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Abstract We present compact analytic formulas that des-
cribe the decay of colorless particles to both qq̄ and gg final
states through next-to-next-to-leading order in perturbative
QCD in the context of the nested soft-collinear subtraction
scheme. In addition to their relevance for the description of
decays like V → qq̄ ′, V = Z ,W , H → bb̄ and H → gg,
these results provide an important building block for calcu-
lating NNLO QCD corrections to arbitrary processes at col-
liders within the nested soft-collinear subtraction scheme.
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1 Introduction

The development of an efficient and physically transpar-
ent subtraction scheme for next-to-next-to-leading order
(NNLO) computations in QCD is an important problem in
theoretical particle physics that attracted a lot of attention
recently [1–24,26–30]. However, among the many subtrac-
tion schemes that have been proposed, there is not a single
one that is generic, fully local and fully analytic (in a sense
that all the integrated subtraction terms are available in an
analytic form). Given the impressive practical successes of
many subtraction schemes in describing physical processes,
it is unclear whether or not locality and analyticity are truly
essential. However, we believe that it is useful to develop a
scheme that is general, physically transparent and efficient,
especially in view of the need to extend the functionality of
existing subtraction schemes beyond 2 → 2 processes for
forthcoming LHC applications.

In Ref. [30], we introduced the nested soft-collinear sub-
traction scheme. It is based on the idea of sector decomposi-
tion [10,11] but it relies heavily on the phenomenon of color
coherence in constructing soft and collinear approximations
to matrix elements. This subtraction scheme is local by con-
struction; however, initially, some subtraction terms were not
known analytically. Recently, this problem was solved for
both the double-soft [31] and triple-collinear [32] subtrac-
tion terms so that analytic results for all double-unresolved
subtraction terms are now available. Building on that, in
Ref. [33] we presented analytic results for the production of
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a color-singlet final state in hadron collisions obtained within
the nested soft-collinear subtraction scheme. In addition to
their phenomenological relevance, we view these results as
building blocks that should, eventually, allow us to describe
arbitrary hard processes at hadron colliders through NNLO
QCD. Typically, these building blocks are obtained by par-
titioning the phase space for a particular process in such a
way that only emissions off two hard particles at a time lead
to infra-red and collinear singularities when integration over
the phase space is attempted. These hard emittors can be both
in the initial or in the final state or one of them can be in the
initial and the other one in the final state. When looking at the
problem of constructing a subtraction scheme from this per-
spective, the results presented in Ref. [33] should facilitate
the description of the two initial-state emittors.

The goal of this paper is to take one further step towards the
application of the nested soft-collinear subtraction scheme to
the description of generic LHC processes by considering a
situation when the hard emittors are in the final state. An
important physical example of this situation is decays of col-
orless particles into a qq̄ or gg final state. The NNLO QCD
results for the qq̄ final state have already been used by us in
Ref. [34] to describe the decay of the Higgs boson into a mass-
less bb̄ pair; however, we did not provide analytic formulas
for this final state in that reference. The goal of this paper is to
provide such formulas and to supplement them with the ana-
lytic results for decays of a color singlet into a gg final state.

Although, conceptually, the computation of NNLO QCD
corrections to the production and decay of a color singlet are
very similar, there are a few differences between the two that
are worth pointing out.

• In the case of the double-real corrections to the gg final
state we need to carefully separate unresolved gluons
from the resolved ones. This issue does not appear in
case of production where incoming particles are always
the hardest ones and their momenta are fixed.

• The computation of the integrated collinear counter-
terms requires modifications since, in the initial-state
case, the integrated collinear subtraction terms are func-
tions of fractions of the initial energy that a hard parton
carries into the hard process, while in case of the final-
state emissions one has to integrate over fractions of ener-
gies that are shared by partons in the collinear splitting.

• Construction of the double-collinear phase space, i.e. the
phase space appropriate for the description of a kinematic
situation where singularities occur when each unresolved
parton is emitted by a different emittor, is straightforward
in the production and non-trivial in the decay cases.

• Obviously, no renormalization of parton distribution
functions is needed to describe decay processes; for this
reason, cancellation of infra-red and collinear singulari-
ties works differently in the production and decay cases.

The rest of the paper is organized as follows. In Sect. 2 we
set the stage for the calculations described in the following
sections and introduce our notation. We then discuss in detail
the calculation of QCD corrections to H → gg decay to
explain our approach. In particular, in Sect. 3, we present the
computation of the NLO QCD corrections to the decay rate
H → gg. In Sect. 4 we discuss how to set up the calculation
of NNLO QCD corrections to H → gg decay and then
consider the H → 4g channel in detail. We present our final
results for the NNLO QCD corrections to the decay of a
color singlet to two gluons in Sect. 4 and to a qq̄ final state in
Sect. 5. We discuss the validation of our results in Sect. 6, and
conclude in Sect. 7. Many useful formulas and intermediate
results are collected in several appendices.

2 General considerations

We begin by describing common features of QCD correc-
tions to color singlet decays and by introducing notations
that we will use throughout the paper. We consider decays
of a color-singlet particle Q to quarks and gluons. Our goal
is to provide formulas that describe NNLO QCD corrections
to these decays at a fully-differential level. Specifically, we
study the decay process Q → fi f j + X , where { fi , f j } can
be either {g, g} or {q, q̄}. We first discuss the decays into the
gg final state since, compared to Q → qq̄ , the singularity
structure of the decay Q → gg is more complex. There-
fore, once the calculation of the NNLO QCD corrections to
Q → gg is understood, NNLO QCD corrections to Q → qq̄
are easily established.

We write the perturbative expansion of the differential
decay rate as

d� = d�LO + d�NLO + d�NNLO + · · · (2.1)

The different contributions in Eq. (2.1) are obtained by inte-
grating various matrix elements squared over the phase space
of final state particles. To describe this integration in a com-
pact way, we introduce the notation analogous to our earlier
papers [30,33] and define

〈
FLM(1 f1 , 2 f2 , . . . , n fn )O(1, . . . , n)

〉

≡ N
2mH

∫ n∏

i=1

[d fi ](2π)dδ(d)(pQ − p1 − p2 − · · · − pn)

×|Mtree|2(1 f1 , 2 f2 , . . . , n fn )O({p1, . . . , pn}), (2.2)

where N is a symmetry factor for identical final-state parti-
cles, d = 4 − 2ε is the space-time dimensionality,

[d fi ] = dd−1 pi
(2π)d−12Ei

θ(Emax − Ei ) (2.3)
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is the phase-space element for a parton fi ,Mtree(1 f1 , . . . , n fn )

is the matrix element for the process

Q → f1(p1) + f2(p2) + · · · + fn(pn), (2.4)

and O is a function that depends on partons’ energies and
angles. Furthermore, Emax is an auxiliary parameter with the
dimension of energy that should be large enough to accom-
modate all events that are allowed by the energy-momentum
conservation constraints. Its relevance will become clear in
what follows. In the rest of this paper, we will use Emax =
mH/2. We note that the explicit constraint on the energy in
Eq. (2.3) breaks Lorentz invariance at intermediate stages of
the calculation; for this reason all energies in this paper are
defined in the rest frame of the decaying particle Q.

To describe contributions of loop-corrected processes, we
introduce similar quantities1

〈
FLV(1 f1 , 2 f2 , . . . , n fn )O(1, . . . , n)

〉

≡ N
2mH

∫ n∏

i=1

[d fi ](2π)dδ(d)(pQ − p1 − p2 − · · · − pn)

× 2�[MtreeM1−loop,∗](1 f1 , 2 f2 , . . . , n fn )O({p1, . . . , pn}),
(2.5)

and
〈
FLVV(1 f1 , 2 f2 , . . . , n fnO(1, . . . , n))

〉

≡ N
2mH

∫ n∏

i=1

[d fi ](2π)dδ(d)(pQ − p1 − p2 · · · − pn)

×
[

2�[MtreeM2−loop,∗]+ ∣∣M1−loop
∣∣2
]

×(1 f1 , 2 f2 , . . . , n fn )O({p1, . . . , pn}). (2.6)

Finally, we define

〈FX (1, 2, . . . , n)O(1, . . . , n)〉
=

∑

f1, f2,..., fn

〈
FX (1 f1 , 2 f2 , . . . , n fn )O(1, . . . , n)

〉
, (2.7)

where X = LM, LV, LVV and the sum runs over all allowed
final states. Using these notations, the three contributions to
the differential width Eq. (2.1) are written as

d�LO = 〈FLM(1, 2)〉δ ,

d�NLO = 〈FLM(1, 2, 3)〉δ + 〈FLV(1, 2)〉δ ,

d�NNLO = 〈FLM(1, 2, 3, 4)〉δ
+〈FLV(1, 2, 3)〉δ + 〈FLVV(1, 2)〉δ . (2.8)

The symbol 〈· · · 〉δ indicates that the integration over the
momenta of partons that are explicitly shown as arguments
of a function FX is not performed, so that the right hand side

1 We note that in this paper we always work with UV-renormalized
amplitudes.

of Eq. (2.8) provides a fully-differential description of the
decay rate.

Starting from next-to-leading order, the individual terms
appearing on the right hand sides of Eq. (2.8) are infra-red
divergent and cannot be integrated in four dimensions when
taken separately. The goal of a subtraction scheme is to rear-
range them in the following way

d�NLO = d�NLO
Q→2 + d�NLO

Q→3,

d�NNLO = d�NNLO
Q→2 + d�NNLO

Q→3 + d�NNLO
Q→4 , (2.9)

where d�
(N)NLO
Q→i are finite in four dimensions and con-

tain contributions from final states with at most i partons.
In Refs. [30,33] we explained how this can be done for
hadroproduction of color-singlet states. We now use a very
similar procedure to discuss color singlet decays.

Since the required computations are often quite similar,
we do not describe the calculational details if the results for
the decay follow easily from the ones for the production. To
this end, we note that a detailed introduction to our subtrac-
tion scheme can be found in Refs. [30,33] and we extensively
refer to these papers in what follows. In this paper, we high-
light differences between the computations required for the
production and decay cases and present formulas for color
singlet decay to either gg or qq̄ final states. We begin with
the discussion of the NLO QCD corrections to H → gg.

3 Higgs decay to gluons: a NLO computation

We consider the NLO QCD contribution to the differential
decay rate of the Higgs boson to two gluons, H → gg.2 We
use the notations introduced in the previous section to write

d�NLO = 〈
FLM(1g, 2g, 3g)

〉
δ

+n f
〈
FLM(1q , 2g, 3q̄)

〉
δ
+ 〈

FLV(1g, 2g)
〉
δ
, (3.1)

where n f is the number of massless quarks. We consider
the three terms in Eq. (3.1) separately, starting with the real-
emission contribution FLM(1g, 2g, 3g). The first step is to
identify all possible singularities that may appear in the com-
putation of that contribution and to partition the phase space
in such a way that for each partition only a small subset of
singularities is present.

An important consequence of any partitioning is the fact
that certain partons are identified as “hard”. This means that,
for a given partition, we should know exactly which partons
cannot produce infra-red singularities. Although there are
many ways to construct partitions, we find it convenient to use
scalar products of the gluons’ four-momenta si j = 2pi · p j

and the energy-momentum conservation

2 In this section and in Sect. 4, we assume that the Higgs directly couples
to gluons through an effective vertex.
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p2
H = (p1 + p2 + p3)

2 ⇒ m2
H = s12 + s13 + s23, (3.2)

inside
〈
FLM(1g, 2g, 3g)

〉
δ
. We then write

〈
FLM(1g, 2g, 3g)

〉
δ

= 〈
s̃12FLM(1g, 2g, 3g)

〉
δ
+ 〈

s̃13FLM(1g, 2g, 3g)
〉
δ

+ 〈
s̃23FLM(1g, 2g, 3g)

〉
δ
, (3.3)

where we have introduced the notation s̃i j ≡ si j/m2
H . We

can use the symmetry of the matrix element and the phase
space to rewrite this equation as

〈
FLM(1g, 2g, 3g)

〉
δ

= 3
〈
s̃12FLM(1g, 2g, 3g)

〉
δ
. (3.4)

Thanks to the prefactor s̃12, gluons g1 and g2 on the right-
hand side of Eq. (3.4) must be hard or “resolved” and the only
potentially unresolved parton is the gluon g3. This means that
the right-hand side of Eq. (3.4) is singular when g3 is soft
and when g3 is collinear to either g1 or g2; it is, however, not
singular when either g1 or g2 is soft or when g1 and g2 are
collinear to each other.

We can follow the approach described in the context of
color singlet production [30,33] to extract singularities from
the right hand side of Eq. (3.4). We begin by considering the
soft contribution that arises when energy of the gluon g3, E3,
becomes small. We find

lim
E3→0

|Mtree|2(1g, 2g, 3g)

≈ 2CAg
2
s,b

p1 · p2

(p1 · p3)(p2 · p3)
|Mtree|2(1g, 2g), (3.5)

where CA = Nc = 3 is the SU (3) color factor and gs,b is
the bare strong coupling.

The factorization formula Eq. (3.5) allows us to extract
contributions of soft singularities from the decay rate. To
do so, we introduce the soft operator S3 that extracts the
most singular contributions in the soft limit from the matrix
element squared and the relevant phase space:

〈
S3s̃12FLM(1g, 2g, 3g)

〉
δ

= 1

2mH

1

3!
∫

[d f1][d f2](2π)dδ(d)

× (pQ − p1 − p2)|Mtree|2(1g, 2g)

× (2CAg
2
s,b)

∫
dd−1 p3

(2π)d−12E3
θ(Emax − E3)

× p1 · p2

(p1 · p3)(p2 · p3)
, (3.6)

Note that the function θ(Emax − E3) prevents the integral
over E3 from becoming unbounded from above. We rewrite
Eq. (3.6) as

〈
S3s̃12FLM(1g, 2g, 3g)

〉
δ

= 1

3

〈〈S3〉 FLM(1g, 2g)
〉
δ
, (3.7)

where we defined3

〈S3〉 ≡ (2CAg
2
s,b)

∫
dd−1 p3

(2π)d−12E3
θ(Emax − E3)

× p1 · p2

(p1 · p3)(p2 · p3)

= 2CA[αs]
ε2

(
m2

H

μ2

)−ε

(η12)
−ε

×
[
1 + ε2[Li2(1 − η12) − ζ2

]+ O(ε3)
]
, (3.8)

together with

[αs] = αs(μ)

2π

eεγE

�(1 − ε)
, (3.9)

and

ηi j = 1 − cos θi j

2
. (3.10)

We note that in the H → gg decay discussed here η12 = 1;
however, we do not use this fact right away and write Eq. (3.8)
in a more general way. The calculation that we just described
allows us to remove the soft singularity. We obtain

3
〈
s̃12FLM(1g, 2g, 3g)

〉
δ

= 〈〈S3〉 FLM(1g, 2g)
〉
δ

+ 3
〈
(I − S3)s̃12FLM(1g, 2g, 3g)

〉
δ
.

(3.11)

We note that, since the reduced matrix element does not
require further regularization, all singularities in the first
term on the r.h.s. of Eq. (3.11) are explicit. The second
term there is free of soft singularities, but it still contains
collinear ones; these occur when η31 = (1 − cos θ31)/2 or
η32 = (1 − cos θ32)/2 vanish. To isolate these singularities,
we partition the phase space in such a way that only one
of them can occur at a time. To this end, we introduce the
partition of unity

1 = ω31 + ω32, (3.12)

such that
〈
ω31(I − S3)s̃12FLM(1g, 2g, 3g)

〉
only has collinear

singularities ifη31 → 0 and
〈
ω32(I − S3)s̃12FLM(1g, 2g, 3g)

〉

only has collinear singularities if η32 → 0. For example, one
can choose4

ω31 = η32

η31 + η32
, ω32 = η31

η31 + η32
. (3.13)

3 We remind the reader that throughout this paper we will use Emax =
mH /2.
4 Note that this choice is always well-defined because the configuration
p1||p2||p3 is kinematically not allowed.
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Introducing this angular partitioning, we write
〈
(I − S3)s̃12FLM(1g, 2g, 3g)

〉
δ

=
2∑

i=1

〈
ω3i (I − S3)s̃12FLM(1g, 2g, 3g)

〉

δ
, (3.14)

and consider the two terms in the sum separately. We start
with the i = 1 term. Similarly to the soft case, we introduce
a C31 operator which extracts the corresponding collinear
singularity, and apply it to

〈
ω31(I − S3)s̃12FLM(1g, 2g, 3g)

〉
.

We defineC31 in such a way that it extracts the leading η31 →
0 singularity from 〈FLM(. . .)〉δ without acting on the phase-
space elements [d f1,.,3], see Ref. [33] for more details. We
find
〈
C31ω31s̃12FLM(1g, 2g, 3g)

〉

δ

≡ 1

2mH

1

3!
∫

[d f1][d f2][d f3](2π)dδ(d)(pQ − p2 − p13)

×
(

E1

E1 + E3

) g2
s,b

p1 · p3
Pgg

(
E1

E13

)
⊗ |Mtree|2(13g, 2g).

(3.15)

In Eq. (3.15), we defined

p13 ≡ E13

E1
p1, E13 = E1 + E3, (3.16)

and denoted an on-shell gluon with momentum p13 as 13g .
The function Pgg in Eq. (3.15) stands for the g∗ → gg
splitting function and we used the ⊗-sign to indicate its
spin-correlated product with the matrix element squared,
see Refs. [30,33] for details. In these references, we explic-
itly showed that at NLO spin correlations disappear after
azimuthal averaging. As the result, Eq. (3.15) becomes

〈
C31ω

31s̃12FLM(1g, 2g, 3g)
〉

δ

= 1

2mH

1

3!
∫

[d f1][d f2]dE3(2π)dδ(d)

× (pQ − p2 − p13)|Mtree|2(13g, 2g)

×
[

−[αs]
ε

�2(1 − ε)

�(1 − 2ε)

(
4E2

3/μ2
)−ε

E13

× 〈
Pgg

〉 ( E1

E13

)
θ(Emax − E3)

]

, (3.17)

where
〈
Pgg

〉
is the spin-averaged g∗ → gg splitting function

〈
Pgg

〉
(z) = 2CA

[
1 − z

z
+ z

1 − z
+ z(1 − z)

]
. (3.18)

The term on the second line of Eq. (3.17) is very similar to〈
FLM(1g, 2g)

〉
δ
. To make this similarity explicit, we change

integration variables from E1 and E3 to E13 and z = E1/E13.
We obtain

E1 = zE13, E3 = (1 − z)E13 ⇒ [d f1]E−2ε
3 dE3

E13

= [d f13]z
[
z(1 − z)

]−2ε
E−2ε

13 dz. (3.19)

We also rename f13 back to f1 and obtain

〈
C31ω

31s̃12FLM(1g, 2g, 3g)
〉

δ

= 1

3

〈

FLM(1g, 2g) ×
[

−[αs]
ε

�2(1 − ε)

�(1 − 2ε)

(
4E2

1

μ2

)−ε

×
1∫

zmin

z
[
z(1 − z)

]−2ε 〈
Pgg

〉
(z)dz

⎤

⎦
〉

δ

, (3.20)

where E1 = mH/2 and we used the fact that the integration
over z starts at z = zmin = min{0, 1−Emax/E1}. Since Emax

must be chosen in such a way that the whole phase space is
covered, Emax should be larger than E1, Emax > E1, for all
E1. This implies zmin = 0.

Repeating these steps for the soft-collinear term S3C31,
we find
〈
S3C31ω

31s̃12FLM(1g, 2g, 3g)
〉

δ

= 1

3

〈
FLM(1g, 2g)

〉
δ

×
⎡

⎣−[αs]
ε

�2(1 − ε)

�(1 − 2ε)

(
m2

H

μ2

)−ε 1∫

0

2CA

(1 − z)1+2ε
dz

⎤

⎦ .

(3.21)

We use these results to write

〈
w31(I − S3)s̃12FLM(1g, 2g, 3g)

〉

δ

= 1

3
〈C31(I − S3)〉 × 〈

FLM(1g, 2g)
〉
δ

+
〈
(I − C31)w

31(I − S3)s̃12FLM(1g, 2g, 3g)
〉

δ
,

(3.22)

where 〈C31(I − S3)〉 follows from Eqs. (3.20, 3.21). We find

〈C31(I − S3)〉 = [αs]
ε

�2(1 − ε)

�(1 − 2ε)

(
m2

H

μ2

)−ε

γ 22
z,g→gg

(3.23)

where γ 22
z,g→gg is a particular case of a general anomalous

dimension defined as follows
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γ nk
f (z),g→gg

= −
1∫

0

dz

[
z−nε(1 − z)−kε 〈 f (z)Pgg(z)

〉

− 2CA f (1)(1 − z)−1−kε
]
. (3.24)

We note that in the first term on the right hand side in
Eq. (3.22) all singularities are manifest and the reduced
matrix element does not require regularization, whereas the
second term is free of both soft and collinear singularities so
that it can be immediately integrated in four dimensions.

We deal with the ω32 term in the partition of unity
Eq. (3.12) in a similar way. We obtain
〈
w32(I − S3)s̃12FLM(1g, 2g, 3g)

〉

δ

= 1

3
〈C32(I − S3)〉 × 〈

FLM(1g, 2g)
〉
δ

+
〈
(I − C32)w

32(I − S3)s̃12FLM(1g, 2g, 3g)
〉

δ
,

(3.25)

with

〈C32(I − S3)〉

= [αs]
ε

�2(1 − ε)

�(1 − 2ε)

(
m2

H

μ2

)−ε

γ 22
z,g→gg

= 〈C31(I − S3)〉 . (3.26)

We combine Eqs. (3.11, 3.23, 3.25) and obtain the follow-
ing result for the three-gluon contribution to Higgs boson
decay

〈
FLM(1g, 2g, 3g)

〉
δ

=
[

〈S3〉 + 2 〈C31(I − S3)〉
]

× 〈
FLM(1g, 2g)

〉
δ

+ 3
∑

i=1,2

〈
(I − C3i )ω

3i (I − S3)s̃12FLM(1g, 2g, 3g)
〉

δ
.

(3.27)

We note that, thanks to Bose symmetry, the two terms in the
sum in the last line in Eq. (3.27) are the same. Hence, we
write
〈
FLM(1g, 2g, 3g)

〉
δ

=
[

〈S3〉 + 2 〈C31(1 − S3)〉
]

× 〈
FLM(1g, 2g)

〉
δ

+6
〈
(I − C31)ω

31(I − S3)s̃12FLM(1g, 2g, 3g)
〉

δ
.

(3.28)

This discussion implies that Bose symmetry can be efficiently
used to partition the phase space in such a way that identical

kinematic configurations of the three-gluon final states are
accounted for only once in the calculation; this removes the
original 1/3! symmetry factor.

Before combining this result with virtual corrections,
we consider the other real-emission term in Eq. (3.1),
n f

〈
FLM(1q , 2g, 3q̄)

〉
, that describes the decay H → (g∗ →

qq̄)g. Because (in this section) the qq̄ pair does not directly
couple to the Higgs boson, the singularity in this case is pro-
duced by the collinear splitting g∗ → qq̄ . For this reason,
we do not need any partitioning. We repeat steps that led to
Eq. (3.22) and obtain5

n f
〈
FLM(1q , 2g, 3q̄ )

〉
δ

= n f
〈
(I − C31)FLM(1q , 2g, 3q̄ )

〉
δ

+ 2n f
[αs ]
ε

�2(1 − ε)

�(1 − 2ε)

(
m2

H

μ2

)−ε

γ 22
1,g→qq̄

〈
FLM(1g, 2g)

〉
δ
,

(3.29)

where

γ 22
1,g→qq̄ = −

1∫

0

dz
[
z(1 − z)

]−2ε 〈
Pgq

〉
(z),

〈
Pgq

〉
(z) = TR

[
1 − 2z(1 − z)

1 − ε

]
. (3.30)

We can now combine the H → ggg and H → qgq̄
decay channels and write the total real-emission contribution
to d�NLO, up to higher orders in ε, as

〈FLM(1, 2, 3)〉δ
= 〈

FLM(1g, 2g, 3g)
〉
δ

+n f
〈
FLM(1q , 2g, 3q̄)

〉
δ

= [αs]
(
m2

H

μ2

)−ε

×
(

2CA

ε2

[
1 + ε2[Li2(1 − η12) − ζ2

]]

+2γg(ε)

ε
+ O(ε)

)
〈FLM(1g, 2g)〉δ

+6
〈
(I − C31)ω

31(I − S3)s̃12FLM(1g, 2g, 3g)
〉

δ

+n f
〈
(I − C31)FLM(1q , 2g, 3q̄)

〉
δ
, (3.31)

where we have defined

γg(ε) = γ 22
z,g→gg + n f γ

22
1,g→qq̄(ε) = γg + εγ ′

g + O(ε2).

(3.32)

The two quantities γg and γ ′
g are given in Eq. (A.7).

5 The extra factor of 2 comes from a mismatch between the symmetry
factors of

〈
FLM(1q , 2g, 3q̄ )

〉
and

〈
FLM(1g, 2g)

〉
.
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It remains to combine Eq. (3.31) with virtual corrections.
We follow Ref. [35] to separate the divergent and finite parts
of the one-loop amplitude and define

〈
FLV(1g, 2g)

〉
δ

=
〈
Ffin

LV(1g, 2g)
〉

δ

−2[αs] cos(επ)CA

(
1

ε2 + γg

CAε

)

×
〈(

4E1E2η12

μ2

)−ε

FLM(1g, 2g)

〉

δ

,

(3.33)

where
〈
Ffin

LV(1g, 2g)
〉
δ

is a finite remainder of the one-loop
H → gg amplitude, see Appendix A in Ref. [33] for details.
We combine Eq. (3.31) and Eq. (3.33), use η12 = 1 and
obtain a very simple result for the NLO QCD corrections to
H → gg decay. It reads

d�NLO
Q→2

= αs(μ)

2π

(
2γ ′

g + 2π2

3
CA

) 〈
FLM(1g, 2g)

〉
δ
+
〈
Ffin

LV(1g, 2g)
〉

δ
,

d�NLO
Q→3

= 〈(I − C31)(6ω31(I − S3)s̃12FLM(1g, 2g, 3g)

+n f FLM,(1q , 2g, 3q̄ ))〉δ, (3.34)

where the two contributions are defined in Eq. (2.9).
We conclude this section by reminding the reader that the

NLO construction we just described is identical to the FKS
subtraction scheme [36,37]. In the next sections, we will
show how to generalize the FKS scheme to NNLO.

4 Higgs decay to gluons: a NNLO computation

In this section we generalize the discussion of the NLO QCD
corrections to the decay of a color singlet to the NNLO case.
We will follow Refs. [30,33] and perform subtractions of
soft and collinear divergences in an iterated manner, starting
from the soft ones. Many technical details are similar to the
production case described at length in the above references
and we do not discuss them here. Instead, we focus on the
peculiarities of the decay.

4.1 Double-real contribution

There are four different partonic final states that we have to
consider. They are a) 4 gluons, b) 2 gluons, 2 quarks, c) two
quark pairs of different flavors and d) two quark pairs of the
same flavor. We write

〈FLM(1, 2, 3, 4)〉δ
= 〈

FLM(1g, 2g, 3g, 4g)
〉
δ
+ n f

〈
FLM(1g, 2g, 3q , 4q̄)

〉
δ

+n f (n f − 1)

2

〈
FLM(1q , 2q ′ , 3q̄ , 4q̄ ′)

〉
δ

+n f
〈
FLM(1q , 2q , 3q̄ , 4q̄)

〉
δ
. (4.1)

In full analogy to the NLO case, we partition the phase space
in such a way that only a subset of partons are allowed to
become unresolved. In case of the NNLO contributions, two
partons can become unresolved simultaneously; we will sys-
tematically rename partons so that, eventually, the unresolved
partons are always referred to as f3 and f4.

We first consider the four-gluon channel,

H → g(p1)g(p2)g(p3)g(p4), (4.2)

and introduce a partition of unity following what has already
been done at NLO

1 = s̃12 + s̃13 + s̃14 + s̃23 + s̃24 + s̃34. (4.3)

We insert this partition inside the integrand for〈
FLM(1g, 2g, 3g, 4g)

〉
δ
, use the symmetry of the phase space

and the matrix element and arrive at6

2mH
〈
FLM(1g, 2g, 3g, 4g)

〉

= 1

4!
∫ 4∏

i=1

[d fi ] (2π)dδ(d)

×
(

pQ −
4∑

i=1

pi

)
4∑

i �= j=1

s̃i j |M(1g, 2g, 3g, 4g)|2

= 1

4

∫ 4∏

i=1

[d fi ] (2π)dδ(d)

×
(

pQ −
4∑

i=1

pi

)

s̃12 |M(1g, 2g, 3g, 4g)|2. (4.4)

The prefactor s̃12 ensures that no singularity arises in the
product s̃12 |M(1g, 2g, 3g, 4g)|2 when gluons 1 and 2
become either soft or collinear to each other. To proceed
further, we introduce an energy ordering for potentially-
unresolved gluons g3 and g4, use g3 ↔ g4 symmetry and
write

2mH
〈
FLM(1g, 2g, 3g, 4g)

〉

= 1

2

∫ 4∏

i=1

[d fi ] (2π)dδ(d)

×
(

pQ −
4∑

i=1

pi

)

s̃12θ(E3 − E4)

×|M(1g, 2g, 3g, 4g)|2
= 12×(2mH )〈〈s̃12FLM(1g, 2g, 3g, 4g)θ(E3−E4)

〉
. (4.5)

6 In this subsection, the “tree” superscript on M is always assumed.
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We now consider the 2q2g final state. In principle, it con-
tains fewer singularities than the four-gluon final state. There-
fore, one may use a simpler partition of unity to single out
the potentially unresolved partons. However, to streamline
the bookkeeping, we find it convenient to use identical par-
titioning for all final states. Our starting point is then

2mH
〈
FLM(1g, 2g, 3q , 4q̄)

〉

= 1

2!
∫ 4∏

i=1

[d fi ] (2π)dδ(d)

×
(

pQ −
4∑

i=1

pi

)
4∑

i �= j=1

s̃i j |M(1g, 2g, 3q , 4q̄)|2,

(4.6)

where the partition of unity Eq. (4.3) has already been
employed. We note that the amplitude is symmetric with
respect to permutations of the two gluons, so that

|M(ig, jg, kq , lq̄)|2 = |M( jg, ig, kq , lq̄)|2. (4.7)

Furthermore, since in this amplitude the quark-antiquark
pair arises from gluon splitting, the amplitude squared
summed over quark and anti-quark polarizations satisfies
|M(ig, jg, kq , lq̄)|2 = |M(ig, jg, lq , kq̄)|2. We can use
these symmetries of the amplitude squared as well as the
symmetry of the phase space to re-write Eq. (4.6) in the fol-
lowing way

2mH
〈
FLM(1g, 2g, 3q , 4q̄)

〉

= 1

2!
∫ 4∏

i=1

[d fi ] (2π)dδ(d)

×
(

pQ −
4∑

i=1

pi

)

×s̃12

(
|M(1g, 2g, 3q , 4q̄)|2 + |M(1g, 3g, 2q , 4q̄)|2

+|M(1g, 4g, 2q , 3q̄)|2 + |M(2g, 3g, 1q , 4q̄)|2

+|M(2g, 4g, 1q , 3q̄)|2 + |M(3g, 4g, 1q , 2q̄)|2
)

.

(4.8)

To proceed further, we introduce the energy ordering for the
two potentially unresolved partons f3,4 and use symmetries
of the amplitude to remove the factor 1/2 in the above equa-
tion. In cases when f3 and f4 are partons of a different type,
this requires us to combine the different contributions in a
particular way. As an example, consider the second and the
third term in Eq. (4.8). Relabelling parton momenta where
appropriate, we write

|M(1g, 3g, 2q , 4q̄)|2 + |M(1g, 4g, 2q , 3q̄)|2
= [|M(1g, 3g, 2q , 4q̄)|2 + |M(1g, 4g, 2q , 3q̄)|2

+|M(1g, 4g, 2q , 3q̄)|2

+|M(1g, 3g, 2q , 4q̄)|2
]
θ(E3 − E4)

= 2
[
|M(1g, 3g, 2q , 4q̄)|2

+|M(1g, 4g, 2q , 3q̄)|2
]
θ(E3 − E4). (4.9)

Using these transformations, we obtain

2mH
〈
FLM(1g, 2g, 3q , 4q̄)

〉

=
∫ 4∏

i=1

[d fi ] (2π)dδ(d)

(

pQ −
4∑

i=1

pi

)

θ(E3 − E4)

×s̃12
(|M(1g, 2g, 3q , 4q̄)|2 + |M(1g, 3g, 2q , 4q̄)|2

+|M(1g, 4g, 2q , 3q̄)|2 + |M(2g, 3g, 1q , 4q̄)|2
+|M(2g, 4g, 1q , 3q̄)|2 + |M(3g, 4g, 1q , 2q̄)|2

)
,

(4.10)

which we can write as

〈
FLM(1g, 2g, 3q , 4q̄ )

〉

= 2

〈[
FLM(1g, 2g, 3q , 4q̄ ) + FLM(1g, 3g, 2q , 4q̄ )

+ FLM(1g, 4g, 2q , 3q̄ ) + FLM(2g, 3g, 1q , 4q̄ )

+ FLM(2g, 4g, 1q , 3q̄ ) + FLM(3g, 4g, 1q , 2q̄ )

]
s̃12θ(E3 − E4)

〉
.

(4.11)

We note that the six terms in Eq. (4.11) have very different
singularity structures. For example, all the terms in Eq. (4.11)
that contain gluon g4 give rise to single soft singularities that
arise when E4 → 0. In the remaining three terms, the energy
E4 is associated with an anti-quark and, therefore, these
terms are not singular in the single-soft limit. Similarly, the
collinear limit C41 corresponds to an (anti)quark and a gluon
becoming collinear in the first, second, fifth and sixth terms
in Eq. (4.11). However, the same limit describes a kinematic
configuration with two collinear gluons in the third term in
Eq. (4.11). Clearly, the two limiting cases result in different
splitting functions and different reduced matrix elements.

Finally, we turn to the four-quark channels, where we need
to make a further distinction between cases when quarks have
same or different flavors. If they are different, i.e. q �= q ′, we
write

2mH

[
n f (n f − 1)

2

] 〈
FLM(1q , 2q ′ , 3q̄ , 4q̄ ′)

〉

= n f (n f − 1)

2

∫ 4∏

i=1

[d fi ] (2π)dδ(d)

×(pQ −
4∑

i=1

pi ) |M(1q , 2q ′ , 3q̄ , 4q̄ ′)|2. (4.12)

If the flavors are identical, we can use the same amplitudeM
as for the different-flavor case, accounting for a permutation
of two identical particles. We write
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2mH n f 〈FLM(1q , 2q , 3q̄ , 4q̄)〉

= n f

(2!)2

∫ 4∏

i=1

[d fi ] (2π)dδ(d)

(

pQ −
4∑

i=1

pi

)

×|M(1q , 2q ′ , 3q̄ , 4q̄ ′) − M(1q , 2q ′ , 4q̄ , 3q̄ ′)|2.
(4.13)

We denote the interference term as

Int(1q , 2q , 3q̄ , 4q̄)

= −2Re
(M(1q , 2q ′ , 3q̄ , 4q̄ ′)M∗(1q , 2q ′ , 4q̄ , 3q̄ ′)

)
,

(4.14)

and write the complete four-quark contribution to the decay
rate, including both different and identical flavors, as

2mH 〈F (4q)
LM (1, 2, 3, 4)〉

= n2
f

2

∫ 4∏

i=1

[d fi ] (2π)dδ(d)

×
(

pQ −
4∑

i=1

pi

)

|M(1q , 2q ′ , 3q̄ , 4q̄ ′)|2

+n f

4

∫ 4∏

i=1

[d fi ] (2π)dδ(d)

×
(

pQ −
4∑

i=1

pi

)

Int(1, 2, 3, 4). (4.15)

The interference term in Eq. (4.15) is not singular and can
be evaluated in four dimensions; for this reason we keep it
as it is. Moreover, the first term in that equation only pro-
duces singularities when either one or two qq̄ pairs become
collinear. Despite this simplicity, we find it convenient to
treat the four-quark contributions Eq. (4.15) in the same way
as the two other channels that we discussed previously. To
this end, we insert the partition of unity Eq. (4.3) into the
integrands in Eq. (4.15), re-label partonic momenta, use the
symmetry of the amplitude squared

|M(iq , jq ′ , kq̄ , lq̄ ′)|2 = |M(iq , lq ′ , kq̄ , jq̄ ′)|2
= |M(kq , jq ′ , iq̄ , lq̄ ′)|2, (4.16)

and obtain

2mH 〈F (4q)
LM (1, 2, 3, 4)〉

= n2
f

∫ 4∏

i=1

[d fi ] (2π)dδ(d)

(

pQ −
4∑

i=1

pi

)

× s̃12

(
2|M(1q , 2q ′ , 3q̄ , 4q̄ ′ )|2 + |M(1q , 3q ′ , 2q̄ , 4q̄ ′ )|2

)

+ n f

4

∫ 4∏

i=1

[d fi ] (2π)dδ(d)

(

pQ −
4∑

i=1

pi

)

Int(1, 2, 3, 4).

(4.17)

The prospective unresolved partons are f3,4. Similar to
other channels, we introduce the energy ordering E3 > E4

and again use the symmetry of the amplitude squared to sim-
plify the result. We obtain

〈F (4q)
LM (1, 2, 3, 4)〉
= n f

〈
F int

LM(1q , 2q , 3q̄ , 4q̄)
〉

+2n2
f

〈[
FLM(1q , 2q ′ , 3q̄ , 4q̄ ′) + FLM(1q , 2q ′ , 4q̄ , 3q̄ ′)

+FLM(1q , 3q ′ , 2q̄ , 4q̄ ′)
]
s̃12θ(E3 − E4)

〉
, (4.18)

where we have defined

n f

〈
F int

LM(1q , 2q , 3q̄ , 4q̄)
〉

= n f

4

[
1

2mH

] ∫ 4∏

i=1

[d fi ] (2π)dδ(d)

×
(

pQ −
4∑

i=1

pi

)

Int(1, 2, 3, 4). (4.19)

Upon combining all the channels, we obtain the final result
for the double-real contribution to the decay width. It reads

〈FLM(1, 2, 3, 4)〉δ
=
〈
s̃12θ(E3 − E4) ×

{
12FLM(1g, 2g, 3g, 4g)

+ 2n f

[
FLM(1g, 2g, 3q , 4q̄) + FLM(1g, 3g, 2q , 4q̄)

+ FLM(1g, 4g, 2q , 3q̄) + FLM(2g, 3g, 1q , 4q̄)

+ FLM(2g, 4g, 1q , 3q̄) + FLM(3g, 4g, 1q , 2q̄)

]

+ 2n2
f

[
FLM(1q , 2q ′ , 3q̄ , 4q̄ ′) + FLM(1q , 2q ′ , 4q̄ , 3q̄ ′)

+ FLM(1q , 3q ′ , 2q̄ , 4q̄ ′)

]}
+ n f F

int
LM(1q , 2q , 3q̄ , 4q̄)

〉

δ

.

(4.20)

To illustrate how soft and collinear singularities are
extracted from the double-real emission contribution Eq.
(4.20), we focus on the four-gluon final state FLM(1g, 2g, 3g,
4g). This contribution possesses the richest singularity struc-
ture yet, at the same time, it is one of the simplest as far as
the bookkeeping is concerned. After explaining how the sin-
gularities are extracted in this case, we present the results for
all channels in Sect. 4.4.

4.1.1 Double-soft contribution for H → gggg

Similar to the production case, we begin with the double-soft
limit that occurs when E3, E4 → 0. We follow Refs. [30,33]
and introduce an operator SS that extracts the leading double-
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soft singularity from the product of the matrix element
squared and the phase space, and write

I = SS + (I − SS). (4.21)

The double-soft limit is computed in exactly the same way
as in the production case [30,33]. We find

12
〈
SSs̃12FLM(1g, 2g, 3g, 4g)θ(E3 − E4)

〉
δ

= [αs]2C2
ADSS

(
m2

H

μ2

)−2ε
〈
FLM(1g, 2g)

〉
δ
, (4.22)

where [31]

DSS = 5

2ε4 + 11

12ε3

+ 1

ε2

(
−16

9
− 11π2

12
+ 11

3
ln 2

)

+1

ε

(
217

54
− 11π2

36
− 137

18
ln 2 − 11

3
ln2 2 − 53

4
ζ3

)

−649

81
+ 125π2

216
− 131π4

720
+ 434

27
ln 2

−11

6
π2 ln 2 + 137

18
ln2 2 + 22

9
ln3 2 − 275

12
ζ3.

(4.23)

We use Eq. (4.21) and write

12
〈
s̃12FLM(1g, 2g, 3g, 4g)θ(E3 − E4)

〉
δ

= [αs]2

(
m2

H

μ2

)−2ε

C2
ADSS

〈
FLM(1g, 2g)

〉
δ

+12
〈
(I − SS)s̃12FLM(1g, 2g, 3g, 4g)θ(E3 − E4)

〉
δ
.

(4.24)

The term on the second line in Eq. (4.24) does not contain
double-soft singularities anymore but it still contains both
single-soft and collinear ones. We discuss how to extract
them in what follows.

4.1.2 Single-soft contribution

We need to extract the single-soft singularity from

12
〈
(I − SS)s̃12FLM(1g, 2g, 3g, 4g)θ(E3 − E4)

〉
δ
, (4.25)

see Eq. (4.24). The soft limit of the amplitude squared reads

S4|Mtree(1g, 2g, 3g, 4g)|2

= g2
s,bCA

∑

(i j)∈1,2,3

pi · p j

(pi · p4)(p j · p4)

×|Mtree(1g, 2g, 3g)|2, (4.26)

where the sum runs over three i j-pairs, {1, 2}, {1, 3}, {2, 3}.
The gluon g4 decouples both from the hard matrix ele-
ment and the phase-space; hence, integration over its four-
momentum is identical to the NLO case except that the upper
boundary for the E4 integration is now E3. Repeating steps
analogous to what we discussed at NLO, we find

12
〈
S4(I − SS)s̃12θ(E3 − E4)FLM(1g, 2g, 3g, 4g)

〉
δ

= 3
〈
J gggS4

(I − S3)s̃12FLM(1g, 2g, 3g)
〉

δ
, (4.27)

where

J gggS4
= [αs]

(
4E2

3

μ2

)−ε
CA

ε2

×
[

(η12)
−ε K12 + (η13)

−ε K13 + (η23)
−ε K23

]
,

(4.28)

and

Ki j = �2(1 − ε)

�(1 − 2ε)
η1+ε
i j 2F1(1, 1, 1 − ε; 1 − ηi j )

= 1 + ε2[Li2(1 − ηi j ) − ζ2
]+ O(ε3). (4.29)

Equation (4.27) is free from soft singularities, but it
still contains collinear ones; these arise when the gluon g3

becomes collinear to gluon g1 or gluon g2. We proceed as in
the NLO computation. Namely, we introduce a partition of
unity, use the symmetry of the process under the exchange
of gluons 1 and 2 and write
〈
(I − S3)J

ggg
S4

s̃12FLM(1g, 2g, 3g)
〉

δ

= 2
〈
C31ω

31(I − S3)J
ggg
S4

s̃12FLM(1g, 2g, 3g)
〉

δ

+
〈
∑

i=1,2

(I − C3i )ω
3i (I − S3)J

ggg
S4

s̃12FLM(1g, 2g, 3g)

〉

δ

.

(4.30)

All singularities are regulated in the second term on the r.h.s.
of Eq. (4.30). We now consider the first term on the r.h.s. of
Eq. (4.30). Taking the η31 → 0 limit in J gggS4

, we obtain

C31 J
ggg
S4

= [αs ]
(

4E2
3

μ2

)−ε
CA

ε2

×
[

2 (η12)−ε K12 + �3(1 − ε)�(1 + ε)

�(1 − 2ε)
(η31)−ε

]
,

(4.31)

where we used

lim
ηi j→0

Ki j = �3(1 − ε)�(1 + ε)

�(1 − 2ε)
. (4.32)

Since we have to apply the C31 operator to 3〈
J gggS4

(I − S3)s̃12FLM(1g, 2g, 3g)
〉

δ
and since the limit of
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FLM(1g, 2g, 3g) is identical to what we already discussed
in the NLO case, the computation proceeds similarly to the
NLO case. Note that since the (E2

3)−ε prefactor in JS4 gives
an extra factor (1 − z)−2ε the relevant anomalous dimen-
sion in this case is γ 24

z,g→gg , c.f. Eq. (3.24). The result of the
calculation reads

3
〈
(I − S3)J

ggg
S4

s̃12FLM(1g, 2g, 3g)
〉

δ

= +2
[αs ]2

ε3

(
μ2

m2
H

)2ε

CA

×
[

2�4(1 − ε)

�2(1 − 2ε)
+ �4(1 − ε)�(1 + ε)

2�(1 − 3ε)

]

× γ 24
z,g→gg

〈
FLM(1g, 2g)

〉
δ

+ 3

〈
∑

i=1,2

(I − C3i )ω
3i (I − S3)J

ggg
S4

s̃12FLM(1g, 2g, 3g)

〉

δ

.

(4.33)

We combine the different contributions and obtain

12
〈
(I − SS)s̃12FLM(1g, 2g, 3g, 4g)θ(E3 − E4)

〉
δ

= 12
〈
(I − S4)(I − SS)s̃12FLM(1g, 2g, 3g, 4g)θ(E3 − E4)

〉
δ

+ 3
∑

i=1,2

〈
(I − C3i )ω

3i (I − S3)J
ggg
S4

s̃12FLM(1g, 2g, 3g)
〉

δ

+ 2
[αs ]2

ε3

(
μ2

m2
H

)2ε

CA

[
2�4(1 − ε)

�2(1 − 2ε)
+ �4(1 − ε)�(1 + ε)

2�(1 − 3ε)

]

× γ 24
z,g→gg

〈
FLM(1g, 2g)

〉
δ
. (4.34)

In Eq. (4.34) the third and fourth lines are free from unreg-
ulated singularities whereas the second line contains unreg-
ulated collinear singularities that need to be extracted. We
explain how to do that in the next section.

4.1.3 Collinear singularities: general structure

Having regulated all the soft singularities, we are left with
only one contribution on the right hand side of Eq. (4.34),

12
〈
(I − S4)(I − SS)s̃12FLM(1g, 2g, 3g, 4g)θ(E3 − E4)

〉
δ
,

(4.35)

that still contains unregulated collinear singularities. To iso-
late and extract them, we need to introduce a partition of
unity

1 = w31,41 + w32,42 + w31,42 + w32,41, (4.36)

where w3i,4 j are functions of the partons’ emission angles.
These functions are constructed in such a way that a product
of w3i,4 j with the matrix element squared has non-integrable
collinear singularities if gluon g3 is collinear to gluon gi or

gluon g4 is collinear to gluon g j . The singularities that arise
when gluons g3 and g4 become collinear can only occur in
the partitions w31,41 and w32,42. Following Refs. [30,33], we
refer to w31,41 and w32,42 as the triple-collinear partitions
and w31,42 and w41,32 as the double-collinear partitions. A
possible choice for these functions is given in Appendix A.

The double-collinear partitions can be dealt with in a rel-
atively straightforward way since the collinear singularities
are clearly isolated. The only issue that we need to address
is the construction of a proper phase space for this contribu-
tion; we discuss how this can be done in Appendix B. For
the triple-collinear partitions, we need to order the emission
angles of gluons g3 and g4 and we refer to these orderings
as “sectors” that we label as a, b, c, d, see Refs. [30,33] for
details. Explicitly, we write

1 = θ
(
η41 <

η31

2

)
+ θ

(η31

2
< η41 < η31

)

+θ
(
η31 <

η41

2

)
+ θ

(η41

2
< η31 < η41

)

= θ(a) + θ(b) + θ(c) + θ(d). (4.37)

Once partitions and sectors are introduced, we can extract
the collinear limits from the decay rates following the proce-
dure already discussed for the production case [30,33]. Note,
however, that similar to the NLO computations discussed in
Sect. 3, we have to integrate the various splitting functions
appearing in the calculation over energies to obtain (gener-
alized) anomalous dimensions.

We now summarize the relevant steps for the extraction of
the collinear singularities, closely following the procedure
and notation of Ref. [30,33]. We introduce the short-hand
notation

G(1, 2, 3, 4) ≡ 12(I − SS)(I − S4)s̃12

FLM(1g, 2g, 3g, 4g)θ(E3 − E4), (4.38)

and write

〈G(1, 2, 3, 4)〉δ = 〈Gsr ,cs (1, 2, 3, 4)
〉
δ

+ 〈Gsr ,ct (1, 2, 3, 4)
〉
δ

+ 〈Gsr ,cr (1, 2, 3, 4)
〉
δ
.

(4.39)

In Eq. (4.39), we have introduced

• the soft-regulated, single-collinear contribution

〈Gsr ,cs (1, 2, 3, 4)
〉
δ

=
∑

(i j)∈{12,21}

〈[
C3i [d f3] + C4 j [d f4]

]
ω3i,4 jG(1, 2, 3, 4)

〉

δ

+
∑

i∈{1,2}

〈[
θ(a)C4i + θ(b)C43 + θ(c)C3i + θ(d)C43

]

× [d f3][d f4]ω3i,4iG(1, 2, 3, 4)
〉

δ
; (4.40)
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• the soft-regulated triple- and double-collinear contribu-
tion, defined as

〈Gsr ,ct (1, 2, 3, 4)
〉
δ

=
∑

i∈{1,2}

〈[
θ(a)

[
I − C4i

]+ θ(b)[I − C43
]+ θ(c)[I − C3i

]

+ θ(d)
[
I − C43

]][d f3][d f4]CCiω
3i,4iG(1, 2, 3, 4)

〉

δ

−
∑

(i j)∈{12,21}

〈
C3iC4 j [d f3][d f4]ω3i,4 jG(1, 2, 3, 4)

〉

δ
;

(4.41)

• and, finally, the soft-regulated collinear-regulated term

〈Gsr ,cr (1, 2, 3, 4)
〉
δ

=
∑

i∈{1,2}

〈[
θ(a)

[
I − C4i

]+ θ(b)[I − C43
]

+θ(c)[I − C3i
]+ θ(d)

[
I − C43

]]

×[d f3][d f4]
[
I − CCi

]
ω3i,4iG(1, 2, 3, 4)

〉

δ

+
∑

(i j)∈{12,21}

〈[
I − C3i

][
I − C4 j

]

×ω3i,4 j [d f3][d f4]G(1, 2, 3, 4)

〉

δ

. (4.42)

We remind the reader that the notations in Eqs. (4.40, 4.41,
4.42) are such that collinear operators act on everything
that appears to the right of them. In particular, the nota-
tion 〈· · ·C[d fi ] · · · 〉 implies that a particular collinear limit
should be taken in the phase-space element of the parton fi .
More details can be found in Refs. [30,33] where we show an
explicit parametrization of the emission angles for gluons g3

and g4 and define the action of collinear operators in terms
of this parametrization.

We discuss the terms 〈Gsr ,cs (1, 2, 3, 4)〉 and 〈Gsr ,ct (1, 2,

3, 4)〉 in the next two subsections. The term 〈Gsr ,cr (1, 2, 3, 4)〉
is finite and can be immediately computed in four dimen-
sions. This point is again discussed in Refs. [30,33] in the
context of color singlet production. Since there is no concep-
tual difference between how this contribution is computed in
the production and decay cases, we won’t repeat the discus-
sion here.

4.1.4 Soft-regulated single-collinear contribution

To obtain an expression for the soft-regulated single-collinear
contribution 〈Gsr ,cs (1, 2, 3, 4)〉 in Eq. (4.40), we follow the
same steps as in the production case [30,33]. After a tedious

but otherwise straightforward computation we obtain7

〈Gsr ,cs (1, 2, 3, 4)
〉
δ

= [αs]
ε

〈

6

[(
4E2

1

μ2

)−ε

γ 22
z,g→gg

−2CA

(
4E2

4/μ2
)−ε − (

4E2
1/μ2

)−ε

2ε

]

×(I − S3)

[
(I − C32)ω̃

32,41
4||1

+
(η41

2

)−ε

(I − C31)ω̃
31,41
4||1

]
s̃12FLM(1g, 2g, 3g)

〉

δ

+ [αs]
ε

〈

6

(
E2

4

μ2

)−ε

(I − S3)

×(I − C31)
[
η−ε

41 (1 − η41)
ε
]
ω̃

31,41
3||4 s̃12

×
[
γ̃g(ε)FLM(1g, 2g, 3g)

+εγ̃g(ε, k⊥)rμrνF
μν
LM(1g, 2g, 3g)

]〉

δ

+ [αs]2

ε2

(
μ2

m2
H

)2ε
〈
FLM(1g, 2g)

〉
δ

{
2
�2(1 − ε)

�(1 − 2ε)

×
[(

γ 22
z,g→gg

)2 − 2CA

(
γ 24
z,g→gg − γ 22

z,g→gg

2ε

)]

+2ε �(1 − 2ε)�(1 − ε)

�(1 − 3ε)

×
[
γ 22
z,g→ggγ

42
z,g→gg − 2CA

(
γ 24
z,g→gg − γ 42

z,g→gg

2ε

)

+2ε
[
γ 24
z,g→gg γ̃g(ε) + εγ 24,r

z,g→gg γ̃g,k⊥(ε)
] ]

−2CA4ε

[
�(1 − 2ε)�(1 − ε)

�(1 − 3ε)
− ε2bd

]
δg(ε)

−4CA

[
�2(1 − ε)

�(1 − 2ε)
+ �(1 − 2ε)�(1 − ε)

21−ε�(1 − 3ε)
− ε2ac

]

×
(

γ 24
z,g→gg − γ 22

z,g→gg

2ε

)}

. (4.43)

The anomalous dimensionsγ
i j
z,g→gg , that appear in Eq. (4.43),

are defined in Eq. (3.24) whereas γ̃g(ε), γ̃g(ε, k⊥) and δg(ε)

can be found in Refs. [30,33]. For completeness, we report
them in Appendix A, see Eqs. (A.10, A.11, A.12). Finally,
γ

24,r
z,g→gg is defined as

7 We have used the 1 ↔ 2 symmetry to obtain this formula.
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γ 24,r
z,g→gg = 29

12
CA + CAε

(
371

24
− 2π2

3

)

+CAε2
(

1559

16
− 29π2

9
− 24ζ3

)
+ O(ε3).

(4.44)

Note that, as a consequence of spin correlations, the result in
Eq. (4.43) contains a finite term rμrνF

μν
LM. This term should

be understood as the corresponding matrix element squared
where the polarization vector for the gluon g3 is taken to be
a particular four-vector rμ. The precise form of the vector r
depends on the specific way in which the limit where gluons
g3 and g4 become collinear is approached. Since we use the
same parametrization of the triple-collinear phase space as in
Refs. [30,33], the explicit form of the vector rμ can be taken
from these references. As an example, consider the ω31,41

partition, where p3 is written as

pμ
3 = E3(1, sin θ31 cos ϕ3, sin θ31 sin ϕ3, cos θ31). (4.45)

Here, θ31 is the relative angle between the momenta of g1 and
g3. Upon parametrizing the collinear limit of g3 and g4 as
described in Refs. [30,33], we find the following expression
for the vector rμ

rμ = (0,− cos θ31 cos ϕ3,− cos θ31 sin ϕ3, sin θ31). (4.46)

Similar to Refs. [30,33], damping factors with tildes in
Eq. (4.43) indicate the damping factors computed in respec-
tive collinear limits, e.g.

ω̃
31,41
4||1 = lim

η41→0
ω31,41. (4.47)

Finally, the two quantities ac,bd in Eq. (4.43) are the only
entries where the explicit form of the damping factor appears
in the fully-unresolved part of the result. They read [30,33]

ac = −
〈
(I − C31)

[
η12

2η31η32

]
ω̃

31,41
4||1 ln

η31

2

〉
+ O(ε),

bd = −2

〈
(I − C31)

[
η12

2η31η32

]
ω̃

31,41
3||4 ln

η31

1 − η31

〉
+ O(ε).

(4.48)

Taking the explicit expression for the partition functions
shown Appendix A, it is straightforward to obtain

ac = 1 + ln 2 + O(ε), bd = 2 − π2

3
+ O(ε). (4.49)

4.1.5 Soft-regulated triple- and double-collinear
contribution

We now discuss the triple- and double-collinear contribution
〈Gsr ,ct (1, 2, 3, 4)〉 shown in Eq. (4.41). As indicated in the
previous section, this term includes all the double-unresolved
collinear contributions which arise when both gluons g3,4 are
collinear to either gluon g1 or gluon g2, as well as single-
collinear contributions where gluons g3 and g4 are collinear
to each other.

This contribution requires a non-trivial integration of the
triple-collinear splitting function over energies and angles of
particles that participate in the splitting. The relevant compu-
tation was performed in Ref. [32]. Using the results presented
there, we can write the final result for the soft-regulated triple-
and double-collinear contribution as

〈Gsr ,ct (1, 2, 3, 4)
〉
δ

= −[αs]2

ε2

(
μ2

m2
H

)2ε [(
γ 22
z,g→gg

)2

−4CA

(
γ 24
z,g→gg − γ 22

z,g→gg

2ε

)]
〈
FLM(1g, 2g)

〉
δ

+ [αs]2

(
4μ2

m2
H

)2ε

2Rggg 〈FLM(1g, 2g)
〉
δ
, (4.50)

where the first term on the right hand side comes from double-
collinear configurations and the second one from the triple-
collinear ones. The integral of the triple-collinear splitting
function, with soft and collinear singularities subtracted, is
denoted by Rggg in Eq. (4.50); it reads [32]

Rggg = C2
A

ε

(
−1895

216
+ 11π2

36
− 11 ln 2

36

+2π2 ln 2

3
+ 11 ln2 2

2
− ζ3

8

)

+C2
A

(
− 335

8
− 83π2

144
+ 71π4

1440

+845 ln 2

108
+ 187π2 ln 2

36
− 169 ln2 2

18

−25π2 ln2 2

12
− 176 ln3 2

9
− ln4 2

12

−2Li4

(
1

2

)
+ 121ζ3

8
+ 59 ln 2ζ3

4

)
. (4.51)

4.2 Real-virtual contribution

We now turn to the discussion of real-virtual contributions.
Their calculation is similar to the NLO case discussed in
Sect. 3. As in the previous section, we illustrate the most
important steps of the real-virtual calculation for the three-

123



 1013 Page 14 of 25 Eur. Phys. J. C          (2019) 79:1013 

gluon final state. Similar to NLO, we introduce a phase-space
partitioning and write
〈
FLV(1g, 2g, 3g)

〉
δ

= 6
〈
(I − C31)ω

31(I − S3)s̃12FLV(1g, 2g, 3g)
〉

δ

+3
〈
S3s̃12FLV(1g, 2g, 3g)

〉
δ

+6
〈
C31(I − S3)s̃12FLV(1g, 2g, 3g)

〉
δ
. (4.52)

We note that the 1 ↔ 2 symmetry was used to simplify
Eq. (4.52). The first term on the right hand side of Eq. (4.52)
is fully regulated. The terms on the second line are soft and
collinear subtractions, which we now discuss.

The starting point for the calculation of the soft subtrac-
tion contribution is the factorization property of the one-loop
amplitude [38], that leads to

S3

[
2�[Mtree(1g, 2g, 3g)M1−loop,∗(1g, 2g, 3g)

]]

=
[

g2
s e

εγE

�(1 − ε)

]
2CA(p1 · p2)

(p1 · p3)(p2 · p3)

×
{[

2�[Mtree(1g, 2g)M1−loop,∗(1g, 2g)
]

− β0

ε

(
αs(μ)

2π

)
|Mtree(1g, 2g)|2

]

− CA
[αs]
ε2

�5(1 − ε)�3(1 + ε)

�2(1 − 2ε)�(1 + 2ε)

×
(

η12

η31η32

)ε
(

4E2
3

μ2

)−ε

|Mtree(1g, 2g)|2
}
, (4.53)

with

β0 = 11

6
CA − 2

3
TRn f . (4.54)

The appearance of the β0 term in Eq. (4.53) is related to the
fact that we work with UV-renormalized amplitudes. Starting
from Eq. (4.53), we follow the discussion presented in Sect. 3
and obtain

3
〈
S3s̃12FLV(1g, 2g, 3g)

〉
δ

= 2CA
[αs]
ε2

(
μ2

m2
H

)ε
�2(1 − ε)

�(1 − 2ε)

×
[〈
FLV(1g, 2g)

〉
δ
− β0

ε

(
αs(μ)

2π

) 〈
FLM(1g, 2g)

〉
δ

]

− C2
A

2

[αs]2

ε4

(
μ2

m2
H

)2ε

× �5(1 − ε)�3(1 + ε)

�(1 − 4ε)�(1 + 2ε)

〈
FLM(1g, 2g)

〉
δ
. (4.55)

Next we consider the collinear subtraction. At one-loop,
the collinear factorization of one-loop amplitudes leads
to [39]

C31

[
2�[Mtree(1g, 2g, 3g)M1−loop,∗(1g, 2g, 3g)

]]

= [g2
s e

εγE /�(1 − ε)]
p1 · p3

×
{
Pgg

(
E1

E13

)

⊗
[

2�[Mtree(13g, 2g)M1−loop,∗(13g, 2g)
]

− β0

ε

(
αs(μ)

2π

)
|Mtree(13g, 2g)|2

]

+ [αs]�
3(1 − ε)�(1 + ε)

�(1 − 2ε)
�

×
[
(−s13)

−ε P(1)
gg

(
E1

E13

)]
⊗ |Mtree(13g, 2g)|2

}
,

(4.56)

where s13 = 2p1 · p3 + i0. We remind the reader that the
notation “13g” indicates a gluon that has the same direction
as the gluon g1 but whose energy E13 is given by E13 =
E1 +E3. As in Sect. 3, the symbol ⊗ in Eq. (4.56) indicates a
contraction of the one-loop spin-correlated splitting function
P(1)
gg with the relevant scattering amplitudes. The one-loop

splitting function P(1)
gg was computed in Ref. [39]; we report it

in Appendix A for convenience. We note that, at variance with
the production case, the splitting function P(1)

gg is manifestly
real for the decay kinematics. Following the same steps as in
the NLO calculation described in Sect. 3, we obtain

6
〈
C31(I − S3)s̃12FLV(1g, 2g, 3g)

〉
δ

= [αs]
ε

(
μ2

m2
H

)ε
�2(1 − ε)

�(1 − 2ε)

× 2γ 22
z,g→gg

[ 〈
FLV(1g, 2g)

〉
δ

− β0

ε

(
αs(μ)

2π

) 〈
FLM(1g, 2g)

〉
δ

]

− [αs]2

ε

(
μ2

m2
H

)2ε

× �(1 − 2ε)�(1 − ε)

�(1 − 3ε)
γ

1−loop
z,g→gg

〈
FLM(1g, 2g)

〉
δ
. (4.57)

In Eq. (4.57), γ
1−loop
z,g→gg is the one-loop anomalous dimen-

sion, analogous to γz,g→gg , obtained by integrating P(1)
gg

in Eq. (4.56) over the energy fraction E1/E13. Its explicit
expression is reported in Appendix A.

Finally, it is also convenient to explicitly extract the 1/ε-
poles from the FLV terms in Eqs. (4.52, 4.55, 4.57). Their
structure is well-known [35] and we have already discussed
it in Refs. [30,33] using our notations. For completeness, we
report the relevant formulas below
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〈
FLV(1g, 2g)

〉
δ

= −2 cos(επ)[αs]
(

μ2

m2
H

)ε [
CA

ε2 + β0

ε

]

× 〈
FLM(1g, 2g)

〉
δ
+
〈
Ffin

LV(1g, 2g)
〉

δ〈
FLV(1g, 2g, 3g)

〉
δ

=
〈
Ffin

LV(1g, 2g, 3g)
〉

δ
− cos(επ)[αs]

×
[
CA

ε2 + β0

ε

] 〈 [(
μ2

s12

)ε

+
(

μ2

s13

)ε

+
(

μ2

s23

)ε
]

FLM(1g, 2g, 3g)

〉

δ

. (4.58)

In Eq. (4.58) the functions Ffin
LV are finite in four dimensions

and si j = 2pi · p j > 0.

4.3 Double-virtual corrections

The double-virtual contribution is identical to those in the
production case described in Refs. [30,33]. For convenience,
we report the relevant formulas here. Following Ref. [35], we
extract all the ε-poles from the loop amplitudes and write

〈
FLVV(1g, 2g)

〉
δ

=
(

αs(μ)

2π

)2 [ Ĩ 2
12(ε)

2
− β0

ε
Ĩ12(ε)

+
(

β0

ε
+ K

)
e−εγE�(1 − 2ε)

�(1 − ε)
Ĩ12(2ε) + Hg

ε

]

× 〈
FLM(1g, 2g)

〉
δ
+
(

αs(μ)

2π

)
Ĩ12(ε)

〈
Ffin

LV(1g, 2g)
〉

δ

+
〈
Ffin

LVV(1g, 2g)
〉

δ
+
〈
Ffin

LV2(1g, 2g)
〉

δ
, (4.59)

where

Ĩ12(ε) = −2 cos(επ)

×
[

eεγE

�(1 − ε)

](
μ2

m2
H

)ε [
CA

ε2 + β0

ε

]
, (4.60)

with β0 defined in Eq. (4.54) and

K =
(

67

18
− π2

6

)
CA − 10

9
TRn f ,

Hg = C2
A

(
5

12
+ 11π2

144
+ ζ3

2

)

−CAn f

(
29

27
+ π2

72

)
+ CFn f

2
+ 5n2

f

27
. (4.61)

Finally, we note that
〈
Ffin

LV(1g, 2g)
〉

is defined in Eq. (3.33),

and
〈
Ffin

LVV(1g, 2g)
〉
,
〈
Ffin

LV2(1g, 2g)
〉

are finite remainders, see

Appendix A in Ref. [33] for details.

4.4 Final result

The sum of the different contributions discussed in the pre-
vious sections gives a result that is finite in the ε → 0 limit.
Repeating similar calculations for all the other partonic chan-
nels, we obtain the full NNLO QCD corrections to the decay
H → gg. We write the result as the sum of contributions
with different final state multiplicities, cf. Eq. (2.9)

d�NNLO = d�NNLO
H→4 + d�NNLO

H→3 + d�NNLO
H→2 . (4.62)

The contribution of the four-parton final state reads

d�NNLO
H→4

=
∑

i∈{1,2}

〈[
θ(a)

[
I − C4i

]+ θ(b)[I − C43
]

+ θ(c)[I − C3i
]+ θ(d)

[
I − C43

]]

× [d f3][d f4]
[
I − CCi

]
ω3i,4i [I − S4

]

× [
I − SS

]
FLM(1, 2, 3, 4)

〉

δ

+
∑

(i j)∈{12,21}

〈[
I − C3i

][
I − C4 j

]
ω3i,4 j

× [d f3][d f4]
[
I − S4

][
I − SS

]
FLM(1, 2, 3, 4)

〉

δ

,

(4.63)

where FLM(1, 2, 3, 4) is defined in Eq. (4.20). Similarly, the
three-parton contribution reads

d�NNLO
H→3 =

〈
ÔNLOJggg

[
3s̃12FLM(1g, 2g, 3g)

]

+ n f
[ÔNLOJgqq s̃12FLM(1g, 2q , 3q̄)

+ ÔNLOJqgq s̃12FLM(1q , 2g, 3q̄)

+ ÔNLOJqqg s̃12FLM(1q , 2q̄ , 3g)
]〉

δ

+ γk⊥,g

〈
ÔNLOs̃12rμrν

× [
3Fμν

LM(1g, 2g, 3g) + n f F
μν
LM(1q , 2q̄ , 3g)

]〉
δ
,

(4.64)

where

ÔNLO = (I − S3)(I − C31 − C32)
(
ω31 + ω32

)
, (4.65)
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and

Ji jk = J (1)
i jk + J (2)

i jk . (4.66)

The functions J (1,2) are defined as

J (1)
ggg = CA

[K̃12 + K̃13 + K̃23
]+ β0 ln(η12η13η23),

J (1)
gqq = CA

[K̃12 + K̃13
]

+ (2CF − CA)K̃23 + (2CF − CA)
3

2
ln(η23)

+ β0

2
ln

(
E2E3η12η13

E2
1

)

+ 3

4
CA ln

(
E2

1η12η13

E2E3

)

,

J (1)
qgq = CA

[K̃12 + K̃23
]

+ (2CF − CA)K̃13 + (2CF − CA)
3

2
ln(η13)

+ β0

2
ln

(
E1E3η12η23

E2
2

)

+ 3

4
CA ln

(
E2

2η12η23

E1E3

)

,

J (1)
qqg = CA

[K̃13 + K̃23
]

+ (2CF − CA)K̃12 + (2CF − CA)
3

2
ln(η12)

+ β0

2
ln

(
E1E2η13η23

E2
3

)

+ 3

4
CA ln

(
E2

3η13η23

E1E2

)

,

(4.67)

and

J (2)
i jk = γ ′

i + γ ′
j + γ̃ ′

k − ω̃
31,41
4||1 ln

(η13

2

)

×
(

γi + 2Ci ln
E3

E1

)
− ω̃

32,42
4||2 ln

(η23

2

)

×
(

γ j + 2C j ln
E3

E2

)
−
[
ω̃

31,41
3||4 ln

(
η13

4(1 − η13)

)

+ω̃
32,42
3||4 ln

(
η23

4(1 − η23)

)]
γk, (4.68)

where Cq = CF and Cg = CA. The various constants
and functions used in Eqs. (4.67, 4.68) can be found in
Appendix A.

Finally, the two-parton contribution reads

d�NNLO
H→2

=
(

αs(μ)

2π

)2 〈
FLM(1g, 2g)

〉
δ

×
{
C2

A

[
65837

324
− 203π2

12
+ 469π4

720

+ ln2 2

(
π2

6
− 2

)
− ln4 2

6
− 4Li4

(
1

2

)

+ ln 2

(
3 + 11π2

9
− 7ζ3

2

)
− 1859ζ3

36

+ ln

(
μ2

m2
H

)(
1429

54
− 11π2

8
− ζ3

)
+ 203

18
ac

+
(

11 ln 2

3
+ π2

3
− 131

36

)
bd

]

+ CAn f

[
− 5701

81
+ 673π2

216

− ln 2

(
3 + 2π2

9

)
+ 2 ln2 2 + 49ζ3

18

+ ln

(
μ2

m2
H

)(
π2

4
− 15

2

)

− 41

18
ac +

(
23

36
− 2 ln 2

3

)
bd

]

+ CFn f

[−27

4
+ π2

6
+ 20ζ3

3
− ln

(
μ2

m2
H

)]

+ n2
f

[
1889

324
− 5π2

108
+ 13

27
ln

(
μ2

m2
H

)]}

+
(

αs(μ)

2π

)[
2γ ′

g + 2π2

3
CA

] 〈
Ffin

LV(1g, 2g)
〉

δ
. (4.69)

where i j depends on the choice of the partition functions
and are given in Eqs. (4.48, 4.49).

5 Higgs decay to bb̄

In this section, we consider the second type of decays,
H → bb̄.8 The calculation of NLO and NNLO correc-
tions proceeds along the same lines as before but is signifi-
cantly simpler. For this reason, we do not discuss it and just
report the results of the calculation. Although we consider the
H → bb̄ process for definiteness, we stress that the formu-
las presented in this section can be applied verbatim to other
decays of color singlets to quarks, e.g. V → qq̄ ′, V = Z ,W .

The NLO computation in this case is simpler than for the
H → gg process discussed in Sect. 3 because, when the
Higgs boson decays into a bb̄g final state, singularities only
arise when the gluon becomes soft and/or collinear to one of
the b quarks; in other words, the b quarks must be hard. For
this reason, there is no need to introduce the s̃i j -partitioning.
Repeating the NLO QCD calculation described in Sect. 3,
we then obtain

d�NLO
H→2 = αs(μ)

2π

(
2γ ′

q + 2π2

3
CF

)

× 〈
FLM(1b, 2b̄)

〉
δ
+
〈
Ffin

LV(1b, 2b̄)
〉

δ
,

8 We emphasize that in this section, the Higgs boson does not couple to
gluons but only to b-quarks. Furthermore, we assume that all quarks are
massless, despite the b-quark having a non-vanishing Yukawa coupling.
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d�NLO
H→3 =

〈
ÔNLOFLM(1b, 2b̄, 3g)

〉

δ
, (5.1)

where γ ′
q is given in Eq. (A.8) and Ffin

LV(1b, 2b̄) is a finite
virtual remainder analogous to FLV(1g, 2g) in Eq. (3.33),
see Appendix A in Ref. [33] for its explicit definition.

At NNLO, we also do not require any additional partition-
ing except perhaps for the 4b final state that arises from the
prompt decay of the Higgs boson.9 We show in Appendix
C that the contribution of this subprocess to the decay rate
can be written as a sum of two terms: a term that coincides
with the contribution of the decay H → bb̄qq̄ , q �= b, where
only b and b̄ can be prompt and the qq̄ pair originates from
gluon splitting, and an interference term. The first term can
be treated without any partitioning since the hard partons are
always the two b-quarks. The interference term has only a
triple-collinear singularity that maps onto the correspond-
ing splitting function. Its proper treatment is described in
Appendix C.

The NNLO contribution to H → bb̄ decay is then com-
puted following the steps discussed in the previous sec-
tion. We write the NNLO contribution as a sum of “fixed-
multiplicity” terms d�NNLO

Q→i , i = 2, 3, 4. The four-parton
contribution reads

d�NNLO
H→4

=
∑

i∈{1,2}

〈[
θ(a)

[
I − C4i

]+ θ(b)[I − C43
]

+ θ(c)[I − C3i
]+ θ(d)

[
I − C43

]]

× [d f3][d f4]
[
I − CCi

]
ω3i,4i

× [
I − S4

][
I − SS

]F(1, 2, 3, 4)

〉

δ

+
∑

(i j)∈{12,21}

〈[
I − C3i

][
I − C4 j

]
ω3i,4 j

× [d f3][d f4]
[
I − S4

][
I − SS

]F(1, 2, 3, 4)

〉

δ

, (5.2)

where now

F(1, 2, 3, 4)

=
[
FLM(1b, 2b̄, 3g, 4g) + n f FLM(1b, 2b̄, 3q , 4q̄)

+F int
LM(1, 2, 3, 4)

]
θ(E3 − E4), (5.3)

with F int
LM defined in Appendix C. The three-parton contribu-

tion reads

9 To avoid confusion, we emphasize that in the previous section a 4q
final state originating from the decay H → (g∗ → qq̄) (g∗ → qq̄)

was discussed whereas in this section we consider prompt decays to
fermions. For this reason, the 4b final state originates from e.g. H →
(b∗ → bb̄b) b̄ etc.

d�NNLO
H→3

= αs(μ)

2π

[〈
ÔNLOJqqgFLM(1b, 2b̄, 3g)

+γk⊥,gÔNLOrμrνF
μν
LM(1b, 2b̄, 3g)

〉

δ

]
, (5.4)

where the function Jqqg is defined in Eq. (4.66) and γk⊥,g

can be found in Appendix A.
Finally, the two-parton contribution reads

d�NNLO
H→2

=
(

αs(μ)

2π

)(
2γ ′

q + 2π2

3
CF

) 〈
Ffin

LV(1b, 2b̄)
〉
δ

+ 〈
Ffin

LVV(1b, 2b̄)
〉
δ
+
〈
Ffin

LV2 (1b, 2b̄)
〉

δ

+
(

αs(μ)

2π

)2 〈
FLM(1b, 2b̄)

〉

×
{
C2
F

[
1081

16
− 67π2

6
+ 2π4

3
+ 9ζ3 + ln

(
μ2

m2
H

)

×
(

3

4
− π2 + 12ζ3

)
+ 7ac

]

+ CACF

[
115441

1296
− 29π2

8
− 11π4

720
+ ln2 2

(
π2

6
− 2

)

− ln4 2

6
+ ln 2

(
8

3
+ 11π2

9
− 7ζ3

2

)
− 2135ζ3

36
− 4Li4

(
1

2

)

+ ln

(
μ2

m2
H

)(
2329

108
− 19π2

72
− 13ζ3

)

+
(

11 ln 2

3
+ π2

3
− 131

36

)
bd

]

+ CFn f

[
− 9929

648
+ 5π2

9
− ln 2

(
8

3
+ 2π2

9

)

+ 2 ln2 2 + 145ζ3

18
+ ln

(
μ2

m2
H

)(
−209

54
+ 5π2

36

)

+
(

23

36
− 2 ln 2

3

)
bd

]}
, (5.5)

where i j are defined in Eqs. (4.48, 4.49).

6 Validation of results

In this section, we use the analytic formulas for the fully-
differential decay rates presented above to calculate the
NNLO QCD corrections to decays H → gg and H → bb̄.10

We compare these results with analytic formulas extracted
from Refs. [42–44] to validate our calculations.11

10 For our implementation, we take all the non-trivial amplitudes from
Refs. [40,41].
11 We note that similar calculations have been discussed earlier [45–
62], see e.g. [63,64] for an exhaustive list of references.
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We begin with the decay process H → gg, which was
discussed in Sect. 4. We consider a Higgs boson of mass
mH = 125 GeV which couples to gluons through the effec-
tive Lagrangian

LHgg = −λHggHG(a)
μνG

μν,(a), (6.1)

where in the MS scheme

λHgg

= − αs

12πv

{
1 +

[
5

2
CA − 3

2
CF

] ( αs

2π

)

+
[

1063

144
C2

A − 25

3
CACF + 27

8
C2
F

− 47

72
CAn f − 5

8
CFn f − 5

48
CA − CF

6

+ ln

(
μ2

m2
t

)(
7

4
C2

A − 11

4
CACF + CFn f

)]

×
( αs

2π

)2 + O(α3
s )

}
, (6.2)

with αs = αs(μ) being the renormalized coupling in a theory
with 5 massless flavors andv is the Higgs vacuum expectation
value, see e.g. Ref. [65]. For the numerical results presented
below, we use mt = 173.2 GeV.

For numerical checks, we split the width for the H → gg
decay into different color factors, which allows us to check
different partonic channels separately. We write

�(H → gg)

= �LO(H → gg) + �NLO(H → gg)

+ �NNLO(H → gg) + O(α5
s )

= �LO(H → gg) ×
[

1 +
( αs

2π

) (
CAR

(1)
CA

+ n f R
(1)
n f

)

+
( αs

2π

)2
(
CAR

(2)
CA

+ n f R
(2)
n f

+ n2
f R

(2)

n2
f

)]
+ O(α5

s ),

(6.3)

where the LO decay width that has been factored out is given
by �LO(H → gg) = (αs(μ))2/(72π3v2). The compari-
son between our results for the NLO and NNLO coefficients
R(1,2) and those presented in Ref. [42] is given in Table 1. We
present numerical results for a scale μ = 2mH , in order to
avoid accidental cancellations between the renormalization
scale μ and the Higgs mass mH that happen for μ = mH .
We observe agreement well below the per mille level for all
coefficients.

We turn now to the decay H → bb̄. Again, we consider
a 125 GeV Higgs boson and five flavors of massless quarks,
which allows us to use the results presented in Sect. 5. The
Higgs couples to bottom quarks only, through a Yukawa inter-
action

Table 1 Comparison between numerical and analytic results for NLO
and NNLO color coefficients appearing in H → gg decay. The residual
Monte Carlo integration error is given in parentheses. See text for details

Color structure Numerical result Analytic result

R(1)
CA

62.749 (3) 62.749

R(1)
n f −3.2575 (2) −3.2575

R(2)
CA

2806.2 (4) 2806.2

R(2)
n f −339.63 (1) −339.63

R(2)

n2
f

7.4824 (1) 7.4824

Table 2 Comparison between numerical and analytic results for NLO
and NNLO color coefficients appearing in H → bb̄ decay. The residual
Monte Carlo integration error is given in parentheses. See text for details

Color structure Numerical result Analytic result

S(1)
CF

12.659 (2) 12.659

S(2)

C2
F

62.59 (1) 62.60

S(2)
CACF

66.23 (1) 66.23

S(2)
CFn f

−20.24 (1) −20.24

LHbb̄ = − yb√
2
Hbb̄. (6.4)

Once again, we write the result for the Higgs decay width
in terms of different color structures, factoring out the LO
decay width �LO(H → bb̄) = 3y2

bmH/(16π),

�(H → bb̄)

= �LO(H → bb̄) + �NLO(H → bb̄)

+ �NNLO(H → bb̄) + O(α3
s )

= �LO(H → bb̄) ×
[

1 +
( αs

2π

) (
CF S

(1)
CF

)

+
( αs

2π

)2
(
C2
F S

(2)

C2
F

+ CACF S
(2)
CACF

+TRCFn f S
(2)
CFn f

)]
+ O(α3

s ). (6.5)

The comparison between the coefficients S(1,2) obtained
from our numerical code and from the analytic formulas of
Ref. [44] are displayed in Table 2. Again, we use the scale
μR = 2mH for this comparison. The agreement is consis-
tently below the per mille level across all color structures.

Finally, we compare exclusive jet rates for the H → bb̄
decay with those reported in Ref. [44]. To do so, we use the
JADE clustering algorithm with ycut = 0.01 and the distance
measure defined as yi j = (pi + p j )

2, and choose the scale
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μ = mH . We obtain

�2 j (H → bb̄) = �LO(H → bb̄)

×
[
1 − 27.176(3)

( αs

2π

)

−1240.8(1)
( αs

2π

)2
]

+ O(α3
s )

�3 j (H → bb̄) = �LO(H → bb̄)

×
[
38.509(3)

( αs

2π

)

+980.6(1)
( αs

2π

)2
]

+ O(α3
s )

�4 j (H → bb̄) = �LO(H → bb̄)

× 376.785(8)
( αs

2π

)2 + O(α3
s ). (6.6)

We note that our results differ from those of Ref. [44] by
1–2%, which is consistent with the errors reported in that
reference. The sum of the jet rates gives the total decay rate
at the scale μ = mH

�(H → bb̄) = �LO(H → bb̄)

×
[

1 + 11.333(4)
( αs

2π

)

+116.6(2)
( αs

2π

)2
]

+ O(α3
s ), (6.7)

in excellent agreement with the analytic results at this scale

�(H → bb̄) = �LO(H → bb̄)

×
[

1 + 11.333
( αs

2π

)

+116.6
( αs

2π

)2
]

+ O(α3
s ). (6.8)

Clearly, the level of numerical precision achieved for the
NNLO coefficients in our calculation is excessive since for
phenomenological applications it is enough to know widths
with sub-percent accuracy. We note that to achieve this level
of numerical precision within our framework, one would typ-
ically require up to one CPU hour of computation time.

7 Conclusion

We presented analytic formulas that describe fully-differential
decays of color-singlet particles to qq̄ and gg final states
through NNLO QCD. The results are obtained within the
nested soft-collinear subtracted scheme that we proposed
earlier in Ref. [30]. The results are remarkably compact and
simple to implement in a numerical code. We have validated
these results by computing the NNLO QCD corrections to
the H → gg and H → bb̄ decay rates and comparing them

to independent numerical and analytic computations finding
per mille level agreement for observables that are known ana-
lytically. In addition to their phenomenological relevance for
decays of the Higgs boson and electroweak vector bosons,
such as H → gg, H → bb̄ and V → qq̄ , these results
provide an important building block for the extension of the
nested soft-collinear subtraction scheme which will make it
applicable for computations of NNLO QCD corrections to
arbitrary processes at hadron colliders.
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Appendix A: Auxiliary quantities

In this appendix, results for various quantities used in this
paper are summarized. We start with discussing the partition
functions. They read

w31,41 = η32η42

d3d4

(
1 + η31

d3421
+ η41

d3412

)
, (A.1)

w32,42 = η31η41

d3d4

(
1 + η42

d3421
+ η32

d3412

)
, (A.2)

w31,42 = η32η41η43

d3d4d3412
, w32,41 = η31η42η43

d3d4d3421
, (A.3)

where

di=3,4 = ηi1 + ηi2, d3421 = η43 + η32 + η41,

d3412 = η43 + η31 + η42, (A.4)

and

ηi j = (1 − cos θi j )/2. (A.5)
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It is straightforward to check that these functions provide a
partition of unity

w31,41 + w32,42 + w31,42 + w32,41 = 1. (A.6)

We now present formulas for the various anomalous
dimensions used in the main text. In our NLO discussion,
we used

γg = β0 = 11

6
CA − 2

3
TRn f ,

γ ′
g = CA

(
67

9
− 2π2

3

)
− 23

9
TRn f , (A.7)

and

γq = 3

2
CF , γ ′

q = CF

(
13

2
− 2π2

3

)
. (A.8)

At NNLO, we also introduced

γk⊥,g = −CA

3
+ 2

3
TRn f ,

γ̃ ′
g = CA

(
137

18
− 2π2

3

)

−26

9
TRn f , γ̃ ′

q = γ ′
q . (A.9)

Following [30,33], we defined

γ̃g(ε) =
[

11

6
CA − 2

3
TRn f

]

+ε

[(
137

18
− 2π2

3

)
CA − 26

9
TRn f

]

+ε2
[(

823

27
− 11π2

18
− 16ζ3

)
CA

+
(

2π2

9
− 320

27

)
TRn f

]
+ O(ε3); (A.10)

γ̃g(ε, k⊥) =
[

− CA

3
+ 2

3
TRn f

]

+ε

[
− 7

9
CA + 20

9
TRn f

]
+ O(ε2); (A.11)

δg(ε) =
[(

−131

72
+ π2

6
+ 11

6
ln(2)

)
CA

+
(

23

36
− 2

3
ln(2)

)
TRn f

]

+ε

[(
−1541

216
+ 11π2

18
− ln(2)

6
+ 4ζ3

)
CA

+
(

103

54
− 2π2

9
+ 2

3
ln(2)

)
TRn f

]
+

+ε2
[(

−9607

324
+ 125π2

216
+ 7π4

45
+ ln(2)

+11π2

18
ln(2) + 77

6
ζ3

)
CA

+
(

746

81
− 5π2

108
− 4

3
ln(2)

−2π2

9
ln(2) − 14

3
ζ3

)
TRn f

]
. (A.12)

In the “gluon-only” case, discussed in Sect. 4, one should set
n f = 0 in the above formulas.

We now discuss the one-loop gluon splitting function. It
reads [39]

P(1),μν
gg (z) = CA

ε2

{
zεF21(ε, ε, 1 + ε, 1 − z)

+(1 − z)εF21(ε, ε, 1 + ε, z)

−�(1 + ε)�(1 − ε)

[(
z

1 − z

)ε

+
(

1 − z

z

)ε]
− 1

}
Pμν
gg (z)

+ n f − CA(1 − ε)

(1 − ε)(1 − 2ε)(3 − 2ε)
Pμν,new
gg (z).

(A.13)

Here, F21 is the hypergeometric function. We note that the
result for the splitting function Eq. (A.13) is written in the
conventional dimensional regularization scheme (CDR).

The splitting functions Pμν
gg , Pμν,new

gg read

Pμν
gg = 2CA

[
−gμν

⊥
(

z

1 − z
+ 1 − z

z

)

+ 2(1 − ε)z(1 − z)κμ
⊥κν⊥

]
,

Pμν,new
gg = −2CA [1 − 2z(1 − z)ε] κ

μ
⊥κν⊥, (A.14)

with κ⊥ = k⊥/

√
−k2⊥. The transversal metric tensor gμν

⊥
and the transversal vector k⊥ are defined relative to the four-
momentum of the collinear gluon, in the standard way [38].
The d−dimensional spin averages of the splitting functions
give

〈
Pμν
gg (z)

〉
= −g⊥,μν

2(1 − ε)
Pμν
gg (z)

= 2CA

[
z

1 − z
+ 1 − z

z
+ z(1 − z)

]
,

〈
Pμν,new
gg (z)

〉
= −g⊥,μν

2(1 − ε)
Pμν,new
gg (z)

= −CA

[
1 − 2z(1 − z)ε

1 − ε

]
. (A.15)

We use these results to construct the spin-averaged splitting
function P(1)

gg ; we then integrate it over z to obtain the anoma-

lous dimension γ
1−loop
z,g→gg following a similar procedure to the

one described for the tree-level splitting function, see the
discussion leading to Eq. (3.24). We find
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γ
1−loop
z,g→gg = 11

6

C2
A

ε2 + C2
A

ε

(
134

9
− 4π2

3

)

+C2
A

(
1013

9
− 44π2

9
− 60ζ3

)
− CAn f

6

+ε

[
C2

A

(
14635

18
− 335π2

9
− 106π4

45
− 550

3
ζ3

)

−31

18
CAn f

]
+ O(ε2). (A.16)

Finally, the function K̃i j reads

K̃i j = Li2(1 − ηi j ) + ln2(Ei/E j )

2

− ln

(
Ei E j

E2
3

)

ln(ηi j ) + π2

3
. (A.17)

Appendix B: Double-collinear phase space

In this appendix we describe the parametrization of the
double-collinear phase space, which turns out to be some-
what convoluted in this case.12

We consider the phase space integral

I =
∫

[d f1][d f2][d f3][d f4](2π)dδ(d)

×(pH − p1 − p2 − p3 − p4), (B.1)

with pH at rest, pH = (mH , �0). Our goal is to write the
integration measure in Eq. (B.1) in such a way that the ener-
gies E3,4, the relative angle θ13 between p1 and p3 and the
relative angle between p2 and p4, θ24, are used as the integra-
tion variables. We first integrate over �p2 to remove (d − 1)

delta-functions

I =
∫

[d f1][d f3][d f4] 2π

2E2

×δ(mH − E1 − E2( �p1, �p3, �p4) − E3 − E4), (B.2)

with E2( �p1, �p3, �p4) = | �p1+ �p3+ �p4|. We then integrate over
E1. It is difficult to use cos θ24 as an independent variable,
since E2 is fixed by momentum conservation and thus cos θ24

is a function of E2 and of E1. Instead, we parametrize the
measure in terms {E1, E3, E4, �n1, �n3, cos θ13,4} where �ni =
�pi/| �pi | and θ13,4 is the angle between the vector �p13 = | �p1+
�p3| and �p4,

cos θ13,4 = �p13

| �p13| · �n4. (B.3)

12 We note that this issue is particular to 1 → 2 decays since in this
case the leading order kinematics is overconstrained. For more complex
processes, e.g. decays to more than two partons, 1 → N , N > 2, this
does not happen since one can always choose the angles of the two hard
emittors as independent variables.

The integral over E1 removes the remaining delta function
∫

dE1δ(mH − E1 − E2( �p1, �p3, �p4) − E3 − E4)

≡ 1

1 + ∂E2
∂E1

, (B.4)

where now all values of E1 should be evaluated at E1 = E∗
1

which fulfils the δ-function constraint in the above equation.
We obtain

I =
∫

[d f3][d f4] d ��1

4(2π)d−2 E
−2ε
1

[
E1

E2

1

1 + ∂E2
∂E1

]

. (B.5)

We now compute ∂E1
∂E2

. We use

E2
2 = | �p13 + �p4|2

= |p13|2 + E2
4 + 2E4| �p13| cos θ13,4, (B.6)

and | �p13|2 = E2
1 + E2

3 + 2E1E3 cos θ13 to get

∂E2

∂E1
= E1 + E3 cos θ13

E2

[
1 + E4

| �p13| cos θ13,4

]
. (B.7)

We can also rewrite the angle between vectors �p13 and �p4

through the angle between �p2 and �p4. Indeed using

cos θ13,4 = �n13 · �n4 = �p13

| �p13| · �n4

= − �p24

| �p13| · �n4 = − E4 + E2 cos θ24

| �p13| , (B.8)

in Eq. (B.7), we find

∂E2

∂E1
= E1 + E3 cos θ13

E2

[

1 − E2
4 + E2E4 cos θ24

| �p13|2
]

.

(B.9)

Finally, we use | �p13|2 = | �p24|2 = E2
2 + E2

4 +2E2E4 cos θ24

and obtain

∂E2

∂E1
= E1 + E3 cos θ13

| �p13|2 [E2 + E4 cos θ24] . (B.10)

We now compute the energies E∗
1 and E2 that are supposed

to be used in all the formulas. Squaring both sides of the
equation pH − p1 − p3 = p2 + p4, we obtain

m2
H − 2mH (E1 + E3) + 2E1E3(1 − cos θ13)

= 2E2E4(1 − cos θ24). (B.11)

We further use the energy conservation equation E2 = mH −
E1 − E3 − E4 to find
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E∗
1 = m2

H − 2mH E3 − 2(mH − E3 − E4)E4(1 − cos θ24)

2[mH − E3(1 − cos θ13) − E4(1 − cos θ24)] .

(B.12)

The energy E2 is then obtained from energy conservation.
Finally, we write the phase space for parton f4 in terms of

the angle θ13,4

[d f4] = dE4E
1−2ε
4

2(2π)d−1 d cos θ13,4(1 − cos2 θ13,4)
−εd�13,4,

(B.13)

To rewrite it in terms of θ24, we use Eq. (B.8)

1 − cos2 θ13,4 = 1 − (E4 + E2 cos θ24)
2

| �p13|2

= E2
2

| �p13|2
(

1 − cos2 θ24

)
, (B.14)

where we applied the equality �p13 = − �p24. The Jacobian
that originates from the variable change cos θ13,4 → cos θ24

is computed employing Eq. (B.8) one more time. The result
reads

J� = ∂ cos θ13,4

∂ cos θ24

= −
[

E2

| �p13| + cos θ24
∂E2

∂ cos θ24

1

| �p13|
− E4 + E2 cos θ24

| �p13|2
∂| �p13|

∂ cos θ24

]
. (B.15)

To simplify it, we use

∂| �p13|
∂ cos θ24

= ∂| �p13|
∂E1

∂E1

∂ cos θ24

= E1 + E3 cos θ13

| �p13|
∂E1

∂ cos θ24
. (B.16)

Next we employ energy conservation to write ∂E2/∂ cos θ24 =
−∂E1/∂ cos θ24, and applying ∂/∂ cos θ24 to both sides of
Eq. (B.11), we obtain

∂E1

∂ cos θ24
= − ∂E2

∂ cos θ24

= E2E4

mH − E3(1 − cos θ13) − E4(1 − cos θ24)
.

(B.17)

We use this result to write the Jacobian as

J� = − E2

| �p13|
×
{

1 − E4

mH − E3(1 − cos θ13) − E4(1 − cos θ24)

×
(

cos θ24 + (E4 + E2 cos θ24)(E1 + E3 cos θ13)

| �p13|2
)}

.

(B.18)

Finally, applying

E2
4 + E2E4 cos θ24

| �p13|2 = 1 − E2
2 + E2E4 cos θ24

| �p13|2 , (B.19)

we obtain the final formula for the Jacobian

J� = − E2
2

| �p13|
× 1

mH − E3(1 − cos θ13) − E4(1 − cos θ24)

×
[

1 + (E2 + E4 cos θ24)(E1 + E3 cos θ13)

| �p13|2
]
.

(B.20)

The non-trivial factor present in Eq. (B.5) multiplied with
the Jacobian in Eq. (B.20) simplifies to
∣∣∣∣∣
E1

E2
J�

1

1 + ∂E2
∂E1

∣∣∣∣∣

= E1E2

| �p13|
[
mH − E3(1 − cos θ13) − E4(1 − cos θ24)

] .

(B.21)

We employ this result to derive our final formula for the
phase-space integral that we use to describe double-collinear
contributions

I =
∫

[d f3]dE4E
1−2ε
4

2(2π)d−1 d cos θ24(1 − cos2 θ24)
−ε

×
[
E2

1E
2
2

| �p13|2
]−ε

d�1d�13,4

4(2π)d−2

× E1E2

| �p13|
[
mH − E3(1 − cos θ13) − E4(1 − cos θ24)

] .

(B.22)

The phase space for [d f3] is generated using the relative angle
between �p1 and �p3 as a variable.

Appendix C: Prompt decays of the Higgs boson to bbb̄b̄
final states

In this appendix, we consider the prompt decay of the Higgs
boson13 to four b-quarks

H → bA + b̄B + bC + b̄D . (C.1)

13 We remind the reader that in this appendix we assume that the Higgs
boson only couples to b-quarks.

123



Eur. Phys. J. C          (2019) 79:1013 Page 23 of 25  1013 

Fig. 1 Diagrams for H → bb̄bb̄ decay. The gluon emission off the bubble in Hbb̄ vertex describes diagrams where the gluon is emitted from one
of the outgoing quark lines

There are four subamplitudes that contribute to this process;
they are shown in Fig. 1. The difference between these ampli-
tudes is in the fermion lines that originate from the Hbb̄
vertex and the ones that originate from the gluon splitting,
g∗ → bb̄. It is clear that b-quarks from the Hb̄b vertex are
hard, in a sense that they cannot produce infra-red singulari-
ties, whereas b-quarks from gluon splitting can be soft. Since
whether a given b-quark is hard or soft changes from diagram
to diagram, the extraction of singularities becomes intricate.

To overcome this problem we make use of the symmetries
of the H → bbb̄b̄ decay. To this end, we write the matrix
element as the sum of four subamplitudes shown in Fig. 1

M = ma + mb + mc + md (C.2)

and square it. Introducing the notation mi j = 2Re(mim∗
j ) to

describe interferences of subamplitudes, we obtain

|M|2 =
∑

i=a,...,d

|mi |2 + mab + mac

+mad + mbc + mbd + mcd . (C.3)

The H → bb̄bb̄ decay width reads

d�4b ∝ 1

(2!)2 [d fA][d fB][d fC ][d fD](2π)4δ(4)

× (pH − pA − pB − pC − pD)

×
⎧
⎨

⎩

∑

i=a,...,d

|mi |2 + mab + mac

+ mad + mbc + mbd + mcd

⎫
⎬

⎭
. (C.4)

In the squares of amplitudes, the choice of (potentially)
hard and soft fermions is unambiguous. We label the hard
momenta as 1 and 2 and the soft momenta as 3 and 4. Using
the symmetry of the phase space, we obtain

d�
(1)
4b ∝ 1

(2!)2 [d fA][d fB][d fC ][d fD](2π)4δ(4)

× (pH − pA − pB − pC − pD)
∑

i=a,...,d

|mi |2

= 2
4∏

i=1

[d fi ](2π)4δ(4)(pH − p1 − p2 − p3 − p4)θ

× (E3 − E4)|ma(1b, 2b̄, 3b, 4b̄)|2, (C.5)

where we have included a factor of 4 for the four diagrams
and another factor of 2 for the energy ordering E3 > E4. It is
straightforward to extract the various singularities from this
contribution; in fact the result is identical to the qq̄ contribu-
tion to NNLO QCD corrections to H → bb̄ decay.

The interference terms in Eq. (C.4) are more involved
since it is not possible to choose hard and soft momenta
unambiguously. Before discussing this, we note that since
helicities of massless quarks are conserved and since H →
bb̄ and g∗ → bb̄ produce quarks with different (same) helic-
ities, respectively, the interferences of diagrams (a) and (d)

mad as well as diagrams (b) and (c) mbc vanish. We then
classify the possible collinear divergences in the remaining
interference contributions. We find the following divergences
in various interference terms:

• there is a triple-collinear singularity in mab when fB, fC
and fD are collinear;

• there is a triple-collinear singularity in mac when f A, fC
and fD are collinear;

• there is a triple-collinear singularity in mbd when f A, fB
and fC are collinear;

• there is a triple-collinear singularity in mcd when f A, fB
and fD are collinear.

Out of these four interferences, only two are independent.
The relations are

mbd(Ab, Bb̄,Cb, Db̄) = mac(Ab, Db̄,Cb, Bb̄),

mcd(Ab, Bb̄,Cb, Db̄) = mab(Cb, Bb̄, Ab, Db̄). (C.6)
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Fig. 2 Interference
contributions for the triple
collinear limit 1||3||4

We also note that

mab(Ab, Bb̄,Cb, Db̄) = mab(Ab, Db̄,Cb, Bb̄),

mac(Ab, Bb̄,Cb, Db̄) = mac(Cb, Bb̄, Ab, Db̄). (C.7)

Using these results, we can write

d�4b ∝
4∏

i=1

[d fi ](2π)4δ(4)

× (pH − p1 − p2 − p3 − p4)θ(E3 − E4)

×
{

2|ma(1b, 2b̄, 3b, 4b̄)|2

+ mab(2b, 3b̄, 1b, 4b̄) + mac(3b, 2b̄, 4b, 1b̄)

}
.

(C.8)

By construction, c.f. Fig. 2, the interference contributions are
only singular in the limit when momenta of partons f1, f3
and f4 become collinear, whereas the non-interference term
has multiple singularities, including the double-soft one that
occurs when f3 and f4 become soft. We denote the interfer-
ence term as

〈F int
LM(1, 2, 3, 4)〉δ
= 〈θ(E3 − E4){mab(2b, 3b̄, 1b, 4b̄) + mac(3b, 2b̄, 4b, 1b̄)}〉δ,

(C.9)

and use this notation in the main text when we discuss the
computation of NNLO QCD contribution to Higgs decay to
two quarks in Sect. 5. The non-interference term in Eq. (C.8)
is accounted for as part of the n f -dependent contributions in
the NNLO QCD computation.
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