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Abstract
Eddy-current effects have an impact on the resistance of litz wire. They reduce the utilization of the wire

cross section. In a certain parameter range, the dominant influencing factor is the current distribution in

the wire connectors. The connector itself does not significantly contribute to the wire resistance but it

results in an inhomogeneous current distribution among the strands. We quantify the resistance increase

by introducing a connector skin-effect factor and give a mathematical derivation. Taking the twisting

of the strands into account requires a probabilistic model of the radial strand position. Resistance mea-

surement results validate the calculation approach. We discuss the assumptions and derive the parameter

range where the model is valid.

Introduction
Electromobility is a topical issue in electrical engineering and a major field of research. Automobile

manufacturers are investing in an increasing number of battery electric vehicle (BEV) models, but the

market share of electric vehicles is still low [1]. Aiming at the improvement of consumer acceptance

of electric vehicles, we consider the charging process. A BEV must be charged frequently compared

to refueling an automobile with a combustion engine. Wireless power transfer (WPT) is a promising

technology for overcoming this constraint.

• Stationary inductive WPT makes charging more convenient during periods of rain or snowfall, as

handling of the cable is not necessary. The technology can also prevent the user from forgetting

to plug in the connector at home. It is safe and long-lasting, as there are no open contacts and no

movable parts. Additionally, WPT is necessary for self-driving cars.

• Dynamic inductive WPT enables electric vehicles to be charged while in motion. This technology

could overcome the problem of limited range if it is applied in the road surfaces of motorways.

While BEVs are well suited to driving in urban areas, they are not competitive for long-distance

journeys. Dynamic charging reduces the required battery capacitance and can save cost, weight

and space in a vehicle. Compared to conductive dynamic charging technologies, dynamic WPT is

robust, due to the lack of movable parts. It can be applied to all kinds of vehicles.

Inductive WPT systems, both stationary and dynamic, consist of magnetically coupled coils. The typical

operational frequency is between 81.38kHz and 90.00kHz [2], and hence the coils are made of litz wire

to reduce eddy-current losses. Litz wire is a major cost factor due to the complexity of its manufacturing

process, and it has a significant influence on the WPT systems efficiency. As high efficiency and low

cost are important objectives, calculation of the frequency-dependent resistance of the coils is necessary.



Finite element analysis (FEA) is commonly used in the coil design for WPT systems. Modeling litz

wire using FEA software is possible in the case of short sections of wire, where the wire consists of a

manageable number of strands, (e.g., [3]). If the whole coil has to be modeled, the combination of a high

number of very thin and very long strands exceeds common computing capacities [4]. In this work, FEA

serves as a verification tool but we focus on analytical resistance calculations.

The calculation of eddy-current effects, as will be described in the next chapter, is necessary in order

to add a frequency-dependent part to the DC resistance. In the literature, several publications describe

the analytical calculation of skin effects and proximity effects in cylindrical strands, (e.g., [5], [6]). The

influences of strand twisting, bundle formation, non-ideal insulation of litz wire and material choice,

are described. Further investigations show that the wire connectors must be considered [7]. This theory

replaces the assumption that each strand in the litz wire carries the same current with the assumption

that a strand carries a certain current according to its position in the connector. Hence the authors can

explain deviations in measurement and calculation results that arise, especially in the case of litz wire,

for high-current applications. The quantification of the frequency-dependent change of resistance due to

this effect is achieved using a set of 3D and 2D FEA simulations. This method is time-consuming and

requires FEA software, while eddy-current effects in the strands can be calculated in a numerical com-

puting environment [5]. Therefore, we introduce a new method for the calculation of the inhomogeneous

current distribution in litz wire, caused by the connectors. This enables a more accurate prediction of the

frequency-dependent resistance, without using FEA software.

Eddy-Current Effects
Eddy-current losses in a conductor arise due to an inhomogeneous current density. In other words, eddy-

current effects lead to a non-ideal utilization of the conductor cross section, which can be expressed as a

rise in the conductor resistance. We distinguish two different effects:

• The skin effect, which describes the current distribution as a result of the interaction with the

magnetic field generated by the current itself.

• The proximity effect, which describes the influence of external magnetic fields on the current

distribution in a conductor.

The influence of the connectors on the litz wire resistance depends on the magnetic field affecting the

connectors. Both the skin effect and the proximity effect must be considered. However, if we place the

connectors at a distance from the coil windings, the external magnetic field is negligible. The skin effect

dominates in the current distribution. Therefore, we can omit the connector proximity effect.

Skin Effect

To investigate the skin effect we must calculate the current density in a cylindrical conductor. From

Maxwell’s equations, we obtain the diffusion equation of the electric field �E,

Δ�E = μσ
d�E
dt

(1)

where μ is the permeability, σ is the conductivity and Δ is the Laplace operator. Inserting σ�E = �J and the

direction of the current in cylindrical coordinates �J = Jz ·�ez, and assuming the current to be sinusoidal

according to Iz(t) = Î · e jωt , we rewrite the differential equation as:

∂2

∂r2
Jz +

1

r
· ∂

∂r
Jz − jωμσ · Jz = 0 (2)

The constants can be combined in a new constant ζ =
√− jωμσ, which we insert in (2):

∂2

∂r2
Jz +

1

r
· ∂

∂r
Jz +ζ2 · Jz = 0 (3)



As this is Bessel’s differential equation, it can be solved using the following function.

Jz(r) =
I0 ·ζ
2πR0

· J0(ζ · r)
J1(ζ ·R0)

(4)

where I0 is the current through the conductor, J0 and J1 are Bessel functions of the first kind and R0 is the

conductor radius. Jz(r) denotes the current density in the conductor depending on the radial position r.

The frequency-dependent AC resistance is:

Rac = ℜ

(
Uac

Iac

)
= ℜ

( ∫ l
0 σ−1Jz(R0)dz∫ 2π

0

∫ R
0 Jz(r) · r dr dφ

)
= ℜ

(
l ·ζ · J0(ζ ·R0)

σ ·2πR0J1(ζ ·R0)

)
(5)

where l is the length of the conductor. We divide (5) by the DC resistance

Rdc =
l

σπR2
0

(6)

to obtain the skin-effect factor F .

F =
Rac

Rdc
= ℜ

(
R0 ·ζ

2
· J0(ζ ·R0)

J1(ζ ·R0)

)
(7)

In addition to the notation in (7), we need another notation for the skin-effect factor, based on the power

dissipation in the conductor. This shows that the skin-effect factor represents the variance of the current

density distribution. Using the power dissipation density p = �E · �J∗ = σ−1 · JzJ∗z = σ−1 · |Jz|2, we derive

the following.

F =
Pac

Pdc
=

1
σ
∫

v |Jz(r)|2 dv
l

σπR2
0

· I2
0

=
2π·l

σ
∫ R0

0 |Jz(r)|2 · r dr

2π·l
σ ·
(

I0

π·R2
0

)2 · R2
0

2

=

∫ R0

0 |Jz(r)|2 · r dr(
I0

π·R2
0

)2 · R2
0

2

(8)

where v is the conductor volume. Here, F represents the square of the AC current density divided by the

square of the DC current density. (7) and (8) give exactly equivalent results.

Proximity Effect

Although we focus on the skin effect in the connectors, the proximity effect in the strands must also be

considered, to complete the analytical model and to compare it with measurement data. If a homogeneous

magnetic field H(t) = Ĥ · e jωt affects a cylindrical conductor with length l, it induces an electric field

which causes eddy currents. Integration of the eddy-current losses in the conductor volume gives the

proximity-effect loss in a single strand:

Pp = 2 ·G · (H2
int,rms +H2

ext,rms) · l (9)

where Hint is the magnetic field caused by other strands in the same winding and Hext is the magnetic

field caused by other windings and coils [4], [6]. The factor G depends on the relations between con-

ductor diameter, conductivity and permeability and the frequency of the field. It can be derived analyti-

cally [5], [8]. The additional resistance caused by the proximity effect is Rp =
Pp

I2
0

.

Frequency-Dependent Resistance of Litz Wire
Common litz wire models use geometrical and material data to calculate the skin effect and the proximity

effect in the strands. It is possible to perform the simulations in a numerical computing environment [9].

For comparing simulation and measurement data, we use a coil with 10 windings, made of high-power

litz wire with 7,350 insulated strands. Each strand has a diameter of 71μm. Fig. 1 shows the measure-

ment setup. The OMICRON Bode 100 serves as the measurement device. It operates in external bridge
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Fig. 1: a) Circuit diagram of the measurement setup. b) The test coil consists of 10 windings in the shape

of a square. The edge length is 380mm. c) Picture of the measurement setup. The power supply cables

have been removed.

mode, where the OMICRON B-AMP 12 is the external bridge. The coil is connected to the B-AMP

via an adapter board that converts BNC to cable lug. Note that the connectors are at a distance of more

than twice the coil edge length from the outermost winding, to avoid proximity-effect losses. As the

coil resistance is very small, the accuracy of the measurement setup is not good enough to determine

the absolute resistance. Therefore, only the frequency-dependent gradient will be evaluated. Fig. 2 dis-

plays the resistance measurements after warm-up and calibration of the Bode 100. We compare this to a

simulation that takes eddy-current effects in the strands into account. The thick vertical lines divide the

102 103 104 105

frequency (Hz)

10-2

re
si

st
an

ce
 (

)

resistance calculation
measurement data

Fig. 2: Resistance of a WPT coil as a function of frequency. The calculation does not consider the

connectors.

diagram into three sections:

1. In the first section, up to 1kHz, only the DC resistance is visible.

2. In the second section, the measured resistance increases with the frequency. The model does not

cover this effect.

3. The third section is dominated by the proximity effect. Both curves have a similar progression.

Due to the small strand diameter in this design, the skin effect in the strands does not occur. According

to [7], the difference seen in the second section results from the skin effect in the wire connectors. The

current in each strand is defined by its position in the connectors. There is no redistribution in the coil,

due to the insulation between the strands. The increase in the resistance due to the skin effect in the

connector itself can be neglected, as the connector is short. However, its effect on the current distribution

in the strands is measurable, as the strands are much longer and therefore have a much higher resistance.

The litz wire measured in Fig. 2 was made for high-current applications. Its conductor cross section of

29.1mm2 implies that the conductor diameter is larger than the skin depth in the frequency range above

1kHz. The connectors must have at least the same cross section. Thus the skin effect in the connectors

is a likely explanation for the deviation in the second section of Fig. 2.



Modeling the Influence of the Wire Connectors
To perform the design of high-current litz wire in a numerical computing environment, we propose a new

method for calculating the resistance increase due to the connectors. It is based on the observations in

the previous section and the following assumptions:

• The current density in each strand is the mean value of the current densities at the positions of its

contact with the connectors.

• The connectors have the shape and current density distribution of a cylindrical conductor.

A factor which represents the resistance increase due to the connector skin effect can be calculated if

the current densities at the ends of each strand are known. However, for a single strand, it is impossible

to calculate its radial positions at the connectors precisely. The strands are twisted into the shape of a

non-ideal helix in multiple layers, and the wire is itself curved and twisted. Given the high number of

strands, we assume the radial position of a strand to be a random variable with a certain distribution

function. Probability theory cannot provide information about a single event, but it is possible to reliably

predict the deviance and the expected value for a large number of events. Therefore, we treat the radial

position of a strand as an event that is connected with a particular current density. The variance of a

random variable describing the current density distribution of the strands yields information on how the

current densities in the strands differ from the expected value. The skin-effect factor in (8) contains the

same information. Calculation of the skin-effect factor of a single cylindrical conductor using probability

theory will verify this approach.

The Skin-Effect Factor in Probability Theory

Cylindrical Conductors

Considering the radial position inside a homogeneous cylindrical conductor as a random variable R, we

derive its cumulative distribution function:

FR(r) = P(R ≤ r) =

⎧⎪⎨
⎪⎩

0 r < 0
πr2

πR2
0

0 ≤ r ≤ R0

1 r > R0

(10)

and its probability density function:

fR(r) =
d
dr

FR(r) =

{
2r
R2

0

0 ≤ r ≤ R0

0 else
(11)

By inserting R in (4) we obtain the random variable J = Jz(R), which describes the current density prob-

ability depending on the radial position. The law of the unconscious statistician enables the calculation

of its expected value.

E[J] = E[Jz(R)] =
∫ ∞

−∞
Jz(r) · fR(r)dr =

I0

πR2
0

(12)

The expected value must be equal to the DC current density J0 = I0

πR2
0

. For demonstration purposes,

Fig. 3 shows the normalized probability density function and the normalized current density. Increasing

the frequency increases the current density near R0, which increases the variance of J = Jz(R). We derive

the variance as:

Var(J) = E[|J−E[J]|2] =
∫ ∞

−∞
|Jz(r)−E[J]|2 · fR(r)dr (13)
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Fig. 3: Normalized probability density and current density functions of a solid cylindrical conductor and

of litz wire with cylindrical connectors.

which represents the squared deviation of J from the expected value E[J]. The similarity to (8) leads to

another notation for the skin-effect factor:

F =
Var(J)+E[J]2

E[J]2
=

∫ ∞

−∞

∣∣∣∣Jz(r)
E[J]

−1

∣∣∣∣
2

· fR(r)dr+1 (14)

which always gives the same result as (7) and (8).

Litz Wire with Cylindrical Connectors

This calculation method can be applied to litz wire with a sufficiently high number of strands, with a

connector on each side. As both connectors have an influence on the current density in each strand, the

current density is an event that depends on the combination of two random variables Ra and Rb. A mutual

probability density function is required. Due to the non-ideal twisting, we consider the radial positions

of a strand at each connector to be independent. The probability density function of the sum of two

independent random variables Ra and Rb is the convolution of their density functions, therefore

fRa+Rb(r) = ( fRa ∗ fRb)(r) =

⎧⎪⎪⎨
⎪⎪⎩

∫ r
0

2τ
R2

0

· 2(r−τ)
R2

0

dτ 0 < r ≤ R0∫ R0
r−R0

2τ
R2

0

· 2(r−τ)
R2

0

dτ R0 < r ≤ 2R0

0 else

(15)

is the probability density function describing the independent choice of two radial positions at the con-

nectors. As for Ra +Rb, a random variable representing the current density depending on both connector

positions is required. To calculate its expected value and variance, we define the function g, which

determines the random variable JRa+Rb depending on Ra +Rb:

JRa+Rb = g(Ra +Rb) (16)

We assume that the current density in each strand is equal to the average value of the current densities at

its ends in the connectors. Since it depends on the sum of two radial positions Ra +Rb, the function g
must contain all possible combinations of current densities corresponding to that value. Therefore the

average values of each combination are added, and the result is divided by the number of summands.

Transferring this procedure to an integral notation, we define

g(r) = Jz,Ra+Rb(r) =

⎧⎨
⎩

1
2r

∫ r
0 Jz(τ)+ Jz(r− τ)dτ 0 < r ≤ R0
1

2(2R0−r)

∫ R0
r−R0

Jz(τ)+ Jz(r− τ)dτ R0 < r ≤ 2R0

0 else
(17)



as the current density depending on the radial position r = ra + rb. Inserting the random variable JRa+Rb

in (12) - (14), we derive the connector skin-effect factor

Fcon =
Var(JRa+Rb)+E[JRa+Rb ]

2

E[JRa+Rb ]
2

=
∫ ∞

−∞

∣∣∣∣Jz,Ra+Rb(r)
E[JRa+Rb ]

−1

∣∣∣∣
2

· fRa+Rb(r)dr+1 (18)

which represents the resistance increase due to the unequal current distribution among the strands.

Fig. 3 shows the normalized functions fRa+Rb(r) ·R0 and Jz,Ra+Rb(r)/J0. The maximum current density

is equal to that of a solid conductor with the same diameter. However, due to the redistribution of the

strands, the radial positions with high current density have a lower probability. Compared with a solid

conductor, the skin effect of the litz wire is much lower.

Comparison of Simulation and Measurement Data

A comparison of the measurement data already introduced in Fig. 2 and the resistance calculation con-

sidering the connectors, validates the new method. Fig. 4 shows that the frequency-dependent resistance

curve is the sum of the DC resistance and the additional resistance caused by the skin effect and the prox-

imity effect. Between 1kHz and 100kHz, where Fig. 2 shows a disagreement between measurement and

simulation, the new method leads to a better match. We can cross-check the connector-effect theory by
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Fig. 4: The new resistance calculation conforms to the measurement curve. The overall resistance is the

sum of the DC resistance and the additional resistance caused by the skin effect and the proximity effect.

resistance measurements and calculations for a coil that consists of litz wire with 512 insulated strands,

where each strand has a diameter of 100μm. Compared with the wire in Fig. 4, the copper cross section

is much smaller, and therefore we expect the connector skin effect to be less significant. Fig. 5 shows

that both measurement and simulation fulfill the expectation.

Model Discussion
Application Range

To examine the parameter range where consideration of the connectors is necessary, we calculate Fcon

as a function of R0/δ, where δ = (1− j)/ζ is the skin depth. Fig. 6 shows the gradient of Fcon and the

skin-effect factor of a solid conductor F . Fcon clearly has a significant influence if the skin depth is below

R0/2. Compared to F , it is less steep, which means that the litz wire has a much lower AC resistance

than a solid conductor with the same cross section. In Fig. 4, the region where the connector effect is

dominant in the resistance measurement (1kHz ...100kHz) is equivalent to R0/δ = 1.4 ...14.
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Fig. 5: Compared with Fig. 4, the connector skin effect is negligible in this litz wire design. Its copper

cross section is much smaller.
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Limitations

Relation Between Strand Diameter and Wire Diameter

It is necessary to understand the requirements and the limitations of the model. The density functions

are a homogeneous representation of discrete strand positions. The homogenization is valid only if the

strand diameter is small enough compared to the wire diameter. We investigate the difference between

the homogeneous and the discrete current densities by approximating (12) with the Riemann integral:

E[J] = E[Jz(R)] =
n−1

∑
k=0

Jz(rk) · fR(rk) · R0

n
(19)

where n = R0/(2Rs). Rs represents the radius of a strand. Like E[J] = J0 in the homogeneous case,

the Riemann integral calculation of E[J]/J0 gives the dependence of Jz(r) on n. Fig. 7 shows that the

deviation is frequency-dependent. The high current density at the outer edge of the connector appears

in the litz wire only if the strands are small enough. However, to reduce the strand-level skin effect this

condition will probably be fulfilled. The litz wire used in the measurement setup (Fig. 1) has a ratio of

R0/(2Rs)> 42.



Connector Shape

The derivation of the connector skin-effect factor in (18) is valid for rotationally symmetric connectors

only. It is possible to generalize the calculation and consider any kind of connector shape.

Fcon =
Var(JXa+Xb)+E[JXa+Xb ]

2

E[JXa+Xb ]
2

=
∫ ∞

−∞

∣∣∣∣Jz,Xa+Xb(x1, ...,xn)

E[JXa+Xb ]
−1

∣∣∣∣
2

· fXa+Xb(x1, ...,xn) dx1...dxn +1

(20)

where X1, ...,Xn are random variables with the combined probability density function fX(x1, ...,xn). In-

stead of depending on the radius only, the current density will depend on multiple dimensions.

Alternatively, it is possible to consider the shape by introducing a correction factor. Fig. 8 shows a

common cable lug. This connects the strands in a rectangular or stadium shape. If the skin depth is
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ometrical shapes.
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ductor gives a stationary final value.

much smaller than the edge length, most of the current flow is located on the conductor surface. Fig. 8

displays basic shapes with identical cross sections. We compare the scaled shape perimeter γ = 2πr/p
in Table I with the scaled skin-effect factor Fshape/Fcircle in Fig. 9. If R0 >> δ is true, the factor γ acts as

Table I: Comparison of conductor shape perimeters

Circle Square Rectangle - 2:1 Rectangle - 4:1 Stadium shape - 2:1

p 2πr 4r
√

π 3r
√

2π 5r
√

π (8+2π)r
√

π
8+π

2πr
p 1 0.886 0.836 0.709 0.828

a correction factor. In the derivation of F and Fcon, we can apply this by defining Jz,γ(r) = γ · Jz(r) and

fR,γ(r) = 1
γ · fR(r).

Interaction of Different Eddy-Current Effects

The resistance calculation in Fig. 4 sums the resistance fractions caused by the various effects, without

considering any interactions. This is a common practice, as the orthogonality of the skin effect and the

proximity effect in the strands is proved in [5]. However, the strand-level proximity-effect model is based

on the assumption that the winding is a region of uniform current density [6]. As the currents through the

strands actually differ due to the connectors, this assumption is valid only if the twisting continuously

reallocates the adjacent strands. In this case, the current density in a small bundle of strands is uniform



throughout the wire, and the connector skin effect does not influence the average proximity effect in the

strands.

In a WPT application, the connectors will probably be much closer to the coil than in Fig. 1. If there

is no proper electromagnetic shielding, the proximity effect will influence the current distribution in the

connectors. Consideration of the connector proximity effect will further improve the litz wire model.

Conclusion
The frequency-dependent current distribution among the insulated strands of litz wire is unequal, due to

eddy-current effects in the wire connectors. We focus on the AC resistance calculation including con-

sideration of the connector skin effect. High-power litz wire, consisting of thousands of strands, appears

to have a significant resistance increase in the frequency range where the skin depth is 1.4 ...14 times

smaller than the connector radius. The high number of non-ideal twisted strands enables a new calcu-

lation method. This uses probability theory to describe the radial position of the strands. Applying the

probabilistic strand positions in the current density calculation provides the connector skin-effect factor,

which depends on the current density variance. This gives the resistance increase of the litz wire, de-

pending on the DC resistance.

Following the mathematical derivation, the model discussion shows that the assumption of a homo-

geneous probability density function for the strand position is valid in the parameter range where the

connectors have a significant influence on the wire resistance. Resistance measurement results validate

the new calculation method in the case of litz wire made for high-power WPT applications. Further

improvement can be achieved by considering the connector proximity effect.
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