

1 **LINKING CAR OWNERS' AFFECTIVE AND INSTRUMENTAL MOTIVES TO THEIR**
2 **CAR USE – AN APPLICATION OF AN INTEGRATED CHOICE AND LATENT**
3 **VARIABLE MODEL**

4 **Sascha von Behren**

5 Institute for Transport Studies, Karlsruhe Institute of Technology (KIT)
6 Kaiserstrasse 12, 76131 Karlsruhe, Germany
7 Email: sascha.vonbehren@kit.edu

8 **Lisa Bönisch**

9 Institute for Transport Studies, Karlsruhe Institute of Technology (KIT)
10 Kaiserstrasse 12, 76131 Karlsruhe, Germany
11 Email: lisa.boenisch@kit.edu

12 **Ulrich Niklas**

13 Brand Portfolio Strategy, Market Research, Competition
14 BMW AG
15 Petuelring 124-130, 80809 München, Germany
16 Email: ulrich.niklas@bmw.de

17 **Bastian Chlond**

18 Institute for Transport Studies, Karlsruhe Institute of Technology (KIT)
19 Kaiserstrasse 12, 76131 Karlsruhe, Germany
20 Email: bastian.chlond@kit.edu

21 Paper prepared for presentation and publication at the
22 99th Annual Meeting of the Transportation Research Board
23 6,493 words
24 4 tables (4 * 250 words = 1,000 words)
25 Total: 7,493 words (including abstract, text, references, tables)
26 Submission date: August 1, 2019

1 ABSTRACT

2 Car mobility in cities differs from that in suburban or rural areas, as there usually exist alternative
3 modes such as public transit. Nevertheless, people own and use their cars. In addition to hard
4 factors such as sociodemographics, motives play a particularly important role in urban areas. In
5 the context of this study, we would like to examine the influence of soft factors on car use. This
6 leads to our research question: what influence do the affective and instrumental motives have on
7 the use frequency of cars? The data set used in this study was collected in Berlin and San Francisco.
8 The respondents have provided insights on their everyday travel (e.g., use frequency of cars) and
9 motives for car use. To investigate influences of motives, we applied motives into an integrated
10 choice and latent variable model (ICLV) with an ordered probit kernel. The results indicate a high
11 added value by integrating these soft factors. We can explain more of the overall heterogeneity
12 and can give further insights to the decision-making process. Results show a high influence of the
13 affective motive, whereby the instrumental motive does not matter. Considering the direct and
14 indirect effects, we see that the influence of gender comes almost exclusively by the affective
15 motive. Results suggest people are more likely to use cars for affective motives despite the city's
16 adversities. For these people it is difficult to achieve a shift to alternative means of transport. The
17 only way to intervene here is through regulatory intervention.

18 **Keywords:** Car motives, travel skeleton, integrated choice and latent variable model

1 INTRODUCTION

2 The private car has always played a decisive role in transportation research and planning. In cities
3 in particular, the present focus is on reducing emissions. Apart from that the urban space
4 consumption of cars has to be considered. The conventional car needs both disproportionate urban
5 space for moving and additionally a parking lot for most of the time. At the same time, however,
6 the car is a flexible and attractive means of transport. For research purposes, the motives for use
7 are of particular interest, as there are often attractive mode alternatives available in cities, like
8 cycling or using public transit.

9 In contrast to car sharing, the private car provides permanent availability. It gives their
10 owners a comfortable and flexible opportunity to reach their target location without using diverse
11 modes of transport, also in urban areas. For this reason, the literature contains a number of studies
12 on motives for car use. As an obvious reason functionality and convenience are to be mentioned.
13 People value car usage especially because of its flexibility, independence, availability, speed,
14 reliability, safety, carrying capacity and comfort (1). Different functional reasons for car usage
15 were identified in a qualitative study in Great Britain: transport of heavy goods, driving services
16 (e.g., for family members), being short of time, convenience and pursuing trips (2). These
17 subjective motives address the apparent instrumental benefits of using cars for individual travel.
18 Next to this, people in general have a positive attitude towards using the car. Consequently, even
19 psychological aspects assume a significant role in car travel behavior. In this context, cars can be
20 attributed to symbolic and affective functions that affect car usage besides the functional aspects
21 mentioned (3). The affective function represents an experiential value of vehicles for individuals.
22 On the one hand, driving a car can be linked to positive emotions like driving pleasure. On the
23 other hand, it can result in negative emotions because of stress while driving, e.g. due to traffic
24 congestion (4). The symbolic value of a car addresses its social impact in terms of a status symbol
25 and the influence on social identity. These two additional aspects can have an considerable impact
26 on individual's emotions for car usage (4). In this research field the multiple investigations of Steg
27 are to be emphasized. At this point, not all of her papers will be cited, but her elementary work (3)
28 has to be highlighted. As a result she discovered attitudinal aspects to be a better predictor for car
29 usage behavior than instrumental functions. She finally provides an international accepted and
30 well-tested set of psychological items that refer to psychological motives for car use (instrumental,
31 affective, symbolic).

32 This set was used as basis for related work of other authors who conducted research on car
33 use behavior. Lois and Lopez-Saez (5) examined the relation between these three motives using
34 structural equation model (SEM). They found that the affective element had direct influence on
35 car usage, whereas symbolic and instrumental elements were only effecting the affective
36 motivation and thus only had indirect influence on car usage. Also applying SEM in their study
37 Šefara et al. (6) showed that personal motives for using cars have a notable impact on the
38 preferences for car types and brands. For men, the influence of symbolic-affective motives for car
39 use have greater impact on car preference than for women. Son and Yun (7) used the items of Steg
40 (3) and Ellaway et al. (8) to verify the existence of car-dependent commuters with the application
41 of support vector machine. Bergstadt et al. (9) investigated the influence of socio-demographic
42 variables on daily car use, using OLS multiple linear regression analyses and the items of Steg.
43 They found that affective-symbolic motives can partially describe the relationship between the
44 number of weekly car trips and gender. In this context, they could evidence that psychological
45 motives partially explain differences in car use regarding different sociodemographic groups.
46 Nevertheless, Steg et al. (1) could confirm the impact of instrumental motives on the attractiveness

1 of car use with different methods. Besides findings based on the items of Steg (3), Van and Fujii
2 (10) investigated and compared the contribution of psychological factors in explaining mode
3 choice in six Asian countries with another set of items similar to existent literature. Their findings
4 confirm the significance of attitudinal factors on the behavioral intention to commute by car.
5 Besides the familiar factors in literature, instrumental and symbolic affective components, they
6 further complemented social orderliness as relevant factor to explain mode choice. Considering
7 international cultural differences Belgiawan et al. (11) detected the symbolic-affective factor to be
8 significant among attitudinal constructs in various countries when explaining the intention to
9 purchase a car. Apart from that, an international comparison regarding car use frequency under
10 consideration of attitudinal aspects is still lacking.

11 In our study, we want to close this gap by answering the following research questions:
12 What influence do the affective and instrumental motives have on the use frequency of private
13 cars? For this purpose, we analyzed data from a survey conducted in the urban area of San
14 Francisco (U.S.) and Berlin (Germany) that examined the use of the private car and their motives.
15 As the literature review has shown, the application of hybrid choice models (HCM) in this research
16 field is still in its infancy. The HCM provides a framework to integrate unobservable, latent
17 attitudes into the decision-making process. An example for a provisional implementation in the
18 case of mode choice is provided by Habib et al. (12). They were able to prove that the incorporation
19 of the full information affecting decision-making into a HCM allows to identify the real
20 importance of relevant variables in the choice process. In our study, we investigate the influence
21 of motives for car use applying an integrated choice and latent variable model (ICLV) with an
22 ordered probit kernel in the choice component. The paper is structured as follows: First, we show
23 a brief literature review on motives of car use. Second, we describe the used data and the
24 methodology of our analysis. Third, we present results of the ICLV and interpret resulting factors
25 that influence car usage in San Francisco and Berlin. Finally, we draw a conclusion, discuss the
26 limits of our approach and refer to further work.

27 SURVEY DESIGN AND DATA COLLECTION

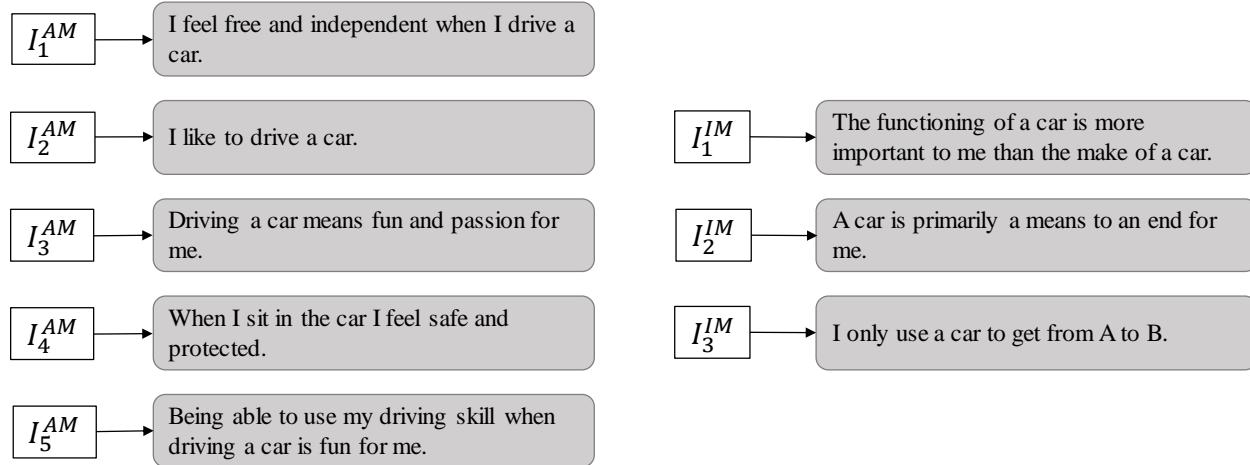
28 In the following, we first introduce the applied survey design with the different components to
29 capture travel behavior and psychological factors. We will then describe how the survey was
30 conducted.

31 Survey design of a travel skeleton

32 The data used in this research is based on the concept of a so-called travel skeleton. The essential
33 of this concept is to capture typical elements of everyday travel. The travel skeleton provides a
34 reasonable compromise between the level of detail needed and the effort required to capture travel
35 behavior. The idea behind the development of this approach was to create a cost-effective survey
36 alternative to longitudinal trip diaries. Besides everyday travel in different areas of life
37 (commuting, chauffeuring, leisure, shopping, errands), this approach is also able to capture long-
38 distance traveling, tech savviness and psychological factors of respondents. The concept of a travel
39 skeleton was originally designed and tested for a study in Hamburg and Berlin (Germany) (13).
40 For a more detailed description of the approach, we refer to von Behren et al. (14).

41 In our survey, we asked respondents, in detail about their typical private car use. In addition
42 to travel behavior, we asked the respondents questions about their attitudes towards certain modes.
43 In our study, we focus on 8 psychological items (indicators) that record the attitudes towards public

1 transit and the car. With these items, we want to analyze how the attitudes towards the two main
 2 modes for commuting affect ODM use on the way to work. The items used in this study are shown
 3 in Figure 1. They are taken from two standardized psychological item sets by Hunecke et al. (15)
 4 and Steg (3), and are rated on a Likert scale from 1-5 ("does not apply" to "apply").



5 **Figure 1. Psychological items (indicators) with their related questions**

6 **Data collection in Berlin and San Francisco**

7 The research presented in this paper is based on data collected through two similar surveys,
 8 conducted in the urban area of Berlin (Germany) and San Francisco (U.S.) between October-2016
 9 and January-2017. The two surveyed cities are well-developed and provide good public transport
 10 systems. In addition, each city has specific innovative transport services such as ODM (e.g., Uber,
 11 Didi or DriveNow). Berlin and San Francisco are regarded as “hybrid cities”, which exhibit dense
 12 public-transit-oriented urban cores, surrounded by low-density car-oriented suburban areas (16).

13 To generate comparable datasets from each city we used a standardized survey approach
 14 based on a computer assisted personal interview (CAPI). The face-to-face interviews had a
 15 duration of approximately 40 minutes. We also included questions concerning psychological
 16 factors, including attitudes towards means of transport, and social and individual norms. The
 17 complete sample size was 1,200 individuals with 600 respondents from each city. We conducted
 18 quota sampling regarding age, gender, household size, and net income to develop a representative
 19 survey group for each captured city. The survey was carried out by a professional market research
 20 firm (Spiegel Institut), using a slightly different approach in each city taking into consideration
 21 specific cultural particularities. In all cities, an access-panel with telephone screening and on-street
 22 recruitment was used. The aim of the surveys was to capture behavior and psychological factors
 23 for individuals above the age of 17 and, as far as possible, for the whole household. For our analysis
 24 of the motives of car use, we used only the data of people with a car in the household. As a result,
 25 we used 836 people from San Francisco and Berlin.

1 DESCRIPTIVE RESULTS

2 In our analysis, we examined people with a car in their household. However, the frequency of car
3 use is not limited to a household's private car. The use of car-sharing such as DriveNow, Car2go
4 or Zipcar was also considered. The requirement, however, was that the person must drive the car
5 himself. In our study we did not find a person who never drives a car during the year. For our
6 model, respondent's choices were divided into three categories, according to the frequency of car
7 use:

- 8 • *occasional use*, corresponding to a usage of less than once a week (48.56%, 406
9 respondents),
- 10 • *regular use*, corresponding to a usage of at least once up to a maximum of several times
11 per week (24.52%, 205 respondents),
- 12 • *daily use*, corresponding to day-to-day use of the car (26.91%, 225 respondents).

13 Table 1 shows the characteristics of the persons surveyed and the variables subsequently used for
14 the model. Three classes were created to describe access to the car in the household. The variable
15 "car disposal – sometimes" describes whether the person can only access the car by arrangement
16 in the household. "Car disposal – always" describes a permanent access to a car in the household.
17 For 46% of the respondents, no arrangement are necessary (see Table 1). In addition, we look on
18 a household level, if the household possess a premium car from brands such as BMW, Mercedes,
19 Audi or Tesla. 20% of the households in our sample have at least one premium car. We also show
20 in Table 1 the amount of daytrips or vacation trips with overnight stays. High amount of daytrips
21 means more than 12 trips per year and a high amount of vacation trips describe more than 8 trips
22 per year. We also analyze, if person use in general their car for commuting (73.09%). In our sample
23 23.56% of the respondents use their car for long-distance leisure trips over 100 km. 29.19% of our
24 respondents have a monomodal behavior, i.e., they use the same mode of transport in everyday
25 travel. For the evaluation of car use it is important to take the spatial structure in consideration.
26 Therefore, we look at two spatial information on zip code level of the residential location of the
27 respondents. On the one hand, we use open street map (OSM) data to calculate built-up living
28 space and data about the population from the data provider Nexiga to calculate the population
29 density per built-up living. High population density includes all zip codes with more than 10,000
30 inhabitants per built-up space per square meter. On the other hand, we calculate through OSM data
31 the public transit options and quality in the zip codes. When calculating the accessibility, we
32 considered that rail-bound public transit is more valuable than buses. A high value indicates people
33 have plenty of public transit options besides the car in this zip code. This applies to 25.84% of the
34 respondents.

1 **Table 1. Descriptive analysis of socio-demographic, mobility and spatial characteristics**

<i>Person characteristics</i>		Yes	No
Age over 30 years		78.23%	21.77%
Fulltime job		57.30%	42.70%
Male		52.27%	47.73%
Own bicycle		48.92%	51.08%
		Always	Sometimes
Share of car disposal		46.66%	23.20%
			30.14%
<i>Household characteristics</i>		Never	
		Yes	No
Premium car in household		20.45%	79.55%
Household from Berlin		47.73%	52.27%
		<2,500\$	2,500\$-5,000\$
Share of income classes		16.75%	32.54%
		Type 1	Type 2
Share of household type		31.22%	18.30%
		Type 3	Type 4
		25.72%	24.76%
<i>Mobility and car use characteristics</i>			
		Yes	No
High amount of daytrips		4.07%	95.93%
High amount of vacation trips		8.73%	91.27%
Commuting by car		73.09%	26.91%
Long-distance trips by car		23.56%	76.44%
Monomodal behavior		29.19%	70.81%
<i>Spatial characteristics</i>			
		Yes	No
High population density		39.71%	60.29%
High public transit accessibility		25.84%	74.16%

N=836

2 The answers to the attitudinal questions are summarized in Figure 2. In the case of the indicators
3 describing the emotional aspects of driving (I_{1-5}^{AM}), almost 50% of the participants agree on all the
4 questions. Over 60% agree with the statement: I like to drive a car (I_2^{AM}), where the question is
5 very general. But for more than 30% driving a car does not mean fun or passion (I_3^{AM}). As can be
6 seen, roughly more than 50% of the respondents rate the instrumental indicators (I_{1-3}^{IM}) positively.
7 Especially with regard to I_1^{IM} , for nearly 70% is the function more important than the make.

1 As a preliminary analysis to our ICLV and to identify latent variables, we conducted an
 2 explorative factor analysis based on the presented attitudinal indicators. Table 2 shows the result
 3 of the principal factor analysis (PFA). Based on the scree plot (elbow criterion) and the Kaiser's
 4 criterion, two factors can be extracted: one describing the affective motive (factor 1) and one
 5 describing the instrumental motive (factor 2) of car use. Factor 1 describes whether people like to
 6 drive a car and whether they feel free through the use. The instrumental motive describes whether
 7 people only use the car as a tool to satisfy their mobility needs.

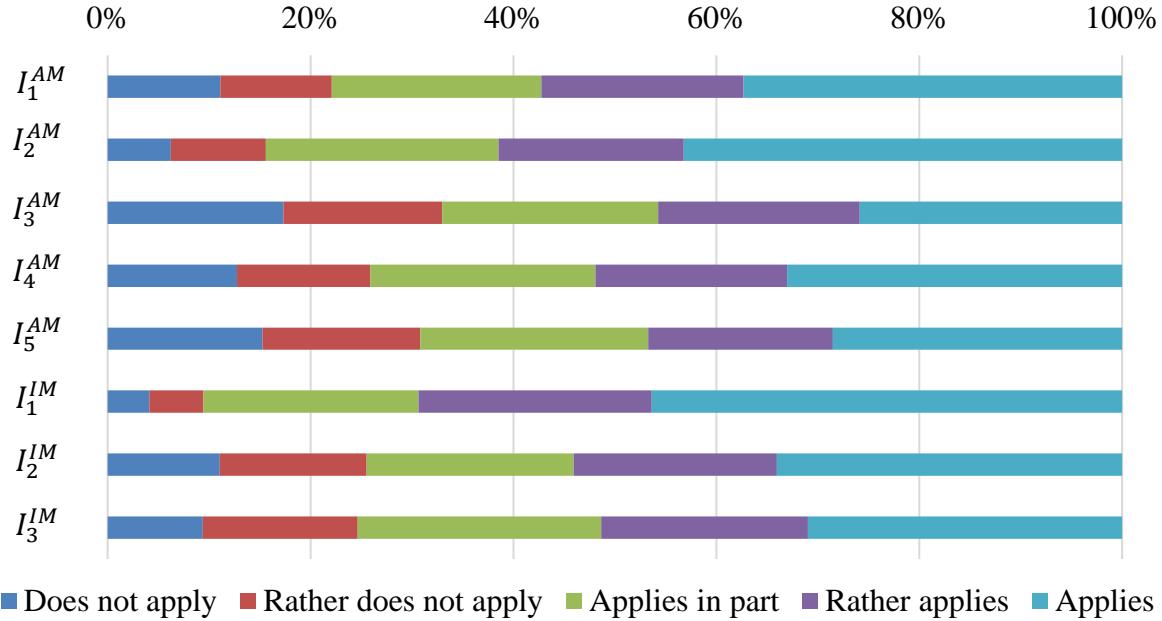


Figure 2. Motives of car use. 1-5 Likert scaled questions as described in Figure 1

1 **Table 2. Principal Factor Analysis (PFA) - Varimax Rotated Factor Pattern**

	Factors	
	<i>Affective motive</i>	<i>Instrumental motive</i>
<i>Cronbach's Alpha</i>	$\alpha = 0.91$	$\alpha = 0.71$
Indicators in PFA		
I_2^{AM}	0.8372	
I_1^{AM}	0.8278	
I_4^{AM}	0.8132	
I_5^{AM}	0.7868	
I_3^{AM}	0.7813	
I_3^{IM}		0.7502
I_2^{IM}		0.7108
I_1^{IM}		0.5550
Printed is the maximum loading of each item		
Criteria of extraction and quality for PFA		
<i>Criteria of extraction</i>	<i># Factors</i>	
Kaiser's criterion	2	
Scree Test	2	
<i>Criteria of quality</i>	<i>Value</i>	
Kaiser's Measure of Sampling Adequacy (MSA)	0.845 > 0.8 (meritorious)	
<i>N=836</i>		

2 **MODELING METHODOLOGY**

3 In this section, we give a brief overview of the applied models. In our study, people's main choice
4 is to reveal their regularity of using their car on an ordered scale (occasional/regular/daily use).
5 We model this core choice with an ordered probit model, which will be topic of the first part of
6 this section. Afterwards, we will present how to incorporate latent variables into the ordered probit
7 model by means of an integrated choice and latent variable model (ICLV). By choosing an ordered
8 probit model over an ordered logit model, we will be able to construct an identifiable reduced form
9 model, which will be described in the final part of this section.

10 **Ordered probit model**

11 In an ordered regression model, individuals face a choice among J ordered alternatives, labelled 1
12 to J . For individual n ($n \in \{1, \dots, N\}$), we describe this choice by a random variable Y_n with sample
13 space $\Omega = \{1, \dots, J\}$. To derive a distribution for these random variables, we use the setting of a
14 random utility model. For each individual n , a latent variable, called utility, is defined that
15 describes its propensity towards the considered quantity – in our case the benefit of frequent car
16 usage – on a continuous scale. This utility is composed of a systematic part as well as a random
17 part:

$$U_n = V(X_n, \beta) + \epsilon_n, \quad (1)$$

1 where U_n is the utility of individual n , $V(X_n, \beta)$ is its systematic part and ϵ_n are random
 2 disturbances. The systematic part considers the effects of a set of explanatory variables for each
 3 individual. It is determined by a vector of observable, explanatory variables X_n of the individual
 4 and a vector of parameters β that are assumed to be identical for every individual. The random
 5 part however contains all other effects that cannot be explained by those variables. It is assumed
 6 to be independent and identically distributed over individuals. We consider a linear specification
 7 of the systematic part of utility, such that the parameters β describe the importance of the different
 8 explanatory variables respectively:

$$V(X_n, \beta) = \beta X_n. \quad (2)$$

9 Choices are now made based on the value of the utility. High values of utility imply decisions for
 10 higher levels in the sample space Ω . Using threshold values $\tau^{(0)}, \dots, \tau^{(J)}$, J ascending intervals are
 11 defined and the value of the variable Y_n is obtained by allocating utility to those intervals:

$$\begin{aligned} Y_n = 1 &\Leftrightarrow \tau^{(0)} < U_n \leq \tau^{(1)}, \\ Y_n = 2 &\Leftrightarrow \tau^{(1)} < U_n \leq \tau^{(2)}, \\ &\vdots \\ Y_n = J &\Leftrightarrow \tau^{(J-1)} < U_n \leq \tau^{(J)}, \end{aligned} \quad (3)$$

12 where $\tau^{(0)} = -\infty, \tau^{(J)} = \infty$. We call τ the vector of thresholds $(\tau^{(0)}, \dots, \tau^{(J)})$. Selecting a
 13 distribution assumption for the random components ϵ_n determines the specific ordered regression
 14 model. We assume a normal distribution, $\epsilon_n \sim N(0, \sigma^2)$, with variance σ^2 , yielding an ordered
 15 probit model. The probability of individual n to choose alternative j , given the observable variables
 16 X_n and the parameters β and τ , is then given by

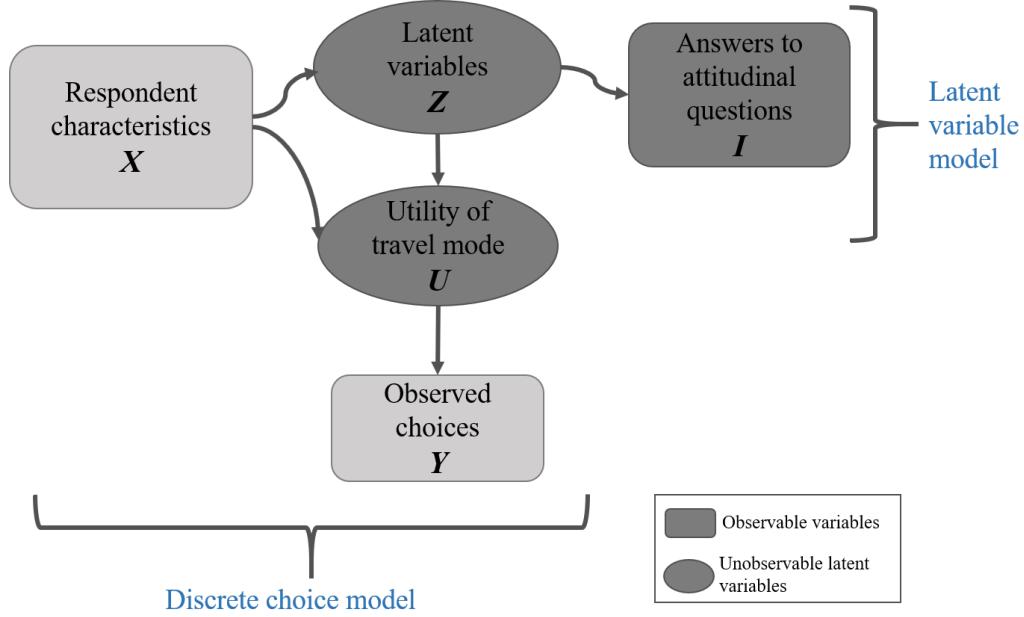
$$\begin{aligned} P(Y_n = j | X_n, \beta, \tau) &= P(\tau^{(j-1)} < U_n \leq \tau^{(j)} | X_n, \beta, \tau) \\ &= P(\tau^{(j-1)} - V_n < \epsilon_n \leq \tau^{(j)} - V_n | X_n, \beta, \tau) \\ &= P\left(\frac{\tau^{(j-1)} - V_n}{\sigma} < \frac{\epsilon_n}{\sigma} \leq \frac{\tau^{(j)} - V_n}{\sigma} | X_n, \beta, \tau\right) \\ &= \Phi\left(\frac{\tau^{(j)} - V_n}{\sigma}\right) - \Phi\left(\frac{\tau^{(j-1)} - V_n}{\sigma}\right), \end{aligned} \quad (4)$$

17 where Φ is the cumulative distribution function of the standard normal distribution.

18 Integrated choice and latent variable model (ICLV)

19 Thus far, we have only considered observable variables to describe people's choices. The ICLV
 20 gives a framework to incorporate unobservable, latent variables into our model of the decision-
 21 making process. We will only give the setting of the ICLV that is later being used in our study. As
 22 those variables cannot be observed directly, responses to a set of indicators on an ordered scale are
 23 asked in the survey. Those indicators are used to gain information on the latent variables describing
 24 people's motive of car use. They are included into the model by adding a latent variable model to
 25 the choice component described in the previous section. The resulting ICLV is illustrated in Figure

1 3. The model consists of a group of structural equations as well as a group of measurement
 2 equations, which are described in detail in the following.



3

4 **Figure 3. Integrated choice and latent variable model (ICLV) adapted to Ben-Akiva et al.**
 5 (17)

6 By Z_n , we describe the vector of the L different latent variables of individual n . Each latent
 7 variable Z_{nl} is described by a linear combination of the individual's observable variables X_n , where
 8 the weights are given by the vectors α_l , as well as a random component ξ_{nl} , which is assumed to
 9 be normally distributed with mean zero and variance σ_l^2 . Thus we obtain the following structural
 10 equation for the l -th latent variable:

$$Z_{nl} = \alpha_l X_n + \xi_{nl}, \quad \xi_{nl} \sim N(0, \sigma_l^2). \quad (5)$$

11 In our model, we will assume independency of the latent variables given the observable variables
 12 and the parameters α_l . In short: ξ_{nl} is assumed to be independent for all $l \in \{1, \dots, L\}$ and $n \in$
 13 $\{1, \dots, N\}$. As scale and spread of the latent variables are arbitrary, no constant is needed in the
 14 specification of the latent variables and the variance can be set to one. The indicators, whose
 15 responses are given on an ordered scale represented by the values 1 to S , are manifestations of the
 16 latent variables. We denote the set of indicators of individual n by the vector I_n , containing the K
 17 single indicators I_{nk} , $k \in \{1, \dots, K\}$. We model each indicator by a continuous representation \tilde{I}_{nk} ,
 18 which is composed of a linear combination of the latent variables with weights given by the vector
 19 ζ_k and an error component ψ_{nk} with mean zero:

$$\tilde{I}_{nk} = \zeta_k Z_n + \psi_{nk}. \quad (6)$$

20 The distribution of the Indicators I_{nk} is then defined by allocating the variables \tilde{I}_{nk} to intervals
 21 given by the thresholds $\rho_k^{(0)}, \dots, \rho_k^{(S)}$:

$$\begin{aligned}
I_{nk} = 1 &\Leftrightarrow \rho_k^{(0)} < \tilde{I}_{nk} \leq \rho_k^{(1)}, \\
I_{nk} = 2 &\Leftrightarrow \rho_k^{(1)} < \tilde{I}_{nk} \leq \rho_k^{(2)}, \\
&\vdots \\
I_{nk} = S &\Leftrightarrow \rho_k^{(S-1)} < \tilde{I}_{nk} \leq \rho_k^{(S)},
\end{aligned} \tag{7}$$

1 where $\rho_k^{(0)} = -\infty$ and $\rho_k^{(S)} = \infty$ for all $k \in \{1, \dots, K\}$. Assuming the error components ψ_{nk} are
2 i.i.d. and follow a Gumbel distribution (also called extreme value type I distribution) for all n and
3 k , we obtain an ordered logit model. Again, as scale and spread of the continuous representations
4 \tilde{I}_{nk} are arbitrary, no constant is necessary and we can set the scale parameter of the Gumbel
5 distribution to one. The probability for a certain response s to the k -th indicator, given the latent
6 variables and the parameters ζ_k , is thus given by

$$\begin{aligned}
P(I_{nk} = s | Z_n, \zeta_k) &= P\left(\rho_k^{(s-1)} < \tilde{I}_{nk} \leq \rho_k^{(s)} | Z_n, \zeta_k\right) \\
&= P\left(\rho_k^{(s-1)} - \zeta_k Z_n < \psi_{nk} \leq \rho_k^{(s)} - \zeta_k Z_n | Z_n, \zeta_k\right) \\
&= \frac{\exp(\rho_k^{(s)} - \zeta_k Z_n)}{1 + \exp(\rho_k^{(s)} - \zeta_k Z_n)} - \frac{\exp(\rho_k^{(s-1)} - \zeta_k Z_n)}{1 + \exp(\rho_k^{(s-1)} - \zeta_k Z_n)},
\end{aligned} \tag{8}$$

7 where we used that the cumulative distribution function of a Gumbel distributed random variable
8 is

$$F(x) = \frac{\exp(x)}{1 + \exp(x)}. \tag{9}$$

9 Finally, in the choice component of the model, we include the latent variables equivalently to the
10 observable variables. The definition of utility is thus extended to

$$U_n = \beta X_n + \gamma Z_n + \epsilon_n \tag{10}$$

11 where γ is the vector of weights of the latent variables on utility. The choice probabilities, given
12 all variables X_n and Z_n , is then calculated as before:

$$\begin{aligned}
P(Y_n = j | X_n, Z_n, \beta, \gamma, \tau) \\
= \Phi\left(\frac{\tau^{(j)} - (\beta X_n + \gamma Z_n)}{\sigma}\right) - \Phi\left(\frac{\tau^{(j-1)} - (\beta X_n + \gamma Z_n)}{\sigma}\right).
\end{aligned} \tag{11}$$

13 The random components ϵ_n include all unobserved heterogeneity among individuals, which
14 appears random to us but does have its reasons in reality. By including the latent variables as in
15 Eq. (10) and considering that they are random variables themselves, we hope to reduce the role of
16 the purely random terms ϵ_n and to explain instead some of the heterogeneity through the latent
17 variables. The full set of parameters is denoted by θ . It contains the parameters β, γ, τ and σ of the
18 choice component, the parameters ζ and ρ of the measurement equations, as well as the parameters
19 α of the structural equations of the latent variable component. To compute the probability of
20 observing the full choice of individual n , including the alternative j as well as the responses
21 s_1, \dots, s_K to the indicators, given a set of parameters θ , we can use the law of total probability to

1 condition on the latent variables and use the conditional independency of the choice variable Y_n
 2 and the indicators I_n :

$$\begin{aligned}
 P(Y_n = j, I_n = (s_1, \dots, s_k) | X_n, \theta) \\
 &= \int_{\mathbb{R}^L} P(Y_n = j, I_n = (s_1, \dots, s_k) | Z_n = t, X_n, \theta) f_{Z_n}(t | X_n, \theta) dt \\
 &= \int_{\mathbb{R}^L} P(Y_n = j | Z_n = t, X_n, \theta) \\
 &\quad \cdot \prod_{k=1}^K P(I_{nk} = s_k | Z_n = t, \theta) f_{Z_n}(t | X_n, \theta) dt,
 \end{aligned} \tag{12}$$

3 where f_{Z_n} is the joint probability density function of the L latent variables Z_n of individual n . This
 4 probability can – theoretically – be evaluated using the distribution of the latent variables given by
 5 (5) and Eqs. (11) and (8). Further, we can calculate the probability of observing the choice for an
 6 alternative alone in the same manner:

$$P(Y_n = j | X_n, \theta) = \int_{\mathbb{R}^L} P(Y_n = j | Z_n = t, X_n, \theta) f_{Z_n}(t | X_n, \theta) dt. \tag{13}$$

7 Estimation

8 We want to gain estimations for the parameters using maximum likelihood estimation. Calling
 9 $y^{(n)}$ the observed choice of individual n and $s^{(n)}$ the vector of given responses to the Indicators
 10 of individual n , we can construct the likelihood-function, stating the probability of all observed
 11 choices in dependency of a set of parameters θ :

$$L(\theta | X_n) = \prod_{n=1}^N P(Y_n = y^{(n)}, I_n = s^{(n)} | X_n, \theta). \tag{14}$$

12 Analogously, we can construct a likelihood function for the observed decisions for the alternatives
 13 alone in almost the same manner:

$$L_{choice}(\theta | X_n) = \prod_{n=1}^N P(Y_n = y^{(n)} | X_n, \theta). \tag{15}$$

14 Again, in theory, those functions can be evaluated and thus maximised using Eq. (12) respectively
 15 Eq. (13), but it requires the evaluation of L dimensional integrals. Therefore an approximation
 16 method for the integrals in (12) is necessary. We approximate these integrals using draws
 17 according to the distribution of the latent variables. In doing so, constructing draws via Halton
 18 sequences has been shown to be far superior to purely random draws (see 18). Calling $t^{(1)}, \dots, t^{(R)}$
 19 the R L -dimensional draws, we approximate the probability of choosing an alternative j and giving
 20 the responses s to the indicators by

$$P(Y_n = j, I_n = (s_1, \dots, s_k) | X_n, \theta) \approx \frac{1}{R} \sum_{r=1}^R \left[P(Y_n = j | Z_n = t^{(r)}, X_n, \theta) \prod_{k=1}^K P(I_{nk} = s_k | Z_n = t^{(r)}, X_n, \theta) \right]. \quad (16)$$

1 The probabilities of the choice component alone can be approximated identically. Using
 2 approximations of that kind in maximizing the likelihood function is known as maximum
 3 simulated likelihood estimation.

4 Reduced form model

5 Following the procedure of Vij and Walker (19), we can construct a reduced form model of the
 6 HCM. Replacing the latent variables Z_n in the definition (10) of utility by their structural equations
 7 (5), we obtain

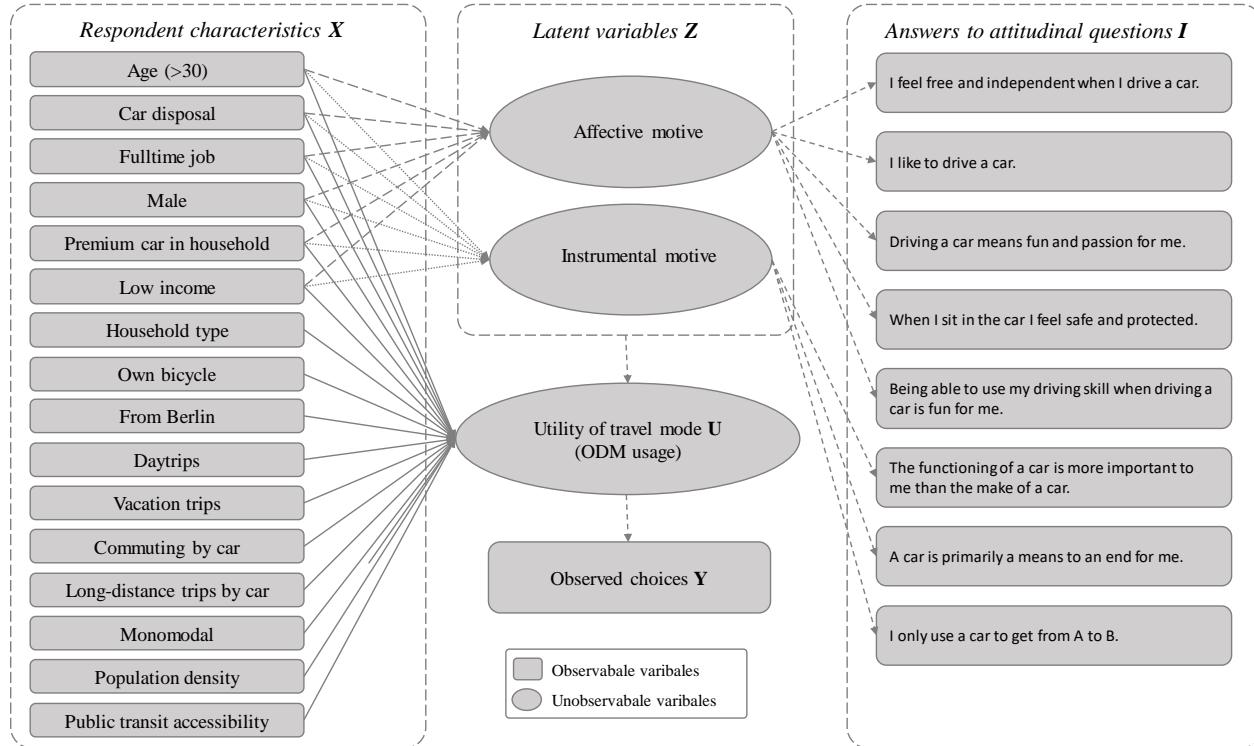
$$\begin{aligned} U_n &= \beta X_n + \gamma Z_n + \epsilon_n = \beta X_n + \gamma_1 Z_{n1} + \dots + \gamma_L Z_{nL} + \epsilon_n \\ &= \beta X_n + \gamma_1(\alpha_1 X_n + \xi_{n1}) + \dots + \gamma_L(\alpha_L X_n + \xi_{nL}) + \epsilon_n \\ &= (\beta + \gamma_1 \alpha_1 + \dots + \gamma_L \alpha_L) X_n + \gamma_1 \xi_{n1} + \dots + \gamma_L \xi_{nL} + \epsilon_n \\ &= \beta_{RFM} X_n + \epsilon_{RFM} \end{aligned} \quad (17)$$

8 with $\beta_{RFM} = \beta + \gamma_1 \alpha_1 + \dots + \gamma_L \alpha_L$ and $\epsilon_{RFM} = \gamma_1 \xi_{n1} + \dots + \gamma_L \xi_{nL} + \epsilon_n$. The error components
 9 $\xi_{nl}, l \in \{1, \dots, L\}$ of the latent variables are all independently standard normally distributed and
 10 thus $\gamma_l \xi_{nl}$ are independently normally distributed with variance γ_l^2 . Since we used an ordered
 11 probit model in the choice component, i.e. the error component ϵ_n of utility is also independently
 12 normally distributed with variance σ^2 , ϵ_{RFM} is a sum of $L + 1$ independent normally distributed
 13 random variables, and thus again a normally distributed error component with variance $\sigma_{RFM}^2 :=$
 14 $\gamma_1^2 + \dots + \gamma_L^2 + \sigma^2$. Altogether, the HCM is again an ordered probit model with the special weights
 15 β_{RFM} for the observable variables and with variance σ_{RFM}^2 . Consequently, we can only expect the
 16 choice component of the HCM to be as good as an ordered probit model in terms of the overall
 17 likelihood value. In general, the overall likelihood of a simple ordered probit model will be at least
 18 as good as the likelihood of the choice component of the HCM using the same observable
 19 variables. That is because in the former, parameters are only estimated to describe the choices for
 20 the alternatives as good as possible, whereas in the latter, parameters are estimated to describe
 21 choices for the alternatives simultaneously to the responses to the indicators. Ideally, the HCM can
 22 describe choices in almost the same manner but gives us a more detailed explanation of how
 23 decisions are made by decreasing the importance of the purely random component ϵ_{RFM} , and
 24 instead interpreting some of the overall variance through the latent variables.

25 MODEL SPECIFICATION

26 The integrated choice and latent variable model (ICLV) was defined according to the equations in
 27 the methodology section. Figure 4 shows the variables used in our model. After extensive
 28 specification testing in the “base” ordered probit model, we have used the explanatory variables
 29 shown in Figure 4. The following variables were used as dummy variables (as described in the
 30 section descriptive results): age, fulltime job, male, premium car in household, from Berlin,
 31 daytrips, vacation trips, commuting by car, long-distance trips by car, monomodal, population
 32 density and public transit accessibility. The dummy variable low income describes people with a

1 monthly household net income under 2,500\$. We also include the car disposal (split into three
 2 categories, taking never as the base) and the household type (split into three categories, taking
 3 household type 1 and 2 as one- or two-person households as the base). Consequently, 18 β -
 4 parameters and 2 γ -parameters for the influence of the variables on utility, the parameter σ^2
 5 describing the variance of the error component in utility, 12 α -parameters for the structural
 6 equations of the latent variables affective and instrumental motive respectively, as well as the
 7 parameters ζ and ρ for the indicators had to be estimated.



9 **Figure 4. Specification of the integrated choice and latent variable (ICLV) model**

10 To set the scale of utility, one of the parameters included in the specification of utility has
 11 to be fixed. Usually, this is done by setting the variance σ^2 to one, but we chose to fix one of the
 12 β parameters instead, such that we can compare the variance of the purely random component in
 13 the ICLV and in the reduced form model in the end. Ultimately, the parameter for the variable
 14 describing if people use their cars for commuting has been set to one. For estimation we used the
 15 adapted CMC choice modelling code for R (20) with 2,500 Halton draws for each latent variable.

16 RESULTS

17 The integrated choice and latent variable model (ICLV) helps to illustrate how various
 18 sociodemographics as well as motives influence car use frequency. First, we look at the direct
 19 impact of the respondents' characteristics in the utility function (see Table 3 (A)). Not surprising
 20 is the high influence of age. People over the age of 30 are more likely to use their car more often.
 21 The highest influence comes from car availability. People who have permanent access to a car in
 22 their household are more likely to use it. We cannot see this high influence if the person can only
 23 use their car in arrangement with the household. The results show no influence over the place of

1 residence. Car owners from Berlin do not use their cars more often than owners from San
2 Francisco. In San Francisco and Berlin, people with lower incomes use their cars less frequently
3 than people from higher income groups. An interesting result can be observed in monomodal
4 behavior. People who use rather few different means of transport are also less likely to use their
5 cars more often. This is surprising, as frequent car users in particular are monomodal persons. In
6 the case of spatial structures, there is only an influence from the public transit offer. People with
7 alternatives e.g. by public transit use their cars less frequently. Table 3 (B) presents the findings
8 for the structural model for the two latent variables (LV). For younger car owners a higher value
9 for affective motives and a lower for instrumental motives can be observed. The higher influence
10 of the instrumental motives of older people is in contrast to findings of Van and Fujii (10). This
11 implies if young adults have a car, then they have stronger affective motives than older ones.
12 Person from household with premium cars have higher affective motives and lower instrumental
13 motives than person without a premium car. This finding can be confirmed by the work of Sefara
14 et al. (6) who determined the impact of personal motives on preferences regarding car type. Next,
15 we look at the impact of the LVs in the utility function (see Table 3 (A)). We see a significant
16 positive influence of the affective motive. Respondents with a high value regarding the affective
17 motive have a greater utility for car use. In contrast, the second LV (instrumental motive) has no
18 influence. This result is in line with existing research about motives (5).

19 The ICLV provides the advantage of allowing us to examine the split into direct effects
20 and effects through the LVs. This is given by the vectors β , $\gamma_{emotional}\alpha_{emotional}$ and
21 $\gamma_{instrumental}\alpha_{instrumental}$ respectively. Therefore, we followed the procedure of Vij and Walker
22 (19) and constructed a reduced form model of the ICLV. The direct influences and the influences
23 through the LVs on the choice are summarized in Table 4. The effects through the LVs also show
24 no effect of the instrumental motive. By looking at the affective motive, it becomes clear that the
25 influence of gender only arises through this LV. So people with a higher affective motive are more
26 likely to use cars. In addition, the influences of car availability and the presence of a premium
27 vehicle in the household are reinforced by the affective motive. The effect of the premium vehicle
28 and the availability through arrangements in the household is even doubled. As we have already
29 seen in Table 3 (A), a low income has a negative effect on car use. However, this effect is reduced
30 if the person has an affective motive. This suggests that people dispense with other things to be
31 able to use their car, even if it is more expensive than public transit or cycling.

1 **Table 3. Main parameter estimates. (A) Parameters of the structural equation of the choice**

2 model. (B) Parameters of the structural equations of the latent variables.

Log-Likelihood		-8,778.87		
Log-Likelihood of choice component		-557.13		
Log-Likelihood of null model (choice component)		-918.43		
McFadden Pseudo- R^2		0.39		
N		836		
Thresholds of the choice component				
$\tau^{(1)}$	1.780			
$\tau^{(2)}$	3.033			
	(A)	(B)		
Parameter	Value	Parameter α from variable	on latent variable	
			affective motive	instrumental motive
$\beta_{age>30}$	0.463 ***	Age > 30 years	-0.171 **	0.232 ***
$\beta_{fulltime}$	0.153 *	Fulltime job	0.189 **	-0.004
β_{male}	0.008	Male	0.393 ***	-0.293 ***
$\beta_{bicycle}$	-0.097			
$\beta_{car-sometimes}$	0.185	Car disposal - sometimes	0.637 ***	0.310 ***
$\beta_{car-always}$	1.198 ***	Car disposal - always	1.118 ***	0.224 ***
$\beta_{premiumcar}$	0.250 **	Premium car in household	0.592 ***	-0.124 *
β_{berlin}	0.080			
$\beta_{lowincome}$	-0.362 **	Low income	0.403 ***	0.700 ***
$\beta_{hhtype3}$	0.320 ***			
$\beta_{hhtype4}$	0.202 *			
$\beta_{highdaytrips}$	0.587 **			
$\beta_{highvacation}$	-0.104			
$\beta_{commuting_car}$	1.000			
$\beta_{long-distance_car}$	0.308 ***			
$\beta_{monomodal}$	-0.207 **			
$\beta_{density}$	-0.044			
$\beta_{pt_accessibility}$	-0.107			
$\gamma_{affective}$	0.399 ***			
$\gamma_{instrumental}$	0.030			
σ	0.963 ***			

Parameters marked with ***, **, and * are significant at the 1%, 5%, and 10% level, respectively

1 **Table 4. Direct influences vs. influences through the LVs on the choice**

<i>Variable</i>	<i>Direct effect</i>	<i>Effect via LV affective motive</i>	<i>Effect via LV instrumental motive</i>	<i>Effect via LVs combined</i>	<i>Overall effect</i>	<i>Overall effect in an ordered probit</i>
Age > 30 years	0.463	-0.068	0.007	-0.061	0.402	0.347
Fulltime job	0.153	0.075	0.000	0.075	0.228	0.206
Male	0.008	0.157	-0.009	0.148	0.156	0.139
Own bicycle	-0.097				-0.097	-0.146
Car disposal - sometimes	0.185	0.254	0.009	0.264	0.449	0.355
Car disposal - always	1.198	0.446	0.007	0.453	1.651	1.414
Premium car in household	0.250	0.236	-0.004	0.233	0.483	0.434
From Berlin	0.080				0.080	0.121
Low income	-0.362	0.161	0.021	0.182	-0.180	-0.157
Household type 3	0.320				0.320	0.233
Household type 4	0.202				0.202	0.228
High daytrips	0.587				0.587	0.559
High vacation trips	-0.104				-0.104	-0.135
Commuting by car	1.000				1.000	1.000
Long-distance trips by car	0.308				0.308	0.305
Monomodal behavior	-0.207				-0.207	-0.180
High population density	-0.044				-0.044	0.022
High public transit accessibility	-0.107				-0.107	-0.159

2 Looking at the two last columns in Table 4 we notice that the overall effects of the
3 observable variables on utility in the HCM are, as expected, almost identical to the effects in a
4 separately estimated “base” ordered probit model using the same observable variables. The same
5 holds for the threshold values. Also, the overall variance in the ICLV, as discussed earlier, is almost
6 identical to the variance in the pure ordered probit model. This gives strong confidence into the
7 parameter estimates. Small deviations are to be expected due to simulation noise using the
8 maximum simulated likelihood method.

1 An important aspect of the ICLV is to gain insight into what share of heterogeneity in the
 2 model can actually be linked to the LVs. The share of variance is thus

$$3 \quad \frac{\gamma_{affective}^2 + \gamma_{instrumental}^2}{\sigma^2 + \gamma_{affective}^2 + \gamma_{instrumental}^2} = 14.72\%.$$

4 Hence, we were able to explain 14.72% of the overall heterogeneity in a pure ordered probit model
 5 by including LVs.

6 CONCLUSIONS

7 In urban areas, car use is often hindered by parking problems and congestion. In addition, good
 8 alternatives such as public transit and cycling are often existing. Nevertheless, many people own
 9 a car and use it regularly. With this study, we have not only considered hard factors such as age,
 10 gender and income, but also soft factors such as the motives for using a car to investigate their
 11 impacts on car use frequency.

12 To uncover the different effects, we used an ordered probit as well as an integrated choice
 13 and latent variable model (ICLV) with an ordered probit kernel. With the ICLV we could consider
 14 hard as well as soft factors in the model. Regarding the hard factors, the results show that people
 15 over the age of 30, who permanently have a car, are more likely to use it frequently. Above all, the
 16 fact whether a premium vehicle is in the household increases the probability of its use. An
 17 interesting fact is that there is no difference between people from Berlin and San Francisco,
 18 certainly not among car owners. With regard to spatial effects, it can be seen, that a good public
 19 transit service reduces the usage. However, a very high population density at the place of residence
 20 has no influence. The indirect effects through the latent variables (LV) demonstrate that only the
 21 affective motives have an influence and increase the probability of car use. This finding is only
 22 partially in line with previous research mentioned in the introduction section. In comparison to
 23 existing literature, the added insight of this research is the outcome that affective motives are the
 24 unique influencing factor when considering car use frequency. This also leads to people on lower
 25 incomes driving their car more frequently if they have an emotional connection to it. Results have
 26 thus demonstrated that emotional aspects play a decisive role in the frequency of car use. Besides
 27 the further insights regarding the indirect effects in the ICLV, the model offers the possibility to
 28 explain a part of the heterogeneity through the LVs. The results show that the added value of the
 29 LVs as 14.72% of the unexplained variance can be explained by the deterministic variance of the
 30 LVs. The comparison of the overall effects between the “base” ordered probit and the ICLV shows
 31 the similarity of the parameter values despite the maximum simulated likelihood method. This
 32 guarantees the necessary certainty in the interpretation of the results.

33 The results have clearly highlighted the added value of the ICLV when considering car use.
 34 Further research could be conducted under inclusion of autonomy into the models. Autonomy
 35 could describe whether people, from their point of view, have another possibility to use a car. This
 36 addresses the consumed perception of car drivers of the available alternatives.

37 ACKNOWLEDGMENTS

38 This paper presents results of a project funded by BMW AG.

AUTHOR CONTRIBUTIONS

The authors confirm contribution to the paper as follows: study conception and design: von Behren; literature review: Bönisch; data preparation: von Behren; data analysis: von Behren; interpretation of results: von Behren, Niklas, Chlond; draft manuscript preparation: von Behren. All authors reviewed the results and approved the final version of the manuscript.

REFERENCES

1. Steg, L., C. Vlek, and G. Slotegraaf. Instrumental- Reasoned and Symbolic-Affective Motives for Using a Motor Car. *Transportation Research Part F4*, 2001.
2. Mackett, R. L. Why Do People Use Their Cars for Short Trips?, 2003.
3. Steg, L. Car Use: Lust and Must. Instrumental, Symbolic and Affective Motives for Car Use. *Transportation Research Part A: Policy and Practice*, Vol. 39, 2-3, 2005, pp. 147–162.
4. Hunecke. Mobilitätsverhalten Verstehen Und Verändern. Psychologische Beiträge Zur Interdisziplinären Mobilitätsforschung, 2015.
5. Lois, D., and M. López-Sáez. The Relationship Between Instrumental, Symbolic and Affective Factors as Predictors of Car Use: A Structural Equation Modeling Approach. *Transportation Research Part A: Policy and Practice*, Vol. 43, 9-10, 2009, pp. 790–799.
6. Sefara, D., M. Franek, and V. ZUBR. Socio-Psychological Factors That Influence Car Prefernce in Undergraduate Students: The Case of the Czech Republic. *Technological and Economic Development of Economy*, Vol. 21, No. 4, 2015, pp. 643–659.
7. Sohn, K., and J. Yun. Separation of Car-Dependent Commuters from Normal-Choice Riders in Mode-Choice Analysis. *Transportation*, Vol. 36, No. 4, 2009, pp. 423–436.
8. Ellaway, A., S. Macintyre, R. Hiscock, and A. Kearns. In the Driving Seat: Psychosocial Benefits from Private Motor Vehicle Transport Compared to Public Transport. *Transportation Research Part F: Traffic Psychology and Behaviour*, Vol. 6, No. 3, 2003, pp. 217–231.
9. Bergstad, C. J., A. Gamble, O. Hagman, M. Polk, T. Gärling, and L. E. Olsson. Affective–symbolic and Instrumental–independence Psychological Motives Mediating Effects of Socio-Demographic Variables on Daily Car Use. *Journal of Transport Geography*, Vol. 19, No. 1, 2011, pp. 33–38.
10. Van, H. T., and S. Fujii. A Cross Asian Country Analysis in Attitudes Toward Car and Public Transport. *J. East. Asia Soc. Transp. Stud.*, Vol. 9, 2011, pp. 411–421.
11. Belgiawan, P. F., J.-D. Schmöcker, M. Abou-Zeid, J. Walker, T.-C. Lee, D. F. Ettema, and S. Fujii. Car Ownership Motivations Among Undergraduate Students in China, Indonesia, Japan, Lebanon, Netherlands, Taiwan, and USA. *Transportation*, Vol. 41, No. 6, 2014, pp. 1227–1244.
12. Nurul Habib, K., A. Tudela, J. Carrasco, and A. Idris. *Incorporating the Explicit Role of Psychological Factors on Mode Choice: A Hybrid Mode Choice Model by Using Data from an Innovative Psychometric Survey*.
13. von Behren, S., C. Minster, M. Magdolen, B. Chlond, M. Hunecke, and P. Vortisch. Bringing Travel Behavior and Attitudes Together: An Integrated Survey Approach for Clustering Urban Mobility Types. In *TRB 97th Annual Meeting Compendium of Papers*, Washington, D.C., 2018.

- 1 14. von Behren, S., C. Minster, J. Esch, M. Hunecke, P. Vortisch, and B. Chlond. Assessing Car
- 2 Dependence: Development of a Comprehensive Survey Approach Based on the Concept of a
- 3 Travel Skeleton. *Transportation Research Procedia*, Vol. 32, 2018, pp. 607–616.
- 4 15. Hunecke, M., S. Haustein, S. Böhler, and S. Grischkat. Attitude-Based Target Groups to
- 5 Reduce the Ecological Impact of Daily Mobility Behavior. *Environment and Behavior*,
- 6 Vol. 42, No. 1, 2010, pp. 3–43.
- 7 16. Institute for Mobility Research (ifmo). *Megacity Mobility Culture*. How Cities Move on in a
- 8 Diverse World. Springer, Berlin, Heidelberg, 2013.
- 9 17. Ben-Akiva, M., D. Mcfadden, T. Gärling, D. Gopinath, J. Walker, D. Bolduc, A. Börsch-
- 10 Supan, P. Delquié, O. Larichev, T. Morikawa, A. Polydoropoulou, and V. Rao. Extended
- 11 Framework for Modeling Choice Behavior. *Marketing Letters*, Vol. 10, No. 3, 1999,
- 12 pp. 187–203.
- 13 18. Bhat, C. R. Quasi-Random Maximum Simulated Likelihood Estimation of the Mixed
- 14 Multinomial Logit Model. *Transportation Research Part B: Methodological*, Vol. 35, No. 7,
- 15 2001, pp. 677–693.
- 16 19. Vij, A., and J. L. Walker. How, When and Why Integrated Choice and Latent Variable
- 17 Models Are Latently Useful. *Transportation Research Part B: Methodological*, Vol. 90,
- 18 2016, pp. 192–217.
- 19 20. CMC. *CMC Choice Modelling Code for R*. Choice Modelling Centre, University of Leeds,
- 20 2017.