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haltlich übernommenen Stellen als solche kenntlich gemacht habe. Ich habe die
Satzung des Karlsruher Institutes für Technologie (KIT) zur Sicherung guter wis-
senschaftlicher Praxis beachtet.

Heidelberg, 15.01.2020

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(Lucas Czech)



iv



Zusammenfassung

Die DNS (englisch: DNA) bildet die vererbbare Grundlage allen bekannten Lebens
auf dem Planeten. Entsprechend wichtig ist ihre“Entschlüsselung”für die Biologie im
Allgemeinen, und für die Erforschung der evolutionären Zusammenhänge verschiede-
ner biologischer Artern im Besonderen. In den letzten Jahrzehnten hat eine rasante
technologische Entwicklung im Bereich der DNS-Sequenzierung stattgefunden, die
auch auf absehbare Zeit noch nicht zum Stillstand kommen wird. Die biologische
Forschung hat daher den Bedarf an computer-gestützten Methoden erkannt, sowohl
in Bezug auf die Speicherung und Verarbeitung der immensen Datenmengen, die bei
der Sequenzierung anfallen, als auch in Bezug auf deren Analyse und Visualisierung.

Eine grundlegene Fragestellung ist dabei die nach dem Stammbaum des Lebens,
der die evolutionäre Verwandtschaft der Arten beschreibt. Diese Wissenschaft wird
Phylogenetik, und die resultierenden Strukturen phylogenetische Bäume genannt.
Häufig basieren diese Bäume auf dem Vergleich von DNS-Sequenzen der Arten, mit
der Idee, dass Arten mit ähnlicher DNS auch im Baum nah beieinander liegen.
Die Berechnung eines solchen Baumes aus DNS-Daten kann als Optimierungspro-
blem formuliert werden, das durch die stetig wachsende Menge an Daten für die
Informatik eine Herausforderung darstellt. Aktuell beschäftigt sich die Mikrobiolo-
gie zum Beispiel mit der Erkundung und Erforschung von Proben (Samples), die aus
Meereswasser, dem Erdreich, dem menschlichen Körper, und ähnlichen Umgebun-
gen gewonnen wurden: Welche mikrobischen Arten, Bakterien und andere Einzeller,
bewohnen diese Umgebungen und Proben? Das zugehörige Forschungsfeld ist die
Meta-Genetik. Einen verlässlichen Stammbaum für die aber-millionen an Sequenzen
aus solchen Proben zu errechnen ist praktisch unmöglich. Eine Alternative bietet
die phylogenetische Platzierung der Sequenzen auf einem gegebenen Referenz-Baum
von bekannten Arten (so genanntes phylogenetisches Placement): Hierbei wird ein
Stammbaum aus Referenz-Sequenzen bekannter Arten gewählt, der möglichst viel
der in den Proben zu erwartenden Artenvielfalt abdeckt, und dann für jede Sequenz
aus den Proben die nächste Verwandtschaft innerhalb des Baumes bestimmt. Dies
resultiert in einer Zuordnung von Sequenzen auf die Positionen verwandter Arten
im Referenz-Baum. Diese Zuordnung kann auch als Verteilung der Sequenzen auf
dem Baum verstanden werden: In dieser Interpretation kann man beispielsweise er-
kennen, welche Arten (und deren Verwandtschaft) besonders häufig in den Proben
vertreten sind.
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Diese Arbeit beschäftigt sich mit neuen Methoden zur Vor- und Nachbereitung, Ana-
lyse, und Visualisierung rund um den Kernbereich des phylogenetischen Placements
von DNS-Sequenzen. Zunächst stellen wir eine Methode vor, die einen geeigneten
Referenz-Baum für die Platzierung liefern kann. Die Methode heißt PhAT (Phy-
logenetic Automatic (Reference) Trees), und nutzt Datenbanken bekannter DNS-
Sequenzen, um geeigenete Referenz-Sequenzen für den Baum zu bestimmen. Die
durch PhAT produzierten Bäume sind beispielsweise dann interessant, wenn die in
den Proben zu erwartende Artenvielfalt noch nicht bekannt ist: In diesem Fall kann
ein breiter Baum, der viele der bekannten Arten abdeckt, helfen, neue, unbekannte
Arten zu entdecken. Im gleichen Kapitel stellen wir außerdem zwei Behilfs-Methoden
vor, um den Prozess und die Berechnungen der Placements von großen Datensätzen
zu beschleunigen und zu ermöglichen. Zum einen stellen wir Multilevel-Placement
vor, mit dem besonders große Referenz-Bäume in kleinere, geschachtelte Bäume
aufgeteilt werden können, um so schnellere und detalliertere Platzierungen vorneh-
men können, als auf einem einzelnen großen Baum möglich wären. Zum anderen
beschreiben wir eine Pipeline, die durch geschickte Lastverteilung und Vermeidung
von Duplikaten den Prozess weiter beschleunigen kann. Dies eignet sich insbesonde-
re für große Datensätze von zu platzierenden Sequenzen, und hat die Berechnungen
erst ermöglicht, die wir zum testen der im weiteren vorgestellten Methoden benötigt
haben.

Im Anschluss stellen wir zwei Methoden vor, um die Placement-Ergebnisse ver-
schiedener Proben miteinander zu vergleichen. Die Methoden, Edge Dispersion und
Edge Correlation, visualisieren den Referenz-Baum derart, dass die in Bezug auf die
Proben interessanten und relevanten Regionen des Baumes sichtbar werden. Edge
Dispersion zeigt dabei Regionen, in denen sich die Häufigkeit der in den Proben
vorhandenen mikrobischen Arten besonders stark zwischen den einzelnen Proben
unterscheided. Dies kann als erste Erkundung von neuen Datensätzen dienen, und
gibt Aufschluss über die Varianz der Häufigkeit bestimmter Arten. Edge Correlati-
on hingegen bezieht zusätzlich Meta-Daten mit ein, die zu den Proben gesammelt
wurden. Dadurch können beispielsweise Abhängigkeiten zwischen Häufigkeiten von
Arten und Faktoren wie dem pH-Wert des Bodens oder dem Nitrat-Gehalt des Was-
sers, aus dem die Proben stammen, aufgezeigt werden. Es hat damit Ähnlichkeiten
zu einer bestehenden Methode names Edge PCA, die ebenfalls relevante Regionen
des Baumen identifizieren kann, allerdings die vorhandenen Meta-Daten nur indirekt
einbeziehen kann.

Eine weitere Fragestellung ist die Gruppierung (Clustering) von Proben anhand
von Gemeinsamkeiten, wie beispielweise einer ähnlichen Verteilungen der Sequenzen
auf dem Referenz-Baum. Anhand geeigneter Distanz-Maße wie der Kantorovich-
Rubinstein-Distanz (KR-Distanz) können Ähnlichkeiten zwischen Proben quantifi-
ziert werden, und somit ein Clustering erstellt werden. Für große Datensätze mit
hunderten und tausenden von einzlnen Proben stoßen bestehende Methoden für
diesen Einsatzzweck, wie zum Beispiel das so genannte Squash Clustering, an ih-
re Grenzen. Wir haben daher die k-means-Methode derart erweitert, dass sie für
Placement-Daten genutzt werden kann. Dazu präsentieren wir zwei Methoden, Phy-
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logenetic k-means und Imbalance k-means, die verschiedene Distanzmaße zwischen
Proben (KR-Distanz, und ein weiteres geeignetes Maß) nutzen, um Bäume mit ähnli-
chen Verteilungen von platzierten Sequenzen zu gruppieren. Sie betrachten jede Pro-
be als einen Datenpunkt, und nutzen die zugrunde liegende Struktur des Referenz-
Baumes für die Berechnungen. Mit diesen Methoden können auch Datensätze mit
zehntausenden Proben verarbeitet werden, und Clusterings und Ähnlichkeiten von
Proben erkannt und visualisiert werden.

Wir haben außerdem ein Konzept namens Balances für Placement-Daten adap-
tiert, welches ursprünglich für so genannte OTU-Sequenzen (Operational Taxonomic
Units) entwickelt wurde. Balances erlauben eine Beschreibung des Referenz-Baumes
und der darauf platzierten Sequenzen, die ganze Gruppen von Referenz-Arten zu-
sammenfasst, statt jede Art einzeln in die Berechnungen einfließen zu lassen. Diese
Beschreibung der Daten bietet verschiedene Vorteile für die darauf basierenden Ana-
lysen, wie zum Beispiel eine Robustheit gegenüber der exakten Wahl der Referenz-
Sequenzen, und einer anschaulichen Beschreibung und Visualisierung der Ergebnisse.
Insbesondere aus mathematischer Sicht sind Balances für die Analyse interessant, da
sie problematische Artefakte aufgrund der kompositionellen Natur meta-genetischer
Daten beheben. Im Zuge dieser Arbeit dienen Balances hauptsächlich als Zwischen-
schritt zur Daten-Repräsentation.

Eine Anwendung von Balances ist die so genannte Phylofactorization. Diese recht
neue Methode teilt einen gegebenen Baum derart in Sub-Bäume ein, dass jeder Sub-
Baum eine Gruppe von Arten darstellt, die in Bezug auf gegebene Meta-Daten pro
Probe relevant sind. Dadurch können beispielsweise Gruppen identifiziert werden,
deren evolutionäre Merkmale sich in Abhängigkeit von Meta-Daten wie pH-Wert an-
gepasst haben im Vergleich zu anderen Gruppen. Dies ist ähnlich zur oben genannten
Edge Correlation, aber kann zum einen durch geschickte mathematische Ansätze
(insbesondere der Nutzung von Generalized Linear Models) mehrere Meta-Daten
gleichzeitig einbeziehen, und zum anderen auch verschachtelte Gruppen finden. Die
zugrunde liegenden Ideen dieser Methoden bieten einen großen Spielraum sowohl für
Analysen von Daten, als auch für Weiterentwicklungen und Ergänzungen für ver-
wandte Fragestellungen. Wir haben diese Methode für Placement-Daten adaptiert
und erweitert, und stellen diese Variante, genannt Placement-Factorization, vor. Im
Zuge dieser Adaption haben wir außerdem verschiedene ergänzende Berechnungen
und Visalisierungen entwickelt, die auch für die ursprüngliche Phylofactorization
nützlich sind.

Alle genannten neuen Methoden wurden ausführlich getestet in Bezug auf ihre Eig-
nung zur Erforschung von mikrobiologischen Zusammenhängen. Wir haben dazu
verschiedene bekannte Datzensätze von DNS-Sequenzen aus Wasser- und Bodenpro-
ben, sowie Proben des menschlichen Mikrobioms, verwendet und diese auf geeigneten
Referenz-Bäumen platziert. Anhand dieser Daten haben wir zum einen die Plausi-
bilität der durch unsere Analysen erzielten Ergebnisse geprüft, als auch Vergleiche
der Ergebnisse mit ähnlichen, etablierten Methoden vorgenommen. Sämtliche Analy-
sen, Visualisierungen, und Vergleiche werden in den jeweils entsprechenden Kapiteln
vorgestellt, und die Ergebnisse dargestellt. Alle Tests zeigen, dass unsere Methoden
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auf den getesteten Datensätzen zu Resultaten führen, die konsistent mit anderen
Analysen sind, und geeignet sind, um neue biologische Erkenntnisse zu gewinnen.

Sämtliche hier vorgestellten Methoden sind in unserer Software-Bibliothek genesis
implementiert, die wir im Zuge dieser Arbeit entwickelt haben. Die Bibliothek ist
in modernem C++11 geschrieben, hat einen modularen und funktions-orientierten
Aufbau, ist auf Speichernutzung und Rechengeschwindigkeit optimiert, und nutzt
vorhandene Multi-Prozessor-Umgebungen. Sie eignet sich daher sowohl für schnelle
Tests von Prototypen, als auch zur Entwicklung von Analyse-Software für Endan-
wender. Wir haben genesis bereits erfolgreich in vielen unserer Projekte eingesetzt.
Insbesondere bieten wir sämtliche hier präsentierten Methoden über unser Software-
Tool gappa an, das intern auf genesis basiert. Das Tool stellt einen einfachen
Kommandozeilen-Zugriff auf die vorhandenen Analysemethoden bereit, und bietet
ausreichend Optionen für die Analysen der meisten End-Anwender.

Im abschließenden Kapitel wagen wir einen Ausblick in weitere Forschungsmöglich-
keiten im Bereich der Methoden-Entwicklung für meta-genetische Fragestellungen
im Allgemeinen, und der placement-basierten Methoden im Speziellen. Wir benen-
nen verschiedene Herausforderungen in Bezug auf die Nutzbarkeit solcher Methoden
für Anwender und ihrer Skalierbarkeit für immer größer werdende Datensätze. Au-
ßerdem schlagen wir verschiedene weitergehende Ansätze vor, die zum Beispiel auf
neuronalen Netzwerken und Deep Learning basieren könnten. Mit aktuellen Da-
tensätzen wären solche Methoden nicht robust trainierbar; durch das in Zukuft zu
erwartenden Wachstum an Daten kann dies allerdings bald in den Bereich des Mög-
lichen kommen. Schließlich identifizierenden wir einige tiefer gehende Forschungs-
fragen aus der Biologie und Medizin, bei deren Beantwortung unsere Methoden in
Zukunft helfen können.



Abstract

The DNA is the hereditary basis of all known life on the planet. Deciphering this
“code of life” is hence of key importance for biology in general, and for unravelling
the evolutionary relationships between biological species in particular. The last
few decades have seen rapid technological advances in DNA sequencing, with no
slowdown of this trend being in sight. Research in biology hence has high demand
for computational methods, both with respect to storage and processing of these
huge datasets, and with respect to analysis and visualization thereof.

A basic concept in biology is that of the tree of life, which describes the evolutionary
relationship between species. The respective field of science is called phylogenetics,
and the resulting structures are called phylogenetic trees. Often, these trees are
based on the comparison of DNA sequences of the species, and are build on the idea
that species with similar sequences are located on nearby branches of the tree. The
inference of such a tree based on DNA data can be formulated as an optimization
problem, that poses a challenge for computer science due to the ever increasing
amount of available data. For example, a current directive in micro-biology is to
investigate the composition of samples taken from environments such as ocean water,
soil, or the human body: Which microbial species, bacteria and other single cellular
organisms, are present in these environments and samples? This field of research
is called meta-genomics. It is infeasible to compute a robust phylogenetic tree for
the millions of sequences obtained from such samples. An alternative approach is
the so called phylogenetic placement of the sequences on a reference tree: Given
a tree of reference sequences of known species that covers the expected diversity
in the samples as much as possible, the evolutionary relationship of the sequences
in the samples to the reference tree is determined. This yields a mapping from
sequences to positions of related species in the reference tree. This mapping can
also be understood as a distribution of sequences on the tree: This interpretation
allows for example to visualize which species (and their next of kin) are frequently
present in the samples.

In this work, we developed novel methods for pre- and post-processing, analysis, and
visualization of phylogenetic placement of sequences. Firstly, we present a method to
automatically obtain a suitable reference tree to be used for placement. The method
is called PhAT (Phylogenetic Automatic (Reference) Trees), and uses databases of
known DNA sequences in order to determine suitable reference sequences. The trees
produced by PhAT are for example useful when the expected species diversity in the
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samples is not yet known: In this case, a broad tree that covers many known species
can help to discover novel, unknown species. In the same chapter, we also present
two auxiliary methods that accelerate and enable the process and the computa-
tions needed for the placement of very large datasets. On the one hand, we present
Multilevel-Placement, that uses a divide-and-conquer approach to split large refer-
ence trees into small, nested trees. It thereby improves speed and accuracy of the
placement process compared to using one large reference tree. On the other hand,
we describe a pipeline that maximizes load distribution and further accelerates the
placement process by avoiding duplicate computations. This is particularly suited
for large datasets, and was a necessary improvement to enable the computations
needed for the tests of the further methods presented in this work.

Subsequently, we present two methods to compare the placement results of distinct
samples with each other. The methods, Edge Dispersion and Edge Correlation,
visualize the reference tree so that the interesting and relevant regions of the tree
(with respect to the samples) become apparent. Edge Dispersion shows regions
where the frequency of microbial species in the samples differs most in between
samples. This can serve as a first exploration of a dataset, and indicates the variance
of the occurrences of species. Edge Correlation on the other hand additionally takes
meta-data into account that was collected per sample. It hence can for example show
the dependencies between occurrences of species and environmental factors such as
the pH-value of the soil, or the nitrate content of the water where each sample was
taken from. This bears some similarity to an existing method called Edge PCA,
which also highlights relevant regions of the reference tree, but can only indirectly
incorporate meta-data features.

Another research question is that of grouping or clustering of samples based on
similarities, for example a similar distribution of sequences on the reference tree.
By using suitable distance measures such as the Kantorovich-Rubinstein distance
(KR distance), similarities between samples can be quantized, and leveraged to
cluster them. For large datasets with hundreds to thousands of distinct samples,
existing methods for this purpose, such as the so called Squash Clustering, reach
their scalability limits. We thus extended the k-means method to be applicable to
placement data. To this end, we present two methods, Phylogenetic k-means and
Imbalance k-means, that use two different distance measures between samples (KR
distance, and another suitable measure) to cluster trees with similar distributions
of placed sequences. These methods regard each sample as a distinct data item,
and use the underlying structure of the reference tree for the computations. These
methods can be applied to datasets with tens of thousands of samples, in order to
find clusters and similarities between samples, and visualize these.

Furthermore, we adapted a concept called Balances to placement data, which was
originally intended for so called OTU sequences (Operational Taxonomic Units).
Balances allow for a description of the reference tree and the sequences placed on it
in a way that summarizes groups of referece species, instead of taking each species
into account individually. This description of the data offers several advantages for
subsequent analysis steps; for example, it is robust in terms of the exact choice of
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reference sequences, and offers an intuitive way of visualizing results obtained from
these analyses. Balances are in particular helpful from a mathematical standpoint,
as they circumvent problematic artifacts due to the compositional nature of meta-
genomic data. In this work, balances are mainly used as an intermediate step for
data representation purposes.

One application of balances is the so called Phylofactorization. This relatively recent
method splits a given tree into a set of sub-trees so that each sub-tree represents
a group of species that are relevant with respect to the meta-data features of the
given samples. This allows for example to identify groups whose evolutionary traits
changed depending on meta-data such as pH-value in comparison to other groups.
This is similar to the Edge Correlation method mentioned above, but further al-
lows to incorporate several meta-data features at once and can find nested groups of
species, by leveraging mathematical approaches such as Generalized Linear Models.
The underlying concepts of Phylofactorization are versatile both for data analysis as
well as for extension and adaptation to releated research questions. We have adapted
the method to placement data, and present this variant, which we call Placement-
Factorization. Additionally, we developed several auxiliary computations and visu-
alizations of the results that are also useful for the original Phylofactorization.

All mentioned novel methods were extensively tested with respect to their suitability
for discovering biological knowledge. To this end, we used several DNA sequence
datasets from water and soil, as well as from the human body, and phylogenetically
placed them on suitable reference trees. Based on this, we tested the plausibility of
the results obtained from our analyses, and compared them to the results of simiar,
established methods. All analyses, visualizations, and comparisons are described in
detail in the respective chapters, along with the results and their interpretations. All
tests show that our methods yield results on the datasets that are consistent with
other types of analyses, and are suitable for discovering novel biological knowledge.

The methods presented here are implemented in our software library genesis, which
we devloped alongside this work. The library is written in modern C++11, has a
modular and function-oriented design, is optimized for memory consumption and
computing speed, and leverages multi-core environments. It is hence suitable for
rapid testing of prototype software, as well as for developing analysis software for
end users. We already have successfully deployed genesis in several of our projects.
In particular, all presented methods are incorporated into our command line tool
gappa, which is internally based on genesis. The tool has a simple command line
interface to our analysis methods that offers sufficient options for most end users.

In the final chapter, we dare an outlook into possible research directions for method
development in meta-genetics in general, and placement-based methods in partic-
ular. We identify several challenges with respect to the usability of such methods
for researchers, and their scalability to ever larger datasets. Furthermore, we sug-
gest several further approaches, for instance based on neural networks and deep
learning. With current datasets, such methods cannot robustly be trained; due to
the expected growth of data in the near future however, such approaches are likely
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to become feasible. Finally, we identify some in-depth research questions from the
fields of biology and medicine for which our methods might be useful in the future.
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1. Introduction

1.1 Background and Motivation

The concept of evolution is one of the cornerstones of modern biology [84]. All life
on earth descends from a common ancestor and continuously evolves and adapts
over generations, which leads to a diversification of biological species. The resulting
branching pattern of the evolutionary relationships between species is the key for
unraveling many biological questions, ranging from paleontology [317] to medicine
[145]. These evolutionary relationships are described by phylogenetic trees (Sec-
tion 2.3), which are important in both fundamental [167, 261, 398] and applied
research [118, 150, 321].

Characteristics and traits of biological species are inherited via their DNA (Sec-
tion 2.1). DNA data is hence often used for inferring a phylogenetic tree for a set
of species (Section 2.4). In order to conduct such analyses, the DNA has to be
sequenced, that is, it has to be “read” into some human-accessible format, typically
in form of a sequence of characters (Section 2.2). In recent decades, the through-
put of sequencing technologies has increased substantially, while at the same time,
the cost has decreased faster than Moore’s law, as shown in Figure 1.1. Currently,
the sequencing capacity doubles roughly every seven months [345]. This lead to
a “tsunami” of sequence data, which constitutes a major challenge for conducting
computational analyses of these data.

In particular, these high-throughput technologies allow to directly sequence DNA
contained in samples that have been extracted from environments such as water,
soil, or the human gut. This results in so-called metagenomic sequences, that is,
anonymous DNA sequences from the (microbial) organisms that were present in the
environmental sample. A key question in the analysis of such data is to determine
the evolutionary relationships of the sequences. While these DNA sequences can hy-
pothetically be used to infer phylogenetic trees from scratch, this approach is limited
by several theoretical and practical difficulties: For instance, typical metagenomic
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Figure 1.1: Sequencing costs per Mbp and per genome. The cost for DNA
sequencing have decreased substantially in the past 15 years. The figure shows the
cost per mega-basepair (Mbp) of DNA (red line, left y-axis) as well as the cost per
human-sized genome of ≈ 3 Gbp (blue line, right y-axis). A basepair represents one
character in the DNA. Note the logarithmic scaling of the y-axes. For comparison,
Moore’s law [263] is shown. The particularly steep decrease in the beginning of
2008 is caused by the adoption of novel (high-throughput) sequencing technologies
in sequencing centers, see Section 2.2.1. Source: Image based on data from [383].

samples contain too many, and too short, sequences for a feasible and reliable tree
inference [166, 241].

One approach to tackle this issue is to deploy so-called phylogenetic placement
[25, 241] of metagenomic sequences on a given phylogenetic tree (Section 2.5). Phy-
logenetic placement methods classify a set of query sequences into the context of
known evolutionary relationships, provided in form of a phylogenetic reference tree.
While this information already represents biological knowledge per se, it can also be
used for further downstream analyses [239]. Although such phylogeny-aware meth-
ods offer large potential for sequence data analysis and interpretation, the research
in this field is relatively recent and only a few such analysis methods have been
developed so far.

An important task prior to conducting phylogenetic placement of metagenomic se-
quences is to obtain a suitable phylogenetic reference tree that captures the biological
diversity of the species to be placed. The assembly of a set of reference sequences
from biological databases that can be used to infer such a tree is typically a manual
process, and hence both labor-intensive and potentially error-prone. This might de-
tain researchers from employing phylogenetic placement in the first place, and make
them resort to simpler methods based on sequence similarity/identity instead.
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Furthermore, while the existing downstream analysis methods for phylogenetic place-
ment (introduced in Section 2.5.5) allow for in-depth interpretation and visualization
of the data, they were not developed with a particular focus on large-scale studies
comprising thousands of environmental samples and billions of sequences. For large
datasets, these methods might provide too much detail, making it hard to interpret
results, to detect patterns or clusters in the data, and to discover correlations with
per-sample meta-data.

Lastly, the problem of scalability on large datasets does not only affect the methods
themselves. Because of the ever growing amount of sequence data, scalability is
becoming an issue for the software pipelines as well. State-of-the-art phylogenetic
placement implementations can process billions of sequences within a few hours [18].
Methods for handling and analyzing the data, in particular phylogenetic placement
data, hence require efficient and scalable software implementations.

1.2 Scientific Contribution

This thesis makes several contributions to the field of computational phylogenetics,
specifically regarding phylogenetic placements as well as analyzing and visualizing
the resulting data. In particular, we introduce multiple novel methods to overcome
the issues and limitations explained above. We described the methods in two already
peer-reviewed open-access publications [67, 69], and made their data and scripts
available at http://github.com/lczech/placement-methods-paper. We provide
an overview of these methods in Section 1.3; more details on the contribution of
each method to the research community are provided in the respective chapters.

Apart from the two publications on which this thesis is based, we published a review
on several software tools for visualizing phylogenetic trees [68]. In this publication,
we investigated whether certain types of per-branch and per-node meta-data of phy-
logenetic trees were correctly displayed in 20 distinct widely used tree visualization
tools. We found that most of the tested tools exhibited problems or undocumented
behavior and did not properly support the Newick file format for phylogenetic trees.
We also showed that this has already affected trees published in peer-reviewed jour-
nals. At the time of its publication, our review had already led to improvements in
eight of the twenty tested tools.

In addition to these theoretical projects, we also contributed to several empirical data
analysis studies by conducting established analyses as well as testing prototypes of
our novel methods presented here. In particular, we ran the phylogenetic analyses
for a study of 154 locations in neotropical rainforest soils, which was published in
Nature Ecology & Evolution [230]. The study found that the microbial diversity in
these soils is dominated by hyper-diverse protistic parasites. For this project, we
developed prototypes of our multilevel placement approach (Section 3.2.2) as well
as of some visualization techniques (Section 4.1).

Further data analysis studies that we contributed to include the 1KITE project [261]
(http://1kite.org), for which we conducted phylogenetic tree reconstructions for

http://github.com/lczech/placement-methods-paper
http://1kite.org
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a diverse set of 1500 insects, as well as a study of Microsporidia and Cryptomycota
[20], to which we contributed phylogenetic placement analyses in order to resolve
some branches in the phylogenetic tree of these groups of microbial Eukaryota. An
ongoing large-scale endeavor is the UniEuk project [27], which aims to offer a uni-
fied reference database for the Eukaryota. For UniEuk, we provided consultancy and
helped in planning workflows and pipelines. Furthermore, for its sub-project Euk-
Bank, we conducted preliminary phylogenetic analyses of their entire metagenomic
database as a showcase for other researchers. In a current empirical data analy-
sis project, we develop tools for analyzing a dataset of microbial Eukaryota [164].
The goal is to show that novel sequencing technologies that yield longer sequences
per run can improve taxonomic and phylogenetic analyses compared to other se-
quencing technologies. Lastly, we are currently working on an empirical dataset of
Dinoflagellates, for which we also conducted phylogenetic placement analyses.

We implemented all of our novel methods in C++11, and provide the resulting code in
our open-source library genesis (https://github.com/lczech/genesis). Apart
from the novel methods, the library provides efficient re-implementations of existing
methods, for example the Edge PCA and Squash Clustering methods of guppy [241],
which we introduce in Section 2.5.5. Our implementations are faster than the original
one by orders of magnitude [69]. Furthermore, the library also offers a multitude of
data structures and functions for working with phylogenetic placements, genetic se-
quences, phylogenetic trees, taxonomies, and many other data types. It also provides
a plethora of auxiliary functions for tasks such as visualization, statistical evalua-
tion, and data storage. Moreover, in order to also offer a user-friendly command
line interface for the most important novel and established methods, we developed
the open-source tool gappa (https://github.com/lczech/gappa), which stands
for “Genesis Applications for Phylogenetic Placement Analysis”. It is intended for
researchers who desire to conduct analyses using our methods. It internally uses the
genesis library for its computations. For details on the software implementations,
see Appendix C. We also published an application note [70], which describes gene-
sis and gappa in detail, and evaluates their runtime and memory requirements in
comparison to analoguous software.

Moreover, we contributed to several other open-source bioinformatics pipelines and
software projects. We helped to develop an efficient approach for merging so-called
paired-end reads and provided SIMD (single instruction, multiple data) implementa-
tions using SSE and AVX instructions to accelerate the merging algorithm [116]. Again
for acceleration, we implemented a custom MPI wrapper for PaPaRa 2.0 [23, 24],
which we made available at https://github.com/lczech/papara_nt. PaPaRa
is a tool for aligning query sequences to a given reference alignment and phylo-
genetic tree, which is a necessary pre-processing step for phylogenetic placement.
During the development of the recent high-performance re-implementation of the
phylogenetic placement algorithm in EPA-ng [18], we provided support for soft-
ware design decisions and implementation details. Also, our genesis library was
used and extended for this project. We moreover contributed to the implementation
and acceleration of a novel quartet-based method to accurately and robustly mea-

https://github.com/lczech/genesis
https://github.com/lczech/gappa
https://github.com/lczech/papara_nt
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sure incongruence between phylogenetic trees [403]; the genesis library was used
for this project as well. Furthermore, we contributed code to the sequence clustering
tool swarm [228, 229], which we briefly introduce in Section 2.2.5. Our code was
the basis for accelerating the runtime of the tool by factors of up to 20-fold, while at
the same time significantly reducing its memory requirements. These improvements
will be part of the upcoming version 3 of swarm. Lastly, we are currently working
on scrapp, a pipeline that combines several tools developed in our lab, such as
EPA-ng [18], ParGenes [265], and mPTP [173], in order to estimate the species
diversity of metagenomic sequence samples based on phylogenetic placement data;
see also Chapter 8.

1.3 Structure and Overview

The remainder of this thesis is structured as follows. Initially, we introduce the gen-
eral concepts and existing methods of computational phylogenetics and phylogenetic
placement (Chapter 2). In subsequent chapters, we describe our novel methods for
conducting and analyzing phylogenetic placements: Firstly, we describe an auto-
mated approach for obtaining suitable reference trees for phylogenetic placement, as
well as pre-processing pipelines to accelerate and enable phylogenetic placement of
large metagenomic datasets (Chapter 3). Secondly, we introduce methods to visual-
ize such large datasets in order to detect patterns within the data and correlations
with per-sample meta-data (Chapter 4). Then, we present an approach for cluster-
ing metagenomic samples by measuring similarity between samples in terms of the
species diversity they contain (Chapter 5). In between, we describe an adaptation
of a novel type of data representation to phylogenetic placement data (Chapter 6).
Lastly, we present an adaptation of a recent method called Phylofactorization to
phylogenetic placement data (Chapter 7), which allows to find parts of a given ref-
erence tree that are meaningful with respect to meta-data features collected per
environmental sample. Finally, we conclude and discuss potential directions of fu-
ture work (Chapter 8). We furthermore provide additional supporting information
(Appendix A), an overview of the empirical datasets used for our evaluations and
their pre-processing (Appendix B), as well as some information on our software
implementation (Appendix C).
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2. Foundations

This chapter mostly contains original contributions by Lucas Czech that were
created for this thesis. Some of the text and figures introducing phylogenetic
placements are however derived from the introductory sections of the following
peer-reviewed open-access publications:

Lucas Czech, Pierre Barbera, and Alexandros Stamatakis. “Methods
for Automatic Reference Trees and Multilevel Phylogenetic Placement.”
Bioinformatics, 2018, Volume 35, Issue 7, Pages 1151–1158.

Lucas Czech and Alexandros Stamatakis. “Scalable Methods for Ana-
lyzing and Visualizing Phylogenetic Placement of Metagenomic Samples.”
PLOS ONE, 2019, Volume 14, Issue 5, Page e0217050.

The respective texts and figures were originally created by Lucas Czech, and
modified here to fit into the context of this chapter. Furthermore, some of the
introductory figures in this chapter are derived from permissively licensed work
of others, as stated below the respective figures.

2.1 Evolution and Genetics

Life on Earth is at least 3.77 billion years old [85], and is continuously evolving due to
natural selection [73]. Driven by variation, biological populations diversify through
successive generations, leading to the emergence of new species. This continuous
process is called evolution [142]. Heritable characteristics are passed down from
parent to offspring, with occasional random mutations leading to variation. Thus,
some organisms are better adapted to their environment than others, and have
greater reproductive success. There is hence a natural selection for advantageous
mutations, which can subsequently spread through generations.
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The characteristics and traits of an organism are carried by, and inherited via, the
deoxyribonucleic acid (DNA). The DNA is the molecule that encodes the genetic
information needed for the functioning of all living organisms. It is structured in form
of a double helix [379], and built from two strands of molecules called nucleotides.
The nucleotides form the backbone of the double helix, and connect the two strands
via opposing pairs of nucleobases, see Figure 2.1(a). The redundant structure of
pairs of nucleobases stabilizes the DNA molecule, and also serves as a mechanism of
error correction when reading the genetic information during cellular processes. In
the DNA, there are four distinct nucleobases: adenine (A), cytosine (C), guanine (G),
and thymine (T), where A pairs with T, and C pairs with G, respectively, as shown in
Figure 2.1(b).

A
T

G

C

(a) (b)

Figure 2.1: DNA double helix and nucleobases. (a) The double helix structure
of the DNA, with the backbone in gray, connected by pairs of nucleobases. (b) The
atomic structure of the four nucleobases, and their connection to each other. Source
and license: see [66], image derived from [183, 338, 393, 394].

The sequence of nucleobases along the strands of DNA is what encodes the ge-
netic information used by all known living organisms. Parts of the DNA encode
for proteins, which perform a plethora of different and important functions within
organisms. Proteins consist of long chains of amino acid residues, and are assem-
bled in a process called protein (bio)synthesis. This is described by the central
dogma of molecular biology [62, 63]: First, DNA is transcribed into the intermediate
ribonucleic acid (RNA), which is then translated into the actual protein.

In each step of this process, the molecular alphabet used to encode information is
different. While DNA uses the four nucleobases as described above, in RNA, the
nucleobase uracil (U) is used instead of thymine (T). Proteins on the other hand
are mostly built from a set of 20 standard amino acids, with the exception of two
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non-standard amino acids that are not directly encoded in the DNA. The set of
rules used by the molecular machinery for translating nucleobases into amino acids
is called the genetic code: In a DNA sequence, three consecutive nucleobases are
needed to encode one amino acid [328].

The entirety of the genetic material of an organism, that is, its complete DNA
sequence, is called its genome. A gene is a sequence which codes for a molecule that
has a particular function, such as a protein [121]. The DNA and the genes are the
basic units of heredity. They vary across generations, and are under selection in the
process of evolution [74]. The study of genes, their variation and heredity is called
genetics [135].

2.2 Sequence Analysis

All life on this planet is related to each other and descends from a common ances-
tor. Still, it is remarkable that the basic molecular principles and mechanisms of
life—DNA, amino acids, and the genetic code—are virtually identical for all living
organisms. This implies that by understanding and comparing the genetic informa-
tion encoded in the genetic sequences of different organisms, one can understand the
diversification patterns of evolution [405].

2.2.1 Genome Sequencing

Prior to analyzing the DNA of an organism, the physical order of nucleobases in the
DNA molecule has to be determined. That is, the DNA has to be “read” and stored
in a human-accessible text format, typically a computer file. This technical process
is called DNA sequencing.

For many decades, the main technique for this purpose was Sanger sequencing [311,
312]. It is labor- and time-intensive, but through optimization and automation,
costs were constantly reduced. Eventually, this allowed for large-scale sequencing
projects, such as the Human Genome Project [362], which sequenced the whole
human genome comprising more than three billion nucleobases. Sanger sequencing
allows to determine long parts of the sequence at once (> 500 nucleobases), which
then have to be assembled to build the final genome sequence.

In the last decades, a variety of novel high-throughput sequencing (HTS) technologies
have been developed [131, 289, 303]. In particular, Next Generation Sequencing
(NGS) technologies [218, 234] have revolutionized biology by transforming it into a
data-driven and compute-intense discipline [103]. In recent years, Third and Fourth
Generation technologies have lead to even more substantial improvements [147, 256,
273, 280]. The costs of these technologies are decreasing faster than Moore’s law
[263, 383], as shown in Figure 1.1, while at the same time, their throughput (in terms
of sequences being produced) is increasing. This leads to an ever growing amount of
sequence data, which poses a challenge for computational methods analyzing these
data. Compared to Sanger sequencing, NGS technologies are generally cheaper and
faster [251, 371], but come at the price of introducing more errors in the sequence
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output, or only being able to determine shorter parts of the sequence at once. Both
limitations constitute a challenge for the subsequent assembly of the final sequence.

The result of DNA sequencing is a textual representation of the order of nucle-
obases. Although this representation ignores the physical and chemical properties
of the respective molecules, it is helpful in many applications, and allows to leverage
existing algorithms. Each contiguous sequence coming from the sequencing machine
is called a read. Reads are typically stored in the fastq file format [57]. Because
of the pairing of nucleobases, both DNA strands can be sequenced. These so-called
paired-end reads provide a means of error correction and can be merged to form a
final sequence representation [401]. The sequence representation of a read consists
of the characters A, C, G, and T. The resulting set of sequences is stored in formats
such as the fasta file format [287]. Due to the pairing of nucleobases, the length of a
DNA sequence is measured in base pairs (abbreviated bp): 1 bp represents one char-
acter in the file. The fastq or fasta files are then used as input for computational
methods for analyzing DNA sequences.

2.2.2 Metagenomics

Sanger sequencing requires careful preparation of the genetic material, and is thus
best suited for sequencing single organisms. There are however many (microbial)
organisms that cannot be cultured in the laboratory, and are hence hard to se-
quence with this technique. Apart from being cheaper, high-throughput sequencing
machines also “digest” all genetic material given to them. They thus allow for di-
rectly studying microbial samples that have been extracted from their environment
[97, 266, 349]. This enables to study environments such as water [123, 134, 174],
soil [92, 230], the human body [160, 238, 250, 375], and many others. Each sample
from such an environment represents a geographical location, a body site, a point
in time, etc. The DNA of all organisms present in a sample is sequenced, resulting
in a large number of reads per sample. These reads are anonymous, as it is unclear
to which organism they belonged to. The study of these data, that is, the genetic
material from environmental samples, is called metagenomics [277].

A first step in metagenomic studies often consists in characterizing the reads ob-
tained from an environment with respect to reference sequences of known species
[155]. Reads that are similar to (parts of) these reference sequences can be assigned
to them, while reads with low similarity to known sequences might originate from
novel, undescribed species [285, 354]. Key tasks in metagenomic studies are the
identification and classification of the anonymous reads (“Who is there?”), and their
functional annotation (“What are they doing?”) [81, 211, 285]. Typical pipelines
for both tasks are summarized in Figure 2.2 and described in more detail in the
following.

Functional annotation [343] is the prediction of the genetic functions of the se-
quences, and the inference of metabolic capacity of microbial communities [41]. As
the proteins that are needed in the pathways of such functions can be encoded by
genes across the genome, whole-genome sequencing is necessary to capture all genes
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Figure 2.2: Typical metagenomic sequencing pipelines. After collecting a
set of metagenomic samples from an environment such as soil, water, or the human
body, there are two commonly used approaches for sequencing the DNA contained in
the samples: (i) In shotgun sequencing, the DNA of the whole genome is fragmented
into pieces, resulting in reads that can be used for the prediction and annotation of
gene functions, or filtered for reads from a specific region. (ii) In targeted sequencing,
the DNA of a specific barcode region is first amplified via the PCR process, yielding
copies of the reads from the region which are then sequenced. Reads from certain
regions can be used for identification and classification of the organisms that were
present in the samples.

of interest. For example, in shotgun sequencing [10, 340], the DNA is fragmented
into small pieces within the size range that the sequencing technology that is de-
ployed can handle (typically, a few hundred bp). This allows to sequence all genetic
material contained in a sample. Thus, the resulting reads originate from different
parts of the genomes of their corresponding organisms, which can then be function-
ally annotated [125]. This however necessitates the use of whole-genome reference
sequences in order to be able to assign reads to known species and functions. Typ-
ical databases of reference sequences however lack many of the protein sequences
from the microbial species present in a sample, mostly because of the existence of
organisms that cannot be cultured [41].

For the task of identification and classification of reads however, whole genome
references are not needed. Instead, specific marker genes can be targeted, which
are gene regions that are known to be particularly well-suited for differentiating
between different species [302]. The use of marker genes to identify species is called
DNA (meta-)barcoding [80, 148, 314]; the technological method is called targeted
sequencing. The choice of genes to use as markers is important, and depends on the
types of organisms to be studied. A marker gene should ideally be present in all
organisms of interest, short enough to be sequenced with current technology, and
exhibit sufficient between-species variation to distinguish them from each other, and
finally show low within-species variation [194].
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In many metagenomic studies of Bacteria and Eukaryota, the 16S [381] and 18S
[252] rRNA regions are used as marker genes, respectively [385, 386]. These regions
belong to the small subunit (SSU) of the ribosomal ribonucleic acid (rRNA), which
is an essential component of the ribosome. The ribosome is a molecular machinery
that is responsible for protein synthesis (translation) in all living organisms. Often,
prior to sequencing, these regions are amplified by many orders of magnitude, using
the polymerase chain reaction (PCR) to create a sufficient number of copies of these
regions for sequencing [19]. The resulting reads are then de-replicated again, which
results in sequences called amplicons. The PCR amplification process however is
known to introduce biases [41, 219]. For example, the relative abundances of the
final amplicons do not necessarily reflect the original ratio of the input gene regions
[171, 208], which can be problematic in comparative studies (see also Section 2.5.3).
Still, this inexpensive method is commonly used in practice, particularly for the 16S
and 18S rDNA regions. We later discuss implications and solutions to normalizing
these abundances in Section 2.5.3.

An alternative to using PCR for obtaining reads from barcode regions is as follows.
First, shotgun sequencing is used to obtain reads from the entire genome of the
organisms in the sample. These reads are then filtered to only contain reads from
the target region, e. g., the 16S region for Bacteria, which capture the diversity of
the sample without bias. Such an approach are for example the so-called mitags
[219].

Because of the ubiquity of the 16S and 18S rDNA regions in organisms and, conse-
quently, in sequencing studies, many databases provide reference sequences of these
marker regions for known species. The reads or amplicons obtained from an environ-
mental sample can then be employed to estimate the composition and diversity of
the microbial community [157, 285], for example by comparison against the known
species in databases.

2.2.3 Sequence Alignment

Organisms that evolved from a (not too distant) common ancestor share genetic
information. Regions of their DNA that have a shared ancestry are called homologous
regions [184]. This homology is typically inferred from sequence similarity. However,
due to mutations, differences in the sequences can occur. There are three main types
of sequence mutations that can occur in the course of evolution: a substitution is
the exchange of a nucleobase for another; an insertion inserts one or more extra
nucleotides into the sequence; a deletion removes one or more nucleotides from the
sequence. The latter two types of mutations change the length of the sequence; a
mutation that is either an insertion or a deletion is called an indel.

Because of indels, sequences have to be aligned to each other in order to establish
and compare their homologous regions. That is, gap characters (-) have to be added
to the sequences such that homologous characters in the sequence get aligned to each
other. This results in an n×m matrix, where n is the number of sequences (rows),
and m is the number of homologous characters (columns), called sites. This matrix
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is called a multiple sequence alignment (MSA), or simply an alignment. Figure 2.3
shows an example of the alignment process and the resulting MSA.
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Figure 2.3: Multiple Sequence Alignment. The left hand side shows a set of
six sequences. Using an alignment algorithm, gaps are inserted into these sequences
at presumed indel positions. The right hand side shows the result of this process,
where homologous characters at the sites of the multiple sequence alignment (MSA)
are aligned to each other. Below the MSA, the majority rule consensus sequence is
shown, see Section 2.2.4.

Sequence alignment can be understood as an optimization problem under a given
optimality criterion. Identifying a suitable criterion is however often an empirical
rather than a theoretical issue [47, 369]. On the one hand, global alignments attempt
to align every character in every sequence, which is most useful for similar sequences
of roughly equal size. For example, the Needleman-Wunsch algorithm [268] is a gen-
eral global alignment technique based on dynamic programming, and appropriate
for the pairwise alignment of two sequences. On the other hand, local alignments
are better suited for dissimilar sequences which might contain similar regions within
a larger sequence context. The Smith-Waterman algorithm [332] is a general local
alignment technique using the same dynamic programming scheme, which addition-
ally allows to start and end at any place in the sequence, and again is most appro-
priate for pairwise alignments. As both algorithms have their particular use cases
[291], hybrid methods have also been developed [42]. Furthermore, for related tasks
such as searching and clustering of similar sequences, heuristic approaches such as
BLAST [8] and USEARCH [96] can calculate millions of near-optimal alignments
in reasonable time.

These algorithms are efficient for the pairwise alignment of two sequences. Calcu-
lating an MSA however has been shown to be NP-hard [170, 374]. Thus, for most
empirical datasets, other approaches and heuristics are needed [355]. Tools such
as CLUSTAL [151], MUSCLE [95], and MAFFT [176] can calculate multiple se-
quence alignments for many thousands of sequences. Their output is typically stored
in file formats such as fasta [287] or phylip [109].

A special use case for aligning sequences arises in metagenomic studies, where en-
vironmental sequences are often compared to a set of known reference sequences.
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In these studies, one often first calculates (or is given) an MSA of the reference
sequences, and then successively aligns the environmental sequences against this
MSA. This is because calculating an MSA for millions or billions of sequences from
scratch is too expensive even for modern tools. Hence, specialized algorithms for
this use case have been developed, such as PaPaRa [23, 24] and hmmalign, which
is a subprogram of the HMMER suite [93, 94].

2.2.4 Consensus Sequences

When working with a number of related but not identical sequences, it is often
convenient to “summarize” homologous characters in form of a consensus sequence.
Such a sequence is typically calculated based on the relative character frequencies per
alignment site. It then represents typical features and motifs of the input sequence
set.

The most straight-forward method is to construct majority rule consensus sequences
[76, 245], where each site is represented by the most frequent character at that site.
Figure 2.3 shows a corresponding example below the MSA on the right hand side.
In order to also include information from the less frequent characters at a site in
the consensus sequence, ambiguity characters can be used [161]. They allow to
denote multiple alternative nucleobases as a single character. For example, if the
nucleobases A and G are similarly frequent at a site, this site can be represented by
the ambiguity character R. See Table A.1 for the full list of character representations.

Using ambiguity characters allows for more involved consensus methods. For ex-
ample, threshold consensus sequences [75, 76] include the most frequent characters
that are needed to achieve some given frequency threshold per site, and represent
these characters by their ambiguity character. Furthermore, many methods based
on fixed thresholds have been proposed, such as Cavener’s method [50, 51]; see Day
and McMorris (1992) [76] for a review and comparison.

It is also possible (yet not common) to directly use the relative per-site character
frequencies in the mathematical frameworks of many downstream analysis methods.
This allows to leverage all of the information contained in the input set of sequences.
However, to our knowledge, there is no standard file format to store such information,
and consequently, no way of forwarding this information to the respective tools.

2.2.5 Operational Taxonomic Units

The metagenomic sequences obtained from environments such as soil or water are
usually anonymous (Section 2.2.2), as it is unclear to which organisms they originally
belonged to [277]. Furthermore, for most microbial organisms, traditional systems of
biological classification (Section 2.3.1) cannot be readily applied [31]. In many stud-
ies, a pragmatic solution is thus to group closely releated individuals into so-called
operational taxonomic units (OTUs) [334] instead. Most commonly, sequences are
grouped by similarity of a specific marker gene, such as 16S or 18S [31]. This al-
lows to define a microbial “species” concept, where OTUs represent proxy units for
assessing microbial (species) diversity through genetic (sequence) diversity. These
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units (the OTUs) are then defined by the—mostly arbitrary—similarity threshold
employed by the researcher; typically, 97% similarity is used.

There are different algorithms and methods for clustering sequences into OTUs, see
Chen et al. (2013) [54] for a review. Common tools for OTU clustering are UCLUST
[96], VSEARCH [306], and swarm [228, 229]. swarm works differently from other
methods and produces more“natural”OTU clusters based on a graph representation
of the sequences instead of simple similarity thresholds. This approach also helps to
reduce the number of OTUs, which can be inflated in similarity-based methods due
to sequencing errors [198, 229]. Although these tools employ different strategies and
concepts to cluster sequences, the resulting OTUs are generally consistent across
environments and yield comparable ecological results [318].

Once a sequence dataset has been clustered into OTUs, it can be summarized by the
per-sample abundances of representative sequences for each OTU. These OTU rep-
resentatives can be thought of as the cluster centroids resulting from the algorithm.
The data are most commonly stored in a so-called OTU (contingency) table that
lists the abundances (counts) of each OTU in each sample. Whether to use these
abundances for downstream analyses, or instead to use the presence/absence of each
OTU in a sample as an indicator of the sample diversity, depends on the research
question at hand. Furthermore, whether to use OTUs at all instead of all sequences
is a current debate [44, 126]. We further discuss these questions later in the context
of this work in Section 2.5.3. For broad-scale ecological studies however, which is
what we are mostly interested here, the obtained results are mostly consistent across
these variants [126].

2.3 The Tree of Life

The common evolutionary history of life gives rise to a branching pattern, where
new lineages split from a common ancestor. This branching pattern forms a tree-
like structure, which classifies organisms in a hierarchy based on common descent.

While this tree of life is an expedient and, hence, pervasive model [155, 258], it
ignores certain biological and evolutionary events. A strict hierarchy does not allow
for reticulate events, such as hybridization [226], genetic recombination [149], or
horizontal gene transfer [90, 275, 305]. Although approaches such as networks have
been proposed to model these events [46, 159], the simplicity of a hierarchy or a
tree structure still remains useful and is widely employed for classifying and naming
organisms, as well as understanding their evolutionary relationships.

2.3.1 Taxonomy and Nomenclature

Early attempts to classify organisms date back to the Greek philosopher Aristotle,
who used observable attributes to categorize living things into groups [204]. This
approach as well as the efforts of later centuries were non-uniform and inconsistent.
The basis for the modern system of classification was established by the Swedish
botanist Carl Linnaeus in the mid-18th century [86]. He proposed a nomenclature,
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that is, a naming system for organisms, as well as a taxonomy, that is, a rank-based
classification of organisms [212, 213].

A taxonomic group of organisms is called a taxon (plural: taxa). Each taxon is
associated with a taxonomic rank, which can subsume other ranks, thus forming a
hierarchy of higher and lower ranks. A taxonomic rank represents the relative level
of a group of organisms in the taxonomy. The principal contemporary ranks are
domain, kingdom, phylum, class, order, family, genus, and species, see Figure 2.4.
If needed, further ranks can be included in between (such as sub-genus), or more
refined lower levels can be added (such as strain, which serves as a further distinction
within a species).
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Figure 2.4: Biological classification into taxonomic ranks. The figure de-
picts a typical set of nested taxonomic ranks [386], which form a hierarchy with
increasingly deeper levels towards the right. Source: Image derived from [141].

In order to scientifically name the groups of organisms (taxa) in a taxonomy, the
binomial nomenclature as introduced by Linnaeus is still prevalent to date. It uses
two terms, often of Latin origin, which respectively specify the taxonomic ranks
genus and species that an organism belongs to, for example Homo sapiens.

While early classifications relied on phenotypes, that is, observable characteristics or
traits of an organism, modern approaches to taxonomy take the genetic information
into account [247]. For example, the three-domain system [385, 386] resolves the
oldest evolutionary relationships, that is, the highest taxonomic levels, based on 16S
rRNA data. Although this classification has been challenged [49, 139, 246], it is
still widely used [155]. It divides cellular life forms into the three domains Bacteria,
Archaea, and Eukaryota. The Eukaryota are further separated into kingdoms, which
include the kingdoms fungi, plants, and animals.

2.3.2 Phylogenetic Trees

The classification of organisms into a taxonomy is based on (subjective) dissimilarity
and thus arbitrary: The number of organisms that are grouped into a taxon at a
given rank can vary, and the separation into discrete ranks does not reflect the grad-
ual nature of evolution [124]. A more involved approach that can resolve these issues
is phylogenetics, which is the study of the evolutionary history and relationships of
biological entities (individuals, species, populations).
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The evolutionary relationships of such entities are called their phylogeny. As the true
phylogeny of a set of taxa is lost in time and thus unknowable [140], it has to be
inferred from data that are available. A phylogenetic analysis uses inference methods
that evaluate observed heritable traits in order to reconstruct the phylogeny under
a given model of evolution for these traits. While phenotypes can be used, modern
phylogenetic inference is mostly based on molecular data such as DNA. The result
of a phylogenetic analysis is a phylogenetic tree, also called an evolutionary tree,
or—synonymously—a phylogeny. Figure 2.5 shows two examples of phylogenetic
trees.
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Figure 2.5: Exemplary phylogenetic trees. (a) In 1837, Charles Darwin
sketched his first evolutionary tree below the words “I think” in his notebook on
“Transmutation of Species”. Source: Image derived from [72]. (b) A modern phy-
logenetic tree showing the three-domain system [385, 386], which emphasizes the
separation of Bacteria, Archaea, and Eukaryota based on 16S rRNA genes. The
black branch at the bottom represents the speculative last universal common ances-
tor of all living organisms. Source: Image derived from [119].

Properties of Phylogenetic Trees

The leaf nodes, or tips, of the tree represent living (extant) biological entities such as
species, strains, individual organisms, or even single cells. Thus, the tips are often
referred to as the taxa of the tree. This is a generic term that includes all of the
above entities. The tips are often named according to the entities they represent
(e. g., species names); such a tree is called a labeled tree. The inner nodes on the
other hand are usually anonymous and represent hypothetical speciation events,
where two novel lineages arose from a putative common ancestor. The branching
pattern of a phylogenetic tree thus reveals the evolutionary history of its taxa.

The edges of the tree, also called branches, can have associated branch lengths,
which represent the evolutionary time between the two adjacent nodes, for example,
measured as the average change in nucleobases between their respective sequences.
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The unique path between any two nodes can thus be interpreted as a measure of
evolutionary relatedness of the taxa represented by the nodes.

A phylogenetic tree is rooted if it is a directed tree that has a unique root node,
which corresponds to the putative common ancestor of the other nodes in the tree.
See Figure 2.5(b) for an example. As evolution is a processes that occurs over time,
from a biological point of view, every tree has a root. However, most models of DNA
evolution are time-reversible, meaning that the direction of change in the sequences
cannot be inferred from the data under such models, see Section 2.4.2 for details.
Thus, tree inference methods commonly yield unrooted trees without direction and
without a root node. In these methods, for computational reasons, often a virtual
root is used, which is a hypothetical additional node placed on a branch of the tree.
For tasks such as traversing a tree, but also in order to store a tree in a file, unrooted
trees usually have a distinguished, but arbitrary, “starting” node called a top-level
trifurcation. An unrooted tree can be rooted a posteriori, for example by using one
or more outgroup sequences of taxa that are closely related to the group of taxa of
interest (the ingroup), but not part of it. Then, a root node can be placed on the
branch that separates the outgroup from the ingroup in the tree.

An inner node that has exactly three neighboring nodes is called a bifurcation or a
bifurcating node. In rooted trees, these neighbors are the parent and the two chil-
dren of the node, hence the name. An inner node with more neighbors is called a
multifurcation or a multifurcating node. This naming also applies to the whole tree:
A tree, where each inner node (with the exception of the root node in a rooted tree)
is bifurcating, is also called a bifurcating tree. Otherwise (if there is at least one
multifurcating node), it is a multifurcating tree. Note that in evolution, an actual
multifurcation event is highly unlikely, as it corresponds to the simultaneous forma-
tion of more than two new lineages from a single ancestral lineage. Multifurcating
trees are, for example, used when relationships cannot be properly resolved based
on the available data, or to summarize a set of otherwise contradicting trees.

Each edge of the tree induces a bipartition or split of the taxa of the tree into two
disjoined groups, one on each side of the edge. Splits of edges that are adjacent
to tip nodes are trivial, as they appear in every possible tree topology for a given
set of taxa. Therefore, only the non-trivial splits are generally of interest. The set
of bipartitions induced by the edges of a tree uniquely defines the tree topology,
and is hence often used in topology-related algorithms; for example, the tree in
Figure 2.6(a) is described by the set of bipartitions B = {(ABC|DE ), (AB|CDE )}.
For two trees T1 and T2 with the same set of taxa, but differing topologies, their
bipartitions setsB1 andB2 can be used to define distance metrics between them. The
Robinson-Foulds (RF) distance [304], or symmetric difference metric, for instance is
defined as the number of bipartitions that are unique to either of the trees:

RF(T1, T2) = |B1 ∪B2 | − |B1 ∩B2 |

= | (B1 \B2) ∪ (B2 \B1) | (2.1)
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Figure 2.6: Types of phylogenetic trees. Here, we show three different types
of labeled, bifurcating trees. Tip nodes are marked with black dots, inner nodes
with white dots, and the top-level trifurcation or root node with a larger green dot.
(a) An unrooted tree with five taxa. One node is arbitrarily selected as top-level
trifurcation. (b) The same tree topology, but rooted on the inner branch that splits
the taxa D and E from the other taxa. The tree is drawn in rectangular style, where
vertical lines correspond to branch lengths. The horizontal lines are simply used to
visualize the taxa, and have no biological interpretation. (c) The same tree again,
but this time drawn in circular style. Here, radial lines correspond to branch lengths,
while arcs only serve visualization purposes.

This unweighted, absolute distance is often used when comparing phylogenies. There
also exists weighted and relative variants, as well as a variant called branch score
[197], which also takes the branch lengths of the trees into account. There are also
further measures to assess the incongruence between trees, such as as the internode
certainty [310, 403].

A set of taxa is called monophyletic, if it includes the most recent common ancestor
of the taxa in the set, and includes all descendants of that ancestor. In this work,
we use an equivalent definition that also works for unrooted trees: A set of taxa is
called monophyletic, if there is a bipartition (i. e., an edge) of the tree that separates
these taxa from all other taxa of the tree. In a rooted tree, the node at the end of
that edge is then the common ancestor of these taxa. A monophyletic set of taxa is
also called a clade of the tree; in other words, a clade is a subtree that is separated
from the rest of the tree by one edge. For example, the set of taxa containing A, B,
and C, as well as the two small white inner nodes in Figure 2.6(a) is monophyletic—
these taxa form a clade of the tree. Lastly, a non-monophyletic set of taxa is either
called paraphyletic or polyphyletic, depending on whether the most recent common
ancestor of the taxa is part of the set or not. For instance, the taxa A and C in
Figure 2.6(a) are polyphyletic—they are not separated from the other taxa by a
single edge, and do not contain their most recent common ancestor (which is the
white node next to C).
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Practical Aspects of Trees

While the topology of the tree describes evolutionary relationships, there are several
ways of visualizing this information. Figure 2.6 shows some examples, which all
depict the same topology (except for the rooting). The figure also summarizes some
of the terms and concepts introduced above. The different drawing styles each have
their advantages and disadvantages. For example, in a rectangular tree, as shown in
Figure 2.6(b), branch lengths are easier to read and compare, while a circular tree,
as shown in Figure 2.6(c), can fit more taxa in the same drawing area.

Taxonomy and phylogeny serve a related, but different purpose [153]: While the for-
mer is a system of classification, the latter describes the evolutionary history. How-
ever, there is a correspondence between a taxonomy and a rooted phylogeny: Inner
nodes of the tree constitute older evolutionary relationships, which are represented
by the higher ranks of the taxonomy. Figure 2.5(b) shows such a correspondence
for the three domains of life. It is however possible that the taxa at one rank of the
taxonomy are not monophyletic in the phylogenetic tree [153]. In this case, the two
are incongruent.

The most common file format for storing phylogenetic trees is the Newick format
[12]. It uses parentheses to specify the nesting structure of the tree, and also allows to
store node labels and branch lengths. It however lacks proper support for additional
branch- and node-related meta-data, which can lead to erroneous results [68]. The
NEXUS format [225] is a container format for biological data, and internally also relies
on the Newick format for storing trees. Furthermore, the phyloXML format [144] is
an XML based format that allows to store arbitrary (meta-)data at the nodes and
edges of the tree.

2.3.3 Tree Inference

A phylogeny can be inferred from data that has per-taxon traits which are homolo-
gous, that is, which have evolved from the same traits in the common ancestor and
are thus comparable [111, 391]. While historically these traits were mostly pheno-
types (bone shapes and sizes, metabolism, etc.), the focus has since shifted towards
molecular data such as DNA and amino acid sequences [405], as their phylogenetic
signal is generally more abundant [152]. Most often, a multiple sequence align-
ment is used, whose homologous sites represent the traits of the taxa. To determine
the degree of relatedness between taxa, mathematical models of trait evolution are
employed.

The general concept of tree inference is to then put closely related taxa close to each
other in the phylogeny. Hence, a tree inference can be thought of as an optimization
problem, which searches for the best tree given an optimality criterion. However,
the space of all possible tree topologies is too large for an exhaustive brute-force
search, even for small datasets with few taxa. For a given number of taxa n, the
number of distinct tree topologies N is given as N(n) = ∏n

i=3 (2i− 5), which grows
over-exponentially fast [111]. There are thus different approaches and heuristics to
conduct tree searches.
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Distance based methods such as Unweighted Pair Group Method with Arithmetic
Mean (UPGMA) [333] and Neighbor Joining [309] use a pairwise distance matrix
between sequences, and thus do not necessarily need an alignment. They can be
considered fast heuristics that yield a tree that is optimal under their respective
criteria. On the other hand, there are conceptually different approaches that com-
pute a score for a given tree, and search the tree space for the tree with the best
score. Maximum Parsimony [313] uses a tree scoring scheme that is based on Oc-
cam’s razor, that is, it tries to find the tree that explains the observed tip sequences
(taxa) with the minimal number of substitutions (mutations). The Maximum Like-
lihood (ML) method [109] employs statistical techniques in order to evaluate the
probability that a particular phylogenetic tree generated the given alignment, and
successively searches the tree space for the most likely tree, see Section 2.4. Further-
more, Bayesian Inference also relies on the evaluation of tree probability [391], and
uses Bayes’ theorem to calculate the posterior distribution of the relevant evolution-
ary processes by integrating over the tree and the parameter space; it can thereby
also incorporate prior empirical knowledge into the process.

Typical software tools for inferring ML trees include IQ-TREE [271], FastTree
[293], GARLI [406], and RAxML [192, 342]; see Zhou et al. (2017) [404] for a
critical review. Bayesian inference on the other hand can for example be conduced
using software tools such as BEAST [348], MrBayes [307], and ExaBayes [3].

2.4 Maximum Likelihood Tree Inference

In the context of this work, we are mostly interested in Maximum Likelihood (ML)
based tree inference. It uses a probabilistic framework in which the (phylogenetic)
likelihood

L( MSA | T, b̄,M, θ̄ ) (2.2)

is evaluated that an observed MSA is the outcome of an evolutionary history de-
scribed by a phylogenetic tree with topology T and branch lengths b̄, under a given
model of trait evolution M with parameters θ̄. For a fixed model M (see Sec-
tion 2.4.2), the likelihood can be expressed as a function of T , b̄ and θ̄, which is
known as the phylogenetic likelihood function (PLF).

2.4.1 Tree Search

By maximizing the PLF using maximum likelihood estimation, the parameter values
(including tree topology) are determined which best explain the observed data. This
process hence uses the likelihood as a scoring function, and is called tree search. Typ-
ically, the parameter estimates are obtained in an iterative process, which alternates
between two phases until a (potentially local) optimum is found:

1. Optimizing the tree topology T (as well as the few branch lengths that are
most affected by the respective topological change), while keeping the other
branch lengths b̄ and the model parameters θ̄ fixed.
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2. Optimizing all branch lengths b̄ of the given tree topology, as well as the model
parameters θ̄.

Finding the most likely tree topology is a discrete optimization problem, which
has been shown to be NP-hard under the ML criterion [56]. Furthermore, the
evaluation of the PLF is computationally expensive, as it involves many floating
point operations, see Section 2.4.4. A general heuristic for the tree search that
avoids an exhaustive evaluation of the tree space can, for instance, be designed as
follows. First, a starting tree is generated, either randomly, or using methods such
as Neighbor Joining or Maximum Parsimony. Then, the likelihood of the tree is
successively improved by applying topological rearrangements (moves) to the tree.
For instance, in greedy hill-climbing [342], only those moves are applied (accepted)
that immediately improve the likelihood score.

For a fixed tree topology T , the maximum likelihood estimates of the branch lengths
b̄ and the model parameters θ̄ are usually obtained using general-purpose numerical
optimization methods. Since the derivatives of the PLF can easily be computed,
the Newton-Raphson method [396] is often used for optimizing the branch lengths,
see Section 2.4.5. Other model parameters are commonly optimized using Brent’s
method [38] or the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [115].

2.4.2 Models of Molecular Sequence Evolution

So far, we assumed that a model M is given for describing the evolution of the traits
that are used for inferring the tree. For sequence data, such a model yields an esti-
mate of the evolutionary distance between the sequences of different taxa. Because
the inference assumes homologous traits, the only mutations that are considered for
aligned sequence data are substitutions.

Markov Chain Model

Most commonly, a continuous-time Markov chain (MC) is used to describe the evo-
lution of a single site within a set of aligned sequences [120]. For DNA data, the
MC has four states A, C, G, and T, which correspond to the nucleobases. Transitions
between the states correspond to their substitutions, see Figure 2.7. While the MC
model ignores aspects such as natural selection and the molecular mechanisms of
evolution, it describes the relative rate of changes in a way that allows multiple
substitutions to occur along the same branch (T → A → G).

The process of state transitions is defined by the substitution rate matrix

Q =


−qA qAC qAG qAT
qCA −qC qCG qCT
qGA qGC −qG qGT
qTA qTC qTG −qT

 (2.3)

−qi = −
∑
j 6=i

qij, i, j ∈ { A,C,G, T } (2.4)
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Figure 2.7: Markov chain model of nucleotide substitutions. The evolution
of characters at a site in an alignment can be modeled as a Markov chain (MC). The
states of the MC for DNA data are the four nucleobases A, C, G, and T. The model
allows transitions with rates qij with i, j ∈ { A,C,G, T } , i 6= j between all states,
which correspond to substitutions of the nucleobases.

where the elements qij are the instantaneous transition rates from state i to state j.
The rows of the Q-matrix have the requirement to sum to 0, by which the diagonal
elements qi are defined.

The expected number of substitutions at an alignment site between two nodes of
the tree is expressed as the branch length b between the nodes, and is a component
for measuring the (real) evolutionary distance/time t between them. Under the MC
model, evolutionary time and branch length are proportional to each other with the
evolutionary rate r being their proportionality factor: t = r · b. Then, for a given
time t, the transition probabilities pij(t) between states in a stationary process are
obtained by exponentiating the Q-matrix [392]. These probabilities are specified by
the matrix

P (t) = eQt (2.5)

For positive transition rates qij > 0,∀i 6= j, if the process runs long enough, the
Markov chain eventually reaches the unique stationary distribution Π = (πA, πC ,
πG, πT ), with πi being the proportion of time spent in state i. If the Markov
process reached equilibrium after running long enough, it can be interpreted as
having generated the sequences of the MSA. In that case, Π is the equilibrium base
composition of the MSA, and πi are the equilibrium or stationary base frequencies
of the MSA.

Time-Reversible Models

As mentioned before, most models of DNA evolution assume a time-reversible Mar-
kov process, which means that πiqij = πjqji ∀ i 6= j. This assumption is biologically
not meaningful, as evolution is a process in time, and thus does have a direction. It
however allows for simplified calculations: The Q-matrix of a time-reversible model
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can be formulated as the product of a symmetric rate matrix R = {ri↔j} and a
diagonal matrix of the stationary base frequencies:

Q = R · diag(πi) =


−qA rA↔C · πC rA↔G · πG rA↔T · πT

rA↔C · πA −qC rC↔G · πG rC↔T · πT
rA↔G · πA rC↔G · πC −qG rG↔T · πT
rA↔T · πA rC↔T · πC rG↔T · πG −qT

 (2.6)

The matrix describes the most general model of DNA evolution, where all 6 substi-
tution rates ri↔j, i 6= j and all 4 base frequencies πi can be different. This model
is called the Generalized Time-Reversible (GTR) model [352]. As the sum of the
base frequencies must be 1, and as the substitution rates are usually normalized by
requiring that rG↔T = 1.0, the GTR model has a total of 8 free parameters (that
is, 3 base frequencies, and 5 substitution rates). The base frequencies can also be
estimated from the character frequencies in the given MSA, in which case they are
called empirical base frequencies.

There are also simpler, more restrictive models, which have fewer free parameters,
and are thus more robust if data for estimating them is sparse, at the expense of
descriptiveness. The Jukes-Cantor model (JC69) [169] has no free parameters at all
and assumes equal substitution rates ri↔j = 1, i 6= j as well as equal base frequencies
πi = 1/4. The K80 model [180] adds a free parameter κ, which describes the ratio
between two types of substitutions that are not equally likely to occur at the same
rate in evolution: rA↔C = rG↔T = κ · rA↔G = κ · rA↔T = κ · rC↔G = κ · rC↔T .
The F81 model [109] instead extends the JC69 model by allowing different base
frequencies: πA 6= πC 6= πG 6= πT . The HKY85 model [146] combines the K80
model and the F81 model, and hence has 4 free parameters. Further models have
also been proposed, which offer compromises between the number of free parameters
and the expressiveness of the model [392]. Including the named models above, there
are a total of 203 possible time-reversible nucleotide models [154].

The state space of the Markov process becomes significantly larger for protein data,
as it needs to comprise all 20 standard amino acids instead of just 4 nucleobases.
Hence, the GTR model for protein data has (400 − 20)/2 − 1 + 19 = 208 free
parameters. Typical amino acid alignment sizes do not contain enough data to
reliably estimate these parameters, and thus are prone to over-fitting. Therefore,
so-called empirical amino acid models are commonly used, which have substitution
rates and equilibrium base frequencies that were pre-estimated on large collections of
reference alignments. Among others, some popular models include the DAYHOFF
[77], WAG [384], and LG [201] models of protein substitution.

2.4.3 Further Aspects of Tree Inference

Evolution is a complex process with intricate details. Many additional and more so-
phisticated models and methods have thus been proposed to improve tree inference,
accuracy, and realism of the models [392]. In the following, we introduce the ones
that are relevant in the context of this work.
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Rate Heterogeneity

The models of sequence evolution described above make the simplifying assumption
that the alignment sites evolve independently and are identically distributed. How-
ever, certain regions of DNA or amino acid sequences are under higher evolutionary
pressure than others, for example if they describe important molecular functions
that need to be conserved in their evolutionary history. It is thus expected that
some alignment sites evolve faster than others. That is, the evolutionary rate r of
sites is not constant across the alignment. In the context of phylogenetic inference,
several models of rate heterogeneity among sites have been proposed to account for
this, some of which are described in the following.

A simple model is the proportion of invariable sites, where the likelihood of an
alignment site is influenced by a parameter p ∈ [0, 1] that describes the proportion
of sites that are assumed to be identical (invariable) across all taxa. The more
elaborate Γ model [389] postulates a shape parameter α > 0 which models the
rate heterogeneity as a gamma distribution Γ(α). The distribution shape ranges
from exponential-like (α < 1, high rate heterogeneity) to normal-like (α > 10,
low rate heterogeneity). Thus, by optimizing the single free parameter α, different
unimodal rate heterogeneity profiles can be approximated. The likelihood under
this model is then computed by integrating over the Γ distribution, typically using
a discretization into four intervals for computational reasons. The CAT or per-
site rates model [341] is a compute- and memory-efficient approximation of the
Γ model, which explicitly assigns one of K rate categories to each alignment site
instead of using a distribution of rates. Lastly, the FreeRate model [390] allows
for multimodal distributions by using K rate categories and respective weights,
which can approximate any distribution at the cost of having to estimate these free
parameters.

Alignment Partitioning

Apart from the evolutionary rate r, the substitution patterns among the sites of an
MSA can also differ. In order to account for this, the MSA can be split into different
partitions, where each such partition is assigned an individual model of evolution.
For example, as three nucleobases code for one amino acid in regions that encode
for proteins (see Section 2.1), three partitions can be used, each modeling the evo-
lution of the first, second, and third nucleobase of each amino acid. Furthermore,
when sequence data for multiple genes is available, large multi-gene MSAs can be
constructed by horizontal concatenation of per-gene MSAs [359]. In these superma-
trix approaches, the multi-gene MSA can use partitions corresponding to individual
genes, which might be under different evolutionary pressures.

Constrained Trees

The tree search (see Section 2.4.1) can (theoretically) yield any topology from the
vast space of possible trees. It might thus be helpful to conduct a constrained
tree search, for example to include prior knowledge about the taxa, to maintain
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congruence with a given taxonomy, or because some other constraints need to be
complied with. Such a constraint can, for example, be specified by enforcing certain
bipartitions to be retained in the tree, that is, disjoined splits of the taxa that must
be separated from each other in the tree. As a bipartition is induced by a branch
in the tree, this is equivalent to starting the tree search with a multifurcating tree,
and then resolving these multifurcations without changing the other parts of the
tree. A constrained search yields a constrained tree. Note however that constrained
tree searches can induce substantial bias due to constraints that contradict the
phylogenetic signal of the sequence data. They hence often yield worse likelihood
scores than unconstrained searches; see for example Table 3.2.

2.4.4 Likelihood Computation

Here, we introduce the basic computational aspects of the Maximum Likelihood score
calculation. For a more in-depth description, see Yang (2014) [392]. We assume a
fixed tree topology T , fix branch lengths b̄, as well as a given model of sequence
evolution M with parameters θ̄. That is, we do not cover the tree search itself here,
but describe only how to compute the likelihood L (Equation 2.2) for a given MSA
under these conditions.

A central point of the ML method is to account for the unknown states at the
inner nodes of the tree. That is, the total likelihood is obtained by summing over
the probabilities of every possible state at the inner nodes, which can be efficiently
computed via the Felsenstein pruning algorithm (FPA) [109]. It traverses the tree in
post-order fashion, that is from the tips towards the (virtual) root, and recursively
calculates a so-called conditional likelihood vector (CLV) at each inner node.

In a sense, a CLV summarizes the subtree below its corresponding node. For every
alignment site and every state, it describes the conditional likelihood of the node to
be in the given state at the given site, given the subtree topology and its branch
lengths, for the respective subset of the alignment (tip sequences). We here assume
a set N of states, that is, the sequences consist of characters c ∈ N , for example N =
{ A, C, G, T }. Furthermore, for simplicity, we do not consider alignment partitioning
or rate heterogeneity among sites here, and thus use a fixed evolutionary rate r
(usually, r := 1.0). Then, a CLV contains |N | elements per alignment site, each
describing the conditional likelihood of being in the corresponding state. For DNA
data, these are CL(A), CL(C), CL(G), and CL(T).

Felsenstein Pruning Algorithm

In order to start the recursion of the FPA, first, the CLVs at the tip nodes have
to be initialized. Each tip CLV expresses the likelihoods of observing each of the
characters c ∈ N . In principle, these can be the actual likelihoods of the characters
at the corresponding alignment site of the input data. Hence, uncertainty in the
sequencing process can be incorporated into the computations [193]. However, this
uncertainty is often not available in empirical datasets. Thus, tip nodes are usually
initialized with “pseudo-CLVs”, where for instance a nucleobase A in the alignment
yields CL(A) := 1, and CL(C) := CL(G) := CL(T) := 0 at a particular site.
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Figure 2.8: Felsenstein pruning algorithm. An exemplary tree topology with
a (virtual) root R, an inner node V, and three other nodes U, L, and M, and branch
lengths between nodes. Potential subtrees are marked by triangles below nodes.
Each node has a CLV assigned to it, which “summarizes” the subtree below it. A
CLV stores a conditional likelihood for every alignment site and for every state. Here,
for simplicity, we show the CLVs for one site and for four states, which, for instance,
represent the likelihood of that site to be in either state of the four nucleobases.

After the tip CLVs have been initialized, the algorithm moves up the tree, see Fig-
ure 2.8. This can be thought of as moving along the branches towards a parent node,
which induces the possibility of state transitions. This step is thus where the model
M is employed (see Section 2.4.2). As we assumed a fixed evolutionary rate r, we can
infer the time t between two nodes from the branch length b between them: t = r · b.
Then, for a given branch, we can compute the probability pij(t) of a transition from
state i to state j after moving along the branch, see Equation 2.5. Note that the
probability pij depends on the branch length, meaning that for every branch (and
every update in its branch length during optimization, see Section 2.4.5), a sepa-
rate P -matrix has to be computed from the Q-matrix of the model, as explained in
Section 2.4.2.

At a parent node whose children have been computed, we can now apply the recur-
sion step of the algorithm. For instance, in the topology shown in Figure 2.8, the
CLV of an inner node V can be computed given its children L and M. For the com-
putation, the CLVs of the two child nodes, as well as the transition probabilities pij
for the branch lengths bLV and bMV of the branches towards the parent are needed.
Then, a single entry of the CLV, that is, the conditional likelihood of node V to be
in state c at site s, is

CLV(V )
s,c =

 ∑
j∈N

pcj(r · bLV ) · CLV
(L)
s,j

 ∑
k∈N

pck(r · bMV ) · CLV
(M)
s,k

 (2.7)

The equation can be interpreted as follows: The product of transition probability
and conditional likelihood represents a change from state c to another state j ∈ N .
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By summing this product for all states, all possible inner states in the child node are
accounted for. Finally, the product of the two sums is the new conditional likelihood
of the node being in state c at site s, given the evolutionary history of its two children
and their subtrees.

By repeating the computation for every state c ∈ N and every site s of the alignment,
the complete CLV for node V is computed. The recursion is then applied to all nodes
upwards the tree, until all CLVs have been computed.

Likelihood Evaluation at the Root

Once all CLVs are computed, the overall likelihood L can be computed using the
CLV of the root node. Given the root node R as shown in Figure 2.8, the overall
per-site likelihood Ls of an alignment site s is accumulated from the conditional
likelihoods of all states, taking their respective base frequencies πi into account:

Ls =
∑
i∈N

πi · CLV
(R)
s,i (2.8)

Due to the time reversibility of the model, for unrooted trees, a virtual root can be
used, that is, an additional node that is placed on an arbitrary branch of the tree. If,
for example, the node R in Figure 2.8 is the virtual root, the two branches between
nodes U and V are actually one branch with branch length bUV = bUR + bV R. Then,
an alternative way of computing the per-site likelihood is what we call the (per-site)
edge likelihood. Instead of using the CLV at the virtual root R, we can use the CLVs
of U and V, and the corresponding branch length bUV for the computation. In that
case, state transitions along the branch have to be additionally accounted for in
the computation. The per-site edge likelihood of an alignment site s can then be
computed as

Ls =
∑
i∈N

∑
j∈N

πi · CLV
(U)
s,i · pij(r · bUV ) · CLV

(V )
s,j (2.9)

This way of calculating the edge likelihood Ls works for any two adjacent nodes, if
their respective CLVs represent the two subtrees attached to the nodes at either end
of the branch.

Finally, the overall likelihood L(MSA | T, b̄,M, θ̄) for the entire MSA can be com-
puted. For mathematical simplicity, the sites are generally assumed to evolve inde-
pendently, although this is not expected to be the case from a biological perspective.
Under this assumption, for an alignment with m sites, the overall likelihood is simply
the product of the per-site likelihoods:

L =
m∏
s=1
Ls (2.10)
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For computational reasons, and to avoid numerical underflow, in practice, the loga-
rithm of the likelihood (log-likelihood) is typically computed:

L∗ =
m∑
s=1

logLs (2.11)

As the tree search is an optimization towards the highest likelihood score, using the
log-likelihood is equivalent to using the likelihood in Equation 2.10. Furthermore, as
identical sites (that is, identical columns of the MSA) yield exactly the same per-site
likelihood, such sites are often compressed. That is, the respective likelihood is only
computed once, and accordingly weighted in the overall likelihood computation.

2.4.5 Branch Length Optimization

Another important aspect of the tree search is the optimization of the branch lengths
of the tree. That is, for a given tree topology T , and a fixed model M with pa-
rameters θ̄, we want to compute the branch lengths b̄ that maximize the likelihood
L(MSA | T, b̄,M, θ̄). This procedure is called branch length optimization (BLO), and
typically uses the Newton-Raphson method [396], as mentioned in Section 2.4.1.

We consider the optimization of a single branch length b. In order to maximize L, we
need to find the root of the first derivative L′. The Newton-Raphson method takes
an initial value for b and then iteratively approximates values that take it closer to
the root:

bn+1 = bn −
L′

L′′
(2.12)

Note that the derivatives L′ and L′′ can be obtained analytically [392], and have
to be re-computed in every iteration. The algorithm stops when the change in b
between two iterations is below a given threshold, that is, when then optimization
converges. This procedure is repeated for all branch lengths b̄ in the tree.

2.5 Phylogenetic Placement

In studies of sequence data, one of the most common tasks is a phylogenetic analysis
of the data, that is, to infer the evolutionary context of the sequences. However,
since the amount of sequence data produced in typical metagenomic studies can
be enormous, computational challenges and bottlenecks arise [320]. In particular,
both calculating an MSA and inferring a phylogeny are NP-hard [56, 170], and
thus impractical or infeasible for large datasets. Furthermore, metagenomic reads
are often short, and hence lack phylogenetic signal to robustly infer a tree and to
properly resolve their relationships [166, 241].

Thus, phylogenetic placement (also called evolutionary placement) has been devel-
oped for conducting phylogenetic analyses of such data [262, 372]. It is implemented
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in tools such as pplacer [241], RAxML-EPA [25], and EPA-ng [18]. Instead of
resolving the phylogeny of a set of metagenomic sequences, phylogenetic placement
treats each sequence, called a Query Sequence (QS), separately. It evaluates how
these QSs relate to an existing Reference Tree (RT) based on known reference se-
quences. For each QS, it computes the probabilities of placing the sequence on all
branches of the RT, thereby classifying them into a phylogenetic context of related
sequences, without the need to resolve relationships between the QSs.

2.5.1 Pipeline and Computation

In the most common use case, the QSs are reads or amplicons from environmental
samples. Most often barcoding regions or marker genes such as 16S or 18S are used
(see Section 2.2.2), but there also exist studies that use different, or even a set of,
marker genes [349]. Furthermore, other types of sequences such as mitags [219] can
be used.

The RT and the reference sequences it represents are typically assembled by the user
so that they capture the expected species diversity in the samples. To expedite this
process, we proposed an automated approach for assembling suitable sets of reference
sequences [69], which we describe in Chapter 3. Distinct samples from one study
are typically placed on the same underlying RT in order to facilitate comparisons
between the samples, see Section 2.5.5.

We here assume to be given a set of suitable reference sequences, their alignment,
and an RT inferred from them. As phylogenetic placement uses the maximum
likelihood criterion, the RT has to be strictly bifurcating. Prior to the placement,
the QSs need to be aligned against the reference alignment of the RT by programs
such as PaPaRa [23, 24] or hmmalign [93, 94], see also Section 2.2.3. The input to
phylogenetic placement are (i) the Reference Tree (RT), (ii) its underlying alignment,
and (iii) the aligned Query Sequences (QSs). The output are the probabilities of
placing the QSs on the branches of the RT. The placement pipeline is shown in
Figure 2.9.

Query
Sequences

Reference 
Tree

Reference 
Alignment

Phylo-
genetic
Placements

Placement
Algorithm

Figure 2.9: Phylogenetic placement pipeline. The input to phylogenetic place-
ment are three files: the reference tree (RT), the corresponding reference alignment,
and the aligned query sequences (QSs). The placement algorithm then computes
the probabilities of placing the QSs on the branches of the RT, which are stored in
an output file.
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Computation for one Query Sequence

The placement is conducted for each QS separately, always using the same fixed RT
as a starting point. Each branch of the tree is evaluated as a potential placement
location of the QS, which indicates how likely the branch is to be the ancestor of
the QS. In Figure 2.10, the procedure for one QS and one branch (between nodes
D and P) is shown: The sequence is inserted as a new tip node Q into the branch,
connected to it by a new pendant branch and a new node C. This splits the original
branch into two parts, called the distal and the proximal branch, respectively, which
are named according to the direction of the root of the tree. Note that the tree can
also be unrooted, in which case the top-level trifurcation is typically used as root.

D

Q

PC
toward root

proximaldistal

pendant

Figure 2.10: Terminology of a phylogenetic placement. The nodes D and P
belong to the reference tree (RT). When placing a query sequence (QS), the branch
between them is split into two parts by a new node C, which serves as the attachment
point for another new node Q that represents the QS. The pendant branch leads to
Q. The original branch is split into the proximal branch, which leads towards the
root of the RT, and the distal branch, which leads away from the root.

In the next step, the branch lengths of the tree are optimized (or at least the most
relevant ones, see below), using the method as explained in Section 2.4.5. After
the optimization, the sum of the lengths of the distal and proximal branches is not
necessarily equal to the original branch length between D and P. Thus, typically,
the two lengths are proportionally rescaled to maintain this equality.

Lastly, the likelihood of the tree with the newly attached sequence is evaluated as
explained in Section 2.4.4. Note that the likelihood computation uses the MSA
(extended by the query sequence), the tree topology and branch lengths, as well as
the model and its parameters as before. The model of nucleotide evolution should
be the same that was used for inferring the tree, in order to keep the meaning of the
branch lengths consistent, see Section 2.4.2. After this, the newly created nodes on
the branch are removed again and the branch lengths are reset, thus restoring the
original reference tree.

The above procedure is repeated for every branch i of the tree T , yielding a set of
likelihood scores L(i) for each possible placement location of the QS. In other words,
for each branch of the tree, the process yields a so-called placement of the QS, that
is, an optimized position on the branch, along with a likelihood score for the whole
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tree. The likelihood scores for a QS are then transformed into probabilities, which
quantify the uncertainty of placing the sequence on the respective branch [347, 372].
The probability of placing a QS on a branch q is called the Likelihood Weight Ratio
(LWR) and is calculated relative to the other branches i of the tree T as

LWR(q) = L(q)∑
i∈T L(i) (2.13)

By construction, the sum of the LWRs of all branches for a single QS is 1.0. It can
thus be interpreted as a probability distribution over the branches of the tree, as
shown in Figure 2.11. For most use cases, the LWRs and the respective placement
on the branches are the most important values, while pendant lengths are rarely
used in downstream analyses. However, long pendant lengths can indicate that the
RT does not comprise reference sequences that are closely related to the QS.
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Figure 2.11: Phylogenetic placement of a query sequence. Each branch
of the reference tree is tested as a potential insertion position, called a placement
(blue dots; pendant lengths are ignored here). Note that placements have a specific
position on their branch, due to the branch length optimization process. A proba-
bility of how likely it is that the sequence belongs to a specific branch is computed
(numbers next to dots), which is called the likelihood weight ratio (LWR). The bold
number (0.7) denotes the most probable placement of the sequence in this example.

Optimizations

The most expensive part of the placement computation are the branch lengths opti-
mizations. Thus, several techniques have been developed to accelerate the placement
process [18].

Firstly, above, all branches of the tree were optimized when evaluation a placement
location, which gives the most accurate results. In practice however, it suffices to
only optimize the three branches of the placement location without losing too much
accuracy.

Secondly, because the reference tree is fixed (except for the temporarily created nodes
during the computation), the CLVs of all possible subtrees can be precomputed,
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which substantially accelerates the likelihood evaluation. Using Figure 2.10 as an
example, with two CLVs of the nodes D and P, and one application of the Felsenstein
Pruning Algorithm (see Section 2.4.4), the CLV of node C can be computed. Then,
the final likelihood can be evaluated as the edge likelihood of the pendant edge,
using this CLV as well as the pseudo-CLV of node Q.

Thirdly, further acceleration can be achieved with a so-called pre-placement heuris-
tic: A first approximate evaluation of a placement location can be conducted without
branch length optimization by using distal and proximal lengths that each are half
of the respective original branch length of the tree, and a fixed default pendant
length. Then, only the most likely fraction of locations is thoroughly evaluated,
that is, including branch length optimizations. This way, millions or even billions
of sequences can be placed within acceptable time [18]. This is however a heuristic
that might lead to suboptimal results by ignoring placement locations whose LWR
is significantly improved by the branch length optimization process. If the RT is
however well suited for the QSs, this situation is generally not expected to occur,
because the phylogenetic signal is strong enough to properly place the QSs even
without optimized branch lengths.

Placement Result

The placement process is repeated independently for every QS. That is, for each
QS, the algorithm starts calculating placements from scratch on the original RT.
The result thus classifies each QS in the phylogenetic context of the RT, without
resolving the evolutionary relationships between the QSs.

The output data is usually stored in so-called jplace files [243], which is a standard
based on the JSON format [35, 65]. It stores the RT in Newick format, including tip
names and branch lengths, and is extended by a post-order numbering of the edges to
be referenced by the placements. The main part of the file is a list of lists: For each
QS, its list of placements is stored. A placement is described by its edge number
(referencing the RT), the LWR, the pendant length, and the distal length. The
proximal length is usually omitted, as it can be inferred from the branch length of
the tree. Furthermore, the format can summarize multiple identical QSs by allowing
several names for each list of placements, where each name can also have a weight
(called its multiplicity). Lastly, usually not all placement locations are stored in the
file, as the ones with low LWRs are mostly irrelevant for post-analysis methods.

2.5.2 Use Cases and Applications

Phylogenetic placement is a flexible tool that yields useful biological information per
se, but it can also be utilized for a variety of downstream analyses.

Comparison to Existing Methods

A typical task in metagenomic studies is to identify and classify the environmental
sequences with respect to known reference sequences, either in a taxonomic or phylo-
genetic context, as mentioned in Section 2.2.2. Conventional methods for this task,
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such as BLAST [8], are based on sequence similarity or identity. Such methods are
fast, and directly assign query sequences to the most similar reference sequences,
as shown in Figure 2.12(a). However, this implies that they only attain satisfying
accuracy levels if the query sequences are sufficiently similar to the reference se-
quences. Furthermore, BLAST might yield suboptimal results [324], and the best
BLAST hit does often not represent the most closely related species [185]. This is
particularly true for environments where available reference databases do not exhibit
sufficient taxon coverage [230]. Moreover, as insufficient taxon coverage cannot be
detected by methods that are based on sequence similarity, they can potentially bias
downstream analyses.

(a) (b)

Figure 2.12: Comparison of similarity-based methods to phylogenetic
placement. (a) Methods based on sequence similarity yield an assignment of query
sequences to known reference sequences. This is equivalent to assigning the query
sequences to only the tips of a reference tree (blue dots). (b) Phylogenetic place-
ment provides more detail and assigns query sequences also to inner branches of the
reference tree.

More recent methods can alleviate some of these issues, for instance by using machine
learning techniques to obtain a taxonomic classification of metagenomic sequences
[363], or by utilizing a phylogeny inferred from metagenomic sequence clusters to
classify microbial communities [351]. However, the common shortcoming of these
methods is that they lack a way of incorporating phylogenetic information of known
sequences.

A phylogenetic placement analysis does incorporate known phylogenetic relation-
ships, and hence provides a more accurate means for read identification and classifi-
cation, as shown in Figure 2.12(b). For example, the classification of query sequences
can be summarized by means of sequence abundances [156, 278], or to obtain taxo-
nomic assignments [191, 272].

Furthermore, phylogenetic placement also allows for more elaborate downstream
analyses. Firstly, the reference tree usually offers a higher resolution than simple
per-taxon abundance counts, and the amount of mapped QSs per branch can be
directly visualized on the RT [230], as shown in Section 4.1. Secondly, established
methods such as Edge PCA and Squash Clustering [239], which we introduce in
Section 2.5.5, allow for identifying subtle differences between distinct samples, thus
enabling comparative studies directly based on phylogenetic placement. Lastly, we
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proposed novel methods for visualizing and clustering phylogenetic placement data
[67], which we describe in Chapter 4 and Chapter 5. Another typical task in metage-
nomic studies is to unravel diversity within the samples, which can be conducted
using phylogenetic placement, as outlined in Chapter 8.

Variants and Derived Tools

The placement algorithm presented above relies on the standard ML framework for
evaluating placement locations on the tree. There also exist variants of phylogenetic
placement that use maximum parsimony [25] and minimum evolution [113] instead
of maximum likelihood, and variants that calculate Bayesian posterior probabilities
[241]. Moreover, the boosting method SEPP has been proposed to improve the
accuracy of the placements [260]. The recently proposed tools RAPPAS [210] and
APPLES [16] are alignment-free approaches that are based on comparing sequence
k-mers (subsequences) instead of using an ML framework. These tools yield com-
parable results to standard ML-based phylogenetic placement implementations, but
are faster and can handle larger reference trees.

Phylogenetic placement has further been used for a variety of applications and de-
rived pipelines, such as species delimitation as in PTP [400] and mPTP [173],
genome and metagenome analysis as in PhyloSift [71], taxonomic identification
and phylogenetic profiling as in TIPP [272], and identification and correction of
taxonomically mislabeled sequences as in Sativa [191].

2.5.3 Placement Processing

Phylogenetic placement is a useful tool to investigate the microbial composition and
diversity of a set of distinct environmental samples. When placing multiple samples,
for instance, from different geographical locations, or different human patients, typ-
ically, the same RT is used, in order to facilitate the comparison of the phylogenetic
composition of these samples. There are furthermore several other considerations to
take into account before running downstream analysis methods, some of which we
discuss in the following.

Normalization

Firstly, it is important to consider how to properly normalize the samples. Nor-
malization is required as the sample size (often also called library size), that is, the
number of sequences per sample, can vary by several orders of magnitude within
one study. This is due to technical aspects of the sequencing process, such as effi-
ciency variations, or biases introduced by the amplification process, as explained in
Section 2.2.2. As a consequence, metagenomic sequence data are inherently composi-
tional [129, 208, 295], which can lead to spurious statistical analyses [6, 127, 163, 360].
This impedes statistical analyses of the data and hence needs to be considered in all
analysis steps [208, 295, 330].

We here briefly outline common types of problems due to normalization that also
affect phylogenetic placement data. Selecting an appropriate normalization strategy
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constitutes a general problem in many metagenomic studies. The appropriateness
depends on data characteristics [382], but also on the biological question asked. For
example, estimating indices such as the species richness are often implemented via
so-called rarefaction and rarefaction curves [132] by randomly re-drawing sequences
from the set of sequences in a sample to obtain comparable sample sizes. This ignores
however a potentially large amount of the available valid data [249]. Furthermore,
the specific type of input sequence data has to be taken into account for normal-
ization: Biases induced by the amplification process can potentially be avoided if,
instead of amplicons, data based on shotgun sequencing are used, such as mitags
[219]. Moreover, similar sequences can be clustered prior to phylogenetic placement
analysis, for instance, by constructing Operational Taxonomic Units (OTUs), as
introduced in Section 2.2.5. OTU clustering substantially reduces the number of
sequences, and hence greatly decreases the computational cost of placement analy-
ses. Lastly, one may completely disregard the abundances (which correspond to the
multiplicities of placements) of the placed sequences, reads, or OTUs, and only be
interested in their presence/absence when comparing samples.

All of the above analysis strategies are also applicable to phylogenetic placement,
e. g., by placing OTUs instead of sequences. Which of these strategies is deployed,
depends on the specific design of the study and the research question at hand.
The common challenge is that the number of sequences per sample differs, which
affects most post-analysis methods, and can lead to conflicting interpretations and
irreproducible results [128, 360].

In the following, we therefore explain how the necessary sample size normalizations
can be performed. We also introduce established terminology, and describe general
techniques for interpreting and working with phylogenetic placement data. These
are not methods on their own, but rather tools and building blocks that are necessary
for the analysis methods explained and introduced later in this thesis.

Edge Masses

Methods that compare samples directly based on their sequences, such as the UniFrac
distance [221, 223] (see Section 2.5.4), can benefit from rarefaction [382]. However,
in the context of phylogenetic placement, rarefaction is not necessary. Thus, more
valid data can be kept. For a thorough comparison of UniFrac to methods based on
phylogenetic placement, see Matsen and Evans (2011) [239].

In order to compare the placements obtained from a set of samples, it is convenient
to think of the reference tree as a graph. Then, the per-branch LWRs for a single
QS can be interpreted as mass points distributed over the edges of the RT, including
their respective placement positions on the branches, as shown in Figure 2.11. We
call this the mass interpretation of the placed QSs, and henceforth use mass and
LWR interchangeably. For simplicity, we ignore that typically not all placements
are stored in jplace files, meaning that the mass per QS can also be < 1. Hence,
each QS is assumed to have a total accumulated mass of 1.0 on the RT. The mass
of an edge or edge mass refers to the sum of the LWRs on that edge for all QSs of
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a sample, as shown in Figure 2.13(a). The edge masses can serve as a simplification
of the data that summarizes a whole sample in a vector with m entries, for an RT
with m edges. A larger example for the full RT is shown in Figure 2.14(a). The
total mass of a sample is then the sum over all edge masses, which is identical to
the number of QSs in the sample.
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Figure 2.13: Operations on placement masses. (a) The edge mass or mass of
an edge is the sum of LWRs on that edge for all QSs in a sample. (b) In order to
reduce time and memory of the computations, masses can be binned by summarizing
them across QSs in intervals along the edges. (c) The masses on corresponding edges
of the RT of two or more samples can be squashed to represent the average mass
distribution of the samples. For simplicity, we here use equal weights, and show edge
masses instead of individual LWRs. (d) The edge imbalance of an edge is the sum
of masses on all edges on the root side of the edge (A+B, with the root in subtree A
denoted as a gray dot) minus the sum of the masses on the edges on the non-root
side (C+D), while ignoring the mass on the edge itself.

The key idea is to use the distribution of placement mass points over the edges of the
RT to characterize a sample. This allows for normalizing samples of different size
by scaling the total sample mass to unit mass 1.0. This is done by dividing the mass
of each placement location by the total sum of all masses in the sample. In other
words, absolute abundances—which are not meaningful for analyses of metagenomic
sequences due to the compositional nature of the data [129]—are converted into
relative abundances. This way, rare species, which might have been removed by
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rarefaction, can be kept, as they only contribute a negligible mass to the branches
into which they have been placed. This approach is analogous to using proportional
values for methods based on OTU abundance tables (see Section 2.2.5). For each
OTU, such tables store a count of how often it appeared in each sample, which
can be transformed into proportional values by scaling each sample/column of the
table by its sum of OTU counts [382]. Most of the methods presented here use
normalized samples, that is, they use relative abundances. As relative abundances
are however compositional data, certain caveats occur [6, 128, 220], which we discuss
where appropriate.

Binning and Squashing of Edge Masses

When working with large numbers of QSs, the mass interpretation allows to further
simplify and reduce the amounts of data: The masses on each edge of the tree can
be quantized into b discrete bins, as shown in Figure 2.13(b). That is, each edge is
divided into b intervals (or bins) of the corresponding branch length, and all mass
points on that edge are accumulated into their respective nearest bin. For example,
by accumulating mass points at their nearest interval midpoint, or at the weighted
average of all masses in each bin, masses are only minimally moved. The parameter
b controls the resolution and accuracy of this approximation. In the extreme case of
b := 1, all masses on an edge are grouped into one single bin (which is equivalent to
only considering the edge mass instead of individual LWRs). This branch binning
process drastically reduces the number of mass points that need to be stored and
analyzed in several methods we present, while only inducing a negligible decrease in
accuracy. As shown later in Table 5.1, branch binning can yield a speedup of up to
75% for post-analysis run-times without altering the results of the analysis.

The interpretation of placements as masses on the edges of the tree further allows
to summarize a set of samples by annotating the RT with their (weighted) average
per-edge mass distribution, as shown in Figure 2.13(c). This procedure is called
squashing [239].

In order to squash two samples, they have to be placed on a fixed RT. Then, the
mass distribution ms of the squash tree is calculated as the weighted average of the
two mass distributions ml and mr of the two input trees, using some weights wl and
wr:

ms = wl
wl + wr

·ml + wr
wl + wr

·mr (2.14)

When using squashing to simply represent the average placement distribution of a set
of samples, the weights can be set in accordance with the used normalization strat-
egy (as explained above): When working with absolute abundances, the weights can
be set to the total number of QSs per sample; for relative abundances, the weights
are set to 1. The above calculation can also be trivially extended to more than two
samples to get their average placement mass. Squashing is also a central technique
of Squash Clustering [239], which we introduce below in Section 2.5.5, and which
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also shows a larger example of squashing in Figure 2.16. There, the weights repre-
sent the influence of sample clusters during an agglomerative hierarchical clustering
algorithm.

In practice, instead of only considering per-edge masses, the average mass distribu-
tions are calculated per placement location; that is, each LWR is taken into account
individually. Because phylogenetic placements represent point masses on the edges
of the tree, squashing can be seen as joining the (weighted) set of placements of
the samples on corresponding edges of the RT. The resulting masses can then be
normalized again to obtain unit mass for the resulting average tree.

Edge Imbalances

So far, we have only considered the per-edge masses. Often, however, it is also of
interest to “summarize” the mass of an entire clade, that is, to consider per-clade
masses. For example, sequences of the RT that represent species or strains might
not provide sufficient phylogenetic signal for properly resolving the phylogenetic
placement of short sequences [91]. In these cases, the placement mass of a sequence
can be spread across different edges representing the same genus or species, thus
blurring analyses based on per-edge masses.

Instead, a clade-based summary can yield clearer analysis results. It can be com-
puted by using the tree structure to appropriately transform the edge masses. Each
edge splits the tree into two parts (bipartitions, see Section 2.3.2), of which only
one contains the root (or top-level trifurcation) of the tree. For a given edge, its
mass difference is then calculated by summing all masses in the root part of the tree
and subtracting all masses in the other part, while ignoring the mass of the edge
itself [239], as shown in Figure 2.13(d). This difference is called the imbalance of
the edge [239]. It is usually normalized to represent unit total mass, as the absolute
(not normalized) imbalance otherwise propagates the effects of differing sample sizes
all across the tree. It is irrelevant where the root of the tree is, as any re-rooting
changes the sign of edge imbalance values consistently across different samples. A
larger example for the full RT is shown in Figure 2.14(a).

The edge imbalance relates the masses on the two sides of an edge to each other.
They directly compare the two sides of an edge and thus take all of the tree into
account. This implicitly captures the RT topology and reveals information about
its clades, which further implies that a change in the underlying mass distribution
affects the imbalance of all edges in the tree.

The transformation into imbalances can reveal differences in the placement mass
distribution of nearby branches of the tree. This is in contrast to the KR distance
(see Section 2.5.4 below), which yields low values for masses that are close to each
other on the tree. Note that the imbalance of a leaf edge is simply the total mass of
the tree minus the mass of the edge. It thus contains mostly irrelevant information
and can often be omitted.

The concept of edge imbalances has similarity with the Phylogenetic Isometric Log-
Ratio (PhILR) transformation [330]. In this approach, a balance between the OTU
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abundances in the two subtrees below a node of a rooted binary phylogenetic tree is
calculated. This balance thus expresses which of the two subtrees has more OTUs
in it. The transformation into balances yields orthogonal components, which are
not compositional. Thereby, balances alleviate the normalization issues described
above, and can hence be used with many standard analysis methods. Balances
can also be computed for the two sides of a tree induced by an edge, suggesting
the conceptual similarity to imbalances. We hence developed an adaptation of the
concept to phylogenetic placement data, which we present in Chapter 6.

Placement Data Matrices

An example of the edge masses and edge imbalances for a sample is shown in Fig-
ure 2.14(a). These values can be summarized by two matrices, which we use for
many downstream edge- and clade-related analyses, respectively. In these matrices,
each row corresponds to a sample, and each column to an edge of the RT. These ma-
trices have dimensions m×n for m edges of the RT and n samples. In other words,
the edge masses matrix collects the edge mass vectors mentioned above, while the
edge imbalance matrix transforms these masses as described before. Note that these
matrices can either store absolute or relative abundances, depending on whether the
placement mass was normalized or not.

Furthermore, many studies provide meta-data for their samples, for instance, the
pH value or temperature of the samples’ environment. Such meta-data features can
also be summarized in a per-sample matrix, where each column corresponds to one
feature. The three matrices are shown in Figure 2.14(b). Quantitative meta-data
features are the most suitable for computational purposes, as they can be used for
calculations such as detecting correlations with the placement mass distributions of
samples, see for instance Section 4.2.2.

2.5.4 Distances between Samples

Given a set of metagenomic samples, one key question is how much they differ
from each other. Pairwise distances are valuable for downstream tasks, for instance,
clustering algorithms such as UPGMA [202, 254, 333] and ordination methods such
as principal component analysis (PCA) [168, 286], or gradient discovery in microbial
communities with respect to meta-data features.

General Metagenomic Distance Measures

In many comparative ecology studies, commonly used methods for assessing sam-
ple (dis-)similarity are based on sequence abundances, or OTU count tables (as
introduced in Section 2.5.3). For example, the Jaccard index [162] and the related
Sørensen-Dice coefficient [83, 336] use the presence/absence of species in two sam-
ples to measure their similarity and diversity. The Bray-Curtis dissimilarity [34, 202]
furthermore uses abundances, that is, species counts, in order to quantify composi-
tional dissimilarity between samples. Note that working with such similarity indices
entails certain pitfalls, in particular when comparing them across studies [32].
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Figure 2.14: Edge Masses and Imbalances. (a) Reference tree where each
edge is annotated with the normalized mass (first value, blue) and imbalance (sec-
ond value, red) of the placements in a sample. The depicted tree is unrooted, hence,
its top-level trifurcation (gray dot) is used as “root” node. (b) The masses and im-
balances for the edges of a sample constitute the rows of the first two matrices. The
third matrix contains the available meta-data features for each sample. These ma-
trices are used to calculate, for instance, the Edge PCA (Section 2.5.5) or correlation
coefficients.

These indices do however not take the evolutionary history of the sequences into
account. One method that does use the relatedness of the species under study is the
UniFrac distance [221, 223]. To compare two metagenomic samples, a phylogenetic
tree is employed, either by inference from all sequences of the two samples, or by
assigning the sequences to the tips of an existing tree. Then, the branches of the
tree are marked as either shared or unique, depending on whether they lead to taxa
that appear in both or only one of the samples. The distance is computed as the
fraction of total unique branch lengths, which satisfies the requirements of a distance
metric. The UniFrac distance can be calculated quantitatively (weighted UniFrac),
or qualitatively (unweighted UniFrac), depending on whether sequence abundances
are considered, or only their presence and absence is used.

The Phylogenetic Kantorovich-Rubinstein Distance

The idea of using phylogenetic distances on a tree to assess sample similarity has
been extended and generalized to the context of phylogenetic placement in form of
the phylogenetic Kantorovich-Rubinstein (KR) distance [104, 239]. In other con-
texts, the KR distance is also called Wasserstein distance, Mallows distance, or
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Earth Mover’s distance [206, 231, 296, 365]. The KR distance between two metage-
nomic samples is a metric that describes by at least how much the normalized mass
distribution of one sample has to be moved across the RT to obtain the distribution
of the other sample. In other words, it is the minimum work needed to solve the
transportation problem between the two distributions. The distance is symmetri-
cal, and increases the more mass needs to be moved, and the larger the respective
displacement (moving distance) is.

The linear case of moving the mass of one distribution to transform it into an-
other distribution is shown in Figure 2.15. This linear case corresponds to the path
between two locations on a tree, and is thus a measure of evolutionary distance
between these locations. It can be extended to a tree via post-order traversal, by
starting at the tips and moving the mass differences towards the (arbitrary) root.
In order to conduct the transformation, the two samples being compared need to
have equal masses. Hence, the KR distance operates on normalized samples; that
is, it compares relative abundances.

+3 +2 +4 Distance: 9

Distribution A Distribution B

Figure 2.15: Linear KR distance. Distribution A is transformed into distribu-
tion B by moving mass along the axis, while keeping track of the moved distances.
The dark blocks represent the masses being moved along the grid. For simplicity,
masses and distances are discretized here; the continuous case works analogously.

As the tree needs to be traversed once per pairwise distance calculation, the compu-
tation of the phylogenetic KR distance is linear in the tree size, and in the number
of placements. It is hence suitable for analyzing the large datasets of typical metage-
nomic studies. Note however that the computation of a pairwise distance matrix
between the samples is quadratic in the number of samples. In the special case
of assigning mass only to the tips of the tree (for example, by “placing” the QSs
via similarity based methods such as BLAST, see Figure 2.12), the KR distance is
equivalent to the weighted UniFrac distance [104].

The mathematical properties of the phylogenetic KR distance have been thoroughly
examined by Evans and Matsen [104]. In summary, the KR distance can be for-
mulated as an integral over distances λ along the branches of the tree T . Let τ(x)
denote the subtree below point x on T for an arbitrary rooting, and let P and Q be
the probability distributions of the two samples on the branches of T , given by the
placement masses. Then, the KR distance can be expressed in closed form as

KR(P,Q) =
∫
T

∣∣∣P (τ(x))−Q(τ(x))
∣∣∣ λ(dx) (2.15)
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This notation treats the placements as a continuous distribution over the branches
of the tree instead of a collection of point masses, and hence describes a more general
form of the KR distance. The distance can further be generalized by introducing an
additional parameter p, with 0 < p <∞, which controls the impact of mass relative
to transport [297, 298]:

KRp(P,Q) =
[ ∫

T

∣∣∣P (τ(x))−Q(τ(x))
∣∣∣p λ(dx)

]min(1/p,1)
(2.16)

Large p > 1 emphasize the impact of mass differences, while small p < 1 increase the
influence of the distance traveled. In typical applications however, the default of p =
1 is used, which yields Equation 2.15 and corresponds to the physical interpretation
of mass movements.

2.5.5 Existing Analysis Methods

The pairwise KR distance matrices between metagenomic samples as introduced in
Section 2.5.4 above can be used in conjunction with general-purpose data analysis
methods, such as PCA [168, 286] and UPGMA [202, 254, 333]. Although appropriate
to apply, such methods do not make use of the fact that the distances were calculated
on a phylogenetic tree. Taking this information into account however improves
the capacity for visualization and interpretation of the results. To this end, the
ordination method Edge PCA, as well as the clustering method Squash Clustering
have been developed [239]. As we later compare our novel methods to these existing
ones, we briefly introduce them here.

Edge PCA

The edge principal components analysis (Edge PCA) [239] is a method that utilizes
the imbalance matrix (as explained in Section 2.5.3) to detect and visualize edges
with a high heterogeneity of mass difference between samples. In particular, it
computes the principal components of the imbalance matrix, using standard PCA.
The result can be interpreted as a weighted sum of variables that maximizes variance
between samples.

Similar to standard PCA on other types of input matrices, such as count tables or
pairwise distances, the principal components can be visualized in form of a scatter
plot of samples along the principal component axes. Samples are separated from
each other depending on their placement mass distribution, where each principal
axis in the plot explains some additional variance between the samples. These plots
can further be annotated with meta-data features, for instance, by coloring, thus
establishing a connection between differences in samples and differences in their
meta-data [339]. Examples of this are shown later on in Figure 3.11 and Figure 5.3.

In contrast to standard PCA, using the imbalance matrix allows for further, en-
hanced, visualizations. As the columns of the imbalance matrix correspond to edges
of the tree (see Section 2.5.3), the resulting eigenvectors (principal components) can
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be projected back onto to tree. Hence, while the scatter plots show how samples
are separated from each other, these visualizations on the tree explain why they are
separated. Each principal component yields a tree visualization, where edges are
highlighted that are responsible for the observed differences in the corresponding
principal axis of the plot. An example of this is shown later in Figure 4.4.

Squash Clustering

A fundamental task for a set of metagenomic samples consists in finding clusters
of samples that are similar to each other according to some distance measure, such
as the KR distance. Standard linkage-based clustering methods like UPGMA are
solely based on the distances between samples, that is, they calculate the distances
between clusters as a function of pairwise sample distances. Other methods such
as Multivariate Regression Trees [79] can take environmental per-sample meta-data
into account, but do not make use of the phylogenetic information provided by, e. g.,
a reference tree.

In contrast, Squash Clustering [239] is a method that also takes the intrinsic struc-
ture of phylogenetic placement data into account. It uses the KR distance (see
Section 2.5.4) to perform agglomerative hierarchical clustering of samples. Instead
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Figure 2.16: Squashing of edge masses. Two trees are merged (squashed)
by calculating the weighted average of the respective mass distributions on their
branches. By squashing, a cluster of (similar) samples can be summarized and
visualized. For simplicity, we here show the masses per edge and visualize them as
branch widths. In practice however, each placement location of each query sequence
is considered individually. The figure is based on the similar Figure 3/2 of Matsen
and Evans (2011) [239]; see there for more details on squashing.
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of using pairwise sample distances, it merges (squashes, see Section 2.5.3) clusters
of similar samples by calculating their weighted average per-edge placement mass,
as shown in Figure 2.16.

Squash Clustering starts with each sample being its own cluster. Then, iteratively,
it calculates the pairwise KR distance between all clusters of samples, and merges
the pair of clusters that are closest to each other, until only one cluster containing
all samples remains. The merging is conducted by squashing all samples in the
respective clusters, using the total mass (number of samples) per cluster as weights.

This results in a hierarchical clustering tree, where tips correspond to samples, and
branch lengths correspond to KR distances between clusters. Thus, in each step,
Squash Clustering operates on the same type of data, namely, mass distributions on
the fixed RT. In the beginning, each data item considered in the clustering is one
sample, while later steps of the clustering operate on the merged (squashed) samples.
Each inner node of the clustering tree represents a set of merged/squashed samples.
Examples of such cluster trees are shown later on in Figure 3.9 and Figure 5.2.
Furthermore, as the inner nodes of the cluster tree are again mass distributions,
they can be visualized, and thus allow for interpreting the features of each set of
merged samples; we show a similar visualization later in Figure 5.4.
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3. Preprocessing

This chapter is derived from the peer-reviewed open-access publication:

Lucas Czech, Pierre Barbera, and Alexandros Stamatakis. “Methods
for Automatic Reference Trees and Multilevel Phylogenetic Placement.”
Bioinformatics, 2018, Volume 35, Issue 7, Pages 1151–1158.

The text, figures, and tables in this chapter were created by Lucas Czech, with
the following exception: Pierre Barbera conducted the processing and analysis
of the CAMI Challenge data as described in Section 3.3.4, and helped to write
the part of the above publication on which that section is based.

3.1 Background and Motivation

Molecular sequencing costs are decreasing exponentially, leading to unprecedented
amounts of genetic sequence data, as explained in Section 2.2.2. In most metage-
nomic studies, an initial analysis step consists in assessing the evolutionary prove-
nance of the sequences. Phylogenetic placement, as introduced in Section 2.5, can
be employed to determine the evolutionary position of sequences with respect to a
given reference phylogeny. This is particularly helpful for studying new, unexplored
environments, for which no closely related sequences exist in reference databases yet
[230]. However, the selection process of suitable reference sequences for inferring a
reference tree is typically conducted manually. This constitutes a major challenge
and hindrance for studying such environments with placement methods.

This limitation also concerns the use of phylogenetic placement for taxonomic as-
signment. In studies that specifically look for certain kinds of organisms, e.g, protists
[230], it usually suffices to use a taxonomy covering the organisms of interest, po-
tentially including some outgroups from more distantly related species to also catch
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outliers. As metagenomic analyses become cheaper, it is however to be expected
that researchers want to target more than one group of organisms within one study.
Particularly in cases where the environment contains a yet unknown diversity of or-
ganisms, this hence necessitates to use a broad reference that covers many taxonomic
clades. At the same time however, the number of taxa in the reference phylogeny
should be small enough to allow for visually inspecting and interpreting the results.

Lastly, phylogenetic placement methods have generally already reached their scala-
bility limits: They require a higher computational effort with respect to the place-
ment algorithms per se, but also the pre- and post-processing, than, for instance,
similarity-based methods such as BLAST (see Section 2.5.2).

3.2 Methods and Implementation

In this chapter, we introduce methods to overcome the aforementioned limitations,
that is, to (1) automatically obtain a high-quality reference tree for conducting phy-
logenetic placement, (2) split up the placement process into two steps using smaller
phylogenies, and (3) accelerate the computation of placements via appropriate data
pre-processing approaches. All methods are implemented as part of our gappa tool;
see Appendix C for implementation details.

3.2.1 Phylogenetic Automatic (Reference) Trees

Motivation

Molecular environmental sequencing studies, particularly those that aim to conduct
phylogenetic placement of Query Sequences (QSs), often rely on a set of manually
selected and aligned reference sequences to infer a Reference Tree (RT) [78, 230, 353,
356]. Creating and maintaining databases of such reference sequences constitutes
a labor-intensive and potentially error-prone process. Moreover, this approach is
impractical for highly diverse samples that comprise sequences from many taxonomic
clades, or samples obtained from unexplored environments, where it is yet unknown
which reference sequences are necessary. Lastly, even if a large RT is available, the
visualization of placements on such a large RT might be confusing and thus hard to
interpret.

The RT used for phylogenetic placement should ideally (a) cover all major taxonomic
groups that occur in the QSs, (b) use high-quality error-free reference sequences, and
(c) not be too large to allow for unambiguous visualization and interpretation. These
criteria can be met for small datasets by manually selecting curated sequences from
databases, potentially informed by literature describing these sequences. In order to
increase coverage, often additional sequences are selected based on their similarity
to the already selected ones. For large and taxonomically diverse samples one key
challenge is that sequence databases such as Greengenes [82], Unite [1], PR2
[138], EzTaxon [179], Silva [294], and RDP [58] maintain reference collections of
thousands to millions of taxonomically annotated sequences. Therefore, one needs to



3.2. Methods and Implementation 49

appropriately sub-sample sequences such that the RT can be inferred in reasonable
time and that it sufficiently covers the diversity of the sample.

Previous approaches mainly relied on phylogenetic diversity [106, 259, 279] and
related methods [244]. The major drawback is that they require a comprehensive
phylogeny as input. Inferring such large comprehensive phylogenies with hundreds
of thousands of taxa, to subsequently reduce the taxon set again, is computationally
inefficient and in certain cases infeasible.

To this end, we present a computationally efficient approach for obtaining sequences
from large databases to infer an RT, which we call the Phylogenetic Automatic (Ref-
erence) Tree (PhAT) method. The workflow of the method is summarized in
Figure 3.1. The input of our method is a database of aligned sequences of known
species, including their taxonomic labels. Our approach then identifies sets of se-
quences that are similar to each other based on their entropy. It subsequently reduces
the sequences in these sets to a predefined number of consensus sequences. This set
of sequences is the output of our method. It represents the taxonomic clades and is
then used to infer an RT for conducting phylogenetic placement analyses.

PhAT Inference

Reference 
Tree
 

Reference 
Alignment
 

Sequence
Database

Taxonomy

Eukaryota
└ SAR
  └ Alveolata
    └ Apicomplexa
      └ Conoidasida
        └ Coccidia
          └ Eimeriorina
            ├ Aggregata         
            ├ Besnoitia         
            ├ Calyptosp 
            ├ Caryospor        
            ├ Eimeria           
            └ ...

Figure 3.1: PhAT pipeline. The figure shows how our PhAT method is used
to obtain a reference tree for phylogenetic placement using a database of reference
sequences and their associated taxonomy as input.

Sequence Entropy

Firstly, the approach requires a measure to assess the similarity of a set of sequences
to each other, that is, their ensemble similarity. Conventional methods for sequence
similarity are often based on edit distance and other pairwise comparison methods
[8, 268, 332]. This however necessitates to transform the pairwise distances to some
form of ensemble measure that describes the similarity of all sequences to each other,
for which there is no obvious approach [402]. There also exist methods that describe
genetic variation and nucleotide diversity of sets of sequences [30, 269] which could
be used for this purpose.

Instead, we here use entropy [325] to define a measure for quantifying the ensemble
similarity of a set s of sequences. Variants of sequence entropy have been used before
in numerous biological and phylogenetic contexts, for example, to asses the infor-
mation content of sequences [59, 64, 207, 319, 366–368], or to measure substitution
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saturation [387]. Here, we use entropy for alignment sites, that is, we define the
entropy (uncertainty) H at alignment site i as

Hi = −
∑
c

fc,i · log fc,i (3.1)

where c ∈ {A, C, G, T, -} is the set of nucleotide states including gaps, and fc,i is
the frequency of character c at site i of the alignment. Including gaps (-) in the
summation reduces the contribution of sites that contain a large fraction of gaps.
Their contribution is weighed down as all standard phylogenetic inference tools
model gaps as undetermined states, that is, they do not contribute anything to the
likelihood score. The entropy is 0 for sites that only contain a single character.
It increases the more different characters an alignment site contains, and the more
similar their frequencies are. Its maximum occurs if all characters appear with the
same frequency (each of them 20%). Some examples for the entropy when using four
nucleobases are shown in Figure A.1. Note that we also treat ambiguous characters
as gaps (see Section 2.2.4). As only 0.008% of the non-gap characters in our test
database (Silva) are ambiguous, their influence is negligible. Ambiguous characters
could however be incorporated by using fractional character counts.

Finally, the total entropy of a set s of aligned sequences is simply the sum over all per-
site entropies: H(s) = ∑

iHi. It is also possible to normalize this value by dividing it
by the length of the alignment to obtain comparable values across alignments. Here,
this however does not make a difference, as we are always comparing sequences
with the same length. We use this entropy to quantify the ensemble similarity of
a set of sequences. This can be regarded as an information content estimate of the
sequences.

Sequence Grouping

The goal of this step is to group the sequences of a database into a given target
number of groups/sets, such that the groups reflect the diversity of the sequences in
the database. At the same time, the number of sequences needs to be small enough
such that a maximum likelihood RT can be inferred in reasonable time.

A possible approach would be to use agglomerative clustering: In each step, the
sequences that have the lowest entropy are clustered until the desired number of
reference sequences is reached. A supposed advantage of this approach is that it
does not rely on any taxonomic information (in contrast to our approach presented
below). This procedure is however computationally expensive, having a complexity
in O(n2 log n), and is thus not applicable to large databases with millions of se-
quences. Furthermore, the resulting sequence clusters can generally not be assigned
unambiguous taxonomic labels, that is, they lack an interpretable naming scheme.
This severely limits the types of useful post-analyses that can be executed; we did
therefore not explore this approach.

Instead, we use the taxonomic information (see Section 2.3.1) of the sequence data-
base to identify potential candidate groups of sequences that could be represented
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by a consensus sequence (see Section 2.2.4). We interpret a taxonomy as a sequence
labeling, where similar sequences have related labels. Thus, a taxonomy represents
a pre-classification of similar sequences that can be exploited to group them. For
instance, Figure 3.2 shows six sequences (S1–S6), which the underlying database has
classified into the Calyptosporidae clade of the taxonomy, and which thus form a
group of related sequences. Note that this assumes that the taxonomic classification
is correct for most sequences [191]; we assess this problem later in Section 3.3.2. The
goal is then to find clades/groups of sequences that represent the diversity of the
database.

Eukaryota
└ SAR
  └ Alveolata
    └ Apicomplexa
      └ Conoidasida
        └ Coccidia
          └ Eimeriorina
            ├ Aggregata         
            ├ Besnoitia         
            ├ Calyptosporidae   
            ├ Caryospora        
            ├ Eimeria           
            └ ... G G - T G A -

S1

S2

S3

S4

S5

S6

0.
92

0.
00

1.
46

1.
46

0.
92

1.
25

0.
650.043

0.042
0.029
0.034
0.029
0.022
0.020
0.013
0.004
0.014
0.000
0.013
 

-
-

-

-

-

-
-
-
-

-

Figure 3.2: Entropy and consensus sequence of a taxonomic clade. The left
hand side shows the exemplary clade Eimeriorina in its taxonomic context, listing
its super- and sub-clades with the normalized entropy of their respective sequences.
The right hand side is an excerpt from the alignment of six sequences that belong to
the Calyptosporidae sub-clade. At the top of the alignment, the per-site entropies of
the alignment sites are shown. At the bottom, the majority rule consensus sequence
is shown, which is used to represent the sub-clade.

To this end, for a clade t of the taxonomic tree, we denote by H(t) the entropy of all
sequences that belong to that clade, including all sequences in its sub-clades, that is,
its lower taxonomic ranks. Clades with low entropy imply that they contain highly
similar sequences that can in turn be represented by a consensus sequence without
sacrificing too much diversity. Inversely, clades with high entropy contain diverse
sequences, implying that a consensus sequence is not likely to sufficiently capture the
inherent sequence diversity. It is thus better to expand these clades and construct
separate consensus sequences for their respective sub-clades. Examples of the per-
site entropies are shown in Figure 3.2. As the clade structure of a taxonomy forms
a tree, this criterion can then be applied recursively, as shown in Algorithm 3.1.

The algorithm works as follows: We initialize a list of candidate clades with the
highest ranking clades that we want to consider. In the most general case, these
can be “Archaea”, “Bacteria”, and “Eukaryota”. We then select the most diverse
candidate clade, that is, the clade t whose sequences exhibit the highest entropy
H(t). This clade is then expanded, and we do not consider it as a potential candidate
for building a consensus sequence. The high entropy clade is then removed from our
list and its immediate sub-clades are added as new candidates to the list. Finally,
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Algorithm 3.1 Taxonomy Expansion

1: Candidates← list of highest ranking clades
2: TaxaCount← size of Candidates
3: while TaxaCount < TargetCount do
4: MostDiverse← arg max t∈Candidates H(t)
5: remove MostDiverse from Candidates
6: add sub-clades of MostDiverse to Candidates
7: TaxaCount← TaxaCount− 1 + size of MostDiverse

8: return Candidates

the current count of how many candidates we have already selected is updated
accordingly. By expanding clades with high entropy, we descend into the lower
ranks of the taxonomy. On average, this decreases the entropy, because low ranking
clades generally tend to contain more similar sequences. This process is repeated
until our list contains approximately as many candidate clades as the desired target
count of reference sequences, which is provided as input. As the sizes of expanded
clades can vary substantially, the target count cannot always be met exactly. In our
tests, the average deviation was 0.2%, see Table 3.1.

Given this list of clades from different taxonomic ranks, we can now compute the
consensus sequences. For each clade, all sequences in that clade and its sub-clades
are used to construct a consensus sequence, which represents the clade diversity,
and serves as the reference sequence for that clade. An exemplary majority rule
consensus sequence is shown in Figure 3.2 below the six sequences S1–S6. This
has several advantages: If only a few sequences diverge from the majority of that
clade, the entropy might underestimate the molecular diversity of a clade. The
consensus sequence for such a clade however compensates for this. Using consensus
sequences furthermore alleviates the impact of spurious and erroneous sequences in
the database. A simple per-site majority rule consensus [76, 245] works well, but we
also assessed alternative methods; see Figure 3.7 and Figure 3.8 for details.

The algorithm can start at any rank of the taxonomy in order to only group sequences
from specific clades. It is computationally cheap, while still yielding reasonable
representative sequences for large taxonomic clades. Note that it would also be
possible to directly use the relative character frequencies at each site to obtain more
accurate representations. Maximum likelihood-based phylogenetic inference tools
do, in principle, not require discrete input sequences, as explained in Section 2.4.4.
The likelihood model allows to account for uncertainty in the input data [111],
although this is generally not implemented in the mainstream software packages,
see also [193]. The above process yields a set of consensus reference sequences which
capture the diversity of distinct taxonomic clades.

Inferring a Reference Tree

Once we have identified the consensus sequences, which are already aligned to each
other, we can use them to infer a maximum likelihood tree, which is the resulting



3.2. Methods and Implementation 53

Phylogenetic Automatic (Reference) Tree (PhAT). As each consensus sequence is
associated with a taxonomic clade, the corresponding taxonomic path can be used
to label the tips of the tree. Note that since clades with low entropy might not be
expanded, the tip labels do not necessarily correspond to the species or genus level.
Also, the PhAT will not necessarily be congruent to the taxonomy, unless the tree
search is explicitly constrained by the taxonomy (see Section 2.4.3).

A PhAT satisfies all criteria we listed above: (a) all taxonomic groups occurring
in the QSs can be covered by using a suitable taxonomy as input, (b) by using
consensus sequences, potential sequencing errors can be alleviated, and (c) the size
of the tree can be specified by the user. Nonetheless, the resolution of the trees is
limited by the underlying taxonomy, see Section 3.3.3 and Section 3.3.4 for details.
Thus, one needs to verify that the resulting tree is appropriate for the data to be
placed on it. This however also holds for manually selected reference sequences, and
is hence not a specific disadvantage of our method. Furthermore, using consensus
sequences may obscure the degree of sequence diversity in sub-clades, which in turn
can affect the accuracy of subsequent phylogenetic placements on that tree. Our
algorithm can not fully compensate for this. We present a method to address both
issues (insufficient tree resolution and obscured diversity) in the next Section.

3.2.2 Multilevel Placement

When conducting phylogenetic placement, the computationally limiting factors are
(i) the number of QSs to be placed (addressed in the following Section 3.2.3) and (ii)
the size of the RT (number of taxa) and corresponding alignment length (addressed
here). Using RTs with more taxa increases the phylogenetic resolution of the place-
ments, at the cost of increased computational effort for inferring the RT, aligning
the QSs (if the RT is used in this step), and placing the QSs. Furthermore, longer
reference alignments (if appropriate data is available in the first place) are required
to accurately infer large trees under the maximum likelihood criterion [388], thus
further increasing the computational costs. Lastly, placement on large trees that
comprise reference sequences with high evolutionary distances can reduce placement
accuracy [260]. Thus, using a large number of reference sequences is not always
desirable in practice.

One solution is to divide the tree and its alignment into more conquerable subsets, for
example as implemented in SATé [215, 216]. This approach has also been extended
to phylogenetic placement in SEPP [260] and TIPP [272], which divide the tree into
disjoint subsets of taxa and conduct placement on each of them separately. While
yielding more accurate placements and taxonomic classifications in less computing
time, these methods might still result in large reference trees, which are hard to
inspect and visualize.

To address this issue, we present an approach called Multilevel or Russian Doll
Placement, which is summarized in Figure 3.3. Instead of working with one large
RT comprising all taxa of interest, we use a smaller, but taxonomically broader
Backbone Tree (BT) for pre-classifying the QSs (first level), and a set of refined
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Figure 3.3: Multilevel placement. The left shows a backbone tree (BT); the
right shows two clade trees (CTs) in orange and green. Branches in the BT that are
associated with a CT are marked in its color. The trees“overlap”each other, meaning
that each CT is represented by multiple branches in the BT. Three sequences A, B,
and C are placed on the BT, which is the first level. A and C are placed on branches
associated with a CT. Hence, their second level placement is conducted on the
respective CT. B is placed on a branch that is not associated with any CT, and thus
not used at the second level.

Clade Trees (CTs) for the final, more accurate placements (second level). These
CTs comprise the reference sequences that are of interest for a particular study. For
example, if a study is concerned with Apicomplexa and Cercozoa, a broad Eukaryota
BT can be used for the first level, and two respective CTs for the second level, in
analogy to [230]. Each CT is associated with the set of branches of a specific BT
clade.

The method then works in three steps:

1. Align and place the QSs using the BT (first level).

2. For each CT, collect the QSs that are placed on the BT branches that are
associated with the CT.

3. Align and place these QSs again, using their specific CTs (second level).

The workflow is also shown in Figure 3.4. Steps 1 and 3 follow the typical pipeline
for phylogenetic placement as explained in Section 2.5.1. In step 2, there are two
alternative ways to determine to which clade a QS belongs: (i) The most probable
placement location is used to determine the branch a QS is placed on, or (ii) the
LWRs of different locations/branches are accumulated and the QS is only considered
to be part of a clade if more than a given threshold value of placement mass is placed
within the clade. QSs with less placement mass within one clade are assigned to a
special collection of “uncertain” query sequences.
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Figure 3.4: Multilevel pipeline for phylogenetic placement. The figure
exemplifies the input and output of the multilevel placement approach as explained
in the text. The yellow boxes correspond to the three steps of the workflow. See
Figure 2.9 for a description of the typical placement pipeline.

While this approach requires some additional bookkeeping, the total computational
cost is reduced, because the QSs do not have to be placed on all branches of all CTs.
The speed gain depends on the sizes of the BT and the CTs with respect to the size
of the substantially larger (often one order of magnitude or more) comprehensive
tree. For example, by splitting a tree with 10 000 taxa into a BT and 10 CTs with
1000 taxa each, the computational cost decreases by a factor of 5 (two placement
levels with 10% of the cost each). Furthermore, at each level, the amount of required
main memory is reduced by a factor of 10 compared to the large tree. Lastly, this
method allows for fine-grained control over the clades of interest at both placement
levels:

Firstly, the BT provides a means for phylogenetically informed sequence filtering—
that is, to identify and remove “spurious” QSs. Sequences with low similarity to
known references are often removed in environmental sequencing studies [346]. How-
ever, using sequence similarity as a filter criterion can remove too many QSs, par-
ticularly when studying new, unexplored environments [230]. By using phylogenetic
placement as a filter instead, substantially more sequences can be retained for down-
stream analyses. Only the QSs that are placed onto the inner branches of the BT,
that is, branches with no associated CT, are omitted at the second placement level.
Such placements may indicate that suitable reference sequences are missing from the
RT, or that the respective QSs represent novel species. Either way, as these QSs are
not well represented by the RT, they are not informative for most downstream anal-
yses and can thus be removed. This therefore represents a phylogenetically informed
sequence filtering method as an alternative to plain sequence similarity.
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Secondly, using specific clade trees for lower level taxonomic clades offers the phy-
logenetic resolution that is necessary for downstream analyses and for biological
reasoning. It is, for example, possible to use manually curated “expert” trees for
each clade of interest at the second level.

In this setup, the BT is only used for pre-classification, and can, for example, use
our PhAT method as presented in Section 3.2.1. The aforementioned issue of ob-
scured diversity in sub-clades can be circumvented by “overlapping” the CTs with
the BT. That is, a CT can be associated with several branches of the BT, so that
placements on each of these BT branches are collected and placed onto the same
CT. See Figure 3.3 and Figure 3.13 for examples of such an overlap. We recommend
users to ensure that the branches of the BT that are associated with one CT are
monophyletic, meaning that there is one split that separates these branches from the
rest of the BT. This can be achieved by inferring the BT with a high-level constraint
that maintains the monophyly of the CTs. It ensures phylogenetic consistency be-
tween the BT and the CTs, and improves the accuracy of the first placement level,
as shown in Section 3.3.5. Lastly, it is also possible to use more than two levels,
which might become necessary when working with RTs and datasets that are even
larger than what is currently available.

3.2.3 Data Preprocessing for Phylogenetic Placement

Apart from the RT size, handling the sheer number of QSs also induces compu-
tational limitations for conducting phylogenetic placements. Most metagenomic
studies publish their data in unprocessed formats, which are sometimes filtered to
contain only reads from certain barcoding or marker regions. For instance, they store
the raw sequencing output in fasta [287] or fastq [57] format (see Section 2.2.1).
Those data often contain duplicates of exactly identical sequences, both within and
across samples. Identical sequences are however treated the same in phylogenetic
placement algorithms and therefore induce unnecessary computational overhead.
Furthermore, sample sizes, that is, the number of sequences per sample, can vary by
several orders of magnitude. For example, the “HM16STR” dataset of the Human
Microbiome Project (HMP) [160, 250] contains an average of 12 911 sequences per
sample, but also an outlier sample with 0 sequences and one with 403 211 sequences.
If the placement algorithm is parallelized over samples, this leads to an uneven
load balance across compute nodes. A potential solution is to initially cluster the
sequences into OTUs (see Section 2.5.3), which however annihilates the accuracy
benefit of using individually placed sequences.

In order to solve these issues, that is, reduce the computational cost and achieve
good load balance, one can pre-process the sequences as summarized in Figure 3.5
and explained in the following (see Appendix C for implementation details). First,
the query sequences are de-duplicated across all samples and fused into chunks of
equal size, in a step which we call chunkify. The chunk size should be chosen such
as to allow for aligning and placing a chunk within reasonable time on the intended
hardware; for computer clusters for example, the wall time (that is, the total allowed
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Figure 3.5: Pre-processing pipeline for phylogenetic placement. The figure
shows our pre-processing pipeline that improves both speed and parallel efficiency of
the phylogenetic placement computation. The gains are achieved by re-distributing
and de-duplicating the query sequences of all samples into chunks of equal size prior
to the placement computation. Final per-sample placement files are generated using
mapping files that count of often each unique sequence appeared in each sample.
See Figure 2.9 for the typical placement pipeline.

execution time of each job) should be considered. For modern hardware, we recom-
mend chunk sizes of 50 000 or larger. Each unique sequence is assigned an identifier,
and a list of abundance counts for each sequence in a sample is computed. This way,
each strictly identical sequence is only processed once in the downstream steps.

Given an RT and its underlying alignment, the QS chunks are then aligned to the
reference multiple sequence alignment, and subsequently placed on the RT, using a
typical placement pipeline as explained in Section 2.5.1. In the last step, which we
call unchunkify, the resulting per-chunk placement result files in combination with
the per-sample abundance counts are used to generate final per-sample placement
files, containing a placement for each sequence in the original sample.

The speedup induced by this preprocessing is proportional to the ratio of total versus
unique sequences; the gain in parallel efficiency depends on the ratio of smallest to
largest sample (in terms of number of sequences). This approach allows to analyze
datasets that are orders of magnitude larger than in previous published studies.
For example, in 2012, an analysis of Bacterial Vaginosis (BV) data placed a total
of 426 612 sequences, thereof 15 060 unique, on an RT with 796 tips [339]. Using
a prototype version of our implementation, we were able to analyze a neotropical
soils dataset with 50 118 536 total sequences, thereof 10 567 804 unique, with an
RT comprising 512 taxa [230]. Furthermore, to demonstrate the scalability of our
method, and for the evaluation of the methods presented in later chapters, we also
analyzed datasets with up to 116 520 289 total sequences, thereof 63 221 538 unique,
from the HMP [160, 250], using RTs with up to 2059 tips. This corresponds to
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a computational effort that is four orders of magnitude greater than for the BV
study. For an overview and further details on the datasets used in our evaluation,
see Appendix B. Without the improvements presented here, these datasets could
not have been processed and placed in manageable time. As we use the placement
results of these datasets on the PhATs in the evaluations of later chapters, these
improvements represent necessary preprocessing steps for this work, and for large
analyses using phylogenetic placement in general.

3.3 Evaluation and Results

3.3.1 Reference Tree Setup

To test the Phylogenetic Automatic (Reference) Tree (PhAT) method, we used
the “SSU Ref NR 99” sequences of the Silva database [294] version 123.1 and the
corresponding taxonomic framework [395]. The database contains 598 470 aligned
sequences from all three domains of life, classified into 11 860 distinct taxonomic
labels, and mainly contains bacterial sequences. In detail, there are

• 22 913 sequences with 347 taxonomic labels for the Archaea,

• 62 436 sequences with 7441 taxonomic labels for the Eukaryota, and

• 513 121 sequences with 4072 taxonomic labels for the Bacteria.

The overall number of taxonomic labels is counted here, that is, it includes higher
level labels. We use the Silva alignment as-is, and thereby implicitly assume that
it is of sufficient quality for our purposes; see Section 3.3.2 for an evaluation of this
assumption.

Sequence Selection

We constructed four sets of consensus sequences from the Silva database: a General
set (“all of life”), as well as separate sets for the domains Archaea, Bacteria, and
Eukaryota. The target sizes for the recursive expansion of taxonomic clades (see
Section 3.2.1) were chosen to be large enough to cover the diversity well, while still
being computationally feasible and visually interpretable for the subsequent steps.
The target size for the General tree was set to 2000 taxa, while the Bacteria and
Eukaryota tree were targeting 1800 domain-specific taxa, which is approximately
reached, but not exactly (see Table 3.1). This is because the sizes of sub-clades
in the taxonomy vary. Because each tip of the tree is a consensus sequence that
represents the respective lowest taxonomic level, the number of available taxa is
smaller than the total number of taxonomic labels in the Silva database. For
example, the Archaea have a total of 347 taxonomic labels across all ranks, but
only 248 labels at Genus level. Thus, the Archaea tree used here comprises 248
taxa, which represents the fully resolved Archaea taxonomy at the Genus level. In
the three domain-specific trees, we furthermore included consensus sequences at the
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Phylum level of the respective two remaining domains, in order to make sure that
the evaluation also works if such “outgroups” are included. The assembly of these
four datasets required a total of about 30 min of runtime and 10 GB of memory on a
standard laptop computer. This includes counting alignment characters, calculating
entropies and constructing consensus sequences. The resulting dataset and tree sizes,
as well as the fraction of sequences from each domain that the PhATs contain are
shown in Table 3.1.

Table 3.1: Taxonomic composition of the four PhATs. The table lists the
four trees used in our evaluation and their sizes (in number of sequences/tips), as
well as how many of these tips originate from each of the three domains of life. The
underlined values represent the resulting tree sizes, which slightly deviate from the
intended target sizes (2000 and 1800 taxa, respectively). The Archaea, being a small
enough clade, did not have a target size, but were fully resolved.

Thereof number of
Tree Size Archaea Bacteria Eukaryota

General 1998 210 508 1280
Archaea 511 248 205 58
Bacteria 1914 59 1797 58
Eukaryota 2059 59 205 1795

Our implementation of the method contains some further details that are worth
mentioning for reproducibility: It is possible to constrain the maximal size of clades
in order to not build a consensus sequence for an overly large clade, which might
not be a good representative of that clade. For the same reason, it is possible to
first expand the highest ranks of the taxonomy into separate candidates. We used
conservative values for these two constraints (a maximal clade size of 2000 and an
expansion of only the first two taxonomic ranks), in order to give more impact to
the sequence entropy. Lastly, some clades contain only one sub-clade. Those are
immediately expanded, as they do not change the length of the candidate list during
the algorithm.

Tree Inference

Givens the four sets of consensus sequences (the General sequences, as well as the
three domain-specific sequences), we then inferred unconstrained and constrained
maximum likelihood trees, running 50 independent tree searches for each tree and
subsequently selecting the best-scoring tree. Unconstrained trees were inferred using
RAxML 8.2.8 [342]. Constrained trees were inferred with Sativa 0.9-55 [191],
which internally again relies on RAxML, and offers a convenient way to transform
a taxonomy into a constraint tree. The unconstrained trees best adhere to the
phylogenetic signal of the sequences and thus typically work better for conducting
phylogenetic placement. The constrained trees comply with the Silva taxonomy,
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as this compliance might be necessary in comparative studies. They are used here
to assess how taxonomic constraints affect the phylogenetic placement and the sub-
sequent analyses. In total, our setup yields eight distinct RTs for evaluation: the
General tree, the three domain trees, and the respective taxonomically constrained
variants. Figure 3.13 shows the unconstrained Bacteria tree as an example.

The relative Robinson-Foulds distances [304] (see Section 2.3.2) between the four
pairs of trees (unconstrained versus constrained) range between 45.8% and 49.7%.
These differences probably occur because our trees span diverse clades, whose ancient
branches are hard to resolve. Also, single gene data might not be sufficient to resolve
these clades [199]. The differences between the trees however mostly concern inner
branches. When conducting phylogenetic placement, QSs generally tend to be placed
more towards the terminal branches of the tree. As these branches are more stable
across our trees, the differences in the inner branches are thus acceptable for our
evaluation purposes. Furthermore, we performed significance tests comparing the
unconstrained trees to the constrained ones, as shown in Table 3.2. The tests show
that in all cases, the unconstrained trees fit the sequence data significantly better,
and should hence be preferred in cases where congruence with the taxonomy is not
needed.

3.3.2 Accuracy

Measurement Method

Using the eight trees described above, we assess how using our PhAT affects phyloge-
netic placement accuracy. Each terminal branch of our RTs represents a consensus
sequence, which is computed from corresponding species-level sequences in Silva
that share the same taxonomic label. We evaluate an RT by placing these species
sequences onto the RT: Each species sequence is expected to be placed onto the
branch leading to the consensus sequence representing this particular species se-
quence. As the consensus sequences are derived from the taxonomy, all terminal
branches of the tree have taxonomic labels. These labels thus identify the expected
placement position for each species sequence. For example, sequences S1-6 in Fig-
ure 3.2 are represented by the consensus sequence for the Calyptosporidae clade,
which is shown below the 6 sequences in the figure. They are thus expected to be
placed onto the Calyptosporidae branch in the RT.

In order to conduct this accuracy evaluation, we placed the respective subset of the
Silva database species sequences onto each of the eight RTs. As the sequences in
Silva are already aligned to each other, no alignment step was necessary for this.
We further removed sites consisting entirely of gaps from the alignment because they
contain no phylogenetic signal. This was done to reduce the memory footprint of
downstream analysis steps. Phylogenetic placement was conducted using EPA-ng
[18].

We quantify the placement accuracy for a sequence by the distance to its ex-
pected placement branch. More precisely, we measured (a) the (discrete) number
of branches between the actual placement and the expected branch, and (b) the
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Table 3.2: Tree topology significance tests. Here, we report typical significance tests comparing the four pairs of uncon-
strained (U) and constrained (C) trees used in our evaluation. The tests were performed with IQ-TREE v1.5.6 [271] under the
“GTR+G” model (see Section 2.4.2 and Section 2.4.3; the “+G” stands here for the Γ model of rate heterogeneity), using 10 000
resamplings for the RELL method [182]. The table shows that the unconstrained trees fit the sequence data significantly better
in all four cases and for all test statistics.
Columns are as follows. logL and deltaL: log likelihood score and difference in log likelihood scores between constrained and
unconstrained tree. bp: bootstrap proportion using RELL method [182]. p-(W)KH: p-value of the one sided and the weighted
Kishino-Hasegawa test [181]. p-(W)SH: p-value of the (weighted) Shimodaira-Hasegawa test [327]. c-ELW: Expected Likelihood
Weight [347]. p-AU: p-value of approximately unbiased (AU) test [326].

Tree logL deltaL bp p-KH p-WKH p-SH p-WSH c-ELW p-AU

General (U) -725199.040 1.0 1.0 1.0 1.0 1.0 1.0 0.9987
General (C) -731949.568 6750.528 0.0 0.0 0.0 0.0 0.0 0.0 0.0012
Archaea (U) -131862.815 1.0 1.0 1.0 1.0 1.0 1.0 1.0000
Archaea (C) -133110.463 1247.648 0.0 0.0 0.0 0.0 0.0 0.0 0.0000
Bacteria (U) -405028.378 1.0 1.0 1.0 1.0 1.0 1.0 1.0000
Bacteria (C) -412464.820 7436.442 0.0 0.0 0.0 0.0 0.0 0.0 0.0000
Eukaryota (U) -745442.969 1.0 1.0 1.0 1.0 1.0 1.0 1.0000
Eukaryota (C) -753944.998 8502.030 0.0 0.0 0.0 0.0 0.0 0.0 0.0000
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(continuous) distance in branch lengths units. The former is more important in the
context of phylogenetic placement, as the placement branch of a sequence is more
significant in most analysis methods than its exact location on that branch. As a
sequence can have multiple placement locations, the distances are in fact weighted
averages that incorporate the placement probabilities (LWRs, see Section 2.5.1). For
sequences with a clear phylogenetic signal, that is, one placement with a high LWR,
the averaging procedure only slightly affects the measurements. However, sequences
with less clear placement locations are accounted for more precisely this way.

Results for the Unconstrained and Constrained Trees

The placement accuracy results for the four unconstrained and the four constrained
trees are shown in Figure 3.6. Further details of the trees and the respectively
achieved placement accuracies are provided in Table 3.3.

Considering the size of the trees, most sequences are placed in close vicinity to their
expected branches. This is corroborated by the short average distances reported in
Table 3.3. Furthermore, the average expected distance between placement locations
(EDPL) [241] is low, indicating that the placements of a specific sequence mostly
cluster in a small neighborhood of the tree. We observed that errors occur mostly
in parts of the tree with short branches. This might be explained by the inability
of 16S SSU sequences to properly resolve certain clades [165]. Also, the placement
likelihood differences are small between neighboring, short branches, such that the
placement signal is fuzzy.

With 77% of the sequences placed exactly on their expected branch, the accuracy is
generally lowest for the Bacteria tree. This might be because the Bacteria have the
most sequences in Silva, that exhibit a high diversity. In the other three trees, more
than 90% of the sequences are placed at most one branch away from their respective
expected branch. The constrained trees exhibit similar placement accuracy, indicat-
ing that the topological differences in the inner branches of the constrained versus
unconstrained trees indeed do not substantially affect the placement accuracy. Fi-
nally, we note that the results are reported without any manual corrections, and use
overly broad RTs. Thus, in real world studies, where trees are often more specific
for a clade of interest, better results are to be expected. Particularly when using
Multilevel Placement with overlapping RTs, placement differences of a few branches
at the first level tree are acceptable, as they do not change the second level tree on
which the sequence is placed; see Section 3.3.5 for details.

Alternative Consensus Methods

As outlined in the method description (see Section 3.2.1), we represent clade diver-
sity via majority rule consensus sequences. To assess the impact of the consensus
method on the placement accuracy, we repeated the above evaluation using alter-
native consensus methods. In particular, we used Cavener’s method [50, 51], and
threshold consensus sequences [75, 76]. As shown in Figure 3.7, we found little
difference between the methods.
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(a) (b)

(c) (d)

Unconstrained Constrained

Figure 3.6: Induced placement accuracy on the unconstrained and con-
strained Phylogenetic Automatic (Reference) Trees (PhATs). We evalu-
ated the accuracy of our PhATs by placing sequences and measuring the weighted
distances to their respective expected placement branches. The figure shows the cu-
mulative frequencies of number of sequences versus distances, measured in number
of branches (top row, Subfigures (a) and (b)) and in branch length units (bottom
row, Subfigures (c) and (d)). In other words, it shows how many sequences are
placed within a certain radius from their expected branches. For example, in (a),
more than 85% of the sequences of the Bacteria (red) are placed within a radius
of at most one branch from their expected branch, and in (c), more than 95% of
the Eukaryota (purple) are within a radius of 0.1 branch length units from their
expected branches.
The figure compares the accuracy of using the unconstrained trees (left, Subfigures
(a) and (c)) to using the Silva taxonomy as constraint for the tree inference (right,
Subfigures (b) and (d)). As explained in Section 3.3.1, the differences between the
unconstrained and constrained trees mostly concern their inner branches, and are
thus not expected to affect the accuracy to a large extent. This is confirmed by
the fact that, overall, the results are similar between the constrained/unconstrained
tree pairs. A slight improvement can be observed for the constrained General tree
(blue), which performs better according to both distance measures. In most other
cases, no significant differences can be observed.
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(a) (b)

(c) (d)

Majorities Cavener

50% Threshold 90% Threshold

Figure 3.7: Effect of alternative consensus sequence methods on accu-
racy. In the main evaluation of our PhAT method, we use reference trees and align-
ments based on majority rule consensus sequences [76, 245] of the Silva database
sequences. Here, we evaluate the effect of using alternative consensus sequence meth-
ods on phylogenetic placement accuracy. In addition to (a) majority rule consensus,
we tested (b) Cavener’s method [50, 51], as well as threshold consensus sequences
[75, 76] using thresholds of 50%, 60%, 70%, 80%, and 90%, of which two are shown
in (c) and (d). The three remaining threshold methods exhibit accuracies that lie al-
most exactly in between the shown plots, that is, accuracy decreases with increasing
thresholds. For comparison, we also included Figure 3.6(a) again, here as Subfig-
ure (a), using the same y-axis scaling as for the other plots. All trees used in this part
of the evaluation are unconstrained. We only show distances measured in number
of branches here, because this is more relevant in the context of our methods.
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Table 3.3: Overview of the Phylogenetic Automatic (Reference) Trees (PhATs) and their evaluation statistics.
Details of the four unconstrained (U) and the four constrained (C) trees are shown. “Size” is the number of leaves in the tree, that
is, the number of consensus sequences that the tree was inferred from, see Table 3.2. “% Seqs.” is the percentage of sequences
from Silva placed on it. The General tree does not cover all sequences, because there are some sequence labels in the database
that could not be mapped to the taxonomy. “∅ Br. Len.” is the average branch length in the tree. The evaluation results are
reported in the remaining columns: Average distances of the placed sequences to their respective expected branch are listed in
numbers of branches (Discrete) and in branch length units (Continuous), as explained in the text. Furthermore, “Exp. Br. Hits”
shows how often the most probable placement was located exactly on the expected branch. Lastly, the average expected distance
between placement locations (EDPL) is shown. The EDPL is the sum of the pairwise distances between the placements of a
sequence weighted by their probability [241].

Average Distance
Reference Tree Size % Seqs. ∅Br. Len. Discrete Continuous Exp. Br. Hits ∅EDPL

General (U) 1998 98.7% 0.084 0.63 0.034 85.9% 0.00058
General (C) 1998 98.7% 0.086 0.57 0.027 88.2% 0.00046
Archaea (U) 511 3.4% 0.070 0.46 0.013 86.4% 0.00038
Archaea (C) 511 3.4% 0.071 0.45 0.013 88.2% 0.00041
Bacteria (U) 1914 84.6% 0.067 1.13 0.031 77.0% 0.00095
Bacteria (C) 1914 84.6% 0.071 1.11 0.031 76.6% 0.00091
Eukaryota (U) 2059 10.0% 0.080 0.79 0.022 84.9% 0.00032
Eukaryota (C) 2059 10.0% 0.083 0.81 0.024 85.7% 0.00031
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By using alternative consensus methods, the consensus sequences and thus the align-
ment sites change. Furthermore, we used random initial starting trees for the maxi-
mum likelihood tree inference. Hence, the obtained reference trees (not shown) differ
substantially from each other. Across the corresponding trees of the tested consensus
methods, that is, when comparing, e. g., the Bacteria trees obtained with different
consensus methods to each other, we observed an average relative Robinson-Foulds
(RF) distance [304] of 49.5%; see Section 2.3.2 for details on the RF distance. This is
similar to our findings depicted above, e. g., in Figure 3.6. For the different consen-
sus methods, again, the accuracy for the respective constrained variants of the trees
(data not shown) does not change substantially compared to the accuracy obtained
for the unconstrained trees shown in Figure 3.7. Thus, the accuracy differences
shown in the figure are most likely due to the interplay of alignment and placed
sequences (which is what we are interested in), and not due to differences in the
trees (which are not of interest here).

The first three plots in Figure 3.7(a)–(c) exhibit similar accuracies. On average,
majority rule, Cavener’s, and low threshold (≤ 70%) consensus methods place 82–
83% of the sequences on the expected branch. As a general trend, the Archaea,
being the smallest tree, tend to have the highest accuracy. On the other hand, the
Bacteria, for which there is by far the largest amount of sequences in Silva, perform
worst. This changes for high consensus thresholds. At high thresholds, many sites
contain ambiguity characters that blur the phylogenetic signal. The General tree,
representing the highest diversity, is most affected by this, as can be seen in the last
two plots Figure 3.7(c)–(d).

Non-Consensus Sequences

For the above evaluations of the PhAT method, we used some form of consensus
sequence representation for the clades of the taxonomy, see e. g., Figure 3.6 and
Figure 3.7. However, we also tested how the method behaves when using actual rep-
resentative sequences from the database instead to represent the taxonomic clades.
This aims to avoid unnecessary blur of the phylogenetic signal, and other potential
drawbacks of consensus sequences.

As manually selecting representative sequences from the database was not practical,
we used the following automated approach. First, we took the 90% threshold con-
sensus sequences of the PhAT method that were already evaluated in Figure 3.7(d).
By using a high threshold, a large fraction of the diversity of each clade is included.
Then, for each such consensus sequence, we calculated a score for all sequences from
the database that were used to construct this consensus sequence, by measuring the
number of differing nucleotides between the consensus sequence and the database
sequence. The sequence with the lowest score (that is, with most matching nu-
cleotides) was then used to represent the clade. Thereby, the taxonomic clades are
represented by actual sequences from the database. However, as these sequences
are close to the respective consensus sequence, they are still “good” representatives
of the diversity of the clade. This resulted in a set of sequences of the same size
(both in number of sequences, and in number of alignment sites) as the original set
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of consensus sequences. Using these sequences, we then again inferred a tree and
conducted the evaluation procedure by placing all sequences of the database on that
tree, as described before. The results for the four unconstrained trees are shown in
Figure 3.8.

(a) (b)

(c) (d)

Majority Consensus Sequences Non-Consensus Sequences

Figure 3.8: Effect of using actual sequences (instead of consensus se-
quences) on placement accuracy. Subfigures (a) and (c) show the evaluation of
the majority rule consensus sequences, and are identical to Figure 3.6(a) and Fig-
ure 3.6(c), respectively. They are included here for ease of comparison. However,
the y-axis is scaled to fit the remaining subfigures. Subfigures (b) and (d) show
the evaluation of the approach of using actual (non-consensus) sequences from the
database (instead of consensus sequences), as explained in the text. The top row
(Subfigures (a) and (b)) shows distances in number of branches away from the ex-
pected placement branch; the bottom row (Subfigures (c) and (d)) shows distances
in branch length units. All trees used for this evaluation are unconstrained.

We found that this approach yields trees that are less accurate for phylogenetic
placement. The resulting accuracy is worse in all cases. That is, on average, the
sequences were placed further away from their respective expected branch. We
suspect that this is (i) because single sequences do not capture the diversity of their
clade as well as consensus sequences, and (ii) because they do not incorporate as
much biological information (e. g., in form of ambiguity characters). We conclude
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that using consensus sequences to represent clades in our PhAT approach is more
accurate and hence the preferrable approach.

Further Aspects and Observations

In the above evaluations, we generally found that using a constraint when inferring
the tree only slightly affects the placement accuracy. However, when considering
only the distance of the most likely placement (highest LWR) to its correct edge
instead of using average distances weighted by the LWR per QS, the constrained
trees consistently yield better results (data not shown). In other words, the most
likely placement is more often on the correct branch of the constrained trees. For
example, the most pronounced change is observed for the Eukaryota tree, with 84%
correct placements for the unconstrained tree, and 89% for the constrained one. We
suspect that this is an artifact of our evaluation process, as we consider a sequence
to be correctly placed if the placement branch belongs to the consensus sequence to
which the sequence contributed. As the selection of sequences for each consensus
sequence is guided by the taxonomy, using the same taxonomy as constraint for the
tree thus might also improve the placement accuracy.

As a final remark, we implicitly assumed the taxonomic label of each sequence to
be correct. That is, in the evaluations, we measured the accuracy of the placements
using the taxonomic labels of the sequences in Silva as an indicator of the expected
branch of each sequence. However, errors are expected due to incongruity between
the taxonomy and the phylogeny [264], as well as due to taxonomically mislabeled
sequences [191]. For example, Sativa [191], found 9934 mislabeled sequences in the
Silva database. Furthermore, 17 452 sequences contain one of “incertae”, “unclassi-
fied” or “unknown” in their taxonomic name, indicating that those sequences might
not be reliable. In total, there are 25 910 (or 4.3%) such dubious sequences in version
123.1 of the Silva database. Not all sequences should hence be expected to be placed
on their expected branches. We therefore evaluated how these dubious sequences
affect the accuracy of the trees. To this end, we used the same four trees as used
in the main part of the evaluation (i. e., they were constructed with all sequences,
including the dubious sequences), but for the evaluation step itself excluded the
dubious sequences. That is, those dubious sequences were not placed on the trees,
and their distance to the expected branch was not used for the evaluation. In most
cases, this improved the results slightly, but not by much (data not shown). This
shows that our trees are robust to such potentially erroneous sequences. Therefore,
we decided to only report the unfiltered results in the above evaluations.

3.3.3 Empirical Datasets

PhATs are intended for conducting phylogenetic placement of environmental se-
quences. As such sequences are anonymous and their true evolutionary history thus
unknown, we can not repeat the previous accuracy tests on empirical environmental
datasets. Instead, we assess if the PhATs yield meaningful quantitative results for
typical post-analysis methods. To this end, we placed two already well-studied em-
pirical metagenomic amplicon barcoding datasets (see Appendix B for their details)
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on our unconstrained Bacteria tree. To assess the placement results obtained from
the PhAT, we performed Squash Clustering and Edge PCA [239] post-analyses (see
Section 2.5.5) on the placement results.

Bacterial Vaginosis Dataset

We used an empirical sequence dataset of the vaginal microbiome of 220 women with
a total of 426 612 sequences [339] for this evaluation. For details on the dataset and
its processing, see Appendix B.1. The original study showed associations between
the presence of certain bacterial species and the diagnosis of Bacterial Vaginosis
(BV), a condition caused by changes in the vaginal microbiome. In the study,
the Nugent score [274] was used as a clinical diagnostic criterion for BV. This score
ranges from 0 (healthy) to 10 (severe illness). We placed the sequences of the dataset
on their original tree and on our unconstrained Bacteria tree, and reproduce some
of the results from the original study to assess differences induced by using distinct
references trees. The results reveal that the PhAT reproduces certain aspects of the
original study based on custom RTs with manually selected reference sequences, at
least to the extent that is expected from its phylogenetic resolution.

First, we conducted Squash Clustering [239] (see Section 2.5.5) of the samples placed
on the two trees. The resulting hierarchical cluster trees of the samples are shown
in Figure 3.9.

The general features of the two cluster trees are comparable, indicating that our
tree is able to distinguish between healthy and sick patients. However, there is a
major difference in the lower half of the trees: While Figure 3.9(b) shows some
small branch lengths and even a separated sub-clade of samples with low Nugent
score, these branches have a length of virtually zero in Figure 3.9(a). As shown
in Srinivasan et al. (2012) [339], the healthy patients are divided into two classes,
based on the presence of two species of Lactobacillus. The original reference tree
contains sequences of those species, and can thus distinguish between them. Our
broad Bacteria tree however does not have this degree of species-level resolution and
thus treats them the same, yielding a negligible KR distance (Section 2.5.4) between
the samples. Although this finding is expected, it serves as an example for the limits
of our method.

Second, we conducted an Edge PCA [239] (see Section 2.5.5) of the samples. The
resulting scatter plots are shown in Figure 3.10.

The scatter plots show that the PhAT is able to separate samples by their Nugent
score, that is, to classify them into healthy (left, blue items) and sick patients (right,
red items). However, as with Squash Clustering, samples that only differ in place-
ments at the species level are not separated from each other in the Edge PCA plot
of Figure 3.10(a). Hence, the two classes of healthy patients do again not exhibit
the separation based on the two Lactobacillus species that is apparent when using
the original reference tree as in Figure 3.10(b). Thus, the samples with low Nugent
score form one blob in Figure 3.10(a).
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Figure 3.9: Assessment of a PhAT for conducting Squash Clustering. The
figure compares the hierarchical clustering trees resulting from a Squash Clustering
analysis (see Section 2.5.5) using (a) our unconstrained Bacteria PhAT and (b) the
original reference tree of Srinivasan et al. (2012) [339]. Subfigure (b) is a recalculation
of Figure 1(A) of Srinivasan et al. (2012) [339], and has been horizontally flipped for
ease of comparison. The tips of both clustering trees correspond to samples, which
are colored by the respective per-sample Nugent score, where high values indicate
women with severe Bacterial Vaginosis.
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Figure 3.10: Assessment of a PhAT for conducting Edge PCA. The figure
compares the scatter plots resulting from an Edge PCA (see Section 2.5.5) using (a)
our unconstrained Bacteria PhAT and (b) the original reference tree of Srinivasan
et al. (2012) [339]. Subfigure (b) is a recalculation of Figure 3(A) of Srinivasan et al.
(2012) [339]. The items represent samples, which are colored by the respective Nu-
gent score of each sample, where higher values indicate women with severe Bacterial
Vaginosis.

This limitation can be overcome in two ways: On the one hand, one can use a PhAT
with finer taxonomic resolution, that is, with more taxa that resolve down to species
level. On the other hand, our multilevel placement approach (see Section 3.3.5) can
be used with a refined second level tree that, for example, contains species sequences
of the relevant Lactobacillus clades.

We however generally note that similar issues of deficient resolution or missing
species can potentially also arise when hand-selecting reference sequences, and are
thus not an inherent disadvantage of our method. In the end, it is the responsibility
of the researcher to ensure that the selected reference sequences are suitable for the
dataset to be placed.

Human Microbiome Project Dataset

Next, we tested the unconstrained Bacteria tree generated by our PhAT method
for placing and analyzing a large sequence dataset. For this, we used the Human
Microbiome Project (HMP) [160, 250] data, and selected 9192 samples from dif-
ferent body sites with a total of 117 million sequences. For details on the dataset
and its processing, see Appendix B.3. The sequences were placed on the tree, and
subsequently analyzed with two different methods, as shown in Figure 3.11.

First, we computed the pairwise KR distance matrix (see Section 2.5.4) between
all samples. This high-dimensional matrix was then embedded into the plot by
performing Multidimensional Scaling (MDS). MDS [105, 196, 233] is a dimension-
ality reduction technique that finds an embedding of a distance matrix into lower
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(a) (b)

Figure 3.11: Assessment of a PhAT for large dataset analyses. Sequences
from the HMP dataset [160, 250] were placed on our unconstrained Bacteria tree,
and analyzed with two analysis methods. In subfigure (a), we visualized the pairwise
KR distances between all samples, using a two-dimensional Multidimensional Scaling
(MDS). In subfigure (b), we performed Edge PCA (see Section 2.5.5) on the samples.
For both plots, we categorized the 18 original body site labels into 8 groups, in order
to yield the plot more readable. See Table B.2 for the mapping between the original
labels and the groups used here.

dimensions (in this case, 2 dimensions), while, at the same time, preserving higher
dimensional distances as well as possible. Second, we again performed Edge PCA
[239] (see Section 2.5.5) on the samples.

Both subfigures show that the tree, despite only representing higher taxonomic lev-
els, suffices to separate different body site regions from each other. Even different
oral regions are mostly separated, although there is quite some overlap. We hence
conclude that our PhAT is capable of analyzing such datasets and that it yields
useful results.

3.3.4 Taxonomic Assignment and Profiling

Here, we assess how PhATs perform when used for obtaining a taxonomic profile of
a set of samples in conjunction with phylogenetic placement. Taxonomic profiling is
the prediction of the taxonomic identities and their relative abundances of sequences
from samples obtained via shotgun sequencing (Section 2.2.2); it does not result in
taxonomic assignments for individual sequences (although this can be an intermedi-
ate step), but yields a summary of the abundances of different taxa in the samples
[253]. We emphasize though that taxonomic assignment and profiling are neither
the focus of PhATs, nor the intended standard use case of phylogenetic placement.
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To perform the evaluation, we conducted parts of the CAMI Challenge [322], which
is a community-driven effort to assess taxonomic profiling methods using a common
set of benchmark datasets. To assess the feasibility of using trees generated with
PhAT to obtain taxonomic profiles of microbiome data, we utilized the mouse gut
dataset of the 2nd CAMI Challenge [36]. See Appendix B.4 for details on our
processing of this dataset. In short, we phylogenetically placed the reads of the 16S
region of the dataset on our unconstrained and constrained Bacteria trees. We then
used this placement data to taxonomically label the reads based on the underlying
Silva taxonomy of the trees, in analogy to the method used by Sativa [191].

Unfortunately, the CAMI Challenge requires taxonomic assignments that conform
with the NCBI taxonomy [21, 315]. As our reference tree is however based on
the Silva taxonomy [395], we thus had to compute a mapping between the two
taxonomies. To this end, we developed a dedicated mapping procedure to, in a best
effort approach, map our results to NCBI taxonomic names and IDs. The mapping
is based on the loose mapping procedure of Balvočiūtė and Huson (2017) [17]. More
specifically, we tried to map taxonomic paths to their name, rank, and ID in the
NCBI taxonomy, if we find a name-based match between the two. When this fails,
the phylogenetic placement mass assigned to a taxonomic path by our approach is
instead added to the last successful mapping further up in the taxonomic hierarchy.
By initiating this procedure for each taxonomic path from its root downwards, we
ensure that all placement masses are taken into account.

This mapping is a major disadvantage of our approach when using a Silva-based
reference, as the Silva and NCBI taxonomies are far from congruent [17]. Also
note that our reference tree is limited to the 16S rDNA region. This substantially
reduces the volume of data we can evaluate; in this particular test, only ≈0.08%
of the total mouse gut data was identified as belonging to the 16S region (see also
Appendix B.4). This means that our taxonomic profiling only uses a small fraction
of the available data.

The resulting per-read assignment was then used to generate a taxonomic profile
of the data. We used the CAMI evaluation tool for taxonomic profilers OPAL
[253, 322] to compare our approach to competing software on the “gold standard”
result for the dataset. OPAL assesses the performance of a set of tools relative to
each other. We compared our approach to the profilers that were tested in the orig-
inal publications [253, 322], which are: CommonKmers (corresponding to Meta-
Palette 1.0.0) [187, 188], CAMIARKQuikr 1.0.0 [186] (which is a combination
of Quikr [189], ARK [190], and SEK [53], and abbreviated here as Quikr), TIPP
2.0.0 [272], MetaPhlAn 2.2.0 [323], MetaPhyler 1.25 [214], mOTU 1.1 [349],
and FOCUS 0.31 adapted for CAMI [329].

We here show the most important OPAL results: Figure 3.12 compares the tools
based on different error metrics; Table 3.4 shows the scores and ranks of our approach
compared to the other CAMI participants. Details on the error metrics and their
interpretation are explained in the OPAL publication [253].
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Figure 3.12: CAMI profiling results. The figure compares the taxonomic pro-
filing conducted with our Bacteria trees to the tools of the 2nd CAMI challenge
[36, 322], and was created with the OPAL tool [253]. The unconstrained and con-
strained tree are abbreviated here as“PhAT (U)”and“PhAT (C)”, respectively. Sub-
figure (a) shows the relative performance of the tools across taxonomic ranks using
the CAMI error metrics: Weighted Unifrac error, L1 norm error, recall (complete-
ness), precision (purity) and false positives. Subfigure (b) shows the absolute recall
(completeness) and precision (purity) for each tool across the taxonomic ranks. In
both subfigures, the red text for our PhAT evaluations indicates that no predictions
at the corresponding taxonomic rank were returned. This is because our Silva-
based tree does not have species resolution and does hence not allow for taxonomic
profiling at this level.
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Table 3.4: CAMI scores and ranks. The table shows the scores and ranks of different tools evaluated with data from, and
following the protocol of, the 2nd CAMI challenge [36, 322]. Here, we compare the taxonomic assignment and profiling based on
our PhATs to the tools that took part in the 2nd CAMI challenge. For this, we used the unconstrained and constrained Bacteria
tree, which are abbreviated in the table as “PhAT (U)” and “PhAT (C)”, respectively.
Four metrics are used in CAMI for evaluating tools: Recall (completeness), precision (purity), L1 norm error (abbreviated here
as L1 NE), and Weighted Unifrac Error (abbreviated here as WUE). For each metric, the comparative scores of the tools are
shown, as well as their rankings, relative to each other. Also, the total sum of scores and the total rank are shown, which add
up the values of the four metrics. The procedure of the scoring and ranking is explained in detail in the Online Supplement of
Sczyrba et al. (2017) [322].
Despite the caveats and limitations that are explained in the text, using our PhATs trees to obtain a taxonomic profile yields
rankings in the middle of the field for all metrics, even when comparing them to tools dedicated to the purpose of taxonomic
profiling.

Total Recall Precision L1 NE WUE
Tool Sum Rank Score Rank Score Rank Score Rank Score Rank

MetaPhlAn 1814 1 958 3 75 1 731 2 50 1
MetaPhyler 2995 2 314 1 2119 7 322 1 240 5
CommonKmers 3333 3 1448 6 409 2 1318 7 158 3
mOTU 3751 4 1703 8 488 3 1260 5 300 6
PhAT (C) 3784 5 1202 4 1116 4 1280 6 186 4
PhAT (U) 3933 6 1436 5 1153 5 1208 4 136 2
TIPP 4263 7 892 2 2126 8 930 3 315 7
FOCUS 6153 8 2079 9 1636 6 2018 8 420 8
Quikr 6838 9 1488 7 2398 9 2453 9 499 9
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The resolution of the assignment is limited by the taxonomy used when running the
PhAT method, that is, we could not assign reads at Species level. Furthermore, as
mentioned, we were only able to use a small fraction of the reads (16S) and had to
use incongruent taxonomies. Despite all these additional layers of complexity and
potential error sources, we find that the performance of our approach is in the mid-
range of the tools evaluated by CAMI. Note that this is a comparison to dedicated
tools for taxonomic profiling, which also typically can assign more of the available
reads. Therefore, our method yields reasonable accuracy for taxonomic assignment
and profiling.

3.3.5 Subclades and Multilevel Placement

We selected five bacterial clades to evaluate PhAT accuracy on smaller clades, as
well as to assess some properties of the Multilevel Placement approach. The same
clades were already scrutinized in Sativa [191]. Figure 3.13 shows the unconstrained
Bacteria tree from the previous evaluations, with the branches of these five test
clades highlighted.

Subclade Accuracy

First, using the Silva sequences and sub-taxonomies of these five clades as input, we
built unconstrained and constrained PhATs. We then conducted the same accuracy
analysis as explained before on the resulting ten trees. That is, we placed the Silva
sequences of the five clades onto their respective PhATs and evaluated the distances
to expected “true” branches. Thereby, we evaluated the accuracy of these PhATs
when used as second level Clade Trees. The results are shown in Figure 3.14.

The placement accuracy is slightly worse for the sub-clade trees than for the eight
comprehensive PhATs evaluated before (see Section 3.3.2), which can be seen by
comparison to Figure 3.6. On average, 73.4% of the sequences were placed exactly
on their expected branch, dominated by Proteobacteria and Firmicutes, which com-
bined make up 75% of the sequences in the five clades, and have an accuracy of 71%.
The Actinobacteria have the highest accuracy, with 82% of their sequences placed
on the expected branch.

There are however also differences between the clades. The two smallest clades,
Actinobacteria and Cyanobacteria, exhibit the shortest distances in branch length
units. In fact, the longest distance of any sequence from its expected branch in the
Cyanobacteria clade is around 0.4, which is indicated by the end of the red line in the
lower two plots of Figure 3.14. On the other hand, the Firmicutes generally have the
lowest accuracy. In Figure 3.13, which shows the unconstrained Bacteria tree, the
Firmicutes clade exhibits many paraphyletic clades, which is a known issue [281].
This indicates that there is a high incongruence between the Firmicutes taxonomy
and phylogeny in Silva, which might explain why the Firmicutes score worst in
Figure 3.14.

These results are likely due to the inability of 16S SSU sequences to properly resolve
lower taxonomic levels [165, 255, 290]. For example, Table 2 of Janda and Abbott
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Figure 3.13: Unconstrained Bacteria tree with five bacterial sub-clades.
This tree is the result of our PhAT method applied to the Bacteria sequences in
Silva. The tree contains a total of 1914 taxa. Colorized are the five Phylum level
sub-clades that we used for testing multilevel placement: Proteobacteria (505 taxa),
Bacteroidetes (362 taxa), Firmicutes (360 taxa), Cyanobacteria (39 taxa), and Acti-
nobacteria (53 taxa). The incongruence between taxonomy and phylogeny is visual-
ized here as non-monophyletic colored branches. We define a clade to consist of all
branches that are part of a monophyletic split of the tree with respect to the taxa
in the clade. In other words, all branches on one side of a split are considered to
belong to a clade, if that side of the split only contains taxa belonging to that clade.
These branches then receive the same color here. Then, for multilevel placement, a
sequence is considered to be part of a clade if its most probable placement falls into
that clade. For example, a sequence that is placed onto one of the orange branches
on this tree is subsequently placed in the Cyanobacteria tree for the second level
placement. Each of the five sub-clades is represented by multiple branches here. We
call this the “overlap” with the Bacteria tree.
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(a) (b)

(c) (d)

Unconstrained Constrained

Figure 3.14: Accuracy of the PhATs of five bacterial sub-clades. We used
five sub-clades of the Bacteria in Silva, which were already scrutinized in Kozlov
et al. (2016) [191], to asses the placement accuracy of our PhATs for less diverse
sets of sequences. These five clades are also highlighted in Figure 3.13; see there for
a description of the clades. The evaluation was conducted as explained in the text,
using the same accuracy measurement as before (see Section 3.3.2). In short, we
placed the Silva sequences of the clades on their respective tree, and measured how
far each of them is away from the branch of the consensus sequence it is represented
by.
The top row (Subfigures (a) and (b)) shows discrete distances in number of branches;
the bottom row (Subfigures (c) and (d)) shows continuous distances in branch length
units. The left side shows the accuracy of the unconstrained trees, the right side
shows the accuracy for trees constrained by the Silva taxonomy.
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(2007) [165] lists 10 bacterial genera that are known to be hard to identify using
16S sequences. These genera account for 7.9% of the 2846 taxa that are represented
by the five bacterial trees tested here. Furthermore, 95 553 of the 450 313 sequences
that were placed on those trees (21.2%) belong to one of these genera. This might
explain the worse scores for these clade trees. Lastly, the consensus sequences at
the tips of the trees represent the Genus level. This induces short branches, which
increases the probability of misplacements.

First Level Accuracy

Next, using the five clades, we evaluated the accuracy of the first placement level
when conducting Multilevel Placement (as introduced in Section 3.2.2). So far,
our evaluation focused on the distance from a sequence placement to its expected
placement branch. For the first placement level on a Backbone Tree (BT), it is
however more important that a sequence is placed into the correct clade, while the
exact placement branch is mostly irrelevant. A sequence that is placed in the correct
clade of the first level tree can subsequently be placed on the correct second level
Clade Tree (CT). Thus, we used the unconstrained Bacteria BT again, and assessed
how many sequences were placed in the clades shown in Figure 3.13. Of the 450 313
sequences in Silva in these clades, 98.0% were placed (most likely placement) into
a branch of their corresponding clade. Thus, for multilevel placement, they will be
assigned to the correct second level CT. More specifically, the Firmicutes perform
worst, as only 94.7% of the Firmicute sequences are placed into the corresponding
correct clade. This can be explained by the high amount of paraphyly of this clade,
as mentioned above, which is a known issue [281]. The sequences of the other four
clades we tested achieve a clade identification accuracy exceeding 99%. This shows
that a high overlap of the clades with with the BT yields high accuracy. In other
words, second level clade trees should be represented by multiple branches in the
backbone tree.

As already mentioned in Section 3.2.2, a high-level taxonomic constraint can improve
the accuracy of placing a sequence into the correct BT clade. To show this, we
inferred the Bacteria RT again, but used a Phylum level constraint that separates
the five clades from each other and from the rest of the tree. All branches within
the clades were resolved using maximum likelihood. The tree (not shown) is similar
to the tree in Figure 3.13, but all five clades are now monophyletic. Using this tree,
99.3% of the sequences were placed into the correct clade. Particularly the accuracy
for Firmicutes improved, yielding an accuracy of 99.5%.

Overall, our experiments show that the first level placement is highly accurate, even
if an extremely diverse “all bacteria” Backbone Tree is used. The accuracy on the
second level is slightly worse when using PhATs as CTs.

3.4 Summary and Outlook

We presented methods and algorithms to facilitate and accelerate phylogenetic place-
ment of large environmental sequencing studies. The Phylogenetic Automatic (Ref-
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erence) Tree (PhAT) method (Section 3.2.1) provides a means for automatically ob-
taining suitable reference trees by using the taxonomy of large sequence databases.
Using the Silva database as a test case, we showed that it can be applied for
accurately (pre-)placing environmental sequences into taxonomic clades. In com-
bination with our multilevel placement approach (Section 3.3.5), even very broad
PhATs achieve high accuracy, particularly when using high-level clade constraints.
The method can also be used for rapid data exploration in environmental sequenc-
ing studies: A PhAT might be useful to obtain an overview of the taxa that are
necessary to capture the diversity of a sequence dataset, without the substantial
human effort and potential bias of manually selecting reference sequences. As we
showed, PhATs can also be used to obtain taxonomic assignments and profiles for
a set of samples, in conjunction with phylogenetic placement (Section 3.3.4). To
capture clade diversity with finer resolution, for example for a second placement
level, clade-specific PhATs can be inferred. If species-level resolution is required,
we recommend that the sequences are inspected by an expert, in order to confirm
that the tree is appropriate for the data to be placed on it. Furthermore, as our
automated approach inevitably suffers from errors in the database it is based on,
we recommend using Sativa [191] to identify potentially mislabeled sequences in
the respective database. One should also keep in mind that phylogenetic placement
does not necessarily provide resolution at the species level [91].

As we show, our multilevel placement method (Section 3.2.2) as well as the prepro-
cessing pipeline (Section 3.2.3) accelerate the placement process without sacrificing
accuracy. By first placing the query sequences on a broad Backbone Tree (BT),
as described in the method, novel environments with sequences of unknown evolu-
tionary origin can be classified without having to process a large tree comprising all
taxa of interest. The method hence offers the benefits of high resolution reference
trees, without the aforementioned limitations induced by large alignments. A second
placement level on a set of Clade Trees (CTs) provides sufficient taxonomic reso-
lution for biological interpretation. Placement accuracy can be further improved
by inferring the BT with a high-level constraint that separates the clades of the
CTs from each other and thus ensures monophyly of these clades. Furthermore, for
the practical applicability and relevance of this approach, we refer to our results
presented in Mahé et al. (2017) [230].

Apart from exploring sequence data from unknown environments, we see online
services as a potential additional application of our methods. A web service that
offers phylogenetic placement of user-submitted sequences is confronted with two
issues: Firstly, the potentially large number of query sequences, and secondly, their
unknown provenance. Both can be solved by using a broad “all-of-life” backbone
tree for pre-classification, and subsequently distributing the second-level placement
to different compute nodes.
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This chapter is derived from parts of the peer-reviewed open-access publication:

Lucas Czech and Alexandros Stamatakis. “Scalable Methods for Ana-
lyzing and Visualizing Phylogenetic Placement of Metagenomic Samples.”
PLOS ONE, 2019, Volume 14, Issue 5, Page e0217050.

All text and figures in this chapter were created by Lucas Czech.

4.1 Background and Motivation

When analyzing a set of metagenomic sequence samples (Section 2.2.2) using phy-
logenetic placement (Section 2.5), a first step is often to visualize the data. For
small samples, it is possible to mark individual placement locations on the Refer-
ence Tree (RT), as offered for example by iTOL [205], or even to create a tree where
the most probable placement per Query Sequence (QS) is attached as a new branch,
as implemented in the guppy tool from the pplacer suite [241], RAxML-EPA
[25, 342], and our tool gappa [70]. For larger samples, one can alternatively display
the per-edge placement mass, either by adjusting the line widths of the edges ac-
cording to their mass, or by using a color scale, as offered in ggtree [397], guppy,
and gappa. Using per-edge colors corresponds to binning all placements of an edge
into one bin (see Section 2.5.3). For large datasets, the per-edge masses can vary
by several orders of magnitude. In such cases, it is often preferable to use a log-
arithmic scaling, as shown in Mahé et al. (2017) [230]. In addition to visualizing
each sample separately, the average mass distribution (after squashing the masses,
see Section 2.5.3) visually summarizes a set of samples.

The visualizations provide an overview of the species abundances over the tree.
They can be regarded as a more detailed version of abundance charts [160], which
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are typically shown in the form of pie or bar plots [108, 203, 230]. For instance,
Figure 4.1 shows a comparison of a simple abundances pie chart compared to a
visualization of per-branch abundances on a reference tree for the same dataset.
Although there exist more advanced variants such as hierarchical pie charts, for
instance as offered by the Krona tool [276], it should be apparent that the tree
visualization provides more detailed information. In Figure 4.1(b), we combined the
information of the pie chart with the tree visualization by displaying the abundances
next to each clade.
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Figure 4.1: Visualizations of sequence abundances. The figure shows an
example of (a) a typical pie chart of taxonomic abundances and (b) the substantially
more informative per-branch mass visualization using phylogenetic placement on a
reference tree. The data is from Mahé et al. (2017) [230]. The branches of the
tree are colored by abundances on a logarithmic scale, and clades of the tree are
annotated with the per-clade abundances, effectively combining the information of
the pie chart with the tree visualization.

A more detailed visualization of the abundances per taxon and per sample can be
obtained via a heat map that shows the per-sample abundances at the tips of the
tree. This is often used for OTU trees, where tips correspond to the OTUs that
the tree was inferred from. This can be extended to placements by also showing
abundances/masses at the inner edges, as shown in Figure 4.2. The figure shows the
placements per edge and per sample for the BV dataset; see Section B.1 for details
on this dataset.

On the left hand side of Figure 4.2, note the two particularly dark branches, Lac-
tobacillus iners and Lactobacillus crispatus, which are the major species associated
with a healthy vaginal microbiome [339]. This can also be seen on the right hand
side of the figure, where the high abundance of Lactobacillus in healthy patients is
visible as red stripes in the lower part of the matrix, while the diseased patients
exhibit high placement masses at several other taxa [339].
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Figure 4.2: Visualization of per-edge and per-sample masses of the BV
dataset. The figure provides an overview of the placement of the BV dataset: The
left hand side shows a condensed version of the original reference tree of Srinivasan
et al. (2012) [339], colored by log-scaled placement mass of all samples accumulated.
For clarity and simplicity, in this figure we used a reference tree built from the con-
sensus sequences of each original reference taxon, so that each species is represented
by exactly one tip here. The Lactobacillus clade is highlighted in the tree, which is
an important clade for this dataset.
The right hand side shows a heat map that further resolves the placement masses per
sample: Each row corresponds to a branch of the tree on the left (note that dashed
lines also start from inner branches), and each column represents one sample. The
values are log-centered in order to be consistent with typical OTU abundance heat
map representations [376]. The samples/columns are sorted by their Nugent score,
from 0 at the left for the healthy patients to 10 at the right for the sick ones. The
Nugent score of each sample is also shown at the top as a blue to red bar.
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Such visualizations directly depict the placement masses on the tree. When visual-
izing the accumulated masses of multiple samples at once, it is important to chose
an appropriate normalization strategy for the task at hand, as explained in Sec-
tion 2.5.3. For example, if samples represent different locations, one might prefer to
use normalized masses, as comparing relative abundances is common for this type
of data. On the other hand, if samples from the same location are combined (e. g.,
from different points in time, or different size fractions), it might be preferable to
use absolute abundances instead, so that the total number of sequences per sample
can be visualized.

When placing OTUs (see Section 2.5.3), or ignoring sequence abundances, the re-
sulting visualizations can be interpreted as a depiction of species diversity. More-
over, these visualizations can be used to assess the quality of the RT. For example,
placements into inner branches of the RT may indicate that appropriate reference
sequences (i) have either not been included or (ii) are simply not available yet.
This complements the sequence filtering that relies on so-called backbone trees as
previously described in Section 3.2.2.

These visualizations are useful tools for initial dataset and feature exploration in
terms of species abundances. However, when working with multiple samples, they
do not immediately reveal relative differences between samples that might hint at
underlying biological or ecological properties of the samples or their environment.

4.2 Methods and Implementation

Here, we introduce visualization methods for phylogenetic placement of a set of
metagenomic sequence samples that highlight (1) regions of the tree with a high
variance in their placement distribution (called Edge Dispersion), and (2) regions
with a high correlation to meta-data features (called Edge Correlation).

Both methods take as input a set of samples, each consisting of a set of Query
Sequence (QS) placed on a fixed Reference Tree (RT). They then use the edge
masses matrix and the edge imbalances matrix as introduced in Section 2.5.3 to
calculate per-branch quantities, which are subsequently visualized on the RT.

4.2.1 Edge Dispersion

The Edge Dispersion is derived from the edge masses or edge imbalances matrix
(Section 2.5.3) by calculating a measure of dispersion for each matrix column, for
example, the standard deviation σ. Because each column corresponds to an edge,
this information can be mapped back to the tree, and visualized, for instance, via
color coding. This allows to examine which edges exhibit a high heterogeneity
of placement masses across samples, and hence indicates which edges discriminate
samples.

As the abundances of different species, and hence also the edge mass values, can
span many orders of magnitude, it might be necessary to scale the variance logarith-
mically. Often, one is more interested in the branches with high placement mass,
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as they comprise the most abundant species in the samples. In these cases, using
the standard deviation or variance is appropriate, as they also indicate the mean
per-edge mass. On the other hand, by calculating the per-edge Index of Dispersion
[105], that is, the variance-mean-ratio σ2/µ, differences on edges with little mass also
become visible. Note that this is a valid operation, as edge masses are non-negative
count variables. The Index of Dispersion is useful to explore heterogeneity on edges
with low species abundances.

As Edge Dispersion relates placement masses from different samples to each other,
the choice of the normalization strategy is important (see also Section 2.5.3). When
using normalized masses, the magnitude of dispersion values needs to be cautiously
interpreted [220]. The Edge Dispersion can also be calculated for edge imbalances
in form of the standard deviation. As edge imbalances are usually normalized to
[−1.0, 1.0], their dispersion can be visualized directly without any further normal-
ization steps. However, because imbalances can be negative, the Index of Dispersion
is not applicable to them. An example for an Edge Dispersion visualization is shown
in Figure 4.3(a), and discussed in Section 4.3.

(b)(a)
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Figure 4.3: Examples of Edge Dispersion and Edge Correlation. We ap-
plied our novel visualization methods to the Bacterial Vaginosis (BV) dataset (see
Appendix B.1 for details) to compare them to the existing data analysis methods.
(a) Edge Dispersion, measured as the standard deviation of the edge masses across
samples, logarithmically scaled. (b) Edge Correlation, in form of Spearman’s Rank
Correlation Coefficient between the edge imbalances and the Nugent score. Tip
edges are gray, because they do not have a meaningful imbalance. This example
also shows the characteristics of edge masses and edge imbalances: The former
highlights individual edges, the latter highlights paths to clades.

4.2.2 Edge Correlation

In addition to the per-edge masses, the Edge Correlation can further take a specific
meta-data feature into account, that is, a column of the meta-data matrix. The
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Edge Correlation is calculated as the correlation between each edge column and
the feature column, for example by using the Pearson Correlation Coefficient or
Spearman’s Rank Correlation Coefficient [105]. This yields a per-edge correlation
of the placement masses or imbalances with the specific meta-data feature, and can
again be visualized by color coding the edges.

The Pearson Correlation Coefficient r between the per-edge mass or imbalance col-
umn c (with average c ) and the meta-data column m (with average m) for a set of
s samples is calculated as

r =
∑s
i=1(ci − c)(mi −m)√∑s

i=1(ci − c)2
√∑s

i=1(mi −m)2
(4.1)

Spearman’s Rank Correlation Coefficient is calculated in the same way, but instead of
using the actual values of the matrix columns, their ranking numbers are used. That
is, the values are reduced to ordinal numbers, where the lowest value is transformed
into 1, the second lowest value into 2, etc. As a consequence, instead of a linear
correlation, this coefficient calculates the strength of monotonic correlations.

Both variants are inexpensive to calculate and hence scale well to large datasets. As
typical correlation coefficients are within [−1.0, 1.0 ], there is again no need for fur-
ther normalization. This yields a tree where edges or clades with either a high linear
or high monotonic correlation with the selected meta-data feature are highlighted.
Figure 4.3(b) shows an exemplary visualization of this method.

In contrast to Edge PCA [239] that can use meta-data features to annotate samples
in its scatter plots (see Section 2.5.5), our Edge Correlation method directly displays
the influence of a feature on the branches or clades of the tree. It can thus, for
example, help to identify and visualize dependencies between species abundances and
environmental factors such as temperature or nutrient levels. Again, the choice of the
normalization strategy is important to draw meaningful conclusions. However, the
correlation is not calculated between samples or sequence abundances. Hence, even
when using normalized samples, the pitfalls induced by correlations of compositional
data [220] do not apply here.

The method further bears some conceptual similarity to Phylofactorization [376],
for which we present adaptation to phylogenetic placements in Chapter 7. Phylo-
factorization also takes meta-data features into account and can hence identify rela-
tionships between changes in environmental variables and changes in abundances in
clades of the tree. It typically uses linear regression in form of a Generalized Linear
Model (GLM) to assess these relationships. Note that the correlation coefficient used
in our Edge Correlation can be interpreted as the slope of the regression line of the
standardized values, which establishes a connection between Edge Correlation and
Phylofactorization. The advantage of using correlations here instead of a GLM lies
in its simplicity for the interpretation of results: We are here interested in whether
changes in a meta-data feature lead to an increase or decrease of abundances on
branches or in clades of the tree. Using a GLM for this purpose would not yield any
advantage.
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4.3 Evaluation and Results

4.3.1 BV Dataset

We re-analyzed the Bacterial Vaginosis (BV) dataset (see Appendix B.1 for details)
by inferring a tree from the original reference sequence set and conducting phy-
logenetic placement of the 220 samples. The characteristics of this dataset were
already explored by Srinivasan et al. (2012) [339] and Matsen and Evans (2011)
[239]. We use it here to give exemplary interpretations of our Edge Dispersion and
Edge Correlation methods, and to evaluate them in comparison to existing methods.

Figure 4.3 shows our novel visualizations of the BV dataset. Edge Dispersion is
shown in Figure 4.3(a), while Figure 4.3(b) shows the Edge Correlation with the
Nugent score. The Nugent score [274] is a clinical standard for the diagnosis of Bac-
terial Vaginosis, ranging from 0 (healthy) to 10 (severe illness). Bacterial Vaginosis
(BV) is a disease of the vagina that manifests itself in form of an abnormal vaginal
microbiome [339].

The connection between the Nugent score and the abundance of placements on
particular edges was already explored by Matsen and Evans (2011) [239], but only
visualized indirectly (i. e., not on the RT itself). For example, Figure 6 of the original
study [239] plots the first two Edge PCA components colorized by the Nugent score.
We recalculated this figure for comparison, and show it later in Figure 5.3(i).

In contrast to this, our Edge Correlation measure directly reveals the connection
between the Nugent score and placements on the reference tree: The clade on the left
hand side of the tree, to which the red and orange branches lead in Figure 4.3(b), are
Lactobacillus iners and Lactobacillus crispatus, respectively, which were identified
in Srinivasan et al. (2012) [339] to be associated with a healthy vaginal microbiome.
Thus, their presence in a sample is anti-correlated with the Nugent score, which
is lower for healthy individuals. The branches leading to this clade are therefore
colored in red. On the other hand, there are several other clades that exhibit a
positive correlation with the Nugent score, that is, were green and blue paths lead
to in the figure, again a finding already reported in Srinivasan et al. (2012) [339].

Both trees in Figure 4.3 highlight the same parts of the tree: The dark branches with
high deviation in Figure 4.3(a) represent clades attached to either highly correlated
(blue) or anti-correlated (red) paths Figure 4.3(b). This indicates that edges that
have a high dispersion also exhibit variation in placement mass between samples of
different Nugent score. Both methods hence reveal the clades that are relevant for
discriminating among the samples of this dataset.

We further compared our methods to the visualization of Edge PCA components
on the reference tree. To this end, we recalculated Figures 4 and 5 of Matsen and
Evans (2011) [239], and visualized them with our color scheme in Figure 4.4 for ease
of comparison. The figures show the first two components of Edge PCA, mapped
back to the branches of the RT. The first component, Figure 4.4(a), reveals that the
Lactobacillus clade represents the axis with the highest heterogeneity across samples,
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Figure 4.4: Recalculation of the Edge PCA tree visualization. Subfig-
ures (a) and (b) are recalculations of Figures 4 and 5 of Matsen and Evans (2011)
[239], respectively. However, we show them here in our coloring scheme in order to
facilitate comparison with other figures. The original publication instead uses two
colors for a positive and a negative sign of the principal components, and branch
widths to show their magnitude. Note that the actual sign is arbitrary, as it is de-
rived from principal components.
The figure shows the first two Edge PCA components, visualized on the reference
tree. This form of visualization is useful to interpret results such as the Edge PCA
projection plot as shown later in Figure 5.3(i). It reveals which edges are mainly
responsible for separating the samples into the PCA dimensions. Here, the first prin-
cipal component in (a) indicates that the main PCA axis separates samples based
on the presence of placements in the Lactobacillus clade, which is what the blue and
green path leads to. The second component in (b) then further distinguishes between
two species in this clade, namely Lactobacillus iners and Lactobacillus crispatus.

while the second component, Figure 4.4(b), further distinguishes between the two
aforementioned clades within the Lactobacilli. As shown in Figure 4.3(b), Edge
Correlation also highlights the Lactobacillus clade, but does not distinguish further
between its sub-clades. This is because a high Nugent score is associated with a
high abundance of placements in either of the two relevant Lactobacillus clades.

Further examples of variants of Edge Dispersion on the BV dataset are shown in
Figure 4.5. In Figure 4.5(a), which is linearily scaled, it is striking that one outlier
edge, marked with an arrow, is dominating the values, and thereby hiding the values
on less variable edges. This outlier occurs for the species Prevotella bivia in one of the
220 samples, where 2781 out of 2782 sequences in the sample have some placement
mass on that branch. Upon close examination, this outlier can also be seen in
Figure 1D of Srinivasan et al. (2012) [339], but is less apparent there. Thus, our
novel visualization can help to detect such outlier samples. In Figure 4.5(b) and (c),
we used logarithmic scaling instead, in order to reveal more details on the edges with
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Figure 4.5: Examples of variants of Edge Dispersion. The figure shows
further visualizations of Edge Dispersion on the BV dataset. All subfigures high-
light the same branches and clades as found by other methods such as Edge PCA.
Subfigure (a) shows the standard deviation of the absolute edge masses, without
any further processing. Subfigure (b) is identical to Figure 4.3(a), for comparison,
and shows the standard deviation again, but this time using logarithmic scaling,
thereby revealing more details on the edges with lower placement mass variance.
Subfigure (c) shows the Index of Dispersion of the edge masses, that is, the variance
normalized by the mean. Hence, edges with a higher number of placements are
also allowed to have a higher variance. The figure reveals more details on the edges
with lower variance, highlighted in medium green colors. Subfigure (d) shows the
standard deviation of edge imbalances. Because we used imbalances of unit mass
samples, the values are already normalized. Note that imbalances can be negative;
thus, the Index of Dispersion is not applicable to them.
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lower placement mass variance. When comparing these two Figures to Figure 4.6,
we see that the same clades that exhibit a high correlation or anti-correlation with
meta-data there are also highlighted here. There are only few medium values, which
indicates that there are two classes of edges: Those which have a high placement
mass heterogeneity (and thus can help to distinguish patients), and those who have
almost no placements at all. Lastly, Figure 4.5(d) shows the Edge Dispersion of
the edge imbalances. The path to the Lactobacillus clade is again clearly visible,
indicating that the placement mass in this clade has a high variance across samples.
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Figure 4.6: Examples of variants of Edge Correlation. The Figure shows the
correlation of edge masses and imbalances with the Nugent score on the BV dataset.
The Nugent score measures the severeness of Bacterial Vaginosis, and ranges from
0 for healthy subjects to 10 for heavily affected patients. Subfigures (a) and (b) use
the Pearson Correlation Coefficient, that is, they show the linear correlation with the
meta-data feature, while subfigures (c) and (d) use Spearman’s Rank Correlation
Coefficient, and thus show monotonic correlations. Subfigure (d) is identical to
Figure 4.3(b), for comparison.
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In Figure 4.6, we show further examples of variants of the Edge Correlation on the
BV dataset. All subfigures show red edges or red paths at the Lactobacillus clade.
This indicates that the presence of placements in this clade is anti-correlated with the
Nugent score, which is consistent with the findings of Srinivasan et al. (2012) [339]
and Matsen and Evans (2011) [239]. In other words, the presence of Lactobacillus
correlates with a healthy vaginal microbiome. On the other hand, blue and green
edges, which represent positive correlations, are indicative of edges that correlate to
Bacterial Vaginosis. The extent of correlation is larger for Spearman’s Coefficient,
indicating that the correlation is monotonic, but not strictly linear.

Lastly, we conducted Edge Correlation visualizations using additional meta-data
features that are available for the BV dataset, in order to further confirm the consis-
tency of our methods with existing results. In particular, we visualize the correlation
with Amsel’s criteria [9] and the vaginal pH value in Figure 4.7, both of which were
already used in Srinivasan et al. (2012) [339] as additional indicators of Bacterial
Vaginosis. We again found similar correlations as for the Nugent score.

4.3.2 Tara Oceans Dataset

We analyzed the Tara Oceans (TO) dataset [137, 174, 350] to provide further ex-
emplary use cases for our visualization methods; see Appendix B.2 for details on
this dataset. To this end, we used the unconstrained Eukaryota RT with 2059 taxa
as described in Section 3.3.1. The meta-data features of the TO dataset that best
fit for our methods are the sensor values for chlorophyll, nitrate, and oxygen con-
centration, as well as the salinity and temperature of the water samples. Other
available meta-data features such as longitude and latitude where each sample was
taken are available for the dataset; in particular, latitude can be used as an indicator
for species diversity [350]. As species diversity is however a concept that is distinct
from species abundances (here represented as the placement masses per branch), we
do not use the geographical coordinates of the samples here. The Edge Correla-
tion of the 370 samples with the nitrate concentration, the salinity, the chlorophyll
concentration, and the water temperature are shown in Figure 4.8.

We selected the Diatoms and the Animals as two exemplary clades for closer ex-
amination of the results. Diatoms are mainly photosynthetic, and thus depend on
nitrates as key nutrients [222, 292]. This is clearly visible by the high correlation of
the clade with the nitrate concentration in Figure 4.8(a). Furthermore, the diatoms
exhibit a positive correlation with the chlorophyll concentration in Figure 4.8(c),
which again is indicative of their photosynthetic behavior. On the other hand,
they prefer environments with low salt concentrations, and thus show a high anti-
correlation with the salt content in Figure 4.8(b). Salinity is a strong environmental
factor which heavily affects community structures and species abundances [222],
particularly diatoms [292].

The correlations in the animal clade are less pronounced. They exhibit a negative
correlation with nitrate in Figure 4.8(a), as well as an increase in absolute abundance
with higher temperatures in Figure 4.8(d). While these findings are not surprising,
they show that the method is able to find meaningful relationships in the data.
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Figure 4.7: Edge Correlation with more meta-data features. Here, we use
additional meta-data features of the BV dataset to show that Edge Correlation yields
consistent results with existing methods. In particular, we calculated Spearman’s
Coefficient with Amsel’s criteria [9] in Subfigures (a) and (b), as well as with the
vaginal pH value in Subfigures (c) and (d). Both features were also used in Srinivasan
et al. (2012) [339] as additional indicators of Bacterial Vaginosis. The figures are
almost identical to the ones shown in Figure 4.6; that is, they yield results that are
consistent with the previously used Nugent score, and that are also consistent with
existing methods.
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Figure 4.8: Examples of Edge Correlation using Tara Oceans samples.
The figure shows the correlation of Tara Oceans sequence placements with (a) the
nitrate, (b) the salinity, (c) the chlorophyll, and (d) the temperature sensor data of
each sample. The sensor values range from −2.2 to 33.1 µmol/l (nitrate), from 33.2
to 40.2 psu (salt), from −0.02 to 1.55 mg/m3 (chlorophyll), and from −0.8 to 30.5 ◦C
(temperature), respectively. The negative nitrate and chlorophyll concentrations
are values below the detection limit of the measurement method (pers. comm. with
L. Guidi on 2018-04-25), and hence simply denote low concentrations. We used
Spearman’s Rank Correlation Coefficient in all subfigures, and examine two exem-
plary clades, namely the Animals and the Diatoms, which are marked by arcs around
the tree here.
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These findings indicate that the Edge Correlation method is able to identify known
relationships. It will therefore also be useful to investigate and discover insights of
novel relationships between sequence abundances and environmental parameters.

4.3.3 Performance

Both methods (Edge Dispersion and Edge Correlation) are computationally inex-
pensive, as they only require a few operations per input matrix entry. They are
thus applicable to large datasets. The calculation of the above visualizations took
about 30 s each, which were mainly required for reading in the placement data. The
required main memory for these computations is also relatively low, and mostly de-
termined by the size of the input matrices, which contain s ·b floating point numbers
for a dataset of s samples placed on a tree with b branches.

Furthermore, in order to scale to large datasets, we reimplemented Edge PCA (Sec-
tion 2.5.5), which was originally implemented as a command in the guppy program
[241]. For the BV dataset with 220 samples (Appendix B.1), guppy required 9 min
and used 2.2 GB of memory, while our implementation only required 33 s on a single
core, using less than 600 MB of main memory. Furthermore, we tested our reimple-
mentation of Edge PCA on the large Human Microbiome Project (HMP) dataset
(see Appendix B.3 for details). For this dataset, guppy took 11 days and 75.1 GB
memory, as it is only single-threaded and seems to use an inefficient parser for the
jplace input format (Section 2.5.1), while our implementation needed 7.5 min on
16 cores and used 43.5 GB of memory.

4.4 Summary and Outlook

The chapter presented two novel methods to visually explore phylogenetic placement
data in order to derive biological and ecological knowledge and unravel new patterns
in the data. The methods complement existing analysis tools such as Edge PCA,
and yield consistent results on known datasets.

Edge Dispersion is an exploratory tool that highlights branches of the phylogenetic
tree which exhibit variations in the number of placements across samples. It thus
allows to identify “interesting” regions of the tree with a high placement heterogene-
ity. In contrast to Edge Correlation, it can however not explain the reasons for the
observed heterogeneity.

Edge Correlation additionally takes meta-data features into account, and identifies
branches of the tree that correlate with quantitative features, such as the tempera-
ture or the pH value of the environmental samples. It thus can indicate those parts
of the reference tree where changes in environmental variables drive changes in the
abundances of species.

The methods are currently limited to correlations with singular continuous value
meta-data features. In their current form, they hence do not allow for more chal-
lenging analyses, such as finding patterns and correlations that depend on multiple
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features at once, or taking more complex data into account, such as the geographical
distribution of samples.

In Chapter 6, we later present adaptations of recent tree-based concepts such as
the Phylogenetic ILR Transformation and Balances [330] to phylogenetic placement
data. These concepts can also be used in combination with Edge Correlation, which
we briefly explore in Section 6.3.2. We further introduce a technique for weighting
taxa/edges based on their “importance” for a dataset. This could also be adapted
and used for Edge Dispersion and Edge Correlation, for instance as an alternative
to “weighting” edges by the mean placement mass (as employed by the Index of
Dispersion).

Furthermore, in Chapter 7, we describe how to use Generalized Linear Models
(GLMs) in order to quantify relationships between meta-data variables and per-edge
values such as placement masses. In particular, GLMs allow to take different types
of meta-data variables (such as binary or categorical variables) into account, and
also allow to consider multiple variables simultaneously. Quantifications of how well
the model fits the data can be visualized per edge of the tree, as for instance shown
later in Section 7.3.1, which can reveal relationships between multiple variables of
different types with per-edge masses or imbalances. This poses an interesting and
promising extension to the methods presented in this chapter. When using GLMs
however, the direction of the relationship is not immediately visible (for instance,
whether a variable is positively or negatively correlated with edge masses), and it
is more challenging to assess which meta-data variables are more influential than
others when using them simultaneously (for instance, assessing the strength of the
correlation). While these issues can certainly be solved [122], the results might not
be easily visualizable on a single tree. We hence leave a full exploration of these
ideas as an extension to Edge Correlation as future work.

Lastly, in biogeographic and ecological studies, one might be interested in questions
such as (i) how the regional diversity per area in a rain forest depends on distances
between these regions [203], or (ii) how oceanic currents influence species diversity
and distribution in the global oceans [350]. The integration of features such as
geographical coordinates into our correlation analysis is however challenging. As
mentioned above, a starting point could be to employ latitude as an indicator for
species diversity [350]. Furthermore, geographical coordinates yield pairwise dis-
tances between samples, which could be used in more involved methods than the
ones presented here to discover complex patterns in global ecological data. While it
is unlikely that such questions can be answered via a single visualization, it might
still be interesting and helpful to explore methods that utilize phylogenetic place-
ment data to help answering them.
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5. Clustering

This chapter is derived from parts of the peer-reviewed open-access publication:

Lucas Czech and Alexandros Stamatakis. “Scalable Methods for Ana-
lyzing and Visualizing Phylogenetic Placement of Metagenomic Samples.”
PLOS ONE, 2019, Volume 14, Issue 5, Page e0217050.

All text, tables, and figures in this chapter were created by Lucas Czech.

5.1 Background and Motivation

Given a set of metagenomic sequence samples (Section 2.2.2), and a distance measure
between them (Section 2.5.4), a fundamental task consists in clustering samples that
are similar to each other. For example, Squash Clustering performs agglomerative
hierarchical clustering of samples (Section 2.5.5). It is based on the phylogenetic
placement of the Query Sequences (QSs) of the samples on a Reference Tree (RT),
and employs the Kantorovich-Rubinstein (KR) distance [104, 239] to assess sample
similarity. An example of the resulting clustering tree is shown in Figure 5.1(a).

For large datasets, producing a clustering tree can however considered to be a down-
side of Squash Clustering, as the number of tips in this tree is equal to the number n
of samples that are being clustered. Thus, for datasets with more than a few hundred
samples, the clustering result becomes hard to inspect and visually interpret.

Furthermore, depending on the data and research question at hand, the KR distance
is not always the best measure of sample similarity. As explained in Section 2.5.3,
edge imbalances can often reveal more subtle differences between samples than edge
masses. Thus, for some datasets, it might make sense to use a distance that is based
on edge imbalances instead.
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Figure 5.1: Existing analysis methods on the BV dataset. We applied (a)
Squash Clustering, (b) PCA on the pairwise KR distance matrix between samples,
and (c) Edge PCA, using the Bacterial Vaginosis (BV) dataset [339]. The subfigures
are recalculations of Figure 1(A) of Srinivasan et al. (2012) [339], and Figures 4
and 3 of Matsen and Evans (2011) [240], respectively. All subfigures represent
samples as colored dots according to their respective Nugent score, which indicates
the severeness of the BV infection of the samples/patients. See Section 2.5.5 for a
description of the methods, and Appendix B.1 for details on the dataset.

To further illustrate this, Figure 5.1(b) shows the result of a standard principal
component analysis (PCA) [168, 286] on the pairwise KR distance matrix of the
Bacterial Vaginosis (BV) dataset [339] that we used before. On the left hand side of
the figure, the blue samples, representing healthy women with a low Nugent score,
form a dense cluster. Towards the right hand side however, the red samples, which
belong to sick patients, are spread over the rest of the graph. As Squash Clustering
also uses the KR distance, the same pattern can be observed in its resulting cluster-
ing tree, as shown in Figure 5.1(a): The bottom half of the clustering tree, containing
mainly healthy (blue) samples, has short branches, which correspond to the dense
blue region in Figure 5.1(b). At the same time, the top half, mostly containing
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samples from sick (red) patients, exhibits many long branches, corresponding to the
scattered red region in Figure 5.1(b). Thus, Squash Clustering represents equivalent
information to a standard PCA on this dataset. It thus “suffers” from the same
shortcomings that Edge PCA is solving by using mass imbalance instead (see Sec-
tion 2.5.5). This can be seen in Figure 5.1(c), which shows the result of Edge PCA
on the dataset. There, the healthy (blue) samples clearly separate into two groups
for the two dominant Lactobacillus clades in healthy patients, which is due to the
edge imbalances that resolve smaller differences between the placements on nearby
clades in this dataset. Hence, for this dataset, instead of using a distance that is
based on edge masses such as the KR distance, edge imbalances should be used to
measure distances between samples.

5.2 Methods and Implementation
We here propose two variants of k-means clustering [224, 344], which we call Phylo-
genetic k-means, and Imbalance k-means, respectively. They are clustering methods
for phylogenetic placement of a set of metagenomic sequence samples, and address
the issues described above. Note that these methods are clustering samples, and
not single sequences [178]. Both methods produce a predefined number of clusters,
and hence are able to work with arbitrarily large datasets. Phylogenetic k-means
uses the KR distance to assess sample similarity, that is, it uses edge masses, while
Imbalance k-means uses edge imbalances instead.

The methods take as input a set of n samples, each consisting of their Query Se-
quences (QSs) placed on a fixed Reference Tree (RT). They then assign the samples
to k clusters, each represented by a cluster centroid that describes the average place-
ment mass distribution of the samples assigned to it. We later also discuss how to
chose a reasonable value for k.

5.2.1 Phylogenetic k-means

Phylogenetic k-means employs the KR distance (see Section 2.5.4) and hence yields
results that are consistent with the clustering tree of Squash Clustering.

Algorithm

The input samples and the cluster centroids are of the same data type, namely, they
are mass distributions on a fixed RT. It is thus possible to calculate the KR distances
between samples and centroids, and to calculate their average mass distributions by
squashing, as described in Section 2.5.3.

The objective is to then find an assignment of the n samples into k clusters that
minimizes the total distance between each sample and the cluster centroid it is
assigned to, measured as the KR distance between them. That is, for k clusters,
each represented by a set Ak of samples assigned to it, and its centroid Ck, the
objective is to find

Â = arg min
A

k∑
i=1

∑
s∈Ai

KR(s, Ci) (5.1)
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The optimal solution Â for the assignment of samples to clusters can be found via
a brute-force search. However, the number of possible assignments of n samples to
k clusters is given by the Stirling partition number S(n, k) [133], which is too large
for any dataset of realistic size.

Hence, our implementation follows the Lloyd-Forgy algorithm [117, 217], which is
the standard heuristical method to solve the k-means problem. It iteratively im-
proves the assignments A and the centroids C in two alternating steps, as shown in
Algorithm 5.1.

Algorithm 5.1 Phylogenetic k-means

1: initialize k Centroids
2: while not converged do
3: assign each Sample to nearest Centroid (A)
4: update Centroids as mass averages of their Samples (C)

5: return Assignments A and Centroids C

By default, we use the k-means++ initialization algorithm [14] to obtain an initial
set of k centroids. It works by subsequent random selection of samples as initial
centroids, until k centroids have been selected. In each step, the probability of
selecting a sample is proportional to its squared distance to the nearest already
selected sample. Hence, centroids are preferably selected that are far away from each
other. An alternative initialization is to select samples as initial clusters entirely at
random. This is however more likely to yield sub-optimal clusterings [172].

Then, each sample is assigned to its nearest centroid, using the KR distance. Lastly,
the centroids are updated to represent the average mass distribution of all samples
that are currently assigned to them. This iterative process alternates between im-
proving the assignments and improving the centroids. Thus, the main difference
to normal k-means in the Rd vector space is the use of phylogenetic information:
Instead of Euclidean distances on vectors, we use the KR distance, and instead of
averaging vectors to obtain centroids, we use the average mass distribution on the
tree.

The process is repeated until it converges, that is, the cluster assignments do not
change any more between subsequent iterations, or until a maximum number of
iterations have been executed. This second stopping criterion is added to avoid the
super-polynomial worst case running time of k-means, which however almost never
occurs in practice [13, 33].

The result of the algorithm is an assignment of each sample to one of the k clusters.
As the algorithm relies on the KR distance, it clusters samples with similar relative
abundances. The cluster centroids can be visualized as trees with a mass distribu-
tion, analogous to how Squash Clustering visualizes inner nodes of the clustering
tree. That is, each centroid can be represented as the average mass distribution of
the samples that were assigned to it. This allows for inspecting the centroids and
thus interpreting how the samples were clustered. Examples of this are shown in
Figure 5.4.
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Algorithmic Improvements

In each assignment step of the algorithm, distances from all n samples to all k
centroids are computed. This has a time complexity ofO(n·k). In order to accelerate
this step, we can apply branch binning as introduced in Section 2.5.3. For the BV
dataset, we found that even using just 2 bins per edge does not alter the cluster
assignments. Branch binning reduces the number of mass points that have to be
accessed in memory during KR distance calculations; however, the costs for tree
traversals remain. Thus, we observed a maximal speedup of 75% when using one
bin per branch, see Table 5.1 for details. Intermediate binning strategies are also
possible: instead of binning all masses of the input samples, one can just bin the
centroid masses.

Furthermore, during the execution of the algorithm, empty clusters can occur, for
example, if k is greater than the number of natural clusters in the data. Although
this problem did not occur in our tests, we implemented the following solution: First,
find the cluster with the highest variance. Then, choose the sample of that cluster
that is furthest from its centroid, and assign it to the empty cluster instead. This
process is repeated if multiple empty clusters occur at once in an iteration.

5.2.2 Imbalance k-means

We further propose Imbalance k-means, which is a variant of k-means that makes use
of the edge imbalance transformation (see Section 2.5.3), and thus takes the clades
of the reference tree into account. In order to quantify the difference in imbalances
between two samples, we use the Euclidean distance between their imbalance vec-
tors (that is, rows of the imbalance matrix). This is a suitable distance measure, as
the imbalances implicitly capture the tree topology as well as the placement mass
distributions. As a consequence, the expensive tree traversals required for Phylo-
genetic k-means are not necessary for these calculations. The algorithm takes the
edge imbalance matrix of normalized samples as input, and performs a standard
Euclidean k-means clustering following the Lloyd-Forgy algorithm [117, 217].

This variant of k-means tends to find clusters that are consistent with the results
of Edge PCA, as both use the same input data (imbalances) and both operate in
Euclidean space. Furthermore, as the method does not need to calculate KR dis-
tances, and thus neither involves tree traversals nor needs to consider each placement
location (or bins of those) separately, it is several orders of magnitude faster than
Phylogenetic k-means. For example, on the HMP dataset (see Appendix B.3), it
runs in a few seconds, instead of several hours needed for Phylogenetic k-means; see
Section Section 5.3.4 for details.

5.2.3 Finding Appropriate Values for k

A commonly criticized general downside of k-means clustering is that the number
of clusters k is an input parameter of the algorithm. Hence, a key question is how
to select an appropriate k that reflects the number of “natural” clusters in the data.
There exist various suggestions in the literature [29, 143, 288, 308, 357, 358].
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We evaluated the Elbow method [357], which is a straight forward method that
yielded reasonable results for our test datasets. It works by plotting the cluster
variance, that is, the average squared distance of the samples to their assigned
cluster centroids, for different values of k. On the one hand, for low values of k,
many samples exhibit a large distance to their assigned centroid, inducing a high
variance. On the other hand, higher values of k further split the clusters and hence
reduce the variance. Thus, at a given point, increasing k only yields a marginal
change in variance. If the data has a natural number of clusters, the corresponding
k at this point produces an angle in the plot, called the elbow. Thus, the presence of
an elbow in the variance plot indicates reasonable values for k. The Elbow method,
as well as other methods for finding a reasonable number of clusters [308], induce
additional computational cost by having to run the algorithm repeatedly with a
range of values for k.

Moreover, for a quantitative evaluation of the clusterings, we used the k that arose
from the number of distinct categories or labels based on the available meta-data for
the data. For example, the samples of the HMP dataset are labeled with 18 distinct
body sites, describing where each sample was taken from, c. f. Figure 5.5.

5.3 Evaluation and Results

We now evaluate the two k-means variants in terms of their clustering accuracy and
performance. We used the Bacterial Vaginosis (BV) dataset (see Appendix B.1 for
details) as an example of a small dataset to which methods such as Squash Clustering
[239] are still applicable for comparison, and the Human Microbiome Project (HMP)
dataset (see Appendix B.3) to showcase that our methods scale to datasets that are
too large for existing methods.

5.3.1 BV Dataset

We placed the samples of the BV dataset [339] on the re-inferred reference tree of
their original reference sequences to test whether our methods work as expected.
To this end, we ran both Phylogenetic k-means and Imbalance k-means on the BV
dataset, and compare the results to the existing analyses of the data [239, 339].
We chose k := 3, inspired by the findings of Srinivasan et al. (2012) [339]. There,
they distinguish between subjects affected by Bacterial Vaginosis and healthy sub-
jects, and further separate the healthy ones into two categories depending on the
dominating clade in the vaginal microbiome, which is either Lactobacillus iners or
Lactobacillus crispatus. Any choice of k > 3 would simply result in smaller, more
fine-grained clusters, but would not change the general findings of these experi-
ments. The number of clusters is also evaluated using the Elbow method later in
Section 5.3.3.

For each of the 220 samples of the dataset, we hence obtained two cluster assign-
ments: First, by using Phylogenetic k-means, we obtained the cluster assignment
PKM. Second, by using Imbalance k-means, we obtained assignment IKM. In the
following figures, the samples are represented by colored dots: red, green, and blue
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show the cluster assignments PKM, while purple, orange, and gray show the cluster
assignments IKM. We use two different color sets for the two methods, in order
to make them distinguishable at first glance. Note that the mapping of colors to
clusters is arbitrary and depends on the random initialization of the algorithm.

We then conducted Squash Clustering and Edge PCA (Section 2.5.5) on the dataset,
thereby reproducing results of previous studies, as well as two alternative dimension-
ality reduction methods. This allows for a direct comparison between our novel and
the existing methods.

Comparison to Squash Clustering

The comparison of our k-means clustering assignments to Squash Clustering is shown
in Figure 5.2. As can be seen in Figure 5.2(a), Squash Clustering as well as Phy-
logenetic k-means can distinguish healthy subjects from those affected by Bacterial
Vaginosis. Healthy subjects constitute the lower part of the cluster tree. They have
shorter branches between each other, indicating the smaller KR distance between
them, which is a result of the dominance of Lactobacillus in healthy subjects. The
same clusters are found by Phylogenetic k-means: As it uses the KR distance, it
assigns all healthy subjects to one cluster (shown in red), which is consistent with
the short cluster tree branches in Figure 5.2(a). The green and blue clusters contain
the individuals that are most affected by the disease.

In Figure 5.2(b), we compare Squash Clustering to Imbalance k-means. Here, the
distinction between the two Lactobacillus clades can be seen by the purple and
orange cluster assignments. The cluster tree also separates those clusters into two
clades. The separate small group of orange samples above the purple clade is an
artifact of the tree visualization (ladderization), and actually is close to the other
orange samples below. The diseased subjects are all assigned to the gray cluster,
represented by the upper half of the cluster tree. It is apparent that both methods
separate the same samples from each other.

Comparison to Edge PCA

In Figure 5.3, we compare the assignments obtained from our k-means variants to
several dimensionality reduction methods, such as Edge PCA. The figure reveals
additional details about how the k-means method works, that is, which samples are
assigned to the same cluster.

The first row of Figure 5.3 shows the result of Multidimensional Scaling (MDS) of
the pairwise KR distance matrix between the samples. MDS [105, 196, 233] is a
dimensionality reduction method that can be used for visualizing levels of similar-
ity between data points. Given a pairwise distance matrix, it finds an embedding
into lower dimensions (in this case, 2 dimensions) that preserves higher dimensional
distances as well as possible.

The distinguishing features between the green and the blue cluster are not apparent
in the Squash cluster tree in Figure 5.2(a). This can however be seen in Figure 5.3(a),
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Figure 5.2: Comparison of k-means clustering to Squash Clustering. We
applied Squash Clustering to the BV dataset [339], to compare it to the assignments
obtained from our k-means variants. (a) Hierarchical cluster tree of the samples,
using Squash Clustering. The tree is a recalculation of Figure 1(A) of Srinivasan
et al. (2012) [339]. Each leaf represents a sample; branch lengths are KR distances.
We added color coding for the samples, using PKM. The lower half of the red
samples are mostly healthy individuals, while the green and blue upper half are
patients affected by Bacterial Vaginosis. (b) The same tree, but annotated by IKM.
The tree is flipped horizontally for ease of comparison. The healthy subjects are
split into two sub-classes, discriminated by the dominating species in their vaginal
microbiome: orange and purple represent samples were Lactobacillus iners and Lac-
tobacillus crispatus dominate the microbiome, respectively. The patients that are
most affected by BV are clustered in gray.
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Figure 5.3: Comparison of k-means clustering to MDS, PCA, and Edge
PCA. Here, we show the dimensionality reduction methods MDS, PCA, and Edge
PCA (one per row) on the BV dataset. MDS and PCA were calculated on the
pairwise KR distance matrix of the samples, Edge PCA was calculated using the
placements on the re-inferred RT of the original publication [339]. The plots are
colored by the cluster assignments PKM and IKM as found by our k-means variants
(first two columns), and by the Nugent score of the samples (third column). The
Nugent score is included to allow comparison of the health status of patients with
the clustering results. Figures (f) and (i) are recalculations of Figures 4 and 3 of
Matsen and Evans (2011) [240], respectively.
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which shows the MDS plot colored by PKM. Here, the red cluster forms a dense
region, which is in agreement with the short branch lengths in the cluster tree of
Figure 5.2(a). At the same time, the green and blue cluster are separated in the
MDS plot, but form a coherent region of low density. This indicates that k := 3
might be too large when applying Phylogenetic k-means to this dataset. That is,
the actual clustering just distinguishes healthy from sick patients (c. f. Figure 5.7),
meaning that 2 dimensions might also suffice here. Although the separation between
green and blue samples is smooth, it shows that Phylogenetic k-means finds clusters
that are based on the KR distance between samples, and thus yields results that are
consistent with Squash Clustering and MDS.

A similar visualization of the pairwise KR distances is shown in the second row
of Figure 5.3, where we applied standard Principal Component Analysis (PCA)
[105, 196] to the pairwise KR distance matrix by interpreting it as a data matrix.
Although it is mathematically sound, the direct application of PCA to a distance
matrix lacks a simple interpretation, which was previously used to motivate Edge
PCA (c. f. Section 2.5.5). Still, this can be seen as a visualization of the distances
that helps understanding our methods.

For example, in Figure 5.3(d), which shows the PCA plot colored by PKM, the red
cluster again is clearly separated from the rest. This time however, the distinction
between the green and the blue cluster is not as apparent as in Figure 5.3(a).

Furthermore, Figures 5.3(b) and 5.3(e) show the MDS and the PCA plot, respec-
tively, this time colored by IKM. Here, the purple cluster found by Imbalance k-
means forms a dense cluster of close-by samples on the left of the plots, which is in
accordance with the short branch lengths of this cluster as shown in the clustering
tree in Figure 5.2(b). The orange cluster is slightly more spread out in the plots,
which again can be seen by the longer branch lengths in Figure 5.2(b).

Finally, we applied Edge PCA to the samples, as shown in the last row of Figure 5.3.
In particular, Figure 5.3(h) compares Imbalance k-means to Edge PCA by coloring
the plot using IKM. Because both methods work on edge imbalances, they group the
data in the same way, and are thus consistent with each other. That is, they clearly
separate the two healthy groups and the diseased one from each other. Edge PCA
forms a plot with three corners, which are colored by the three Imbalance k-means
cluster assignments.

Cluster Centroids

As mentioned before, an advantage of using phylogenetic placements as input to our
k-means clustering methods is the ability to visualize cluster centroids by showing
the average mass distribution of the samples assigned to them on the underlying Ref-
erence Tree (RT). In Phylogenetic k-means, the mass distributions of the centroids
are already part of the algorithm, as they are needed for calculating the KR distances
between samples and centroids. In Imbalance k-means however, the placement data
is used in form of edge imbalances instead of masses. Still, after convergence of the
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Figure 5.4: Example of k-means cluster centroid visualization. Here we
show the cluster centroids as found by our k-means variants using the BV dataset,
visualized on the reference tree via color coding. The cluster assignments are the
same as in Figures 5.2 and 5.3; the first row show the three clusters found by
Phylogenetic k-means, the second row the clusters found by Imbalance k-means.
Each tree represents one centroid around which the samples were clustered, that
is, it shows the combined masses of the samples that were assigned to that cluster.
The edges are colored relative to each other, using a linear scaling of light blue (no
mass), purple (half of the maximal mass), and black (maximal mass). The two
Lactobacillus clades are marked with black arcs on the left of the trees.

algorithm, the per-centroid average mass can be calculated from the input samples
and again visualized on the RT.

Examples of this are shown in Figure 5.4, for both sample assignments PKM (first
row) and IKM (second row) of the BV dataset. As explained above, the samples
can be split into three groups: The diseased individuals, which have placement
mass in various parts of the tree, as well as two groups of healthy individuals,
with placement mass in one of two Lactobacillus clades, marked with black arcs in
Figure 5.4. This grouping is also clearly visible in the trees. The red cluster in 5.4(a)
for example represents all healthy subjects; thus, most of its mass is located in the
two Lactobacillus clades. The purple and orange clusters in 5.4(d) and (e) on the
other hand show a difference in placement mass between those clades. Furthermore,
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the placement mass of the gray cluster in 5.4(f) is mostly a combination of the
masses of the green and blue cluster in 5.4(b) and (c), all of which represent diseased
subjects. These observations are in accordance with the previous findings above, and
further support that our methods yield results that are in agreement with existing
methods.

5.3.2 HMP Dataset

The Human Microbiome Project (HMP) dataset [160, 250] (see Appendix B.3 for
details) is used here as an example to show that our method scales to large datasets.
To this end, we used the unconstrained Bacteria RT with 1914 taxa obtained from
our PhAT method, see Section 3.3.1 for details. The tree represents a broad taxo-
nomic range of Bacteria, that is, the sequences were not explicitly selected for the
HMP dataset, in order to test the robustness of our clustering methods. We then
placed the 9192 samples of the HMP dataset with a total of 118 701 818 sequences
on that tree, and calculated Phylogenetic and Imbalance k-means on the samples.

The freely available meta-data for the HMP dataset labels each sample by the body
site where it was taken from. As there are 18 different body site labels, we used
k := 18. The resulting clustering assignments are shown in Figure 5.5. Furthermore,
in Figure 5.6, we show a clustering of this dataset into k := 8 broader body site
groups to exemplify the effect of using different values of k. See Table B.2 for the
grouping of the original body site labels. The effect of k on the clustering results is
further explored by using the Elbow method, as described later in Section 5.3.3.

Ideally, all samples from one body site would be assigned to the same cluster, hence
forming a diagonal in the plots of Figure 5.5 and Figure 5.6. However, as there are
several nearby body sites, which share a large fraction of their microbiome [160], we
do not expect a perfect clustering. Furthermore, we used a broad reference tree that
might not be able to resolve details in some clades. Nonetheless, the clustering is
reasonable, which indicates a robustness against the reference taxa choice.

The plots of the two k-means variants generally exhibit similar characteristics in
Figure 5.5. Most prominently, the stool and vaginal samples are clearly clustered
into coherent blocks in both variants. There are however also some differences. For
example, the samples from the body surface (arm, nose, and ear) form two relatively
dense clusters (columns) in Figure 5.5(a), whereas those sites are spread across four
or five clusters in Figure 5.5(b). On the other hand, the mouth samples are more
densely clustered in Figure 5.5(b).

It is remarkable that the oral samples are mostly split into two blocks, corresponding
to the front of the mouth and its back, in both variants of k-means in Figure 5.5.
This indicates that the clustering is sensitive to such subtle differences. However,
within these blocks, there is some fuzziness in the clustering. This might be caused
by our broad reference tree, and could potentially be resolved by using a tree that is
more specialized for the data/region. It could however also simply be an artifact of
the homogeneity of samples taken from the close-by oral regions of the human body.
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(a) Phylogenetic k-means (b) Imbalance k-means
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Figure 5.5: k-means cluster assignments of the HMP dataset with k := 18.
Here, we show the cluster assignments as computed via (a) Phylogenetic k-means
and (b) Imbalance k-means on the HMP dataset. We used k := 18, which is the
number of body site labels in the dataset, in order to compare the clusterings to this
“ground truth”. Each row represents a body site; each column one of the 18 clusters
found by the algorithm. We also show a translation of the body site labels into the
corresponding body regions. The color values indicate how many samples of a body
site are assigned to each cluster. Similar body sites are clearly grouped together
in coherent blocks, indicated by darker colors. For example, the stool samples are
split into two clusters (topmost row), while the three vaginal sites are all put into
one cluster (rightmost column). However, the algorithm cannot always distinguish
between nearby body sites, as can be seen from the fuzziness of the oral sample
clusters.

(a) Phylogenetic 
k-means

(b) Imbalance 
k-means
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Mouth (front)
Mouth (back)
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Plaque

Skin
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Vagina
Stool
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Figure 5.6: k-means cluster assignments of the HMP dataset with k := 8.
Here, we again show the cluster assignments as yielded by (a) Phylogenetic k-means
and (b) Imbalance k-means on the HMP dataset, but with k being set to 8, instead
of k := 18 as in Figure 5.5. These 8 clusters are based on an aggregation of the
original body site labels into groups, as shown in Table B.2. Each row represents a
body site group; each column one of the 8 clusters found by the algorithm. Some of
the body sites are again clearly separated, while particularly the samples from the
oral region are distributed over different clusters.
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Lastly, using the two General trees of our PhAT method as described in Section 3.3.1,
we again evaluated the cluster assignments on the HMP datasets (data not shown).
Using this even less specific set of reference taxa yielded cluster assignments which
are almost identical to the ones shown above, except for a slightly increased fuzziness.
We thus expect that the clustering improves when using an RT containing taxa
specifically chosen for the type of sequences in the dataset.

5.3.3 Elbow Method

As explained in Section 5.2.3, plots of the cluster variance can be used for the
Elbow method in order to find an appropriate number of clusters in a dataset [357].
Figure 5.7 shows these plots for our two test datasets.

(a) BV, Phylogenetic k-means (b) BV, Imbalance k-means

(c) HMP, Phylogenetic k-means (d) HMP, Imbalance k-means
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Figure 5.7: Variances of k-means clusters in our test datasets. The figures
show the cluster variance for different values of k. The first row are clusterings of
the BV dataset, the second row of the HMP dataset. They were clustered using
Phylogenetic k-means (first column), and Imbalance k-means (second column), re-
spectively. Accordingly, (a) and (c) use the KR distance, while (b) and (d) use the
Euclidean distance to measure the variance. Orange circles mark potential elbow
points.
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The plots for the BV dataset in Figures 5.7(a) and 5.7(b) show elbows at k := 2 and
3, respectively, which are marked with orange circles. These values are consistent
with previous findings, c. f. Figures 5.2 and 5.3. On the one hand, Phylogenetic
k-means splits the samples into a distinct red cluster, separated from the green and
blue clusters, effectively forming two clusters, which represent the health status of
the patients. On the other hand, Imbalance k-means yields three separate clusters
in purple, orange, and gray, which correspond to two clusters for the dominant
Lactobacillus clades, as well as a cluster for the patients affected by BV.

In the plots for the HMP dataset, the elbow is less pronounced. We suspect that
this is due to two reasons, as explained in Section 5.3.2: (i) the broad reference tree
might not being able to adequately resolve fine-grained differences between samples,
and (ii) nearby body sites might simply be too homogeneous in their metagenomic
composition for a clear separation into clusters. Likely candidates for k are 4–6
for Phylogenetic k-means in Figure 5.7(c) and around 7 for Imbalance k-means in
Figure 5.7(d). These values are consistent with the number of coherent “blocks” of
clusters, as shown in Figure 5.5. Clearer results for this dataset might be obtained
with other methods for finding “good” values for k, although we did not test them
here.

5.3.4 Performance

The complexity of Phylogenetic k-means is in O(k · i · n · e), with k clusters, i
iterations, and n samples, and e being the number of tree edges, which corresponds
to the number of dimensions in standard Euclidean k-means. As the centroids are
randomly initialized, the number of iterations can vary; in our tests, it was mostly
below 100. For the BV dataset with 220 samples and a reference tree with 1590
edges, using k := 3, our implementation executed 9 iterations, requiring 35 s and
730 MB of main memory on a single core. For the HMP dataset with 9192 samples
containing 119 million sequences, and a reference tree with 3824 edges, we used
k := 18, which took 46 iterations and ran in 2.7 h on 16 cores, using 48 GB of
memory.

In contrast to this, Imbalance k-means neither needs to conduct any expensive tree
traversals, nor take single placement locations into account, but instead operates
on compact vectors with one entry per edge, using Euclidean distances. It is hence
several orders of magnitude faster than Phylogenetic k-means, and only needs a
fraction of the memory. For example, using again k := 18 for the HMP dataset, the
algorithm executed 75 iterations in 2 s. It is thus also applicable to extremely large
datasets.

Furthermore, our implementation of the KR distance calculation is highly optimized
and outperforms the existing implementation in guppy [241] by orders of magnitude.
The KR distance between two samples has a linear computational complexity in
both the number of QSs and the tree size. As a test case, we computed the pairwise
distance matrix between sets of samples. Calculating this matrix is quadratic in the
number of samples, and is thus expensive for large datasets. For example, in order
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to calculate the matrix for the BV dataset with 220 samples, guppy can only use
a single core and required 86 min. Our KR distance implementation is faster and
also supports multiple cores. It only needed 90 s on a single core; almost half of this
time is used for reading input files. When using 32 cores, the matrix calculation
itself only took 8 s. This allows to process larger datasets: The distance matrix
of the HMP dataset with 9192 samples placed on a tree with 3824 branches for
instance took less than 10 h to calculate using 16 cores. In contrast, guppy needed
43 days for this dataset. As the KR distance is used in Squash Clustering, our re-
implementation of this method is also orders of magnitude faster than the original
guppy implementation.

Lastly, in order to achieve additional speedup for even larger datasets, the mass
binning method can be used, as explained in Section 2.5.3. The performance and
the effects of binning on the distance values are shown in Table 5.1.

Table 5.1: Effect of branch binning on the KR distance of the HMP
dataset. Here we show the effect of per-branch placement binning on the run-time
and on the resulting relative error when calculating the pairwise KR distance matrix
between samples, by example of the Human Microbiome Project (HMP) [160, 250]
dataset (see Appendix B.3 for details). Because of the size of the dataset (9192
samples) and reference tree (1914 taxa), we executed this evaluation in parallel on
16 cores. The first row shows the baseline performance, that is, without binning.

Bins Time (h:mm) Speedup Relative ∆
- 9:46 1.00 0.000000

256 6:58 1.40 0.000008
128 6:39 1.47 0.000015
64 6:30 1.50 0.000035
32 6:25 1.52 0.000124
16 6:13 1.57 0.000272
8 6:08 1.59 0.000669
4 6:07 1.60 0.002747
2 6:04 1.61 0.004284
1 5:35 1.75 0.011585

The first row represents the baseline case of using no binning, where each placement
location of the 118 million sequences is taken into account in the computation of
the KR distance. Hence, even binning the masses on each of the 3824 branches of
the tree into 256 intervals already yields a substantial speedup. When using fewer
bins per branch, the run-time further decreases, at the cost of slightly increasing
the average relative error. Still, even when compressing the placement masses into
only one bin per branch (that is, just using per-branch masses), the average relative
error of the KR distances is around 1%, which is acceptable for most applications.
However, considering that the run-time savings are not substantially better for a low
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number of bins, we recommend using a relatively large number of bins, e. g., 32 or
more. This is because run-times of KR distance calculations also depend on other
effects such as the necessary repeated full tree traversals. We also conducted these
tests on the BV dataset, were the relative error is even smaller. However, because of
the comparatively small size of this dataset, the run-times are too short for accurate
measurements, and thus not shown here.

5.4 Summary and Outlook

In this chapter, we presented two adapted variants of the k-means method, which
exploit the structure of phylogenetic placement data to identify clusters of environ-
mental samples. The methods build upon algorithms such as Squash Clustering
and can be applied to substantially larger datasets, as they construct a pre-defined
number of clusters. They are thus useful to identify similarities between large sets
of metagenomic samples.

Phylogenetic k-means uses the KR distance to assess sample similarity, and hence
yields cluster assignments that are consistent with Squash Clustering. Imbalance k-
means on the other hand is based on edge imbalances, and thus yields assignments
that are consistent with Edge PCA, which also uses edge imbalances. Furthermore,
Imbalance k-means operates in the Euclidean space instead of using mass distribu-
tions on trees. It is therefore several orders of magnitude faster than Phylogenetic
k-means and can hence be applied to extremely large datasets.

The choice of a reasonable value for k is a general issue in k-means clustering. It
might hence be worth to experiment with more sensitive methods for estimating k
than the Elbow method evaluated here. For future exploration however, other forms
of cluster analyses might offer more potential. For example, methods such as soft
k-means clustering [28, 89] or density-based methods [195] could be explored for
clustering metagenomic sequence samples.

The main challenge when adopting such methods to phylogenetic placement data
consists in making them phylogeny-aware. That is, they have to be extended to this
type of data by using mass distributions on trees instead of operating on Rd vectors
in the Euclidean space, and using appropriate distance measures such as the KR
distance to assess sample similarity. In case of using edge imbalances (instead of edge
masses), the adaptation of existing clustering methods is more straight forward and
might work by plugging in the edge imbalance matrix into existing implementations.
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6. Balances

This chapter is derived from parts of the peer-reviewed open-access publication:

Lucas Czech and Alexandros Stamatakis. “Scalable Methods for Ana-
lyzing and Visualizing Phylogenetic Placement of Metagenomic Samples.”
PLOS ONE, 2019, Volume 14, Issue 5, Page e0217050.

All text and figures in this chapter were created by Lucas Czech. Mathematical
decisions of the balances and taxon weighting scheme emerged from discussion
with Justin Silverman.

6.1 Background and Motivation

The concepts and methods presented in the previous Chapters 4 and 5 resemble
two recent approaches for analyzing phylogenetic data: the Phylogenetic Isomet-
ric Log-Ratio (PhILR) transformation and balances [330], as well as Phylogenetic
Factorization (Phylofactorization) [376]. These methods use a tree inferred from
the OTU sequences of the samples (instead of a fixed reference tree), and annotate
the abundances of OTUs per sample on the tips of this tree (instead of placement
masses on the branches). The methods use these data to draw conclusions about
compositional changes of OTU abundances in clades of the tree in different samples,
as well as relationships of per-clade OTU abundances with environmental meta-data
variables. See Section 2.2.5 for details on OTU clustering of metagenomic samples.

In both of these approaches, a balance between OTU abundances in two subtrees of
the underlying tree is computed. This is a measure of contrast that expresses which
of the two subtrees comprises more OTUs in a sample. In the PhILR transform [330],
these balances are computed for the two subtrees below each inner node of a rooted
binary tree, while ignoring abundances in the respective remainder of the tree. In
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Phylofactorization however, these balances are computed for the two subtrees that
are induced by the splits/edges of the tree [376]. This is highly similar to the concept
of edge imbalances that we introduced in Section 2.5.3. Note that despite sharing a
similar name and exhibiting conceptual similarities, balances and edge imbalances
are distinct approaches that should not be confused. We later discuss respective
similarities and differences in more detail.

Furthermore, we remark that the Balance Trees method [267] employs analogous
concepts by calculating the balance of nodes using the isometric log-ratio of OTU
abundances. However, instead of using a phylogenetic tree, it assumes any binary
partitioning of the OTUs, e. g., obtained from a UPGMA clustering [202] of the
OTUs based on a meta-data feature. These nodes thus correspond to specific meta-
data values, again allowing for statements about the changes in OTU abundances
that occur with changing environmental variables. As we already have a binary
partitioning in form of the reference tree, we do not further consider the Balance
Trees approach here.

In this and the following chapter, we present adaptations of the PhILR transform
(balances) and of Phylofactorization to phylogenetic placement data. The main
adaptation step consists in placing masses on the branches of our (fixed) reference
tree, instead of only considering masses (abundances) at the tips of the OTU tree.
Here, we focus on balances that contrast the subtrees induced by edges of the tree,
as used by Phylofactorization [376], because this is more natural in the context of
phylogenetic placement data. The same concepts could however also be employed
for subtrees below nodes, as used by the PhILR transform [330].

6.2 Methods and Implementation

In Section 2.5.3, we briefly outlined the inherently compositional nature of metage-
nomic sequence data [129, 295]. For a thorough discussion of the implications of
this, see Silverman et al. (2017) [330]. One solution is to transform the data into an
unconstrained space that is not compositional. This can, for example, be achieved
via the Isometric Log-Ratio (ILR) transform [102, 295], which, given a composi-
tional space, creates a new coordinate system with an orthonormal basis [100]. The
ILR transform requires a sequential binary partitioning of the underlying original
space [284]. As suggested by Silverman et al. (2017) [330], a bifurcating phylogenetic
tree (e. g., our RT) represents such a partitioning, which also provides a meaning-
ful way of interpreting the resulting coordinates. This so-called Phylogenetic ILR
(PhILR) transform yields an ILR coordinate system that captures the evolutionary
relationships of the phylogeny [330]. The resulting coordinates are called balances
[100, 102]. The balances obtained from an ILR transform represent the log-ratio
of the geometric means of the data in the two subtrees. Hence, they can be inter-
preted as a contrast (log-ratio) between two aggregates (geometric means) of data.
Furthermore, due to the orthogonality of the ILR basis vectors, the balances can be
used by conventional statistical tools without suffering from compositional artifacts.
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6.2.1 Phylogenetic ILR Transform for Placements

In the following, we present an adaptation of the PhILR transform and balances to
placement data, based on the work of Silverman et al. (2017) [330]. See there for
more details on the method and the underlying mathematical concepts, such as the
connection between the ILR transform and the centered log-ratio (CLR) transform.
We describe the computation of the Phylogenetic ILR transform, along with the
changes needed for phylogenetic placement data. We focus on the computation for
a single sample; for multiple samples, the process is simply repeated. We assume
that a fixed Reference Tree (RT) (a sequential binary partitioning) along with the
per-branch placements of the sequences in the sample are given.

The per-edge placements of the sample are represented by a vector c of size m,
containing the absolute (not normalized) edge masses, where m is the number of
edges in the tree. In other words, our input is a single row (one sample) of the edge
masses matrix, as shown in Figure 6.1(a). The absolute masses are transformed into
relative abundances as described in Section 2.5.3: Each element of c is divided by
the sum of all elements, yielding the relative masses vector x for the given sample.
In compositional data analysis, this operation is known as the closure of the data
[6], and computed as:

x =
[

c1∑
m cm

, . . . ,
cm∑
m cm

]
(6.1)

The original PhILR furthermore allows to use per-taxon weights p in order to down-
weigh the impact of low abundant taxa/OTUs [101, 330]. In our adaptation, this
weighting scheme is accordingly changed to per edge weights p of the RT. Unfortu-
nately, the nomenclature of existing publications (namely, Matsen and Evans (2011)
[239] and Silverman et al. (2017) [330]) creates a conflict here: These weights are not
to be confused with our terminology of likelihood weights and edge masses. Hence,
in order to avoid confusion, and in line with the original terminology, we also call
them taxon weights here, although they here refer to edges instead of taxa.

The default case of taxon weights p = (1, . . . , 1) represents no weighting, where each
edge equally contributes to the balance, while any p 6= (1, . . . , 1) is a generalized
form of the ILR transform [330]. We later describe an appropriate choice of weights
in Section 6.2.2. These weights are applied to the relative masses x to obtain the
shifted composition y = x/p, using element-wise division [101].

In the original PhILR, balances are calculated for the two subtrees below a given
node of the tree [330]. In the context of Phylofactorization, this has been generalized
to balances between any two disjoint sets R and S of taxa (tips of the tree) [376].
We here build on the latter, but again change R and S to refer to disjoint sets of
edges of our reference tree. We use the notation yR and pR to refer to the subsets
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of masses and weights of the given sample at the edges in R. Then, the balance y∗

between the sets R and S is computed as:

y∗(R, S) =
√
νR · νS
νR + νS

· log gm(yR,pR)
gm(yS,pS) (6.2)

The first term is a scaling term that, for a given edge, is constant across all samples.
It ensures unit length of the ILR basis elements, and uses the sums of weights in p:

νR =
∑
r∈R

pr and νS =
∑
s∈S

ps (6.3)

The second term is the log-ratio of geometric means, where gm(yR,pR) is the
weighted geometric mean of the values in yR with weights pR:

gm(yR,pR) =
( ∏

r∈R
y pr
r

) 1
νR

= exp
(∑

r∈R pr · log yr∑
r∈R pr

)
(6.4)

Note that if p = (1, . . . , 1), Equation 6.2 represents the original ILR transform
without a weighting scheme [102], Equation 6.3 equals the number of edges in R
and S, respectively, and Equation 6.4 is the standard (unweighted) geometric mean.
We show an example of the balance computation in Figure 6.1, which results in what
we call the balance matrix.

Balances as defined here can be computed as a measure of contrast between any
disjoint sets R and S of edges. Interchanging S and R flips the sign of the balance;
this is irrelevant for the subsequent steps presented here, as long as the interchange
is applied consistently. When computing the balance between the edges in the two
subtrees induced by some given edge e, the conceptual similarity with the previ-
ously described edge imbalances (Section 2.5.3) becomes apparent: Imbalances use
the difference of sums for contrasting and aggregating, while balances use the ratio
of means for the same purpose. Hence, balances represent a similar transforma-
tion of the placement data, that can also be used to conduct analyses, such as the
Phylofactorization, as presented in Chapter 7.

We however remark that using (unweighted) balances in our previously presented
methods, such as Edge Correlation (Section 4.2.2) and k-means clustering (Sec-
tion 5.2.1), might lead to spurious results, due to the insensitivity of the geometric
mean to singular large values. That is, individual branches that accumulate a large
fraction of the placement mass (sequence abundances) might only insignificantly
change the geometric mean of their clade. However, such branches are typically the
interesting ones, and hence should exert more influence on the transformation, which
is exactly the purpose of the taxon weighting scheme. This further implies that bal-
ances are not indifferent to splittings of reference taxa into multiple representatives
(pers. comm. with A. Washburne on 2018-11-23). We discuss the implications of
this in more detail in the evaluation of the method (Section 6.3).
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Figure 6.1: Example computation of the balances between two subtrees.
(a) The basis of the computation are the per-branch masses of the samples, which
are here summarized in the mass matrix, c. f. Figure 2.14(b). (b) We here show the
computation of the balance for the two subtrees induced by the dashed edge of the
tree, for one sample. Numbers next to edges are the accumulated per-edge placement
masses of the sequences in the sample, that is, one row of the matrix. We call the
left hand side of the tree R, and the right hand side S, as seen from the dashed edge.
For simplicity, we do not use weighting here; that is, we assume p = (1, . . . , 1).
(c) First, the geometric means for both subtrees are calculated, then, their balance.
The balance is positive, indicating that subtree R contains more placement mass
on (geometric) average. (d) The compuation is repeated for all edges and for all
samples, yielding the balance matrix shown here.

6.2.2 Taxon Weighting Scheme

The PhILR also allows for incorporating two distinct weighting schemes for the
balances, one based on taxon abundances, and one based on the branch lengths of
the underlying phylogeny [330]. As mentioned above, we implemented the former,
while leaving the latter as future work.

We here describe how to adapt the taxon weights of Silverman et al. (2017) [330]
to our placement-based approach, that is, how an appropriate vector p of taxon
weights for the edges can be constructed. Originally, this taxon weighting scheme
down-weighs the influence of low abundant taxa [330], which are known to be less
reliable and more variable [130]. Here, we accordingly down weigh edges with low
placement mass, for the same reasons. We follow the approach of Silverman et al.
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(2017) [330], and construct the taxon weights by multiplicatively combining two
terms:

1. A measure for the central tendency of the absolute edge masses, for example,
their mean across all samples. This is the main component of the weight that
yields low values for edges with low mass and vice versa.

2. A vector norm of the relative edge masses across the samples. This term
additionally weighs edges by their specificity.

Our implementation allows to use the median, the arithmetic mean, and the geo-
metric mean, as well as different `p-norms (such as the Manhattan, Euclidean, and
maximum norm), and the Aitchison norm [284]. We follow the advice of [330], and
by default use the geometric mean (with pseudo-counts added to the masses to avoid
skew from edges without any placement mass) and the Euclidean norm. In that case,
the weights for edge j are computed as follows:

pj = n

√√√√ n∏
i=1

(c̃ji + 1) ·
√√√√ n∑
i=1

x̃2
ji (6.5)

Here, n is the number of samples, c̃j is the vector of absolute masses at edge j across
all samples, and x̃j the vector of relative masses at edge j across all samples, both of
length n. That is, these measures use the masses of all n samples; consequently, we
here use columns instead of rows of the edge masses matrix of Figure 6.1(a) (which
is identical to Figure 2.14(b)), where each column is used for the weights of the
corresponding edge. The resulting taxon weights p are then fixed and used across
the balance computation of all samples.

6.3 Evaluation and Results

As a first test of our adaptation of balances to placement data, we apply it to the
BV dataset [339]. Further assessment of balances for placement data, also with the
HMP dataset [160, 250], is implicitly conducted by the evaluation of Placement-
Factorization in Section 7.3, which uses balances for aggregation and contrasting of
subtrees. See Appendix B.1 and Appendix B.3 for descriptions of the datasets.

6.3.1 Principal Components

As balances are conceptually similar to edge imbalances, we perform analogous eval-
uations. To this end, we computed the per-edge balance for all edges of the BV ref-
erence tree, across all 220 samples. That is, for each edge, we computed the balance
between the two subtrees induced by the edge. This yields the balance matrix, as
shown in Figure 6.1(d), which corresponds to the imbalance matrix used for Edge
PCA, c. f. Figure 2.14(b). Hence, a natural first visualization of the balances is
to analyze their principal components, that is, to compute the PCA of the balance
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matrix. The first two components of the BV balances are shown in Figure 6.2,
for both variants of the balance computation (with and without taxon weighting).
Furthermore, we can again employ the visualization of PCA eigenvectors on the
reference tree as used in Edge PCA [239]. We show the results for the BV dataset
in Figure 6.3, where we visualize the first two principal components of the balances
with and without taxon weighting on the tree.
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Figure 6.2: Projection of edge balance PCA components of the BV
dataset. The plots show the first two principal components of a PCA on the
per-edge balances, calculated on placements of the data on reference tree of the BV
dataset. That is, for each edge of the tree, we calculated the balance (log-ratio of
geometric means) of the placement masses of the BV samples between the two sides
of the tree induced by the edge. Then, we computed a PCA on the resulting balance
matrix. (a) shows the result when using taxon weighting [330] in the balances calcu-
lation, while (b) shows the result without taxon weighting. Each item represents a
sample, colored by its Nugent score (0 means healthy, 10 means severe illness); the
Nugent score had no influence on the PCA calculations.

Figure 6.3 hence indicates how the axes of the principal components in the PCA
scatter plots of Figure 6.2 can be interpreted: The first component leads to the
Lactobacillus clade, while the second one splits this clade into Lactobacillus iners and
Lactobacillus crispatus. Both plots of Figure 6.2 separate the healthy from the sick
patients. However, in contrast to Edge PCA, the first component of Figure 6.2(a)
does not fully distinguish between the healthy (blue) and diseased (red) samples. For
yet to explore reasons, the component only takes Lactobacillus iners into account,
while mostly ignoring Lactobacillus crispatus. This can be seen in Figure 6.3(a),
which shows the eigenvectors of this component visualized on the reference tree.
There, the path leading to the Lactobacillus clade does not include the branches
of Lactobacillus crispatus, which is marked with a black arc. Including the second
component however, which distinguishes between the two types of Lactobacillus, as
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Figure 6.3: Eigenvectors of edge balance PCA of the BV dataset. The
figure shows the eigenvectors of the first two principal components of PCA on the
per-edge balances with and without taxon weighting, visualized on the reference
tree of the BV dataset. The visualization of the components on the reference tree is
analogous to the Edge PCA tree visualization as for example shown in Figure 4.4.
As the data that is considered in the PCA corresponds to the edges of the tree, the
resulting eigenvectors can be mapped back onto the tree, which is shown here. Each
edge is colored according to the corresponding value of the first principal component
in (a) and (c), and the second principal component in (b) and (d), respectively. In
(a) and (c), we marked the Lactobacillus crispatus clade with a black arc at the left
of the tree.
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shown in Figure 6.3(b), yields a clear separation of the samples. On the other hand,
Figure 6.2(b) exhibits closer similarities to the Edge PCA plot shown in Figure 5.3(i),
in that the first component separates healthy from sick, and the second component
further splits the healthy individuals apart.

Hence, the results obtained from this analysis are consistent with our previous find-
ings, in particular with Edge PCA. The principal components separate the samples
by Nugent score, with the first component mostly separating Lactobacillus from the
rest of the tree, and the second component further distinguishing between Lacto-
bacillus crispatus and Lactobacillus iners.

6.3.2 Edge Correlation

As mentioned in the method description (Section 6.2.1), balances could in principle
be used as input to our previously presented methods, such as Edge Correlation
and k-means clustering (which adequately might be called Balance k-means), in the
same manner that we used imbalances in these methods. To provide an example
of using balances with these methods, we show the correlation of the Nugent score
with balances in Figure 6.4.

The result of this balance-based Edge Correlation with taxon weighting, shown in
Figure 6.4(a), is similar to the correlation with imbalances in Figure 4.6(d): An
anti-correlation with the Lactobacillus clade is again visible (less placement mass
in this clade means higher Nugent score, that is, indicates a more severe illness),
while several other clades exhibit a positive correlation with Nugent score. Hence,
balance-based Edge Correlation with taxon weighting is consistent with our previous
findings, and with the imbalance-based variant of this method.

However, artifacts might arise from the underlying mathematical framework of bal-
ances, in particular the usage of the geometric mean without taxon weighting: The
geometric mean is not sensitive to singular large values, such as the high amount of
placement mass on one of the Lactobacillus branches. It only significantly increases
if multiple high values are present, such as the multitude of bacterial taxa with high
abundance in diseased patients of the BV dataset [339]. This can lead to spurious
results, as shown in Figure 6.4(b), where the correlation of the unweighted balances
with the Nugent score yields unrealistically high negative correlations for almost all
branches that have little placement mass on them (red branches).

The reason that the insensitivity of the geometric mean to the presence of singular
large values leads to the majority of spuriously anti-correlated edges is as follows:
If most values are small, so will be their geometric mean, even if a few very large
values are also present. As can be seen in Figure 4.2 and Figure 4.5, the clades
that exhibit a high anti-correlation (red) in Figure 6.4(b) have low placement mass
with a low variance. Hence, the geometric mean of the masses in these clades is
consistently low across samples, which means that the numerator of the log-ratio
in the balances computation has little effect on the correlation. This implies that
the denominator, which represents the rest of the tree, drives the anti-correlations
seen in Figure 6.4(b). Women affected by BV show a presence of several different
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Figure 6.4: Correlation of the edge balances of the BV dataset with
Nugent score. The Edge Correlation method as presented in Section 4.2.2, and
for example shown in Figure 4.6, can also be conducted using balances (instead of
masses or imbalances). We here show Edge Correlation using Spearman’s Rank
Correlation Coefficient, calculated on the per-edge balances and the Nugent score,
based on the placement of the BV dataset. That is, for each edge of the tree, we
calculated the balance (log-ratio of geometric means) of the placement masses of
the BV samples between the two sides of the tree induced by the edge. Then, we
calculated the correlation with the Nugent score of each sample, and visualized it
on the tree. (a) shows the result when using taxon weighting [330] in the balances
calculation, while (b) shows the result without taxon weighting.

bacterial clades, while healthy women without BV almost exclusively have high
presence of one of two types of Lactobacillus [339]. Hence, in samples with BV (high
Nugent score), there are several distinct edges that have an elevated mass, which is
enough to change the geometric mean, while in samples without BV (low Nugent
score), most of the mass is concentrated on a single edge of the Lactobacillus clade,
which is not enough to significantly change the geometric mean. In consequence, the
denominator of the balance at the spurious edges is consistently larger for samples
with BV compared to those without BV. Thus, the balance is smaller for samples
with a high Nugent score, which finally explains the observed anti-correlations. Note
that despite this, there are still edges that exhibit positive correlation (blue and
green), which is where the actual patterns in the data outweigh the insensitivity of
the geometric mean.

Lastly, this property of insensitivity of the geometric mean implies that it is sensitive
to taxa splitting, that is, to the number of reference sequences that a taxon or species
is represented by in the reference tree (pers. comm. with A. Washburne on 2018-
11-23): For example, in the context of balances of phylogenetic placements, it does
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make a difference whether masses are focused on a single branch, or distributed
across several representatives of the same species. Hence, in summary, we do not
recommend to use (unweighted) balances for computations such as correlations or
k-means clustering.

6.4 Summary and Outlook

In this chapter, we introduced an adaptation of the Phylogenetic ILR transform
and balances [330] to phylogenetic placements. Balances are conceptually similar
to edge imbalances, exhibit similar properties, and can be used for similar types of
analyses. Hence, with this adaptation, we helped to bridge the methodological gap
between OTU-based and placement-based approaches to analysing metagenomic
data. This might lead to future development of novel methods and adaptations,
with the intention of obtaining a better, more complete picture of metagenomic
data, by combining the strengths of both the OTU-based and the placement-based
approaches.

As balances are a transformation that yields orthogonal components (one for each
node or branch of the tree), issues pertaining to the normalization of compositional
data do not arise. With samples being represented as a vector of balances, numer-
ous standard tools for data visualization, ordination, and clustering in the Euclidean
space can be readily applied to phylogenetic placement data. Applying these meth-
ods to placements instead of OTUs allows for more detailed analyses, as the entire
original sequence data can be used. Furthermore, using a fixed reference tree in-
stead of one inferred from the OTUs present in a set of samples enables comparative
studies across datasets.

A drawback of both balances and imbalances in the context of phylogenetic place-
ments is that the edges leading to tips of the reference tree do not have meaningful
values. This is because they measure differences between masses on the two sides of
the edge (of which tip edges only have one), while ignoring the mass on the respec-
tive edge itself. For most forms of analysis, this does not pose a concerning issue,
as the trees are usually large enough to have enough edges that can be used in the
downstream steps. Still, we see potential for future improvement of the concepts
of balances and imbalances by expanding their definition to also yield meaningful
values for tip edges. A simple approach for example would be to declare all place-
ment mass on an edge to be on the distal (away from the root) side of the edge.
We however did not assess the implications of this approach for the mathematical
consistency of the methods yet.

In the context of this work, balances are used as an intermediary tool in order to
describe a set of samples in the context of a reference tree. In this chapter, we
evaluated some basic analysis and visualization techniques in order to show that
balances yield consistent results on empirical datasets compared to concepts such as
edge imbalances. In the following chapter, we introduce Placement-Factorization,
which uses balances as a description of clades of the reference tree.
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7. Placement-Factorization

This chapter is derived from parts of the peer-reviewed open-access publication:

Lucas Czech and Alexandros Stamatakis. “Scalable Methods for Ana-
lyzing and Visualizing Phylogenetic Placement of Metagenomic Samples.”
PLOS ONE, 2019, Volume 14, Issue 5, Page e0217050.

All text, tables, and figures in this chapter were created by Lucas Czech. Dur-
ing the revision of the above publication, reviewer Michael Robeson suggested
to compare our methods of Chapters 4–5 to Phylofactorization, and thereby
inspired this and the previous chapter (Chapters 6–7). Furthermore, a lot of
mathematical understanding and many design choices emerged from discussion
with Alex Washburne.

7.1 Background and Motivation

Phylofactorization is a method to identify edges in a phylogenetic tree that drive
patterns in the composition of microbial communities [376]. An edge constitutes
a separation or split of groups of taxa into the two subtrees induced by the edge.
In an evolutionary context, an edge denotes a difference in (putative) traits that
may have arisen along the edge. That is, an edge might describe characteristics and
traits that are only present in the set of taxa on one side of the edge, but not in the
set on the other side. The goal of Phylofactorization is to identify edges that are
related to differences in per-sample meta-data features. To this end, it aggregates
and contrasts the abundances in the subtrees (groups of taxa) induced by an edge,
and evaluates how changes in environmental variables across samples are reflected
in abundance changes.
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The original method [376] uses a tree inferred from the OTUs that are present in
the set of samples, and iteratively identifies edges that split the tree into nested
subtrees which exhibit the largest predictable differences between the taxa in these
subtrees. Each such edge can be interpreted as a phylogenetic factor (or short,
phylofactor) for splitting the tree: Once an edge has been selected in one iteration,
its induced subtrees are then considered separately in subsequent iterations. The
resulting factors are hence independent of each other, which ensures orthogonality
of the factors. In other words, each factor describes a different dimension in which
samples differ. Furthermore, by iteratively considering subtrees of decreasing size,
nested factors can be found, which correspond to relationships within a subtree that
only affect the taxa in the subtree itself. The algorithm stops after a predefined
number of iterations/factors, or until a stopping criterion is met.

In a typical use case, each environmental sample is represented by its OTU abun-
dances at the tips of the tree, that is, by counts of how often each OTU is present in
the sample; see Section 2.2.5 for details on OTUs of metagenomic samples. Given a
per-sample meta-data feature such as the pH-value, Phylofactorization can then be
employed to find edges where a change of the pH-value between samples predicts a
change in OTU abundances in the two subtrees induced by the edge. For example,
an increasing ph-value might indicate a relative increase in the OTU abundances in
one subtree compared to another subtree. The resulting factorization can serve as
a dimensionality-reduction mechanism, as an ordination and visualization tool, and
as an inferential tool that can identify edges corresponding to changes in functional
ecological traits [376]. We later showcase some of these applications in Section 7.3.

7.2 Methods and Implementation
We here present an adaptation of Phylofactorization to phylogenetic placements,
which we call Placement-Factorization. We explain our adaptation following the
description of the Generalized Phylogenetic Factorization (GPF) [377, 378]. The
GPF is a recent generalization of Phylofactorization that also allows for types of in-
put data other than relative OTU abundances, for example, presence/absence data.
It is hence suited for a wider range of community ecological data [378]. Conceptu-
ally and algorithmically, Phylofactorization, GPF, and our Placement-Factorization,
work the same; we here use the mathematical notation of GPF as a scaffold to ex-
plain our adaptation. In the following, we briefly introduce the original method,
outline the necessary adaptations, and explain how to use the balances obtained
from (our adaptation of) the PhILR transform (as explained in Chapter 6) in the
context of Placement-Factorization.

7.2.1 Placement-Factorization

Phylofactorization can be understood as an iterative greedy graph-partitioning al-
gorithm for a tree T [377]. In each iteration, a winning edge e∗ is identified that
splits edges of the tree into two disjoint groups R and S. To determine the winning
edge, an objective function is maximized that expresses the intensity of the relation-
ship between abundances and meta-data variables. We later discuss this objective
function in more detail in Section 7.2.2.
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Input

The input to the original Phylofactorization is an n×m data matrix X, containing
j = 1, . . . , n samples, and i = 1, . . . ,m species (corresponding to the OTUs at the
tips of the tree). The values of the matrix can represent abundances, presence/ab-
sence data, or other data related to the species in the tree [378].

In our adaptation, we use the per-edge masses from the phylogenetic placement of
the samples. That is, instead of m species representing the tips of the tree, we use an
n×m data matrix X where the m columns correspond to the edges of our reference
tree (for consistency of notation, we re-use and re-purpose the index m here, and
transpose X compared to the original notation). This is again the mass matrix that
we used in the previous methods (Chapter 4 and Chapter 5), and which we showed
before in Figure 2.14(b) and Figure 6.1(a).

Lastly, Phylofactorization uses an n× p meta-data matrix Z for the n samples and
p per-sample meta-data variables. This is the same meta-data matrix that we used
for example in Edge Correlation (Section 4.2.2) and showed in Figure 2.14(b).

Algorithm

In analogy to the Generalized Phylofactorization [377, 378], our adapted algorithm
requires three functions:

1. An aggregation function AR = A(Xj,R, T ), which aggregates (summarizes) a
subset R of edges for a sample j.

2. A contrast function CR,S = C(AR, AS, T, e), which contrasts (compares) the
aggregates of two disjoint subsets R and S of edges on the two sides induced
by an edge e.

3. An objective function ω(C, Z) that evaluates a contrast for all samples in the
context of the per-sample meta-data, in order to determine the winning edge.

We later discuss appropriate choices for these functions. For now, we assume that
we are given functions that allow identifying edges whose induced subtrees exhibit
predictable differences in the edge masses X driven by changes in the meta-data Z of
different samples. The algorithm starts by considering the entire tree T as one large
“subtree”. Then, in each iteration, Phylofactorization and Placement-Factorization
work as follows:

1. For each edge e that separates disjoint groups Re and Se of edges within the
subtree that contains e:

(a) Compute the aggregates ARe = A(Xj,Re , T ) and ASe = A(Xj,Se , T ).
(b) Compute their contrast Ce = C(ARe , ASe , T, e).
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(c) Compute the objective value ωe = ω(Ce, Z).

The aggregates ARe and ASe , as well as the contrast Ce are computed sepa-
rately for every sample. The value ωe of the objective function then expresses
the relationship of the contrasts of all samples with their respective meta-data
values in Z.

2. Select the winning edge e∗ = arg maxe(ωe) that maximizes the value of the
objective function.

3. Partition the subtree that contains the winning edge e∗ into two disjoint sub-
trees, separated by e∗.

4. Repeat until a stopping criterion is met.

This closely follows the description of the algorithm in [377, 378], see there for details.
The difference between the algorithms is that the groups R and S in our case consist
of reference tree edges, instead of species at the tips of the OTU tree. Because of
this, the aggregates of edges that lead to tip nodes are empty, meaning that we do
not consider those edges as candidates in the algorithm. This is analogous to “tip
edges” not having a meaningful edge imbalance, as described in Section 2.5.3. An
example of the first two iterations of the algorithm is shown in Figure 7.1.

Each iteration further splits a subtree at the respective winning edge, so that after
i iterations, i + 1 subtrees are produced. It is important to note that the winning
edges of previous iterations split the tree into disjoint subtrees, and that in later
iterations, the aggregates and contrasts induced by an edge are only computed within
their respective subtrees. This ensures the previously mentioned orthogonality of the
phylogenetic factors (winning edges), meaning that systematic dependencies between
the contrasts of any two factors are eliminated, and that instead, nested relationships
can be identified.

The original publication proposes a stopping criterion using a Kolmogorov-Smirnov
(KS) test [237] based on test statistics of the identified phylofactors [376, 378].
Although these could be implemented for Placement-Factorization, we leave this as
future work; our implementation currently runs for a given number i of iterations,
and hence computes i phylofactors.

So far, we have assumed to be given the three functions required for Phylofactor-
ization. The choice of these functions depends on the data X, the data Z, and
the research question at hand. In order to be consistent and comparable with the
original implementation [376], in our evaluation we used the same set of functions,
namely the balances of the ILR transformation as explained in Chapter 6 for ag-
gregating and contrasting subtrees, and an objective function based on Generalized
Linear Models (GLMs), which we explain in the following, see Section 7.2.2 and
Section 7.2.3.
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Figure 7.1: Input data and first two iterations of Placement-Factorization.
The figure resembles Figure 2 of Washburne et al. (2017) [376]. It shows the adap-
tation of concepts from Phylofactorization to phylogenetic placement data.
(a) The input data is a set of samples with placement masses on each edge of the
tree. The tree is colorized by the total mass across all samples, that is, by the
row sums of the heat map. The heat map then shows the detailed mass per edge
(rows) and per sample (columns), and hence is an example of the mass matrix of
Figure 2.14(b). Note that the heat map also contains rows for each inner edge of
the tree, as phylogenetic placement also considers these edges. This is different from
OTU abundance heat maps that only have entries for the tips of the tree. We show
a further example of this visualization for empirical data in Figure 4.2.
(b) In the first iteration, the objective function for all inner edges is evaluated. Here,
edge e1 is the winning edge that maximizes the objective function, which separates
the clade (A, B, C, D) from the rest of the tree.
(c) In the second iteration, only the contrasts within the two subtrees are calculated,
but not across the winning edges of previous iterations (here, e1). That is, the win-
ning edge e2 maximizes the objective function that contrasts clade (F, G) with clade
(E, H, I), but does not consider the edges in the subtree (A, B, C, D). Note that in
our adaption, edges that lead to a tree tip are not considered as potential factors.
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Output

The main output of the algorithm is the list of winning edges, that is, of the phyloge-
netic factors that have been identified. Furthermore, one can store detailled tables
with the balances per sample for all factors, the values of the objective function
at each edge for all factors, as well as much more intermediary data of the algo-
rithm. We later show examples of how these outputs can be used for analysis and
visualization purposes in Section 7.3.

7.2.2 Objective Function

Phylofactorization requires an objective function ω(Ce, Z) that quantifies the rela-
tionship between Ce and Z for a given edge e, where Ce are the contrasts between
the two subtrees induced by e for all samples (for example, the balances), and Z
are the per-sample meta-data variables. That is, both Ce and Z have size n, the
number of samples, with Z potentially containing multiple columns (one for each
meta-data feature). In order to identify the winning edge e∗ of an iteration (the
phylofactor), the function is evaluated for all edges, and the edge maximizing ω is
selected. The choice of the objective function depends on the research question at
hand; see Washburne et al. (2018) [377] for a thorough discussion.

Our implementation is as general as the original Phylofactorization [376], in that it
allows for an arbitrary objective function. For simplicity, and in line with the original
publication, we here focus on functions that treat the meta-data variables Z as in-
dependent variables and the contrasts Ce as dependent variables whose relationship
with Z is assessed, for instance, via a predictive model. Then, the selected phylo-
genetic factors correspond to edges where a change in Z most strongly predicts a
change in Ce across the samples, that is, where the effect of the (independent) meta-
data variables on the (dependent) underlying data (e. g., per-clade abundances) is
most pronounced. We show an example in Figure 7.2.

Generalized Linear Models

A powerful approach is to model the relationship between Ce and Z via linear re-
gression, that is, we assess how well Z can predict Ce. In the simple one-dimensional
case, this can be thought of as fitting a line through a scatter plot of the meta-data
feature on the x-axis and the contrasts on the y-axis, where each point represents
one sample, c. f. Figure 7.2. This concept is generalized via the Generalized Linear
Model (GLM) [5, 248, 270].

We introduce GLMs in more detail in Section 7.2.3. In short, GLMs allow to predict
a single (response) variable using multiple input (explanatory) variables. Typically,
the response variable is assumed to follow any distribution from the exponential
family (normal, exponential, Poisson, Binomial, etc.), which is given for balances as
used here. In contrast to this, the explanatory variables (the meta-data features) are
assumed to have a linear relationship with the response. Note that this mathematical
restriction of the model does not mean that only meta-data features can be used
that behave linearly; transformations and interactions of the features basically allow
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(a) (b)

Figure 7.2: Exemplary relationships between independent and dependent
variables. The figure shows simulated examples of the relationship between the
latitude where some (hypothetical) oceanic samples were taken from and the balance
of two edges of a reference tree for these samples. In (a), there is no apparent
relationship between the balances at this edge and the latitudes. This means that
the clades of the tree that are split by the edge do not separate samples by latitude,
and hence contain species whose abundances are not affected by latidute. In (b) on
the other hand, the balance of each sample exhibits a strong linear relationship with
its latidute. This indicates that the corresponding edge across which the balance
was calculated is a good candidate for a factor.

for arbitrary types of data. For example, categorical variables such as the body site
where a sample was taken from can be transformed into so-called dummy variables
that fulfill the requirements.

Once the model parameters of the GLM have been estimated, that is, once it has
been fit to the data via some optimization algorithm, we need to evaluate the GLM
for the purposes of Phylofactorization. We are interested in a value for ω that ex-
presses how well the meta-data variables explain the balances. To this end, Phylo-
factorization and our adaptation thereof use the difference between the null deviance
of the balances and the deviance obtained from the GLM. This difference expresses
how much better the model explains the balances than just predicting them from
their mean. For details on the usage of GLMs for Phylofactorization, see Washburne
et al. (2017) [376].

Usage in Phylofactorization

Predictive models such as the GLM expect the response variable (that is, the pre-
dicted values; here, the contrasts) to have certain statistical properties. In particu-
lar, linear models assume the deviation of response from the predicted value to be
normally distributed. The ILR transform for compositional data has been proven
to behave asymptotically normal [102, 283], which allows their application within
standard multivariate methods, and within GLMs as presented here.
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Lastly, we note that depending on the research question, other objective functions
can be used, see Washburne et al. (2017) [376] for some examples. For instance,
simple test statistics such as the variation in Ce explained by regression on Z can
be used. Furthermore, instead of predicting contrasts from meta-data, one could be
interested in the opposite, that is, predicting a meta-data variable given the per-
sample contrasts. In this case, the maximization of the objective function yields
edges that best predict a certain feature of the data; this is suitable for identifying
clades that can serve as a bio-indicator, i. e., in order to predict diseases. Using
GLMs for this allows to model any type of meta-data variable; for example, the
binary information encoded in presence/absence data can be predicted using logistic
regression. While our implementation supports all those use cases, they have been
explored and discussed before [376, 378]. For the sake of simplicity, we hence focus on
linear (gaussian) modeling of Ce ∼ Z, that is, predicting balances from meta-data.

7.2.3 Generalized Linear Models

We now take a short digression to introduce the Generalized Linear Model (GLM)
[248, 270]; for a more detailled explanation see McCullagh and Nelder (1989) [248]
and Agresti (2018) [5]. Note that the abbriviation GLM is sometimes also used for
the general linear model, as opposed to the generalized linear model that we discuss
here, which are distinct concepts. Hence, sometimes, the latter is abbriviated as
GLIM instead [248]. The GLM is a generalization of linear regression that allows
(a) for the response variable to have an arbitrary distribution (instead of a normal
distribution, which is implicitly assumed in linear regression), and (b) for an arbi-
trary function of the response variable—called the link function—to vary linearly
with the predicted values (instead of the response variable itself varying linearly).
In the context of the GLM, the independent variables (e. g., the meta-data Z) are
called the predictor variables or explanatory variables, while the dependent variable
(e. g., the contrasts Ce) is called the response variable. The goal is then to best
predict the (single) response variable from the (multiple) explanatory variables.

Model Components

We here use the standard notation of X being the predictor of size n × p and Y
being the response of size n, with n the number of data points (e. g., samples) and
p the number of individual predictor variables (e. g., meta-data features). Then, a
GLM is described by three components [248]: a random component, a systematic
component, and a link component.

The random component specifies the probability distribution of Y (conditioned on
X); it is also called the error or noise model. For example, in linear regression, we
assume Y to be generated from a normal distribution, while in logistic regression,
the distribution is assumed to be binomial.

The systematic component specifies the linear combination η of the predictors X
using the (unknown) parameters β:

η := βᵀX = β0 + β1X1 + · · ·+ βpXp (7.1)
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This is the “linear” part of the model, which is analogous to normal linear regression.
Note that, for conciseness, in the matrix notation βᵀX we assueX to have an implicit
column of 1’s to accommodate the intercept parameter β0.

The link component connects the random and the systematic component via a
smooth and invertible link function g. In particular, the link function provides
a connection between the expected value E of Y and the linear combination η of X:

g(E(Y |X)) = η (7.2)

That is, instead of directly predicting (the expected values of) Y from X, the link
function transforms the expectation of the response variable to the linear predictor.
A GLM can hence be thought of as a non-linear regression model for the response
variable. If the distribution of Y (the random component) is assumed to be a
member of the exponential family of distributions (normal, exponential, Poisson,
Binomial, etc.), there is a canonical link function for each member of the family.
For example, for the normal distribution, g is the identity function, while for a
binomial distribution, g is often set to the logit (log-odds) function.

The expected value of Y is usually assumed to be the mean value µ of the distribution
of Y, meaning that E(Y |X) = µ. The full model is then given by:

E(Y |X) = µ = g−1(η) = g−1(βᵀX) (7.3)

The choice of distribution and link is typically informed by the type of data Y being
modelled: For example, if Y are continuous data (that are assumed to respond
linearly to changes in η), the normal distribution and the identity link are well suited;
if Y are categorical data or counts (“yes”/“no” choices), a binomial distribution and
a logit link can be used; and if Y are counts of occurrences in a fixed amount of
time, the Poisson distribution and a log link are typical choices.

In short, a GLM uses a transformed (via the link function) linear combination of
the explanatory variables X (the systematic component) to predict the response
variable Y , assuming some model of error (the random component).

Different Types of Data

As described above, the GLM uses the link function to allow for non-linear behaviour
of the response variable Y. However, as evident from Equation 7.1, the predictor
variables X are linearily combined to form η. Note that this does not necessarily
impose a linear relationship of X with Y : The predictor variables can be arbitrarily
transformed prior to their usage in the GLM, for example, by taking their logarithm,
or using their reciprocal values. By (multiplicatively) combining variables, it is also
possible to encode interactions of variables. In fact, it is possible (and common)
to use multiple transformations and interactions of the same underlying predictor
variables simulationsly in a GLM.
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Furthermore, the predictor variables do not have to be numerical. For instance, bi-
nary variables (e. g., the presence/absence of species) or categorical variables (e. g.,
the body site that a sample was taken from) can be transformed into dummy vari-
ables that encode different outcomes or categories as a vector of 0’s and 1’s. Such
variables are also often called factor variables.

This flexibility allows to use GLMs to model many types of relationships between a
given response variable and multiple explanatory variables.

Fitting the Model

For given data X and Y , and a link function g, the model is fit to the data by
estimating the parameters β. This optimization is typically conducted via a maxi-
mum likelhood estimation, using for example the Iterative Reweighted Least Squares
(IRLS) method [43]. The IRLS method is an instance of Newton’s method [396] and
minimizes the squared differences δ2 between the values of the response variable Y
and the predicted values Ŷ :

Ŷ = g−1(βᵀX) (7.4)

The differences between the values of the response variable Y and the predicted
values Ŷ are called the residuals δ of the regression for each data point i:

δi = Yi − Ŷi (7.5)

As the GLM is optimized to minimize the (squared) difference of these values, both
the sum and the mean of the residuals are equal to zero. This procedure is analogous
to minimzing the sum of squares in standard linear regression models.

Assessing the Fitness of the Model

In the context of Phylofactorization and Placement-Factorization, the GLM is mostly
used as a intermediary tool: We are not so much interested in using it to actually
predict response values from a given set of predictor values, but instead want to
know how predictable the data is in general. In other words, we want to assess how
well the model is able fit the data.

The fitness of a model m can be assessed by comparing it to the saturated model
and the null model. On the one hand, the saturated model is an abstract model
that has as many estimated parameters as data points n, and hence (by definition)
obtains a perfect fit of the data. On the other hand, the null model only has one
free parameter β0, the intercept, which is optimized by simply predicting the mean
β0 = Y for all values. We exemplify and summarize these concepts in Figure 7.3.
Note that a comparison of these models is valid, as they are nested.

We can then calcuate the (residual) deviance Dm of the model m using the log-
likelihood L∗s of the saturated model and the log-likelihood L∗m of the fitted model
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Figure 7.3: Example of logistic regression. The data represents a continous
predictor (explanatory) variable and a binary response variable; for example, the
number of days a student spent learning for an exam, and whether the student
passed (1) or failed (0) the exam. The null model only has a single parameter β0 to
predict the outcome; the optimum is hence to always predict the mean of the data.
The saturated model on the other hand is able to predict each datum correctly, at
the expense of model simplicity. Because of the binary response variable, a binomial
logistic regression is a good model for the data: it attempts to fit the data using two
parameters β0 and β1.

m. By definition, the likelihood of the saturated model is exactly 1 (and hence, its
log-likelihood is 0). Thus, the deviance of a model is simply an expression of its
likelihood:

Dm := 2 · (L∗s − L∗m) = −2 · L∗m (7.6)

Consequently, the residual deviance is always larger than or equal to zero, being
zero only for a perfect fit. The deviance of a model is an analogous generalization
of the residual sum of squares for a linear model. That is, in the case of linear
regression, which assumes normally distributed errors with constant variance, the
residual deviance is calculated as:

Dm =
n∑
i=1

δ2
i =

n∑
i=1

(
Yi − Ŷi

)2
(7.7)

In order to evaluate the magnitude of the deviance, it can be compared to the null
deviance Dn, that is, the residual deviance of the null model. The null model can
be understood as the worst model, being fitted without any predictors. The null
deviance hence serves as a benchmark of how much the model m in question improves
the fitness by taking the predictors X into account. The null model only uses the



138 7. Placement-Factorization

intercept β0 to predict the values Y . Hence, in linear regression, the residuals of the
null model are the differences from the mean Y, and its deviance is equivalent to the
total sum of squares of the data Y :

Dn =
n∑
i=1

(
Yi − Y

)2
(7.8)

Often, the model comparison is done via the R2 statistic, which is a generalization of
the determination coefficient in linear regression, and calculated as R2 := 1− Dm

Dn
.

However, we here follow Washburne et al. (2017) [376] and use the differences of
deviances for the comparison instead. That is, for our purposes, we define the
fitness ω of a model m as:

ω := Dn −Dm (7.9)

For the GLM, the difference in deviances is equivalent to the difference in log-
likelihood between the null model and the fitted model. As the null model is nested
in the model m, its likelihood is less or equal to the likelihood of m, and hence its
deviance greater or equal to the deviance of m. Consequently, ω ≥ 0, with ω = 0
only if the modelm is equivalent to the null model. Intuitively, ω measures how much
better the model m is for predicting the response variable Y using the explanatory
variables X, than just predicting the mean value Y . This value hence serves as our
measure of “how well” the model is able to predict the data, and is the objective
function that is used in Phylofactorization and in Placement-Factorization.

For example, again, for linear regression with normally distributed errors and con-
stant variance, this can be computed by summing squared differences:

ω =
n∑
i=1

(
Yi − Y

)2
−

n∑
i=1

(
Yi − Ŷi

)2
(7.10)

with Y being the mean, and Ŷi being the predicted values. In practice, these terms
can be divided by the number of samples n without altering their suitability as an
objective function to be maximized in Placement-Factorization. In that case, the
objective function becomes equal to the difference of the variance of the data and
the mean squared error of the prediction. This suggests an alternative interpretation
of ω as being a measure that expresses how much of the variance in the data can be
explained by the predictor variables.

Usage of GLMs with Balances and in Placement-Factorization

As stated before, the ILR transform for compositional data, and hence balances
as defined in Section 6.2.1, behave asymptotically normal [102, 283]. This allows
to use them as the response variable in a GLM, using a normal (Gaussian) error
distribution with an identiy link function. In Placement-Factorization, we predict
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balances using the per-sample meta-data as explanatory variables. That is, a GLM
is estimated separately for each edge of the tree, predicting the respective balances of
all samples at that edge. By maximizing the objective function ω across all edges, we
hence are looking for the edge where the balances are most predictable from their
meta-data. As we assume a normal distribution for the balances, Equation 7.10
describes the compuation that we use to evaluate the objective function.

In Section 6.3.2, we described several pitfalls of balances that are due to the math-
ematical properties of geometric means, such as its insensitivity to singular large
values. This prohibits for example to use balances without taxon weighting as input
for our Edge Correlation (Section 4.2.2). However, when used in GLMs as described
here, these issues do not arise: The winning edge is chosen to maximize the difference
between the null deviance and the deviance of the model. That difference is small
for clades with almost no mass (such as the ones affected by the geometric mean
issues), so that the value of the objective function for such edges is lower than for
edges with more mass. Hence, the factorization does not incorrectly identify these
low-abundance clades as potential factors. This can also be seen in our visualization
of the values of the objective function, as for example shown later in Figure 7.5.

7.2.4 Method Comparison

In summary, Phylofactorization and our adaptation Placement-Factorization iden-
tify edges of the phylogeny that exhibit a predictable relationship between changes
in meta-data variables and abundance changes in the subtrees induced by these
edges. Our adaptation can be understood as a generalization of the original method
[376, 378], where masses/counts can be placed along the edges of the tree, instead
of just at its tips.

While the original method uses abundances of taxa/OTUs per sample on a tree
inferred from the OTU sequences, we use the placement masses on a fixed Refer-
ence Tree (RT). For many use cases, this has several advantages: The RT can be
inferred from reference sequences that are longer than typical metagenomic reads
used for OTU-based analysis, such as the whole 16S or 18S regions of the genome;
hence, phylogenetic inference will be more reliable. Furthermore, the size of the
RT can be chosen as needed, for example via our Phylogenetic Automatic (Refer-
ence) Tree (PhAT) method as presented in Chapter 3, instead of having to use the
number of OTUs that result from the clustering and preprocessing steps. This also
eliminates the need for the (mostly arbitrary) OTU cutoff step that is common to
many metagenomic analyses, where OTUs with low abundance or low spread across
samples are filtered out in order to keep the number of OTUs manageable. That is,
with our approach, all sequences in a dataset can be placed and analyzed.

Another advantage of a fixed RT is the availability of taxonomic annotation for the
reference sequences. Often, in metabarcoding studies, the environmental sequences
are anonymous and might not be closely related to any known species [174, 230,
350], which can hinder common taxonomic assignment methods [185]. Placing the
sequences onto an RT with known taxonomic labels allows to easily interpret results
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within a given taxonomic framework. Using a taxonomically constrained RT can
further improve interpretability. Lastly, using a fixed reference tree better allows to
conduct cross- or meta-studies that compare samples from different sources, or to
easily run analyses for samples that were added to the dataset later on. Using a
fixed tree means that the context of interpretation remains unaltered. This is not
easily possible with trees inferred from OTUs, as those change depending on the
input sequences.

For further details on Phylofactorization, in particular the mathematical properties
of the method, we refer to Washburne et al. (2019) [378], which also covers different
objective functions, elaborates on stopping criteria, and compares the method to
other phylogenetic methods for analyzing ecological data. Compared to other tools
and methods that use the phylogeny as a guide or scaffold for analyzing microbial
data, both, the original Phylofactorization as well as our adaptation allow for a direct
interpretation of the results in terms of the edges of the tree, while avoiding nested
dependencies between overlapping subtrees and circumventing issues associated with
the compositional nature of the data.

7.3 Evaluation and Results

We here present results from Placement-Factorization. We compare these to the
results from our other methods (as described in previous chapters), as well as to
the original Phylofactorization. For comparability with the original method, we
solely use balances for aggregating and contrasting, and an objective function that
maximizes the difference between the null deviance and the deviance obtained by a
Generalized Linear Model (GLM). Other choices of functions for Phylofactorization
have been explored in Washburne et al. (2017) [376] and Washburne et al. (2019)
[378], see there for details. The exploration of their effect on Placement-Factorization
is left as future work, although based on the consistency of our results with the
original method, we conjecture that they behave according to the findings of the
original publications.

Furthermore, we note that our implementation supports taxon weighting as proposed
in the Phylogenetic ILR transform [330] and described in Section 6.2.2. Taxon
weighting is however not (yet) supported by the original Phylofactorization [376].
We found this weighting scheme to be a natural and valuable addition in the balances
computation that yields results closer to those obtained with edge imbalances. We
suspect that this is because the weighting scheme can alleviate the issues of the
geometric mean that we observed in Section 6.3.2.

7.3.1 BV dataset

We analyzed the Bacterial Vaginosis (BV) dataset [339] with our Placement-Factori-
zation with and without taxon weighting, using balances for aggregating and con-
trasting, and GLMs for the objective function. See Appendix B.1 for details on the
dataset. As GLMs support multiple predictors at the same time, we used all three
available meta-data features of the dataset simultaneously for the regression, that
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is, Nugent score [274], Amsel’s criteria [9], and the pH-value of the samples. We also
tested with only the Nugent score to be consistent with our previous analyses, and to
asses the robustness of the method with respect to the specific choice of meta-data
features. We observe only minor differences in the ordering of the identified factors,
that is, which clades were “winning” in which iteration. Hence, we here focus on the
results obtained with all three meta-data features taken into account.

Comparison to Phylofactorization

For comparison with the original method, we clustered the dataset into OTUs using
two different OTU clustering methods, VSEARCH [306] and swarm [228, 229],
and inferred two trees from these OTU clusterings. We used two distinct OTU
clustering methods to asses how they affect factorization; see Appendix B.1 for
details on these preprocessing steps. We then conducted an analysis of both trees
with the original Phylofactorization, again using balances and GLMs. We compare
the results of Placement-Factorization to our previous analyses of the data as well
as to the original Phylofactorization on the two alternative OTU trees.

In Table 7.1, we compare the clades found by the two Phylofactorization variants
(with VSEARCH and with swarm) to the clades found by Placement-Factorization
without taxon weighting. As shown in Figure 4.2 and in the original study of the
dataset [339], there are multiple different taxa that are associated with Bacterial
Vaginosis. That is, there are several clades or branches of the reference tree where
the placement mass differs between healthy and sick patients. It is thus expected that
a Phylofactorization of these data exhibits some variation in the clades being found,
depending on the preprocessing and exact settings being used. Still, Table 7.1 shows
that—apart from ordering—the factored clades are mostly consistent across variants,
and consistent with previous findings. All of the taxa found by the swarm-based
Phylofactorization and by our Placement-Factorization, as well as all taxa except
some of the Streptococcus found as part of the first factor of the VSEARCH-based
Phylofactorization, were already shown to play important roles for this dataset [339].
The inclusion of Streptococcus in the VSEARCH variant is due to an inner edge
that has a slightly higher value of the objective function than the actually more
relevant edges leading to the Lactobacillus clade. We observed a similar behavior
of large clades being split with our implementation when using taxon weights, as
shown later in Figure 7.5. Lastly, the normalized mutual information [370] between
the three variants ranges between 71% and 81%, further showing that they mostly
find the same clades.

Moreover, we visualize the clades found by Placement-Factorization in Figure 7.4,
which correspond to the clades listed in Table 7.1. The clades are consistent with
the findings of the original study of the dataset [339]: Healthy women without BV
exhibit high abundances of Lactobacillus, while women affected by BV have a more
diverse vaginal microbiome, containing multiple different bacterial taxa. Hence, the
first factor represents the most prominent split of the data into healthy vs. diseased,
based on the presence of Lactobacillus. Differences within the healthy samples are
then further distinguished in factors five and ten, which further split parts of the
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Table 7.1: First ten factors of the BV dataset found by Phylofactorization.
In this table, we compare our Placement-Factorization of the BV dataset to the
results from the original Phylofactorization. The table lists the taxa in the clades
that were split by the first 10 factors in each variant, using VSEARCH and swarm
for the OTU clustering of the data. As the original implementation does not support
taxon weighting, we also do not use it here. See also Figure 7.4 for a visualization
of the clades found by our adaptation (right-most column).

Original (VSEARCH) Original (swarm) Placement-Factorization

1 Lactobacillus crispatus, Sneathia sanguinegens, Lactobacillus crispatus,
Lactobacillus jensenii, Leptotrichia amnionii Lactobacillus jensenii,
Lactobacillus iners, Lactobacillus kalixensis
Lactobacillus coleohominis,
Lactobacillus gasseri,
Lactobacillus vaginalis,
Streptococcus agalactiae,
Streptococcus anginosus,
Streptococcus gallolyticus,
Streptococcus oralis,
Aerococcus christensenii

2 Lactobacillus crispatus Lactobacillus crispatus Sneathia sanguinegens,
Leptotrichia amnionii

3 Gardnerella vaginalis Gardnerella vaginalis Gardnerella vaginalis
4 Leptotrichia amnionii Atopobium vaginae Megasphaera
5 Megasphaera Megasphaera Lactobacillus crispatus
6 Atopobium vaginae Eggerthella Eggerthella
7 Eggerthella Prevotella bivia, Prevotella timonensis,

Prevotella amnii Prevotella buccalis
8 Sneathia sanguinegens Prevotella timonensis Prevotella bivia,

Prevotella amnii
9 Prevotella timonensis BVAB2 Atopobium vaginae
10 Lactobacillus jensenii Lactobacillus jensenii Lactobacillus iners
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Factor 1:
Lactobacillus jensenii,
Lactobacillus kalixensis,
Lactobacillus crispatus

Factor 2:
Sneathia sanguinegens,
Leptotrichia amnioni

Factor 3:
Gardnerella vaginalis

Factor 4:
Megasphaera

Factor 5:
Lactobacillus crispatus

Factor 6:
Eggerthella

Factor 7:
Prevotella timonensis,
Prevotella buccalis

Factor 8:
Prevotella bivia,
Prevotella amnii

Factor 9:
Atopobium vaginae

Factor 10:
Lactobacillus iners

Figure 7.4: Visualization of the first ten factors of the BV dataset. Here, we
show the first ten factors found by Placement-Factorization without taxon weighting
on the BV dataset. The black edges are the winning edges of each iteration, which
split the tree into several subtrees. For simplicity, we only colored the clades leading
away from the (arbitrarily placed) root, while leaving the paraphyletic “remainder”
clade in gray. Note that factor 5 is nested in factor 1, that is, it further splits the
branches within the first factor, thus separating Lactobacillus crispatus from Lac-
tobacillus jensenii and Lactobacillus kalixensis. See Table 7.1 for a comparison of
the clades separated by each factor to the factors found by the original Phylofac-
torization. Furthermore, see Figure 7.7(b) for an ordination of the first two factors,
showing how these factors separate the samples in the dataset.

Lactobacillus clade. The remaining factors split away clades that further separate the
diseased samples from each other, based on several distinct bacterial taxa. All clades
that are found by these factors where shown in the original study to be associated
with BV [339], meaning that Placement-Factorization on this dataset yields results
that are consistent with previous analyses.

These outcomes show that our results are consistent with the existing Phylofactor-
ization, in that similar clades are split from the tree, albeit with some variation
in the order by which clades are selected. The clades being split are also consis-
tent with previous analyses of the dataset [339], as all taxa found by the first ten
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Figure 7.5: Objective function values of Placement-Factorization with
taxon weighting of the BV dataset. Here, we show the values of the objec-
tive function for each inner edge, for the first two factors found by Placement-
Factorization with taxon weights of the BV dataset. The winning edge of each
iteration is marked by a black arrow, and the resulting clade is marked with a black
arc. See also Figure 7.6 for the version of this visualization without taxon weights.

factors of Placement-Factorization were also found to be relevant in the context of
Bacterial Vaginosis in [339]. However, the VSEARCH-based Phylofactorization is
the only evaluated variant that split the Lactobacillus clade in the first factor and
further Lactobacillus crispatus from Lactobacillus iners in the second factor. The
swarm-based variant and our Placement-Factorization without taxon weighting also
identified these clades, but not in the first two iterations.

Visualization of the Objective Function

Above, we have compared Placement-Factorizaiton without taxon weighting to the
original Phylofactorization, which currently does not support any taxon weighting
schemes. When using taxon weighting on the other hand, Placement-Factorization
also finds the two Lactobacillus clades in the first two factors, and is hence more
consistent with existing analyses of the dataset. However, due to small differences in
the value of the objective function, the winning edge of the first iteration is chosen
to be relatively basal in the tree, meaning that a large clade is factored out. We
observed a similar behavior with the VSEARCH-based Phylofactorization, as can
be seen by the long list of taxa of the first factor in Table 7.1. In order to identify
the provenance of this effect and to correctly interpret the factors, we developed a
novel visualization of the results: In Figure 7.5, we show the reference tree, where
each edge is colored by the value of the objective function at that edge.

This novel type of visualization helps to assess the uncertainty involved in identi-
fying the winning edge of a specific iteration: The objective function of the first
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iteration in Figure 7.5(a) for instance yields high values for the path towards the
Lactobacillus clade, consistent with previous findings. Random variability however
leads to the first iteration splitting a larger clade than expected when using taxon
weighting; the winning edge is marked with an arrow. This obfuscates the fact that
this factor is mostly concerning the Lactobacillus clade, and not so much the re-
maining taxa in that clade. The clade includes many branches and taxa with a low
value of the objective function (yellow branches), which are branches with low place-
ment mass that do not contribute much to this factor. There is however a path of
comparably high values of the objective function (dark branches) that leads down to
the Lactobacillus clade. This indicates that there are several ‘good’ candidate edges
for distinguishing patients by their health status, and that the smaller Lactobacillus
clade is the actual clade of interest in this factor. The winning edge just happened
to have a slightly higher value than other edges on this path. The visualization thus
aids interpretation of the factors, helps to understand why a particular edge was
chosen in an iteration, and allows to identify the parts of a factored clade that are
most relevant to the factor.

To address this issue of random variability, a proper statistical test of the significance
of each winning edge compared to the other edges evaluated in the iteration could
be employed. This is connected to the idea of confidence regions of each factor on
the tree, as presented in Washburne et al. (2019) [378], which we discuss later. Note
that in the second iteration in Figure 7.5(b), the tree clearly shows the distinction
between the two relevant clades of Lactobacillus again, consistent with previous
findings. Hence, even with the first factor splitting a relatively large clade, the
second factor correctly identified the relevant edges within this large clade.

Lastly, we show the same type of visualization for Placement-Factorization without
taxon weighting in Figure 7.6. The figure hence again corresponds to the analyses
presented above in Table 7.1 and Figure 7.4.

Apart from the guidance for interpreting the factors, the figure also reveals another
aspect of Phylofactorization: By comparing the values of the objective function on
the tree between subsequent iterations, one can observe the effect of “factoring out”
an edge. Due to the nature of comparing the two sides induced by an edge, high
values of the objective function usually propagate across several connected edges,
e. g., the region of dark branches around the marked edge in Figure 7.6(a). Once a
factor has been split from the tree, the values for the whole path drop, which can be
seen by comparing Figure 7.6(a) and (b), where the region around the gray arrow
has much lower values of the objective function. This behavior can consistently be
observed in the other subfigures as well. The figure hence shows that factoring out
an edge actually removes nested depenendices between factors, as expected.

Further Assessment

To further assess how the samples are split by individual factors, we used the balances
at each iteration/factor as an ordination of the data, as suggested in Washburne et al.
(2017) [376], which we show in Figure 7.7. These plots reveal that the splitting into
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Figure 7.6: Objective function values for the first six factors of the BV
dataset without taxon weighting. The figure visualizes the value of the objective
function for the first six iterations of Placement-Factorization of the BV dataset,
without taxon weighting. Darker edges represent higher values; the highest value
of each iteration (the winning edge) is marked with a black arrow. Gray arrows
further mark the winning edge of the respective previous iteration, which allows to
examine the effect of “factoring out” an edge. See also Figure 7.5 for the according
visualization with taxon weights.

healthy vs. diseased patients works both with and without taxon weighting, albeit
the differences in the respective plot shapes are pronounced.

On the one hand, Placement-Factorization with taxon weighting in Figure 7.7(a) is
highly similar to PCA on the balances as shown in Figure 6.2(a), despite the fact
that PCA does not take the meta-data into account. We suspect that is is due to the
nature of the dataset, were the abundances in the Lactobacillus clade almost solely
dictate the health status of each individual, and roughly half the samples belong
to either the healthy or the sick group of patients. Hence, the Lactobacillus clade
naturally is a major driver of differences between samples, and is thus identified by
PCA as the most important component/axis.

On the other hand, Placement-Factorization without taxon weighting in Figure 7.7(b)
yields an ordination that separates healthy from sick patients in the first factor, and
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Figure 7.7: Ordination of the first two factors of the BV dataset. The
figure shows ordination-visualization plots of the ILR coordinates (balances) of the
first two factors found by Placement-Factorization of the BV dataset, (a) with and
(b) without taxon weighting. That is, the axes correspond to the splits induced by
the first two factors, while values along the axes are the balances of each sample
calculated on the sets of edges of each split. Samples are again colored by their
Nugent score, with 0 being the healthy patients, and 10 being the patients with
severe BV. See Figure 7.5 for the (winning) edges that correspond to the axes in
Subfigure (a) (with taxon weighting), and see Figure 7.4 and Table 7.1 for the edges
corresponding to the axes in Subfigure (b) (without taxon weighting).

further splits the sick patients in the second factor. The reason for this can be seen
in the clades that each factor splits away from the tree, as shown in Figure 7.4:
The first factor separates part of the Lactobacillus clades, which explains why it
distinguishes samples based on heath status. The second factor separates a clade
containing Sneathia sanguinegens and Leptotrichia amnioni, which is an important
clade among several clades that are associated with BV [339]. This can also be
seen in Figure 4.2, where the healthy patients with low Nugent score almost ex-
clusively exhibit high abundances of Lactobacillus, while the diseased patients with
high Nugent score show abundances in several clades all over the tree.

Figure 7.7 hence serves as a caveat for Phylofactorization and Placement-Factori-
zation, and as an example of the limitations of this type of plot. These plots were
suggested in Washburne et al. (2017) [376] as an additional way of depicting how
the factors separate samples according to meta-data features, see their Figure 5(a).
Note that such scatter plots can only reasonably visualize the first two or three
factors, which is why they are now discontinued in the original Phylofactorization
(pers. comm. with A. Washburne on 2019-01-16).
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In the case of the BV dataset, two axes/factors are sufficient to separate the samples
by Nugent score. That is, the BV dataset does indeed have two important features
concerning the healthy patients, namely the Lactobacillus clade, and the further dis-
tinction into Lactobacillus crispatus and Lactobacillus iners. However, as discussed
above and visible in Figure 4.2, the diseased patients exhibit high abundances in a
multitude of other clades, which cannot be expressed by just two or three factors.

It is hence crucial to compute all significant factors—otherwise, important aspects
of the data get lost and results are incomplete. We also developed a novel way of
visualizing the balances of further factors, as for example shown later for the HMP
dataset in Figure 7.9, which alleviates this issue.

7.3.2 Oral/Fecal Subset of the HMP dataset

We here show an analysis of a subset of the Human Microbiome Project (HMP)
dataset [160, 250], in order to compare Placement-Factorization to findings of the
original Phylofactorization on a similar dataset [376]. See Appendix B.3 for details
on the dataset and its preprocessing.

The original publication of Phylofactorization used a dataset from Caporaso et al.
(2011) [45] as one of their case studies, which comprises oral and fecal samples
from the human microbiome. See Figure 4 and Supplementary Figures S3–S8 of
Washburne et al. (2017) [376] for the original analysis with Phylofactorization. For
our comparison, we selected a suitable subset of the HMP dataset: In particular,
we selected all 600 stool samples of the dataset, as well as 600 randomly chosen
samples from the mouth region, that is, from the samples labeled “Mouth (back)”
and “Mouth (front)” in Table B.2. We again used the placement of these sam-
ples on the unconstrained Bacteria tree of our Phylogenetic Automatic (Reference)
Tree (PhAT) method to conduct Placement-Factorization. The tree contains 1914
taxa, as explained in Section 3.3. We henceforth assume that the oral/fecal dataset
of Caporaso et al. (2011) [45] and our oral/fecal subset of the HMP dataset exhibit
comparable sequence compositions. Furthermore, as the tree used for Phylofactor-
ization in Washburne et al. (2017) [376] is based on the OTUs of the sequences, it
only contains taxa that are sufficiently abundant in the input. It thus differs from
the more general Bacteria reference tree used for our evaluation here. Therefore, we
had to map the taxa found by Phylofactorization to the underlying Silva taxonomy
[294, 395] that was used for constructing our reference tree.

Comparison to Phylofactorization

Despite these differences, Placement-Factorization yielded factors that are similar
to the ones found by Phylofactorization. We again used Placement-Factorization
with and without taxon weighting, and compare the taxa identified by the first
10 factors to the the first 10 factors found in the original oral/fecal dataset with
Phylofactorization [376]. We visualized the clades found by all three variants in
Figure 7.8.
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Figure 7.8: Comparison of factors found in the oral/fecal subset of the HMP dataset. Here, we compare the first 10
factors found by Placement-Factorization with and without taxon weighting on an oral/fecal subset of the HMP dataset to the
first 10 factors found by Phylofactorization on their oral/fecal test dataset [45, 376]. The clades of the tree are colored so that
green, blue, and red mark branches that only appear in one of the variants, cyan, yellow, and purple for branches that occurred
in two variants, and dark gray for branches that were found by all three variants. For simplicity, we here neglect the order and
nesting of factors. That is, if a branch is part of the non-root side of any one of the first ten factors, it is colorized here.



150 7. Placement-Factorization

For simplicity, we only compare the clades on the non-root side of the (arbitrarily
rooted) reference tree; the paraphyletic “remainder” clade is not taken into account.
Furthermore, we do not consider the order of the factors here. Similar to the findings
of the BV dataset above, Placement-Factorization with taxon weighting yielded
larger clades than without taxon weighting, which again yielded larger clades than
the OTU-based Phylofactorization. The latter is a consequence of the OTU tree
containing fewer taxa than our broad Bacteria tree. We found that 84% of the taxa
identified by Phylofactorization were also part of the factors of our variants, with
the major difference being a set of Proteobacteria that were part of the split in the
first factor of Phylofactorization [376], but not by our variants. This is most likely
an artifact of the differing trees being used in the factorization. Furthermore, 95% of
the taxa found by Placement-Factorization without taxon weighting were also part
of the clades with taxon weighting.

In particular, the larger clades found by the variant with taxon weights are shown
as green edges in Figure 7.8. The values of the objective function however indicate
that the focus of the factor is in fact much smaller and more in agreement with the
other two variants compared here. Again, this behavior is similar to the BV data
with taxon weighting; see Figure 7.5 for details. Furthermore, Phylofactorization
found several small clades and single branches, which are shown as red edges in
Figure 7.8. These branches are part of the Actinobacteria as well as the Alpha-,
Beta-, Gamma-, and Deltaproteobacteria, and are actually all part of the first factor.
They are marked with asterisks (*) in Figure 7.8. Due to their OTU tree only
having few Proteobacteria, these were monophyletic in their tree [376]. They are
polyphyletic here, as our tree has more reference taxa from that group.

Most of the remaining factors found by Phylofactorization are part of the gray
branches of the two large clades in the upper half of Figure 7.8, which are the clades
that were found by all three variants. Similarly, our variants found many nested
factors (factors that further split a factor of a previous iteration): The two large
clades are in fact split into seven nested clades by both variants, with the remaining
three factors spread across the rest of the tree (e. g., the green and blue branches
of Figure 7.8). In particular, the Prevotellaceae and parts of the Firmicutes were
described in Washburne et al. (2017) [376] as important clades for the distinction
between oral and fecal samples, all of which were found by all three variants here.

In total, despite the mismatching trees, most of the found clades agree in all three
variants, with their disagreement mostly concerning the clade sizes. More impor-
tantly, despite their differences, all variants produce factors that are well suited for
separating oral from fecal samples, as further shown in the next section below.

The actual differences in taxa (such as the Proteobacteria not being found by our
variants) serve as a caveat for the importance of the underlying reference tree: Dif-
ferences in topology will inevitably be reflected in different factors, which might in
turn suggest a different interpretation of results. In an ideal world with a known phy-
logeny of all of life, alternative OTU clusterings and alternative trees would simply
collapse nodes at different depths (pers. comm. with A. Washburne on 2019-03-01).
Unfortunately, real world data, and particularly different OTU clustering methods
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and tree inference methods, will yield discordant trees. The influence of uncertainty
in the phylogeny is further discussed in Washburne et al. (2019) [378].

Factor Ordination

Next, we investigated how well the factors found by Placement-Factorization sep-
arate oral from fecal samples. To this end, we again employed the balances of the
winning edge of each factor for an ordination visualization [376], which we show in
Figure 7.9(a) and (b). The ordination clearly separates the samples, both with and
without taxon weighting. Again, ordination scatter plots can only reveal up to three
dimensions/factors. In order to evaluate the separation of samples at later factors,
we use a visualization of the factor balances, which we call balance swarm plots, and
which are similar to the per-factor ordination plots used in Washburne et al. (2019)
[378]. These plots can show the ordination of arbitrarily many factors at the same
time, as shown in Figure 7.9(c) and (d).

Figure 7.9 indicates that most factors found by our Placement-Factorization are in-
deed capable of separating body sites from each other. In particular, Figure 7.9(a)
exhibits a clear separation of the two body sites, similar to Figure S3 of Washburne
et al. (2017) [376]. Furthermore, Figure 7.9(c) shows that almost all factors indi-
vidually suffice to separate the data by body site: eight out of the first ten factors
found by Placement-Factorization with taxon weighting clearly separate the oral
from the fecal samples. The remaining two factors (PF7 and PF9) separate most of
the samples, but also have an interval of balances that contains samples from both
body sites. Placement-Factorization without taxon weighting also separates samples
based on their body site, as shown in Figure 7.9(d), but with a less clear distinction.
This is also obvious from the ordination scatter plots shown in Figure 7.9(b).

7.3.3 Full HMP dataset

Finally, we conducted Placement-Factorization on the whole HMP dataset with all
9192 samples, instead of just the oral/fecal subset, in order to evaluate how the
method performs on large datasets with more than two categories (body sites) to
distinguish. See Table B.2 for an overview of the samples, as well as a list of the eight
body site labels that we used for classifying the samples. We here do not discuss
the taxa that were split by each factor, as such an in-depth biological discussion is
beyond the scope of this work. Instead, we evaluate how well different body sites
were separated by the factors. To this end, we show ordination plots of the first two
and three factors in Figure 7.10.

These plots already reveal that Placement-Factorization indeed separates samples
from each other based on their body site. However, given the eight body site labels
that we used, these plots are overloaded and hard to read. Hence, we extended on
the idea of balance swarm plots (as introduced above for the oral/fecal subset) by
separating them into individual plots per factor, each showing the balance distribu-
tion of groups of samples based on their respective body site. This allows to clearly
see the distribution of balances at the factor for all groups of samples. An example
for the first four factors is shown in Figure 7.11.
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Figure 7.9: Ordination of an oral/fecal subset of the HMP dataset. The
figure shows the ordination-visualization of factors found by Placement-Factorization
on our oral/fecal subset of the HMP dataset. In (a) and (b), we show the balances at
the winning edges of the first two factors, colorized by the body site of each sample,
with and without taxon weighting.
Moreover, in order to examine how well further factors of later iterations split the
data, we here employ a visualization of phylofactors, which we call balance swarm
plots, by plotting the balances of each factor individually. This type of per-factor
visualization is similar to, e. g., Figure 4 of Washburne et al. (2019) [378]. Subfigures
(c) and (d) show the first ten factors (PF1–PF10), again with and without taxon
weighting, respectively. These can be understood as multi-dimensional scatter plots,
where each dimension is shown separately: Each column corresponds to a factor,
with the vertical axis being the balances, and horizontal space within each column
used to spread samples at nearby positions, revealing their distribution density. That
is, the first two columns of (c) and (d) correspond to the scatter plots of (a) and (b),
respectively. The balances were scaled to bring them into the [−1.0, 1.0] interval for
better comparability across factors, while keeping the centering at 0.
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Figure 7.10: Ordination of Placement-Factorization of the full HMP
dataset. Here, we use the whole HMP dataset, labeled by 8 body site regions
as listed in Table B.2, to asses how well Placement-Factorization with a GLM ob-
jective function can separate samples based on their body site label. The figure
again shows the balances of the winning edges of the first two and three factors,
respectively, with and without taxon weighting.
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(a) Factor 1

(c) Factor 3

(b) Factor 2

(d) Factor 4

Figure 7.11: Ordination of the first four factors of the HMP dataset.
The balance swarm plots as shown in Figure 7.9(c) and Figure 7.9(d) allow for
a more detailed understanding of how each factor separates the samples. They
can be colored by either continuous meta-data variables, similar to Figure 5(a) of
Washburne et al. (2017) [376], or a categorical variable with a limited number of
categories, as shown in Figure 7.9. However, for the eight body regions that we
use for the HMP data, this type of visualization becomes hard to inspect visually.
Hence, we here extend on the idea of balance swarm plots, and show the distribution
of balances for each factor and for each body sites separately.
The data shown here is the result of Placement-Factorization with taxon weighting
on the full HMP dataset. Each subfigure here shows the balances of the winning
edge of a factor, grouped by the categorical meta-data variable body site. That
is, the subfigures correspond to the scatter plots of the first two and three factors
shown in Figure 7.10. In other words, each subfigure here represents a disentangled
column of a balance swarm plot, where each body site is displayed separately by its
own violin.
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The visualizations shown in Figure 7.10 and Figure 7.11 indicate that Placement-
Factorization separates samples mainly based on the distinction oral vs. remaining
body sites, with a further separation of plaque samples in the oral region. This can,
for example, be seen in Figure 7.11(a), where the first three groups “Mouth (back)”,
“Mouth (front)”, and “Saliva” exhibit balances above 0, while all other groups have
balances below 0. Further factors then separate vaginal samples and skin and airways
samples from the rest of the samples, as shown in Figure 7.11(b)–(d).

As shown in Figure 7.7 and Figure 7.9 before, the plots with taxon weighting form
“clouds”, whereas the plots without taxon weighting form an “L”-shape. In all cases,
a separation of the oral samples from the other regions is clearly visible. Noticeably,
in Figure 7.10(a), a part of the stool and mouth samples form a horizontal line, which
indicates that the second factor does not distinguish between samples from those
regions. It is striking that the samples from the vaginal region in Figure 7.10(a) and
(c) are not separated from the other samples until the third factor, which is visible
as a pink cloud above the rest of the samples in Figure 7.10(c). This again serves
as a caveat that one needs to consider enough factors in order to get a complete
understanding of the results.

This can be seen in more detail in Figure 7.11. In all subfigures, the oral regions
are separated from the other regions: For example, in Figure 7.11(a), mouth and
saliva samples exhibit balances above 0, in contrast to all other samples. In Fig-
ure 7.11(b)–(d), the plaque samples join the other oral samples in terms of their
balance values. In Figure 7.11(b), the stool samples have a distinct bulge near 0,
which corresponds to the horizontal line (factor 2) in Figure 7.10(a). Furthermore,
the third factor in Figure 7.11(c) again clearly separates the vaginal samples from
the rest, corresponding to the pink cloud in Figure 7.10(c).

Overall, Placement-Factorization can distinguish the HMP samples by body site, at
least to the extent that can expected from abundance differences in the samples.
For example, it would be unrealistic to expect the algorithm to perfectly separate
samples from the back and front of the mouth from each other, as their microbial
compositions are expected to be highly similar.

7.3.4 Performance

The run time of Placement-Factorization depends on (a) the number of input sam-
ples, (b) the number of branches of the reference tree, and (c) the number of itera-
tions to run. As the computations are conducted on the mass matrix instead of single
placements, the performance and memory requirements of Placement-Factorization
are independent from the total number of sequences/placements in the dataset. In
each iteration, and for each edge of the tree (except the ones that won previous
factors), the balances of all samples are computed, and the objective function is
evaluated. In case of using a GLM to express the relationship of balances with
meta-data, this involves fitting a model across all samples. In our implementation,
all these computations are parallelized.

Our relatively small BV test dataset ran on a standard laptop with 4 cores, taking
30 s per iteration. The full HMP dataset with 9192 samples and our reference tree
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with 3825 branches required 13.0 GB of memory in our non-optimized prototype
implementation, and took less than 90 s per iteration using 20 cores. Also, note that
each iteration splits away a clade of the tree; later iterations thus become faster, as
the sizes of the subtrees within which the balances need to be computed get smaller
each time. Hence, we conclude that Placement-Factorization is well suited even for
very large datasets.

7.4 Summary and Outlook

In this chapter, we presented an adaption of Phylofactorization [376, 378] to phyloge-
netic placement data, which we call Placement-Factorization. Placement-Factoriza-
tion identifies branches of the reference tree, called phylogenetic factors, that exhibit
a relationship with environmental meta-data features, that is, branches along which
putative functional traits might have arisen in conjunction with changes in envi-
ronmental variables. This factorization of the tree can be used as an ordination
tool to visualize how samples are separated by changes along the factors, and as
a dimensionality-reduction tool [376]. It thus complements Edge Correlation (see
Section 4.2.2), in that it further allows to identify nested dependencies within sub-
clades of the reference tree, and that it can take multiple meta-data features into
account at once, however without the immediate visualization of the direction of the
correlation/dependency with these features.

We contributed novel ideas to Phylofactorization by (a) adapting the concept to phy-
logenetic placement, which can be thought of as placing abundances along branches
of the tree instead of just at its tips; and (b) suggesting a novel visualization for
the objective function value at each edge of the reference tree, which helps in the
interpretation of the factors being split in each iteration. Furthermore, we explored
several advantages of using a fixed reference tree instead of a tree inferred from OTUs
in Section 7.2.4. We leave the adaptation of some of the original concepts of Phylo-
factorization to phylogenetic placements as future work, such as binned phylogenetic
units (BPUs), stopping criteria for the iterations, as well as further experimentation
with different objective functions and aggregation and contrast functions [376, 377].
Based on our findings and experiments, we conjecture that these concepts should be
readily applicable to our Placement-Factorization.

In contrast to the original Phylofactorization [376], our implementation also supports
the taxon weighting scheme used in the balances computation, as explained in Sec-
tion 6.2.2. We find that Placement-Factorization without taxon weighting behaves
similar to the original Phylofactorization (which also does not employ a taxon weight-
ing scheme), while Placement-Factorization with taxon weighting yields results that
are more in line with our previous results based on edge imbalances (Section 2.5.3).
The latter is likely because taxon weighting has a similar effect of reducing the
influence of low mass branches (low abundance taxa) as the summation-based ag-
gregation step of imbalances.

As discussed in Section 7.3, we found that both, the original Phylofactorization, as
well as our Placement-Factorization, can split clades that are larger than one would
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expect from other types of analyses of the data. Considering the distribution of
objective function values, as for instance shown in Figure 7.5, it is likely that such
large clades are the result of random variability along a path of branches that are
equally relevant for the factor. Further research is needed to confirm this.

These findings suggest that it might be beneficial to introduce a significance value
for each factor, which assesses how relevant the particular winning edge is compared
to other edges that yielded a high objective value in an iteration. This idea is intrin-
sically connected (pers. comm. with A. Washburne on 2019-03-01) to the stopping
function of the original Phylofactorization [376], which uses a Kolmogorov-Smirnov
(KS) test [237] to conservatively estimate when a sufficient number of factors have
been identified. Another strongly connected idea is that of confidence regions of the
phylogeny, defined by regions of the tree in which the “true” winning edge falls with
a certain confidence [378]. Such a significance value for the winning edge might also
enable a form of soft factorization, that does not greedily pick one winning edge per
iteration.

Furthermore, the paths of high objective values as for example seen in Figure 7.5
indicate that there is a gradient of the objective function along the edges of the tree.
This could be exploited in a gradient-ascending graph-walking algorithm to identify
the phylogenetic factors of extremely large datasets without having to exhaustively
evaluate the objective function at every edge (pers. comm. with A. Washburne on
2019-03-01). For example, one could start at one or more random edges on the tree,
and ascend along the edges in the direction of the gradient until a local maximum
of the objective function is found.

Phylofactorization is a very recent method whose full potential has just begun being
explored [378]. Given the ideas for future research that we outlined here, we hence
conclude that more work is needed in order to fully reach that potential.
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8. Conclusion and Future
Directions

This chapter mostly contains original contributions by Lucas Czech written for
this thesis. Some of the text is however derived from the concluding sections of
the peer-reviewed open-access publication:

Lucas Czech and Alexandros Stamatakis. “Scalable Methods for Ana-
lyzing and Visualizing Phylogenetic Placement of Metagenomic Samples.”
PLOS ONE, 2019, Volume 14, Issue 5, Page e0217050.

The respective text was originally written by Lucas Czech, and modified here to
fit into the context of this chapter.

In this thesis, we made several contributions to the field of computational phylo-
genetics, and phylogenetic placement in particular. We have already described the
methods in two peer-reviewed publications [67, 69], and made the respective data and
scripts available at http://github.com/lczech/placement-methods-paper. The
implementation is available in our genesis library (https://github.com/lczech/
genesis); we furthermore offer a ready-to-use command line interface for the pre-
sented methods via our gappa tool (https://github.com/lczech/gappa). Both
these tools are described in Appendix C as well as our application note [70]. This
chapter briefly summarizes our contributions and discusses potential future devel-
opments and open research questions in the field of phylogenetic placement.

Having been introduced between 2009 and 2010 [26, 242], phylogenetic placement
and its downstream analysis methods are still relatively recent tools, but are becom-
ing more and more popular in the research community. Their advantages compared
to other metagenomic analysis methods include improved interpretability and vi-
sualizability of results, at the cost of increased methodological and computational

http://github.com/lczech/placement-methods-paper
https://github.com/lczech/genesis
https://github.com/lczech/genesis
https://github.com/lczech/gappa
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complexity. There are hence still obstacles to overcome before phylogeny-aware
methods (such as phylogenetic placement) can reach maturity and widespread use
in the research community:

• Usability: Current software pipelines for phylogenetic placement are mostly
build from separate programs and tools that are not well integrated with each
other, and only interact via intermediate files and scripts. This induces labor
costs for first-time users of these tools, for instance, because of the manual
compilation and setup of the software, as well as the time required for ad-hoc
scripting solutions to connect different steps of the pipeline.

• Scalability: The amount of available sequence data is growing exponen-
tially (see Section 1.1), currently doubling roughly every seven months [345].
Phylogeny-aware analysis methods for sequence data are generally more com-
putationally intense than, for instance, methods that are based on sequence
similarity. The speed and scalability of these tools thus need to stay on a par
with the amount of sequencing data being produced.

• Analysis Methods and Research Questions: Downstream analysis meth-
ods that take phylogenetic information into account are not yet as versatile
and mature as classical data analysis methods. Hence, researchers might re-
frain from using phylogenetic placement and resort to more established meth-
ods. There are however numerous research questions that might benefit from
analyses using phylogeny-aware methods, for example, in disciplines such as
bio-geography or medicine.

In the following, we discuss our contributions to the field with respect to these
obstacles, and describe potential future research directions.

8.1 Usability and Scalability

In this section, we discuss our contribution to software development for analyzing
phylogenetic data, as well future directions for such software in general, and our
software in particular.

Contribution

In Chapter 3, we presented an approach to automatically obtain reference trees for
phylogenetic placement called Phylogenetic Automatic (Reference) Trees (PhATs)
using large reference sequence databases. We showed that PhATs are valuable and
sufficiently accurate trees for conducting phylogenetic placement and taxonomic as-
signment of metagenomic sequences. They thus help with the labor-intense and
potentially error-prone process of collecting suitable reference sequences, and might
even replace such “manual” trees in some applications. In the same chapter, we
presented a multi-level placement approach as well as our pre-processing pipeline to
enable and accelerate phylogenetic placement of large, diverse datasets with hun-
dreds to thousands of environmental sequence samples.
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General Future Development

In order to further facilitate the use of phylogenetic placement methods, without
the need for complex setups and scripts, online services for quickly testing standard
methods might be worth to offer. For example, uploaded query sequences could
be placed on our four PhATs used in the evaluation (Section 3.3.1), or on custom
reference trees. These services could further offer standard analysis methods such as
Edge PCA and Squash Clustering (Section 2.5.5), or the methods that we presented
in this thesis (Chapters 4–7).

For more advanced or large-scale studies, a custom setup is mostly inevitable, be-
cause users need to scale up the processing using computer clusters as well as cus-
tomize the workflow. Such studies might benefit from offering well-defined inte-
grated pipelines for the basic steps of phylogenetic placement, with a simple setup
for all common functionality, for instance by using platforms such as Galaxy [4] or
Conda/Bioconda [136]. Tools and pipelines that integrate different steps of the
analysis furthermore allow for more efficient implementations, as they can make bet-
ter use of computing infrastructure, e. g., via parallel programming interfaces such
as MPI, and distribute computations with less overhead for intermediate files and
bookkeeping between pipeline steps.

Moreover, to achieve a tighter integration of the tools in a pipeline, and to incen-
tivize experimentation with existing methods and development of novel methods, file
formats need to be flexible and extensible. For example, the jplace file standard for
phylogenetic placement [243] is based on the JSON format [35, 65], and hence easily
extensible. The standard however currently (as of jplace version 3) lacks support
for multiple samples per file, and additional per-sample or even per-query annota-
tions and other meta-data. A similar issue applies to file formats for phylogenetic
trees, as we showed in Czech et al. (2017) [68]. In particular, the Newick format is
often extended ad-hoc for specific needs (this is even done within the jplace format
itself), with no standardized support from downstream tools or tree viewers. This
leads to ambiguities, misinterpretations, and errors in study results that could be
avoided by creating proper standards for these data types [68].

Future Development of our Software

With respect to the methods and tools presented in this thesis, we plan to extend our
gappa tool [70] to include additional existing analysis methods, such as placement-
based diversity measures [241] and UniFrac calculations [221], and additional pre-
and post-processing functions, such as filtering, merging and manipulating place-
ment files. In the long term, we also intend to re-implement all functionality offered
by the guppy tool from the pplacer suite [241], to turn gappa into a more efficient
and scalable replacement for guppy. Moreover, there is a Conda/Bioconda [136]
recipe for installing gappa [87]. The recipe was created as part of the PICRUSt2
pipeline [88], which internally relies on gappa for some of its steps. The recipe
hence is not maintained by us; we however plan to monitor it in order to ensure its
usability.
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Furthermore, we are planning to extend the genesis library [70], which is written
in C++11, to also offer API bindings for Python. Hence, genesis could combine
the advantages of both programming languages: For standard functions such as file
processing and most internal computations, it can use our highly efficient C++ im-
plementations, which relies on multi-threading via OpenMP (Open Multi-Processing)
where appropriate to allow usage of the available compute cores. The modular and
(hopefully) clear API of genesis further allows it to be used in production code,
as evident by its use in several of our publications [18, 67, 69, 70, 230, 403]. At the
same time, ad-hoc solutions for pipeline tasks such as file conversions or extraction
of certain data could be implemented as Python scripts. This also facilitates to use
genesis for experimentation and rapid prototyping of novel ideas and methods.

8.2 Analysis Methods

Downstream methods for analyzing metagenomic data in a phylogenetic context,
and in paricular, methods based on phylogenetic placements, are not yes as plentiful
as standard sequence-based methods. We contributed several novel ideas and adap-
tations of existing concepts, which we summarize in the following. Then, we present
some ideas for adapting existing machine learning techniques to phylogenetic data.

Contribution

In Chapter 4, we described methods for visualizing the phylogenetic placement of
large metagenomic datasets. The methods allow to detect differences between sam-
ples (Edge Dispersion), as well as correlations with per-sample meta-data (Edge
Correlation), and are thus intended for similar use cases as the established Edge
PCA [239]. However, our novel methods directly visualize important features of
the samples (and their meta-data) on the underlying reference tree. This allows
for interpreting them in a phylogenetic context. Furthermore, in Chapter 5, we in-
troduced clustering methods for metagenomic samples (Phylogenetic k-means and
Imbalance k-means), which serve a similar purpose as Squash Clustering [239], but
are better suited for larger datasets due to their fixed output size.

In Chapter 6, we introduced an adaptation of the Phylogenetic ILR transformation
and balances [330] to phylogenetic placements. Our adaptation uses a fixed reference
tree (instead of a tree inferred from the OTUs present in the data), and allows to
place sequences along the branches of the tree (instead of only at its tips). As
balances are a transformation that yields orthogonal components, issues like the
normalization of compositional data (Section 2.5.3) do not arise. As we showed,
with samples being represented as a vector of balances, many standard tools for
visualization, ordination, and clustering of data in the Euclidean space can be readily
applied to phylogenetic placement data.

In Chapter 7, we presented an adaptation of Phylofactorization [376] to phylogenetic
placements, which we call Placement-Factorization. These methods are able to
identify edges of the tree that exhibit predictable changes in species abundances
based on per-sample meta-data features. This allows to understand evolutionary
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and ecological patterns (e. g., abundances in certain clades of the tree) that are
driven by environmental factors (e. g., pH value of the soil). The output and figures
produced by these methods allow for a detailled interpretation of the results, and
allow to simultaneously understand many different aspects of the data. As outlined
in the chapter, the capabilities of these methods have just started being explored.
We hence see large potential for futher developing Phylofactorization and Placement-
Factorization.

Classical Machine Learning Approaches

The novel methods that we introduced in Chapters 4–7 extend the portfolio of
available analysis tools for phylogenetic placement. Additionally, there exist several
approaches from the fields of machine learning and data mining that could be useful
to adapt to phylogenetic placement data. It might also be worth to develop integra-
tive methods that can incorporate heterogeneous features such as phylogenetic data
and different types of meta-data in a combined analysis [235]. While Placement-
Factorization already is a first step in this direction, there is more potential for fully
integrated data analysis methods. The challenge for adapting existing methods usu-
ally consists in making the methods phylogeny-aware, for example by having them
operate on mass distributions on trees (including respective distance measures such
as the KR distance) rather than on Rd vectors that are typically used in machine
learning algorithms.

As we showed, unsupervised methods (such as k-means clustering) can be extended
to phylogenetic placement data, and are thus valuable tools for metagenomic data
exploration. It might therefore be interesting to also adapt other types of unsuper-
vised machine learning methods to such data, for instance, different clustering [195]
or dimensionality reduction [361] techniques, or visualization [200] and anomaly de-
tection approaches.

The adaptation of supervised machine learning approaches to phylogenetic data
might however be more complicated. In recent years, several approaches have
been proposed for metagenomic sequence data, using large-scale machine learning
[337, 363] and deep learning [11, 112] techniques. These approaches consider each
sequence to be a data point, meaning that enough training data are available. They
are applied for tasks such as OTU clustering, sequence classification, taxonomic as-
signment, and gene prediction. In this thesis however, we are interested in entire
metagenomic samples (instead of single sequences) as the data points to be consid-
ered. Current datasets are often not large enough (in number of distinct samples) to
allow for robust learning at this level of granularity without over-fitting the training
data [11]. There are however some recent approaches in this direction, which focus
on comparative studies [337]. They are mainly based on features such as abundances
and presence/absence patters of sequences (or OTUs) within the samples [282], or
use so-called k-mers (subword occurrences within sequences) as features [15]. These
features are simple enough to allow for training with current dataset sizes. However,
given the growth rate of metagenomic sequence data, sufficient training data for
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more detailed analyses are likely to become available in the future. Hence, incor-
porating phylogenetic information in supervised machine learning methods might
yield improved accuracy as well as better interpretability. This could be used for
tasks such as classification of samples, and prediction and regression with respect
to per-sample meta-data features. Placement-based balances and phylogenetic fac-
torization are potential ways to approach this idea [330, 376], as indicated by the
results of this thesis.

Neural Networks and Deep Learning Approaches

Notable supervised approaches that are interesting and promising for problems in the
life sciences are neural networks, and deep learning in particular [331]. Such methods
are, in principle, well suited for the complex and high-dimensional data produced
in these domains. Initial approaches have recently been described for a variety of
use cases in biology and medicine [55, 232, 257]. There are however some general
issues that need to be solved when employing deep learning. Firstly, similar to other
supervised methods, the amount of available (labeled) data in current biological
studies is often too limited for training deep neural networks [55, 257]. Secondly,
deep learning is often considered as a “black box” that lacks interpretability and
testability; there are however recent approaches to alleviate this [257, 301, 373]. Fu-
ture data collection and method development efforts will likely be able to overcome
these obstacles [373]. Then, deep learning approaches that take phylogenetic infor-
mation into account could represent viable tools for analyzing and understanding
metagenomic data.

There have also been first attempts that directly use tree structures and phylogenetic
trees in neural networks. For example, the architecture of a neural network can be
modeled according to a given graph structure [39, 316]. In such models, data on
the nodes of the graph is propagated across the graph during the training of the
network. This allows to exploit the additional information encoded in the graph.
This could be used for phylogenetic trees as well, using the tree as a fixed graph, and
the distribution of phylogenetic placements as the data that the system is trained
on. A very recent and promising idea is to embed the evolutionary information
of phylogenetic trees into the Euclidean space, and then use convolutional neural
networks (CNNs) on the resulting matrices to analyze the underlying data [114,
300, 301]. These methods are able to accurately predict meta-data features of a
set of metagenomic samples, given the per-sample taxonomic profile. In detail,
these methods infer a tree from the OTUs present in the dataset, and use the per-
sample OTU abundances to train the network. In consequence, the underlying tree
differs in each study, which hinders the use of pre-trained networks, for example in
medical applications, where data of new patients needs to be classified. Instead, one
could easily embed a fixed reference tree in a similar manner, and use phylogenetic
placement distributions on the tree instead of abundances for the training.

Incorporating Uncertainty

Phylogenetic placements already incorporate a measure of uncertainty for each query
sequence in form of the likelihood weight ratio (LWR) of each placement position
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(Section 2.5.1). They however assume that the given fixed reference tree on which
the placement is conducted is correct. As discussed in Section 2.3.2, the “true”
tree of life is unknowable [140]. In an ideal world, alternative OTU clusterings and
alternative trees would simply collapse nodes at different depths (pers. comm. with
A. Washburne on 2019-03-01, c. f. Section 7.3.2). Due to uncertainty in both the
OTU clustering and the tree inference however, errors are introduced.

Measures such as bootstrap support values [99, 110, 335] and methods such as
Bayesian inference (Section 2.3.3) can help to assess the uncertainty introduced
by these errors. The possibility to incorporate the uncertainty of the tree inference
has already been discussed in the context of Phylofactorization [378]: the more cer-
tain the scaffold provided by the phylogeny, the more certain the inferences about a
clade obtain from the factorization. For future development, it might be informative
to incorporate uncertainty in the analyses methods presented here as well.

8.3 Research Questions

The general concepts and techniques described above can be employed for developing
more specialized methods to help answering novel research questions. In the follow-
ing, we present some ideas for future applications and use cases in metagenomics,
to which phylogeny-aware methods, and phylogenetic placement in particular, could
be adapted by using these techniques.

Contribution

As mentioned in Section 1.2, we are currently working on scrapp, which stands
for “Species Counting on Reference trees viA Phylogenetic Placements”. It is a
tool for estimating the per-branch species diversity in metagenomic samples on a
given reference tree, and is hence useful for discovering and describing novel species
in microbial data. Thus, scrapp adapts a common question in biology (species
counting and diversity estimation), and brings it into a phylogenetic context, where
results can be visualized and interpreted using the additional information of the
reference tree. It is a pipeline that combines several tools developed in our lab, such
as EPA-ng [18], ParGenes [265], and mPTP [173], and uses genesis [70] for file
conversions and other intermediate tasks between pipeline steps. It is hence a first
step in the direction of integrated pipelines as explained above.

A related question is that of estimating the microbial community composition in
a metagenomic sample, for example in the form of per-taxon relative abundances
and taxonomic assignments [211]. We explained the compositional nature of phy-
logenetic placements in Section 2.5.3, and described our ad-hoc implementation for
taxonomic assignment based on phylogenetic placement in Section 3.3.4. In order to
complement methods specifically developed for taxonomic assignment [7, 211, 322],
our implementation could be extended and refined, and hence become a tool that
uses phylogenetic context to answer questions of community composition.
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Further Research Directions

Further fields in which we see an opportunity for developing phylogeny-aware meth-
ods are biogeography and ecology, as they ask questions concerning the distribution
of species across geographic space and through time, as well as regarding their in-
teractions with each other.

Research has been conducted on unravelling the bio-geographical patterns of micro-
bial communities [158], and there also exist evolutionary approaches [61]. This could,
for instance, be extended to phylogenetic placements by combining them with ge-
ographical data: The phylogenetic Kantorovich-Rubinstein (KR) distance between
two metagenomic samples is a pairwise measure (Section 2.5.4); similarly, the geo-
graphic locations where the samples were collected yield pairwise distances between
samples. These measures could be used to infer microbial patterns that change with
geographical distance. This is similar to correlating the placement distribution with
per-sample meta-data as described in Section 4.2.2, but requires some other form of
correlation measure. We conducted initial tests in this direction, but unfortunately,
the available datasets were shown to not exhibit such biogeographical patterns [203].

Instead of location, time is also used for comparing metagenomic samples. In such
studies, the same location is sampled at different points in time, thus allowing to
investigate the dynamics, variations, and (potentially) seasonal periodic patterns
experienced in the microbial communities across time [60, 108]. This is typically
assessed using the taxonomic composition of the samples. By extending such meth-
ods to phylogenetic placements, the time-dependent patterns could be displayed on
a phylogenetic tree (or a series of trees), which again might provide additional in-
formation for interpreting and visualizing them. One could for instance construct a
time series (video) of a tree showing how abundance patterns similar to Figure 4.1(b)
vary over time.

Furthermore, in the field of ecology, the co-occurrence patterns between species have
been studied for numerous habitats and ecosystems [209, 364, 399]. These interac-
tions are often visualized in so-called co-occurrence networks [52, 107], which aggre-
gate abundances at a high taxonomic level, and show links that indicate co-presence
and exclusion between the depicted taxa. Unfortunately, even at high taxonomic
levels, these networks are often extremely complex and hard to interpret, while po-
tentially omitting valuable interaction details at lower taxonomic levels. Thus, it
might be interesting to visualize such co-occurrences with respect to phylogenetic
information. This entails the challenge to simplify the visualization and only show
relevant co-occurrences, for example by highlighting branches of the reference tree
that exhibit a high correlation with other branches.

Throughout this thesis, we used the Bacterial Vaginosis (BV) [339] and the Human
Microbiome Project (HMP) [160, 250] datasets as examples for health-related appli-
cations of our methods. Many of the above research questions are also interesting
from a medical point of view, and can be readily applied to other human datasets for
assessing health status. In recent years, there have been studies that conduct phy-
logenetic analyses of widely researched diseases such as HIV/AIDS [37, 48, 299] and
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different types of cancer [2, 40]. Thus, we see a large potential in phylogeny-aware
methods for diagnostics, and human health in general.

In conclusion, the development of novel methods that use phylogenetic information
is highly promising for many fields of research in biology, medicine, and the life
sciences. In particular, methods based on phylogenetic placement allow to process
large metagenomic datasets, and to visualize them in different ways using the under-
lying reference tree as an additional source of information that aids interpretation
of the results.
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A. Supporting Information

Table A.1: IUPAC notation of nucleobases and ambiguity characters. The
table lists the character representations of nucleobases and their combinations (which
are used to denote ambiguity) as suggested by the IUPAC (International Union
of Pure and Applied Chemistry) Commission [161]. The names and symbols for
ambiguity characters are chosen based on bio-chemical properties of the nucleobases.
See Section 2.2.4 for more information.

Symbol Description Represented Bases Complement
A Adenine A 1 T
C Cytosine C 1 G
G Guanine G 1 C
T Thymine T 1 A
U Uracil U 1 A
W Weak A T 2 W
S Strong C G 2 S
M aMino A C 2 K
K Keto G T 2 M
R puRine A G 2 Y
Y pYrimidine C T 2 R
B not A (B comes after A) C G T 3 V
D not C (D comes after C) A G T 3 H
H not G (H comes after G) A C T 3 D
V not T (V comes after T and U) A C G 3 B
N any Nucleotide (not a gap) A C G T 4 N
Z Zero 0
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Figure A.1: Examples of the per-site entropy for different character fre-
quencies. The figure shows the entropy H that results from an alignment site
with some exemplary nucleotide frequencies. See Section 3.2.1 for details of the
calculation of the per-site entropy, and for its application in the context of multiple
sequence alignments. The entropy is symmetric with respect to permutations of the
nucleobases; we here show examples using the nucleobase G as the most frequent
character at the site. For simplicity, we here do not include the gap character.
The subfigures are ordered by increasing entropy, which ranges from 0 for a site with
only a single character, as in (a), to 2 for a site with all four nucleobases equally
frequent, as in (h). The maximum possible entropy is given by the base of the log-
arithm. The choice of base is irrelevant when comparing entropies with each other,
as it simply introduces a constant factor.



B. Empirical Datasets

This chapter is derived from parts of the following peer-reviewed open-access
publications:

Lucas Czech, Pierre Barbera, and Alexandros Stamatakis. “Methods
for Automatic Reference Trees and Multilevel Phylogenetic Placement.”
Bioinformatics, 2018, Volume 35, Issue 7, Pages 1151–1158.

Lucas Czech and Alexandros Stamatakis. “Scalable Methods for Ana-
lyzing and Visualizing Phylogenetic Placement of Metagenomic Samples.”
PLOS ONE, 2019, Volume 14, Issue 5, Page e0217050.

Text and tables in this chapter were created by Lucas Czech, with the following
exception: Pierre Barbera conducted the processing and analysis of the CAMI
Challenge data as described in Appendix B.4, and helped to write the text of
that section.

Throughout this thesis, we used several real-world empirical datasets to evaluate
our methods. We here present details on these datasets and their respective prepro-
cessing. The datasets are as follows:

1. Bacterial Vaginosis (BV) [339]. This small dataset was already analyzed with
phylogenetic placement in the original publication. We used it as an example
of an established study to compare our results to. It has 220 samples with a
total of 15 060 unique sequences.

2. Tara Oceans (TO) [137, 174, 350]. This world-wide sequencing effort of the
open oceans provides a rich set of meta-data, such as geographic location,
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temperature, and salinity. Unfortunately, the sample analysis for creating the
official data repository is still ongoing. We thus were only able to use 370
samples with 27 697 007 unique sequences.

3. Human Microbiome Project (HMP) [160, 250]. This large data repository
intends to characterize the human microbiota. It contains 9192 samples from
different body sites with a total of 63 221 538 unique sequences. There is
additional meta-data such as age and medical history, which is available upon
special request. We only used the publicly available meta-data.

4. Mouse Gut [36, 322]. This small dataset is part of the 2nd CAMI Challenge
[36], which is a community-driven effort to assess taxonomic profiling methods
using a common set of benchmark datasets. We solely used this dataset for
the taxonommic evaluation of our PhAT method in Section 3.3.4.

These datasets represent a wide range of environments, number of samples, and
sequence lengths; see Table B.1 for details. At the time of writing, about two years
after we initially downloaded the data, the TO repository has grown to 1170 samples,
while the HMP even published a second phase and now comprises 23 666 samples of
the 16S region. This further emphasizes the need for scalable methods to analyze
such data (such as the ones presented in this work).

Table B.1: Overview of the dataset dimensions. The “Samples” column
shows how many metagenomic samples were used in our evaluations. This might
differ from the number of available samples due to filtering as explaind in the text.
The subsequent two columns show the number of total sequences over these samples,
and the number of unique sequences therein. Note that for the Mouse Gut dataset,
the number of total sequences is also reported after the filtering as explained in
Section B.4. The last column shows the average length of all sequences in the
dataset.

Dataset Samples Total Seqs. Unique Seqs. Avg. Length

Bacterial Vaginosis 220 426,612 15,060 226
Tara Oceans 370 49,023,231 27,697,007 128
Human Microbiome 9,194 118,701,818 63,221,538 413
Mouse Gut 64 620,882 616,405 240

We used these datasets to evaluate our methods and to exemplify which method is
applicable to what kind of data. To this end, the sequences of the datasets were
placed on appropriate reference trees, in order to obtain phylogenetic placements
that our methods can be applied to. Firstly, for the BV dataset, we used the original
set of reference sequences, and re-inferred a tree on them. Secondly, for the TO,
HMP, and mouse gut datasets, we used our Phylogenetic Automatic (Reference)
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Tree PhAT method (Chapter 3) to construct sets of suitable reference sequences
from the Silva database [294, 395].

For all analyses, we used the following software setup: Unconstrained maximum like-
lihood trees were inferred using RAxML v8.2.8 [342]. For aligning reads against
reference alignments and reference trees, we used a custom MPI wrapper for Pa-
PaRa 2.0 [23, 24], which we also made freely available [22]. We then applied the
chunkify procedure (Section 3.2.3) to split the sequences into chunks of unique
sequences prior to conducting the phylogenetic placement, in order to minimize pro-
cessing time. Phylogenetic placement was conducted using EPA-ng [18], which is
a faster and more scalable phylogenetic placement implementation than RAxML-
EPA [25] and pplacer [241]. Lastly, given the per-chunk placement files produced
by EPA-ng, we executed the unchunkify procedure (Section 3.2.3) to obtain per-
sample placement files. These subsequently served as the input data for the methods
presented in this work.

B.1 Bacterial Vaginosis

We used the Bacterial Vaginosis (BV) dataset [339] as an example of a well-designed
study in order to compare our novel methods to existing ones such as Edge PCA and
Squash Clustering [104, 239] (Section 2.5.5). The dataset contains metabarcoding
sequences of the vaginal microbiome of 220 women, and was kindly provided by
Sujatha Srinivasan. This small dataset with a total of 426 612 query sequences,
thereof 15 060 unique, was already analyzed with phylogenetic placement methods in
the original publication. We re-inferred the reference tree of the original publication
using the original alignment, which contains 797 reference sequences specifically
selected to represent the vaginal microbiome. As the query sequences were already
prepared, no further preprocessing was applied prior to alignment and phylogenetic
placement. The query sequences of the dataset were then aligned to our re-inferred
reference tree and alignment, and subsequently placed on the tree. The available
per-sample quantitative meta-data for this dataset comprise the Nugent score [274],
the value of Amsel’s criteria [9], and the vaginal pH value. We used all three meta-
data types in our analyses.

We first used the BV dataset for testing the accuracy of the unconstrained Bacteria
tree obtained from the PhAT method; see Section 3.3.3 for details, and see Figure 3.9
and Figure 3.10 for the respective results. For this evaluation, we also placed the BV
dataset on the Bacteria tree, and compared the results obtained from analyses such
as Edge PCA and Squash Clustering to the results obtained on the original reference
tree. Next, we used the BV dataset throughout Chapters 4 to 6 for evaluating our
methods.

Finally, for our comparison of Placement-Factorization to the original Phylofactor-
ization [376] in Section 7.3.1, we conducted OTU clustering of the BV sequences,
using two different methods: We used VSEARCH v2.9.1 [306] as well as swarm
v2.2.2 [228, 229] to obtain two sets of OTU clusters. We filtered the OTU table
to remove low abundance OTUs, by only keeping those that appear in more than
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10% of the samples. In order to assign each OTU to a fitting taxonomic path,
we used the assign command of our toll gappa [70], see Appendix C.2. To this
end, we placed the OTUs on the BV reference tree mentioned above, in order to
obtain taxonomic assignments for the OTUs that are in line with the taxonomic
labels used in our other analyses of the dataset. Each set of OTU sequences was
subsequently aligned with MAFFT v7.310 [175, 176], using the L-INS-i strategy
[177]. Finally, we inferred an OTU tree for each set, using the recent RAxML-NG
v0.7.0 [192]. These two OTU trees were then used with the meta-data for con-
ducting an analysis with Phylofactor [376], based on the excellent tutorials at
https://github.com/reptalex/phylofactor.

B.2 Tara Oceans

The Tara Oceans (TO) dataset [137, 174, 350] that we used in this work contains
amplicon sequences of protists, and is available at https://www.ebi.ac.uk/ena/

data/view/PRJEB6610. At the time of download (2016-09-20), there were 370 sam-
ples available with a total of 49 023 231 sequences. As the available data are raw
fastq files, we followed Mahé (2016) [227] to generate cleaned per-sample fasta files.
For this, we used the tool PEAR [401] to merge the paired-end reads; cutadapt
[236] for trimming tags as well as forward and reverse primers; and VSEARCH
[306] for filtering erroneous sequences and generating per-sample fasta files. We fil-
tered out sequences below 95 bps and above 150 bps, to remove potentially erroneous
sequences. No further preprocessing (such as chimera detection) was applied.

This resulted in a total of 48 036 019 sequences, thereof 27 697 007 unique. The
sequences were then used for phylogenetic placement as explained above. The TO
dataset has a rich variety of per-sample meta-data features; in the context of this
work, we mainly focus on quantitative features such as temperature, salinity, as well
as oxygen, nitrate and chlorophyll content of the water. Furthermore, each sample
has meta-data features indicating the date, longitude and latitude, depth, etc. of the
sampling location. This data might be interesting for further correlation analyses
based on geographical information, as mentioned in Chapter 8.

B.3 Human Microbiome Project

We used the Human Microbiome Project (HMP) dataset [160, 250] as an example
of a large-scale dataset, and hence also for testing the scalability of our methods.
In particular, we used the “HM16STR” data of the initial phase “HMP1”, which are
available from http://www.hmpdacc.org/hmp/. Each sample is labeled with one
of 18 human body site locations where it was sampled. This is the only publicly
available meta-data feature. See Table B.2 for an overview of those labels.

The dataset consists of trimmed 16S rRNA sequences of the V1V3, V3V5, and V6V9

regions. The data are further divided into a “by sample” set and a “healthy” set,
which we merged in order to obtain one large dataset, with a total of 9811 samples.
We then removed 10 samples that were larger than 70 MB as well as 605 samples

https://github.com/reptalex/phylofactor
https://www.ebi.ac.uk/ena/data/view/PRJEB6610
https://www.ebi.ac.uk/ena/data/view/PRJEB6610
http://www.hmpdacc.org/hmp/
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that had fewer than 1500 sequences, because we considered them as defective or
unreliable outliers. Finally, we also removed 2 samples that did not have a valid
body site label assigned to them. This resulted in a set of 9192 samples containing
a total of 118 702 967 sequences with an average length of 413 bps. From these
samples, sequences with a length of less than 150 bps as well as sequences longer
than 540 bps were removed, as we considered them potentially erroneous. No further
preprocessing (such as chimera detection) was applied.

This resulted in a total of 116 520 289 sequences, of which 63 221 538 were unique.
For most of the evaluation, we then used the unconstrained Bacteria tree of our
PhAT method [69] for phylogenetic placement; see Section 3.3.1 for details. The
tree comprises 1914 taxa, thereof 1797 bacterial sequences. The remaining 117 taxa
are Archaea and Eukaryota, and were included as a broad outgroup.

Table B.2: HMP dataset overview. The table lists the 18 body site labels used
by the Human Microbiome Project (HMP) [160, 250], and a “translation” into the
corresponding body region. For simplicity, in the evaluations in Section 3.3.3 and
Section 5.3.2, we summarized some of the labels into eight location groups, as shown
in the third column. The last column lists how many samples from each body site
were used in our evaluation.

Body Site Region Group Samples

Stool Stool Stool 600
Saliva Saliva Saliva 529
Tongue Dorsum Mouth (back) Mouth (back) 610
Throat Mouth (back) Mouth (back) 638
Palatine Tonsils Mouth (back) Mouth (back) 599
Attached Keratinized Gingiva Mouth (front) Mouth (front) 600
Hard Palate Mouth (front) Mouth (front) 566
Buccal Mucosa Mouth (front) Mouth (front) 597
Subgingival Plaque Plaque Plaque 595
Supragingival Plaque Plaque Plaque 608
Anterior Nares Nose Airways 541
Left Antecubital Fossa Arm Skin 290
Right Antecubital Fossa Arm Skin 328
Left Retroauricular Crease Ear Skin 596
Right Retroauricular Crease Ear Skin 604
Vaginal Introitus Vagina Vagina 292
Mid Vagina Vagina Vagina 298
Posterior Fornix Vagina Vagina 301

Sum 9192
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B.4 Mouse Gut

We utilized the Mouse Gut dataset of the 2nd CAMI Challenge [36, 322] to evalu-
ate the accuracy of our PhAT trees for taxonomic assigment in Section 3.3.4. More
specifically, we used the unpaired HiSeq reads of the dataset, which comprises 64
samples of simulated reads. The preprocessing involved read de-interleaving fol-
lowing Watson-Haigh (2012) [380], paired-end read merging using PEAR [401], as
well as quality filtering and conversion to fasta using VSEARCH v2 [306]. This
yielded a total of 800 341 409 reads. As our trees are based on small ribosomal sub-
unit sequences, we also performed read filtering to obtain reads from the 16S rDNA
region (see Section 2.2.2). This filtering was performed using the protocol of Loga-
res et al. (2014) [219], which relies on HMMER [93, 94], and respective profiles for
the 16S rDNA locus. We performed a global identity based de-replication step on
the resulting reads that yielded 616 405 unique query sequences. We aligned these
query sequences to our Bacteria reference alignment using PaPaRa 2.0 [23, 24].
We then performed phylogenetic placement of the aligned query sequences onto the
unconstrained and constrained reference trees, respectively, using EPA-ng [18]. We
performed de-de-replication to obtain per-sample data again, resulting in 64 jplace

files (one per original sample) with placements of the 16S rDNA sequences, for each
of the two trees (constrained and unconstrained). Finally, we performed taxonomic
assignment and taxonomic profiling of the per-sample results using the assign com-
mand implemented in gappa [70], which works analogously to the method used in
Sativa [191]. Its basic steps are described in Appendix C.
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This chapter is derived from parts of the following open-access publications:

Lucas Czech, Pierre Barbera, and Alexandros Stamatakis. “Methods
for Automatic Reference Trees and Multilevel Phylogenetic Placement.”
Bioinformatics, 2018, Volume 35, Issue 7, Pages 1151–1158.

Lucas Czech and Alexandros Stamatakis. “Scalable Methods for Ana-
lyzing and Visualizing Phylogenetic Placement of Metagenomic Samples.”
PLOS ONE, 2019, Volume 14, Issue 5, Page e0217050.

Lucas Czech, Pierre Barbera, and Alexandros Stamatakis. “Genesis and
Gappa: Processing, Analyzing and Visualizing Phylogenetic (Placement)
Data.” bioRxiv, 2019, Page 647958.

All text and figures in this chapter were created by Lucas Czech. The software
described here, genesis and gappa, was developed and written by Lucas Czech,
with the exception of the gappa command assign, which was mainly developed
and written by Pierre Barbera.

In this work, we presented several novel methods for analyzing and visualizing phy-
logenetic placement data. In order to test these methods, evaluate their results,
and produce the respective figures shown here, we implemented all of these methods
as part of our software library genesis. Furthermore, for end users who want to
apply our methods to their own data, we provide a tool called gappa, which offers
a command line interface with sufficient options for most needs. In this chapter, we
briefly introduce genesis and the relevant commands of gappa. For more details,
see our application note that describes both tools [70].
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genesis and gappa are freely available under GPLv3 at http://github.com/

lczech/genesis and http://github.com/lczech/gappa. They are already used
as an integral part in several of our previous publications and programs [18, 67, 69,
230, 403]. Furthermore, gappa is used as part of the PICRUSt2 pipeline [88],
which however is not developed or maintained by us. These use cases hence prove
the flexibility and usefulness of our tools for research and development purposes.

gappa
C.1 Overview of Genesis

When developing scientific software, there are several important, yet often times
competing design objectives: (a) Most users require a fast and simple application for
analysing their data, (b) some power users desire customization, e. g., via scripting
etc., and (c) developers require a flexible toolkit for rapid prototyping. At the same
time, with the on-going data growth, the implementation needs to be scalable and
efficient with respect to both, memory, and execution times. We aimed to meet all
of the above objectives. To this end, genesis is written in C++11, using a modern,
modular, and function-centric software design.

genesis is a highly flexible library for reading, manipulating, and evaluating phy-
logenetic data, and in particular phylogenetic placement data. It has a simple and
straight forward API, but is also computationally highly efficient. Typical tasks
such as parsing and writing files, iterating over the elements of a data structure, and
other frequently used functions are mostly one-liners that integrate well with mod-
ern C++ and its standard library STL. Where possible, the library is multi-threaded,
allowing for fully leveraging the computational power of multi-core systems. Hence,
genesis allows for scalable parsing and processing of huge datasets. The function-
ality is divided into loosely coupled modules, which are described in more detail in
the application note [70] and the online documentation.

We evaluate the code quality, the runtime behavior, and the memory requirements
for conducting typical tasks such as file parsing and data processing in the applica-
tion note [70]. We find that genesis has the overall best code quality score compared
to other scientific codes written in C or C++. It is also consistently faster than all
evaluated Python and R libraries in our tests, and in most of the tests, more memory
efficient as well.

C.2 Commands of Gappa

The flexibility of a library such as genesis is primarily useful for method developers.
For most users, it is however more convenient to have a simple interface for typical,

http://github.com/lczech/genesis
http://github.com/lczech/genesis
http://github.com/lczech/gappa
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frequent tasks. To this end, we have developed the command line program gappa,
which we present in the following.

gappa is short for “Genesis Applications for Phylogenetic Placement Analyses”. Its
original purpose was to implement and make available the methods we presented in
this work, see also Czech et al. (2018) [69] and Czech and Stamatakis (2019) [67].
gappa has since been substantially extended and now also contains a multitude of
other auxiliary commands, as well as re-implementations of some prominent methods
of guppy [241]. These re-implementations are far more computationally efficient
than the original, which was necessary in order to be able to apply them for the
large datasets that we used in this work.

The methods that we described in this work are implemented via the following
sub-commands of gappa:

• phat: Phylogenetic Automatic (Reference) Tree method, see Section 3.2.1.
The command expects a taxonomy file and an alignment file from a sequence
database, e. g., Silva [294, 395], as well as the target number of consensus
sequences to be generated for the intended phylogeny. The result is a fasta

file with consensus sequences representing taxonomic clades. The command
can be further customized, e. g., by changing the consensus sequence method,
using only a specified subclade of the taxonomy for running the algorithm, as
well as several detail settings for the method. It can also output additional
info files that allow to inspect details of the calculations, like the number of
sequences and their entropy per clade.

• extract: Extract/collect placements in specific sub-clades of the tree. The
command performs the main step of the multilevel placement approach, see
Section 3.2.2. Its input is a set of jplace files containing placements on the
backbone tree, as well as a file listing the clade name that each taxon of
the backbone tree belongs to. For each clade, it then writes a new jplace

file, containing all queries that were placed in that clade with more than a
customizable threshold of their placement mass.
Furthermore, if provided with the sequence files that were used to make the
input jplace files, the corresponding sequence of each query are also written
to fasta files per clade. Thus, a per-clade collection of sequences is created,
where each result file contains the sequences that were placed in this clade of
the backbone tree. These can then be used for the second level placement on
separate clade-specific trees.

• chunkify: Split a set of fasta files into chunks of equal size, and write abun-
dance maps. This is the first step of the preprocessing pipeline as described
in Section 3.2.3. The command re-names the sequences using a configurable
hash function (MD5, SHA1 or SHA256), and de-duplicates across all input se-
quences. Its output are chunk files of sequences, as well as an abundance map
file for each input sequences file. The sequence chunk files can then be used
to perform phylogenetic placement to obtain per-chunk jplace files.
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• unchunkify: Take the per-chunk jplace files as well as the abundance map
files, and generate a jplace for each original sequence file, including the correct
abundances. This command is the second step of the chunkify command, and
reverts its effect, so that the resulting jplace files are as if they were created
using the original sequence files.

• assign: Perform taxonomic assignment using phylogenetic placements, which
was used for the evaluation in Section 3.3.4. The command uses a taxonomic
labeling of the tips of the reference tree to annotate all inner branches with the
longest common taxonomic label for the induced subtree of the inner branch,
in analogy to Sativa [191]. Then, each query sequence in the provided jplace

files is taxonomically assigned according to the labels of the branches where it
does have placement mass. This can subsequently either be used for taxonomic
assignment of the query sequences themselves, or to obtain a taxonomic profile
of one or more samples.

• dispersion: The command implements Edge Dispersion as described in Sec-
tion 4.2.1. It takes a set of jplace files (the samples) as input, and calculates
and visualizes the Edge Dispersion per edge of the reference tree. For this, it
offers different modes to measure the dispersion, such as the standard devia-
tion or the coefficient of variation, and log-scaled variants thereof, as explained
in the main text.

• correlation: This command implements Edge Correlation, see Section 4.2.2.
The command takes a set of jplace samples, as well as a table containing
meta-data features for each sample. It then calculates and visualizes the Edge
Correlation with the metadata features per edge of the reference tree. The
command offers options to chose the type of values to use (masses or imbal-
ances), as well as the correlation measure (Pearson Correlation Coefficient or
Spearman’s Rank Correlation Coefficient).

• phylogenetic-kmeans and imbalance-kmeans: Performs k-means clustering
of a set of jplace files according to the methods described in Section 5.2.1
and Section 5.2.2. The commands output information such as the cluster as-
signments and visualizations of the centroid trees, but also allow for clustering
with different values for k in order to create, e. g., the data for Elbow plots.

• placement-factorization: Performs our adaptation of Phylofactorization
[376] to phylogenetic placement data as explained in Section 7.2.1, and outputs
all relevant analysis results. The command takes a set of jplace samples
as well as a per-sample meta-data table, and computes a given number of
phylogenetic factors. The meta-data can be of many different types, such
as numerical or boolean values, or categorical data. It outputs all relevant
data and visualizations as shown in this work, for example, the edges that
are factored out in each step, as well as the visualization of the values of the
objective function on the reference tree.
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• squash and edgepca: Re-implementations of the two existing methods [104,
239] as introduced in Section 2.5.5. As mentioend above, the original imple-
mentation in guppy [241] was not efficient enough for conducting the large
scale analyses that we needed for this work. We hence offer these commands
in gappa, which scale to larger datasets.

These are the gappa commands that are relevant in the context of this work. For
more details and a full list of the available commands, see http://github.com/

lczech/gappa. Furthermore, we provide prototype implementations, scripts, data,
and other tools used for the tests and figures in this work at http://github.com/

lczech/placement-methods-paper.

http://github.com/lczech/gappa
http://github.com/lczech/gappa
http://github.com/lczech/placement-methods-paper
http://github.com/lczech/placement-methods-paper
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[134] S. Gran-Stadniczeñko, L. Šupraha, E. D. Egge, and B. Edvardsen. Haptophyte
Diversity and Vertical Distribution Explored by 18S and 28S Ribosomal RNA
Gene Metabarcoding and Scanning Electron Microscopy. Journal of Eukary-
otic Microbiology, pages 1–19, 2017.

[135] A. J. F. Griffiths, J. H. Miller, D. T. Suzuki, and R. C. Lewontin. An Intro-
duction to Genetic Analysis. W.H. Freeman, 2000.
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[228] F. Mahé, T. Rognes, C. Quince, C. de Vargas, and M. Dunthorn. Swarm:
Robust and fast clustering method for amplicon-based studies. PeerJ, 2:1–12,
2014.
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[352] S. Tavaré. Some probabilistic and statistical problems in the analysis of DNA
sequences. American Mathematical Society: Lectures on Mathematics in the
Life Sciences, 17:57–86, 1986.
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