

Development potential of mid-scale cooling systems for HTS applications

Steffen Grohmann 3rd IWC-HTS, Niskayuna (NY), October 15-17, 2019

INSTITUTE OF TECHNICAL THERMODYNAMICS AND REFRIGERATION (ITTK) INSTITUTE OF TECHNICAL PHYSICS (ITEP)

- A) Cooling requirements in HTS applications
- B) State-of-the-art cooling technologies
- C) Development potential of mid-scale cooling systems for HTS applications

D) Conclusions

A) COOLING REQUIREMENTS IN HTS APPLICATIONS

3 16.10.2019 Steffen Grohmann - Mid-scale cooling of HTS applications III. IWC-HTS, Niskayuna (NY) Institute of Technical Thermodynamics and Refrigeration Institute of Technical Physics

Cooling requirements

Examples of HTS power applications

Sc. hydrogenerator, GE

Sc. fault current limiters and transformers, KIT, Nexans

Sc. industrial DC magnet heater, Bültmann, Theva

Sc. ship propulsion, Siemens

Sc. wind turbines, Suprapower project

HTS power applications require **10³...10⁴ W** cooling power below **80 K**

16.10.2019

Thermodynamic requirements

- Cooling cycles requires **power input** in order to **create and sustain** low operating temperatures that are different from the ambient temperature *T*_a
- The power input is required due to **two fundamental Laws**
 - I. Law of Thermodynamics: Energy conservation
 - II. Law of Thermodynamics: Energy transformation
 - Thermodyn. work function: $P_{ij} = (\dot{H}_i \dot{H}_j + P_{t,ij}) \underline{T_a}(\dot{S}_i \dot{S}_j) \rightarrow P = \sum P_{ij} = \underline{T_a} \sum \dot{S}_{ij,irr}$ (per unit time)

Minimum power → Carnot cycle

- Idealised thermodynamic cycle of zero power density
- Power demand of real-world cryogenic processes/cycles is by factors ~4...20 larger
- ▶ Slide 12

B) STATE-OF-THE-ART **COOLING TECHNOLOGIES**

16.10.2019 Steffen Grohmann - Mid-scale cooling of HTS applications III. IWC-HTS, Niskayuna (NY)

Institute of Technical Thermodynamics and Refrigeration Institute of Technical Physics

6

State-of-the-art of cooling technologies

	Open process	Closed processes	
	LN ₂ cooling	Cryocooler	Cryoplant
Thermodynamic principle	Evaporation of liquid nitrogen (LN ₂)	Oscillating regenerative process	Continuous recuperative cycle
Operating principle	 Liquefaction in air separation units LN₂ distribution to applications 	Direct local cooling of HTS applications	
Power range	Any	< 10³ ₩ @ 80 K	> 10 ⁴ W @ 80 K
Temperatures	$T_{\rm tr,N2} = 63~{\rm K} < T_{\rm min}$	$T_{\rm min} < 63~{ m K}$	
Supplies	LN ₂ , electricity	Cooling water, electricity	

Technology gap of closed processes at 10³...10⁴ W cooling power @ 80 K

Open process – LN₂ technology

Air separation units (ASU) are operated mainly for oxygen (O₂) production

- Large capacities with high levels of process integration and efficiency
- Liquid nitrogen (LN₂) and nobel gasses as by-products
- Concentration ratio in air $\rightarrow N_2 : O_2 \approx 4 : 1 \rightarrow low price of LN_2$
- LN₂ distribution chain

"Iceman principle"

8

Economic where possible, but not desired/possible in many HTS applications

Closed process 1 – Cryocooler technology

Characteristics

Oscillating process, no cycle!

- B Low potential for upscaling
- Limited efficiency
- ... however
- Relatively simple way to achieve low temperature
- Maximum power c. 600 W @ 80 K

900

Multiple cryocooler needed for cooling of mid-scale applications

Cryocooler use in mid-scale applications

LTS Example

 Muon Ionization Cooling Experiment MICE

- 25 GM cryocooler on one cryostat
- Cooling power:

 $\dot{Q}_0 = 37.5 \text{ W} @ 4.2 \text{ K} \rightarrow (25 \times 1.5 \text{ W} @ 4.2 \text{ K})$

HTS Example

 10 MW superconducting offshore wind turbine – SUPRAPOWER

- 48 MgB₂ coils operated at 20 K
- 1 GM cryocooler for each 2 modules
- Conduction cooling coils cryocooler

N > 20 units: No cost advantage of cryocoolers compared to cryoplants

Closed process 2 – Cryoplant technology

Industrial cryoplants

- High efficiency, moderate pressures (::)
- Need of cold turbo-machinery (=)
- High cost (typically \geq 1 M€) (\mathbf{z})
- Low potential for down-scaling (\ddot{a})

Cryoplant cost is uncompetitive for mid-scale cooling of HTS applications

....

11

Closed processes – comparison

Data source: Decker, L.: Overview on cryogenic refrigeration cycles for large scale HTS applications. International Workshop on Cooling System for HTS Applications (IWC-HTS), October 14-16, 2015, Matsue, Japan

C) DEVELOPMENT POTENTIAL OF MID-SCALE COOLING SYSTEMS FOR HTS APPLICATIONS

13 16.10.2019 Steffen Grohmann - Mid-scale cooling of HTS applications III. IWC-HTS, Niskayuna (NY)

Institute of Technical Thermodynamics and Refrigeration Institute of Technical Physics

The key player in every cooling system is the working fluid with

- its state & transport properties, and
- its changes of state during the thermodynamic process/cycle
- Beyond the pure fluids in the periodic table, fluid properties can be manipulated by mixing of several working fluids in order to "design" specific properties

Concept of mixed-refrigerant cycles (MRC) = molecular engineering

Example of MRC in gas industry

- Liquefaction of natural gas \rightarrow LNG
 - Example: Statoil LNG Plant in Hammerfest, Norway (Snøvit)
 - Production capacity 4.3×10⁶ t/a
 - Main component CH₄ \rightarrow normal boiling point $T_{\rm nb} = 112$ K

Large scale "High" temperature

15

Status of MRCs in cryogenics

Apart from some laboratory demonstrations, there is **no commercial application** of MRCs in cryogenics yet, i.e. at T < 100 K

Reasons:

- Lack of fluid property data (cryogenic mixtures)
- Lacking need (applications/market) that motivate such a development

This situation has changed with HTS application (see gap \uparrow)!

The technical benefit of MRCs increases with decreasing temperature

- Power input (Ist + IInd Law): $P = T_a \sum \dot{S}_{irr}$
 - Entropy production due to ΔT :
 - Entropy production due to Δp :

$$\dot{S}_{irr} \propto \frac{T_1 - T_2}{T_1 \cdot T_2}$$
$$\dot{S}_{irr} \propto -\frac{v}{T} dp$$

Potential of MRCs in cryogenics

Example of a <u>cryogenic</u> mixed-refrigerant cycles (<u>CMRCs</u>)

Thermodynamic Laws → **Only option** for **generic** technology improvement!

....

Development levels of CMRC technology

CMRC-cooled **HTS** applications • Pro

totype of	10 kA	current	leads	

- CMRC heat exchanger development
- Modeling framework
- Prototyping and testing
- Evaluation of transport correlations

Properties of cryogenic fluid mixtures

 Measurement of fluid state and transport properties

Modeling of equations of state (EOS)

1

Properties of cryogenic fluid mixtures

- Measurement of fluid state and transport properties
- Modeling of equations of state (EOS)

1 Properties of cryogenic fluid mixtures

Systematic screening of non-flammable refrigerant mixtures

- Investigation of mixtures with 4th generation refrigerant R1234yf for pre-cooling stage
- Equations of State (EOS) and process modelling
- Hydrocarbons not excluded as high-boiling components in HTS power applications
- New Cryogenic Phase Equilibria Test Stand (CryoPHAEQTS)
 - Temperature range 15 300 K, maximum pressure 15 MPa
 - **ALL mixtures**, incl. flammable/oxidising fluids (ATEX compliant)
 - Preparations for optical measurements
 - Dynamic light scattering (DLS) for measurement of thermal diffusivity, diffusion coefficient, speed of sound / sound attenuation
 - Surface light scattering (SLS) for measurement of viscosity and surface tension

Unique facility to study low-temperature thermodynamic fluid properties

....

1 Properties of cryogenic fluid mixtures

CryoPHAEQTS laboratory at KIT

CryoPHAEQTS laboratory (Status 10/2019)

Equilibrium cell and cryocooler

21

Heat exchanger development

- Modeling framework
- Prototyping and testing
- Evaluation of transport correlations
- Properties of cryogenic fluid mixtures
 Measurement of fluid state and transport properties
- Modeling of equations of state (EOS)

2 Importance of heat exchanger technology

CMRCs require a new heat exchanger technology (no benefit in classical cycles)

23 16.04.2019 Steffen Grohmann - Mid-scale cooling of HTS applications III. IWC-HTS, Niskayuna (NY)

Institute of Technical Thermodynamics and Refrigeration Institute of Technical Physics

2 CMRC heat exchanger development

- Modeling framework for CMRC heat exchangers
 - Classical ε-NTU models inappropriate due to non-constant fluid properties
 - Development and publication of matured 1D numerical framework
 - Compatibility with numerous correlations for both single- and two-phase flow of pure fluids and zeotropic mixtures, as well as longitudinal and parasitic heat loads

Prototype development and testing

- High efficiency due to small gradients → large heat transfer surfaces
- Development of micro-channel CMRC heat exchangers
- Testing in MRC test stand

Development of design tools and novel heat exchanger technology

CMRC heat exchanger development

Test results of the micro-channel heat exchanger prototype

300

- 60 diffusion bonded metal foils
- Each with 50 parallel channels
- Hydraulic channel diameter 320

Model

CMRC-cooled HTS applications

CMRC-cooled HTS applications

Prototype of 10 kA current leads

Heat exchanger development

- Modeling framework
- Prototyping and testing
- Evaluation of transport correlations

Properties of cryogenic fluid mixtures
Measurement of fluid state and transport

- Measurement of fluid state and transport properties
- Modeling of equations of state (EOS)

26

³ Sources of power input for HTS cooling

Rotating machines

Typical values

Data source: Tabea Arndt, Siemens AG, ASC 2018

DC cables and bus bars

Typical values

3 CMRC-cooled HTS applications

- Largest heat loads are typically caused by current leads
- **Large temperature gradient** between room-temperature ($T \approx 300 \text{ K}$) and the HTS operating temperature ($T \le 80 \text{ K}$)

State-of-the-art solutions

- Conduction-cooled current leads
 - Lowest technical effort (1 stage)
 - Eimited capacity (cryocooler)
 - B Lowest efficiency (full load at cold end)

- Multi-stage-cooled current leads
 - Bighest effort (3 to 4 cooling stages)
 - (Partly) scalable capacity
 - Good efficiency

Future solution \rightarrow \rightarrow

.....

CMRC-cooled current leads

- Low technical effort (1-2 stages)
- Full scalability
- Highest efficiency (continuous heat absorption at the source)

HTS current leads are predestinated applications for CMRC technology

2916.04.2019Steffen Grohmann - Mid-scale cooling of HTS applicationsIII. IWC-HTS, Niskayuna (NY)

CMRC-CL prototype (10 kA, classical HX)

Prototype development of one pair of 10 kA current leads

- Classical tube-in-tube heat exchanger design
- Cooling with cryogenic mixed-refrigerant cycle (CMRC)
- Prototype design completed

Simulation results

- Reduction of heat load at the cold end by 45 % compared to conductioncooled current leads (CC-CL, GM cryocooler)
- Reduction of overall power input (resistive losses + cooling system) to 1/3

Only feasible due to **fundamentally new approach** in cryogenic technology

Technology and efficiency comparison for the total power $\rightarrow P_i = P_{el} + P_{cool}$

	Resistive losses P _{el} (W)	Power input P _{cool} (W)	Р і / Р і,GM (%)
GM (conduction cooled)	400	7000	100
CMRC (same length)	360	2200	35
CMRC (1/2 length)	172	5400	75

D) CONCLUSIONS

31 16.04.2019 Steffen Grohmann - Mid-scale cooling of HTS applications III. IWC-HTS, Niskayuna (NY)

Conclusions

Thank you for your attention!

Steffen Grohmann

33 16.10.2019 Steffen Grohmann - Mid-scale cooling of HTS applications III. IWC-HTS, Niskayuna (NY)