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Abstract—Systems such as Alexa, Cortana, and Siri appear
rather smart. However, they only react to predefined wordings
and do not actually grasp the user’s intent. To overcome this
limitation, a system must grasp the topics the user is talking
about. Therefore, we apply unsupervised multi-topic labeling to
spoken utterances. Although topic labeling is a well-studied task
on textual documents, its potential for spoken input is almost
unexplored. Our approach for topic labeling is tailored to spoken
utterances; it copes with short and ungrammatical input.
The approach is two-tiered. First, we disambiguate word senses.
We utilize Wikipedia as pre-labeled corpus to train a naı̈ve-
bayes classifier. Second, we build topic graphs based on DBpedia
relations. We use two strategies to determine central terms in
the graphs, i.e. the shared topics. One focuses on the dominant
senses in the utterance and the other covers as many distinct
senses as possible. Our approach creates multiple distinct topics
per utterance and ranks results.
The evaluation shows that the approach is feasible; the word
sense disambiguation achieves a recall of 0.799. Concerning topic
labeling, in a user study subjects assessed that in 90.9% of the
cases at least one proposed topic label among the first four is a
good fit. With regard to precision, the subjects judged that 77.2%
of the top ranked labels are a good fit or good but somewhat too
broad (Fleiss’ kappa κ = 0.27).

I. INTRODUCTION

Conversational interfaces (CI) are a recent trend in human
computer interaction. Today, millions of users communicate
with virtual assistants such as Alexa, Cortana, or Siri. How-
ever, such systems often struggle to actually grasp the user’s
intent. Although they appear rather smart, Alexa and the like
merely react to predefined commands. Users will soon expect
such systems to understand increasingly complex requests.
Thus, techniques for (deep) spoken language understanding
(SLU) are needed. We propose to apply topic labeling to
spoken utterances as one building block of a comprehensive
intent model. Topic modeling and labeling has already proved
useful on textual documents; it has been applied to many
tasks, such as text summarization, machine translation, and
sentiment analysis [1]. However, topic labeling has rarely been
adapted to spoken utterances scenarios [2]. Most likely this is
the consequence of differing boundary conditions. Spoken lan-
guage is typically ungrammatical. Thus, common techniques
for natural language (pre-)processing (NLP) cannot be applied.
Furthermore, utterances – be it dialog acts, virtual assistant
interactions, or instructions for household robots – are short
in comparison to text documents. This limits the usefulness of

contextual information to a minimum. An exemplary input of
that kind might be, “Hey robot, take – uhm – the apple – err
– the orange from the fridge.” Even though the utterance is
rather short, it encompasses three topics: Domestic Robotics,
Fruits, and Home Appliances. Present approaches for topic
labeling cannot cope with such conditions as they either rely
on NLP or contextual models.

Our approach is influenced by a number of related ap-
proaches to topic labeling on documents. However, it is
customized to the challenges of short, spoken utterances.
Our approach is two-tiered. First, we perform word sense
disambiguation (WSD). We have adapted the approach by
Mihalcea [3] and Mihalcea and Csomai [4]. The approach
uses Wikipedia as a pre-labeled corpus and applies a naı̈ve-
bayes classifier. Nouns are labeled with Wikipedia articles.
Second, we use the word sense labels to determine topic labels.
To this end, we build so-called sense graphs. Beginning with
the Wikipedia articles attached to nouns in the utterance, we
use relations in DBpedia to construct graphs. Afterwards, we
determine the most central terms, which we take to be the topic
labels for the utterance. We have implemented two different
strategies for graph centrality. The first generates topic labels
for dominant terms, i.e. the most frequent senses, in the
utterance. The latter covers all terms. Both produce multiple
labels for each utterance. The labels carry confidences, which
we derive from the graph centrality value. The contribution of
the paper is two-fold:

1) An adaptation of the WSD approach by Mihalcea and
Csomai to short utterances, including an evaluation on
a Wikipedia data set plus an additional evaluation on a
corpus for programming in spoken language.

2) An implementation and evaluation of unsupervised
multi-topic labeling tailored to short, spoken utterances.

The remainder of the paper is structured as follows: First,
we discuss related work in Section II. In Section III we
introduce our approach for unsupervised multi-topic labeling
and evaluate it in Section IV. Finally, we discuss areas of
application (Section V) before we conclude the paper in
Section VI.

II. RELATED WORK

Topic labeling is typically preceded by a topic modeling
step that determines sets of terms that are supposed to share
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the same topic. Afterwards, meaningful labels are assigned to
these topics. Many approaches rely on the so-called Latent
Dirichlet Allocation (LDA) introduced by Blei et al. [5] to
create a topic model [6]–[10]. LDA is a generative probabilistic
model for collections of discrete data such as text documents.
It uses word distributions across a given set of documents
to derive topics from word occurrences. Hence, an LDA topic
model comprises a fixed number of topics that consist of words
which often occur together.

To determine meaningful labels, some approaches derive
labels directly from the given text [8], [11], assuming that
a label can be found within the given text. However, this
assumption may not hold. Often, a document does not contain
appropriate labels; i.e. for certain topics no abstract term is
ever mentioned. Additionally, text-based approaches usually
suffer from challenges such as synonyms or spelling errors.
Thus, advanced approaches incorporate additional information
to gain a deeper understanding of a topic. Usually, these
approaches map words that represent a topic to knowledge
databases. Then, they create graph or tree structures based on
relations in the knowledge database (e.g. Magatti et al. [9]).
Another approach of that kind was introduced by Hulpus et
al. [10]. The authors calculate a topic model with LDA and
then determine central nodes in a so-called topic graph, which
they build from DBpedia concepts and relations. Central con-
cepts form the topic labels. All above-mentioned approaches
use LDA to some extent, which is a statistical model. There-
fore, its performance depends on the available amount of data.
As spoken utterances are rather short, LDA does not produce
reliable results. Hence, LDA-based approaches are infeasible
in our context.

Some related approaches do not rely on LDA. Coursey et
al. [12] create graphs based on Wikipedia articles (nodes) and
the proximity of the containing words (edges). They determine
central nodes with the help of a biased PageRank algorithm
and use the article names of these nodes as topic labels.
Aker et al. [13] use the Markov Clustering Algorithm for
topic modeling. Allahyari and Kochut [14] adapt LDA; they
introduce a latent variable called concept. The concepts are
DBpedia concepts and are used to build graphs. Recently,
combined approaches are used; they either join different topic
labeling approaches (e.g. Gourru et al. [15]), or incorporate
concepts from other research areas, e.g. word embeddings
[16]. However, they also require long documents to unfold
their potential. Thus, they are inappropriate for short, spoken
utterances.

In the field of SLU various approaches use phonetic in-
formation to model topics. Cerisara [17] creates a semantic
lexicon from phonetic information and creates topic models
by hierarchical clustering. Hazen et al. [18] and Siu et al. [19]
propose similar approaches to model topics. However, none of
the approaches actually label topics.

In summary, all above are inapplicable to determine topic
labels for short utterances. LDA-based approaches (and others
intended for texts) require long documents and present SLU
approaches only model topics but do not determine labels.

III. APPROACH

Our approach for unsupervised multi-topic labeling is in-
spired by topic modeling and labeling approaches for text
documents. However, it does not rely on a generative prob-
abilistic model such as LDA. This is mainly because LDA is
not applicable on short documents. Additionally, LDA can only
distinguish a fixed number of topics. However, in our context
the number of topics is uncertain in advance. Unlike LDA-
based approaches, we build topic graphs for the entire input,
i.e. each spoken utterance. We use data from DBpedia to create
these graphs; articles are nodes and relations form edges. We
use a biased PageRank algorithm to determine multiple central
articles per utterance, which we use as topic labels. Therefore,
we are relieved from the challenge of creating meaningful
labels. Instead, we only have to determine which term is the
most fitting for a topic. The approach requires word sense
labels as starting point for the construction of sense graphs. For
this, we adapt the approach by Mihalcea and Csomai [4] that
uses Wikipedia as a pre-labeled corpus for WSD. It uses naı̈ve-
bayes classification to attach Wikipedia articles (as senses) to
nouns.

In Subsection III-A we present our adapted re-
implementation of their WSD method. Afterwards, we
describe our unsupervised multi-topic labeling approach for
spoken utterances in detail in Subsection III-B.

A. Word Sense Disambiguation

Supervised classification tasks require manually attached
labels for training, which is time-consuming and costly. Ad-
ditionally, in the case of word sense disambiguation human
annotators often disagree. Mihalcea and Csomai tackle this
issue by using Wikipedia as a pre-labeled corpus for word
senses. The basic idea is as follows. Relevant terms (mostly
nouns) in a Wikipedia article each have a link attached to
the respective explanatory article. Thus, links can serve as
manually annotated word senses.

Links are added by the article’s authors (most commonly),
who are supposed to be domain experts. Therefore, Mihalcea
and Csomai assume that the links are correct. Also, Wikipedia
is growing steadily and the quality of articles improves over
time through continuous inspection by the community. Even
though the latter is arguable, the quality of Wikipedia ar-
ticles surely has improved since Mihalcea and Csomai first
implemented their approach in 2007. Further details about the
original approach may be found in Mihalcea [3] and Mihalcea
and Csomai [4].

We adopt the idea to use Wikipedia as a pre-labeled corpus
for word senses. However, we altered the classification process
slightly. We also use a naı̈ve-bayes classifier and similar
features: the ambiguous word, its part-of-speech (POS) tag,
the three words to the left and right of the ambiguous word,
and their POS tags, as well as the first nouns and verbs to the
left and right. To increase the impact of the ambiguous word
over its contextual features we weighted it tenfold (contrary to
Mihalcea and Csomai, who did not alter weights). We filter out
stop-words. Mihalcea and Csomai additionally use so-called



TABLE I: DBpedia relations used to build sense graphs.

relation relates a concept to
dcterms:subject its Wikipedia category
skos:broader less specific concepts
skos:narrower more specific concepts
purlg:hypernym superordinate concepts
purlg:meronym concepts that form parts
purlg:synonym synonymous concepts
rdfs:type its DBpedia ontology entity
rdfs:subClassOf its subclasses in DBpedia
rdfs:seeAlso related concepts

context words, which are simply the most frequent words of
the paragraph in which the ambiguous word appears. Context
words are not feasible in our context, because short, spoken
utterances do not consist of paragraphs. Even if we define
a full utterance as paragraph, it is rather short with barely
multiple occurrences of words that are not stop-words. We
also skip the disambiguation of named entities. As they are
usually unambiguous, there is no need to disambiguate these
terms and their mere number impairs our classification model.

To train the classifier, we use a Wikipedia dump from
August 2017. We prepare the data like Mihalcea and Csomai.
We remove disambiguation pages, as they do not contain full
sentences. For the same reason, we ignore info boxes and
lists. Additionally, lists rarely contain links, which makes them
useless. The same applies to quotes. We also remove links
that lead to an article that considers a named entity; those are
simply unusable topic labels.

We extracted 5,188,470 training instances. Among them are
283,173 different senses, of which 136,964 are unique. Unique
senses are senses that are mentioned in one instance only.
These unique senses account for 2.64% of the instances and
48.37% of the senses.

We can then use the trained model as a WSD classifier.
Note that the classifier can only disambiguate nouns. However,
contrary to Mihalcea and Csomai, our classifier attaches a label
– i.e an Wikipedia article – to all nouns in the input.

B. Topic Labeling

Our approach for unsupervised multi-topic labeling is in-
spired by the sense graph idea proposed by Hulpus et al. [10].
However, they used LDA to determine topic models. As dis-
cussed before, we cannot use a statistical model such as LDA
on short, spoken utterances. Instead, we directly determine
topic labels and perform topic modeling implicitly. We assume
that all nouns in the input are related at first (we discard that
assumption later). We build sense graphs beginning with the
word sense for each noun; we call these senses initial senses.
We think of DBpedia as a graph with concepts (i.e. articles)
as nodes and relations as edges and extract subgraphs. We
traverse all chains of relations up to a distance of two to
create the sense graphs1. The relations we use to build the

1Ideally, the distance is as short as possible to generate meaningful sense
graphs. Longer distances introduce an increasing semantic drift. However, if
we traverse only one relation, less connected graphs are constructed, i.e. we
might be unable to discover shared senses. Therefore, we follow the choice
of Hulpus et al. [10] and use two as the distance value.

sense graphs are listed in Table I.
Finally, we merge all sense graphs; the result is a topic

graph. Hulpus et al. remove all disconnected subgraphs and
proceed with the main graph only. Instead, we proceed with
the entire graph, including all disconnected subgraphs. As each
subgraph originates from different sense graphs, we assume
that subgraphs represent different topic areas. Thus, subgraphs
compensate the missing topic modeling step in our approach.
Then, we can determine topics for each of the subgraphs, i.e.
topic areas.

We continue with determining the central nodes of the
graph. Hulpus et al. discuss different algorithms to determine
graph centrality. However, none of them can cope with discon-
nected graphs. Instead, we apply a biased PageRank algorithm
( [12], [20]); it gives more weight to nodes that correspond to
the initial senses. The biased PageRank, i.e. the score S(Vi),
is calculated as follows:

S(Vi) = (1− d) ∗ B(Vi) + d ∗
∑

j∈I(Vi)

S(Vj)

|O(Vj)|
(1)

where I(Vi) is the set of incoming edges of node i and O(Vi)
is the set of outgoing edges of node i. The constant d is the
damping factor; in our implementation, we leave the default
value unchanged (d = 0.85). The bias B(Vi) is defined as:

B(Vi) =
f(Vi)∑

j∈InitNodes f(Vj)
(2)

where InitNodes is the set of nodes that correspond to
the initial senses. Coursey et al. state, that f(Vi) may vary
regarding complexity and can be chosen freely. They also
discuss different options for the choice of f(Vi). For their
approach they choose an f(Vi) that was determined by a so-
called keyphraseness score. However, this score requires a set
of documents. In our context we consider only one utterance
at once. Thus, we determine B(Vi) differently; we simply set
f(Vi) to 1 if Vi is a member of the initial node set:

B(Vi) =

{
0 , Vi /∈ InitNodes

1
|InitNodes| , Vi ∈ InitNodes

(3)

Finally, we select the nodes from the topic graphs that will
serve as topic labels. The selection of labels is contingent on
the number of labels we create per utterance. On the one hand,
with an increasing number of labels we observed that labels
get too broad. Thus, the precision of our approach decreases.
On the other hand, if we create too few labels, some senses
from the utterance are not represented. As a consequence, the
coverage decreases. We found that a good rule of thumb is to
create twice as many labels as there are distinct senses in the
input. This number of labels allows us to discover appropriate
labels even for utterances with many distinct topics. At the
same time, there is still a sufficient selection of labels for
small inputs with only two or three senses.

To select labels our approach is configured with one of two
strategies. The top strategy selects nodes as labels that are
strongly connected to the original sense nodes. Therefore, we



count the number of sense graphs in which each particular
node occurs. We call this value connectivity. As the connec-
tivity might be equal for multiple nodes, we use PageRank
as second criterion. Therefore, the top strategy first selects the
node with the highest connectivity. If there is a draw, the node
with the higher PageRank is chosen. We repeat this procedure
until the maximum number of labels is reached. However,
we found that some parts of the utterances are inadequately
represented. If a topic is mentioned with a few words only, it
gets dominated by other topics. Therefore, we implemented a
second strategy: the max strategy. This strategy determines the
first label in the same manner as the top strategy. However, it
then examines the set of senses from the initial input. If not all
senses are represented through a label yet, it selects the node
that covers the highest number of previously unrepresented
senses. As before, if there is a draw, the node with the higher
PageRank is chosen. If all senses are covered, the strategy
continues as the top strategy. Again, the procedure is repeated
until the maximum number of topic labels is reached. We use
the PageRank values as confidences to rank the labels.

C. Example

In order to illustrate our approach, we discuss the exemplary
utterance, “take the orange from the fridge and close the
dishwasher.” For the sake of simplicity we configure our
approach to create a maximum of two labels. The first step is
the disambiguation of nouns. For orange the WSD model picks
the sense Orange(fruit) rather than other possible senses such
as Orange(color) or Orange(word). The approach determines
Refrigerator and Dishwasher as senses for the two remaining
nouns. Then, our approach creates a sense graph for each
sense. The resulting sense graphs (SG1, SG2, and SG3) are
depicted in the upper half of Figure 1. Graphs may share sense
nodes. In the example, the sense graphs SG1 and SG3 share
– among others – the sense nodes home and home appliance.
All sense graphs are merged at these shared nodes. The result
is a topic graph that may consist of disconnected subgraphs.
In the example, we have two topic subgraphs (TG1 and TG2)
after merging. Connected sense graphs indicate that senses
are topically similar. With the help of the topic graph we
determine the labels. We obtain different results depending
on the selected strategy. If we use the top strategy, graph
connectivity is the key aspect. Thus, only sense nodes from
the topic subgraph TG1 are considered. From the set of sense
nodes that connect the two sense graphs (highlighted in green)
our approach selects the nodes with the highest PageRank (i.e.
the yellow nodes). Thus, the top strategy creates the labels
home and home appliance. However, the sense Orange(fruit)
is not covered by these topic labels. Here, the result of the
max strategy differs. First, it selects a node from those with the
highest connectivity, too. Thus, the label home is also selected.
However, the next label is drawn from the topic subgraph with
senses that were not represented previously, here TG2. Again,
the node from the candidate set with the highest PageRank is
chosen, here fruit. Thus, the max strategy selects the labels
home and fruit (i.e. the red nodes).

max coverage strategy

top connectivity strategy

initial sense node

SG1 (fridge)

SG2 (orange)

SG3 (dishwasher)

TG2

TG1

home

home 
appliance

home

home 
appliance

fruit

Fig. 1: The sense (SGi) and topic graphs (TGi) for the
utterance, “take the orange from the fridge and close the
dishwasher afterwards.” The initial sense nodes are depicted
blue-striped. The nodes selected as topic label by the top
strategy are orange and the nodes selected by max strategy
are red. The set of candidate nodes with equal connectivity in
TG1 are highlighted in green.

IV. EVALUATION

To evaluate our approach we first assess the quality of the
word sense disambiguation; its performance directly affects
our unsupervised multi-topic labeling approach. As data sets
we use Wikipedia and a speech corpus. The latter consists of
168 voice recordings from different user studies, gathered from
65 subjects. The subjects are between 18 and 50 years old,
21 are female and 44 male. Most of them are undergraduate
and graduate students. All are non-native English speakers.
However, their (self-assessed) English level is advanced on av-
erage. All recordings are instruction sequences for a household
robot in eight different scenarios such as doing the laundry
or preparing an instant meal. The recordings vary in length
from 5 up to 80 seconds and in instructions from 2 up to
22. All recordings were manually transcribed according to the
guideline by Kiesling et al. [21].



TABLE II: Results of the WSD evaluation.

Wikipedia Speech Corpus
avg. recall precision recall F1

.799 .894 .876 .885

We also evaluate our topic labeling approach on this corpus.
To broaden the range of topics, we added synthetic utterances
from other domains. We conducted a user study, where sub-
jects manually evaluated the quality of the topic labels.

A. Word Sense Disambiguation

We first evaluate WSD on Wikipedia. We performed a
customized ten-fold cross-validation. For each of the ten runs
we drew 10,000 instances at random for testing; the remaining
were used for training. Note that a full-blown ten-fold cross-
validation with over five million instances is infeasible in our
context. We determine the correctly predicted (true positives)
and incorrectly predicted senses. As the number of instances
is known in advance and our classifier predicts labels for
all instances, every incorrectly predicted sense accounts for
a false positive and a false negative. Therefore, precision and
recall are the same here2. Mihalcea and Csomai distinguished
false negatives and false positives in their evaluation. Their
approach does not predict instances with a previously unseen
surface form (during training phase). Thus, they removed all
of these instances from the set of false positives. Conse-
quently, we can compare recall only. Mihalcea and Csomai
evaluated on a set of 85 Wikipedia articles drawn at random,
which contained 7286 instances; we evaluated on ten times
10,000 random instances (see above). The results for our
approach shown in Table II are encouraging. We achieve
a recall/precision of 0.799. Despite the adaptations of the
original approach (see Subsection III-A) and a test set differing
largely in content and extent, this is comparable to the recall
of 0.831 Mihalcea and Csomai reported.

In a second evaluation we used the speech corpus. Here,
we prepared a gold standard for each noun. The manual
transcriptions of the 168 recordings contained 1060 nouns in
total. Note that in this evaluation we do not know instances
in advance. To obtain the instances we have to identify
nouns (except named entities) with a POS tagger. Again, false
positives and false negatives encompass all incorrect labels.
Additionally, all missed instances are false negatives. The
results (shown in Table II) are promising. We expected a
drop in classification quality, as the task is more complex
(additionally determine instances) and the domain is different
from the training set. Instead, our approach achieves a recall
of 0.876 and a precision of 0.894 (F1 0.885). 21 instances
were not disambiguated due to incorrect POS tags produced
by our POS tagger. Some incorrectly classified senses are due
to nouns that have no corresponding article on Wikipedia, e.g.
the word “front”. There is no Wikipedia article describing the

2It is more common to use accuracy in this case, which is calculated
equally. We kept the notions precision and recall for comparability with
Mihalcea and Csomai

TABLE III: Distribution of the assessed quality of the top-k
ranked topics produced with max and top strategy.

good fit too broad inconv. unrelated
k max top max top max top max top
1 .530 .530 .242 .242 .045 .045 .182 .182
2 .447 .424 .167 .182 .106 .106 .280 .288
3 .449 .444 .141 .152 .157 .146 .253 .258
4 .432 .420 .144 .140 .155 .167 .269 .273
5 .381 .369 .145 .136 .176 .182 .298 .312

all .368 .340 .138 .132 .179 .200 .315 .329

concept of the side that is forward or prominent. In such cases
our approach retrieves incorrect senses.

Nevertheless, our results are encouraging. They show that
the approach is feasible, even for domains where the con-
tent differs largely from Wikipedia articles (ungrammatical
sequences mostly uttered in imperative mood vs. descriptive
texts). Thus, the approach proves highly advisable in all con-
texts, where training of a custom WSD classifier is impossible
because of data sparseness (as in our case) or too expensive.

B. Topic Labeling

Evaluating the quality of a topic labeling approach is
demanding; one cannot easily provide a gold standard. Usually
it is unclear what the correct label is and if it is the only one
fitting. Therefore, we performed a user study; it is similar
to the study conducted by Hulpus et al. [10]. Six subjects
participated in this study; all were graduate students from
different faculties, four male and two female, aged 22 to 27.
We drew 16 recordings from the speech corpus at random and
provided manual transcripts for each. Additionally, we created
six synthetic utterance transcriptions. They are comparable to
the corpus recordings in regard to linguistic complexity and
length. However, these transcripts are from other domains:
drone control, child’s playroom, and virtual assistants. Thus,
we can evaluate our approach on a broader range of domains.
We used our WSD classifier trained on the entire Wikipedia
dump to label each noun. Based on the sense labels we created
topic labels for each utterance with the max strategy and
the top strategy. We presented the utterances to the subjects
together with the topic labels. The labels are ordered according
to their confidence values. The total number of topics per
utterance varies from four to ten. The subjects were asked to
rate each label either as good fit, related but too broad, related
but inconvenient or unrelated. We divided the subjects into
two groups that assessed the labels of eleven utterances each.
Thus, all labels were assessed by three annotators. We use
Fleiss’ Kappa (κ) to measure the inter-annotator agreement;
the determined κ value is 0.27. According to Landis and Koch,
this indicates a fair agreement [22]. Hulpus et al. reported
a similar κ-value. This outcome illustrates that, although
topic labels are quite subjective, shared preferences between
annotators are present.

The assessment results are depicted in Table III. It shows the
distribution for the top-k topic labels and for all labels (the best
results per rank and category are printed in bold). The good
fit-labels can be interpreted as accurate. Thus, for the max



strategy the overall accuracy is 0.368 for all labels and 0.530
for the top-ranked. However, related but too broad-labels are
also meaningful in most cases, depending on the application
at hand (see Section V). If we consider a combined accuracy
of all good fit- and too broad-labels the value is 0.506; the
combined accuracy of the labels at rank one is 0.772. The
numbers for the category related but inconvenient are less
informative. Apparently, a negligible share exists (0.045 of
the top ranked labels). However, this category is particularly
subjective. Therefore, one has to examine individual cases
instead. The table shows the distribution of the annotators
assessments. Thus, lower unrelated-values are better. Overall,
the performance of the max strategy is slightly better than
the top strategy on our test set. This result demonstrates the
capability of the max strategy to discover small topic areas
and label them correctly.

The overall distributions do not take the majority decision
of the annotators into account. Therefore, we introduce two
additional measures. First, Precision@k (P@k) as proposed
by Hulpus et al.:

P@k =
#Hits with rank ≤ k

k
(4)

It determines how many labels of the first k labels (k =
[1,5]) are a Hit. A Hit is a topic that was assessed a good
fit (or good fit or broader respectively) by at least two of the
three annotators. The second is an adaptation of Coverage@k
(C@k) used by Hulpus et al. They measured the fraction
of topics that have at least one fitting label. Hulpus et al.
model topics explicitly. Hence, they were able to determine
C@k on a per-topic-level. Instead, we model topics implicitly,
i.e. we determine labels for an entire utterance at once (see
Subsection III-B). Thus, we adapted C@k to fit our set up:

C@k =
#u. w/ at least 1 Hit at rank ≤ k

#utterances
(5)

Our adaptation determines the fraction of utterances for
which our approach produces at least one Hit in the top-k.
Since we want to determine the precision and coverage of
accurate or reasonably accurate labels, we consider good fit
and good fit or broader only. Plots for both are presented
in Figure 2. Again, the max strategy outperforms the top
strategy almost always. As expected, increasing values for k
decreases precision but increases coverage. C@k ranges from
0.801 up to 0.954 for the good fit or broader-case, which is
encouraging. Even for the good fit-only case C@k exceeds
0.909 at k ≥ 4. Of course, higher precision values would be
preferable. Nevertheless, our results are comparable to Hulpus
et al. However, one must consider that although precision is
calculated equally and values are similar, results have to be
interpreted differently. As discussed before, our approach aims
at labeling short, spoken utterances. In contrast to Hulpus et al.
our approach saves an explicit topic modeling step and labels
multiple topics at once. Therefore, precision is semantically
slightly different and comparison needs to be considered with
caution. A comparison to approaches for topic labeling on
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Fig. 2: Precision@k (P) and Coverage@k (C) for topics that
are considered a good fit and “or broader,” respectively, as
achieved with the max strategy (mcov) and the top strategy
(top).

spoken language can not be drawn. As discussed in Section II
these approaches model topics but do not attach labels.

During evaluation, we discovered another interesting aspect:
our results improve with the number of senses available. In
other words, our approach has a bias towards long utterances
with a broad vocabulary. This behavior is due to the graph
centrality approach. It only determines meaningful labels if
many connections between senses exist. In general, this is
more likely the more senses contribute to the topic graph.
Additionally, the homogeneity of senses has a direct influence
on the performance of our two strategies. Since the max
strategy considers all available senses, it performs better on
homogeneous inputs, but is more easily diverted by discrete
(irrelevant) senses. In such cases, the top strategy is more
resilient but sometimes discards relevant senses too easily.

V. AREAS OF APPLICATION

In Section I we argue that unsupervised multi-topic labeling
is a potential building block for a deeper understanding of
spoken language. Subsequently we will justify this point by
discussing areas of application for our approach.

Our work on unsupervised multi-topic labeling for spoken
utterances is part of the project PARSE [23]. The goal of the
project is to enable a layperson to program in plain spoken
English. To facilitate programming with spoken language the
system must understand the user’s intents. Typical application
areas of PARSE are robotics, home automation, and the like.
While most of the process is independent of the domain, the
target systems are modeled in ontologies (Figure 3 shows
the architecture of PARSE). For the time being, PARSE is
configured with the appropriate ontology for the use-case,
e.g., a robot or a home automation system API. PARSE is
equipped with agents for deep spoken language understand-
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ing. SLU tasks encompass detection of actions and control
structures [24], [25], analysis of coreference and context [26],
or – as proposed here – topic labeling. If the graph cannot be
transformed into a proper intent model, the utterance is likely
to be incomplete or ambiguous. In such situations the user is
queried for clarification [27].

In the upcoming subsection we discuss how we plan to
improve PARSE’s language understanding abilities with the
help of topic labeling.

A. Ontology selection

The first idea tackles the issue that albeit PARSE is almost
domain-agnostic it still must be configured with a fitting
domain ontology to work properly. First, we tried to merge
all available domain ontologies. However, this method leads
to ambiguities in the resulting ontology. Also the accuracies of
PARSE’s language analyses that use the ontology diminishes.
Therefore, we have to stick to small, precise ontologies.

With the help of topic labeling we might be able determine
the required ontology at runtime. First, we attach topics to
all ontologies. For the time being, this is a manual step.
However, we plan to apply our topic labeling approach to
the domain ontologies and determine topics automatically.
Second, we compare the topics from the spoken utterance with
the ontology topics. We select the ontologies that share the
most topics with the user utterance.

We have already implemented a prototype of the ontology
selection. First results are promising. Therefore, we plan to
fully implement and evaluate the approach.

B. CyC (micro theories)

Another idea concerns world knowledge bases such as
CyC [28]. We have experimented largely with CyC to enrich
different language inputs with world knowledge, e.g. to prove
the feasibility of a described course of action. However, the
knowledge CyC stores is vast and hard to handle if one does
not use precise queries. Luckily, all information is stored
in so-called micro theories that cover knowledge about a
certain topic. Thus, if we match topics extracted from spoken
utterances with micro theories, we might be able to reduce the
search space and improve querying.

C. Context modeling

In PARSE we build a comprehensive context model. Among
other information the model includes concept relations be-
tween entities [26]. The precision of the conceptualization
might improve if we incorporate information about the current
topics; e.g. we might be able to distinguish the concepts
cup(dishware) and cup(trophy) in more contexts.

D. Dialog interaction

PARSE also employs an extensible dialog component to
resolve ambiguous situations [27]. With topic information at
hand, we are able to pose more precise queries; e.g. if the
system has understood that the topic is kitchen but missed
some parts of the utterance, we might ask the user, “Do you
mean ‘go to the fridge’?”, instead of replying, that the system
has not understood the last word.

VI. CONCLUSION AND FUTURE WORK

We have presented an approach for unsupervised multi-
topic labeling that is tailored to spoken language. State-of-art
approaches either depend on large textual corpora or model
topics but do not attach labels. We see topic labeling as a
fundamental building block to gain a deeper understanding of
spoken utterances.

The contribution of the paper is two-fold. First, we have
adapted the approach for word sense disambiguation by Mi-
halcea and Csomai [4] to short, spoken utterances. We can
confirm their results; on the Wikipedia data set we achieve a
similar recall (recall 0.799 vs. 0.831 in the original paper). An
additional evaluation on a speech corpus with instructions for
a robot shows that the method works properly on previously
unseen input (F1 0.887).

The second contribution is the approach for unsupervised
multi-topic labeling for spoken utterances. Based on the word
senses – i.e. the attached Wikipedia articles – we construct
so-called topic graphs from DBpedia relations. We use graph
centrality to determine the topics. We implemented two strate-
gies to find the most central terms, called top strategy and max
strategy. The first strategy creates topics that describe the dom-
inant part of the utterance. The latter covers as many distinct
senses as possible. Our approach creates multiple topics per
utterance. Our evaluation shows that the max strategy slightly
outperforms the top strategy in almost all cases.



However, the max strategy is more sensitive to single unre-
lated parts of the utterance. The overall results are promising.
In a user study subjects assessed 53% of the top-ranked topic
labels as good fit. Furthermore, for 90.9% of the evaluated
utterances at least one of the top four topic labels was
considered a good fit. If we also take labels into account
that were assessed as related but too broad the results are
even more encouraging. Subjects judged that 77.2% of the
top ranked labels fit into this category; 95.4% of the utterances
receive at least one topic label of this quality.

Fortunately, in most potential application areas good or
too broad-labels are equally useful. E.g., we plan to auto-
matically select the best fitting domain ontologies for our
research project PARSE. Therefore, we plan to attach topics
to utterances and ontologies simultaneously. Then, we can
determine the ontology with most shared or related topics for
the respective utterance. Consequently, too broad-labels are
valuable, as long as ontology labels are similar or related to
the utterance labels.

The same applies to the selection of CyC micro theories.
Refining the conceptualization of our context model also
works with broader topics.

Beyond that, we will utilize the topics for more precise dia-
log management and explore other areas. Furthermore, we plan
to implement and evaluate additional strategies to determine
central terms and experiment with differently weighted edges
in sense graphs.
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