1. The problem

Let’s make an educated guess: About how many percent of problems related to the disposal of nuclear waste in an underground repository depend on the tectonic stress field (Fig. 1)?

While the Swiss NAGRA relates that many (Fig. 1) site selection indicators in the disposal of nuclear waste to the tectonic stress field, there is only little known about it, especially about its magnitude (Fig. 2).

Indeed, the stress field is crucial not only in terms of finding a repository for nuclear waste – it is also important for hydrocarbon and geothermal wells, long term save storage of oil and gas and other geomechanical operations.

2. The project

The SpannEnD ("Spannungsmodell Endlagerung Deutschland") project is a collaboration between the GFZ, TUDA and KIT and is funded by the BMWi. Its main objective is to set up a calibrated, numerical 3D geomechanical model that will allow for spatially continuous predictions of the 3D stress tensor in Germany. These predictions can be used as boundary conditions for geomechanical models on a more local scale, especially in areas without stress data.

To calibrate this model, a database for magnitudes of tectonic stresses in Germany will be compiled.

3. The road to the model

The boundaries of the modelling area (Fig. 3) were chosen perpendicular or parallel to known stress orientations and to major tectonic features. Most of the modelling area is covered by pre-existing models which will be altered to satisfy the needs of a geomechanical model. Furthermore, crucial faults have to be identified and implemented (Fig. 3). The model will be discretized in Hypermesh and ABAQUS will be used to calculate the tectonic stresses.

4. The model

The model’s dimensions are 1000 km x 1400 km x 100 km. At the moment it comprises approximately 1.600.000 elements and while the lateral resolution is 6 km x 6 km, the vertical resolution decreases with increasing depth.

Currently, the model consists of four layers: sediments, the crystalline basement, the crust and the lithospheric mantle (Fig. 4).

Important parameters will be density and stiffness of the sediment layers, a final fault selection and the calibration of the model with stress magnitude data.

5. Summary

The SpannEnD project aims to set up a 3D geomechanical numerical model of Germany to allow for predictions of the 3D stress tensor in Germany. A newly compiled database for tectonic stresses will be used for the model calibration.

---

1 Institute of Applied Geosciences – Karlsruhe Institute of Technology, Germany (karlsruhe@kit.edu)
2 TU Darmstadt, Institute of Applied Geosciences, Germany
3 GFZ German Research Centre for Geosciences, Potsdam, Germany

www.SpannEnd-Projekt.de