
lable at ScienceDirect

Carbon 158 (2020) 580e587
Contents lists avai
Carbon

journal homepage: www.elsevier .com/locate /carbon
Side reactions and stability of pre-treated carbon felt electrodes for
vanadium redox flow batteries: A DEMS study

L. Eifert a, Z. Jusys b, R.J. Behm b, R. Zeis a, c, *

a Karlsruhe Institute of Technology, Helmholtz Institute Ulm, Helmholtzstraße 11, D-89081, Ulm, Germany
b Institute of Surface Chemistry and Catalysis, Ulm University, Albert-Einstein-Allee 47, D-89081, Ulm, Germany
c Karlsruhe Institute of Technology, Institute of Physical Chemistry, Fritz-Haber-Weg 2, D-76131, Karlsruhe, Germany
a r t i c l e i n f o

Article history:
Received 26 August 2019
Received in revised form
8 November 2019
Accepted 9 November 2019
Available online 10 November 2019
* Corresponding author. Karlsruhe Institute of Tec
Ulm, Helmholtzstraße 11, 89081, Ulm, Germany.

E-mail address: roswitha.zeis@kit.edu (R. Zeis).

https://doi.org/10.1016/j.carbon.2019.11.029
0008-6223/© 2019 The Authors. Published by Elsevier
a b s t r a c t

The identification and quantification of the side reactions in all-vanadium redox flow batteries are crucial
to maintain its performance and to develop optimized materials. We altered the chemical composition
and structure of the carbon felt electrodes by thermal treatment, chemical, and electrochemical aging,
and also storing thermally treated felts for an extended period, which represent several stages in its life.
The treated felts were evaluated regarding their affinity to side reactions and electrochemical activity
towards both relevant vanadium redox couples (V2þ/V3þ and V4þ/V5þ). Differential electrochemical mass
spectrometry was utilized to track the potential dependant formation of CO2 and O2 on the positive
electrode side and of H2 on the negative electrode side. Storing thermally treated felts for an extended
period under ambient conditions results in a slightly decreased electrochemical performance and an
increased CO2 formation due to oxidation by atmospheric oxygen. The V4þ/V5þ redox reaction is
hampered on electrochemically aged carbon felts, while they show an increased electrochemical activity
towards the V2þ/V3þ redox reaction, thus allowing recycling of aged cathode felts as an anode felt and
therefore extending the overall lifetime of the carbon felt electrode.
© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Due to the gradual shift towards renewable energy sources, such
as solar or wind power plants, the demand for stationary energy
storage systems increases to compensate for the fluctuating power
output of these energy sources. Redox flow batteries (RFBs) in gen-
eral are a promising technology, since the power generation and
energy storage capacities are decoupled, themanufacturing costs are
potentially low, the design can be tailored to suit specific applica-
tions, and the response times to demand changes are comparatively
fast [1e5]. As one specific type, vanadium redox flow batteries
(VRFBs) utilize commonly two inexpensive carbon-based electrodes,
an ion-exchangemembrane and twovanadium-based electrolytes in
the oxidation states (II)/(III) and (IV)/(V), which allows a high
robustness towards electrolyte cross-contamination, relatively low
environmental impact, and a long cycling life. The redox reactions
occurring in the two half-cells are shown in equations (1) and (2),
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and the full-cell equation (3), together with their corresponding
redox potential [1,6]. Furthermore, several studies found the anodic
half-cell to be the limiting reaction in a VRFB [7e10].

Anodic half-cell V3þ þ e� / V2þ

E0¼�0.255 V vs. SHE (1)

Cathodic half-cell VO2þ þ H2O þ e� / VO2
þ þ 2 Hþ

E0 ¼ þ1.004 V vs. SHE (2)

Full cell VO2þ þ H2O þ V3þ / VO2
þ þ V2þ þ 2 Hþ

E0 ¼ þ1.259 V vs. SHE (3)

The most common electrode materials in VRFBs are carbon
fiber-based materials, either as felts or as papers, due to their
relatively low cost, decent electrical conductivity, and tunable ac-
tivity. The latter two properties can be highly influenced by surface
modifications such as varying the active surface area [11e15] or
introducing functional groups by chemical [16e22] or thermal
treatments [23e26]. Unfortunately, under the operating conditions
of the VRFB, side reactions such as carbon corrosion and oxygen
evolution at the cathode, and hydrogen evolution at the anode, lead
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 1. (a) Possible reactions on carbon electrodes in VRFBs with their corresponding
potentials. (b) Treatment procedures of the carbon felt in this study: A thermal acti-
vation at 400 �C for 25 h, followed by either 6 months of storage in a lab cabinet at
room temperature and on-air, or soaking in 4MH2SO4 at 40 �C for 15 days, or elec-
trochemical aging in 0.1 M V(V) þ 2 M H2SO4 at 1.2 V vs. SHE for 5 days. (A colour
version of this figure can be viewed online.)
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to significant performance losses [26]. The side reactions and their
corresponding potentials with regard to the vanadium redox re-
actions are illustrated in Fig. 1(a), they can be described by the
following reaction equations:

Hydrogen evolution 2 Hþ þ 2 e� / H2[

E0� 0.000 V vs. SHE (4)

Carbon corrosion C þ 2H2O / CO2[ þ 4Hþ þ 4 e�

E0� 0.207 V vs. SHE (5)

Oxygen evolution 2H2O / O2[ þ 4 Hþ þ 4 e�

E0�1.230 V vs. SHE (6)

Due to their impact on the cell performance, the identification,
quantification and systematic prevention of these side reactions
gained considerable attention in the last decade. While earlier
studies focussed on the positive electrode degradation and its
dependence on the potential, temperature, or time and their
detection [27,28], more recent ones discuss the side reactions on
the negative electrode, assuming that this is the performance-
limiting factor [29e33]. The impact of the pretreatment of
different commercially available carbon felts on their surface
composition, thermal stability and electrochemical behavior was
addressed in detail in our preceding study [26]. In a subsequent
study, we utilized differential electrochemical spectrometry
(DEMS) to investigate the influence of the vanadium-containing
electrolyte on the side reactions on carbon felt surfaces, and
observed an increase of both, CO2 and H2 formation, in the presence
of vanadium ions [34]. Furthermore, we did not find any indication
of oxygen evolution (Eq. (6)) in the given potential window. This is
in a good agreement with the findings of Liu et al., who studied the
electrochemical corrosion of a graphite disc working electrode in
sulfuric acid and vanadium-containing electrolyte [35]. They
detected O2 formation only at potentials greater than 1.8 V vs. SHE.

To gain further insight on the side reactions occurring during the
lifetime of carbon electrodes in VRFBs, we studied the influence of
altering the chemical composition and structure of the carbon felt
electrode surface by thermal treatment, chemical, and electro-
chemical aging, and evaluate the effect of storing the felt for an
extended period under ambient conditions, as schematically sum-
marized in Fig. 1(b). For that, we again utilize cyclic voltammetry
and DEMS to detect the potential dependant formation rate of
gases, which were formed due to side reactions, and combine these
results with our previous findings focussing on the detailed char-
acterization of resulting carbon materials [26] and a proof-of-
concept DEMS study for the thermally activated carbon felt [34].
By applying a continuous flow of electrolyte via a model carbon felt
electrode, a high utilization of the electrode surface area can be
achieved, while continuously delivering reactant to the electrode
surface and effectively removing the reaction products, which re-
sults in a well-defined mass transport limited current. The trans-
port properties of carbon felt electrodes were addressed using a
pore networkmodeling approach and X-ray computed tomography
imaging in our previous publications [36e38] and in a preceding
study [39]. These studies demonstrated the importance of the hy-
drophilicity of the functionalized carbon fibers for the permeability,
diffusivity and invasion percolation of the porous medium. In
contrast, under stopped-flow conditions, the electrolyte remains in
the confined space within themodel carbon felt electrode, allowing
to perform regular cyclic voltammetry experiments and analyze the
V4þ/V5þ and V2þ/V3þ redox couples quantitatively. In the following,
after a description of the experimental procedures, we will discuss
the electrochemical activity and reversibility of the vanadium redox
reactions and stability of the carbon material in dependence upon
the different treatment methods, which represent several stages
during the lifetime of a carbon felt electrode in a VRFB.
2. Materials and methods

2.1. Preparation of materials

For these studies, we used the Rayon based graphitized carbon
felt SIGRACELL® GFA6EA by SGL Carbon (Meitingen, Germany).
Untreated, pristine felts are represented by a grey color in graphs
throughout this study. To modify their physical and chemical
properties, the pristine felts underwent several treatment proced-
ures, as schematically shown in Fig. 1(b). The felts were first ther-
mally treated at 400 �C for 25 h in an air atmosphere to introduce
active sites as described previously in the literature [23,24,26,34],
these materials are represented by a black color in the following
graphs. After this, the felts underwent one of the following pro-
cedures, which represent several stages during the lifetime of car-
bon felt electrode in a VRFB:

� Storage in a lab cabinet for 6 months to evaluate the persistence
of the thermal activation. The resulting materials are repre-
sented by green color in the following graphs.

� Soaking in 4MH2SO4 (technical, VWR) at 40 �C for 15 days to
provide an insight into chemical aging during a typical single
cell cycling experiment, uncoupled from the influence of vana-
dium ions and applied potential [26,40e42]. We based the
higher concentration on current vanadium redox flow battery
systems, which utilize total sulfate concentrations between 4
and 5M [43]. The resulting materials are represented by a light
blue color in graphs throughout this study.

� Electrochemical aging in 0.1MV5þ þ 2 M H2SO4 at 1.2 V vs. SHE
for 5 days at room temperature, which induces high oxidative
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stress in the carbon felts and is equivalent to the conditions at
the positive electrode side of a fully charged VRFB [26,40,41,44].
The electrolyte was prepared by charging an appropriate vana-
dium (IV) electrolyte in a redox flow test cell (Scribner 857 test
stand, Scribner Associates, North Carolina, USA), until a charging
current of 2mA/cm2 was reached, where the battery is consid-
ered to be fully charged [26,40,45]. The resulting electrode
materials are represented by red color in subsequent graphs.

We used a vanadium (IV) electrolyte in all electrochemical ex-
periments, which was freshly prepared by dissolving an appro-
priate quantity of 5mMVOSO4 (VOSO4$5H2O, chemically pure, GfE)
in 2MH2SO4 (Suprapur, Merck, diluted with purified Milli-Q water
(18.2MU cm)) [34]. Prior to each measurement, all felts were
placed in purified water and sonicated for 5min to remove
contaminants.

2.2. Differential electrochemical spectrometry (DEMS) setup

A differentially pumped vacuum chamber with a quadrupole
mass spectrometer (Pfeiffer Vacuum, QM 422) was utilized to
monitor selected ion currents. The setup is described in more detail
in Ref. [46]. A previously introduced, modified version of the dual
thin-layer flow-through DEMS cell [34,47] was used to obtain
potentiodynamic data and allow online detection of volatile species
via a porous membrane (Scimat, 60 mm thick, 50% porosity and
0.2 mmpore diameter). The electrical contact of the felt was ensured
by compressing the felt with a glassy carbon disc, which resulted in
a relative compression of the felt by ~33%. The electrolyte flow was
established by the hydrostatic pressure in the supply bottle at a
constant flow rate of 6 mL/s. Two Pt wires at the inlet and outlet of
the cell served as counter electrodes. A saturated calomel electrode
connected to the outlet of the DEMS cell via a Teflon capillary was
used as reference and all potentials were converted to SHE. Cyclic
voltammetry measurements (scan rate 10mV/s) were carried out
using a potentiostat from Pine Instruments (AFRDE5), the data
were acquired by the means of a home-written LabVIEW program.

Cyclic voltammograms were also recorded under stagnant
electrolyte conditions, comparable to the situation in a standard
half cell setup. In this case, however, wewere not able to detect any
volatile gasses produced during the reactions due to the configu-
ration of the thin-layer cell used but allowing us the quantitative
coulometric measurements of V4þ/V5þ or V2þ/V3þ redox couples at
different potentials.

To investigate the impact of potential induced stress (carbon
corrosion, hydrogen, and oxygen evolution), we utilized different
potential regions. We used an oxidative potential range (�20 mV
toþ1580mV), wherewe recorded CO2 formation, as well as a broad
potential range (�410 mV to þ1580 mV), where we monitored of
H2, O2 and CO2 formation. The mass spectrometric signals were
background corrected to ensure comparability. To investigate the
redox reaction of V2þ/V3þ in more detail, we selected a reductive
potential range of �410mV to 0mV and stopped the electrolyte
flow for that measurement. The material was cycled four to five
times in the given potential window until a stable faradaic and
mass current response was detected. In this work, only the final
cyclic voltammograms and potential dependant mass current plots
are shown.

3. Results and discussion

3.1. The influence of treatment methods on the CO2 evolution in
vanadium and base electrolyte

In Fig. 2 we show the potential dependant CO2 formation under
electrolyte flow conditions (a) in 5mM VOSO4 in 2MH2SO4 and (b)
in 2MH2SO4 base electrolyte, to assess the influence of the vana-
dium ions on differently treated carbon felts. Aiming at the analysis
of the oxidation of V4þ to V5þ and the CO2 evolution as the side
reaction, the lower potential limit is set to 0 V to prevent H2 evo-
lution and a further reduction of the V4þ. In the bottom part of
Fig. 2(a), the typical steep increase in current is observed, which is
related to the V4þ oxidation. The onset potential is about 925mV
for thermally treated, cabinet stored and electrochemically aged
carbon felts, whereas pristine and soaked felts show not only a
much lower double layer capacity but also a higher onset potential
of about 1055mV, which correlates with a lower electrochemical
activity. With increasing potential, a transport limited current be-
tween 2.1 and 3.8mA was reached, which increased in the order:
pristine< soaked< activatedz agedz stored. The latter three
electrodes show essentially similar currents, considering the
different double layer capacities. The increase in the double layer
capacities can be explained by the larger active surface area as a
result of the increased wettability of the felts [37,48]. The increased
electrochemical activity in the case of the treated samples leads to
higher transport limited current.

The increase in current at potentials >1450mV results from the
oxidation of carbon to CO2, which is evidenced in the simultaneous
mass spectrometric measurements (see top plot in Fig. 2(a)). As
shown in previous studies, the thermal treatment reduces the CO2

formation rate due to the removal of volatile components
[26,40,49], whereas the storage time and electrochemical aging
lead to a drastic increase, presumably due to partial oxidation of the
surface by atmospheric oxygen or oxidative electrochemical stress,
respectively. Furthermore, electrochemically aged felts show a
redox peak of the quinone/hydroquinone couple at ca. 600mV. A
similar behavior is also observed for thermally treated and stored
samples, but far less pronounced. The felts soaked in sulfuric acid
show a slightly reduced CO2 formation. This can be explained by an
efficient oxidative removal of oxygen-containing surface groups in
thewarm sulfuric acid, which leaves only themost stable structures
behind, as our previous work already indicated [26].

Comparison with the characteristics in 2MH2SO4 electrolyte
illustrates the influence of the vanadium ions on the differently
treated carbon felts. In Fig. 2(b) we show the cyclic voltammogram
(bottom), as well as the potential dependent CO2 ion current (top).
Without any metallic redox couple in the electrolyte, the faradaic
response solely results from surface groups, such as the quinone/
hydroquinone redox couple. The currents gradually increase in the
sequence pristine< soaked< thermally treated< stored< electro-
chemically aged, which is in agreement with previously reported
data [26]. Compared to the vanadium-containing electrolyte, the
quinone/hydroquinone redox couple is slightly more pronounced
for electrochemically aged felts and slightly less for thermally
treated and stored felts. With the potential approaching 1500mV,
the faradaic current increases exponentially, in full agreement with
the CO2 ion current shown in the upper part of Fig. 2(b). Both, CO2
formation and faradaic current, increase in the order pris-
tine< soaked< thermally treated< stored< electrochemically
aged. This directly correlates with the increased double layer ca-
pacity and, thus, the increased surface area. Compared to CO2 for-
mation in the vanadium-containing electrolyte (Fig. 2(a)), we
observe an almost doubled ion current for electrochemically aged
felts in the absence of vanadium ions, whereas all other treatment
procedures result in a reduced CO2 formation. Furthermore,
without vanadium ions, the electrochemically aged felts show a
substantial CO2 formation already at the onset potential of ca.
920mV, which shifts to about 1050mV in the presence of vana-
dium ions. Here, the V4þ oxidation delivers the faradaic current at
the given potential, while without vanadium ions present, the
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highly oxidized surface [26] with a high surface area is further
oxidized instead, resulting in a substantially higher overall CO2
formation. In contrast, on barely oxidized surfaces, such as pristine
samples, we observe the previously reported [34] additional
surface-oxidizing effect of vanadium ions. This effect is also
observed on thermally treated and soaked carbon felts, albeit not as
pronounced.

3.2. The influence of treatment methods on the vanadium redox
reactions

To further investigate the influence of the treatment procedures
on the vanadium redox reactions (Eq. (1) and (2)) we stopped the
electrolyte flow and recorded cyclic voltammograms in 5mM
VOSO4 containing 2MH2SO4, which are shown in Fig. 3. We eval-
uated the peak-to-peak separation (DE), the peak current ratio (IA/
IC) and the anodic to cathodic peak charge ratio (CA/CC) for each
redox couple and carbon felt sample and summarized the results in
Table 1. These values give insight into the electrochemical revers-
ibility and thus the overall performance of the material as an
electrode in a VRFB [26,50,51].
Fig. 2. CVs recorded on pristine (grey), thermally treated (black), cabinet stored (green)
continuous flow conditions, showing the faradaic current response and the corresponding CO
electrolyte. During all measurements, the potential scan rate was 10mV/s and the flow rat
viewed online.)
As we have shown previously [26], thermal treatment enhances
the electrochemical activity towards the V4þ/V5þ redox reaction.
The decrease of DE of the V4þ/V5þ redox couple from 362.2mV for
the pristine felt to 164.8mV for the thermally treated felt indicates
increased reversibility of the redox reaction. Both, IA/IC, as well as
CA/CC, increase significantly to above 2 after thermal treatment and
even reach almost 3 for stored felts. This results if more vanadium
ions are oxidized than reduced at a given potential. The reason for
that is the broad potential window of the cyclic voltammograms,
where the lower potential limit is below the redox potential of the
V2þ/V3þ reaction (standard potential for V2þ with an activity of 1,
E0¼�255mV, see Eq. (1) and Fig. 1(a)) and the sluggish redox
reaction kinetics of the V3þ/V4þ couple (E0¼ 337mV), where the
V3þ ions can only be oxidized at much higher potentials, which
already overlap with the redox potential of the V4þ/V5þ reaction
(E0¼1000mV, cf. Fig. 1(a)). This results in an instant oxidation of
V3þ to V5þ with two electron transferred, which doubles both, IA/IC
and CA/CC. This effect is visible in all felt electrodes, although the
pristine and soaked felts show more evenly balanced current and
charge ratios since only a small part of V4þ is reduced to V3þ or V2þ.
This is reflected in the hardly noticeable V2þ/V3þ redox peak couple
, soaked in sulfuric acid (blue) and electrochemically aged (red) carbon felts under
2 ion current in (a) a 5mM VOSO4 in 2MH2SO4 electrolyte and in (b) a 2MH2SO4 base

e of the respective electrolyte was about 6 mL/s. (A colour version of this figure can be



Fig. 3. CVs recorded on pristine (grey), thermally treated (black), cabinet stored
(green), soaked in sulfuric acid (blue) and electrochemically aged (red) carbon felts
under stopped flow conditions in 5mM VOSO4 in 2MH2SO4 electrolyte with a po-
tential scan rate of 10mV/s. (A colour version of this figure can be viewed online.)

Table 1
Calculated data of the V4þ/V5þ and V2þ/V3þ redox peaks for the different carbon
samples, retrieved from the cyclic voltammetry in the full (ca.�0.4e1.6 V) potential
range without electrolyte flow.

Felt type Redox couple DE [mV] IA/IC CA/CC

Pristine V4þ/V5þ 362.2 1.41 1.34
Thermal V4þ/V5þ 164.8 2.31 2.54
Stored V4þ/V5þ 122.4 2.11 2.95
Soaked V4þ/V5þ 402.8 1.71 1.28
Aged V4þ/V5þ 213.9 3.77 1.97

Pristine V2þ/V3þ 181.3 0.04 0.08
Thermal V2þ/V3þ 127.6 0.35 0.19
Stored V2þ/V3þ 77.2 0.27 0.09
Soaked V2þ/V3þ - - -
Aged V2þ/V3þ 38.2 0.44 0.28
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at very low potentials. Besides the enhanced vanadium redox ac-
tivity, the thermal treatment also increases the double layer ca-
pacity via an increased surface area. Furthermore, it also shows a
more pronounced quinone/hydroquinone redox couple at ca.
500mV, which points to an increase of oxygen-containing func-
tional groups on the carbon felt surface, in good agreement with
our previous findings [26,34]. The effect of storing the felt in a lab
cabinet for 6 months on the thermally induced electrochemical
improvements in Fig. 3 is relatively low for the V4þ/V5þ redox re-
action, showing only a slight increase in the double layer capacity
and a more pronounced quinone/hydroquinone redox couple. The
V2þ/V3þ redox reaction, on the other hand, shows a slightly reduced
DE. Minding that the felts were stored in an unsealed plastic bag in
a closed lab cabinet, the two most probable interactions are
oxidation by atmospheric oxygen and outgassing of CO2, which was
formed by oxidation of unstable surface groups.

Finally, soaking in sulfuric acid for 15 days or electrochemical
aging in V5þ electrolyte for 5 days at 1.2 V vs. SHE heavily impacts
the electrochemical behavior of the carbon felts. First of all, it is
obvious that soaking a thermally treated sample reduces the
reversibility of the V4þ/V5þ redox reaction, which is reflected in the
increasing peak separation DE, which increases from 164.8 for the
freshly thermally treated sample to 402.8mV, as shown in Table 1.
Our present findings are in good agreement with the previous
observation of a significant decrease in double-layer capacity,
which mostly correlates with the surface area, while the charge
ratio CA/CC approaches unity. In contrast, the electrochemical aging
highly increases both, the quinone/hydroquinone redox peaks, as
well as the double layer capacity, while it shows similar DE and CA/
CC values as the freshly thermally treated felt. Furthermore, the
electrochemically aged and stored felts show a very low DE for the
V2þ/V3þ redox couple compared to thermally treated samples. The
soaked sample did not show the distinct redox couple at low po-
tentials, therefore we could not calculate the related
electrochemical data for this sample. On the other hand, both
pristine and soaked carbon felt electrodes exhibit the largest DE,
which could also be related to a measured Ohmic loss due to an
increased hydrophobicity caused by the developed functional
groups [26].
3.3. The influence of treatment methods on the H2, O2 and CO2

evolution

We again enabled when the electrolyte flow to simultaneously
track the potential dependent gas evolution of CO2, and now
additionally, H2, and O2. The cyclic voltammograms and the cor-
responding ion currents, recorded in (a) 5mM VOSO4 in 2MH2SO4
and in (b) 2MH2SO4 base electrolyte, are shown in Fig. 4. The CO2
formation of the pristine felt is much lower compared to the same
felt with higher potential limit (cf. Fig. 2(a)), which points towards
an increased surface stability against oxidation after thorough
reduction. Looking at the thermally treated and stored carbon felts,
they show nearly identical transport limited currents of around
3mA, and also similar H2 formation rates of about 0.2 nA, and both
values are higher in comparison with the pristine carbon felt. Both,
soaking in sulfuric acid and electrochemical aging, show a lower
transport limited current (both ca. 2mA). The CO2 formation rate of
the stored felt is unaffected by the change of the lower potential
limit and is still higher than that of the freshly thermally treated
sample. A similar trend is also visible for the CO2 mass spectro-
metric signals: a lower potential limit e and therefore a more
reduced carbon surface e does not affect the maximum CO2 for-
mation at 1.5 V for thermally treated felts, whereas soaked and
electrochemically aged felts show a reduced CO2 ion current of
about 80% at 1.5 V, as would be expected for materials, which un-
derwent a highly oxidizing treatment. It is worth mentioning that
for the thermally treated and electrochemically aged felts, we
already observe an increased CO2 ion current at 0.5 V, which cor-
responds to the oxidation of hydroquinone groups on the carbon
surface. For the oxygen evolution, we observe no significant
changes, independent of the treatment procedure, since the upper
potential limit is not high enough to generate measurable amounts
of oxygen. This corresponds well with findings of previous studies
[34,35].

H2 evolution is most pronounced for thermally treated and
stored felts (cf. Fig. 4(a)), while both soaked and electrochemically
aged felts show about 50% less H2

þ ion current. Interestingly, the
electrochemically aged felts show about the same faradaic current
at�0.45 V as the thermally treated samples, while evolving less H2.
This again points towards an increased electrochemical activity of
the V2þ/V3þ redox reaction, sincemore electrons are utilized for the
vanadium (III) reduction rather than for H2 evolution. To verify this



Fig. 4. CVs and the corresponding ion current plots of CO2, H2 and O2 recorded on pristine (grey), thermally treated (black), cabinet stored (green), soaked in sulfuric acid (blue) and
electrochemically aged (red; dotted: raw data; solid: fit) carbon felts under continuous flow conditions, showing the V4þ oxidation, V3þ reduction, and the corresponding gas
evolution currents in (a) a 5mM VOSO4 in 2MH2SO4 electrolyte and in (b) a 2MH2SO4 base electrolyte. The grey vertical lines in (a) mark the redox potential of the V2þ/V3þ

(�0.26 V) and V4þ/V5þ (1.00 V) redox couple, respectively. During all measurements, the potential scan rate was 10mV/s and the flow rate of the electrolyte was about 6 mL/s. The
scales of the cyclic voltammograms and potential dependant mass currents are identical in (a) and (b). (A colour version of this figure can be viewed online.)

Fig. 5. CVs recorded on pristine (grey), thermally treated (black), cabinet stored
(green), soaked in sulfuric acid (blue) and electrochemically aged (red) carbon felts
under stopped flow conditions, showing the V2þ/V3þ redox couple in 5mM VOSO4 in
2MH2SO4 electrolyte (potential scan rate 10mV/s). The inserted table shows the
calculated peak currents of the V2þ/V3þ redox peak for the different carbon samples. (A
colour version of this figure can be viewed online.)
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observation in more detail, we set the potential window
between �0.45 V and 0 V vs. SHE and stopped the electrolyte flow.
The stable cyclic voltammograms obtained after 3 cycles are shown
in Fig. 5. The double-layer capacities follow the same trends, when
the carbon surface is largely reduced, compared to the previous
scans to higher potentials (Fig. 3). In Fig. 5, thermally treated felts
already show a decent reversibility, resulting in a DE of 62.6mV, but
a CA/CC ratio of below one, which confirms the relatively high
amount of H2 formation. Soaking in sulfuric acid also diminishes
the electrochemical activity of the V2/V3þ redox reaction on the
carbon felt (DE¼ 237.1mV, IA/IC¼ 0.49, CA/CC¼ 1.01). The electro-
chemical aging shows a peak-to-peak separation of 27.5mV, which
is at the first glance surprisingly well below the theoretical value of
59mV per transferred electron, but can be explained by the elec-
trode porosity, which influences DE [37,48,52,53]. Moving on to the
electrochemical aging treatment, the peak current ratio does not
change significantly, only the absolute peak currents are slightly
higher due to the increased surface area. Although the felts are
corroded by the electrochemical aging, which represents aging at
the positive electrode, and lose the electrochemical activity to-
wards the V4þ/V5þ redox reaction, they show a slightly improved
activity towards the V2þ/V3þ redox reaction. This we relate again to
the higher double-layer capacity and thus to the larger surface area.
As a practical consequence, by re-using degraded felts of the pos-
itive half cell in the negative half cell, it could be possible to extend
the overall lifetime of the VRFB electrodes, although further work
(e.g. full-cell tests) is necessary, to study this effect in detail.

In sulfuric acid as flowing base electrolyte, the CO2 ion current
follows the same trend as for the smaller potential window in
Fig. 2(b) and in the faradaic current responses. We observe an
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increased CO2 formation during the hydroquinone oxidation for all
samples, which starts already at around 0 V. This is especially
noticeable for electrochemically aged felts and, less pronounced, for
the cabinet stored samples. Looking at the H2

þ ion current, the
pristine samples show the highest value, followed by the thermally
treated, electrochemically aged and soaked felts. Cabinet stored
samples, on the other hand, show a lower H2 evolution in sulfuric
acid, indicating a high influence of the vanadium ions on the ac-
tivity of carbon felt surfaces for H2 evolution. The XPS analysis in
our previous report [26] showed that the O¼C/OeC ratio of pristine
samples are close to 1 with an O/C ratio of 0.34, whereas the treated
samples have O¼C/OeC ratios of around 0.5 with O/C ratios of 0.26
(thermally treated), 0.47 (soaked), and 0.41 (electrochemically
aged). Furthermore, electrochemically aged felts show a very high
sp2/

sp3 ratio of 12 and Raman measurements provide a ID/IG ratio of
1.43, which indicates the highest graphitic content in comparison
with the other samples. Combining this with our present findings,
we suggest that a high content of single-bonded O enhances the
activity of the carbon felt for H2 evolution, and also that for the
oxidation of V4þ ions, whereas a high content of double-bonded O
and graphitic carbon increases the activity towards the V2þ/V3þ

redox reaction. The O2 evolution shows a slight, step-like decrease
between 0 and 0.5 V, which can be explained by the reduction of
residing amounts in the flowing electrolyte.
4. Conclusions

Investigating the influence of different treatment procedures of
commercially available carbon felt electrodes for VRFBs on their
electrochemical activity and their susceptibility towards side re-
actions such as carbon corrosion and hydrogen evolution by elec-
trochemical and online mass spectrometric measurements, we
could show that thermally treated felts expectedly exhibit an
increased electrochemical activity, but also a higher affinity to side
reactions compared to pristine felts. This kind of activation process
is anyway necessary to achieve usable performance in VRFBs,
although this material by itself is very prone to side reactions and is
therefore not fully utilized. Storing these thermally treated felts in a
lab cabinet for an extended period led to increased carbon corro-
sion due to oxidation by atmospheric oxygen. Although freshly
thermally activated carbon felts showa slightly better performance,
the difference to stored felts after activation is marginal, which
implies that stored felts can still be used, without resulting in sig-
nificant lower performance. The influence of the oxidizing sulfuric
acid was shown by soaking the thermally treated felts in it, which
results in reduced electrochemical activity, but also reduced side
reactions. The chemical oxidation without the influence of vana-
dium ions and applied potential is already relatively high, which
shows that the felts could possibly be modified to withstand the
harsh environment. By electrochemically aging carbon felts, the
electrochemical activity towards the redox reaction in the catholyte
decreases, as well as its affinity to side reactions. However, these
electrochemically aged felts exhibit an increased electrochemical
performance in the anolyte, which points towards a possible
recycling path for aged cathodic carbon felts and therefore extends
the lifetime of the electrodes in a VRFB.
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