

Large Scale Experiments on the Tightness of Boreholes under Cyclic Loading

Marcel Schulz

Division of Technical Petrophysics Institute for Applied Geosciences

www.kit.edu

Topics

- Experiments with Smaller Apparatus
 - Setup
 - Reconstruction
 - Model & Results

- Description and Potential of Large Apparatus
 - Setup & Specifications

The smaller Apparatus

Casing filled with cement

How does the tightness of the cemented casing respond to cyclic loading (P/T variation)?

The smaller Apparatus

Casing filled with cement

How does the tightness of the cemented casing respond to cyclic loading (P/T variation)?

Karlsruhe Institute of Technology

Model

Modified after: Kromer M, Haist M, Müller HS (2014) Formation mechanisms of cementation flaws in well cementations under consideration of paste rheology. In: Bastien J, Rouleau N, Fiset M, Thomassin M (ed) Proceedings of the 10th fib international PhD symposium in civil engineering, Université Laval, Quebec.

Model of pressure evolution with time through a (straightened) gap

- Lower boundary condition: 60 bar, $t \ge 0$
- Upper boundary condition: 60 bar released pressure, t = 0
- Flow based on Hagen-Poiseuille

P = 60 bar

Model

Model of pressure increase in the upper chamber:

- Dots are normalized pressure data
 - only pressure increase after pressure release is examined
- Fitting curve based on Hagen-Poiseuille

■ Hagen-Poiseuille: Width of the gap goes into equation with exponent 3 $\frac{33^3}{24^3} = 2.6 \rightarrow$ gap widening of 37.5 % increases volumetric flow by 160 %.

Preliminary Results

Evolution of the Annular Gap

Date (MEZ)

Preliminary Results

Date (MEZ)

Karlsruhe Institute of Technology

Preliminary Results

Gap Increase

no

yes ?

The large apparatus

Division of Technical Petrophysics Institute for Applied Geosciences

Specifications of the large apparatus

 $T_{max} = 100 \ ^{\circ}C$

- P_{Pmax} = 70 bar
- Cylindric rock sample (Ø 560 mm)
 - With drilling inside
 - Cemented casing inside drilling
- Currently under reconstruction
 - Axial pressures of up to 120 bar
 - Confining pressures of up to 80 bar

Thank you for your attention!

