

A new European Standard for the protection of helium cryostats against excessive pressure

Steffen Grohmann, Convenor of CEN/TC 268/WG6
On behalf of the working group

CEC-ICMC 2019, Hartford, CT, 21-25 July 2019

Outline

- Motivation
- Working group CEN/TC 268/WG6

against excessive pressure

Scope and structure of the new Standard

- Example content
- Summary and outlook

Motivation

Helium dewars vs. helium cryostats

Liquid helium dewar ISO 21009 (substituting EN 13458)
Cryogenic vessels –
Static vacuum insulated vessels

Steffen Grohmann - A new European Standard for the protection of helium cryostats

No dedicated Standard existing that covers the conditions in helium cryostats and which is harmonized with the European PED

Source: http://www.fusione.enea.it

against excessive pressure

New working group

CFN/TC 268 - Cryogenic vessels

CENTIC 200 - Cryogenic vessels				
General Structure Work programme Published Standards				
CEN/TC 268 Scope				
Standardization in the field of insulated vessels (vacuum or non- vacuum) for the storage and the transport of refrigerated liquefied gases ,as defined in Class 2 of "Recommendations on the Transport of dangerous goods - Model regulation" , in particular concerning the design of the vessels and their safety accessories, gas/materials compatibility, insulation performance, the operational requirements of the equipment and accessories. The one-off preparation of standards for hydrogen technologies strictly meeting the European mandate on the draft Directive deployment of alternative fuels infrastructure.				
Officers				

General	Structure	Work programme	Published Standard	S	
CEN/T	N/TC 268 Subcommittees and Working Groups				
10/			Title		
Working	group		Title		
	268/WG 1		Design		
CEN/TC 2	-		Design	oility, insulation, accessories	

Chairperson	Dr Hervé Barthélémy
Secretary	Ms Laurie Jardel

Aim of CEN/TC 268/WG6:

New European Standard on "Helium Cryostats -Protection against excessive pressure"

Organizations contributing to CEN/TC 268/WG6

National Standardisation Bodies:

5

Experts contributing to CEN/TC 268/WG6

S. Grohmann KIT

H. Barthélémy Air Liquide

DIN

CEA

R. Down STFC

E. Ercolani Uni Grenoble, CEA

J.-L. Fournel Air Liquide

A. Henriques **CERN**

AFNOR

M. Krichler Bilfinger Noell

W. Otte Air Liquide

V. Parma CERN

R. Pengo INFN

J.-M. Poncet Uni Grenoble, CEA

Herose

R. Soika Linde Kryotechnik

against excessive pressure

R. Vallcorba-Carbonell, CEA

C. Weber KIT

DIN

Air Liquide

C. Zoller PSI

Scope and concept of the new Standard

Steffen Grohmann - A new European Standard for the protection of helium cryostats

- The scope includes
 - a) Superconducting magnet cryostats
 - b) Superconducting RF cavities
 - c) Ultra-low T refrigerator systems using ³He and ³He/⁴He mixtures
 - d) Coldboxes of helium refrigerators and liquefiers

against excessive pressure

e) Helium distribution systems including valve boxes

- Overall concept
 - Standardization of the approach of how to obtain state-of-the-art protection
 - Specification of procedure and minimum requirements in the main part
 - Alternative/advanced methods, additional information, example solutions, exemplary measures in extensive Annex

Structure of the main part

against excessive pressure

Europ	ean toreword			
Introduction				
1				
2	Normative references			
3	Terms and definitions			
4	Symbols			
5 6	Process flow-chastricken um Link zu folgen	1 4		
6	Risk assessment			
	Protection concepts	2 1		
7 8	Dimensioning of pressure relief devices	2		
9	Pressure relief devices	42		
10	Substance release	43		
11	Operation of helium cryostats	4 4		

Risk assessment

Definition of 15 risk scenarios as "sources of excessive pressure"

Loss of insulating vacuum	Loss of beamline vacuum	Leak of cryogenic fluid
Quench of sc. device	Dielectric breakdown	Thermal acoustic oscillation
Cryopumping	Entrapment of cryogenic fluid	Power failure
Pressure surge	Freezing	Backflow
Other sources	Earthquake	Fire

- Relevant for dimensioning (others t.b. mitigated)
- Three phases of risk assessment

against excessive pressure

- Risk assessment before ordering (qualitative, HAZOP or equiv. method)
- 2) Risk assessment in the design phase (quantitative, FMEA or equiv. method)

Steffen Grohmann - A new European Standard for the protection of helium cryostats

3) Evaluation of risks by the end-user (National implementations of EU Health and Safety at Work Directive 2009/104/EC)

7 Protection concepts

- Single-stage protection concept as minimum requirement
- Multi-stage protection concepts
 - Primary PRD completely fulfills the pressure protection at the maximum allowable pressure $p_{\rm s}$ in compliance with the PED and based on the MCI
 - Secondary PRD at either $p_0 < p_s$ or $p_0 > p_s$, either in series or in parallel
 - Particular requirements for five types of helium cryostats

Steffen Grohmann - A new European Standard for the protection of helium cryostats

- 1) High-pressure superconducting magnet cryostats
- 2) Low-pressure helium cryostats, such as superconducting RF cavities
- 3) Sub-atmospheric helium cryostats

against excessive pressure

- 4) He-II cryostats
- 5) Ultra-low temperature refrigerator systems

PRD: Pressure relief device

PED: Pressure equipment directive

MCI: Maximum credible incident

Dimensioning of pressure relief devices

Steffen Grohmann - A new European Standard for the protection of helium cryostats

- The dimensioning of PRD is generally based on
 - Mass-specific energy/momentum conservation + continuity equation for one-dimensional, frictionless, compressible, steady-state and adiabatic fluid flow through short nozzles (with correction factors for non-ideal behavior)
- Basic equation $A_{\rm th} = \frac{\dot{M}}{\rho_{\rm th} \cdot c_{\rm th}}$

against excessive pressure

- \dot{M} relieving mass flow rate \rightarrow from the heat load in different risk scenarios
- $\rho_{\rm th}$ density in the throat
- $c_{
 m th}$ velocity in the throat

 $\dot{m}_{\rm th}$ mass flux \rightarrow two types of models

Dimensioning of pressure relief devices

Steffen Grohmann - Status of a European Standard for the protection of helium

- Homogeneous equilibrium model (HEM or G-model)
 - No case definition in throat needed
 - One equation, few operations
 - Software for calculation needed (MS Excel sufficient)
 - Access to helium EoS needed

Recommended method in the main part

cryostats against excessive pressure

- Case-specific model
 - Consistent with ISO 4126-7:2013 and ISO 21013-3:2016
 - Simpler, but more individual calculations steps
 - Definition of fluid state in the throat needed before dimensioning
 - More equations to solve, error-prone

Presented in the **Annex** as alternative method

Further aspects

- Pressure relief devices
 - Emphasis on operating characteristics and tolerances particularly relevant for the combination of PRD in multi-stage protection concepts
- Substance release
 - Requirements for helium discharge lines and helium recovery systems
 - Direct helium release to the environment
- Operation of helium cryostats

against excessive pressure

- User requirements regarding the inspection before commissioning
- Periodic inspections and maintenance of pressure relief devices

Summary and outlook

- Foundation of new working group CEN/TC 268/WG6 in 07/2017
 - "Specific helium technology applications"
- Actual project: New European Standard
 - ▶ Title "Helium cryostats Protection against excessive pressure"
 - Participating experts from 6 European countries, both from industry and research organizations
 - Publication of the draft Standard is planned in late 2019
 - Follow-up project after publication on harmonization with the PED

THANK YOU FOR YOUR ATTENTION!

14