapalan et al., 2003). This lack of fundamental The ungauged basins

problem.system understanding and hence our inability to identify dominant
hydrological system properties explain at least partly why the majority
of available hydrological models need to be calibrated to produce
meaningful results. This is, however, by no means a new observation
and was already realized around 20 years ago when the hydrological
community recognized that they were to a large extent unable to make
reliable predictions in ungauged basins (e.g. Hrachowitz et al., 2013;
Sivapalan et al., 2003). The issue of making predictions in ungauged
basins is, although recognized two decades ago, still at the heart of
hydrological research and with a ongoing climate change maybe more
relevant than ever.

One reason – among others – which partly explain the slow progress
made in simulating hydrological fluxes and states in ungauged basins
is owned by the fact that, even today, a large number of hydrological Lack of theory

explains partly why
predictions in
ungauged basins is
still a challenge.

models remain essentially engineering concepts built upon strong
physical simplifications and empiricism (Kirchner, 2006). While these
concepts proved to be suitable tools for stationary hydrological pre-
dictions, for instance to design flood protection facilities, they are
largely inappropriate to explore the influences of changing boundary
conditions on hydrological systems or to simulate land-use changes as
they are fundamentally built upon a stationary system understanding.
A long-standing vision, since the work of Dooge (1986), is hence to
improve the theoretical underpinning of hydrological models and to
derive new hydrological laws and theory particular for the catchment
scale (Clark et al., 2016; Kirchner, 2006; Sivapalan, 2003; Zehe et al.,
2014).

My thesis is framed by this search for an improved theoretical
underpinning of hydrological models with an emphasis on meso-scale
catchments. In all chapters I discuss my research from a practical
but also from a theoretical point of view with the objective that the

109
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findings can be generalized beyond the studied research environments.Catchments are
systems of organized

complexity.
My arguments are thereby largely drawn from information theory and
thermodynamics, and both serve as a general scientific framework and
language in this thesis. In the following sections 5.1.1-5.1.3 I briefly
summarize the key findings of this thesis and discuss their general
implication for hydrology with a focus on hydrological modeling.

5.1.1 Part II: Picturing and modelling catchments by representative hill-
slopes

In my first study I design, implement and test a hydrological modeling
concept - representative hillslopes - for meso-scale catchments. This
concept is particularly interesting for catchments in which more infor-
mation about the system is available than the classical hydrological
rainfall-runoff data sets. As the amount of available and relevant data
in hydrology is constantly increasing it seems fair to assume that this
modeling approach will be increasingly possible in many regions
around the world in the future.

The results of chapter 2 highlight that it is not necessary to mapThe role of
point-scale soil water

retention properties
for hydrological

modeling.

the entire heterogeneity of the observed soil water retention properties
(Jackisch, 2015) into a hydrological model if the goal is to simulate
macroscopic fluxes and state variables like streamflow or storage
dynamics of a catchment. This finding is in line with the frequently
shown result that rather simple mathematical models with less than
four parameters are able to sufficiently reproduce the hydrograph of a
catchment (e.g. Jakeman and Hornberger, 1993).

A similar relationship applies to the observed diversity and den-
sity of the macropore network in the two study areas. I found that
model parameters related to the number and location of macroporesMacropores and their

influence on
catchment-wide

water balance
simulations.

are fairly insensitive with respect to streamflow simulations as long as
they are varied in a reasonable range. Contrastingly, perturbations in
the topology of the preferential flow network significantly reduced
the predictive performance of the models. Information about the exact
location and number of preferential flow paths are hence only of
minor importance if the goal is to make predictions on the catchment
scale as long as the focus is on the water balance and not for instance
on solute transport (Klaus and Zehe, 2011; Wienhöfer and Zehe, 2014).
This should, however, not be misinterpreted in a way that preferential
flow paths are unimportant, as model realizations without preferential
flow network performed clearly worse than model realizations with
perturbed networks. This model comparison shows that it is the infor-
mation about the general occurrence as well as relative importance of
macropores in a landscape which is relevant for a catchment modeler.
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Apart from the relevance of macropores and soil water retention
properties, storage volume of the bedrock as well as bud break of the
dormant trees were key for successful simulations at the catchment
scale. In both cases I used measurements rarely used in hydrolog- The role of bedrock

topography and
leaves sprout for
catchment-wide
water-balance
simulations.

ical modeling, more specifically sap flow velocities and electrical
resistivity tomography, to extract information about the dynamics
of the vegetation and the bedrock topography. This highlights an
advantage of the mixed top-down bottom-up model structure of
representative hillslopes as the implementation and validation of these
new measurements was straightforward.

The key findings of chapter 2 highlight that representative hillslopes
are indeed a promising concept which needs to be further investigated
in the future. While there are surely several limitations stemming from
the chosen hydrological model or from the fact that representative
hillslopes are necessarily spatially aggregated, it was shown that a
single 2d bottom-up model can be used to represent an entire meso-
scale catchment. The merits of such an approach are that it provides a The concept of

representative
hillslopes.

possibility to merge the plot scale with the catchment scale and that it
reflects the most elementary simplification of a hydrological model
in which the distribution of potential energy along the flow path of
a hilly landscape can be preserved. The derivation of representative
relationships, as done for the representative soil water retention
properties or the representative surface topography, is thereby the key
for any successful modeling with a representative hillslope (see also
Zehe et al., 2018).

5.1.2 Part III: The dynamic nature of hydrological similarity

Hydrology has always been and still is a data scarce science (e.g.
Beven, 2001). Most catchments around the world are ungauged and
trustworthy information about the climatic forcing are rare. However,
as already stated in section 5.1.1 this is changing slowly and the
volume as well as frequency in which data is collected is constantly
increasing. While this offers new and exciting opportunities for hydro- More information

about the
environmental
system is available
than ever before.

logical modeling -e.g. the concept of representative hillslopes- it also
involves a series of new challenges, for example how to decide which
of the information about the system under study is actually relevant
for the targeted modeling purpose. In a few places around the world -
mostly research catchments- this is already an issue and the amount
but also the type of available data exceeds the capacity and flexibility
of most hydrological models. If we want to use these data sources to
improve and better constrain hydrological models we need to develop
approaches and identify flexible model structures which are able to
extract the relevant details about the system from these data sets. The
second study (chapter 3) focuses on this quest.



112 summary and synthesis

The results of chapter 3 highlight that in our chosen research en-
vironment on average not more than six hillslope models are needed
to produce essentially the same streamflow simulations as if 105

models were used. This strong reduction demonstrates that we are
often overly optimistic about the sensitivity of our distributed models
and how topographic differences and other landscape properties
influence our simulations.

The results show also that the identified number of six hillslopes is
only a time average and that this number can vary between one and
30 in a hydrological year. This finding is somewhat counterintuitive
at first glance as the 105 hillslope models differ only with respect to
time-invariant topographic parameters, however, can be explained
by the fact that the required amount of topographic information
depends on the current state of a landscape element as well as on the
dominant hydrological processes related to this state. For instance, after aThe dynamic nature

of hydrological
similarity.

convective rainfall event surface runoff might occur as a result of an
exceeded infiltration capacity. This process is highly sensitive to the
surface topography, the prevailing land-use and to the soil infiltrability.
However, if time passed, a fraction of the rainfall might infiltrate and
very different landscape controls such as the subsurface topography
or the hydraulic conductivity will dominate runoff formation. Two
hillslope models with different shapes can therefore behave similarly
in certain conditions and differently in others. This means that the
concept of hydrologically similarity cannot be time-invariant and that
we need to identify hydrologically similar areas in a time-dependent
manner. This means however also that in order to properly represent
natural systems, hydrology models should also be able to account
for this time-dependent similarity and adaptively adjust their model
structure to be as complex as necessary but as parsimonious as possi-
ble (Savenije, 2010; Zehe et al., 2014).

The concept of analyzing model structures by means of data compres-
sion is a promising approach which was by no means fully exploitedData compression as

tool to test the
sensitivity of a

distributed model to
different data sources.

in this study. Especially the results of the compressed catchment
model which consists of six instead of 105 hillslopes is encouraging
although it is until now still a time-invariant concept. Especially the
general approach to identify functional similar model elements by
stepwise adding different sources of variability to a hydrological
model and then analyzing the simulations by means of the Shannon
entropy seems like an promising avenue to test the sensitivity of
distributed hydrological models to different data sources. The results
presented in chapter 3 have in general a large potential for further
research which ranges from the identification of optimal measurement
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networks to model sensitivity approaches and finally to spatially
adaptive modeling strategies (see also section 5.2.1).

5.1.3 Part IV: A topographic index explaining hydrological similarity by
accounting for the joint controls of runoff formation

The third study in this thesis explores how straight-forward energy-
centered arguments can be used to develop a topographic index
(reduced Dissipation per unit length; rDUNE) to identify hydro-
logically similar landscape units in a forward mode (Seibert et al.,
2017). The index is thereby an energy-centered re-interpretation and rDUNE a

energy-centered
re-interpretation of
HAND.

enhancement of the widely and successfully applied ”Height Above the
Nearest Drainage” index (HAND; Rennó et al., 2008) and based on the
observation that most of the potential energy of water in a catchment
is dissipated when rainfall becomes runoff.

Our results show that rDUNE is capable to group catchments based on
their surface topography into similar functional groups with respect
to their runoff transformation. The performance of rDUNE proved Performance of

rDUNE compared to
the TWI and
HAND.

thereby to be superior to a grouping based on the TWI or HAND.
The results and discussion demonstrate that one meaningful way to
derive similarity indices in hydrology is to capture both the driver and
resistance term of a flux individually as proposed by Zehe et al. (2014).
Furthermore, this study underpins that the extension and density
of the channel networks as well as the average hillslope length are
important factors for the classification of catchments as both variables
store important information about the dissipation of potential energy
when rainfall is transformed to runoff.

From a methodological point of view, this study shows once more
that information theoretic measures, in this case the Jensen-Shannon
divergence, are suitable tools to tackle a diversity of hydrological
research problems. Furthermore, the energy-centered foundation
of rDUNE opens up the possibly of a time-invariant grouping of
hydrologically similar landscape units if rDUNE is calculated with a
time series of precipitation. As highlighted in chapter 3 this could be
the key to identify functionally similar units and to build spatially
adaptive models. A promising way forward would hence be to test The role of energy

dissipation for runoff
generation.

if rDUNE can be used to identify the six functional groups found
in chapter 3 directly on the underlying topographic map. Finally,
does the discussion about the role of energy dissipation in runoff
generation open the research question if catchments have evolve in
such a way that energy dissipation is maximized at the hillslope scale
and minimize in the channel network and how this fact could be used
to improve the way we do hydrological modeling.
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5.2 outlook

Following, I propose opportunities for future research which emerge
from the key findings in chapters 2 - 4. More specifically, in subsec-
tion 5.2.1 I discuss the necessity of building spatially adaptive models
in hydrology and discuss the merits of looking at the concept of land-
scape organization with a thermodynamic focus in subsection 5.2.2.

5.2.1 The necessity of spatially adaptive models in the earth sciences

A ”optimal” model represents a system in a manner that it balances
necessary complexity with greatest possible parsimony (Savenije, 2010;
Zehe et al., 2014). This means that no detail of a ”optimal” model canPerfection is

achieved, not when
there is nothing more

to add, but when
there is nothing left
to be taken away. —

Antoine de Saint-Exupéry

be taken away without losing relevant information in the simulations
and no compartment can be added without producing redundancy
in the simulations (Loritz et al., 2018). Simulations of a model are
thereby only as reliable as adequately it represents the system under
study (Dooge, 1973). As shown in chapter 3 catchments move from
rather simple to complex states in time and space, a condition of a
”optimal” model is hence that it is able to adapt its internal structure
to this change in a flexible way (Savenije, 2009). This rather theoretical
perspective on model complexity shows that we need adaptive, (flexi-
ble) model approaches in Hydrology if we want to built models which
balance complexity with parsimony. This has besides the theoretical
merits also practical advantages.

Practical reasons why adaptive models are needed in hydrology

A series of flash floods in south-west Germany (e.g. (Bronstert et
al., 2017)) have highlighted the limitations of classical engineering
concepts (e.g. unit hydrograph) with regard to predicting runoff
responses resulting from high-intensity rainfalls. Especially whenThe growing

importance of
intensity controlled

processes in
hydrology.

these high-intensity rainfall events are combined with dry soils, long-
term rainfall-runoff relationships - the fundament of most empirical
approaches in hydrology - do not represent the runoff formation of a
catchment adequately. It is hence a long standing vision in hydrology
to complement the empirical approaches used in operational flood
forecasting with more physically-based approaches to improve our
overall ability to predict the occurrence and magnitude of hydrological
extremes.

In this regard, fully distributed bottom-up models like HydroGeo-
Sphere (Brunner and Simmons, 2012) or MIKESHE (Refsgaard and
Storm, 1995) are surely promising tools as they represent hydrolog-
ical processes in a landscape in a state-of-the-art manner and are
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continuously refined and tested by a large community. However,
bottom-up models are rarely used in operational forecasts as they
are difficult to parameterize and rely on large amount of detailed
spatial and temporal information about a landscape. Additionally,
they demand large computational resources if applied to the scale of a
catchment (>1 km2). As already stated in chapter 3, data availability is
slowly increasing, however, the high computation times for bottom-up
models remain because the possibilities how fast we can calculate
and parallelize certain numerical schemes are limited (Moore’s law). Computational

limitation of
bottom-up models.

For instance, Hopp and McDonnell (2009) used the state-of-the-art
software package ”HYDRUS 3D” (Šimůnek et al., 2016) and reported
that they had computational simulation times ranging between 10

min up to 11 hrs when they simulated water fluxes and states at
the Panola hillslope (area= 0.001250 km2 (25 m x 50 m); maximal soil
depths = 4 m; simulation time = 290 hrs.). As stated in the introduction,
operational catchments usually range from 10 to 250 km2. Applying
bottom-up models in operational forecast, without violating the un-
derlying physical foundation (Or et al., 2015), would hence result in a
drastic increase of the simulation times, virtually preventing forward
simulations.

Recalling the findings of chapter 3 that only during a few short
time periods during the year a higher spatial model complexity
led to better simulations – as opposed to high redundancy in the
other periods - we see that most of the time there is no need for a
fully-distributed model to describe fluxes and state variables of a
mesoscale catchments. This changes only as soon as we shift our
attention to specific events where spatially explicit representation of
the precipitation field and a distributed hydrological model are of
considerable importance (Reid et al., 2005).

Following up on these findings it seems logical to use distributed
rainfall and distributed hydrological models only in specific events
when the length scale of the rainfall or of a specific geological control
like the topography is indeed relevant. However, simply switching Uncertainties about

the initial conditions
make simulations on
the event scale
challenging.

to the event scale is not a solution either as it is very difficult to
approximate the initial conditions before an event given the degrees of
freedom fully distributed models offer (e.g. Zehe et al., 2005). This is
of considerable importance because particularly flash floods are highly
sensitive to the actual state of the system such as current land-use
management or the appearance of soil cracks.

Adaptive modeling approaches are a way around this issue as
they provide continuous hydrological simulations with higher model
complexity and hence higher computational times only at time steps
when they are actually needed. At least in theory building adaptive
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models is straightforward as there are only three main controls which
influence the spatial complexity of a hydrological landscape.
First, it is necessary to identify hydrological similar landscape units
with respect to the hydrological processes which are dominant during
different states. For instance, if surface runoff under high intensityIdentifying

hydrological
similarity with

respect to the
dominant processes.

rainfall is the main reason we need to distribute our model in space,
we also should distribute our model based on hydrological units
which reflect important controls of the surface runoff like the topog-
raphy or the land-use. The first issue we need to address before we
setup a adaptive model is hence: Which processes dominate times of high
computational needs and how can we identify corresponding hydrologically
landscape units? This question could be answered with an approach
similar to the one presented in chapter 3.

Second, and maybe most obvious, the spatial structure of the forcing,
for instance the precipitation field over a catchment, determines if a
distributed hydrological model is needed or not. Simply speaking,Spatial structure of

the climatic forcing. if the forcing over a catchment is spatially homogeneous and the
different landscape units within the catchment are in a similar state
and share a comparable structure, there is no reason to assume that a
landscape will react differently. It is only when the spatial structure of
the forcing reaches a certain diversity it will cause diverse hydrological
responses. This leaves us with the second issue we need to address
if we want to build adaptive hydrological models: When is the spatial
variation of the climatic forcing large enough that it needs to be considered in
hydrological simulations?

The third control deals with the question how fast gradients which
drive runoff generation get dissipated. For instance, two structurallyHydrological

memory of a
landscape.

similar hillslopes in a different state will react differently if they
receive the same precipitation forcing. However, larger gradients
get dissipated faster than smaller gradients in structurally similar
systems, hence the two hillslopes will return to a similar state after a
certain often surprisingly short period. The duration of this period
is related to how fast the internal gradients which drive water flow
of the hillslopes are dissipated. If we translate this finding to the
model world we can assume that after an average dissipation time two
structurally similar landscape elements which were forced differently
can again be treated as one model element. Consequently, the second
issue we need to address when building an adaptive hydrological
model is: How long do structurally similar landscape elements memorize a
contrasting forcing in their distributed states and gradients?

To summarize, building spatially adaptive hydrological modelsAdaptive models - a
way forward.
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means to i.) identify potentially hydrologically similar areas in a
landscape, ii.) identify thresholds when differences in the climatic
forcing matter and iii.) derive relationships which connect the dissipa-
tion of gradients with an average system memory to infer when two
landscape units behave similarly again. All three issues are beyond
the scope of this thesis. However, the methods and concepts taken
from thermodynamics and information theory I use in my analyses
are a suitable framework to build adaptive hydrological models.

5.2.2 Maximum energy dissipation at the hillslope scale vs. minimum
energy dissipation in the channel network

The majority of the potential energy is dissipated along the flow path
when rainfall is transformed to runoff (chapter 4). As this phenomenon
has been observed in a wide range of catchments around the world
(flow velocities rarely exceed 1 m s−1 despite quite large topographic
differences; e.g. Leopold and Maddock, 1953), it opens room for
speculations, and one might wonder if catchments have evolved to
a state where energy dissipation at the hillslope is maximized. The
latter contradicts however somewhat with the observation that energy
dissipation in preferential flow networks such as rivers or macropores
is often found to be minimized (Kleidon et al., 2013; Rinaldo et al.,
1992; Rodrı́guez-Iturbe et al., 1992; Zehe et al., 2010). This discrepancy Free energy to

perform work. A
framework to
describe the
evolution of flow
structures in a
landscape?

between minimizing and maximizing energy dissipation, however,
only persist as long as we focus exclusively on energy dissipation
and can be resolved if the perspective is shifted to the fraction of free
energy which is available to perform work. In the following I will
shortly explain the underlying idea behind the concept of minimizing
work and will stress possibilities for further research.

The configuration of hydrological structures like channel networks or
hillslopes are often regarded as being in quasi-steady-state at least
if view on hydrological timescales (e.g. Langbein and Leopold, 1964;
Zehe et al., 2014). This does not mean that hydrological systems are in
any sense stationary but that catchments are organized in a manner
that times of significant change are linked to certain extremes in mass
and energy inputs.

The concept of a quasi-steady-state has been underpinned by a series
of studies founded on large data sets (e.g. Leopold and Maddock,
1953) which showed that rather simple mathematical, time-invariant,
empirical power laws can be used to extract drainage network densi-
ties (Howard, 1990), predict mean discharges in relation to average
channel slopes (Hack et al., 1957) or to identify discharges where
critical erosion of the river bed is to be expected (Pfeiffer et al., 2017).
The possibility to identify these simple mathematical relationships
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and link function and structure on long timescales gives rise to the
research question if catchments around the world have evolved to
a comparable state with respect to how they transfer, store and ex-
change energy and mass with their environment.The idea behind the
concept of landscape evolution should thereby not be mistaken with
an esoteric idea of a system wanting to be in a certain way but follows
a simple physical reasoning.

Hydrological systems have, despite the large diversity in their climatic
and geological setting, limited possibilities to adapt their internal
structure to incoming flows of energy and mass. This stems, onceLimited degree of

freedom to adapt to
change.

more, from the second law of thermodynamics which states in a some-
what abstract form that any flux is a ratio of a driving potential and
a resistance term working against this flux (explained in more detail
in chapter 4). To transfer this rather theoretical concept to landscape
evolution lets assume that we increase the total volume of the long-
term annual precipitation in a catchment. This means subsequently
that we also increase the potential energy differences driving runoff
generation in this catchment, simply because more mass at the same
potential means also more energy. If we assume further that on longer
timescales the larger potential energy differences do not result in an
increased export of kinetic energy we can expect that the additional
energy needs to be consumed within the system boundaries. This
is done by performing work on the catchment structure by i) either
changing the distribution of topographic potentials (reducing the
average hillslope height by erosion) or ii) by creating or extending
flow structures such as gullies or preferential flow network paths.
The newly created structures can thereby only persist if free energy
is continuously invested in their maintenance meaning that they on
one hand reduce friction but on the other hand also need a constant
investment of work to endure. Both processes, the reduction of the
topographic potential and the creation or rearrangement of new flow
structures have in common that eventually the additional added
amount of energy, through an increased annual rainfall, is again
consumed within the system borders.

To summarize, the assumption that hydrological systems have adapted
to a certain long-term climate forcing is not far-fetched as the amount
of work which is available to perform work is minimized when new
flow structures are created or when potentials are eroded (Langbein
and Leopold, 1964). A testimony of this line of thoughts is that at
least in humid regions we only observe significant modifications on
the catchment structure if we either alter the boundary conditions
(e.g. climate change) and thereby increase or decrease the average
energy input to a system or artificially alter dominant structures (e.g.
deforestation, agriculture) and thereby invest energy to move a system
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away from its local equilibrium.

Besides being an intellectually interesting and challenging concept
landscape organization has also practical implications for hydrology. Energy and work as

foundation of
extreme value
statistics in
hydrology.

For instance, if we assume that the structure of a landscape has
adapted to a certain long-term climatic forcing we should be able to
approximate a certain range of energy and mass input to the system
beyond which we will not expect large erosion events or discharge
outside the river bed. The idea of a local equilibrium could then be
used to underpin extreme value statistics in hydrology with a physical
theory instead of focusing exclusively on statistical properties of fitted
distribution functions. This would mean a general shift in perspective
as the focus would move to identifying of a local equilibrium state
first and only after this specify if an event can be considered extreme
and not vice versa.

5.3 synthesis

In the following section 5.3.1 I reviewing the connection between infor-
mation theory and thermodynamcis and explain why both scientific
frameworks together provide a set of tools and general mindset which
is perfectly suited to improve the theoretical underpinning of hy-
drological models (Clark et al., 2016), a major goal of this thesis. In
section 5.3.2, I finally conclude that information theory, thermodynam-
ics and classical hydrological modeling concepts together provide a
powerful combination of theoretical and practical approaches which
could serve as foundation to tackle the challenges hydrology is facing
in the 21

th century.

5.3.1 The relation between information and energy

A lot has been written about the question whether or not there is a
relationship between information theory and thermodynamics (e.g.
Ben-Naim, 2008; Jaynes, 1957; Koutsoyiannis, 2014; Shannon, 1948). The name entropy

was proposed by von
Neumann in a letter
to Claude Shannon.

This discussion is certainly caused by Claude Shannon naming his
measure of uncertainty ”entropy”, thereby borrowing a term typically
linked to thermodynamics. Although thermodynamic and information
entropy were introduced for very different reasons, the name entropy
was not chosen by coincidence.

It is the similarity of the mathematical formulas of the thermo-
dynamic (Gibbs entropy) and information entropy (both definitions differ
only by a constant factor meaning that they are perfectly linear dependent)
that led Shannon to name his metric entropy. The similarity is further
highlighted by the fact that originally the Gibbs entropy did not
contain the Boltzmann constant. This was added later by Planck and
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only then entailed the units J K−1.

However, the similarities between the two metrics go beyond theThe probabilistic
nature of entropy mathematical similarity as also the questions they were designed to

answer are akin to a certain extent. The Gibbs entropy is applied to
answer the question how probable a given microscopic state is on
average, given a certain observed macroscopic state. The Shannon
entropy describes how probable a given event will occur on average,
given an underlying probability distribution. In thermodynamics
the microstate is typically a probability of a certain kinetic energy
of a single molecule and the macrostate the observed temperature
distribution of a cylinder filled with a gas. In the information case
the microstate is for instance the probability of a given letter and
the macrostate the entire underlying probability distribution of all
letters in a chosen language. Both thermodynamic and information
entropy are therefore united by their probabilistic nature as they link
the likeliness of a microstate with a given macrostate and hence the
certainty of our knowledge about a given microstate given knowledge
about the macrostate of a system.

It is important to recall that the objective of this thesis is not to
pursue the ongoing discussion about whether or not information
theory is a child of thermodynamic reasoning but to examine how
we can improve hydrological predictions at the catchment scale. The
important point here is that the connection between information
theory and thermodynamics, established on purpose or not, gives us a
set of powerful tools, like the maximization of entropy (Jaynes, 1957),
to do statistical inference which can be straightforwardly linked to a
deeper physical understanding.

For example, to calculate information theoretic metrics using real-
world data it is often necessary to bin the data into similar groups,
thereby reducing precision, estimate probabilities and subsequently
work with discrete probability distributions. This process is frequently
criticized and interpreted as a weakness of information theory as the
choice of the bin width can strongly influence the outcome of an in-
vestigation. However, from a physical perspective a meaningful choice
of the bin width is rather an advantage than a weakness. It forces
the researcher to define the term similarity clearly and specific to the
research question before doing any statistical inference or modeling.
This means, for instance, that the point when a given model cannot
be further improved or two observations are indistinguishable needs
to be defined a priori. A clear definition of similarity – as opposed
to sharing residual model errors – is thereby the key to generalize
findings beyond the boundaries of a research environment.
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Another concept taken from information theory with a large po-
tential for hydrological research is the field of data compression. As
shown in chapter 3 the ideas and tools behind this concept can be
used to investigate questions related to model complexity or to the
optimal size of a measurement network by identifying and minimize
redundancy in data. The methods are thereby founded on an entire re- Data compression as

tool to identify
hydrological
similarity

search field called algorithmic information theory (Cover and Thomas,
2005) which includes interesting methodical approaches as well as
an underlying philosophy which has barely been explored in envi-
ronmental science (Weijs et al., 2013b). The key findings of chapter 3

highlight, however, the merits of further investigating in this direction
also because most environmental models are computer programs and
(algorithmic) information theory provides the natural framework to
analyze their structure and compare models in a sophisticated way.

Another advantage of information theory is that a large part of
the statistical concepts used today were developed in times where
no or little computer power was available and are thus often based
on simplifications which might seem unnecessary from today’s point
of view. Information theory, on the other hand, evolved hand in Information theory a

modern mindset to
do statistical
inference in the
computer age.

hand with the development of modern computers and many of the
typical simplifications and requirements for statistical methods (e.g.
normally distributed datasets) do not need to be fulfilled for informa-
tion theoretical analyses. Therefore, the approaches from information
theory are from a statistical point of view essentially assumption
free, apart from the choice of a bin width (e.g. Cover and Thomas,
2005). This means that it is unnecessary to assume a priori that a
data set follows a specific theoretical distribution and work with
statistical moments like the variance which are only meaningful if the
data is normally distributed. For instance, in chapter 4 I demonstrate
that the Jensen-Shannon divergence could be used to distinguish
visually dissimilar distributions without any assumptions besides the
chosen bin width. The latter is obviously only an advantage if the sam-
ple distribution underlying a data set can be estimated in a robust way.

Concepts like mutual information to identify non-linear correla-
tions between data sets, the Kullback-Leibler divergence to examine
for instance the performance of model ensembles (e.g. Weijs et al.,
2013a), or the ”distance to the maximum entropy” method to establish
a link between Bayesian inference and thermodynamic optimality
(Jaynes, 1957) are promising tools for different hydrological research
questions which highlight the potential of information theory.
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5.3.2 Hydrology beyond closing the mass balance

Catchment hydrology is - somewhat logically - a field of research with
a strong focus on the estimation of quantitative water amounts. This
emphasis on the water balance is already implicit to the characteristic
research unit, the catchments, a concept founded essentially on mass
conservation. It is hence not surprising that a large fraction of the
available hydrological catchment models are fundamentally based
on a closed water balance while other conservation laws like energy
conservation or momentum conservation are often neglected (together
with mass conservation the three build the foundation of describing fluid
flow). The issue with this procedure is that the amount of water stored
and released by a catchment alone is a weak proxy for the state of a
catchment. As long as we are hence focusing exclusively on the mass
balance we are unable to identify an equilibrium state which serves
as an attractor where all relevant driving potentials for water flow
are close to depletion. This means that fundamentally, a hydrological
system like a catchment can only be described exhaustively if both,
mass and energy, are considered equally (Zehe et al., 2018).

Many models and concepts in hydrology compensate their lack
of an appropriate physical system description by deriving empirical
relationships founded on long-term observations of hydrological
fluxes. It is the beauty but also the pitfall of modern hydrology that
finding these empirical relationships is somewhat straightforward
and often works surprisingly well. The stunning performance of these
mathematically simple models to mimic the hydrological function of
a diverse catchment explains, at least partly, the bias of hydrological
research towards statistical concepts like optimization and parameter
estimation. Patterns and processes we observe in hydrology are,
however, by no means a result of randomness but highly organized
and fitting models to data will always mean that we will have limited
success to predict future states under instationary conditions.

One way to eventually improve our ability to make predictions
at the catchment scale is hence to re-visit the theoretical foundation of
our models and statistical concepts (Clark et al., 2016; Dooge, 1986;
Kirchner, 2006; Sivapalan, 2003; Zehe et al., 2014). As catchments
belong to a category of systems referred to as ”organized complexity”
this avenue can only be successful if we combine theories which
improve the physical foundation of hydrology with theories helping us
to improve the way we do statistical inference.

In this thesis, I chose information theory and thermodynamics
and therefore the concept of information and energy as theoretical
foundations to conduct research. In combination with established
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hydrological concepts and models I was able to shed new light on
well-known hydrological research questions ranging from the identifi-
cation of hydrological similar landscape units to the development of
hydrological model concepts for the meso-scale. My results indicate
that the combination of information, energy and mass could serve as
a general scientific scheme for developing a hydrological theory for
the catchment scale. This theoretical foundation is one prerequisite if
we want to better manage the challenges hydrology is facing in the
21

th century and in general improve our ability to do predictions in
hydrology.
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a.1 appendix chapter ii

A 1.1: Subsurface structure and bedrock topography

Spatial subsurface information of representative hillslopes were ob-
tained from 2d ERT sections collected using a GeoTom (GeoLog) device
at seven profiles on two hillslopes in the Colpach catchment. We used
a Wenner configuration with electrode spacing of 0.5 m and 25 depth
levels: electrode positions were recorded at a sub-centimeter accuracy
using a total station providing 3d position information. Application of
a robust inversion scheme as implemented in Res2Dinv (Loke, 2003)
resulted in the two-layered subsurface resistivity model shown in
Fig. 2.6b. The upper 1-3 m are characterized by high resistivity values
larger than 1500 Ω m. This is underlain by a layer of generally lower
resistivity values smaller than 1500 Ω m. In line with the study of
Wrede et al. (2015) and in correspondence with the maximum depth of
the local auger profiles, we interpreted the transition from high to low
resistivity values to reflect the transition zone between bedrock and
unconsolidated soil. In consequence, we regard the 1500 Ω m isoline as
being representative for the soil-bedrock interface. For our modeling
study we have access to seven ERT profiles within the Colpach area
(example see Fig. 2.6b).

A 1.2: Soil hydraulic properties, infiltrability and dye staining experiments

Saturated hydraulic conductivity was determined with undisturbed
250 ml ring samples with the KSAT apparatus (UMS GmbH). The ap-
paratus records the falling head of the water supply through a highly
sensitive pressure transducer which is used to calculate the flux. The
soil water retention curve of the drying branch was measured with
the same samples in the HYPROP apparatus (UMS GmbH) and subse-
quently in the WP4C dew point hygrometer (Decagon Devices Inc.).
The HYPROP records total mass and matric head in two depths in
the sample over some days when it was exposed to free evaporation
(Jackisch, 2015; Peters and Durner, 2008 for further details). For both
geological settings we estimated a mean soil retention curve by group-
ing the observation points of all soil samples (62 and 25 for schist and
marl, respectively), and averaging them in steps of 0.05 pF. We then
fitted a van Genuchten-Mualem model using a maximum likelihood
method to these averaged values (Tab. 2.1 and Fig. 2.7). We used a
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representative soil water retention curve because the young soils on
periglacial slope deposits prevail in the both headwaters exhibit large
heterogeneity which cannot be grouped in a simple manner. This is
due to a) the general mismatch of the scale of 250 mL undisturbed
core samples with the relevant flow paths and b) the high content of
gravel and voids, which affect the retention curve especially above
field capacity and concerning its scaling with available pore space
(Jackisch, 2015; Jackisch et al., 2016). The dye tracer images, Fig. 2.2 b
and d, were obtained with high rainfall intensities of 50 mm in 1 h on
1 m2 and the sprinkling water was enriched with 4.0 g 1

−1 Brilliant
Blue dye tracer (Jackisch et al., 2016). The aim of these rainfall sim-
ulations was to visualize the macropore networks in the topsoil, to
gather information on the potential preferential flow paths relevant
for infiltration.

A 1.3: Physically-based model CATFLOW

The model CATFLOW has been successfully used and specified in
numerous studies (e.g. Wienhöfer and Zehe, 2014; Zehe et al., 2005,
2010). The basic modeling unit is a two-dimensional hillslope. The
hillslope profile is discretized by curvilinear orthogonal coordinates
in vertical and downslope directions; the third dimension is repre-
sented via a variable width of the slope perpendicular to the slope
line at each node. Soil water dynamics are simulated based on the
Richards equation in the pressure based form and numerically solved
using an implicit mass conservative ”Picard iteration” (Celia et al.,
1990). The model can simulate unsaturated and saturated subsurface
flow and hence has no separate groundwater routine. Soil hydraulic
functions after van Genuchten-Mualem are commonly used, though
several other parameterizations are possible. Overland flow is sim-
ulated using the diffusion wave approximation of the Saint-Venant
equation and explicit upstreaming. The hillslope module can simulate
infiltration excess runoff, saturation excess runoff, re-infiltration of
surface runoff, lateral water flow in the subsurface as well as return
flow. For catchment modeling several hillslopes can be interconnected
by a river network for collecting and routing their runoff contribu-
tions, i.e. surface runoff or subsurface flow leaving the hillslope, to
the catchment outlet. CATFLOW has no routine to simulate snow or
frozen soil.

A 1.3.1 Evaporation controls, root water uptake and vegetation phenology

Soil evaporation, plant transpiration and evaporation from the inter-
ception store is simulated based on the Penman–Monteith equation.
Soil moisture dependence of the soil albedo is also accounted for as
specified in Zehe and Flühler (2001). Annual cycles of plant pheno-
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Figure A.1: Soil moisture observations grouped by their landscape position.
(A) Soil moisture observations at the hillslope foot and hence
close to the river. (B) Soil moisture observations at the upper part
of the hillslope.

logical parameters, plant albedo and plant roughness are accounted
for in the form of tabulated data (Zehe and Flühler, 2001). Optionally,
the impact of local topography on wind speed and on radiation may
be considered, if respective data are available. The atmospheric resis-
tance is equal to wind speed in the boundary layer over the squared
friction velocity. The former depends on observed wind speed, plant
roughness and thus plant height. The friction velocity depends on
observed wind speed as well as atmospheric stability, which is rep-
resented through six stability classes depending on prevailing global
radiation, air temperature and humidity. The canopy resistance is the
product of leaf area index and leaf resistance, which in turn depends
on stomata and cuticular resistance. The stomata resistance varies
around a minimum value, which depends on the Julian day as well
as on air temperature, water availability in the root zone, the water
vapor saturation deficit and photosynthetic active radiation (Jarvis,
1976). The resulting root water uptake is accounted for as a sink in the
Richards equations term using a soil water dependent root extraction
function (Feddes et al., 1976), and is specified as a flux per volume,
which is extracted uniformly along the entire root depth.

A 1.4 Soil moisture observations

Fig. A.1 shows the soil moisture observations of the Colpach catchment
group by their position at the hillslope. This figure highlight, similar
to Fig. 2.7 for the soil water retention properties, that the small-scale
variability of the prevailing soils make a simple grouping by the
landscape position difficult.
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Figure A.2: Rating curve of the Colpach gauge. Green dots which were used
to estimate the rating curve, gray dots independent discharge
measurements.

a.2 appendix chapter iii

A 2.1: Uncertainty of the rating curve

For the gauge ”Colpach” the rating curve was given with:

Q = 10.59(h− 0.11)2.14 (A.1)

where Q is discharge (m3 s−1) and h is gauge level (m). It was
derived by ordinary least square fitting to 15 direct discharge measure-
ments (Fig. A.2 green dots). Using the rating curve for flood frequency
analyses would require a validation against an independent set of
direct discharge measurements (grey dots). In order to we use it as
proxy for the binning width to estimate the pdfs, we calculated its
overall uncertainty relative to the total set of direct discharge measure-
ments (green and grey dots) as RMSE with a value of 8.5 % (dashed
red line).

A 2.2: Uncertainty of the rating curve

In Fig. A.3 we illustrate the influence of different bin widths when cal-
culating the Shannon entropy of our discharge simulations as function
of time. We start as already described in section 3.3.1 with a discharge
value of 0.01 mm and then progressively increase the bin width by
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Figure A.3: Influence of the bin width.

factors ranging from 5 % to 15 % in 0.05 % steps. This graph highlights
that the absolute value of the Shannon entropy depends strongly on
the chosen binning size. However, more important for this study is that
the overall pattern of the Shannon entropy in time does not change
depending on the chosen bin size.

A 2.3: Comparison of the NMI

To illustrate the performance of this metric, Fig. A.4 shows a compari-
son of normalized mutual information (NMI) to the Pearson correla-
tion and the Euclidean distance for four different synthetic cases:

• linear relationship between X and Y

• difference between two sinusoidal functions with different am-
plitudes

• quadratic relationship between X and Y

• two independent random variables X and Y

We used equally distant bin widths of 0.05 to estimate the pdf for
the calculation of the mutual information in all four cases.

A 2.4: Shannon entropy of the runoff simulations against the median discharge
of the runoff simulations

Relation between the area-weighted median of the discharge simula-
tion against the Shannon entropy of all discharge simulations for each
time step (Fig. A.5). The graph highlights that there is no simple linear
relation between discharge height, time of the year and the Shannon
entropy.
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Figure A.4: Difference between the Pearson correlation coefficient, Euclidean
distance and the normalized mutual information. Four cases are
shown (a) linear relationship, (b) the difference between two sinus
functions with different amplitude, (c) a quadratic relationship
and (d) two independent variables. The pdf was estimated using
an equally distant bin width of 0.05 in all four cases.

Figure A.5: Shannon entropy of the 105 discharge simulations against the
area-weighted median of the discharge simulations. The color
key range from blue (winter) over green (autumn / spring) to
yellow (summer) and illustrates the time of the year.
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Figure A.6: JSD values for the six research catchments (Schist: Platen (pla),
Colpach (col), Weierbach (wei); Marl: Niederpallen (nie), Schwe-
bich (sch), Wollefsbach (wol) ). Panel a JSD of between the TWI
distributions, b between the ln(HAND) distributions and c be-
tween the rDUNE distributions. A high JSD value indicates a
high divergence between the distributions with a maximum of
1. The difference between this figure and Fig. 4.4 is the chosen
bin width when we estimated the JSD between the different
distributions.

a.3 appendix chapter iv

A 3.1: Influence of different bin widths on the Jensen-Shannon divergence

In Fig. A.6 we illustrate the influence of a different bin width when cal-
culating the Jensen-Shannon divergence between the TWI, ln(HAND)
and rDUNE distributions. Instead of using the largest bin width as
described in Sect. 4.2.2 we use the smallest meaningful bin width
which is 0.1 for the TWI, 0.03 for ln(HAND) and 0.05 for rDUNE. This
figure in comparison to Fig. 4.4 highlights that the overall picture does
persists even if we would have chosen the smallest statistical feasible
bin width instead of the largest.
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Martı́nez-Carreras, Núria et al. (2016). “Storage controls on the gener-
ation of double peak hydrographs in a forested headwater catch-
ment.” In: Journal of Hydrology 543, pp. 255–269. doi: 10.1016/j.
jhydrol.2016.10.004.

Maurer, Thomas. (1997). “Physikalisch begründete zeitkontinuierliche
Modellierung des Wassertransports in kleinen ländlichen Einzugs-
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erogenität - Wo ist der Zusammenhang. Tag der Hydrologie 2019,
Karlsruhe, Germany

Kiese, N., Loritz, R., Allroggen, N. and Zehe, E. (2017): Influence of
bedrock topography on the runoff generation under use of ERT data.
European Geosciences Union General Assembly 2017. Vienna. Austria
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Eidesstattliche Versicherung gemäß §6 Abs. 1 Ziff. 4 der Promotion-
sordnung des Karlsruher Instituts für Technologie für die Fakultät für
Bauingenieur-, Geo- und Umweltwissenschaften:

1. Bei der eingereichten Dissertation zu dem Thema The role of
energy and information in hydrological modeling handelt es sich um
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