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Abstract
A physical model to describe the contact between rubber and a rough surface with water as intermediate medium is presented. 
The Navier–Stokes equations are simplified and surface properties are approached by the Abbott–Firestone curve to generate 
an approximative description of the water squeeze out between a visco-elastic rubber block and a macro-rough surface. The 
model is used to describe the pattern dependent wet grip performance of vehicle tires at moderate water heights between 
pure wetgrip and full hydroplaning. Influence of surface macro-roughness, water height, tire pattern, and vehicle speed on 
braking performance is considered in particular. For validation purpose, braking tests on two different surfaces were done 
at an inner drum test bench. Test results show good agreement with the theory presented.

Keywords Wet braking · Tribology · Friction · Road texture · Tire-road contact · Water height

List of Symbols
A  Surface area of tread block
AF(h)  Area of contact between fluid and rubber
Aq(h)  Free area between track and tread block
Aqx

(h)  Free area between track and tread block paral-
lel to y, z-plane

Aqy
(h)  Free area between track and tread block 

parallel to x, z-plane
AR(h)  Area of contact between track and rubber
B  Width of tread block
C  Geometric factor
E  Modulus of elasticity of Kelvin–Voigt 

element
�  Viscosity of Kelvin–Voigt element
fL(h)  Water height dependent fluid velocity coef-

ficient in x-direction
fB(h)  Water height dependent fluid velocity coef-

ficient in y-direction
Fz(t)  Load on tread block
�T  Factor for churning losses
G1(h)  Track parameter

G2(h)  Track parameter
G3(h)  Track parameter
G4(h)  Track parameter
h(t)  Water height
ḣ(t)  Initial change of water height
h0  Initial water height
h̄(h)  Equivalent water height
K(h)  Track parameter
�(z)  Correction factor for control volume VC

L  Length of tread block
ṁout  Mass flow density over the control volume 

boundaries
�  Dynamic viscosity of fluid
pF(t)  Mean fluid pressure
pm(t)  Mean pressure acting on tread block
pR(t)  Mean contact pressure at interface AR(h)

�  Relation between fL and fB
�  Density of water
�R  Density of rubber
s(x, y, h(t))  Local rubber deformation at interface AR(h)

s̄(h)  Mean rubber deformation at interface AR(h)

s∗(t)  Additional rubber deformation at interface 
AF(h)

ṡ∗(t)  Time derivative of additional rubber defor-
mation at interface AF(h)

�F  Fluid velocity
u(x)  Fluid velocity in x-direction
v(y)  Fluid velocity in y-direction
w(z)  Fluid velocity in z-direction
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tc  Contact time
u(x, z�)  Fluid velocities x-direction in equivalent 

coordinate system
v(y, z�)  Fluid velocities y-direction in equivalent 

coordinate system
w(x, y, z�)  Fluid velocities z-direction in equivalent 

coordinate system
vout(x, y)  Fluid velocity at boundary surfaces
vout,Aqx

(y)  Fluid velocity at boundary surface Aqx

vout,Aqy
(x)  Fluid velocity at boundary surface Aqy

vout
⟂
,Aqx

(y)  Perpendicular fluid velocity at boundary 
surface Aqx

vout
⟂
,Aqy

(x)  Perpendicular fluid velocity at boundary 
surface Aqy

VC(h)  Control volume
V̇in  Volume flow in Vin

V∞  Infinite volume under tread block
V̇out  Volume flow out Vout

Ẇin  Engery flow into VC

Ẇkin  Change of kinetic energy inside VC

Wkin,F  Initial kinetic energy of fluid
Ẇout  Energy flow out of VC

Ẇvisc  Viscous losses inside VC

�  State vector
xa  Material share
x, y, z′  Coordinate system for equivalent water height
ẏ
⟂
  Initial vertical velocity of tread block on an 

undisturbed circular path
Z(x, y)  Track profile
za  Track height

1 Introduction

There are various approaches to describe rubber friction of 
rough surfaces. Most of them try to model hysteretic friction 
on different length scales [1–5]. In [6], Persson proposes 
a method to describe wet grip with sealing effects. Water 
trapped in substrate pools smoothens the track and there-
fore reduces hysteretic friction. In [7, 8] the squeeze out of 
water between a solid track and rubber is described with 
viscosity effects. In [9] hysteretic friction of a rubber block 
moving on a rough surface is approached with a simplified 
visco-elastic contact. In [10] the model is expanded to wet 
conditions with the viscous squeeze out of a fluid film. On 
the other hand exist detailed finite element and finite volume 
models to describe the effects of tire profile and tread depth 
on hydroplaning behavior [11]. A more simple hydroplan-
ing model of a slick tire is proposed in [12, 13]. Already 
small water heights of 1–3 mm have a significant impact on 
braking force transmission between track and tire, although 
no full hydroplaning occurs yet [14]. These effects could be 

seen in our tests especially for high vehicle speeds above 
80 km/h. The theories for very thin waterfilms presented in 
[7, 10, 15] are based on viscous effects and will reach their 
boundaries at higher water heights. The theory presented in 
[16] is only valid at low vehicle speeds. For higher velocities 
and water heights inertia effects will be of major importance 
in the squeeze out process, as shown by Bathelt [17, p. 31]. 
The main focus of the model presented here is to predict 
wet grip performance for high vehicle speeds and moderate 
water heights, when no hydroplaning occurs yet. It has to be 
mentioned, that we aim to examine wet grip only at discrete 
speeds and not for the deceleration until zero. The combi-
nation of moderate water heights and high vehicle speed 
was already examined in [18]. He reduces the problem to a 
simple equation for the water height between tire and road. 
This is achieved, among other things, by neglecting squeeze 
out in the direction of travel and reducing track character-
istics to two scalar values described as ’texture depth’ and 
’connectivity factor’. In contrast to [18], less simplifying 
assumptions are to be made in this study in order to develop 
a physically more valid model.

To describe the pattern dependent impact of water height 
on the braking performance, a physical model of a single 
tread block is developed. Main goal is to calculate the iner-
tia-driven squeeze out of water under a single tread block 
and thus the contact area between rubber and track. This 
allows a qualitative estimation of pattern effects independ-
ent of absolute friction levels. The underlying assumption is, 
that for small water heights the water squeezed out under a 
single tread block is consumed by the surrounding grooves. 
Rubber properties, track macro-roughness, and tire load are 
taken into account. To validate the model, braking tests with 
various pattern layouts on two different tracks where done at 
an inner drum test bench at KIT.

This paper is organized as follows: In Sect. 2 we give a 
detailed description of the physical model and an interpre-
tation of the quantities calculated. In Sect. 3 we describe 
the setup for the braking tests at different parameter com-
binations and validate the simulation results with the test 
results. In Sect. 4 we summarize the new findings and give 
an outlook on possible improvements and enhancements of 
the model.

2  Model

Considering the contact between an elastic rubber block 
and a macro-rough track (e.g., Asphalt) which is partly cov-
ered with water, we get the conditions shown in Fig. 1. The 
zero position of the x, y, z-coordinate system is placed in the 
medium road level. Track valleys are filled with water up 
to a height h(t) . The surface area covered by water is called 
AF(h) . Mean fluid pressure pF(t) , defined as overpressure 
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relative to ambient pressure, deforms the rubber in this area 
by a distance s∗(t) , assuming that the mean water height 
h(t) is equal everywhere under the tread block. On the area 
AR(h) asperities penetrate the fluid film and contact between 
track and rubber is established on the largest length scale. 
Micro-roughness on smaller length scales and fluid viscosity 
determine the local friction coefficient on these asperities. 
We do not aim to predict the absolute friction coefficient 
on these asperities, but only how fast AR(h) increases dur-
ing braking dependent on water height, speed, and pattern 
layout independently of the friction level on the asperities; 
therefore, roughness on smaller length scales is not consid-
ered in this approach. Where contact is established, the rub-
ber is deformed by a distance s(x, y, h(t)) + s∗(t) . The mean 
contact pressure on the asperities is described by pR(t) . The 
track profile is given by Z(x, y) . Furthermore the relation-
ship s(x, y, h(t)) = Z(x, y) − h(t) is given. For the sake of 
clarity in the further model description the function argu-
ments will only be written if they are of particular interest. 
The local problem description is now transformed into a 
global description by averaging the local rubber deformation 
s(x, y, h(t)) over the area of contact AR(h) which leads to the 
mean rubber deformation

This relation is shown in Fig. 2. Thus we have a system with 
two degrees of freedom, described by the water height h(t) 
and the rubbber deformation s∗(t) . Figure 3 shows a rectan-
gular tread block with edge lengths B and L and surface area 
A on a rough track with an intermediate fluid. While the 
tread block sinks in all water has to be squeezed out through 
the boundary surface Aq(h) = 2(Aqx

(h) + Aqy
(h)) . The fluid 

volume trapped between tread block and track is described 
as control volume VC(h) . The newly introduced sizes AF(h) , 
AR(h) , Aq(h) and s̄(h) can be calculated from the 
Abbott–Firestone curve of the corresponding track and will 
represent the track influence on squeeze out in the equations 

(1)s̄(h) =
∫
AR(h)

s(x, y, h(t))dx dy

AR(h)
.

derived later. The Abbott–Firestone curve is the cumulative 
probability density function of the surface profile height 
Z(x, y) and describes the material share xa(za) dependent on 
the track height za . The two tracks used in this paper are 
shown in Fig. 4. The mean texture depth MTD is 1 mm for 
asphalt and 0.2 mm for Safety-Walk™. Looking at the curve 
for asphalt, we can see for example that xa(0mm) = 50% , 
which means that for a water height of 0 mm 50% of the 
track is covered with water. Another example would be 
za = 1mm for Asphalt, with xa = 2% which means roughly 
98% of the track is covered with water. With this definition 
we can write

Fig. 1  Contact on macroscopic 
length scale

(a) Side view (b) Top view(downsized)

Fig. 2  Transition to global problem description

Fig. 3  Single tread block
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and 

for rectangular block geometries. VC will be used later.  
Sahlin et al. [19] used the Abbott–Firestone curve of dif-
ferent surfaces to determine surface dependent flow fac-
tors. They showed numerically that ‘the Abbot curve acts 
as an unambiguous two-dimensional surface classifica-
tion in hydrodynamic lubrication with this homogeniza-
tion approach’ [19]. Although the approach used here is 
different, we can use this as encouragement to capture 
the track influence on squeeze out with the Abbott–Fire-
stone curve. When a load is applied to the tread block, 
the fluid is accelerated and flows through the boundary 
surface Aq(h) . This flow will be calculated approximately 
through the Navier–Stokes equations. All viscous terms 
are neglected in a first step, since the considered average 
water height is between 0.5 and 3 mm and for these water 
heights inertia effects are dominant. Neglecting viscous 
terms also means that the shape of the boundary surface 
Aq(h) has no influence, only it’s size. This is of great 
importance, since the shape of the surface is an informa-
tion with is not included in the Abbott curve. Further-
more, the velocity distribution �F = (u(x), v(y),w(z))T

x,y,z
 

inside the fluid is calculated according to the analytical 
approximate solution for the fluid flow between a smooth 
elliptical rigid disc and a smooth rigid surface proposed 
in [17].

(2)AF(h(t)) = A
(
1 − xa(za = h(t))

)
,

(3)AR(h(t)) = Axa(za = h(t)),

(4)Aq(h(t)) = 2(B + L)∫
h(t)

−∞

(1 − xa(za))dza

(5)VC(h(t)) = A∫
h(t)

−∞

(1 − xa(za))dza

The linearity in x - and y-direction and the independence 
of z shown in Fig. 5 follows from the neglection of viscous 
terms inside the fluid. The fluid velocity w(z) in z-direction 
is neglected because the relation h(t) ≪ B, L applies. The 
relation between the velocities in x - and y-direction is set to 
� = fB(h) ⋅ fL(h)

−1 = L ⋅ B−1 based on the analytical solution 
of an elliptical rigid disc according to [17]. We use this for 
velocity distribution for rectangular block geometries too, 
because the error caused by this approximation is small as 
shown in [17]. The fluid velocity coefficients fL(h) and fB(h) 
are functions of the water height h(t) and it’s time derivative 
ḣ(t) as shown in Sect. 2.1.

2.1  Continuity Equation

Applying the continuity equation and the incompressibility of 
the fluid on our control volume VC(h) gives us

where V̇in is the volume flow in VC(h) and V̇out the volume 
flow out of VC(h) . The volume change of our control volume 
is given by

with ḣ(t) as time derivative of the water height h(t) . The 
perpendicular velocities vout

⟂
,Aqx

(y) and vout
⟂
,Aqy

(x) at the out-
flow boundaries Aqx

(h) and Aqy
(h) are given by

and

which allows us to write

(6)u(x) = fL(h) ⋅ x

(7)v(y) = fB(h) ⋅ y

(8)

(9)V̇C = −ḣAF(h),

(10)vout
⟂
,Aqx

= fL
L

2

(11)vout
⟂
,Aqy

= fB
B

2
= � fL

B

2
,

Fig. 4  Abbott curves for Asphalt and Safety-Walk™

Fig. 5  Velocities u(x) and v(y)
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Inserting the relations from 9 and 14 in 8 leads to

and

The geometric factor C is very similar to the hydraulic 
diameter. For the derivation of the governing equations the 
factor � will be held variable, but is assumed to be time 
independent.

2.2  Energy Conservation

With the given simplifications we can now set up the energy 
balance for the fluid between tread block and track:

Ẇin is the power entry through the vertical movement of the 
treadblock. Ẇkin is the change of kinetic energy inside the 
fluid, Ẇout describes the energy loss due to fluid flow over 
the boundaries of our control volume. Ẇvisc describes an 
approximation of the losses through viscous friction inside 
the fluid.

(12)V̇out = Aq(h)
(

B

B + L
vout

⟂
,Aqx

+
L

B + L
vout

⟂
,Aqy

)

(13)V̇out = Aq(h)
(

B

B + L
fL
L

2
+

L

B + L
fB
B

2

)

(14)V̇out =
1

2
Aq(h)

BL

B + L
fL(1 + 𝜓).

(15)
fL(h(t), ḣ(t)) = −2ḣ

AF

Aq

1

(1 + 𝜓)

C

���
B + L

BL

(16)fL(h(t), ḣ(t)) = −2Cḣ
1

(1 + 𝜓)

AF(h)

Aq(h)

(17)fB(h(t), ḣ(t)) = −2Cḣ
𝜓

(1 + 𝜓)

AF(h)

Aq(h)
.

(18)Ẇin = Ẇkin + Ẇout + Ẇvisc

2.2.1  Energy Input

The energy input Ẇin into the fluid is defined by the product 
of fluid pressure pF(t) , fluid surface AF(h) and the sink in 
velocity ḣ.

The negative algebraic sign is caused by the fact, that h(t) 
and the resulting pressure pm(t) on the fluid point into oppo-
site directions.

2.2.2  Change of Kinetic Energy

The change of kinetic energy Ẇkin inside the fluid is defined 
by

� is the density of water. An equivalent expression is

where V∞ is the possible infinite volume underneath the 
tread block. The fact, that for a lower waterheight the share 
of VC(h) in the complete volume is lower, is taken into 
account by the correction factor

which can be calculated from the Abbott curve, as shown in 
Eq. 2, and equals 1 above the highest asperity and 0 below 
the deepest valley. Applying the integration boundaries to 
Eq. 21 leads to

for a rectangular block under the assumption of symmetry in 
x - and y-direction. Taking Eqs. 16, 17 and Leibniz’ rule of 
integration into account leads to (see “Appendix B”)

(19)Ẇin(h, ḣ) = −pF(t)AF(h)ḣ(t)

(20)Ẇkin =
d

dt

(
∫VC

1

2
𝜌
(
f 2
B
y2 + f 2

L
x2
)
dVC

)
.

(21)Ẇkin =
d

dt

(
∫V∞

1

2
𝜌𝜅(z)

(
f 2
B
y2 + f 2

L
x2
)
dx dy dz

)
,

(22)�(z) =
AF(z)

A
,

(23)

Ẇkin =
d

dt

(
∫

h(t)

−∞ ∫
B

2

0 ∫
L

2

0

2𝜌𝜅(z)
(
f 2
B
y2 + f 2

L
x2
)
dx dy dz

)

(24)Ẇkin =
1

6
𝜌C2 L

2 + 𝜓2B2

(1 + 𝜓)2

⎡
⎢⎢⎢⎢⎢⎣

2ḣ
AF

Aq

�
ḧ
AF

Aq

+ ḣ2
𝜕

𝜕h

�
AF

Aq

��
⋅

K(h)

�����������

∫
h

−∞

AF(z)dz+ḣAF

�
ḣ
AF

Aq

�2

⎤⎥⎥⎥⎥⎥⎦
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G1(h) , G2(h) , G3(h) , K(h) , �(z) and later G4(h) are track 
parameters which can be calculated from the Abbott–Fire-
stone curve of the track used with Eqs. 2–4.

2.2.3  Energy Outflow

The energy outflow is defined by the water velocity vout(x, y) 
at the outflow and the mass flow density through the bound-
ary surface Aq(h).

The fluid velocities vout,Aqx
(y) and vout,Aqy

(x) at the outflow 
boundaries Aqx

(h) and Aqy
(h) are defined similar to Eqs. 10 

and 11 by

The mass outflow density ṁout is given by

Equations 10, 11, 28, 29 and 30 allow to simplify Eq. 27 to 
(see “Appendix C”)

(25)Ẇkin =
1

6
𝜌C2 L

2 + 𝜓2B2

(1 + 𝜓)2

⎡
⎢⎢⎢⎢⎢⎢⎣

2K(h)

⎛
⎜⎜⎜⎜⎜⎝

ḣḧ

G1(h)

����������
AF(h)

Aq(h)

�2

+ḣ3

G2(h)

�����������������������

AF(h)

Aq(h)

𝜕

𝜕h

�
AF(h)

Aq(h)

�
⎞
⎟⎟⎟⎟⎟⎠

+ ḣ3

G3(h)

����
A3
F

A2
q

�
⎤
⎥⎥⎥⎥⎥⎥⎦

(26)Ẇkin(h, ḣ, ḧ) =
1

6
𝜌C2 L

2 + 𝜓2B2

(1 + 𝜓)2

[
2K(h)

(
ḣḧG1(h) + ḣ3G2(h)

)
+ ḣ3G3(h)

]
.

(27)Ẇout =
1

2 ∫Aq

ṁoutv
2
out
dAq.

(28)v2
out,Aqx

(y) = f 2
L

L2

4
+ f 2

B
y2 = f 2

L

(
L2

4
+ �2y2

)
,

(29)v2
out,Aqy

(x) = f 2
L
x2 + f 2

B

B2

4
= f 2

L

(
x2 + �2B

2

4

)
.

(30)ṁout(x, y, z) = 𝜌𝜅(z)vout
⟂

(x, y).

(31)ṁout(x, y, z) = 2𝜌∫
h

−∞

𝜅(z)

(
∫

B

2

0

v2
out,Aqx

(y) ⋅ vout
⟂
,Aqx

(y)dy + ∫
L

2

0

v2
out,Aqy

(x) ⋅ vout
⟂
,Aqy

(x)dx

)
dz

(32)ṁout(x, y, z) = −
𝜌C3

(1 + 𝜓)3
ḣ3
(
L2 +

1

3
𝜓2B2 +

1

3
𝜓L2 + 𝜓3B2

)
⋅

G4(h)

���������(
AF(h)

Aq(h)

)3

K(h)

�����������

∫
h

−∞

AF(z)dz

Ẇout(h, ḣ) = −
𝜌C3

(1 + 𝜓)3
ḣ3
(
L2 +

1

3
𝜓2B2 +

1

3
𝜓L2 + 𝜓3B2

)
G4(h)K(h).

The geometric factor C was already introduced in Eq. 15.

2.2.4  Viscous Losses

To take the damping effect of viscous losses in the fluid 
into account an additional term Ẇvisc is introduced. It 
describes the energy dissipation through viscous friction 
inside the fluid. In reality a combination of inertia and 
viscous driven flow would cause a complex velocity distri-
bution inside the fluid. We neglect the influence of inertia 
for the calculation of the viscous losses, and later use the 
principal of superposition to add up inertia and viscous 
terms. We assume a flat track with a given water height 
h̄(h) , which contains the same amount of water as a rough 
track at a water height h(t) . This leads to

The x, y-plane describes a flat track and the equivalent  
water height h̄(h) is measured in z′-direction as  
shown in Fig.  6. The Velocity distribution �(x, y, z�) =
(u(x, z�), v(y, z�),w(x, y, z�))T

x,y,z�
 for a pure viscous flow in a 

thin water film is given by a Poiseuille flow [20]. The single 
entries are

(33)
h̄(h) =

K(h)

�����������

∫
h

−∞

AF(z)dz ⋅
1

A
=

K(h)

A
.
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and

where � is the dynamic viscosity of water. Again the velocity 
w(x, y, z�) is neglected because of h̄(h) << B, L . Integrating 
over the water height h̄(h) leads to

The applicable boundary conditions are

and

The assumption of a purely viscous flow hence leads to a 
quadratic velocity distribution, which is shown in Fig. 6. We 
want to calculate the energy dissipation for a sink in velocity 
which is equal to the one caused by a purely inertia-driven 
flow described by Eqs. 6 and 7. This means the volume flow 
over the boundaries of VC(h) has to be same and therefore 
the relation

holds. Integrating leads to

and therefore

(34)
�2u(x, z�)

�2z�2
=

1

�

�p

�x

(35)
�2v(y, z�)

�2z�2
=

1

�

�p

�y
,

(36)u(x, z�) =
1

2𝜇

𝜕p

𝜕x

(
z�2 − z�h̄

)
.

(37)u(x, z� = 0) = 0

(38)u(x, z� = h̄) = 0.

(39)∫
h

−∞

𝜅(z)fLxdz = ∫
h̄

0

1

2𝜇

𝜕p

𝜕x

(
z�2 − z�h̄

)
dz�

(40)
K(h)

A
fLx =

1

2𝜇

𝜕p

𝜕x

[
z�2 − z�h̄

]h̄
0

(41)
K(h)

A
fLx =

1

2𝜇

𝜕p

𝜕x

[
−
1

6
h̄3
]
,

(42)
�p

�x
= − 12�fLx

A2

K(h)2
.

Using Eq. 36 gives us the velocity distributions

and

The second derivatives are

and

The energy loss in case of a pure viscous flow is calculated 
according to [Bathelt [17], p.45] as

2.3  Pressure Equilibrium

In a first step the rubber behavior is approached by a Kel-
vin–Voigt element. The modulus of elasticity E is set to 
14 MPa. This value was chosen to achieve a contact area of 
65% under static load. This value equals the area of contact 
obtained from static footprint measurements on a Fujifilm 
prescale pressure sheet with the test tires. This value is at 
the upper level of rubber elasticity values since the model 
approach corresponds to an infinite number of parallel Kel-
vin–Voigt elements which are not coupled with each other. 
Shear stress between neighboring elements is neglected. The 
viscosity � is 5 × 104 Pa s. This value did not have a significant 
impact on the results, as long as it’s chosen large enough to 
prevent oscillations of the rubber block when it hits the asperi-
ties. The contact pressure pF(t) between fluid and rubber is 
calculated according to

where s0 describes the height of the undeformed tread block, 
respectively the height of the Kelvin–Voigt element. The 
contact pressure between rubber and track is given by

(43)u(x, z�) = − 6fL
A2

K(h)2
x
(
z�2 − z�h̄

)

(44)v(y, z�) = − 6fB
A2

K(h)2
y
(
z�2 − z�h̄

)
.

(45)
�2u(x, z�)

�z�2
= − 12fL

A2

K(h)
x

(46)
�2u(y, z�)

�z�2
= − 12fB

A2

K(h)
y.

(47)

Ẇvisc(h, ḣ) = 4𝜇 ∫
h̄

0 ∫
B

2

0 ∫
L

2

0

u(x, z�)
𝜕2u(x, z�)

𝜕z�2
+

𝜕2v(y, z�)

𝜕z�2
dx dy dz�

(48)Ẇvisc(h, ḣ) = 4𝜇C2A2 L
2 + 𝜓2B2

(1 + 𝜓)2

G1(h)

K(h)
ḣ2.

(49)pF(t) = E
s∗

s0
+ 𝜂

ṡ∗

s0
,

Fig. 6  Poiseuille flow
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where s̄(h) is the mean penetration depth given by Eq. 1. 
Fluid and track combined have to carry the tread block load 
Fz(t) , which leads to

The mean pressure on a single tread block pm(t) is given by

2.4  Differential Equation System

Energy conservation and pressure equilibrium lead to a 
system of two coupled, non-linear and implicit differential 
equations with h(t) and s∗(t) as degrees of freedom. The state 
vector � is given by (h(t), ḣ(t), s∗(t))T and it’s time derivative 
by �̇ = (ḣ(t), ḧ(t), ṡ∗(t))T . The resulting system of differential 
equations is

Equation 55 describes the fact that the entries of � are not 
independent, but the second entry of � is the time deriva-
tive of the first entry. It should be noted that for a more 
complex rubber model the state vector could be expanded 
to (h(t), ḣ(t), s∗(t), ṡ∗(t))T  . The initial water height h0 is 
given by the amount of water on the track. For the posi-
tioning of our coordinate system in Fig. 1 1 mm water 
height means the track contains 1  l/m2 if all asperi-
ties are covered with water. For lower water heights h0 
is adjusted that it describes the corresponding volume 
(e.g 0.5mm ≡ 0.5 l∕m2

→ h0 = 0.46mm with Eq.  5 and 
VC = 0.5mmA ). An initial rubber deformation of s∗

0
= 0 is 

assumed. For the calculation of the initial sink in velocity ḣ0 
it is assumed, that the kinetic energy of a single tread block

is converted into kinetic energy Wkin,F of the fluid

(50)pR(t) = E
s̄ + s∗

s0
+ 𝜂

̇̄s + ṡ∗

s0
,

(51)pm(t) ⋅ A = pR(t) ⋅ AR(h) + pF(t) ⋅ AF(h).

(52)pm(t) =
Fz(t)

A
.

(53)0 = Ẇkin(�, �̇) + Ẇout(�) − Ẇin(�) + Ẇvisc(�)

(54)0 = pm ⋅ A − pR(�, �̇) ⋅ AR(�) − pF(�, �̇) ⋅ AF(�)

(55)0 = �(2) − �̇(1).

(56)Wkin,R =
1

2
𝜌RBLd

(
ẏ2
⟂
− ḣ2

0

)

(57)Wkin,F =
1

2
�F ∫VF

v2
F
dVF

�R is the density of rubber. ẏ
⟂
 describes is the vertical veloc-

ity of a tread block on an undisturbed circular path before it 
hits the fluid film. Since churning losses will occur a factor 
�T is introduced which describes how much of the kinetic 
energy of the tread block is converted into fluid velocity �F . 
This leads to

and after some transformations to

If no churning losses occur �T is set to one, otherwise 
�T ∈ [0, 1] . Without more detailed considerations we assume 
a churning loss of 50%.

The differential equation system from Eqs. 53 to 55 is 
solved with ode15i of Matlab ™. Figure 7 shows some of the 
calculated quantities for one of our patterns (BB, see Fig. 9a) at 
120 km/h and 2 mm water height on an asphalt track. The main 
result is the water height h(t) under a tread block as shown 
in Fig. 7a. The dotted lines symbolize the highest peaks and 
lowest valleys of the track used. The chain dotted line shows 
the circular path of a tread block on an undeflected tire with 
constant radius. As shown in Fig. 7b, the simulation starts 
wit a fluid pressure of 0.3 MPa, which means the whole tread 
block load FZ(t) is carried by the fluid film. When the first 
asperities penetrate the fluid film, the contact pressure between 
track and rubber pR(t) increases rapidly, which is caused by 
rubber damping and large deformation velocity. At the same 

(58)Wkin,F = 2�Fh0 ∫
B

2

0 ∫
L

2

0

f 2
L

(
x2 + �2y2

)
dx dy

(59)Wkin,F =
1

24
𝜌F

ḣ2
0

h0
BL

L2 + 𝜓2B2

(1 + 𝜓)2
.

(60)Wkin,R ⋅ �T = Wkin,F

(61)ḣ0 =

√√√√√ dẏ2
⟂
𝜌R𝛾T

1

12
𝜌F

1

h0

L2+𝜓2B2

(1+𝜓)2
+ d𝜌R𝛾T

.

Table 1  Relative change ΔArel in % for a change of the input param-
eter of +10%

The reference point is pattern BB on the asphalt track

Parameter �T lfp F
Z

E �

Reference value 0.5 135 mm 4875 N 14 MPa 5 × 104 Pa s

ΔArel (80 km/h, 
1 mm)

0.197 − 3.362 5.156 − 4.148 − 1.156

ΔArel (80 km/h, 
2 mm)

0.15 − 3.032 5.502 − 4.045 − 1.194

ΔArel (120 km/h, 
1 mm)

0.406 − 1.894 4.689 − 3.339 − 1.626

ΔArel (120 km/h, 
3 mm)

0.335 − 1.212 5.316 − 3.11 − 1.737
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time the fluid pressure pF(t) decreases, since an increasing part 
of the tire load Fz(t) is carried by the asperities. For t → ∞ 
the fluid pressure aims towards zero and the contact pressure 
pR(t) aims towards pR(t → ∞) = pm(t) ⋅ A ⋅ AR(h(t → ∞))−1 . 
Inserting h(t) in AR(h) and normalizing the result with A , we 
obtain the time dependent relative area of contact between 
track and tread block which is shown in Fig. 7c. This value is 
averaged over the length of the footprint lfp , which gives us the 
dimensionless scalar value

where tc describes the time the tread block is inside the 
contact patch. This value gives an idea how much contact 
between track and tread block is established during the 
simulation. Table 1 shows the sensitivity of Arel to a change 
of + 10% of the described parameters. The parameter �T 
describing the churning losses only has a very small influ-
ence on Arel . Increasing the length respectively size of the 

(62)Arel =
1

tc ∫tc

AR(h(t))

A
dt,

footprint reduces the mean pressure acting on a single tread 
block and therefore aggravates the squeeze out, which leads 
to a smaller value of Arel . An increased vertical load causes 
a faster squeeze out and therefore a larger contact area. 
Increasing the material stiffness E or the dynamic viscosity 
� decreases the area of contact. The effect of modified model 
parameters is rather similar for all water heights and speeds 
and is therefore not critical for the evaluation of pattern, 
speed, and water height influence. In Sect. 3 we compare 
Arel with maximum friction coefficients from braking tests. 
The underlying assumption is that the transmittable friction 
forces are proportional to the area of contact. This approach 
does not take into account that in the front part of the foot-
print fewer braking forces are transmitted compared to the 
rear part and therefore not only the total contact area, but 
also it’s distribution within the footprint is of importance 
for the transmittable braking forces.

Fig. 7  Simulation results for 
2 mm water height and 4875 N 
tire load

(a)

(b)

(c)
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3  Results/Validation

Braking tests on Asphalt and Safety-Walk™ at the inner 
drum test bench at KIT are performed for validation of the 
physical model. Figure 8 shows the topography of the two 
tracks used. The larger macro texture of the asphalt track is 
clearly visible and leads to the big differences between the 
Abbott curves shown in Fig. 4. The average friction level on 
wet for the compound used in this study is roughly 0.7 on 
asphalt and 1.0 on Safety-Walk™. This is caused by the dif-
ferent micro-texture, which is neither captured by the track 
measurement nor represented by the Abbott curve. Since 
we do not consider the micro-roughness for our model, this 
is not a problem. The test bench consists of a steel drum 
with an inside diameter of 3.8 m which is equipped with 
an Asphalt or Safety-Walk™ track and a hydraulically 
driven wheel suspension with built-in measuring hub. The 
drum rotates with a constant circumferential speed which 
corresponds to the driving speed. The tire is braked by the 

hydraulic wheel guide and the resulting forces are recorded 
with the measuring hub. While the tire is decelerated, the 
drum speed is kept constant. This allows the measurement 
of a friction coefficient at a discrete driving speed. For a 
detailed description of the test bench see [21]. Tires with 
the dimensions 245/45 r18 and different pattern layouts 
(BB = big blocks, SB = small blocks and SBv = small 
blocks with more void volume) were tested at speeds from 
80 to 140 km/h and water heights of 1–3 mm. The schematic 
pattern layout is shown in Fig. 9. The direction of travel is 
vertical. For the detailed block geometries see “Appendix 
A”. The tire load was set to 4875 N with an inflation pressure 
of 2.1 bar. The test result used for model validation is the 
maximum friction coefficient �max measured during braking 
with varying the wheel slip at constant drum speed. Water 
heights were measured capacitively, which means 1 mm 
equals 1l/m2. The same definition was used for the model.

In Fig. 10a test and simulation results are shown for a water 
height of 1 mm on Asphalt. The rating value for the test results 

Fig. 8  Track topography for a 
20 × 20 mm segment

Fig. 9  Pattern layouts

(a) Big Blocks (BB) (b) Small Blocks (SB) (c) Small Blocks, high
void (SBv)

Fig. 10  Rating values for dif-
ferent patterns at 1 mm water 
height and 4875 N tire load

(a) (b)
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is calculated by normalizing the measured maximum friction 
coefficients with the friction coefficient measured at 80 km/h 
for small blocks. The rating value for the model is calculated 
by normalizing Arel introduced in Eq. 62, with the value of 
Arel calculated for 80 km/h and small blocks. As one can see 
there is a good qualitative agreement for the decrease over 
velocity for all patterns. The difference predicted by the model 
between small blocks at 25% and 35% void volume is con-
firmed by the test. One reason is the larger surface pressure, 
which causes a faster squeeze out of water. The second reason 
is the slightly shorter squeeze out distance. The disadvantage 
of big blocks is underestimated by the model, which could be 
explained by the higher geometric stiffness in vertical direc-
tion of the big blocks. This effect is not captured by the model 
and will aggravate squeeze out because of the higher contact 
pressure pR(t) . Therefore the penetration depth of the asperi-
ties is lower which is associated with a smaller contact area.

In Fig. 10b test and simulation results of the same three 
patterns are shown for a water height of 1 mm on Safety-
Walk™ (For the track characteristic see Fig. 4). Again, 
all values are normalized with the test/simulation result at 
80 km/h for small blocks. The pattern ranking (order of the 
patterns) matches well, except for small blocks with high 
void at 80 km/h. The decrease over velocity is slightly under-
estimated, except for the high void pattern. One reason could 
be, that the grooves start filling with water for the low void 
patterns, which aggravates the squeeze out effect.

The track dependent decrease of grip over velocity is 
clearly visible if we compare the two tracks. As expected 
the velocity dependence on Safety-Walk™ is much stronger, 
which can be explained by the poor drainage capability of the 
track and therefore slower squeeze out. This effect is captured 
by the model through the Abbott curve of the given track, 
which allows a detailed consideration of track properties.

In Fig. 11 we see the results of big blocks for 1 and 2 mm 
water height, scaled to the values at 80 km/h and 1 mm. On 
asphalt there is a good match between test and model. On 
Safety-Walk™ the spread between 1 and 2 mm is underesti-
mated by the model. The reason might be, that for 2 mm the 

grooves start to fill and the underlying single block considera-
tion reaches it’s boundaries. This can be verified by calculat-
ing the maximum amount of water which fits into the grooves. 
For a given tread depth of 7.5 mm and a relative void volume 
of 25% , the maximum water height which can be taken by the 
grooves is roughly hmax = 0.25 ⋅ 7.5mm = 1.875mm , if we 
neglect the drainage volume of the track. For asphalt the maxi-
mum water height is larger, since the track macro-roughness 
provides additional drainage volume.

4  Conclusions

The introduced model allows a qualitative comparison of 
simple patterns for different tracks, water heights, and driving 
speeds. Impact of load and void level is included in the model 
and confirmed by the test results. The boundaries of the 
model are reached when tire grooves start to fill completely 
with water and the transition to hydroplaning occurs, which 
could be seen in the test results for 2 mm on Safety-Walk™. 
To capture the transition to hydroplaning, the consideration 
of the whole footprint would be necessary, including the time 
dependent flooding of the tire void. A quantitative prediction 
of grip would require the consideration of slip and a fric-
tion model that takes micro-roughness into account, which 
was not the goal of this study. The block deformation during 
braking is also expected to have an impact on squeeze out 
and will be considered in a future study by coupling the pre-
sented squeeze out model with a finite element simulation of 
a visco-elastic rubber block sliding on a macro-rough surface.
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Fig. 11  Rating values for big 
blocks at 1 and 2 mm water 
height and 4875 N tire load
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Appendices

Appendix A: Pattern Geometries

Block geometries of the patterns used, void volume is equal to surface 
void. BB-tire contains 3 rows with the block geometry described, SB 
and SBv contain 5 rows, including the tire shoulder

Geometry Abbrv. Block 
length 
(mm)

Block 
width 
(mm)

Void 
volume 
(%)

Nr. of rows

Big blocks BB 36.6 53.2 24.8 3
Small blocks SB 23.2 25.6 25.0 5
Small blocks SBv 20.8 25.6 35.3 5

Appendix B: Additional Information for Change 
of Kinetic Energy

Steps after Eq. 23

(63)

Ẇkin =
d

dt

(
∫

h(t)

−∞ ∫
B

2

0 ∫
L

2

0

2𝜌𝜅(z)
(
f 2
B
y2 + f 2

L
x2
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dx dy dz
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Ẇkin =
1

24
𝜌BL

(
L2 + 𝜓2B2

)[
2fLḟL ∫
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(75)Ẇkin =
1

24
𝜌BL

(
L2 + 𝜓2B2

) 4C2

(1 + 𝜓)2

[
2ḣ
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Appendix C: Additional Information for Change 
of Energy Outflow

Steps after Eq. 31
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