

Status of a European Standard for the Protection of Helium Cryostats against Excessive Pressure Christina Weber Rembe Safety Day's, Brilon, Germany, September 17-18 2019

REMBE® PROCESS SAFETY DAYS

Process Pressure Safety and Relief 2019

Motivation

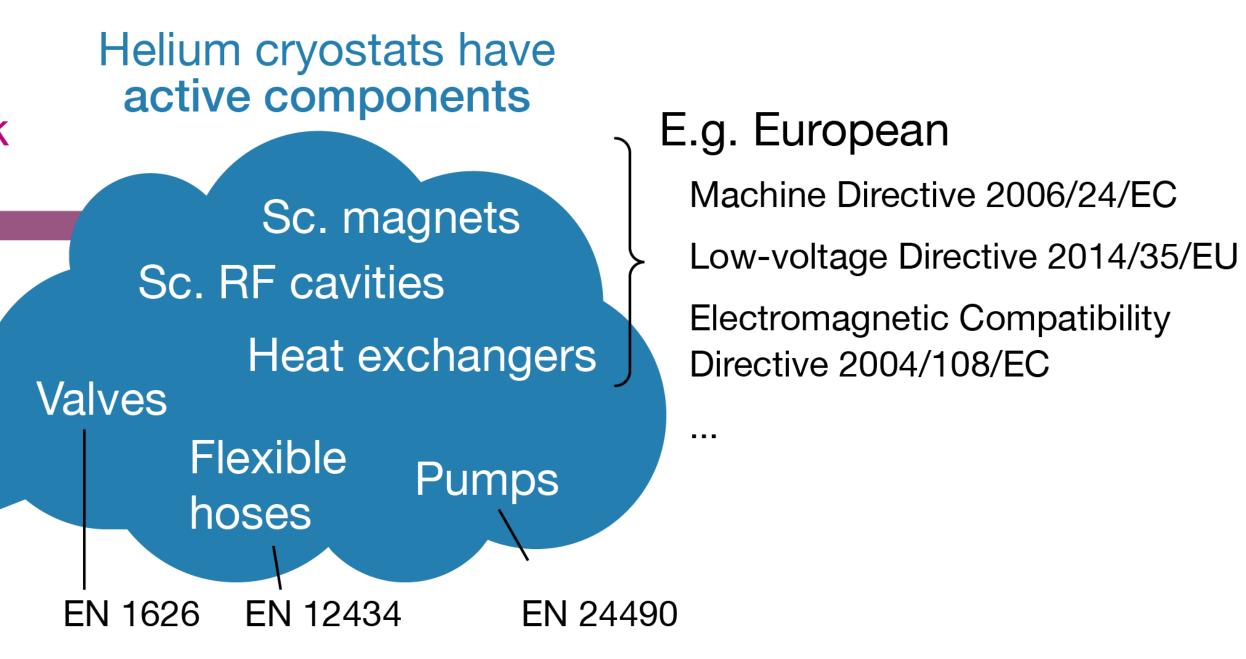
Helium dewars vs. helium cryostats

ISO 21013 – Cryogenic vessels – Pressure-relief accessories for cryogenic service

Strong influence on potential risk of excessive pressure

Liquid helium dewar

17.09.2019


Source: http://www.fusione.enea.it

C. Weber and S. Grohmann - Status of a European Standard for the protection of helium cryostats against excessive pressure

Cryogenic vessels -

Static vacuum insulated vessels

ISO 21009 (substituting EN 13458)

No dedicated Standard existing that covers the conditions in helium cryostats and which is harmonized with the European PED

New working group

CEN/TC 268 - Cryogenic vessels

CEN/TC 268 Scope

3

Standardization in the field of insulated vessels (vacuum or non-vacuum) for the storage and the transport of refrigerated liquefied gases ,as defined in Class 2 of "Recommendations on the Transport of dangerous goods - Model regulation", in particular concerning the design of the vessels and their safety accessories, gas/materials compatibility, insulation performance, the operational requirements of the equipment and accessories. The one-off preparation of standards for hydrogen technologies strictly meeting the European mandate on the draft Directive deployment of alternative fuels infrastructure.

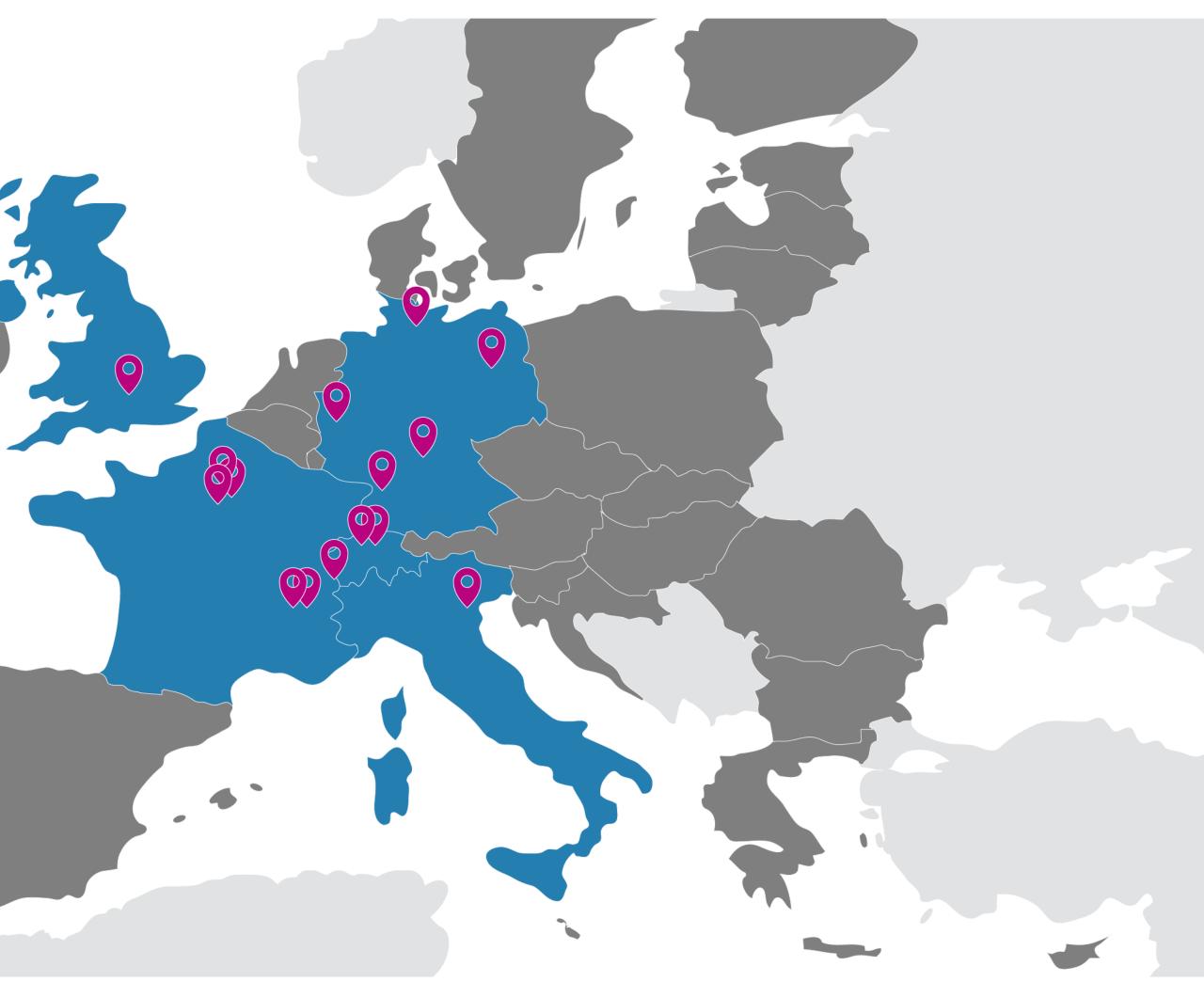
Officers Dr Hervé Barthélémy Chairperson Secretary Ms Laurie Jardel C. Weber and S. Grohmann - Status of a European Standard for the protection of helium 17.09.2019 cryostats against excessive pressure

	General Structure	e Work programme	Published Standards	
	CEN/TC 268 Subcommittees and Working Groups			
	Working group		Title	
	CEN/TC 268/WG 1	<u>_</u>	Design	
f	CEN/TC 268/WG 2	2	Compatibi	lity, insulation, accessories
ent	CEN/TC 268/WG 3	3	Operationa	al requirements

Aim of CEN/TC 268/WG6:

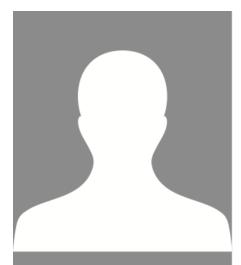
New European Standard on "Helium Cryostats – Protection against excessive pressure"

National Standardisation Bodies:



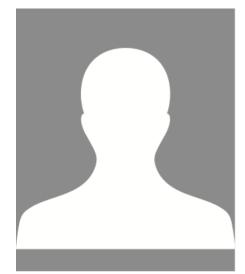
C. Weber and S. Grohmann - Status of a European Standard for the protection of helium cryostats against excessive pressure

4

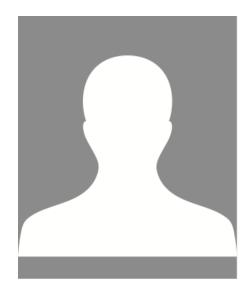

Experts contributing to CEN/TC 268/WG6

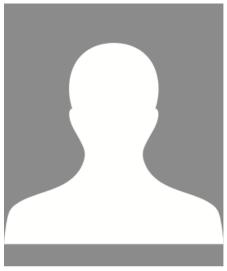
S. Grohmann KIT

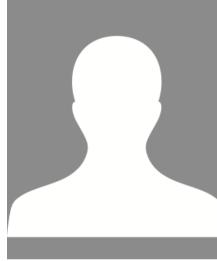
A. Henriques CERN



Herose


5


H. Barthélémy Air Liquide


AFNOR

R. Soika Linde Kryotechnik

DIN

CEA

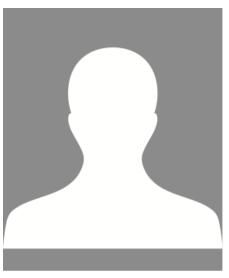
M. Krichler Bilfinger Noell

R. Vallcorba-Carbonell, CEA

W. Otte Air Liquide

C. Weber KIT

C. Weber and S. Grohmann - Status of a European Standard for the protection of helium cryostats against excessive pressure



R. Down STFC

V. Parma CERN

DIN

E. Ercolani Uni Grenoble, CEA

R. Pengo INFN

Air Liquide

J.-L. Fournel Air Liquide

J.-M. Poncet Uni Grenoble, CEA

C. Zoller PSI

Scope and concept of the new Standard

- The scope includes
 - Superconducting magnet cryostats
 - Superconducting RF cavities
 - Ultra-low T refrigerator systems using ³He and ³He/⁴He mixtures
 - Coldboxes of helium refrigerators and liquefiers
 - Helium distribution systems including valve boxes

- Overall concept
 - Standardization of the approach of how to obtain state-of-the-art protection
 - Specification of procedure and minimum requirements in the main part
 - Alternative/advanced methods, additional information, example solutions, exemplary measures in extensive Annex

ef 2019

Structure of the technical part

- Risk assessment
- Protection concepts
- Dimensioning of pressure relief devices
- Pressure relief devices
- Substance release
- Operation of helium cryostats

7

Risk assessment

Loss of insulating vacuum	Loss of beamline vacuum	Leak of cryogenic fluid
Quench of sc. device	Dielectric breakdown	Cryopumping
Entrapment of cryogenic fluid	Thermal acoustic oscillation	Power failure
Pressure surge	Freezing	Backflow
Other sources	Earthquake	Fire

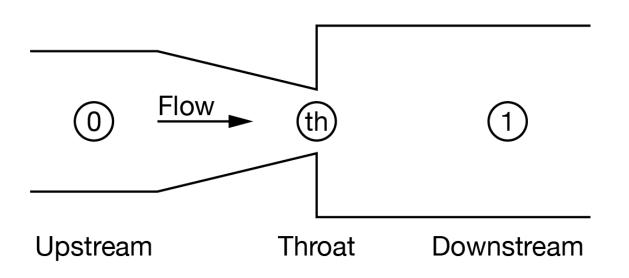
- Three phases of risk assessment
 - 1) Risk assessment before ordering (qualitative, HAZOP or equiv. method)
 - 2) Risk assessment in the design phase (quantitative, FMEA or equiv. method)
 - 3) Evaluation of risks by the equipment owner/employer
 - National implementations of EU Health and Safety at Work Directive 2009/104/EC

Definition of 15 risk scenarios as "Sources of excessive pressure"

Protection concepts

- Single-stage protection concept as minimum requirement
- Multi-stage protection concepts
 - Primary PRD completely fulfills the pressure protection at the maximum allowable pressure p_s in compliance with the PED and based on the MCI
 - Secondary PRD at either $p_0 < p_s$ or $p_0 > p_s$, either in series or in parallel
 - Particular requirements for five types of helium cryostats
 - 1) High-pressure superconducting magnet cryostats
 - 2) Low-pressure helium cryostats, such as superconducting RF cavities
 - 3) Sub-atmospheric helium cryostats
 - 4) He-II cryostats
 - 5) Ultra-low temperature refrigerator systems

PRD: Pressure relief device PED: Pressure equipment directive MCI: Maximum credible incident


The dimensioning of PRD is generally based on

- ρ_{th} density in the throat
- c_{th} velocity in the throat

mass-specific energy/momentum conservation + continuity equation for one-dimensional, frictionless, compressible, steady-state and adiabatic fluid flow through short nozzles (with correction factors for non-ideal behavior)

M relieving mass flow rate \rightarrow from the heat load in different risk scenarios

 \dot{m}_{th} mass flux \rightarrow two types of models

Case-specific model

- Isentropic expansion
- Application of isentropic relation
- Mass flux equations:

Liquid: $\dot{m} = f(\kappa) \cdot \sqrt{2} \cdot \rho \cdot (p_0 - p_b)$

Gaseous: $\dot{m} = f(\kappa) \cdot \sqrt{2} \cdot \rho_0 \cdot p_0$

Two-phase: $\dot{m} = f(\omega) \cdot \sqrt{2} \cdot \rho_0 \cdot p_0$

 κ : Isentropic exponent

- Homogeneous equilibrium model (HEM or G-model)
 - **Isentropic expansion**
 - Mass flux evaluation:

$$p_{th} = p \Big| \frac{\rho(p) \cdot \sqrt{2 \cdot (h_0 - h(p))}}{dp} \equiv 0$$

$$m_{\mathrm{th}} =
ho_{\mathrm{th}} \cdot \sqrt{2 \cdot (h_0 - h_{\mathrm{th}})}$$

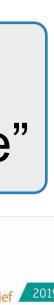
- **Case-specific model**
 - Consistent with ISO 4126-7:2013 and ISO 21013-3:2016
 - Simpler, but more individual calculations steps
 - Definition of fluid state in the throat needed before dimensioning
 - More equations to solve, error-prone
 - Limited application range: $T_0 \le 0.9 \cdot T_{Crit}$

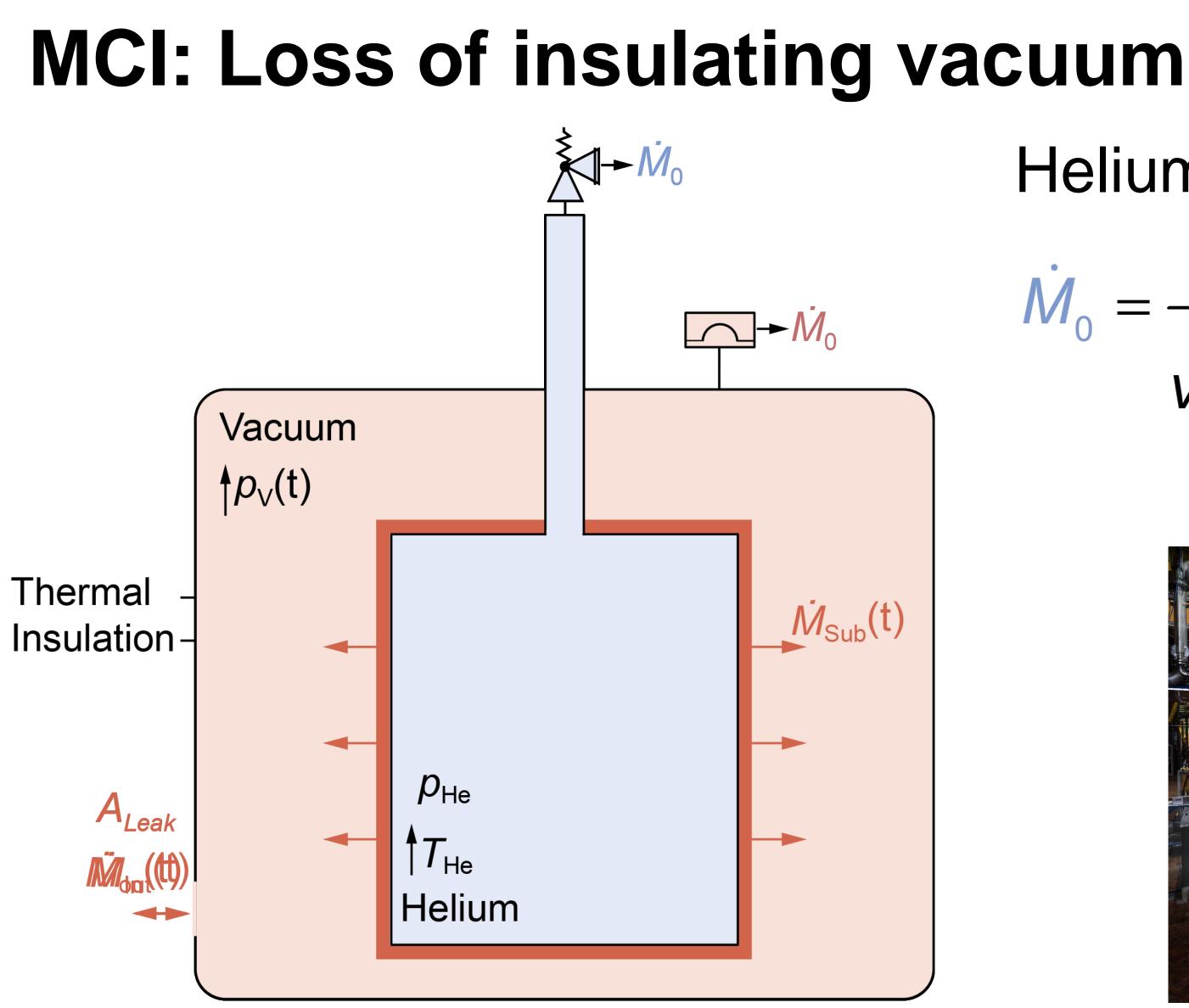
Presented in the Annex as alternative method

 $p_0 \leq 0.5 \cdot p_{Crit}$

- Homogeneous equilibrium model (HEM or G-model)
 - No case definition in throat needed
 - One equation, few operations
 - Software for calculation needed (MS Excel sufficient)
 - Access to helium property data needed

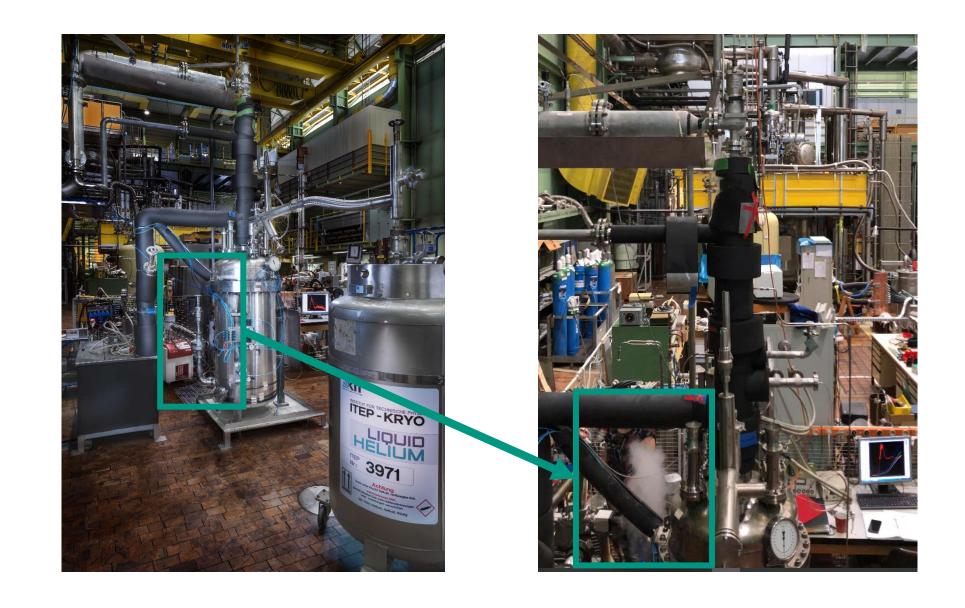
Applied in the main part of the Standard


- Relieving mass flow rate from helium vessel:
 - Calculation of the relieving mass flow rate requires heat flux
 - The new Standard defines calculation rules that yield maximum heat flux values, as a general algorithm for the variety of design solutions does not exist.
- Relieving mass flow rate from vacuum vessel
 - Vacuum vessels equipped with PRD, considered as safety-related device
 - Calculation of relieving mass flow rate via possible leak size (Bernoulli)
- Including detailed documentation, it also allows the calculation with:
 - published experimental heat flux data given for the respective conditions;
 - unpublished experimental heat flux data obtained for the particular cryostat design; or
 - numerical modelling of the processes during incidental scenarios.


Approach on numerical modelling in Ph.D. Thesis:

- "Dynamic modelling of incidents for protection of helium cryostats against excessive pressure"

C. Weber and S. Grohmann - Status of a European Standard for the protection of helium cryostats against excessive pressure



Helium vessel:

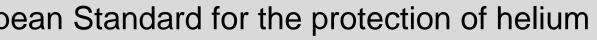
(∂h V_0 · $\frac{\partial V}{\partial v}_{p_0}$

Vacuum vessel:

 $\dot{M}_0 = \dot{M}_{Sub} - \dot{M}_{out}$

Process Pressure Safety and Relief 2019

Further aspects


Pressure relief devices

- Emphasize on operating characteristics and tolerances particularly relevant for the combination of PRD in multi-stage protection concepts
- Substance release
 - Requirements for helium discharge lines and helium recovery systems Direct helium release to the environment

Operation of helium cryostats

- User requirements regarding the inspection before commissioning Periodic inspections and maintenance of pressure relief devices

Summary and outlook

"Specific helium technology applications"

Aim: New European Standard

"Helium cryostats – Protection against excessive pressure"

research organizations

Publication of the Standard is planned in 2020

THANK YOU FOR YOUR ATTENTION!

C. Weber and S. Grohmann - Status of a European Standard for the protection of helium cryostats against excessive pressure

Foundation of new working group CEN/TC 268/WG6 in 07/2017

- Participating experts from 6 European countries, both from industry and

