Modelling the impact of air pollution on the terrestrial carbon and nitrogen cycling

Zur Erlangung des akademischen Grades einer DOKTORIN DER NATURWISSENSCHAFTEN von der KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

des Karlsruher Instituts für Technologie (KIT) genehmigte DISSERTATION

von

Dipl.-Bio. Martina Franz aus Jena

Tag der mündlichen Prüfung: 18.12.2019

Referentin: Prof. Dr. Almut Arneth Korreferentin: Prof. Dr. Julia Pongratz Korreferent: Dr. Ir. Laurens Ganzeveld

Karlsruhe 2019

Abstract

Ozone (O_3) is a toxic air pollutant that can injure plant leaves and substantially affect plant growth and health. Tropospheric O_3 concentrations multiplied from pre-industrial values until the end of the 20th century in polluted areas, accompanied by an increase of O_3 precursors like nitrogen oxides (NO_x) . Reactive forms of nitrogen like NO_x are a limited nutrient for plants and are assumed to constrain net primary production in large parts of the world. Part of the NO_x in the atmosphere is deposited back on land and stimulates plant growth in nutrient limited regions. Despite the role of NO_x as a ozone precursor, previous studies focused on the growth stimulating effect of nitrogen deposition and omitted the detrimental effects of ozone.

To assess the past and future capacity of the terrestrial biosphere as a carbon sink, a realistic estimate of the effects of tropospheric O_3 on gross primary production (GPP) might be important. The combined implementation of the growth stimulating effect of nitrogen deposition and the detrimental effects of O_3 on plant growth and carbon storage might yield a more realistic estimate of past and future terrestrial carbon uptake.

To better understand the impact of ozone damage on the terrestrial carbon cycle, a module to estimate O_3 uptake and damage of plants was developed for O-CN, a state-of-the-art global terrestrial biosphere model. A comparison to literature values demonstrates that the new model version produces realistic key characteristics of ozone deposition. The use of this comparatively detailed ozone deposition scheme, which accounts for non-stomatal as well as stomatal deposition when calculating surface O_3 concentrations, substantially affects plant O_3 uptake in O-CN. The application of the updated model in a Europe-wide simulation of present day ozone damage to GPP and transpiration indicates that the regional carbon and water cycling is less impacted than expected from previous studies. Previously published simulated ozone induced reductions on GPP vary substantially between models and model versions. A possible reason for this is the use of different injury functions which relate ozone uptake to plant damage.

The role that different injury functions play in determining the variability of the estimated ozone impacts was investigated by including four previously published injury functions into a standardised modelling framework, the O-CN model. Model versions including different injury functions are evaluated in terms of their ability to simulated whole-tree biomass responses observed in 23 ozone filtration/fumigation experiments conducted with young trees from European tree species at sites across Europe with a range of climatic conditions. The results show that none of these previously published injury functions lead to simulated whole-tree biomass reductions in agreement with the observed dose-response relationships derived from these field experiments and instead lead to significant over- or underestimations of the ozone effect. By re-parameterising these injury functions, I developed linear, plant-functional-type-specific dose-response relationships, which provide accurate simulations of the observed whole-tree biomass response across these 23 experiments.

The updated model including the ozone deposition scheme and two re-parameterised injury functions was applied to simulate past and future impacts of air pollution (ozone and nitrogen deposition) on the terrestrial carbon uptake and storage in the temperate and boreal Northern Hemisphere. Two scenarios of future air pollution are simulated in a factorial design to understand the effect of present and future changes in nitrogen deposition, and O_3 concentrations against a background of changes in climate and carbon dioxide concentrations (CO₂) for the most optimistic and most pessimistic representative concentration pathway scenario (RCP2.6 and RCP8.5 respectively). The simulations showed that O_3 damage considerably reduced northern hemispheric gross carbon uptake (GPP) and long-term carbon storage in the past. The ozone effect on GPP and total carbon storage peaked around the end of the 20th century with reductions of 4% and 9%, respectively. The CO₂ fertilisation effect and its impact on stomatal conductance restricts peak values of ozone uptake during the the 21st century and cause a decline in ozone induced damage. By the end of the 21st century mean regional reductions of 0-1% for GPP and 4-5% for total carbon biomass are simulated for both RCPs compared to pre-industrial values. However, in hotspot regions like Eastern Asia a sustained decline in GPP of more than 8% is simulated at the end of the 21st century and carbon storage remains reduced by up to 15% in parts of Europe, the US and Eastern Asia.

The comparison of the effect of air pollution from O_3 to that of nitrogen deposition showed that ozone damage offsets the growth stimulating effect induced by nitrogen deposition during a large fraction of the simulation period. The detrimental effect of O_3 on GPP outweighs the stimulating effect of nitrogen deposition until the first half of the 21st century, after which nitrogen deposition starts to outweigh the effects of O_3 . The detrimental effect of O_3 on carbon biomass outweighs the stimulating effect of nitrogen deposition during the entire simulation period.

In conclusion, the implementation of a relative detailed ozone deposition scheme considerably impacts the estimates of ozone uptake in then O-CN model and thus has the potential to strongly impact ozone induced damage estimates. The use of evaluated ozone injury functions in models can help to prevent considerable over- or underestimations of damage. The application of the updated model indicates that O_3 damage considerably slowed the increase of carbon uptake and storage in the past. However, past and future estimates of ozone induced damage are lower than expected from previous studies. Accounting for the stimulating effects of nitrogen deposition but omitting the detrimental effect of O_3 might lead to an over estimation of carbon uptake and storage.

Zusammenfassung (German)

Ozon (O₃) ist ein Luftschadstoff, welcher die Blätter von Pflanzen schädigen und deren Bruttoprimärproduktion (GPP) senken kann. In verschmutzten Regionen haben sich die Ozonkonzentrationen in der Troposphäre seit der Vorindustriellenzeit bis zum Ende des 20. Jahrhunderts vervielfacht, begleitet von einem Anstieg in Vorläuferstoffen wie Stickoxide. Reaktive Stickstoffverbindungen, wie zum Beispiel Stickoxide (NO_x), sind ein begrenzter Pflanzennährstoff. Es wird angenommen, dass deren Verfügbarkeit die GPP in weiten Teilen der Welt begrenzt. Ein Teil des in die Atmosphäre eingebrachten NO_x wird zurück auf das Land abgeschieden, wo es das Pflanzenwachstum stimulieren kann. Obwohl NO_x Vorläuferstoffe für O₃ darstellen, haben sich bisherige Studien auf den wachstumsstimulierenden Effekt von Stickstoffabscheidung konzentriert ohne gleichzeitig den schädlichen Einfluss von O₃ zu beachten.

Zur Schätzung der Kapazität der terrestrischen Biosphäre als Kohlenstoffsenke, könnte eine realistische Abschätzung der Einflüsse von Ozon auf die GPP eine wichtige Rolle spielen. Die gemeinsame Implementierung der wachstumsstimulierenden Effekte der Abscheidung von reaktiven Stickstoffverbindungen und der schädlichen Effekte von Ozon auf Pflanzenwachstum und Kohlenstoffspeicherung könnte eine realistischere Abschätzung vergangener und zukünftiger terrestrischer Kohlenstoffspeicherung ermöglichen

Um den Einfluss von Ozon auf den terrestrischen Kohlenstoffkreislauf besser zu verstehen, wurde ein Ozonabscheidungsschema in das Biosphärenmodell O-CN eingebaut, welches Ozonaufnahme und -pflanzenschaden schätzt. Ein Vergleich mit veröffentlichten Werten zeigt, dass dieses neue Modul realistische Werte für Schlüsselwerte der Ozonabscheidung produziert. Die Verwendung eines detaillierten Schemas welches bei der Berechnung der bodennahen Ozonkonzentration die Abscheidung von Ozon in die Spaltöffnungen der Blätter und außerhalb dieser berücksichtigt, hat einen substantiellen Einfluss auf die pflanzliche Ozonaufnahme in O-CN. Die Anwendung des aktualisierten Modells im Rahmen einer europaweiten Simulation von gegenwärtigen Ozonschäden auf GPP und Transpiration deutet an, dass der regionale Kohlenstoff- und Wasserkreislauf geringer beeinflusst wird als auf Grund von bereits publizierten Studien zu erwarten wäre. Verschiedene Modelle und Modellversionen unterscheiden sich jedoch erheblich in ihren Abschätzungen des durch Ozon verursachten Schadens von GPP. Ein möglicher Grund dafür ist die Verwendung verschiedener Schadensfunktionen, welche die Ozonaufnahme in Relation setzten zu Pflanzenschaden.

Die Auswirkung verschiedener Schadensfunktionen auf die Schwankung der geschätzten Ozoneffekte wird untersucht in dem vier bereits veröffentlichte Schadensfunktionen in ein standardisiertes Modelliergerüst eingebaut werden, das O-CN Modell. Verschiedene Modellversionen werden untersucht hinsichtlich ihrer Fähigkeit die beobachteten Gesamtbiomassereaktionen in 23 Ozon-Filtrierungs-Begasungsexperimenten mit jungen Bäumen europäischer Baumarten an zehn Orten quer durch Europa zu simulieren. Die Ergebnisse zeigen, dass keine vorab veröffentlichte Schadensfunktion zu einer Gesamtbiomassereaktionen führt, welche vereinbar ist mit den beobachteten Zusammenhängen in den Experimenten. Anstatt dessen wird eine erhebliche Überschätzung oder Unterschätzung der Ozoneffekte simuliert. Durch eine Reparameterisierung dieser Schadensfunktionen habe ich lineare, pflanzentypspezifische Schadenszusammenhänge entwickelt, welche eine akkurate Simulation der beobachteten Gesamtbiomassereaktionen in den 23 Experimenten ermöglicht.

Das aktualisierte Modell, welches das Ozonabscheidungsschema und zwei reparameterisierte Schadensfunktionen enthält, wurde genutzt um vergangene und zukünftige Einflüsse von Luftverschmutzung, durch Ozon und Stickstoffabscheidung, auf die terrestrische Kohlenstoffaufnahme und -speicherung in temperaten und borealen Regionen der Nordhalbkugel zu simulieren. In einem faktoriellem Versuchsplan werden zwei zukünftige Szenarien der Luftverschmutzung simuliert um den Einfluss gegenwärtigen und zukünftigen Änderungen in Stickstoffabscheidung und O₃ Konzentrationen zu untersuchen bei einem gleichzeitigem Wandel des Klimas und der Kohlendioxid (CO₂) Konzentrationen. Diese Simulationen werden jeweils für das optimistischste und pessimistischste Repräsentative Konzentrationspfad-Szenario (RCP2.6 und RCP8.8) durchgeführt.

Die Simulationsergebnisse zeigen, dass in der Vergangenheit Ozonschäden die mittlere regionale Kohlenstoffaufnahme (GPP) und -speicherung (Gesamtkohlenstoffbiomasse) in der simulierten Region deutlich reduziert haben. Die maximale Reduktion tritt um das Ende des 20. Jahrhunderts herum auf und beträgt ungefähr 4% für GPP und 9% für Gesamtkohlenstoffbiomasse. Die durch den CO₂ Düngeeffekt reduzierte Spaltöffnungsbewegung von Pflanzen begrenzt die Aufnhame von Ozonspitzenwerten und verursacht eine Reduktion von Ozonschäden während des 21. Jahrhunderts. Für beide Verschmutzungszenarien werden am Ende des 21. Jahrhunderts im regionalen Mittel Reduktionen von 0-1% für GPP 4-5% für Gesamtbiomasse simuliert im Vergleich zu vorindustriellen Werten. In Schadensbrennpunkten werden am Ende des 21. Jahrhunderts Reduktionen von mehr als 8% für GPP (Ostasien) und bis zu 15% für Gesamtkohlenstoffbiomasse (in Teilen von Europa, dem Osten und Westen der USA und Ostasien) simuliert.

Ein Vergleich der Auswirkung von Luftverschmutzung durch Ozon zu dem von Stickstoffabscheidung zeigte, dass Ozonschäden den wachstumsstimulierenden Effekt von Stickstoffabscheidung während eines Großteils des simulierten Zeitraums ausgleicht. Die schädliche Wirkung von Ozon wiegt den stimulierenden Einfluss von Stickstoffabscheidung auf GPP bis zur ersten Hälfte des 21. Jahrhunderts auf. Danach beginnt die stimulierende Wirkung von Stickstoffabscheidung auf GPP zu dominieren. Die schädliche Wirkung von Ozon auf die Gesamtkohlenstoffbiomasse überwiegt dem stimulierenden Effekt von Stickstoffabscheidung währende des gesamten Simulationszeitraums.

Zusammenfassend ist zu sagen, dass die Implementierung eines relativ detaillierten Ozonabscheidungsschemas die Schätzung der Ozonaufnahme in O-CN deutlich beeinflusst und somit potentiell auch Schadensschätzungen. Die Verwendung von evaluierten Schadensfunktionen in Modellen kann helfen eine erhebliche Über- oder Unterschätzungen des Schadens zu verhindern. Die Anwendung des aktualisierten Modells zeigt, dass Ozonschäden den Anstieg von Kohlenstoffaufnahme und -speicherung in der Vergangenheit deutlich reduziert haben. Hier präsentierte Schätzungen von gegenwärtigen und zukünftigen Ozonschäden sind geringer als auf Grund vorheriger Studien zu erwarten wäre. Der Einbezug des stimulierenden Effekts von Stickstoffabscheidung in die Schätzung von Kohlenstoffaufnahme und -speicherung ohne die schädlichen Einflüsse von Ozon zu beachten kann zu einer Überschätzung dieser führen.

Eidesstattliche Versicherung gemäß § 6 Abs. 1 Ziff. 4 der Promotionsordnung des Karlsruher Instituts für Technologie für die Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften.

- 1. Bei der eingereichten Dissertation zu dem Thema "Modelling the impact of air pollution on the terrestrial carbon and nitrogen cycling" handelt es sich um meine eigenständig erbrachte Leistung.
- 2. Ich habe nur die angegebenen Quellen und Hilfsmittel benutzt und mich keiner unzulässigen Hilfe Dritter bedient. Insbesondere habe ich wörtlich oder sinngemäß aus anderen Werken übernommene Inhalte als solche kenntlich gemacht.
- 3. Die Arbeit oder Teile davon habe ich bislang nicht an einer Hochschule des In- oder Auslands als Bestandteil einer Prüfungs- oder Qualifikationsleistung vorgelegt.
- 4. Die Richtigkeit der vorstehenden Erklärungen bestätige ich.
- 5. Die Bedeutung der eidesstattlichen Versicherung und die strafrechtlichen Folgen einer unrichtigen oder unvollständigen eidesstattlichen Versicherung sind mir bekannt.

Ich versichere an Eides statt, dass ich nach bestem Wissen die reine Wahrheit erklärt und nichts verschwiegen habe.

Auckland, 04.02.2020

Unterschrift

This thesis is submitted as a monograph and contains three results chapters (chapters 2-4). Chapter 2 and 3 are slightly adapted versions of previously published articles in peer-reviewed journals.

Chapter 2: Development and evaluation of an ozone deposition scheme for coupling to a terrestrial biosphere model, is based on the paper: Franz, M., Simpson, D., Arneth, A., and Zaehle, S.: Development and evaluation of an ozone deposition scheme for coupling to a terrestrial biosphere model, Biogeosciences, 14, 45–71, https://doi.org/10.5194/bg-14-45-2017, http://www.biogeosciences.net/14/45/2017/, 2017.

Chapter 3: Evaluation of simulated ozone effects in forest ecosystems against biomass damage estimates from fumigation experiments, is based on the paper: Franz, M., Alonso, R., Arneth, A., Büker, P., Elvira, S., Gerosa, G., Emberson, L., Feng, Z., Le Thiec, D., Marzuoli, R., Oksanen, E., Uddling, J., Wilkinson, M., and Zaehle, S.: Evaluation of simulated ozone effects in forest ecosystems against biomass damage estimates from fumigation experiments, Biogeosciences, 15, 6941-6957, https://doi.org/10.5194/bg-15-6941-2018, 2018.

These published papers involve the work of co-authors. My contribution to both papers is as follows: I contributed to the experiment design, extended the model O-CN model, performed the simulations and analyses, and led the writing of both papers.

Contents

Abstract						i
Zı	Zusammenfassung (German) iii					
С	Contents vii					
\mathbf{Li}	ist of	Figur	es			xi
Li	ist of	Table	S			$\mathbf{x}\mathbf{v}$
A	bbre	viation	ns, symbols and units		x	vii
1	Ger	ieral ii	ntroduction			1
	1.1	The g	lobal carbon and nitrogen cycle			1
		1.1.1	Carbon emissions and sinks			1
		1.1.2	The net land sink			2
		1.1.3	The terrestrial biosphere			2
		1.1.4	Climate effects on the global carbon cycle		•	3
		1.1.5	The nitrogen cycle and the nitrogen fertilisation effect \ldots .			3
	1.2	Tropo	spheric ozone concentrations and their impact on plants			5
		1.2.1	Ozone formation and cycling		•	5
		1.2.2	Background concentrations		•	6
		1.2.3	Trends		•	7
	1.3	Ozone	e effects on plants		•	8
		1.3.1	Overview of types of effects		•	8
		1.3.2	Detoxification, respiration, repair		•	9
		1.3.3	Injury		•	10
		1.3.4	Impacts on stomatal conductance		•	11
		1.3.5	Exposure indices		•	12
	1.4	Impac	ets of elevated CO_2 concentrations on plants	•	•	13
		1.4.1	Coupled effects of elevated CO_2 and O_3	•		14
		1.4.2	Coupled effects of elevated CO_2 , O_3 and N availability	•	•	15
	1.5	Future	e projections of climate change		•	15
		1.5.1	Representative concentration pathways (RCPs)			16

		1.5.2	Simulated changes during the 21st century 16
	1.6	Global	terrestrial biosphere models
		1.6.1	The O-CN model
		1.6.2	Modelling air pollution impacts in O-CN 18
	1.7	Thesis	structure and objectives 19
2	Dev	velopm	ent and evaluation of an ozone deposition scheme for cou-
	plin	g to a	terrestrial biosphere model 21
	2.1	Introd	uction \ldots \ldots \ldots \ldots \ldots 21
	2.2	Metho	ds \ldots \ldots \ldots \ldots \ldots 22
		2.2.1	Ozone module
		2.2.2	Relating stomatal uptake to leaf injury
		2.2.3	Sensitivity analysis
		2.2.4	Modelling protocol and data for site-level simulations 27
		2.2.5	Modelling protocol and data for regional simulations 30
		2.2.6	Emissions inventory 30
		2.2.7	Impacts of using the ozone deposition scheme
	2.3	Result	s
		2.3.1	Evaluation against daily eddy-covariance data
		2.3.2	Mean diurnal cycles of key O_3 parameters
		2.3.3	Sensitivity analysis
		2.3.4	Regional simulations
		2.3.5	Impacts of using the ozone deposition scheme
	2.4	Discus	sion $\ldots \ldots 45$
		2.4.1	Atmosphere-leaf transport of ozone
		2.4.2	Estimating vegetation damage from ozone uptake
	2.5	Conclu	$sion \dots \dots$
3	Eva	luation	of simulated ozone effects in forest ecosystems against biomass
	dan	nage es	timates from fumigation experiments 51
	3.1	Introd	uction \ldots \ldots \ldots \ldots \ldots \ldots 51
	3.2	Metho	ds
		3.2.1	Ozone injury calculation in O-CN
		3.2.2	Model set-up
		3.2.3	Model and protocol for young trees
		3.2.4	Modelling protocol for mature trees
		3.2.5	Calculation of the biomass damage relationships 60
	3.3	Result	s 61
		3.3.1	Testing published injury functions
		3.3.2	Tuned injury relationships
		3.3.3	Ozone injury to mature trees
	3.4	Discus	$\operatorname{sion} \ldots \ldots$
	3.5	Conclu	1sion

4	\mathbf{Sim}	ulated	air pollution impacts from 1850-2099	75
	4.1	Introd	uction	. 75
	4.2	Metho	ds	. 79
		4.2.1	Modelling protocol	. 79
		4.2.2	Factorial simulation runs	. 80
		4.2.3	Factorial analysis	. 80
	4.3	Result	8	. 81
		4.3.1	Regional means and sums of air pollution impacts	. 81
			4.3.1.1 Ozone uptake and accumulation	. 82
			4.3.1.2 Carbon fixation and biomass production	. 84
			4.3.1.3 Magnitude of impact and differences between the RCPs	. 84
			4.3.1.4 Impact of the ozone deposition scheme	. 90
		4.3.2	Simulated spatial differences of air pollution impacts	. 92
	4.4	4.4 Discussion		. 96
		4.4.1	Air pollution impacts on GPP and total carbon biomass	. 96
		4.4.2	Limitations of comparisons between publications	. 100
		4.4.3	Potential impacts of vegetation dynamics	. 101
		4.4.4	Impact of the ozone deposition scheme	. 102
	4.5	Conclu	usion	. 102
5	Gen	eral co	onclusion and outlook	103
	5.1	Answe	ers to the underlying research questions	. 104
	5.2	Limita	ations	. 108
	5.3	Outloc	ok	. 109
	5.4	Final r	remarks	. 111
A	cknov	wledge	ments	113
Bi	ibliog	raphy		115
$\mathbf{A}_{\mathbf{j}}$	ppen	dix		141

List of Figures

2.1	Comparison of measured a) GPP, b) canopy conductance (G_c) , c) latent	
	heat flux (LE), and d) LAI at 26 European FLUXNET sites and simula-	
	tions by O-CN.	32
2.2	Comparison of measured (a) GPP, (b) G_c , (c) latent heat flux (LE), and	
	(d) LAI at 26 European FLUXNET sites (red) and simulations by O-CN	
	(blue)	34
2.3	Simulated and observed hourly means over all days of the months of July	
	of 2002-2006 for CH-Oe1 and IT-Ro1, as well as for 2001-2006 for FI-Hyy.	35
2.4	Simulated monthly mean values of O_3 uptake (F_{stC}) , O_3 deposition ve-	
	locity (V_g) , O ₃ surface resistance (R_c) , and the flux ratio (F_R) for sites	
	dominated by broadleaved trees (left column), needle-leaved trees (central	
	column) and C_3 grasses (right column)	37
2.5	a) Mean partial correlation coefficients and b) strength of the correlation	
	in % per %	39
2.6	Ensemble range of key O_3 uptake/deposition variables resulting from the	
	perturbation of R_a , b , r_{ext} , R_{gs} and G_c within $\pm 20\%$ of their central	
	estimate	40
2.7	Europe-wide simulated GPP and difference between modelled GPP by	
	O-CN and a GPP estimate by a FLUXNET-MTE product	41
2.8	Mean decadal (a) O_3 concentration [ppb], (b) canopy-integrated O_3 up-	
	take into the leaves $[nmol m^{-2} s^{-1}]$, (c) canopy-integrated cumulative up-	
	take of O_3 (CUO) [mmol m ⁻²], and (d) AOT40 [ppm yr ⁻¹], for Europe of	
	the years 2001-2010	42
2.9	Mean decadal (a) reduction in GPP $[g Cm^{-2} yr^{-1}]$, (b) percent reduction	
	in GPP, (c) reduction in transpiration $[mm yr^{-1}]$ and (d) percent reduc-	
	tion in transpiration due to ozone damage averaged for the years 2001-2010.	43
2.10	Mean daily values of the (a) O_3 surface concentration, (b) canopy-integrated	
	O_3 uptake into the leaves, and (c) canopy-integrated cumulative uptake	
0.11	of O_3 (CUO) at the FLUXNET site FI-Hyy	44
2.11	Differences in mean daily values of the (a) O_3 surface concentration, (b)	
	canopy-integrated O_3 uptake into the leaves, and (c) canopy integrated	
	cumulative uptake of O_3 (CUO) for the three FLUXNET sites CH-Oel,	45
	гі-нуу and П-Коl	45

2.12	Mean decadal canopy-integrated cumulative uptake of O_3 (CUO) for Europe of the years 2001–2010. (a) Canopy O_3 concentration is equal to the atmospheric concentration (ATM) and (b) O_3 surface resistance is only determined by stomatal resistance (D-STO)	46
3.1	Biomass dose-response relationships for simulations based on published injury relationships, separate for a) broadleaved species and b) needleleaf species	52
3.2	Simulated cumulative ozone uptake above a threshold of 0.8 nmol m ⁻² s ⁻¹ (<i>CUOY</i>), canopy-integrated net photosynthesis (A_n^{can}) , leaf carbon content (<i>Leaf</i> C), total carbon in biomass (<i>biomass</i> C) and relative biomass (<i>RB</i>) of <i>Pinus halepensis</i> at the Ebro Delta fumigated with the NF+ ozone treatment	63
3.3	Biomass dose-response relationships for simulations based on tuned injury functions (see Tab. 3.1 for abbreviations), separate for a) broadleaved species, and b) needleleaf species	64
3.4	Biomass (RB) and NPP (RN) dose-response relationships of simulations with young (tun_{VC}^{young}) and mature trees (tun_{VC}^{mature}) separately for a,c) broadleaf species and b,d) needleleaf species.	6
4.1	Mean nitrogen deposition rates for the temperate and boreal Northern Hemisphere ($\geq 30^{\circ}$ N) in the decades of the years of 1850, 1990, 2050 and 2090, each according to the RCP2.6 and RCP8.5 pollution scenario 7	76
4.2	Projected mean canopy level O_3 concentration for the temperate and bo- real Northern Hemisphere ($\geq 30^{\circ}$ N) in the decades of the years of 1850, 1990, 2050 and 2090, each according to the RCP2.6 and RCP8.5 pollution scenario	77
4.3	Time series of the regional mean (temperate and boreal Northern Hemi- sphere ($\geq 30^{\circ}$ N)) ozone concentration and summed nitrogen deposition according to the RCP2.6 and RCP8.5 pollution scenario	78
4.4	Simulated regional mean ozone uptake (F_{st}) and regional mean cumulative canopy O ₃ uptake above a flux threshold of 1 nmol m ⁻² s ⁻¹ (CUO1) of the simulations based on RCP8.5	32
4.5	Simulated canopy O ₃ concentration, ozone uptake (F_{st}) , cumulative O ₃ uptake without a flux threshold (CUO0) and cumulative O ₃ uptake above a flux threshold of 1 nmol m ⁻² s ⁻¹ (CUO1) of the factorial run S5 (all forcing variables are simulated transient) based on RCP8.5	33
4.6	The amount of simulated regional summed GPP, regional summed stocks of total carbon biomass (C-biomass) and soil organic matter carbon (SOM C) of the simulations based on RCP8.5	35

4.7	Ozone induced %-change of regional mean ozone uptake (F_{st}) , mean cu- mulative O ₃ uptake above a flux threshold of 1 nmol m ⁻² s ⁻¹ (CUO1), summed GPP, summed carbon biomass (C-biomass) and summed carbon soil organic matter (SOM C) compared to pre-industrial values in the	
	simulation region.	87
4.8	Ozone induced absolute change of regional mean ozone uptake (F_{st}) and mean cumulative O ₃ uptake above a flux threshold of 1 nmol m ⁻² s ⁻¹	
	(CUO1) compared to pre-industrial values in the simulation region	88
4.9	Nitrogen deposition induced %-change of regional mean ozone uptake (F_{st}) , mean cumulative O ₃ uptake above a flux threshold of 1 nmol m ⁻² s ⁻¹ (CUO1), summed GPP, summed carbon biomass (C-biomass), and summed carbon soil organic matter (SOM C) compared to pre-industrial values in	
	the simulation region.	89
4.10	Ozone impacts on the regional mean ozone uptake (F_{st}) , mean cumula-	
	tive O_3 uptake above a flux threshold of 1 nmol m ⁻² s ⁻¹ (CUO1), summed	
	GPP, summed carbon biomass (C-biomass), and summed carbon soil or-	
	ganic matter (SOM C) compared to pre-industrial values in the simulation	
4.11	region. . </td <td>91</td>	91
4.12	ozone, calculated according to approach 2	93
	nitrogen deposition (left column) and ozone calculated according to ap-	
	proach 2 (right column).	94
4.13	Relative change in GPP compared to pre-industrial values induced by	
	nitrogen deposition (left column) and ozone calculated according to ap-	
	proach 2 (right column)	95
4.14	Absolute change in C-biomass compared to pre-industrial values induced	
	by nitrogen deposition (left column) and ozone calculated according to	
	approach 2 (right column).	97
4.15	Relative change in C-biomass compared to pre-industrial values induced	
	by nitrogen deposition (left column) and ozone calculated according to	
	approach 2 (right column).	98

List of Tables

2.1	Characteristics of the FLUXNET sites used in this study	29
2.2	Coefficient of determination (R^2) and root mean square error (RMSE) for <i>GPP</i> , canopy conductance (G_c) , and latent heat flux (LE) for all sites and for sites dominated by broadleaved trees needle-leaved trees	
	C_3 grass, and C_3 grass excluding the AT-Neu site (outlier)	33
3.1	Slopes and intercepts, partly PFT specific, of all four published (W07 _{PS} ,	
	$L12_{PS}$, $L12_{VC}$, $L13_{PS}$) and two tuned (tun _{PS} , tun _{VC}) injury functions included in O-CN.	56
3.2	List of fumigation experiments used by Büker et al. (2015) and simulated	00
	here	58
3.3	Original and adapted values of the nitrogen-specific photosynthetic ca- pacity of a leaf (npl) for three out of four different O-CN versions (ID) including published injury functions.	59
3.4	Slopes and intercepts of biomass dose-response relationships for broadleaf and needleaf species simulated by O-CN versions based on published in- jury functions to net photosynthesis or V_{cmax} (see Tab. 3.1)	62
3.5	Slopes and intercepts of biomass dose-response relationships for broadleaf and needleleaf species simulated by O-CN versions based on tuned injury functions to net photosynthesis or V_{cmax} (see Tab. 3.1).	65
3.6	Slopes and intercepts of biomass (RB) and NPP (RN) dose-response re- lationships (DRRs) for broadleaf and needleleaf species simulated by the	
	$ \operatorname{tun}_{VC} $ model version (see Tab. 3.1)	67
4.1	Forcing setting of the factorial runs.	80
4.2	Calculation of the single driver effects $(CO_2, climate, nitrogen deposition, O_3)$ from the conducted simulations.	81
4.3	Absolute and relative change in GPP, total carbon biomass (C-biomass) and soil organic matter carbon (SOM C) induced by changing atmospheric CO ₂ concentrations, climate, nitrogen deposition (Ndep), and O ₃ concen-	
	trations.	86

4.4	Mean percent change in GPP and C-biomass induced by ozone during	
	the decades of 1990 (1990-1999), 2050 (2050-2059) and 2090 (2090-2099)	
	compared to pre-industrial values for the Northern Hemisphere north of	
	$30^{\circ}N$ (NH ₃₀), Europe, USA and China	90
4.5	Mean percent change in GPP and C-biomass induced by nitrogen deposi-	
	tion during the decades of 1990 (1990-1999), 2050 (2050-2059) and 2090	
	(2090-2099) compared to pre-industrial values for the Northern Hemi-	
	sphere north of $30^{\circ}N$ (NH ₃₀), Europe, USA and China.	90

Abbreviations, symbols and units

J_{max}	Electron transport capacity (leaf photosynthetic trait)
V_{cmax}	Maximum carboxylation capacity of the leaf
CH_4	Methane
$\rm CO_2$	Carbon dioxide
CO	Carbon monoxide
С	Carbon
NH_3	Ammonia
NO_2	Nitrogen dioxide
NO_x	Nitrogen oxides
NO	Nitric oxide
N_2	Unreactive diatomic nitrogen
Ν	Nitrogen
O_3	Ozone
eCO_2	Elevated atmospheric CO_2 concentration
eO_3	Elevated atmospheric O_3 concentration
GtC	Giga-tons of carbon
PgC	Peta-grams of carbon
TgN	Tera-grams of nitrogen
ppb	Parts per billion
ppm	Parts per million
AOTX	Accumulated O_3 concentration over a threshold of X ppb)
BNF	biological nitrogen fixation
CLM	Community Land Model
CRU-NCEP	An atmospheric forcing dataset used to force land surface models
CTM	Chemical transport model
CUOY	Cumulative canopy O_3 uptake above a flux threshold of Y $nmol m^{-2} s^{-1}$

DDR	Dose-response relationship
ECHAM5 EMEP EU EU directive 2008/50/EC	The atmospheric general circulation model, developed at the Max Planck Institute for Meteorology, version number 5 European Monitoring and Evaluation Programme European union Directive of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe
FACE FLUXNET	Free-Air Carbon dioxide Enrichment global network of micrometeorological tower sites to mea- sure the exchanges of carbon dioxide, water vapor, and en- ergy between terrestrial biosphere and the atmosphere by application of eddy covariance methods
GPP	Gross Primary Production
IIASA IPCC IPCC SRES	International Institute for Applied Systems Analysis Intergovernmental Panel on Climate Change IPCC Special Report on Emissions Scenarios
JULES	Joint UK Land Environment Simulator
LAI LE LRTAP LSCE	Leaf area index Latent heat flux The Convention on Long-range Transboundary Air Pollu- tion Le Laboratoire des Sciences du Climat et de l'Environnement
MACC-2	Monitoring Atmospheric Composition and Climate - Interim
MTE	Model tree ensembles
NPP	Net primary productivity
O-CN	A further development of the land-surface-scheme OR-CHIDEE

xviii

ORCHIDEE	ORganizing Carbon and Hydrology In Dynamic EcosystEms model
PCC PFT PODy	Partial correlation coefficient Plant functional type Phytotoxic Ozone Dose [nmol m ⁻² s ⁻¹], refers to the ac- cumulated ozone uptake above a flux threshold of y $nmol m^{-2} s^{-1}$ by the leaves representative of the upper- canopy leaves of the plant
RCA3 RCP ROS RuBisCO	Rossby Centre Regional Climate model Representative concentration pathway Reactive oxygen species Ribulose-1,5-bisphosphate carboxylase/oxygenase
SOM	Soil organic matter
TNO	Netherlands Organisation for Applied Scientific Research
UNECE	United Nations Economic Commission for Europe
VOC VPD	Volatile organic compound Vapour pressure deficit
WUE	Water use efficiency

Chapter 1

General introduction

1.1 The global carbon and nitrogen cycle

The global carbon cycle describes the reservoirs of carbon and the fluxes amongst them (Schimel, 1995; Ciais et al., 2013). Carbon dioxide (CO_2) emitted to the atmosphere is at first rapidly (within years) distributed between the atmosphere, the upper ocean and the vegetation; on longer time scales (within decades to millennia) it is moved to other reservoirs like soils, the deep ocean and rocks (Ciais et al., 2013). The global carbon cycle plays a key role in understanding climate change since about 60% of the observed global warming can be attributable to the increase in carbon dioxide concentration from pre-industrial to present day mixing ratios (Grace, 2004).

1.1.1 Carbon emissions and sinks

Since the beginning of the Industrial Era the atmospheric CO_2 concentration has increased from approximately 277 parts per million (ppm) in 1750 (Joos and Spahni, 2008; Le Quéré et al., 2016) to 399.4 ppm in 2015 (Dlugokencky and Tans, 2016; Le Quéré et al., 2016). Between 2002-2011 the atmospheric CO_2 concentration increased by about $2 ppm yr^{-1}$ (Ciais et al., 2013). In 2015 9.9 GtC from fossil fuel emissions and industry and 1.3 GtC from land-use change (mainly deforestation) were emitted to the atmosphere (Le Quéré et al., 2016). The total cumulative emissions of fossil carbon and from land-use change between 1870-2015 is estimated to $555\pm55 \ GtC$ (Le Quéré et al., 2016). The atmosphere retained less than half of the emissions (235 $\pm 5GtC$), the rest was absorbed by the ocean $(160\pm 20 \text{ GtC})$ and the land $(160\pm 60 \text{ GtC})$ (Le Quéré et al., 2016). Atmospheric CO_2 rapidly exchanges with the CO_2 dissolved in the surface layer of the ocean and the terrestrial biosphere (Falkowski et al., 2000). About 90 $GtCyr^{-1}$ are exchanged between the atmosphere and the surface ocean and cause a rapid equilibration between both reservoirs (Falkowski et al., 2000). Rising atmospheric CO_2 concentrations cause a disequilibrium in the fluxes between the atmosphere, ocean and terrestrial biosphere. This disequilibrium causes a net flux of CO_2 into the ocean and on land has the potential to stimulate photosynthesis (Ciais et al., 2013)

1.1.2 The net land sink

The atmospheric CO_2 growth rate increased from 1.7 GtC yr⁻¹ in the 1960s to 4.5 $GtCyr^{-1}$ during 2006-2015 (Le Quéré et al., 2016). The increase in atmospheric CO_2 levels was paralleled by a similar increase in ocean and land uptake of CO_2 (Le Quéré et al., 2016). Between 2006-2015 44% of the total emissions remained in the atmosphere, 26% were taken up by the ocean, and 30% by the terrestrial biosphere (Le Quéré et al., 2016). Terrestrial Gross Primary Production (GPP) removes about 120 PgC yr⁻¹ from the atmosphere (Beer et al., 2010). The terrestrial biosphere takes up carbon if net primary productivity (NPP) exceeds carbon losses from heterotrophic decomposition processes in soils and disturbances (Arneth et al., 2010). This so called 'net land sink' is maintained through several processes for example stimulated photosynthesis by increasing levels of atmospheric CO_2 , lengthening of the growing season in northern temperate and boreal areas, nitrogen deposition and regional reforestation (Arneth et al., 2010; Friedlingstein et al., 2006; Le Quéré et al., 2016). The net land sink is lowered by processes/ factors that restrict CO_2 uptake like deforestation and air pollution, for example by ozone (Le Quéré et al., 2016; Oliver et al., 2018; Sitch et al., 2007; Simpson et al., 2014a). The relative contribution of them to the net land sink is uncertain. The magnitude of the land sink is commonly estimated by subtracting the increase in atmospheric CO_2 concentrations and the ocean CO_2 uptake of the fossil fuel emissions and emissions via land-use change (Le Quéré et al., 2016). The land sink is generally estimated to amount approximately 2 $PgCyr^{-1}$ (Luyssaert et al., 2007; Le Quéré et al., 2016). However, for the period of 2006-2015 the land sink is estimated to about 3.1 $GtC yr^{-1}$ (Le Quéré et al., 2016).

1.1.3 The terrestrial biosphere

The terrestrial biosphere rapidly exchanges CO_2 with the atmosphere (Falkowski et al., 2000). Via photosynthesis carbon is taken up from the atmosphere and partly bound in organic matter for example plant tissue and soil organic matter (Falkowski et al., 2000; Ciais et al., 2013). Carbon is released back to the atmosphere through autotrophic respiration by the plants, heterotrophic respiration by soil organisms and disturbances like fire (Falkowski et al., 2000; Ciais et al., 2013). The terrestrial biosphere constitutes a carbon sink if the CO_2 uptake from the atmosphere exceeds the release to it. The land sink is subject to considerable inter-annual variability and believed to be the main driver of the inter-annual variability of the atmospheric CO_2 growth rate (Gurney et al., 2008; Jung et al., 2017). Causes for the existence of a land sink are likely increased rates of photosynthesis at higher atmospheric CO_2 concentrations, nitrogen deposition and changes in climate that favour carbon sinks, for example longer growing seasons (Stocker, 2014).

Forests cover about 30% of the land surface, sequester large amounts of carbon annually and thus play an important role in the terrestrial carbon cycle (Luyssaert et al., 2007; Bonan, 2008). The impact of forests and the entire terrestrial biosphere on the global climate is difficult to investigate through observations and often origins from computer models (Bonan, 2008). Current generation models for example simulate the carbon cycle, vegetation dynamics and a reciprocal impact of the atmosphere and land biosphere (Bonan, 2008). However, processes that are not yet or poorly included might induce unforeseen feedback loops (Bonan, 2008).

1.1.4 Climate effects on the global carbon cycle

Besides the biological processes that impact the carbon storage (for example photosynthesis and decomposition) the global climate is furthermore impacted by biophysical processes (Bonan, 2008). Plant evapotranspiration has a cooling effect and a drier climate has the potential to reduce evapotranspiration and thereby amplify surface warming (Bonan, 2008). The surface cover can have a cooling or warming effect through its impacts on the albedo and hence the amount of energy that is retained at the surface. Forest growth in boreal tundra regions increases local carbon uptake and induces evaporative cooling, however it also decreases the albedo which has a warming effect (Bonan, 2008). Elevated atmospheric CO_2 concentrations have the potential to stimulate photosynthesis and increase carbon uptake, but on the other hand decreases stomatal conductance and transpirative cooling (Bonan, 2008). The net effect of all these and other factor is unknown (Bonan, 2008).

The atmospheric CO_2 concentration impacts the global temperature and hence climate via its impact on heat retention of the incoming solar radiation. The atmospheric CO_2 concentration and the carbon cycle are connected in a feedback loop since increases in the atmospheric CO_2 concentration induce climate change and climate change impacts the atmospheric CO_2 concentration (Friedlingstein et al., 2006). Climate change induces a multitude of changes that impact both carbon uptake (photosynthesis) and carbon loss (respiration). Soil warming leads to a stimulation of heterotrophic respiration and an increased carbon release as well as to an increase in mineralisation of soil organic matter which releases nutrients and can enhance carbon storage and compensate for the carbon losses and possibly exceed them (Melillo et al., 2002, 2011). Another example is the stimulation of plant photosynthesis and productivity in the high northern latitudes by climate change and an associated change in vegetation cover and a replacement of herbaceous plants with forests, which increases carbon uptake in these regions (Forkel et al., 2016).

1.1.5 The nitrogen cycle and the nitrogen fertilisation effect

A large fraction of the atmosphere (78%) consists of very unreactive nitrogen (N_2) . Reactive forms of nitrogen are comparatively rare but are a limited nutrient for plants. The availability of reactive nitrogen constrains net primary production in large parts of the world (LeBauer and Treseder, 2008). The dependence of plant and soil microorganisms on reactive nitrogen as a nutrient is an important point where the global carbon and nitrogen cycle interlink. Reactive nitrogen is produced by natural processes in the ocean (biological nitrogen fixation) and by natural (biological nitrogen fixation and lightning) and anthropogenic (combustion, fertiliser production and agricultural biological nitrogen fixation) processes on land and in the atmosphere (Fowler et al., 2013). Reactive nitrogen comprises oxidised (NO_y) and reduced (NH_x) nitrogen compounds (Simpson et al., 2014b). Major NO_y compounds are nitric oxide (NO) and nitrogen dioxide (NO_2) , which are together referred to as nitrogen oxides $(NO_x = NO + NO_2)$ (Simpson et al., 2014b). Important NH_x compounds are ammonia (NH_3) and particulate ammonium (Simpson et al., 2014b). Part of the reactive nitrogen produced in or emitted to the atmosphere is deposited back on land where it might be taken up by plants or soil organisms or leached to the ocean. Denitrification by soil organism produces N_2 which is emitted back to the atmosphere (see Fig. 2 in Fowler et al. (2013) for an overview of these processes).

Main natural sources of reactive nitrogen are lightening (5 TgN yr⁻¹) and biological nitrogen fixation (BNF) by bacteria, which amounts 58 TgN yr⁻¹ on land and 140 $TgN yr^{-1}$ in the ocean (Fowler et al., 2013). Anthropogenic activities produce further reactive nitrogen for example by combustion processes (30 TgN yr⁻¹), fertiliser production (120 TgN yr⁻¹) and the cultivation of crops and legumes which enhance biological nitrogen fixation (agricultural BNF 60 TgN yr⁻¹) (Fowler et al., 2013). In the three major industrialised regions of the world (North America, Western Europe, eastern Asia) nitrogen oxides (NO_x) emissions strongly increased between 1950 and 1970. Air cleansing regulations slowed the rate of increase or decreased NO_x emissions in the following decades in Europe and North America whereas emissions kept on increasing in Asia (Fusco and Logan, 2003). It is estimated that in 2010 the nitrogen cycling was doubled compared to pre-industrial values by the creation of 203 TgN yr⁻¹ anthropogenic reactive nitrogen compared to 210 TgN yr^{-1} of natural fixed nitrogen (Fowler et al., 2013). Of the $\approx 280 \text{ TgN yr}^{-1}$ of terrestrial origin 60% is stored in the land biosphere, transported by rivers or the atmosphere, deposited to the ocean or emitted as nitrous oxide, N_2O (Ciais et al., 2013). The smaller fraction of $\approx 40\%$ (110 TgN yr⁻¹) is converted to N₂ by denitrification of microorganisms and released back to the atmosphere (Ciais et al., 2013; Bouwman et al., 2013).

Nitrogen compounds emitted to the atmosphere reside there hours to days before they are deposited back on land or into the ocean (Galloway et al., 1995). Estimates suggest that of the $\approx 98 \text{ TgN yr}^{-1}$ of NO_x and NH₃ that are emitted to the atmosphere about $\approx 65 \text{ TgN yr}^{-1}$ are deposited back to the continents (Galloway et al., 2004). Applying the assumption that in large parts of the world plant net primary production is restrained by the availability of nitrogen (LeBauer and Treseder, 2008), the deposition of reactive nitrogen from anthropogenic sources can be assumed to have increased plant growth and carbon sequestration from the atmosphere, thereby slowing down climate change (Norby, 1998). However, reactive nitrogen species (NO_x) are also precursors for ozone formation (Derwent et al., 2002). Ozone is a toxic substance that can damage plants and reduce carbon uptake and storage (see Wittig et al. (2007, 2009); Sitch et al. (2007); Franz et al. (2017) and section 1.3 for more details). The role of NO_x as precursors for ozone formation might significantly reduce the mitigating effect of anthropogenic nitrogen depositions on climate change due to decreases in terrestrial net primary production caused by ozone damage to plants (Zaehle et al., 2011). The extend of this effect is so far unconstrained and needs to be investigated.

1.2 Tropospheric ozone concentrations and their impact on plants

1.2.1 Ozone formation and cycling

In the 19th century, ozone was discovered by C.F. Schönbein (Professor for chemistry in Basel, Switzerland) who developed a technique to measure the abundance of it in the atmosphere (Cooper et al., 2014). Tropospheric ozone is highly toxic to plants and animals because of its power as an oxidising agent (see subsection 1.3). It is formed in a photochemical process by the oxidation of CO, CH₄ or some volatile organic compounds (VOCs) catalysed by nitrogen oxides (NO_x = NO, NO₂) (Derwent et al., 2002). At high NO_x levels, for example at polluted sites, O₃ is destroyed through it's reaction with nitric oxide (NO), whereas at low NO_x levels O₃ is formed (Parrish et al., 2012). The destruction of ozone mainly occurs in its reactions with water vapour and with hydrogen peroxy and hydroxyl radicals (Stevenson et al., 2006). Ozone impacts the lifetime of trace gases subject to oxidation by being the primary source of the hydroxyl radical (OH) in the troposphere (Cooper et al., 2014). Hydroxyl radicals are the primary oxidant for CH₄, CO and VOCs in the troposphere (Parrish et al., 2012), which themselves are precursors for ozone formation.

Tropospheric ozone is either photochemically formed in the troposphere from natural and anthropogenic precursors or transported downwards from the stratosphere via the Brewer-Dobson circulation, primarily at the mid-latitudes (Collins et al., 2003; Cooper et al., 2014). The formation of ozone shows a pronounced diurnal and seasonal cycle, an increase from the poles towards the equator, as well as an increase with altitude, because higher temperatures and higher solar radiation intensify the photochemical processes (Sanz et al., 2007). Increasing emissions of volatile hydrocarbons with increasing temperature including emissions from the vegetation further amplify ozone formation (Sanz et al., 2007).

The impact of stratospheric influx of ozone on tropospheric ozone concentrations is still uncertain. The GEOS-CHEM model predicts that stratospheric influx in the troposphere accounts for 15-20% of the ozone concentrations in winter and less than 5% in summer at the northern mid-latitudes (Fusco and Logan, 2003). However, the ozone influx from the stratosphere into the troposphere may have decreased by up to 30% due to decreased stratospheric ozone concentrations in recent years (Fusco and Logan, 2003).

Continuous (day and night) anthropogenic emissions of NO_x and VOCs can amplify the diurnal cycle due to the increase of ozone formation at daytime and the enhanced removal of ozone during nighttime caused by the continuing NO emissions (Zhang et al., 2004). A typical 19th century seasonal pattern of ozone cycling at rural sites in the Northern Hemisphere is characterised by a spring maximum of the concentrations which is likely caused by enhanced photochemistry and/or downward transport from the stratosphere related to tropopause foldings at the end of winter or beginning of spring (Cooper et al., 2014; Marenco et al., 1994; Vingarzan, 2004). At the end of the 20th century peak ozone concentrations shifted to summer in polluted regions (Cooper et al., 2014). Inter-annual variability of ozone concentrations is strongly dependent on meteorological variables like temperature, radiation, and cloudiness (Sanz et al., 2007).

Worldwide changes in the release of ozone precursors affect the formation of ozone. The anthropogenic increase in NO_x emissions primarily from combustion sources has been identified as the major cause for the increasing near-surface ozone concentrations between 1970-1995 in the mid-latitudes of the Northern Hemisphere (Fusco and Logan, 2003). Future climate conditions with increasing temperatures and reduced cloudiness and precipitation will tend to increase ozone formation with increasing daily ozone peaks and average concentrations in summer (Meleux et al., 2007).

The distance a pollutant is transported is determined by the geographic location of its creation, the atmospheric circulation, and strongly depends on the lifetime of the pollutant in the free atmosphere. A compound needs to have an atmospheric lifetime of at least a week to be transported to another continent and thus become a global issue (Akimoto, 2003). The lifetime of ozone of about 22 days enables a long-range transport between continents all year long and hemispheric transport except in summer (Akimoto, 2003; Stevenson et al., 2006; Derwent et al., 2002) where increased atmospheric water vapour concentrations decrease its lifetime (Parrish et al., 2012). Climate change might reduce ozone lifetimes due to an increased ozone loss via the reaction with increasing water vapour concentrations in the atmosphere (Stevenson et al., 2006).

The stronger convective activity over China compared to other industrialised regions in the world facilitates the transport of ozone into the free atmosphere and can cause an increase of background levels in the downwind direction (Fusco and Logan, 2003). In the case of ozone, the transport of ozone precursors is an important issue in addition to ozone transport itself. Carbon monoxide possesses an atmospheric lifetime allowing for intercontinental and hemispheric transport (Akimoto, 2003) whereas nitrogen oxides posses shorter lifetimes. NO_x is in general only transported regionally and thus causes for example low and rather constant ozone concentrations over the oceans (Derwent et al., 2002).

1.2.2 Background concentrations

Local ozone background concentrations are to a large extend determined by the hemispheric baseline but are additionally affected by the geographic location and elevation. These concentrations are further altered (increased or decreased) by local and regional processes, for example the extend of anthropogenic influence (Vingarzan, 2004; Jenkin, 2008). Knowing the background ozone concentration is essential to get an estimate of longer-term concentration changes due to the effects of local and regional anthropogenic emissions. Measurements in urban areas include anthropogenic impacts and are important to assess the immediate exposure and damage for the biosphere. Average surface mixing ratios for the year 2000 for the Northern Hemisphere are estimated to 33.7 ± 3.8 ppb (40 to 50 ppb over large parts of North America, southern Europe, and Asia) and 23.7 ± 3.7 ppb for the Southern hemisphere (background values range from 15-25 pbb) (Akimoto, 2003; Vingarzan, 2004; Dentener et al., 2006). Assuming that in pre-industrial times surface ozone concentrations were mainly produced by natural sources and constitute a natural background, the comparison of pre-industrial and present day concentrations indicates the anthropogenic impact on today's ozone concentrations. Present day ozone surface mixing ratios are measured at thousands of surface stations around the globe. Vertical ozone profiles are obtained from measurements of sondes, lidars, especially equipped aircraft and over a large part of the globe by satellites (Cooper et al., 2014).

1.2.3 Trends

Surface ozone concentrations in 1860 amounted 15-25 ppb over the mid- and highlatitudes of Eurasia and North America, and increased to 40-50 ppb in the present (Akimoto, 2003). In Western Europe, tropospheric O₃ levels have increased approximately by a factor 2 to 5 from pre-industrial values to the 1990s (Cooper et al., 2014; Marenco et al., 1994; Staehelin et al., 1994), although the low values at the start of this period are very uncertain. Between 1950 and the 1990s tropospheric O₃ levels approximately doubled in the Northern Hemisphere (Parrish et al., 2012; Cooper et al., 2014). In the last decades, the yearly rate of increase has been approximately 0.5-2% in the mid latitudes of the Northern Hemisphere (Vingarzan, 2004; Parrish et al., 2012). The observed increase in ozone concentrations coincides with an increase in it's precursor NO_x by a factor of 4.5 between 1955 and 1985 (Cooper et al., 2014; Staehelin et al., 1994). The longest quantitative measurements of O₃ were conducted in Europe what restricts statements on long-term changes to this region (Cooper et al., 2014).

The major causes for increased O_3 formation are the increased emission of O_3 precursor trace gases such as NO_x and CO, primarily from combustion sources, non-methane volatile organic compounds from anthropogenic sources (combustion, solvents), and methane emissions from agriculture and industry (Fusco and Logan, 2003; Vingarzan, 2004). Increased NO_x and methane emissions seem to account for 10-20% and 3-4% increase in O_3 background levels since 1970, respectively (Vingarzan, 2004). Model runs by Fusco and Logan (2003) suggest that 40% of the increase in O_3 concentrations can be attributed to increased NO_x emissions and less than 20% to increases in methane concentrations between 1970 and 1994. The stratospheric ozone influx into the troposphere on the contrary seems to have declined during the modelling period of 1970 to 1994 (Fusco and Logan, 2003). Intercontinental transport of ozone increases background concentrations downwind of polluted sites and might account for increased ozone concentrations by 3–10 ppb in the western United States during spring due to Asian pollution (Vingarzan, 2004).

An increase in tropospheric ozone concentrations is not observed everywhere and trends vary between locations. Many background stations measured increasing levels of ozone between the 1960s and 2000s, however some stations report declining levels (Vingarzan, 2004). On average an upward trend can be observed due to the increasing baseline trend and a decreasing trend of the removal of ozone by locally emitted nitric oxide (Jenkin, 2008). Intercontinental transport seems to be an important factor influencing locally observed ozone trends (Vingarzan, 2004; Jenkin, 2008). For instance, air cleaning policies to reduce anthropogenic NO_x and VOC emissions have decreased the occurrence of very high peak ozone concentrations in the UK, in spite of the increase of ozone concentrations at background sites due to the increasing global baseline concentration (Jenkin, 2008).

Projections suggest worldwide increasing background ozone concentrations of 1.5 ± 1.2 ppb by 2030 under the CLE scenario (Current Legislation scenario: implementation of current air quality legislation around the world) and 4.3 ± 2.2 ppb under the more pessimistic IPCC SRES A2 scenario (Dentener et al., 2006). By 2100 mean monthly ozone concentrations are projected to exceed 70 ppb in the summer months in large parts of the Northern Hemisphere when applying the IPCC SRES A2 emission scenario (Sitch et al., 2007). However, future trends of ozone concentrations are highly dependent on the location.

1.3 Ozone effects on plants

Ozone occurring in the near-surface atmosphere enters plants primarily though the leafs stomata, a process which is limited by the leaf boundary layer conductance and the stomatal conductance (Musselman et al., 2006). Factors that control stomatal conductance for example photosynthetic capacity, incident light, vapour pressure deficit (VPD), and temperature can thus be assumed to affect foliar ozone uptake. After entering the leaf internal air spaces, ozone quickly dissolves into the aqueous phase surrounding the cells and is rapidly consumed in the cell walls and/or the plasma membrane. This results in a near zero leaf internal ozone concentration (Laisk et al., 1989). Initial target sites for reactions are plasma membrane lipids, susceptible amino acids in proteins, plasma membranes, apoplastic enzymes, or cell wall components (Fiscus et al., 2005). In these reactions, reactive oxygen species (ROS) such as hydroxyl radicals (OH⁻), superoxide anions (O₂⁻) and hydrogen peroxide (H₂O₂) are produced (Kangasjärvi et al., 1994). These ROS then cause an abundance of observed effects: Amongst others they can act as messengers and trigger hypersensitivity reaction resulting in programmed cell death (Tausz et al., 2007) or induce stomatal closure (McAinsh et al., 2002; Fiscus et al., 2005).

1.3.1 Overview of types of effects

Effects of ozone on plants are generally investigated by ozone filtration/fumigation experiments where plants exposed to different ozone concentrations are compared. Charcoal filtered air is often used to simulate pre-industrial conditions, whereas a fumigation with elevated ozone concentrations can be used to assess impacts at ozone hotspots or under possible future conditions. The available empirical studies to investigate ozone effects differ in their length, i.e. investigation of short-term effects versus the consequences of chronic exposure, and in the exposure method, for instance using open top chambers (Heagle et al., 1973; Fuhrer, 1994), or free air ozone fumigation systems (FACE), such as combined free air ozone and CO_2 enrichment experiments (Karnosky et al., 2003). The observed injuries in the experiments cover a wide range of effects. Prominent adverse effects are visible injury like lesion or chlorosis (Langebartels et al., 1991; Wohlgemuth et al., 2002), reductions in photosynthetic capacity (Tjoelker et al., 1995; Wittig et al.,

2007) and growth and yield (Grantz et al., 2006; Hayes et al., 2007; Feng and Kobayashi, 2009; Wittig et al., 2009; Leisner and Ainsworth, 2012). There is some evidence for a shifted carbon allocation with a reduced allocation to roots, resulting in an altered root:shoot-ratio (Grantz et al., 2006; Hayes et al., 2012). Conflicting results exist regarding altered respiration rates, including reports of increasing, decreasing and unaltered respiration rates (Tjoelker et al., 1995; Wittig et al., 2009; Lombardozzi et al., 2012b). Many symptoms of ozone injury resemble senescence like chlorosis, chloroplast degradation, protein loss, ethylene emissions and decreases in photosynthetic capacity (see Pell et al. (1997); Fuhrer and Booker (2003) and section 1.3.3). The commonly observed decline in photosynthesis (Wittig et al., 2007) is often related to a decline in carboxylation efficiency (Farage et al., 1991), electron transport as well as direct and indirect effects on stomatal conductance (see Paoletti and Grulke (2005); Lombardozzi et al. (2012b) and section 1.3.4). Reductions in carboxylation efficiency are assumed to be caused by reduced RuBisCO levels and activation, which in return can be caused either by enhanced degradation or reduced production (Fiscus et al., 2005). Since stomatal conductance and photosynthesis are affected, ozone has a direct effect on the plant's transpiration rate, and in the case of stomatal damage also on the plant's water use efficiency (WUE) (Wittig et al., 2007; Mills et al., 2009; Lombardozzi et al., 2012b). Not all ozone that is taken up into the plants however directly damages them. Plants can activate defence mechanism and physiological pathways to produce protective compounds like ascorbate and polyamines which can detoxify at least part of the ozone (see Kangasjärvi et al. (1994); Kronfuß et al. (1998); Tausz et al. (2007) and section 1.3.2).

1.3.2 Detoxification, respiration, repair

Defence mechanisms can detoxify at least part of the ozone that enters the plants stomata. The effective ozone flux constitutes the remaining fraction that could not be detoxified and has the potential to injure the plant cells (Musselman et al., 2006). The ozone dose (integral of instantaneous ozone stomatal flux over a period of time) thus can be very different to the effective dose (integral of the effective flux over a period of time), depending on the plant's specific defence capabilities (Musselman et al., 2006).

Oxidative stress in plants occurs due to the uptake of pollutants like ozone, but also occurs naturally under photo-oxidative stress. Plants have developed an antioxidant defence system to control ROS which are produced by either process (Tausz et al., 2007).

Detoxification agents can be classified in two broad categories - constitutive and inductive - according to their mode of action (Musselman et al., 2006; Wieser and Matyssek, 2007). Constitutive agents are present already when ozone enters the leaf and directly detoxifies it. Ascorbate is often termed 'the first line of defence, as it is present in the plant's cell walls and directly detoxifies entering ozone (Smirnoff, 1996; Tausz et al., 2007; Wieser and Matyssek, 2007). Other compounds additionally acting as detoxifying agents are for instance polyamines (Langebartels et al., 1991; Kangasjärvi et al., 1994), jasmonates (Overmyer et al., 2000) and isoprenoids (Vickers et al., 2009; Fares et al., 2010). Inductive agents are produced on demand if the detoxifying capacity of the constitutive defence is insufficient. Since their production has to be induced, a time lag occurs until they can act as protective agents.

Ozone injury is assumed to occur when the anti-oxidant system becomes overwhelmed (Wieser and Matyssek, 2007). The level of ascorbate is considered as an indicator for tolerance, but is also known to be insufficient for determining varying ozone tolerances between species (Tausz et al., 2007). Dizengremel et al. (2008) suggests to consider the cells ability to regenerate antioxidants and hence amongst others the level of reducing power (NADPH) provided by photosynthesis additional to the ascorbate content. Independent on the exact mechanism, detoxification of ozone and/or repair of ozone induced injury likely increases the plant's respiration costs and hence progressively reduces net primary production with increasing cumulative ozone uptake (Wieser and Matyssek, 2007).

1.3.3 Injury

Ozone injury in plants can either manifest themselves in visible injury like chlorotic spots of the leaf surface, or in an altered physiology without any visible symptoms (Heath, 1994). An altered physiology in general develops due to chronic exposure to low concentrations, and includes symptoms such as inhibition of photosynthesis, altered stomatal conductance, a lack of responsiveness to absisic acid (ABA) and accelerated senescence (Kangasjärvi et al., 1994; Dizengremel, 2001; Mills et al., 2009). Visible injury in general results from unregulated or programmed cell death either due to short-term exposure to high ozone concentrations that occurs within hours after the exposure (acute effects), but can also be the consequence of chronic exposure to lower concentrations, where the lesions develop over days or weeks (Fiscus et al., 2005).

Injury occurs when the amount of absorbed ozone exceeds the capacity of the antioxidative defence system to detoxify it (see Musselman et al. (2006) and section 1.3.2). This might happen if the costs for building up defence compounds exceeds the supply with assimilates provided by photosynthesis (Wieser and Matyssek, 2007). The magnitude of the injury might be determined by the amount of ozone that is not detoxified. For example, lesion formation was found to linearly increase with the ozone dose in tobacco plants (Langebartels et al., 1991).

Injury formation results from triggering the pathogen-defence pathway, which leads to a hypersensitivity response and can induce cell death due to a ROS accumulation in the tissue termed an 'oxidative burst' (Wohlgemuth et al., 2002). Existing lesions expand by triggering ROS accumulation in neighbouring cells (Wohlgemuth et al., 2002). Injury formation also correlates with an increase in ethylene levels after ozone exposure in ozone-sensitive plants, whereas ethylene contents remain low at insensitive plants (Tingey et al., 1976; Langebartels et al., 1991; Kangasjärvi et al., 1994). Ethylene is involved in controlling the natural senescence of a leaf; it modulates pathogen defence pathways and has the potential to prevent stomatal closure (Burg, 1968; Wilkinson and Davies, 2009; McManus, 2012).

High ozone concentrations have the potential to cause direct adverse effects (Reich, 1987; Fiscus et al., 2005; Noormets et al., 2010). Peak ozone events might play an

important role to determine potential injury. Several studies showed that plants exposed to peak concentrations were more impacted than those exposed to smooth concentrations (Stan and Schicker, 1982; Musselman et al., 1994). However crop responses seem to be better related to intermediate ozone concentrations (hourly averages between 50-90 ppb) because they occurred at times when atmospheric conditions favour a high stomatal conductance and hence ozone uptake Krupa et al. (1995).

1.3.4 Impacts on stomatal conductance

Stomata control the leaf gas exchange and stomatal conductance is a major factor determining the amount of ozone uptake besides the foliar area of a plant (Wieser and Havranek, 1995). The near-surface atmospheric ozone concentration and the aerodynamic and stomatal resistance to ozone transport determine the ozone dose $[nmol O_3 m^{-2}]$ over a defined period of time] a plant experiences. Species with higher stomatal conductance are subjected to higher ozone doses and are shown to be more prone to injury (Reich, 1987; Wittig et al., 2009), what suggests a strong correlation between the ozone dose and realised injury. Stomatal conductance is generally highest in the mid-morning hours, due to high irradiance and low vapour pressure deficit (VPD), and decreases in the afternoon. A mid-day-dip in stomatal conductance can result from a high midday VPD (Pathre et al., 1998). Near-surface ozone concentrations are generally highest in the late afternoon, as a result of the photochemical production process. Peak ozone concentrations thus do not generally coincide with peak values of ozone uptake (Musselman et al., 2006; Heath et al., 2009; Fares et al., 2010). Night-time stomatal conductance is often omitted in ozone assessments, because plants are assumed to have minimal stomatal conductance at night and because the lower turbulent air exchange between the free atmosphere and the surface boundary layer during night-time additionally reduces gas exchange. However it was shown for many species that stomata remain partly open during the night, and that the nocturnal stomatal ozone flux can be an important factor in the total plant ozone uptake (Musselman and Minnick, 2000; Musselman et al., 2006).

In general it is assumed that stomata close at high concentrations of ozone following an inhibition of photosynthesis (Darrall, 1989), as both processes are tightly coupled. However, stomata respond in general 10-100 times slower to changes in external conditions than photosynthesis (Morison, 1998). Ozone induced reductions in stomatal conductance are mediated by an increase in the leaf internal CO₂ concentration caused by an impaired photosynthetic apparatus (Darrall, 1989; Paoletti and Grulke, 2005, 2010). Besides such indirect effects on stomatal conductance, stomata can also be directly effected. Ozone-affected stomata respond much slower to environmental stimuli than unaffected cells (Paoletti and Grulke, 2005), what can delay closure. In this case, stomatal conductance and photosynthesis can become 'uncoupled' (Reich, 1987; Tjoelker et al., 1995; Lombardozzi et al., 2012b). This decoupling, also known as 'sluggishness', causes a higher ozone uptake and transpiration rates (Mills et al., 2009; Paoletti and Grulke, 2010; Lombardozzi et al., 2012b). The increased transpiration and hence water loss due to stomatal sluggishness can increase the risk of hydraulic failure under drought stress (Sun et al., 2012). Exposure to short-term high concentrations of ozone can cause immediate reductions in photosynthesis and a parallel decline in stomatal conductance whereas chronic exposure is assumed to lead to stomatal sluggishness (Farage et al., 1991; Paoletti and Grulke, 2005).

1.3.5 Exposure indices

To assess the potential detrimental effect of tropospheric ozone on the biosphere, exposure indices were developed starting with concentration based indices (see LRTAP-Convention, 2017, for an overview). The classical example is the AOTX [ppm h], where the free-air ozone concentration is related to observed plant damage. When calculating the AOTX, the mean hourly ozone concentration exceeding a threshold of X ppb (generally 30 or 40 ppb) are summed for all daylight hours (radiation > 50 W m⁻²) for a specified time period, for example the months when the vegetation is active. The advantage of a concentration-based metric is that it relies exclusively on easily observable quantities like the ground level ozone concentration.

Models assessing ozone damage to gross or net primary production based on AOTX have been used for many years and indicate that substantial reduction in plant growth and carbon sequestration occurs globally and may reach reductions of more than 40% at O₃ hotspots (Felzer et al., 2004, 2005; Ren et al., 2011; Anav et al., 2011).

However, different species and their regional provenances differ vastly in their stomatal conductance and hence the amount of ozone uptake per time interval ('dose') (Reich, 1987). The O_3 dose has been observed to strongly correlate with the amount of injury of a plant, suggesting that plants with a higher stomatal conductance are subject to higher doses and hence are more susceptible to injury (Reich, 1987; Wittig et al., 2009). Stomatal flux-based models, such as for instance the DO_3SE model (Emberson et al., 2000a), estimate the uptake of ozone per time period as a function of surface ozone concentration and the plant's stomatal conductance. The latter is affected by various factors such as incident light, atmospheric vapour pressure deficit (VPD), air temperature and phenology. A commonly used flux-based index is the PODy $[nmol m^{-2} s^{-1}]$, which gives the accumulated ozone flux above a threshold of y nmol $m^{-2} s^{-1}$ for all daylight hours and a given time period. Common threshold values for PODy range from 1-6 $\mathrm{nmol}\,\mathrm{m}^{-2}\,\mathrm{s}^{-1}$ (Pleijel et al., 2007; LRTAP-Convention, 2017; Mills et al., 2011b), depending on the specific species sensitivity to O_3 . The AOTX and PODy both calculate a cumulated value, which is then related to plant damage. Regions of high risk for potential damage generally differ between both indices (Simpson et al., 2007; Emberson et al., 2000a). Contrary to the exposure based AOTX, the uptake based PODy suggests high ozone effects not only in for example southern Europe, but also in central and northern Europe, where climatic conditions favour a high stomatal ozone uptake (Mills et al., 2011a; Simpson et al., 2007). Observed ozone damage in the field seems to be better correlated to flux-based risk assessment compared to concentration based methods (Mills et al., 2011a). Following this the, UNECE Convention on Long-range Transboundary Air Pollution (LRTAP Convention) recommends flux based methods as the preferred tool for risk assessment (see LRTAP-Convention, 2017).

A recent study by Feng et al. (2018) suggest that relating ozone uptake to leaf mass

(termed PODx) better explains inter-specific ozone sensitivity compared to the already established damage index PODy, where ozone uptake is related to the leaf area. However, an independent confirmation of this observation is still missing and it is yet unclear if this index will generally be used in future risk assessments.

1.4 Impacts of elevated CO_2 concentrations on plants

Increasing atmospheric CO_2 concentrations are a key aspect of climate change. As CO_2 is a nutrient for plants, changes in the atmospheric abundance of CO_2 impact plants. A multitude of experiments with herbaceous and woody plants, exposed to elevated CO_2 (eCO₂) concentrations for short or medium time spans, fungated in chambers or Free Air CO₂ Enrichment systems (FACE) over the last decades suggests a multitude of effects on plants, soil microbes and soil properties. It is shown that elevated eCO_2 for example stimulates photosynthesis (Curtis and Wang, 1998; Medlyn et al., 1999; Ainsworth and Long, 2005), increases total biomass (Curtis and Wang, 1998; King et al., 2005; De Graaff et al., 2006), alters stomatal conductance (Medlyn et al., 2001; Paoletti and Grulke, 2005), and thus possibly impacts soil moisture and run-off (Field et al., 1995). There is some evidence that the biochemical composition of leafs is altered. including an increase in starch content and a reduction in nitrogen content (Drake et al., 1997; Curtis and Wang, 1998; Medlyn et al., 1999), and that dark respiration is decreased (Drake et al., 1997). Foliar senescence might be delayed (Karnosky et al., 2003). Both, an altered chemical foliar composition and soil moisture pattern, might impact litter decomposition (Field et al., 1995). However a meta-analysis by Norby et al. (2001) showed that despite a significant reduction in leaf nitrogen in the litter and an increased lignin concentration no significant effect on decomposition was found.

Studies using different species and exposure systems (FACE or fumigation chambers) or life stages observed different and sometimes contradictory effects (Ainsworth and Long, 2005; De Graaff et al., 2006; Leakey et al., 2009, see for example). A meta-analyses of FACE studies shows that functional groups differ in their response to FACE and that trees responded stronger compared to herbaceous species (Ainsworth and Long, 2005). Trees showed little photosynthetic acclimation to eCO_2 and exhibited the largest increase in dry matter production (Ainsworth and Long, 2005). Increases in the leaf area index (LAI) could be observed in trees but not in herbaceous plants (Ainsworth and Long, 2005). However when considering these results one has to take into account that the trees in the experiment were generally young and rapidly growing, what might impact these findings (Ainsworth and Long, 2005). A general finding by Ainsworth and Long (2005) is that light-saturated carbon uptake and carbon assimilation, growth and aboveground production is increased, whereas specific leaf area and stomatal conductance is decreased in eCO_2 . Increased growth induced by eCO_2 induces a concurrent demand for nutrients and might cause a depletion of for example soil nitrogen and ensued a reduction in NPP (Hyvönen et al., 2007). The eCO_2 induced stimulation of NPP is also found to stimulate root growth and to increase the root:shoot ratio (Luo et al., 2006). The probably expanded rooting system might increase the nitrogen uptake which has the potential to increase NPP (Hyvönen et al., 2007). Furthermore evidence exists for an increased nitrogen use efficiency of plants under eCO_2 (Leakey et al., 2009). Increases in NPP simultaneously increase litter production and soil organic matter (Hyvönen et al., 2007). Increased biomass and litter production under eCO_2 is assumed to increase soil respiration and hence CO_2 release to the atmosphere (Hyvönen et al., 2007; De Graaff et al., 2006). This CO_2 release at least partly counterbalances increased rates of CO_2 uptake due to the stimulated plant carbon uptake.

The CO₂ fertilisation effect (increases in photosynthesis and carbon uptake induced by eCO₂) is generally assumed to only develop if CO₂ is the most limiting resource (Field et al., 1995). The stimulating effect of eCO₂ on NPP might get severely reduced or completely eliminated if other resources like water or nitrogen are limited (Reich et al., 2014; De Graaff et al., 2006). The deposition of anthropogenic produced reactive nitrogen thus has the potential to at least partly maintain the CO₂ fertilisation effect in nutrient poor ecosystems (Ciais et al., 2013). A study by Zak et al. (2011) indicates that under eCO₂ microbial decay and net N mineralisation are accelerated, which increases the soil N-cycling and sustains increased rates of NPP (Zak et al., 2011). A greater below ground plant growth induced by eCO₂ hastened the organic matter decay and enhanced the N supply to plants (Zak et al., 2011). If these increased rates of soil N cycling are able to maintain increased rates of NPP is yet uncertain (Zak et al., 2011).

Stomata open or close depending on the leaf internal CO_2 concentrations (Mott, 1988; Paoletti and Grulke, 2005), where photosynthesis (CO_2 fixation) acts as a CO_2 sink and stomatal opening as a CO_2 source. meta-analyses indicate a reduction in stomatal conductance under eCO_2 (Curtis and Wang, 1998; Medlyn et al., 2001), what might reduce transpiration, increase the plants water-use efficiency (WUE) and cause less water uptake from the soil and hence an increase in soil water content (Drake et al., 1997) and river runoff (Gedney et al., 2006). Where water is a limiting factor for productivity, this increased soil moisture has the potential to increase productivity and foliar area (Field et al., 1995). Increases in LAI can in return elevate stand-level transpiration rates to levels comparable to ambient CO_2 even though transpiration on a leaf-level basis is reduced (Drake et al., 1997). The increase in WUE and leaf-level transpiration potentially increases leaf temperatures due to a reduced loss of latent heat (Drake et al., 1997), which through a feedback to near leaf VPD might cause an increase in transpiration.

1.4.1 Coupled effects of elevated CO₂ and O₃

The coupled effects of elevated CO_2 and elevated ozone (eO₃) on plant traits and performance are less well understood than the single effects. The stomatal closure induced by eCO₂ (Paoletti and Grulke, 2005) has the potential to limit O₃ uptake and hence damage. Contradictory evidence exists showing that either eCO₂ ameliorated the negative effects of O₃ on plants (Barnes and Pfirrmann, 1992; Broadmeadow and Jackson, 2000; Isebrands et al., 2001; Riikonen et al., 2004) or that there was little interaction between both gases and the stimulating effect of eCO₂ on NPP persisted (Talhelm et al., 2014; Zak et al., 2011). However, results from the Aspen FACE indicate that stomatal conductance and ozone uptake were not reduced by eCO_2 in their experiment (Uddling et al., 2010).

Some studies observed reductions in injury (Barnes and Pfirrmann, 1992; Wustman et al., 2001) and chlorophyll degradation (Broadmeadow and Jackson, 2000) under the joint fumigation of eCO₂ and eO₃ (eCO₂+eO₃). Several studies find species specific positive or negative impacts of eCO₂+eO₃ on photosynthesis (Noormets et al., 2001), growth (Isebrands et al., 2001) and biomass (King et al., 2005). Ozone fumigation completely offset the growth enhancement observed in the eCO₂ treatment for ozone sensitive and tolerant clones in the ASPEN FACE (Karnosky et al., 2003). An amplification of the negative effects of O₃ under eCO₂ on leaf chlorophyll content, nitrogen content and electron transport capacity (J_{max}) was observed in ozone sensitive and tolerant aspen clones (Noormets et al., 2010). A possible reason for the amplification of ozone induced negative effects under eCO₂ is a possible down regulation or suppression of antioxidant production under eCO₂ and hence increased injury (Wustman et al., 2001; Karnosky et al., 2003). All in all, a clear picture of the joint effects of eCO₂+eO₃ on plants or plant groups is still lacking.

1.4.2 Coupled effects of elevated CO_2 , O_3 and N availability

The coupled effects of O_3 and N availability are rarely investigated. Nitrogen fertilisation can stimulate plant photosynthesis and through this increase stomatal conductance. Increased rates of stomatal conductance can enhance ozone uptake and hence ozone induced injury what in return can reduce photosynthesis. Some studies find no or less severe adverse effects of O_3 in nitrogen limited treatments (Cardoso-Vilhena and Barnes, 2001; Utriainen and Holopainen, 2001). However, a meta-analyses on the combined effects of N-availability and O_3 showed that above-ground biomass, leaf area and root biomass were stronger negatively affected by O_3 when nitrogen was limited compared to sufficient N-treatments (Yendrek et al., 2013). The joint impacts of CO_2 , O_3 and N availability are even less well investigated. A study with spring wheat showed that for all tested nitrogen levels eCO₂ counteracted the harmful effects of O_3 on photosynthesis and growth (Cardoso-Vilhena and Barnes, 2001). The observed reduction in damage was associated with a decline in O_3 uptake (Cardoso-Vilhena and Barnes, 2001).

1.5 Future projections of climate change

To investigate potential future impacts of air pollution and climate change on the terrestrial biosphere models need to be driven by potential future climate and atmospheric compositions. Climate scenarios have been developed for several decades and are regularly updated. Over the last decades the IPCC commissioned the development of several scenarios, like the IS92 and SRES scenario (Nakicenovic et al., 2000; Moss et al., 2010). Climate models have become more complex over the last decades and need an extended and more detailed set of input (Moss et al., 2010) to create updated climate scenarios. The climate modelling community developed a set of scenarios, the 'representative
concentration pathways (RCPs)', which contain possible future emissions and concentrations of greenhouse gases and air pollutants as well as land-use trajectories necessary to run Climate models and Integrated Assessment Models (van Vuuren et al., 2011). The use of a common set of drivers of climate change facilitates the comparison of results from different models.

1.5.1 Representative concentration pathways (RCPs)

The RCPs are trajectories of major drivers of climate change, that are developed to span the full range (extreme and intermediate) of possible future climate scenarios in the scientific literature (van Vuuren et al., 2011). Four pathways were produced for the period 1850-2100 that lead to a radiative forcing of 2.6, 4.5, 6 and 8.5 W m⁻² by the year 2100 (van Vuuren et al., 2011). The RCP8.5 is a high emission scenario containing a high baseline of greenhouse gas emissions and medium-high air pollution (van Vuuren et al., 2011). The RCP6 and RCP4.5 are intermediate emission scenarios with both containing medium levels of air pollution and a medium and very low baseline of greenhouse gas emissions of greenhouse gases and medium-low levels of air pollution (van Vuuren et al., 2011). The low emissions scenario RCP2.6 assumes very low emissions of greenhouse gases and medium-low levels of air pollution (van Vuuren et al., 2011). All RCPs show declining trends of air pollution owed to the assumption of more strict air pollution control and thus do not account for the possibility of very little or no reduction of air polluting emissions (van Vuuren et al., 2011). The global nitrogen deposition is projected to remain relatively constant in all RCP scenarios, except RCP2.6, but changes occur on a regional basis (Ciais et al., 2013).

The RCP scenarios can be used by climate models to develop new climate scenarios (Moss et al., 2010). Integrated Assessment Models can use the RCPs to investigate various technological, socio-economic and policy futures that might lead to each of the RCPs and the resulting change in radiative forcing (Moss et al., 2010).

1.5.2 Simulated changes during the 21st century

Within the Coupled Model Intercomparison Project Phase 5 (CMIP5) of the World Climate Research Programme a large number of Earth system Models (ESM) and Atmosphere–Ocean General Circulation Models (AOGCMs) conducted new climate model simulations which constitute the core of the climate system projections (Stocker, 2014). The models participating in the CMIP5 project base their simulations on the RCP scenarios described in the above section. The simulation results indicate with very high confidence that by the end of the 21st century temperature changes over land will be higher compared to over the ocean with the highest warming occurring in the Arctic region (Stocker, 2014). With increasing global mean surface temperatures global precipitation will certainly increase on a global mean, where different regions will experience deceases, increases or no changes (Stocker, 2014).

The ocean uptake of CO_2 is projected to continue until the end of 21st century with very high confidence (Stocker, 2014). The land carbon sink is projected to continue until 2100 by most CMIP5 models but a minority of models predicts the terrestrial biosphere to become a net CO_2 source, due to the effects of climate and land-use change (Stocker, 2014). The CMIP5 simulations furthermore suggests that elevated CO_2 increases the land carbon sink and climate effects will reduce CO_2 uptake in the tropics and mid-latitudes, both with medium confidence (Ciais et al., 2013). Since none of the models included a representation of permafrost pools the sign and magnitude of climate responses in high-latitudes is of low confidence (Ciais et al., 2013).

Nutrient availability will very likely limit the effect of rising atmospheric CO_2 levels on land carbon storage (Ciais et al., 2013; Stocker, 2014). Climate warming is projected to increase soil organic matter decomposition and nitrogen mineralisation with high confidence (Ciais et al., 2013). An enhanced availability of reactive nitrogen species might increase carbon storage by vegetation (Ciais et al., 2013). With high confidence nitrogen is projected to limit terrestrial carbon sequestration even when anthropogenic nitrogen deposition is considered (Ciais et al., 2013; Stocker, 2014).

The simulation of future surface ozone concentrations based on the RCP scenarios projects annual global mean reductions of 2 ppb by 2050 (compared to the levels of the year 2000) contrary to a 4-6 ppb increase when applying the IPCC SRES scenarios (Wild et al., 2012). Over most regions a substantial reduction in annual mean ozone concentrations is expected except for South Asia where increases might be as high as 5 ppb (Wild et al., 2012).

1.6 Global terrestrial biosphere models

The impact of the terrestrial biosphere on the global climate is difficult to estimate through direct observations (Bonan, 2008). Biosphere-atmosphere interactions can for example be investigated by eddy covariance flux towers and field experiments on a local scale. Large scale estimates of GPP can for example be derived from remote sensing products like MODIS (Heinsch et al., 2006). The most common approach to investigate the global interaction between atmosphere and biosphere is by applying models (Bonan, 2008). In this thesis the terrestrial biosphere model O-CN model is used to investigate air pollution impacts on the terrestrial carbon and nitrogen cycling.

1.6.1 The O-CN model

O-CN is a further development of the land-surface-scheme ORCHIDEE (O) (Krinner et al., 2005), and simulates the terrestrial coupled carbon (C), nitrogen (N) and water cycles for twelve plant functional types driven by climate data, atmospheric composition (N deposition, as well as atmospheric CO_2 and O_3 burden), and land use information (land cover and fertiliser application).

In O-CN net photosynthesis is calculated for shaded and sun-lit leaves in a multilayer canopy with up to 20 layers (each with a thickness of up to 0.5 leaf area index). Photosynthesis is calculated following a modified Farquhar-scheme in chapter 2 and the Ball and Berry formulation in chapters 3 and 4. In both approaches the light profiles of diffuse and direct radiation is considered (Zaehle and Friend, 2010). Photosynthetic capacity depends on leaf nitrogen concentration and leaf area, which are both affected by ecosystem available N. Increases in the leaf nitrogen content increase V_{cmax} and J_{max} (nitrogen-specific rates of maximum light harvesting, electron transport) and hence maximum net photosynthesis and stomatal conductance per leaf area. This in turn affects transpiration as well as O₃ uptake and ozone damage estimates. The leaf N content is highest at the top of the canopy and exponentially decreases with increasing canopy depth (Friend, 2001; Niinemets et al., 2015). Following this, stomatal conductance and O₃ uptake is generally highest in the upper canopy and lowest in the bottom of the canopy.

Canopy-integrated assimilated carbon enters a labile non-structural carbon pool, which can either be used to fuel maintenance respiration (a function of tissue nitrogen), storage (for seasonal leaf and fine root replacement and buffer of inter-annual variability of assimilation) or biomass growth. The labile pool responds within days to changes in GPP, the long-term reserve has a response time of several months, depending on its use to support seasonal foliage and fine root development or sustain growth in periods of reduced photosynthesis. After accounting for reproductive production (flowers and fruits), biomass growth is partitioned into leaves, fine roots, and sapwood according to a modified pipe-model (Zaehle and Friend, 2010), accounting for the costs of biomass formation (growth respiration). In other words, changes in leaf-level productivity affect the build-up of plant pools and storage, and thereby feed back on the ability of plants to acquire carbon through photosynthesis, or nutrients through fine root uptake.

1.6.2 Modelling air pollution impacts in O-CN

As before this thesis the O-CN model accounted for nitrogen deposition and its effects on plant growth but it did not account for the effects of ozone damage. To investigate the impact of both air pollutants, nitrogen deposition and ozone, on the terrestrial carbon and nitrogen cycling, an extended version of the O-CN model had to be developed which accounts for ozone damage on plants. Crucial steps to simulate ozone damage are the simulation of ozone uptake into the plants and the relation of the taken up ozone to plant damage. To simulate ozone uptake into the plants a realistic estimate of canopy level ozone concentrations is essential. The ozone concentrations provided by chemical transport models as input for terrestrial biosphere models report ozone concentrations in approximately 45 m above the surface. The canopy level ozone concentration is estimated by including an ozone deposition scheme. The canopy level ozone concentration is used to calculate ozone uptake into the leaf via the gas exchange between the plant and the canopy air. The taken up ozone is assumed to accumulate in the plants and represents potential accumulating damage. As plants are able to detoxify part of the taken up ozone (see section 1.3.2) a flux threshold is implemented and only ozone uptake rates which exceed the threshold are accumulated and thus accounted for in the damage calculation. The accumulated ozone in the plants is related to plant damage via an injury function. Different injury functions are evaluated in terms of their ability to reproduce observed biomass damage relationships in fumigation/filtration experiments. The evaluation of the injury functions finalised the model development and enabled the simulation of past,

present and future impacts of both air pollutants (nitrogen deposition and ozone) on the terrestrial carbon and nitrogen cycling.

The structure of the thesis is explained in the next section 1.7 together with the investigated research questions during the development, evaluation and application of the extended model.

1.7 Thesis structure and objectives

The objective of this thesis is to investigate the influence of air pollution, especially tropospheric ozone and nitrogen deposition, on the ability of the terrestrial biosphere to store carbon dioxide. Main research questions of the thesis are:

- What are key factors in the simulation of ozone damage that might explain the strong variation in estimated ozone induced damage estimates found in the literature and how can they be improved to obtain more reliable damage estimates?
- How much impacted ozone damage and nitrogen deposition the terrestrial carbon uptake and storage in the past since pre-industrial times?
- What is the extend of ozone damage and nitrogen deposition on the terrestrial carbon uptake and storage during the 21st century in simulations based on RCP scenarios?

To answer these question the thesis is structured into three main chapters (chapters 2-4). Each chapter consists of a brief introduction to the specific topic of the chapter, a description of the methods used in the chapter, a presentation of the results, their discussion and a conclusion.

In particular chapter 2 (Development and evaluation of an ozone deposition scheme for coupling to a terrestrial biosphere model) describes the implementation, testing and evaluation of a detailed ozone deposition included into the terrestrial biosphere model O-CN. Specific research questions investigated in this chapter are:

- To which extend impacts the deposition scheme the estimates of ozone uptake and hence potential damage estimates?
- What are key factors that determine the simulation of ozone uptake in the extended model?
- How much ozone induced damage to carbon uptake (GPP) and transpiration is estimated for the present when applying the new developed model version?

In chapter 3 the impact of different leaf-level injury functions, which relate simulated ozone uptake to plant injury, on simulated ozone effects on forests are investigated and evaluated. The addressed research questions are:

- Can observed biomass damage relationships be reproduced in simulations run by the O-CN model if previously published injury functions are applied in the damage calculation?
- Do linear injury functions exist whose application permit a reproduction of observed biomass damage relationships?
- Can injury functions developed from experiments with young trees be reliably applied to estimate ozone damage of mature trees?

The model developed in chapter 2 and evaluated and updated in chapter 3 is applied in chapter 4 to assess past and future impacts of air pollution on the terrestrial carbon uptake and storage. The addressed research questions are:

- To which extend reduced ozone damage carbon uptake and storage in the past and what are projected damage values for the 21st century?
- How much does the application of the ozone deposition scheme impact damage estimates?
- What is the net effect of nitrogen deposition and ozone damage on carbon uptake and storage?

Chapters 2 and 3 base on previously published papers which have been slightly adapted to fit into the thesis. Chapter 2 is based on the paper 'Development and evaluation of an ozone deposition scheme for coupling to a terrestrial biosphere model' by Franz et al. (2017) published in Biogeosciences. Chapter 3 builds upon the paper 'Evaluation of simulated ozone effects in forest ecosystems against biomass damage estimates from fumigation experiments' by Franz et al. (2018) published in Biogeosciences. Both papers are attached in the Appendix of this thesis. As chapters 2 and 3 involve input from co-authors on the previously published versions of the chapters, I will use the term 'we' instead of 'I' in both chapters.

The final chapter 5 presents a general conclusion by summarising the answers to the three main research questions of the thesis, indicating limitations and giving an outlook to possible future work.

Chapter 2

Development and evaluation of an ozone deposition scheme for coupling to a terrestrial biosphere model

2.1 Introduction

A number of O_3 exposure indices have been proposed to assess the potential detrimental effect of tropospheric O_3 on the plants (LRTAP-Convention, 2017; Mills et al., 2011b). In Europe, the standard method of these indices is the concentration-based AOTX [ppb h] (accumulated O_3 concentration over a threshold of X ppb), which relates the free-air O_3 concentration to observed plant damage. Models assessing ozone damage to gross or net primary production based on AOTX have been used for many years and indicate that substantial reduction in plant growth and carbon sequestration occurs globally and may reach reductions of more than 40% at O_3 hotspots (Felzer et al., 2004, 2005; Ren et al., 2011; Anav et al., 2011).

Accounting for the O_3 dose rather than the O_3 exposure in assessments of ozone damage results in diverging regional patterns of ozone damage, as regions with the highest exposure (O_3 concentrations) do not always coincide with regions of high uptake (Emberson et al., 2000a; Mills et al., 2011a; Simpson et al., 2007). Observed ozone damage in the field seems to be better correlated with flux-based risk assessment compared to concentration-based methods (Mills et al., 2011a). Following this the LRTAP Convention recommends flux-based methods (e.g. PODy [Phytotoxic Ozone Dose, nmol m⁻² s⁻¹]) as the preferred tool for risk assessment (LRTAP-Convention, 2017).

When calculating the O_3 uptake into the plants, it is important to consider that stomatal uptake is not the only surface sink of O_3 . O_3 destruction also occurs at non-stomatal surfaces such as the leaves' cuticle and soil surface. The stomatal flux represents approximately half of the total O_3 flux to the surface (Gerosa et al., 2004; Fowler et al., 2009; Cieslik, 2004; Simpson et al., 2003). Accounting for this non-stomatal O_3 deposition reduces the amount of O_3 uptake into the plants by reducing the surface O_3 concentration (Tuovinen et al., 2009) and thus has the potential to affect flux-based ozone damage estimates.

Only a few terrestrial biosphere models have adopted the flux approach to relate O_3 exposure to plant damage and thus estimate O_3 induced reductions in terrestrial carbon sequestration in a process-based manner. Sitch et al. (2007) developed a version of the JULES model in which stomatal O_3 uptake directly affects net primary production (NPP), thereby ignoring the effect of reduced photosynthesis under elevated levels of O_3 on water fluxes. Lombardozzi et al. (2015) proposed a revised version of the Community Land Model (CLM), in which O_3 imposes fixed reductions to net photosynthesis for two out of three modelled plant types. Atmospheric O_3 concentrations and the amount of cumulated O_3 uptake directly affect net photosynthesis only for one plant type.

In this chapter, a new, globally applicable model is presented to calculate O_3 uptake and damage in a process-oriented manner, coupled to the terrestrial energy, water, carbon, and nitrogen budget of the O-CN terrestrial biosphere model (Zaehle and Friend, 2010).

In this model, the canopy O_3 abundance is calculated using aerodynamic resistance and surface resistances to soil surface, vegetation surfaces, and stomatal cavities to take account of non-stomatal O_3 destruction. Canopy O_3 abundance is used to simulate stomatal O_3 uptake given instantaneous values of net photosynthesis and stomatal conductance. O_3 uptake and its effect on net photosynthesis is then calculated based on an extensive meta-analysis across 28 tree species by Wittig et al. (2007) considering the ability of plants to detoxify a proportion of the O_3 dose (Sitch et al., 2007).

We first give a detailed overview of the ozone scheme (Section 2.2.1); evaluate modelled gross primary production (GPP), canopy conductance, latent heat fluxes, and leaf area index (LAI) against data from the FLUXNET database (Baldocchi et al., 2001) to test the ability of the model to simulate observed values of key components affecting calculate O_3 uptake (Section 2.3.1); evaluate the simulated O_3 metrics against reported values in the literature (Section 2.3.2); provide a sensitivity analysis of critical variables and parameters of the deposition model to evaluate the reliability of simulated values of O_3 uptake (Section 2.3.3); give an estimate of the effect of the present-day O_3 burden on European GPP and transpiration (Section 2.3.4); and estimate the impact of using the O_3 deposition scheme on O_3 uptake and cumulated uptake (Section 2.3.5).

2.2 Methods

We developed an ozone deposition and leaf-uptake module for the terrestrial biosphere model O-CN (see section 1.6.1 for details).

The O_3 and N-deposition data used for this study are provided by the EMEP MSC-W (European Monitoring and Evaluation Programme Meteorological Synthesizing Centre - West) chemical transport model (CTM) (Simpson et al., 2012). The O_3 flux and deposition modules used in the EMEP model are advanced compared to most CTMs, and have

been documented in a number of papers (Emberson et al., 2001; Tuovinen et al., 2004, 2009; Simpson et al., 2007, 2012; Klingberg et al., 2008). The ozone deposition scheme for O-CN is adapted from the model used by EMEP MSC-W (Simpson et al., 2012) to fit the land-surface characteristics and process descriptions of the ORCHIDEE model. The leaf-level ozone concentrations computed by EMEP can not directly be used by O-CN, since EMEP and O-CN differ in a number of properties, as for instance in the number of simulated PFTs, and importantly their ecophysiological process representation. Both models differ in the simulation of various ecosystem processes (e.g. phenology, canopy processes, biogeochemical cycles, and vegetation dynamics, which are more explicitly represented in O-CN), which in sum impact stomatal and non-stomatal ozone deposition and through this the leaf-level ozone concentration. A possible further development of the updated O-CN model is the coupling to a CTM to allow for a consistent simulation of tropospheric O_3 burden and vegetation O_3 uptake.

2.2.1 Ozone module

The ozone deposition scheme calculates O_3 deposition to the leaf surface from the free atmosphere, represented by the O_3 concentration at the lowest level of the atmospheric chemistry transport model (CTM), taken to be at 45 m above the surface. The total O_3 dry deposition flux (F_g) to the ground surface is calculated as

$$F_g = V_g \chi_{atm}^{O_3} \tag{2.1}$$

where $\chi_{atm}^{O_3}$ is the O₃ concentration at 45 m and V_g is the deposition velocity at that height. In O-CN V_g is taken to be dependent on the aerodynamic resistance (R_a) , canopy-scale quasi-laminar layer resistance (R_b) and the compound surface resistance (R_c) to O₃ deposition.

$$V_g = \frac{1}{R_a + R_b + R_c}.$$
 (2.2)

 R_b is calculated from the friction velocity (u_*) as

$$R_b = \frac{6}{u_*}.\tag{2.3}$$

The R_a between 45 m height and the canopy is not computed by O-CN and is inferred from the logarithmic wind profile. To calculate the O₃ deposition of the free atmosphere at the lowest level of the CTM (approximately 45 m) to the vegetation canopy, it is necessary to know the aerodynamic resistance between these heights ($R_{a,45}$). These data are model- and land-cover-specific, and thus not provided by the CTM. Instead, we approximate $R_{a,45}$ from the wind speed at 45 m height (u_{45}) and the friction velocity u_* according to

$$R_{a,45} = \frac{u_{45}}{{u_*}^2} \tag{2.4}$$

where u_* is calculated from the wind speed at 10 m height (u_{10}) using the atmospheric resistance calculations of the ORCHIDEE model (Krinner et al., 2005). The wind at 45 m (u_{45}) is approximated by assuming the logarithmic wind profile for neutral atmospheric conditions (Monteith and Unsworth, 2007) due to the lack of information on any other relevant atmospheric properties at 45 m height:

$$u_{45} = u_{10} \frac{\log(\frac{45}{z_0})}{\log(\frac{10}{z_0})} \tag{2.5}$$

where z_0 is the roughness length.

 R_c is calculated as the sum of the parallel resistances to stomatal/canopy $(1/G_c^{O_3})$ and non-stomatal O₃ uptake $(1/G_{ns})$ (Simpson et al., 2012, Eq. 55)

$$R_c = \frac{1}{G_c^{O_3} + G_{ns}}.$$
(2.6)

The stomatal conductance to O₃ $G_{st}^{O_3}$ (m s⁻¹) is computed by O-CN (Zaehle and Friend, 2010) as

$$G_{st}^{O_3} = g_1 \frac{f(\Theta) f(q_{air}) f(C_i) f(height) A_{n,sat}}{1.51}$$
(2.7)

where $G_{st}^{O_3}$ is calculated as a function of net photosynthesis at saturating C_i $(A_{n,sat})$, where g_1 is the intrinsic slope between A_n and G_{st} . It further depends on a number of scalars to account for the effect of soil moisture $(f(\Theta))$, water transport limitation with canopy height (f(height)), and atmospheric drought $(f_{(qair)})$, as well as an empirical non-linear sensitivity to the internal leaf CO₂ concentration $(f(C_i))$, all as described in Friend and Kiang (2005). The factor 1.51 accounts for the different diffusivity of O₃ from water vapour (Massman, 1998). The canopy conductance to O₃ $G_c^{O_3}$ is calculated by summing the $G_{st}^{O_3}$ of all canopy layers. To yield reasonable conductance values in O-CN compared to FLUXNET data (see Sect. 2.3.1), the original intrinsic slope between A_n and G_c called α in Friend and Kiang (2005) is adapted such that $g_1 = 0.7\alpha$.

The non-stomatal conductance G_{ns} follows the EMEP approach (Simpson et al., 2012, Eq. 60) and represents the O₃ fluxes between canopy-air space and surfaces other than the stomatal cavities. The model accounts for O₃ destruction on the leaf surface (r_{ext}) , within-canopy resistance to O₃ transport (R_{inc}) , and ground surface resistance (R_{gs})

$$G_{ns} = \frac{SAI}{r_{ext}} + \frac{1}{R_{inc} + R_{gs}}$$
(2.8)

where the surface area index (SAI) is equal to the LAI for herbaceous PFTs (grasses and crops) and SAI = LAI + 1 for tree PFTs according to Simpson et al. (2012) in order to account for O₃ destruction on branches and stems. Unlike EMEP, we do not apply a day of the growing season constraint for crop exposure to O₃, which in O-CN is accounted for by the simulated phenology and seasonality of photosynthesis. The external leaf resistance (r_{ext}) per unit surface area is calculated as

$$r_{ext} = r_{ext,b} F_T \tag{2.9}$$

where the base external leaf resistance $(r_{ext,b})$ of 2500 m s⁻¹ is scaled by a low-temperature correction factor F_T and

$$F_T = e^{-0.2(1+T_s)} \tag{2.10}$$

with $1 \leq F_T \leq 2$ and T_s the 2 m air temperature (°C Simpson et al., 2012, Eq. 60). For temperatures below -1 °C non-stomatal resistances are increased up to two times (Simpson et al., 2012; Zhang et al., 2003). The within-canopy resistance (R_{inc}) is calculated as

$$R_{inc} = bSAI \frac{h}{u_*} \tag{2.11}$$

where b is an empirical constant (set to 14 s⁻¹) and h is the canopy height in m. The ground-surface resistance R_{qs} is calculated as

$$R_{gs} = \frac{1 - 2f_{snow}}{F_T \hat{R}_{qs}} + \frac{2f_{snow}}{R_{snow}}$$
(2.12)

(Simpson et al., 2012, Eq. 59). \hat{R}_{gs} represents base values of R_{gs} and takes values of 2000 s m⁻¹ for bare soil, 200 s m⁻¹ for forests and crops, and 1000 s m⁻¹ for non-crop grasses (Simpson et al., 2012, Suppl.). As in EMEP, the ground-surface resistance of O₃ to snow (R_{snow}) is set to a value of 2000 s m⁻¹ according to Zhang et al. (2003). f_{snow} is calculated from the actual snow depth (s_d) simulated by O-CN, and the maximum possible snow depth ($s_{d,max}$):

$$f_{snow} = \frac{s_d}{s_{d,max}} \tag{2.13}$$

with the constraint of $0 \le f_{snow} \le 0.5$ to prevent negative values in the first fraction of Eq. 2.12. $s_{d,max}$ is taken to be 10 kgm⁻² (Ducoudré et al., 1993).

Given these resistances, the canopy O_3 concentration $(\chi_c^{O3}, \text{nmol m}^{-3})$ is then calculated based on a constant flux assumption:

$$\chi_c^{O3} = \chi_{atm}^{O3} (1 - \frac{R_a}{R_a + R_b + R_c}).$$
(2.14)

 χ_c^{O3} and the stomatal conductance to O₃ ($G_{st}^{O_3}$ in m s⁻¹) are used to calculate the O₃ flux into the leaf cavities (F_{st} , nmol m⁻² s⁻¹):

$$F_{st} = (\chi_c^{O3} - \chi_i^{O3})G_{st}^{O_3}.$$
(2.15)

According to Laisk et al. (1989) the leaf internal O₃ concentration (χ_i^{O3}) is assumed to be zero.

The O-CN implementation of deposition and flux described above is a simplification of the deposition system used by EMEP in order to fit the process representation of ORCHIDEE, from which O-CN has inherited its biophysical modules. The external leaf resistance is not included in the calculation of F_{st} (Tuovinen et al., 2007, 2009), which results in an overestimation of stomatal O₃ uptake. Further, O-CN's calculation of R_a is based upon neutral stability conditions, whereas the EMEP model makes use of rather detailed stability correction factors. However, a series of calculations with the full EMEP model have shown that the uncertainties associated with these simplifications are small, typically 0.5-5 mmol m⁻². As base-case values of POD0 are typically ca. 30-50 mmol m⁻² in EU regions, these approximations do not seem to be a major cause of error, at least in regions with substantial ozone (and carbon) uptake. The full coupling of O-CN to a CTM would be desirable to eliminate this bias and allow for a consistent calculation of tropospheric and surface near O₃ burdens.

2.2.2 Relating stomatal uptake to leaf injury

An accumulation of F_{st} over time gives the accumulated uptake of O_3 for a particular canopy layer $(CUO_l, \text{ mmol } \text{m}^{-2})$, or for l = 1 (top canopy layer) the phytotoxic O_3 dose $(POD, \text{ mmol } \text{m}^{-2})$:

$$\frac{dCUO_l}{dt} = (1 - f_{new})CUO_l + cF_{st,l}$$
(2.16)

where $c = 10^{-6}$ converts from nmol to mmol and the integration time step is 1800 seconds.

The phenology of leaves is accounted for by assuming that emerging leaves are undamaged and by reducing the CUO_l by the fraction of newly developed leaves per time step and layer (f_{new}) . Furthermore, deciduous PFTs shed all CUO at the end of the growing season and grow uninjured leaves the next spring. Evergreen PFTs shed proportionate amounts of CUO during the entire year whenever new leaves are grown.

The full canopy cumulative uptake of O_3 is calculated by summing CUO_l over all present canopy layers (n):

$$CUO = \sum_{l=1}^{n} CUO_l.$$
(2.17)

The CUO_l is used to approximate the injury to net photosynthesis (A_n) by using the injury relationship of Wittig et al. (2007):

$$d_l^{O3} = \frac{0.22CUO_l + 6.16}{100},\tag{2.18}$$

where the factor 100 scales the percentage values of injury to fractions. Net photosynthesis accounting for ozone injury (A_n^{O3}) is then calculated by subtracting the injury fraction from the uninjured value of A_n :

$$A_{n,l}^{O3} = A_{n,l}(1 - d_l^{O3}). (2.19)$$

Since G_{st} and A_n are tightly coupled (see Eq. 2.7), an injury of A_n results in a simultaneous reduction in G_{st} . The canopy-scale O₃ flux into the leaf cavities (F_{stC}) is calculated by summing F_{st} of all canopy layers, similar to the aggregation of $A_{n,l}$ and G_{st} and CUO_l . Canopy O₃ concentration, O₃ uptake, canopy cumulative O₃ uptake (CUO), and injury to net photosynthesis are solved iterative to account for the feedbacks between ozone injury, canopy conductance and canopy-air O₃ concentrations.

Note that CUO and POD can be directly compared to estimates according to the LRTAP-Convention (2017) notation when analysing only the top canopy layer (Mills et al., 2011b).

2.2.3 Sensitivity analysis

A sensitivity analysis is conducted to estimate the sensitivity of the modelled plant O_3 uptake to the parameterisation of the model, to establish the robustness of the model, and to identify the most influential parameters. Three parameters (ground-surface resistance (\hat{R}_{gs}) , external leaf resistance (r_{ext}) , and empirical constant (b); see Eq. 2.12, 2.8, and 2.11, respectively) and three modelled quantities (canopy conductance (G_c) , aerodynamic resistance (R_a) , and canopy-scale quasi-laminar layer resistance (R_b) : see Eq. 2.7, 2.2), with considerable uncertainty due to the underlying parameters used to calculate these quantities, are perturbed within $\pm 20\%$ of their central estimate.

A set of 100 parameter combinations is created with a Latin hypercube sampling method (McKay et al., 1979), simultaneously perturbing all six parameter values (Rpackage: FME; function: Latinhyper). For each parameter combination, a transient run (see subsection 2.2.4) is performed creating an ensemble of estimates for the key prognostic variables F_{stC} (Eq. 3.3), R_c (Eq. 2.6), V_g (Eq. 2.2) and the O₃ flux ratio (F_R) calculated as the ratio of F_{stC} and the total O₃ flux to the surface (F_q , Eq. 2.1).

The summer months June, July, and August (JJA) are selected from the simulation output and used for further analysis. For each prognostic variable (F_{stC} , R_c , V_g , F_R), the sensitivity to changes in all six perturbed parameters/variables is estimated by calculating partial correlation coefficients (PCCs) and partial ranked correlation coefficients (PRCCs) (Helton and Davis, 2002). PCCs record the linear relationship between two variables where the linear effects of all other variables in the analysis are removed (Helton and Davis, 2002). In the case of nonlinear relationships, RPCCs can be used, which implies a rank transformation to linearise any monotonic relationship, such that the regression and correlation procedures as in the PCCs can follow (Helton and Davis, 2002). We estimate the magnitude of the parameter effect by creating mean summer values of the four prognostic variables for each sensitivity run, and regressing these values against the corresponding parameter/variable scaling values of the respective model run.

2.2.4 Modelling protocol and data for site-level simulations

The site-level simulations (single-point simulations) at the FLUXNET sites are run using observed metrological forcing, soil properties, and land cover from the La Thuile Dataset (http://fluxnet.fluxdata.org/data/la-thuile-dataset/) of the FLUXNET project (Baldocchi et al., 2001). Data on atmospheric CO_2 concentrations are obtained from Sitch et al. (2015). Reduced and oxidised nitrogen deposition in wet and dry forms and hourly O_3 concentrations at 45 m height are provided by the EMEP model (see Sect. 2.2.5).

O-CN is brought into equilibrium in terms of the terrestrial vegetation and soil carbon and nitrogen pools in a first step with the forcing of the year 1900. In the next step, the model is run with a progressive simulation of the period 1900 up until the start year of the respective site. For this period atmospheric O_3 and CO_2 concentrations as well as N-deposition of the respective simulated years are used. Due to lack of observed climate for the sites for this period, the site-specific observed meteorology from recent years is iterated for these first two steps. The observation years (see Tab. 2.1) are simulated with the climate and atmospheric conditions (N deposition, CO_2 and O_3 concentrations) of the respective years.

For the evaluation of the model output, net ecosystem exchange (NEE), and latent heat flux (LE), as well as meteorological observations are obtained for 11 evergreen needle-leaved forest sites, 10 deciduous broadleaved forest sites, and 5 C_3 grassland sites in Europe (see Tab. 2.1) from the La Thuile Dataset of the FLUXNET project (Baldocchi et al., 2001). Leaf area indices (LAIs) based on discrete point measurements are obtained from the La Thuile ancillary database.

NEE measurements are used to estimate gross primary production (GPP) by the flux-partitioning method according to Reichstein et al. (2005). Canopy conductance (G_c) is derived by inverting the Penman-Monteith equation given the observed LE and atmospheric conditions as described in Knauer et al. (2015).

The half-hourly FLUXNET and model fluxes are filtered prior to deriving average growing-season fluxes (bud break to litter fall) to reduce the effect of model biases on the model-data comparison. Night-time and morning/evening hours are excluded by removing data with lower than 20% of the daily maximum shortwave downward radiation. To avoid any biases associated with the soil moisture or atmospheric drought response of O-CN, we further exclude data points with a modelled soil moisture constraint factor (range between 0 and 1) below 0.8 and an atmospheric vapour pressure deficit larger than 0.5 kPa.

Daily mean values are calculated from the remaining time steps only where both modelled and observed values are present. The derived daily values are furthermore constrained to the main growing season by excluding days where the daily GPP is less than 20% of the yearly maximum daily GPP.

To derive representative diurnal cycles, data for the month July are filtered for daylight hours (taken as incoming shortwave radiation $\geq 100 \text{ W m}^{-2}$), with periods of soil or atmospheric drought stress excluded as above. This is done for modelled F_{stC} , R_c , V_g , and F_R and for both modelled and FLUXNET observed GPP and G_c .

Sites	Latitude	Longitude	Climate ^a	$\rm PFT^b$	Years	Reference
AT-Neu	47.12	11.32	Cfb	TeH	2002-2005	(Wohlfahrt et al., 2008b)
CH-Oe1	47.29	7.73	Cfb	TeH	2002 - 2006	(Ammann et al., 2007)
DE-Bay	50.14	11.87	Cfb	CEF	1997 - 1998	(Rebmann et al., 2004)
DE-Hai	51.08	10.45	Cfb	TeBDF	2000-2006	(Kutsch et al., 2008)
DE-Meh	51.28	10.66	Cfb	TeH	2004-2006	(Scherer-Lorenzen et al., 2007)
DE-Tha	50.96	13.57	Cfb	CEF	2004 - 2006	(Grünwald and Bernhofer, 2007)
DK-Lva	55.68	12.08	Cfb	TeH	2005 - 2006	(Gilmanov et al., 2007)
DK-Sor	55.49	11.65	Cfb	TeBDF	1997-2006	(Lagergren et al., 2008)
ES-ES1	39.35	-0.32	\mathbf{Csa}	CEF	1999-2004	(Sanz et al., 2004)
FI-Hyy	61.85	24.29	Dfc	CEF	2001 - 2006	(Suni et al., 2003)
FR-Hes	48.67	7.06	Cfb	TeBDF	2001 - 2006	(Granier et al., 2000)
FR-LBr	44.72	-0.77	Cfb	CEF	2003 - 2006	(Berbigier et al., 2001)
FR-Pue	43.74	3.60	\mathbf{Csa}	TeBEF	2001 - 2006	(Keenan et al., 2010)
IL-Yat	31.34	35.05	BSh	CEF	2001 - 2002	(Grünzweig et al., 2003)
IT-Cpz	41.71	12.38	\mathbf{Csa}	TeBEF	2001 - 2006	(Tirone et al., 2003)
IT-Lav	45.96	11.28	Cfb	CEF	2006-2006	(Marcolla et al., 2003)
IT-MBo	46.02	11.05	Cfb	TeH	2003 - 2006	(Wohlfahrt et al., $2008a$)
IT-PT1	45.20	9.06	Cfa	TeBDF	2003 - 2004	(Migliavacca et al., 2009)
IT-Ro1	42.41	11.93	\mathbf{Csa}	TeBDF	2002 - 2006	(Rey et al., 2002)
IT-Ro2	42.39	11.92	\mathbf{Csa}	TeBDF	2002 - 2006	(Tedeschi et al., 2006)
IT-SRo	43.73	10.28	\mathbf{Csa}	CEF	2003-2006	(Chiesi et al., 2005)
NL-Loo	52.17	5.74	Cfb	CEF	1997-2006	(Dolman et al., 2002)
PT-Esp	38.64	-8.60	\mathbf{Csa}	TeBEF	2002 - 2006	(Pereira et al., 2007)
PT-Mi1	38.54	-8.00	\mathbf{Csa}	TeS	2003 - 2005	(Pereira et al., 2007)
SE-Fla	64.11	19.46	Dfc	CEF	2000-2002	(Lindroth et al., 2008)
SE-Nor	60.09	17.48	Dfb	CEF	1996 - 1997	(Lagergren et al., 2008)
^a Koeppen	-Geiger clima	te zone $(BSh =$	hot arid step	pe; Cfa = h_1	ımid, warm ten	n_{1} perate, hot summer; Cfb = humid, warm

study.
$_{\mathrm{this}}$
ш.
used
sites
NET
X
FL(
the]
of
Characteristics
÷
0 i
Lable
r .

temperate, warm summer; Csa = summer dry, warm temperate, hot summer; Dfb = Cold, humid, warm summer; Dfc = Cold, humid, cold summer). ^b Plant functional type (TeBEF = Temperate broadleaf evergreen forest, TeBDF = Temperate broadleaf deciduous forest, CEF = Coniferous evergreen forest, TeS = Temperate open woodland with C_3 grass, TeH = C_3 grassland).

2.2.5 Modelling protocol and data for regional simulations

For the regional simulations, O-CN is run at a spatial resolution of $0.5^{\circ} \ge 0.5^{\circ}$ on a spatial domain focused on Europe. Daily meteorological forcing (temperature, precipitation, shortwave and long-wave downward radiation, atmospheric specific humidity, and wind speed) for the years 1961 to 2010 is obtained from RCA3 regional climate model (Samuelsson et al., 2011; Kjellstrom et al., 2011), nested in the ECHAM5 model (Roeckner et al., 2006), and has been bias-corrected for temperatures and precipitation using the CRU climatology (New et al., 1999). Reduced and oxidised nitrogen deposition in wet and dry forms and O_3 concentrations at 45 m height for the same years are obtained from the EMEP model, which is also run with RCA3 meteorology (as in Simpson et al., 2014b). Emissions for the EMEP runs in current years are as described in Simpson et al. (2014b), and are scaled back to 1900 using data from UNECE and van Aardenne et al. (2001) – see subsection 2.2.6. Further details of the EMEP model setup for this grid and meteorology can be found in Simpson et al. (2014b) and Engardt et al. (2017). For O-CN, land cover, soil, and N fertiliser application are used as in Zaehle et al. (2011) and kept at 2005 values throughout the simulation. Data on atmospheric CO_2 concentrations are obtained from Sitch et al. (2015).

O-CN is brought into equilibrium in terms of the terrestrial vegetation and soil carbon and nitrogen pools by randomly iterating the forcing from the period 1961-1970. This is followed by a simulation for the years 1961-2011 with time-varying climate and atmospheric conditions (N deposition, CO_2 , and O_3 concentrations) but with static land cover and land-use information (kept at year 2005 levels). An upscaled FLUXNET-MTE product of GPP (Jung et al., 2011), using the model tree ensembles (MTE) machine learning technique, is used to evaluate modelled GPP.

2.2.6 Emissions inventory

Emissions for the EMEP model were derived by merging data from three main sources. Firstly, emissions for 2005 and 2010 were taken from the ECLIPSE database produced by IIASA for various EU Projects and the Task Force on Hemispheric Transport of Air Pollution (Amann et al., 2013; Stohl et al., 2015), although with improved spatial resolution over Europe by making use of the 7 km resolution MACC-2 emissions produced by TNO (Kuenen et al., 2011). For 1990, emissions from land-based sources were taken directly from the EMEP database for that year, since 1990 had been the subject of recent review and quality control (e.g. Mareckova et al., 2013). Emissions between 1990 and 2005 were estimated via linear interpolation between these 2005 and EMEP 1990 values. Emissions prior to 1990 were derived by scaling the EMEP 1990 emissions by the emissions ratios found in the historical data series of Lamarque et al. (2010).

Emissions of the biogenic hydrocarbon isoprene from vegetation are calculated using the model's land cover and meteorological data (Simpson et al., 2012, 1999). Emissions of NO from biogenic sources (soils, forest fires, etc.) were set to zero given both their uncertainty and sporadic occurrence. Tests have shown that this approximation has only a small impact on annual deposition totals to the EU area, even for simulations at the start of the 20th century. Volcanic emissions of sulphur dioxide (SO_2) were set to a constant value from the year 2010.

2.2.7 Impacts of using the ozone deposition scheme

In contrast to other terrestrial biosphere models, the O-CN ozone module accounts for the effects of aerodynamic, stomatal and non-stomatal resistance to O_3 deposition. Due to these resistances, the deposition of O_3 to leaf level is reduced, and the canopy O_3 concentration is lower than the atmospheric O_3 concentration. Thus, using such a deposition scheme reduces modelled O_3 uptake into plants and accumulation. To get an estimate of the magnitude of this impact we compare simulations with the standard deposition scheme as described above (D) with a simulation where O_3 surface resistance is only determined by stomatal resistance and the non-stomatal depletion of O_3 is zero (D-STO). Furthermore, the standard deposition model D is compared to a simulation where no deposition scheme is used and the canopy O_3 concentration is equal to the atmospheric concentration (ATM).

2.3 Results

2.3.1 Evaluation against daily eddy-covariance data

Figure 2.1 a shows that, for most sites, modelled and observation-based GPP agree well (see Tab. 2.2 for R^2 and RMSE values). The standard deviation is larger for the observation-based estimates because of the high level of noise in the eddy-covariance data. For sites dominated by needle-leaved trees, the modelled and observation-based GPP values are very close, with only slight under- and overestimates by the model at some sites. At sites dominated by broadleaved trees, modelled GPP deviates more strongly from the observation-based GPP, underestimating the observations in 7 out of 10 cases. However, the results are within the range of standard deviation except for the drought-prone PT-Mi1 site (see Fig. 2.2 a for an explicit site comparison). At C_3 grassland sites, modelled GPP is in good agreement with the observation-based GPP except for AT-Neu, which has the highest mean GPP of all sites observed by FLUXNET with a large standard deviation, which may reflect the effect of site management (e.g. mowing and fertilisation), for which no data were readily available as model forcing.

When comparing modelled and observed latent heat flux (LE), the model fits the observations best at the needle-leaved forest sites (Fig. 2.1 c). However, LE is overestimated at nine out of ten broadleaved forest sites, but remains within the range of the large observational standard deviation. At sites dominated by C_3 grasses the modelled *LE* differs considerably from observed value, at two sites overestimating and two underestimating the fluxes, again within the observational standard deviation.

In agreement with the comparison of GPP and LE, the comparison of modelled to observation-based canopy conductance (G_c) shows the best agreement for sites dominated by needle-leaved trees (Fig. 2.1 b). At sites dominated by broadleaved trees, the modelled G_c varies more widely from the FLUXNET G_c . The modelled G_c at sites

Figure 2.1: Comparison of measured a) GPP, b) canopy conductance (G_c) , c) latent heat flux (LE), and d) LAI at 26 European FLUXNET sites and simulations by O-CN. Displayed are means and standard deviations of daily means of the measuring/simulation period, with the exception of FLUXNET-derived LAI, which is based on point measurements. Dots symbolise sites dominated by broadleaved trees, triangles sites dominated by needle-leaved trees and asterisks sites dominated by C_3 grasses. The grey line constitutes the 1:1 line.

dominated by C_3 grasses is in very good agreement with FLUXNET G_c , with slight overestimation of G_c at two out of three sites, except for the DE-Meh site, where means differ outside the standard deviation (see Fig. 2.2b).

Table 2.2: Coefficient of determination (R^2) and root mean square error (RMSE) for *GPP*, canopy conductance (G_c) , and latent heat flux (LE) for all sites and for sites dominated by broadleaved trees, needle-leaved trees, C_3 grass, and C_3 grass excluding the AT-Neu site (outlier).

	All sites	Broadleaved	Needle-leaved	C_3 grass	C_3 grass (excluding AT-Neu)
R^2 : GPP	0.465	0.714	0.8	0.139	0.058
RMSE: GPP	3.495	3.771	1.944	5.175	2.257
R^2 : G_c	0.458	0.69	0.722	0.013	0.01
$RMSE: G_c$	0.001	0.002	0.001	0.002	0.002
R^2 : LE	0.566	0.725	0.9	0.022	0.002
RMSE: LE	30.897	39.725	13.977	37.124	40.493

The comparison of the average modelled summertime LAI and point measurements at the FLUXNET illustrates that the variability in the measured LAI is much greater than that of O-CN (Fig. 2.1 d). The modelled LAI values approach light-saturating, maximum LAI values and are not able to reproduce between-site differences in, for example the growth stage, site history, or maximum possible LAI values. Furthermore, it should be borne in mind that the observed LAI values are averages of point measurements, which are not necessarily representative of the modelled time period, and that the model had not been parameterised specifically for the sites. Modelled GPP depends not only on LAI, but also on light availability, temperature, and soil moisture. The much better represented values of GPP, G_c , and LE compared to FLUXNET data (Fig. 2.1 a-c) indicate that O-CN is able to adequately transform available energy into carbon uptake and water loss and thus simulate key variables impacting ozone uptake within a reasonable range.

2.3.2 Mean diurnal cycles of key O₃ parameters.

For further evaluation of the modelled O_3 uptake, we analysed the diurnal cycles of O_3 uptake (F_{stC}) , O_3 surface resistance (R_c) , O_3 deposition velocity (V_g) , and flux ratio (F_R) as well as GPP and G_c . We selected three sites (a broadleaved, a needle-leaved, and a C_3 grass site) based on the selection criteria that modelled and FLUXNET GPP and LAI agree well and a minimum of five observation years is available to reduce possible biases from the inability of the model to simulate short-term variations from the mean. The selected sites are a temperate broadleaved summer green forest (IT-Ro1), a boreal needle-leaved evergreen forest (FI-Hyy), and a temperate C_3 grass land (CH-Oe1). We evaluate modelled GPP and G_c against observations from the FLUXNET sites. The modelled mean diurnal cycles of O_3 related variables (F_{stC} , R_c , V_g , F_R) are compared to reported values in the literature since we did not have access to site-specific observations.

Figure 2.2: Comparison of measured (a) GPP, (b) G_c , (c) latent heat flux (LE), and (d) LAI at 26 European FLUXNET sites (red) and simulations by O-CN (blue). Displayed are means and standard deviation of daily means of the measuring/simulation period, with the exceptions of FLUXNET-derived LAI, which is based on point measurements.

Figure 2.3: Simulated and observed hourly means over all days of the months of July of 2002-2006 for CH-Oe1 and IT-Ro1, as well as for 2001-2006 for FI-Hyy. Plotted are mean hourly values (local time) of a,g,m) GPP (blue: O-CN; red: FLUXNET), b,h,n) canopy conductance (G_c) (blue: O-CN, red: FLUXNET), c,i,o) O₃ uptake (F_{stC}), d,j,p) the flux ratio (F_R), e,k,q) O₃ deposition velocity (V_g), and f,l,r) O₃ surface resistance (R_c). The error bars indicate the standard deviation from the hourly mean. The dotted line in panel (d),(j), and (p) indicates the daily mean value.

Modelled and observed mean diurnal cycles of GPP and G_c are in general agreement at the three selected FLUXNET sites (see Fig. 2.3 a,g,m and b,h,n) with particularly good agreement for the mean diurnal cycle of *GPP* at the needle-leaved site FI-Hyy, where the hourly means are very close and the observational standard deviation is narrow (see Fig. 2.3 g). At the grassland site IT-Ro1 the overall daytime magnitude of the fluxes is reproduced in general except for the observed afternoon reduction in GPP (see Fig. 2.3) a). The modelled hourly values fall in the range of the observed values. Modelled and observation-based hourly means of GPP at the site CH-Oe1 agree well except for the evening hours, where the observed values increase again. The mean diurnal cycles of G_c derived from the FLUXNET data are again best matched at the site FI-Hyy, whereas the model generally overestimates the diurnal cycle of G_c slightly at the site IT-Ro1, and overestimates peak G_c at the CH-Oe1 site. The fact that O-CN does not always simulate the observed midday depression of G_c , suggests that the response of stomata to atmospheric and soil drought in O-CN requires further evaluation and improvement. Similar to the daily mean values (see Fig. 2.1 a,b) the mean hourly values show the best match of GPP and G_c for the needle-leaved tree site and stronger deviations for the sites covered by broadleaved trees and C_3 grasses.

The stomatal O₃ uptake F_{stC} (Fig. 2.3 c,i,o) is close to zero during night-time when the stomata are assumed to be closed, because gross photosynthesis is zero. At FI-Hyy and CH-Oe1, peak uptake occurred at noon, when photosynthesis (Fig. 2.3 g,m) and stomatal conductance (Fig. 2.3 h,n) are highest, at values between 8-9 nmol $m^{-2} s^{-1}$. At the Italian site IT-Ro1, maximum uptake occurs in the afternoon hours around 15 h, with much larger standard deviation compared to the other two sites (Fig. 2.3 c)). The magnitude of stomatal O_3 uptake corresponds well to some values for example, for crops (Gerosa et al., 2003, 2004, daily maxima of 4-9 nmol $m^{-2} s^{-1}$) and holm oak (Vitale et al., 2005, approx. 7-8 $\mathrm{nmol}\,\mathrm{m}^{-2}\,\mathrm{s}^{-1}$). Lower daily maximum values have been reported for an every reen Mediterranean forest dominated by Holm Oak of 4 $\mathrm{nmol}\,\mathrm{m}^{-2}\,\mathrm{s}^{-1}$ under dry weather conditions (Gerosa et al., 2005) and 1-6 $\text{nmol}\,\text{m}^{-2}\,\text{s}^{-1}$ for diverse southern European vegetation types (Cieslik, 2004). Much higher values are reported for Picea abies (50-90 nmol m⁻² s⁻¹), Pinus cembra (10-50 nmol m⁻² s⁻¹) and Larix decidua (10-40 nmol $m^{-2} s^{-1}$) at a site near Innsbruck Austria (Wieser et al., 2003), where canopy O_3 uptake was estimated by sap-flow measurements in contrast to the studies mentioned before where the eddy-covariance technique was applied. The much higher F_{stC} values in that study result from a much higher canopy conductance to O_3 ($G_c^{O_3}$), which are up to 12 times higher than the modelled $G_c^{O_3}$ values in our study (see Fig. 2.3, $G_c^{O_3} = \frac{G_c}{1.51}$).

The ratio between the stomatal O₃ uptake and the total surface uptake (F_R) is close to zero during night-time hours and increases steeply in the morning hours (Fig. 2.3 d,j,p). The 24 h average is approximately 0.3 for IT-Ro1 and 0.4 for FI-Hyy and CH-Oe1 (Fig. 2.3 d,j,p). Peak hourly mean values are close to 0.6 at IT-Ro1, around 0.7 at FI-Hyy and close to 0.8 at CH-Oe1. These values are comparable to the ratios reported for crops (Gerosa et al., 2004; Fowler et al., 2009, 0.5-0.6), Norway spruce (Mikkelsen et al., 2004, 0.3-0.33) and various southern European vegetation types (Cieslik, 2004, 0.12 - 0.69). The modelled flux ratios here show slightly higher daily maximum flux

Figure 2.4: Simulated monthly mean values of O_3 uptake (F_{stC}) , O_3 deposition velocity (V_g) , O_3 surface resistance (R_c) , and the flux ratio (F_R) for sites dominated by broadleaved trees (left column), needle-leaved trees (central column) and C_3 grasses (right column). The colour indicates the location of the site. Dark blue: Denmark, Sweden and Finland.; light blue: Germany, France and Netherlands; green: Austria and Switzerland; red: Italy, Portugal, Spain, and Israel. Broken line: mean of all sites and years of the 12 months.

ratios than reported in the listed studies. Daily mean flux ratios are well within the reported range.

The modelled deposition velocities V_g are lowest during night-time with values of approximately 0.002 m s^{-1} (Fig. 2.3 e,k,q). These values increase to maximum hourly means of $0.006-0.007 \text{ m s}^{-1}$ during daytime. These values compare well with reported values of deposition velocities, which range from 0.003 to 0.009 $\mathrm{m\,s^{-1}}$ at noon (Gerosa et al., 2004) for a barley field, approximately 0.006 m s^{-1} at noon for a wheat field (Tuovinen et al., 2004), and approximately 0.009 m s^{-1} at noon at a potato field (Coyle et al., 2009). The estimates for FI-Hyy also agree well with maximum deposition velocities reported for Scots pine site of 0.006 m s^{-1} (Keronen et al., 2003; Tuovinen et al., 2004) and noon values from Danish Norway spruce sites of $0.006-0.010 \text{ m s}^{-1}$ (Mikkelsen et al., 2004; Tuovinen et al., 2001). Mean daytime deposition velocities of 0.006 $\mathrm{m\,s^{-1}}$ (range $0.003-0.008 \text{ m s}^{-1}$) are reported at a Finish mountain birch site (Tuovinen et al., 2001). Simulated monthly mean values of V_q differ substantially between the sites (see Fig. 2.4). When comparing the monthly means over all sites (Fig. 2.4 dashed line) of a functional group (broadleaved, needle-leaved, C_3 grasses) to the ensemble mean of 15 CTMs (Hardacre et al., 2015), the values simulated here are higher for needle-leaved tree sites. For broadleaved tree sites and grassland sites, higher values, but which are still within the observed ensemble range, are found for the summer months.

The modelled hourly mean O_3 surface resistance R_c is highest during night-time, at approximately 400 sm⁻¹, and decreases during daytime to values of 100 to 180 sm⁻¹, where the lowest surface resistance of approximately 100 sm⁻¹ is modelled at the grassland site CH-Oe1 (Fig. 2.3 f,l,r). These values are slightly higher than independent estimates (for grasses and crops obtained for other sites) of noon surface resistances ranging from 50 to 100 sm⁻¹ (Padro, 1996; Coyle et al., 2009; Gerosa et al., 2004; Tuovinen et al., 2004). Tuovinen et al. (2004) reported noon values of approximately 140 sm⁻¹ for a Scots pine forest and 70-140 sm⁻¹ for a Norway spruce forest site (Tuovinen et al., 2001), which compares well with the modelled R_c values at the needle-leaved forest site (FI-Hyy; Fig. 2.3 l). Higher noon values of approximately 250 sm⁻¹ are reported at a Danish Norway spruce site (Mikkelsen et al., 2004). For a mountain birch forest, noon values of 110 to 140 sm⁻¹ (Tuovinen et al., 2001) are observed which is slightly lower than the modelled value at the IT-Ro1 site (dominated by broadleaved tree PFT).

2.3.3 Sensitivity analysis

We assess the sensitivity of the modelled O₃ uptake and deposition, represented by F_g , F_{stC} , V_g , and R_c to uncertainty in six weakly constrained variables and parameters of the O₃ deposition scheme (R_a , b, r_{ext} , \hat{R}_{gs} , G_c , and R_b). Fig. 2.5 a shows, for example, the results for the boreal needle-leaved forest FI-Hyy. As expected, all uptake/deposition variables, except for the flux ratio (F_R) are negatively correlated with the aerodynamic resistance R_a , which describes the level of decoupling of the atmosphere and land surface. Increasing R_a decreases the canopy internal O₃ concentration and hence stomatal (F_{stC}) and total (F_g) deposition as well as the deposition velocity (V_g). The flux ratio F_R is slightly positively correlated with changes in R_a due to the stronger negative correlation

Figure 2.5: a) Mean partial correlation coefficients and b) strength of the correlation in % per %. R_a , b, r_{ext} , \hat{R}_{gs} and G_c are perturbed within $\pm 20\%$ of their central estimate. Results from simulations at the FLUXNET site FI-Hyy for the simulation period 2001-2006.

of F_{stC} relative to F_g .

In decreasing order, but as expected, the level of external leaf resistance (r_{ext}) , the scaling factor b (Eq. 2.11), the soil resistance (\hat{R}_{gs}) , and the canopy-scale quasi-laminar layer resistance (R_b) increase R_c and consequently reduce F_g and V_g . Reducing the non-stomatal deposition by increasing r_{ext} , b, \hat{R}_{gs} , and R_b increases the canopy internal O₃ concentration and thus stomatal O₃ uptake (F_{stC}) . The combined effects of a reduction in total deposition F_g and an increase in F_{stC} cause a positive correlation of F_R to r_{ext} , b, \hat{R}_{gs} , and R_b .

Increasing canopy conductance (G_c) increases stomatal O₃ uptake (F_{stC}) and thereby also increases V_g and F_g . The increased total O₃ uptake (F_g) decreases the surface resistance to O₃ uptake R_c , resulting in a negative correlation of R_c with G_c . The stronger increase in F_{stC} relative to F_g results in a positive correlation of F_R .

Figure 2.6: Ensemble range of key O₃ uptake/deposition variables resulting from the perturbation of R_a , b, r_{ext} , \hat{R}_{gs} and G_c within $\pm 20\%$ of their central estimate. Shown are simulated daily mean values of a) O₃ uptake (F_{stC}), b) the O₃ flux ratio (F_R), c) O₃ deposition velocity (v_g) and d) O₃ surface resistance (R_c) for the boreal needle-leaved evergreen forest at the finish FLUXNET site FI-Hyy for the year 2001. Red dashed: unperturbed model; yellow: median of all sensitivity runs; light-grey area: min-max range off all sensitivity runs. Simulated daily mean values for the respective site and year of e) atmospheric O₃ concentrations O₃ and f) cumulative uptake of O₃ (CUO) and canopy conductance G_c .

Despite these partial correlations, only changed values for r_{ext} and G_c have a notable effect on the predicted fluxes (Fig. 2.5 b), whereas for the other factors (R_a , b, and \hat{R}_{gs}) the impact on the simulated fluxes is less than 0.1% due to a 1% change in the variables/parameters of the deposition scheme.

The flux ratio F_R is very little affected by varying r_{ext} and G_c .

Notwithstanding the perturbations, all four O_3 related flux variables show a fairly narrow range of simulated values (Fig. 2.6). For all four variables the unperturbed model and the ensemble mean lie on top of each other (see dashed red and yellow line in Fig. 2.6 a-d). The seasonal course of the surface resistances and fluxes is maintained. The simulations show a strong day-to-day variability in F_{stC} , which is conserved with different parameter combinations and which is largely driven by the day-to-day variations in G_c and the atmospheric O_3 concentration (see Fig. 2.6 f and e respectively). Ozone uptake by the leaves reduces the O_3 surface resistance during the growing season such that R_c becomes lowest. The cumulative uptake of O_3 (CUO) is lowest at the beginning of the growing season but not zero because the evergreen pine at the Hyytiälä site accumulates O_3 over several years (Fig. 2.6 f). The CUO increases during the growing season and declines in autumn when a larger fraction of old needles are shed.

The minor impact of the perturbations on the simulated O_3 uptake and deposition variables suggests that the calculated O_3 uptake is relatively robust against uncertainties in the parameterisation of some of the lesser known surface properties.

2.3.4 Regional simulations

We used the model to simulate the vegetation productivity, O_3 uptake, and associated ozone damage of plant production over Europe for the period 2001-2010 (see Section 2.2.5 for modelling protocol).

Figure 2.7: Europe-wide simulated GPP and difference between modelled GPP by O-CN and a GPP estimate by a FLUXNET-MTE product. Plotted, for the years 1982-2011, are (a) the simulated mean GPP accounting for ozone damage in $g C m^{-2} yr^{-1}$, (b) the mean differences for O-CN minus MTE GPP in $g C m^{-2} yr^{-1}$, and (c) the mean simulated grid cell cover of the C_3 -crop PFT in O-CN, given as fractions of the total grid cell area.

Simulated mean annual GPP for the years 1982-2011 shows in general good agreement with an independent estimate of GPP based on upscaled eddy-covariance measurements (MTE; see Section 2.2.5), with O-CN on average underestimating GPP by 16% (European mean). A significant exception are cropland dominated areas (Fig. 2.7) in parts of eastern Europe, southern Russia, Turkey, and northern Spain, which show consistent overestimation of GPP by O-CN of 400-900 g C m⁻² yr⁻¹ (58% overestimation on average). Regions with a strong disagreement coincide with high simulated LAI values by O-CN and a higher simulated GPP in summer compared to the summer GPP by MTE. In addition, O-CN simulates a longer growing season for croplands since sowing and harvest dates are not considered. It is worth noting, nevertheless, that there are no FLUXNET stations present in the regions of disagreement hotspots, making it difficult to assess the reliability of the MTE product in these regions.

North of $60^{\circ}N$, O-CN has the tendency to produce lower estimates of GPP than

inferred from the observation-based product, which is particularly pronounced in lowproductivity mountain regions of Norway and Sweden. It is unclear whether this bias is indicative of a N limitation that is too strong in the O-CN model.

Figure 2.8: Mean decadal (a) O_3 concentration [ppb], (b) canopy-integrated O_3 uptake into the leaves [nmol m⁻² s⁻¹], (c) canopy-integrated cumulative uptake of O_3 (CUO) [mmol m⁻²], and (d) AOT40 [ppm yr⁻¹], for Europe of the years 2001-2010.

Average decadal O_3 concentrations generally increase from northern to southern Europe (Fig. 2.8 a) and with increasing altitude, with local deviations from this pattern in centres of substantial air pollution. The pattern of foliar O_3 uptake differs distinctly from that of the O_3 concentrations, showing highest uptake rates in central and eastern Europe and parts of southern Europe (Fig. 2.8 b), associated with centres of high rates of simulated gross primary production (Fig. 2.7 a) and thus canopy conductance. The cumulative O_3 uptake reaches values of 40-60 mmol m⁻² in large parts of central Europe (Fig. 2.8 c). The highest accumulation rates of 80-110 mmol m⁻² are found in eastern Europe and parts of Scandinavia as well as in Italy, the Alps and the Bordeaux region. The concentration-based exposure index AOT40 (Fig. 2.8 d) shows a strong north-south gradient similar to the O_3 concentration (Fig. 2.8 a) and is distinctly different to the flux-based CUO pattern (Fig. 2.8 c).

Simulated reductions in mean decadal GPP due to O_3 range from 80 to 160 g C m⁻² yr⁻¹ over large areas of central, eastern, and south-eastern Europe (Fig. 2.9 a) and are gen-

Figure 2.9: Mean decadal (a) reduction in GPP $[g C m^{-2} yr^{-1}]$, (b) percent reduction in GPP, (c) reduction in transpiration $[mm yr^{-1}]$ and (d) percent reduction in transpiration due to ozone damage averaged for the years 2001-2010.

erally largest in regions of high productivity. The relative reduction in GPP is fairly consistent across large areas in Europe and averages 6-10% (Fig. 2.9 b). Higher reductions in relative terms are found in regions with high cover of C_4 PFTs, e.g.the Black Sea area. Lower relative reductions are found in northern Europe and parts of southern Europe, where productivity is low and stomatal O₃ uptake is reduced by, for example, low O₃ concentrations or drought control on stomatal fluxes respectively. Slight increases or strong decreases in relative terms are found in regions with very small productivity like in northern Africa and the mountainous regions of Scandinavia. A slight increase in GPP might be caused by feedbacks of GPP damage on LAI, canopy conductance and soil moisture content such that water savings, for example, enable a prolonged growing season and thus a slightly higher GPP. Overall, simulated European productivity has been reduced from 10.6 Pg C yr⁻¹ to 9.8 Pg C yr⁻¹ corresponding to a 7.6% reduction.

The O₃ induced reductions in GPP are associated with a reduction in mean decadal transpiration rates of 8-15 mm yr⁻¹ over large parts of central and eastern Europe (Fig. 2.9 c). These reductions correspond to 3-6% of transpiration in central Europe and 6-10 % in northern Europe. As expected, the relative reductions in transpiration rates are therefore slightly lower than for GPP due to the role of aerodynamic resistance in

controlling water fluxes in addition to canopy conductance. Very high reductions in transpiration are found in the eastern Black Sea area associated with strong reductions in GPP and in the mountainous regions of Scandinavia where absolute changes in transpiration are very small. Regionally (in particular in eastern Spain, northern Africa and around the Black Sea) lower reductions in transpiration or even slight increases are found (Fig. 2.9 d). These are related to O_3 -induced soil moisture savings during the wet growing season, leading to lower water stress rates during the drier season. The very strong reduction in transpiration west of the Crimean Peninsula are related to the strong reductions in GPP mentioned above. Overall, simulated European mean transpiration has been reduced from 170.4 mm to 163.3 mm corresponding to a 4.2% reduction.

2.3.5 Impacts of using the ozone deposition scheme

At the FI-Hyy site the canopy O_3 concentration, uptake and accumulated uptake (CUO) increases approximately 10-15% for the D-STO model (non-stomatal depletion of O_3 is zero) and 20-25% for the ATM model version (canopy O_3 concentration is equal to the atmospheric concentration) compared to the standard deposition scheme (D) used here (Fig. 2.10a-c and Fig. 2.11). The exact values however are site- and PFT-specific (see Fig. 2.11 for the CH-Oe1 and IT-Ro1 site).

Figure 2.10: Mean daily values of the (a) O_3 surface concentration [ppb], (b) canopyintegrated O_3 uptake into the leaves $[nmol m^{-2} s^{-1}]$, and (c) canopy-integrated cumulative uptake of O_3 (CUO) $[mmol m^{-2}]$ at the FLUXNET site FI-Hyy. Black: ATM model, Dark blue: D-STO model, Light blue: standard deposition model (D).

The regional impact of using the ozone deposition scheme on CUO is shown in Fig. 2.12. CUO substantially decreases for the D-STO (Fig. 2.12b) compared to the ATM model (Fig. 2.12a). Using the standard deposition model D (Fig. 2.12c) further reduces the CUO compared to the ATM version where the stomata respond directly to the atmospheric O_3 concentration.

Calculating the canopy O_3 concentration with the help of a deposition scheme that accounts for stomatal and non-stomatal O_3 deposition thus reduces O_3 accumulation in the vegetation.

Figure 2.11: Differences in mean daily values of the (a) O_3 surface concentration [ppb], (b) canopy-integrated O_3 uptake into the leaves [nmol m⁻² s⁻¹], and (c) canopy integrated cumulative uptake of O_3 (CUO) [mmol m⁻²] for the three FLUXNET sites CH-Oe1, FI-Hyy and IT-Ro1. Blue: difference between the D-STO model and the standard model (D); black: difference between the ATM model and the standard model (D).

2.4 Discussion

We extended the terrestrial biosphere model O-CN by a scheme to account for the atmosphere–leaf transfer of O_3 in order to better account for air pollution effects on net photosynthesis and hence regional to global water, carbon, and nitrogen cycling. This ozone deposition scheme calculates canopy O_3 concentrations and uptake into the leaves depending on surface conditions and vegetation carbon uptake.

Estimates of the regional damage to annual average GPP (- 7.6%) and transpiration (- 4.2%) simulated by O-CN for 2001-2010 are lower than previously reported estimates. Meta-analyses suggest on average a 11% (Wittig et al., 2007) and a 21% (Lombardozzi et al., 2013) reduction in instantaneous photosynthetic rates. However, because of carry-over effects this does not necessarily translate directly into reductions in annual GPP. Damage estimates using the CLM model suggest GPP reductions of 10-25% in Europe and 10.8% globally (Lombardozzi et al., 2015). Reductions in transpiration have been

Figure 2.12: Mean decadal canopy-integrated cumulative uptake of O_3 (CUO) [mmol m⁻²] for Europe of the years 2001–2010. (a) Canopy O_3 concentration is equal to the atmospheric concentration (ATM) and (b) O_3 surface resistance is only determined by stomatal resistance (D-STO). (c) Standard ozone deposition scheme (D).

estimated to amount 5-20% for Europe and 2.2% globally (Lombardozzi et al., 2015). Lombardozzi et al. (2015) however, used fixed reductions of photosynthesis (12-20%) independent of cumulative O_3 uptake for two out of three simulated plant types. Damage was only related to cumulative O_3 uptake for one plant type with a very small slope and hence little increase in damage due to increases in cumulative O_3 uptake. Sitch et al. (2007) simulated global GPP reductions of 8-14% (under elevated and fixed CO_2 respectively) for low plant ozone sensitivity and 15-23% (under elevated and fixed CO_2 respectively) for high plant ozone sensitivity for the year 2100 compared to 1901. For the Euro-Mediterranean region an average GPP reduction of 22% was estimated by the ORCHIDEE model for the year 2002 using an AOT40-based approach (Anav et al., 2011).

Possible causes for the discrepancies are differences in the applied injury functions, flux thresholds accounting for the detoxification ability of the plants, atmospheric O_3 concentrations, simulation periods, and simulation of climate change (elevated CO_2) and air pollution (nitrogen deposition). We discuss the most important aspects below. To elucidate the reasons for the substantial differences in the damage estimates further studies are necessary to disentangle the combined effects of differing flux thresholds; injury relationships; climate change; and deposition of nitrogen.

2.4.1 Atmosphere-leaf transport of ozone

The sensitivity analysis in Section 2.3.3 demonstrates that the estimate of canopy conductance (G_c) is crucial for calculating plant ozone uptake; therefore, reliable observations to constrain modelled canopy conductance are highly important. The sitelevel evaluation shows that O-CN produces reasonable estimates of simulated gross primary productivity (GPP), canopy conductance, and latent heat flux (LE) compared to FLUXNET observations. This agreement has to be seen in the light of the diverse set of random and systematic errors in the eddy-covariance measurements as well as derived flux and conductance estimates (Richardson et al., 2012; Knauer et al., 2017). Next to uncertainties about the strength of the aerodynamic coupling between atmosphere and canopy, problems exist at many sites with respect to the energy balance closure (Wilson et al., 2002). Failure to close the energy balance can cause underestimation of sensible and latent heat, as well as an overestimation of available energy, with mean bias of 20% where the imbalance is greatest during nocturnal periods (Wilson et al., 2002). This imbalance propagates to estimates of canopy conductance, which is inferred from latent and sensible heat fluxes. The energy imbalance furthermore appears to affect estimates of CO₂ uptake and respiration (Wilson et al., 2002). Flux partitioning algorithms which extrapolate night-time ecosystem respiration estimates to daytime introduce an additional potential for bias in the estimation of GPP (Reichstein et al., 2005). Nevertheless, the general good agreement of G_c compared to FLUXNET estimates, together with the finding that modelled values of key ozone variables are within observed ranges, supports the use of the extended O-CN model for determining the effect of air pollution on terrestrial carbon, nitrogen, and water cycling.

A key difference from previous studies is our use of the use of the ozone deposition scheme, which reduces O_3 surface concentrations and hence also the estimated O_3 uptake and accumulation (see Fig. 2.12). Accounting for stomatal and non-stomatal deposition in the calculation of the surface O_3 concentrations considerably impacts the estimated plant uptake of O_3 . O_3 uptake and cumulated uptake are considerably overestimated when atmospheric ozone concentrations are used to calculate O_3 uptake or when in the calculation of leaf-level O_3 concentrations only stomatal destruction of O_3 is regarded (see subsection 2.3.5). Compared to the values that would have been obtained if the CTM O_3 concentrations of the atmosphere (from ca. 45 m height) had been used directly at the leaf surface, our simulations yield a decrease in CUO by 31% (European means for the years 2001-2010). A significant fraction of the decreases is associated with non-stomatal O_3 uptake and destruction at the surface, which decreased the simulated cumulative O_3 uptake by 16%. To obtain an estimate of CUO that is as accurate as possible, stomatal and non-stomatal destruction of O_3 and their impacts on canopy O_3 concentrations should be accounted for in terrestrial biosphere models (Tuovinen et al., 2009). Fluxbased ozone damage assessment models may overestimate ozone-related damage unless they properly account for non-stomatal O_3 uptake at the surface.

We note that vegetation type and dynamics also impact the stomatal and nonstomatal deposition of O_3 , and hence the calculation of the leaf-level O_3 concentrations. This impedes the use of CTM-derived leaf-level O_3 concentration, as CTM and vegetation specifications may differ strongly. Using the O_3 from the lowest level of the atmosphere reduces this problem, but running a terrestrial biosphere with a fixed atmospheric boundary condition (and not coupled to a atmospheric CTM) is still a simplification that prevents biosphere-atmosphere feedbacks and therefore to potential discrepancies between vegetation and CTM. Not accounting for this feedback and stomatal and non-stomatal O_3 deposition might result in an overestimation of O_3 uptake and hence potential damage in the vegetation model. The deposition scheme in O-CN offers the potential to couple vegetation and chemical transport modelling and is thus a step forward towards coupled atmosphere-vegetation simulations.

2.4.2 Estimating vegetation damage from ozone uptake

A key aspect of ozone damage estimates are the assumed dose-response relationships, which relate O_3 uptake to plant damage. The use of flux-based relationships is generally thought to improve damage estimates compared to concentration-based metrics (e.g. AOT40), since stomatal constraints on O_3 uptake are taken into account, yielding very different spatial patterns of exposure hotspots (Simpson et al., 2007). Similar to Simpson et al. (2007), we find strongly differing patterns between cumulative O_3 uptake (CUO) and AOT40 in our simulations here (see Fig. 2.8), where highest exposure is found not only in southern Europe, where the O_3 concentration is highest, but also in eastern Europe.

Several dose-response relationships exist for biomass or yield damage (see LRTAP-Convention (2017), for an overview), however there are few estimates of the likely cause of this damage, i.e. the reduction in net photosynthesis. In this study, the injury relationship to net photosynthesis proposed by Wittig et al. (2007) is used. The major advantage of this relationship is that it has been obtained by meta-analysis of many different tree species and thus might indicate an average response. This relationship is therefore used for all modelled PFTs. However, a substantial disadvantage is that the meta-analysis implies an injury of 6.16% at zero accumulated O_3 uptake with a rather minor increase in injury with increasing O_3 uptake. This might be an important factor explaining the lower ozone damage estimates of O-CN compared to other terrestrial biosphere models. In Lombardozzi et al. (2015) also an injury relationship derived from a meta-analysis is used; however, the disadvantage of predicted ozone injury at zero accumulated O_3 uptake there is even greater compared to Wittig et al. (2007). Two out of three modelled PFTs assume ozone induced injury values of -12.5% and -16.1%at zero accumulated O_3 uptake (broadleaved and needle-leaved species respectively) and the third PFT (grass and crop) assumes -19.8% at zero accumulated O₃ uptake together with a small increase in injury with increasing O_3 uptake (Lombardozzi et al., 2015). An evaluation of the different proposed injury functions implemented in terrestrial biosphere models (e.g. Wittig et al. (2007); Lombardozzi et al. (2015); Sitch et al. (2007)) is necessary to elucidate which are able to reproduce, for example, observed patterns of biomass damage and hence might be suitable to predict regional or global damage estimates. Furthermore, new injury relationships for different plant groups would be desirable for use in dynamic vegetation models to improve the ozone damage estimates, for example by ensuring an intercept close to one (zero injury at zero accumulated O_3).

The use of a (possibly PFT-specific) flux threshold and its magnitude naturally also impacts the CUOY (canopy cumulative O_3 uptake above a threshold of Y nmol m⁻² s⁻¹) and possible damage estimates (Tuovinen et al., 2007). The included injury function by Wittig et al. (2007) is designed for the CUO without a flux threshold (Y = 0). The impacts of using different flux thresholds on regional estimates of O_3 uptake, accumulation and damage are still poorly understood and need further research.

It should be noted that using plant O_3 uptake based on leaf-level O_3 concentrations,

as done here, together with empirical ozone injury functions, where O_3 uptake is calculated from atmospheric O_3 concentrations, introduces a discrepancy. The O_3 uptake rates of the experiments forming the injury relationship however are calculated from mean ozone concentrations, for example, over the exposure period and the respective average stomatal conductance (Wittig et al., 2007) such that the estimated O_3 uptake and cumulated uptake used to derive the injury relationship are coarse approximations and underlie considerable uncertainty. The error introduced in O-CN by using leaf-level O_3 concentrations instead of atmospheric concentrations seems small, especially since the use of the leaf-level O_3 concentration is the physiologically more appropriate approach.

In the current version of O-CN only ozone injury to net photosynthesis is accounted for. Other processes like detoxification of O_3 and injury repair (Wieser and Matyssek, 2007; Ainsworth et al., 2012), stomatal sluggishness (Paoletti and Grulke, 2010) and early senescence (Gielen et al., 2007; Ainsworth et al., 2012) are not accounted for. Decoupling of photosynthesis and stomatal conductance (e.g. through stomatal sluggishness) might impact GPP and transpiration damage estimates and requires further analysis. Accounting for direct impairment of the stomata might reduce the reported reductions in transpiration or even cause an increase compared to simulations with no ozone injury. Reduced carbon gain due to early senescence might impact the growth and biomass accumulation of plants (Gielen et al., 2007; Ainsworth et al., 2012) and ought to also be included in terrestrial biosphere models.

2.5 Conclusion

Estimates of O_3 impacts on plant gross primary productivity vary substantially. This uncertainty in the magnitude of damage and hence the potential impact on the global carbon budget is related to different approaches to model ozone damage. The use of a comparatively detailed ozone deposition scheme that accounts for non-stomatal as well as stomatal deposition when calculating surface O_3 concentrations substantially affects O_3 uptake in our model. We therefore recommend that non-stomatal O_3 uptake be routinely included in model assessments of ozone damage to obtain a better estimate of ozone uptake and accumulation. We show that O_3 uptake into the stomata is mainly determined by the canopy conductance in the ozone deposition scheme used here. This highlights the importance of reliable modelling of canopy conductance as well as realistic surface O_3 concentrations to obtain as accurate as possible estimates of O_3 uptake, which are the basis for plant damage estimates. Suitable ozone injury relationships to net photosynthesis for different plant groups are essential to relate the accumulated O_3 uptake to plant damage in a model. Mean responses of plant groups similar to commonly modelled PFTs are also desirable. Only a few relationships exist which indicate mean responses of several species (e.g. Wittig et al. (2007); Lombardozzi et al. (2013), which however, propose very different relationships). Furthermore, the impact of the plants ability to detoxify O_3 should be considered by using, for example, flux thresholds, as well as the combined effects of O_3 with air pollution (nitrogen deposition) and climate change (elevated CO_2) on the plants carbon uptake.

Chapter 3

Evaluation of simulated ozone effects in forest ecosystems against biomass damage estimates from fumigation experiments

3.1 Introduction

Simulated reductions in GPP due to ozone-induced injury vary substantially between models and model versions (Lombardozzi et al., 2012a, 2015; Franz et al., 2017; Sitch et al., 2007). This uncertainty is predominantly due to the different approaches that these models use to relate ozone uptake (or ozone exposure) to reductions in whole-tree biomass, and in the exact parameterisation of the injury functions and dose-response relationships applied (Karlsson et al., 2004; Pleijel et al., 2004; Wittig et al., 2007; Lombardozzi et al., 2012a, 2013). The injury functions employed by current terrestrial biosphere models differ decidedly in their slope (i.e. the change in injury per unit of timeintegrated ozone uptake), intercept (ozone injury at zero time-integrated ozone uptake) and their assumed threshold, below which the ozone uptake rate is considered sufficiently low that ozone will be detoxified before any injury occurs (Karlsson et al., 2004; Pleijel et al., 2004; Lombardozzi et al., 2012a). For example, Sitch et al. (2007) relates the instantaneous ozone uptake exceeding a flux threshold to net photosynthetic injury via an empirically derived factor. An alternative approach has been to relate ozone injury to net photosynthesis in response to the accumulated ozone uptake rather than to the instantaneous ozone uptake as in Sitch et al. (2007), e.g. by using the CUOY, which refers to the cumulative canopy O_3 uptake above a flux threshold of Y nmol m⁻² s⁻¹ (Wittig et al., 2007; Lombardozzi et al., 2012a, 2013; Cailleret et al., 2018).

The effect of ozone on plant growth has been investigated by ozone filtration/fumigation experiments either at the individual experimental level or by pooling data from multiple experiments that have been conducted according to a standardised experimental
method. These experiments typically rely on young trees because of their small size. A challenge in developing and testing process-based models of ozone damage from these ozone funigation experiments is that often only the difference in biomass accumulation between plants grown in an ozone treatment and in ambient or charcoal-filtered air at the end of the experiment are reported. Data from these studies provide evidence for a linear, species-specific relationship between accumulated ozone uptake and reductions in plant biomass (Pleijel et al., 2004; Mills et al., 2011b; Nunn et al., 2006, e.g.). Sitch et al. (2007) for instance calibrated their instantaneous leaf-level injury function between ozone uptake and photosynthesis by relating simulated annual net primary production and accumulated ozone uptake to observed biomass dose-response relationships developed by Karlsson et al. (2004) and Pleijel et al. (2004), where biomass/yield damage is related to the phytotoxic ozone dose (PODy). The PODy refers to the accumulated ozone uptake above a flux threshold of $y \text{ nmol m}^{-2} \text{ s}^{-1}$ by the leaves representative of the upper-canopy leaves of the plant. Such an approach applies biomass dose-response relationships of young trees to mature trees. However, the effects of ozone on leaf physiology (e.g. net photosynthesis and stomatal conductance) or plant carbon allocation may differ between juvenile and adult trees (Hanson et al., 1994; Samuelson and Kelly, 1996; Kolb and Matyssek, 2001; Paoletti et al., 2010). Whether or not biomass dose-response relationships can be used to calibrate injury functions for mature trees is uncertain.

An alternative approach is to directly simulate ozone injury to photosynthesis, which may have been a major cause for the observed decline in plant biomass production (Ainsworth et al., 2012). Possible injury targets in the simulations can be, for example the net photosynthesis or leaf-specific photosynthetic activity (such as represented by the maximum carboxylation capacity of RuBisCO, V_{cmax}). For instance Lombardozzi et al. (2012a) based their injury function on an experimental study involving a single forest tree species, whereas more recent publications (e.g. Lombardozzi et al. (2015) and Franz et al. (2017)) have used injury functions from meta-analyses of a far largerset of filtration/fumigation studies. Meta-analyses have attempted to summarise the responses of plant performance to ozone exposure across a wider range of experiments and vegetation types (Wittig et al., 2007; Lombardozzi et al., 2013; Feng and Kobayashi, 2009; Li et al., 2017; Wittig et al., 2009) and to develop injury functions for plant groups that might provide an estimate of mean plant group responses to ozone. However, these meta-analyses suffer from a lack of consistency in the derivation of either plant injury or ozone exposure, and generally report a large amount of unexplained variance. A further complication in the meta-analyses of ozone injury (e.g. Wittig et al., 2007; Lombardozzi et al., 2013) is that they have to indirectly estimate the cumulative ozone uptake underlying the observed ozone injury based on a restricted amount of data, which causes uncertainty in the derived injury functions.

Büker et al. (2015) provides an independent data set of whole-tree biomass plant responses to ozone uptake which is independent of data sets that were used to describe injury functions by Wittig et al. (2007) and Lombardozzi et al. (2013). This data set has been collected from experiments that follow a more standardised methodology to assess dose-responses and has associated meteorological and ozone data at a high time resolution that allow more accurate estimates of modelled ozone uptake to be made. These dose-response relationships describe whole-tree biomass reductions in young trees derived from standardised ozone filtration/fumigation methods for eight European tree species at 10 locations across Europe (see Tab. 3.2 for details and Büker et al., 2015). These data thus provide an opportunity to evaluate simulations of biosphere models that use leaf-level injury functions (describing the effect of ozone uptake on photosynthetic variables) to estimate carbon (C) assimilation, growth and ultimately whole-tree biomass against these robust empirical dose-response relationships that relate ozone exposure directly to whole-tree biomass response.

Here we test four alternative, previously published ozone injury functions that target either net photosynthesis or the leaf carboxylation capacity (V_{cmax}) , which have been included in state-of-the-art terrestrial biosphere models (Lombardozzi et al., 2012a, 2015; Franz et al., 2017) against these new biomass dose-response relationships by Büker et al. (2015). We incorporate these injury functions into a single modelling framework, the O-CN model (Zaehle and Friend, 2010; Franz et al., 2017). To reduce model-data mismatch, we test the functions in simulations that mimic to the extend possible the conditions of each of the experiments in the Büker et al. (2015) data-set. In particular we simulate the young age of the trees, such that we can directly compare the simulated to the observed whole-tree biomass reductions in the empirically derived dose-response relationships. This allows us to identify the contribution of these alternative injury function formulations on the simulated whole-tree biomass response. The simulated biomass dose-response relationships are then compared to the data from the experiments to evaluate the capability of the different model versions to reproduce observed dose-response relationships. Based on these comparisons we use a similar approach to that of Sitch et al. (2007) and develop alternative parameterisations of the injury functions to improve the capability of the O-CN model to simulate the whole-tree biomass responses observed in the funigation experiments, with the notable exception that we explicitly simulate in-funigation experiments and the approximate age of the trees. Finally, we explore whether or not there is a substantial difference in the biomass response to ozone of young or mature trees by using a sequence of model simulations and comparing the response both in terms of whole-tree biomass as well as net primary production.

3.2 Methods

We use the O-CN terrestrial biosphere model (see section 1.6.1 for details) to simulate the ozone fumigation experiments described in Büker et al. (2015). The simulations of the fumigation experiments are repeated with different model versions, where each model version contains a different ozone injury function.

3.2.1 Ozone injury calculation in O-CN

Throughout this chapter we refer to the biological response to O_3 uptake at the leaf level as 'injury' and to responses of plant production, growth and biomass at the ecosystem level as 'damage' following Guderian (1977). The relationship between ozone uptake and injury is called 'injury function'; the relationship between ozone uptake and damage is called 'dose-response relationship'.

Leaf-level ozone uptake is determined by stomatal conductance and atmospheric O_3 concentrations, as described in Franz et al. (2017). To mimic the conditions of the fumigation experiments with plot-level controlled atmospheric O_3 concentrations, simulations are conducted with a model version of O-CN, in which atmospheric O_3 concentrations are directly used to calculate ozone uptake into the leaves, and the transfer and destruction of ozone between the atmosphere and the surface is ignored (ATM model version in chapter 2 and Franz et al. (2017)). Deviating from Franz et al. (2017), stomatal conductance g_{st} here is calculated based on the Ball and Berry formulation (Ball et al., 1987) as

$$g_{st,l} = g_0 + g_1 \times \frac{A_{n,l} \times RH \times f(height_l)}{C_a}$$
(3.1)

where net photosynthesis $(A_{n,l})$ is calculated as described in Zaehle and Friend (2010) as a function of the leaf-internal partial pressure of CO₂, absorbed photosynthetic photon flux density on shaded and sunlit leaves, leaf temperature, the nitrogen-specific rates of maximum light harvesting, electron transport (J_{max}) and carboxylation rates (V_{cmax}) . RH is the atmospheric relative humidity, $f(height_l)$ the water-transport limitation with canopy height, C_a the atmospheric CO₂ concentration, g_0 the residual conductance when A_n approaches zero, and g_1 the stomatal-slope parameter as in Krinner et al. (2005). The index l indicates that g_{st} is calculated separately for each canopy layer.

The stomatal conductance to ozone $g_{st,l}^{O_3}$ is calculated as

$$g_{st,l}^{O_3} = \frac{g_{st,l}}{1.51} \tag{3.2}$$

where the factor 1.51 accounts for the different diffusivity of O_3 from water vapour (Massman, 1998).

For each canopy layer, the O₃ stomatal flux $(f_{st,l}, \text{nmol m}^{-2}(\text{leaf area}) \text{s}^{-1})$ is calculated from the atmospheric O₃ concentration the plants in the field experiments were funigated with $(\chi^{O_3}_{atm})$, and $g_{st,l}$ is calculated as

$$f_{st,l} = (\chi_{atm}^{O_3} - \chi_i^{O_3}) g_{st,l}^{O_3}.$$
(3.3)

where the leaf-internal O_3 concentration $(\chi_i^{O_3})$ is assumed to be zero (Laisk et al., 1989).

The accumulation of ozone fluxes above a threshold of $Y \mod m^{-2}(\text{leaf area}) \text{ s}^{-1}$ $(f_{st,l,Y}, \mod m^{-2}(\text{leaf area}) \text{ s}^{-1})$ with

$$f_{st,l,Y} = MAX(0, f_{st,l} - Y)$$

$$(3.4)$$

gives the $CUOY_l$. The canopy value of CUOY is calculated by summing $CUOY_l$ over all canopy layers (Franz et al., 2017).

For comparison to observations, the $POD \pmod{m^{-2}}$ can be diagnosed by the accumulation of $f_{st,l}$ for the top canopy layer (l = 1), in accordance with LRTAP-Convention

(2017) and Büker et al. (2015). The accumulation of ozone fluxes of the top canopy layer above a threshold of $y \mod m^{-2}(\text{leaf area}) \operatorname{s}^{-1}$ gives the *PODy*. The estimates of *PODy* (both *POD2* and *POD3*) can be used offline to re-construct dose-response relationships equivalent to those described in Büker et al. (2015). These modelled dose-response relationships can then be compared with the empirically derived dose-response relationships to assess the ability of the model to estimate injury. As such, the *POD2* and *POD3* used for the formation of these modelled dose-response relationships are purely diagnostic variables and not involved in the injury calculation of the model. The flux thresholds (2 and 3 nmol m⁻²(leaf area) s⁻¹) are not the flux thresholds that are used to estimate biomass response in the O-CN model simulations.

Ozone injury, i.e. the fractional loss of carbon uptake associated with ozone uptake $d_l^{O_3}$, is calculated as a linear function of the cumulative leaf-level uptake of ozone above a threshold of Y nmol m⁻²(leaf area) s⁻¹ (CUOY_l)

$$d_l^{O_3} = a - b \times CUOY_l \tag{3.5}$$

where a is the intercept and b is the slope of the injury function. The injury fraction $(d_l^{O_3})$ is calculated separately for each canopy layer l based on the specific accumulated ozone uptake of the respective canopy layer $(CUOY_l)$, and takes values between 0 and 1. The magnitude of $d_l^{O_3}$ in Eq. 3.5 varies between the canopy layers because $CUOY_l$ varies driven by within-canopy gradients in stomatal conductance and photosynthetic capacity.

The effect of ozone injury on plant carbon uptake is calculated by

$$x_l^{O_3} = x_l (1 - d_l^{O_3}). aga{3.6}$$

where x_l is either leaf-level net photosynthesis $A_{n,l}$ or the maximum photosynthetic capacity ($J_{max,l}$ and $V_{cmax,l}$), which is used in the calculation of $A_{n,l}$. $J_{max,l}$ and $V_{cmax,l}$ are reduced in proportion such that the ratio between the two is not altered. While there is some evidence that ozone can affect the ratio between J_{max} and V_{cmax} , we believe that for the purpose of this paper, it is justifiable to assume a fixed ratio between them.

Reductions in $A_{n,l}$ cause a decline in stomatal conductance $(g_{st,l})$ due to the tight coupling between both. Other stress factors that impact $g_{st,l}$ are accounted for in the preceding calculation of the $g_{st,l}$ uninjured by ozone (see Eq. 3.1). Reductions in $g_{st,l}$ decrease the O₃ uptake into the plant $(f_{st,l})$ and slow the increase in $CUOY_l$ and thus ozone injury.

3.2.2 Model set-up

Four published injury functions were applied within the O-CN model (see Tab. 3.1 for the respective slopes, intercepts and flux thresholds). As shown below in Fig. 3.1 and explained in the results section, these did not match well with the observed biomass doseresponse relationships by Büker et al. (2015). Following this we manually calibrated two additional injury relationships one each for A_n or V_{cmax} based on the data presented in Büker et al. (2015) (see Tab. 3.1 for slopes and intercepts). For these calibrated injury

ID	Target	Slope (b)	Intercept (a)	Plant group	Flux threshold $[nmol m^{-2}(leaf area) s^{-1}]$	Reference
$W07_{PS}$	\mathbf{PS}	0.0022	0.9384	All	0	Wittig et al. (2007)
$L12_{PS}$	\mathbf{PS}	0.2399	1.0421	All	0.8	Lombardozzi et al. (2012a)
$L12_{VC}$	V_{cmax}	0.1976	0.9888	All	0.8	Lombardozzi et al. (2012a)
$L13_{PS}$	\mathbf{PS}	0	0.8752	Broadleaf	0.8	Lombardozzi et al. (2013)
$L13_{PS}$	\mathbf{PS}	0	0.839	Needleleaf	0.8	Lombardozzi et al. (2013)
tun_{PS}	\mathbf{PS}	0.065	1	Broadleaf	1	Tuned here
$ an_{PS}$	\mathbf{PS}	0.021	1	Needleleaf	1	Tuned here
tun_{VC}	V_{cmax}	0.075	1	Broadleaf	1	Tuned here
tunve	V_{cmax}	0.025	1	Needleleaf	1	Tuned here

(PS) or V_{cmax} . Injury calculations base on the $CUOY$ with a specific flux threshold for each injury function.	we tuned (tun_{PS}, tun_{VC}) injury functions included in O-CN. Targets of ozone injury are net photosynthesis	Table 3.1: Slopes and intercepts, partly PFT specific, of all four published (W07 _{PS} , $L12_{PS}$, $L12_{VC}$, $L13_{PS}$) and
--	---	--

functions, we chose a flux threshold value of 1 nmol m⁻²(leaf area) s⁻¹, as suggested by the LRTAP-Convention (2017). We forced the intercept (a) of these relationships to 1 to simulate zero ozone injury at zero accumulated O₃ (for ozone levels that cause less then 1 nmol m⁻²(leaf area) s⁻¹ instantaneous ozone uptake). As described above, in all model versions, ozone injury is calculated independently for each canopy layer based on the accumulated O₃ uptake ($CUOY_l$) in that layer, above a specific flux threshold of Y nmol m⁻²(leaf area) s⁻¹ for the respective injury function (see Tab. 3.1).

3.2.3 Model and protocol for young trees

Single-point simulations were run for each fumigation experiment using meteorological input from the daily CRU-NCEP climate data set (CRU-NCEP version 5; LSCE (http://dods.extra.cea.fr/store/p529viov/cruncep/V5_1901_2013/) at the nearest grid cell to the coordinates of the experiment sites. The meteorological data provided by the experiments incompletely described the atmospheric boundary conditions required to drive the O-CN model. Atmospheric CO₂ concentrations were taken from Sitch et al. (2015), and reduced as well as oxidised nitrogen deposition in wet and dry forms was provided by the EMEP model (Simpson et al., 2014b). Hourly O₃ concentrations were obtained from the experiments, as in Büker et al. (2015).

Büker et al. (2015) report data for eight tree species at 11 sites across Europe (see Tab. 3.2 for experiment and simulation details). The O-CN model simulates 12 plant functional types (PFTs) rather than explicit species therefore, the species from the experiments were assigned to the corresponding PFT: all broadleaved species except *Quercus ilex* were assigned to the temperate broadleaved summer-green PFT. *Quercus ilex* was classified as temperate broadleaved evergreen PFT. All needleleaf species were assigned to the temperate needleleaf evergreen PFT.

The funigation experiments were conducted on young trees or cuttings. Prior to the simulation of the experiment, the model was run in an initialisation phase from bare ground until the simulated stand-scale tree age was stable and representative of 1-2 year old trees. During this initialisation, O-CN was run with the climate of the years preceding the experiment and zero atmospheric O_3 concentrations. Using ambient ozone concentrations during the initialisation phase would have resulted in different initial biomass values for the different response functions, which would have reduced the comparability of the different model runs. The impact of the ozone concentrations in the initialisation phase on our results here can be considered negligible since we only evaluate the simulated biomass from different treatments in relation to each other and do not evaluate it in absolute terms.

The duration of the initialisation phase depends on the site and PFT and averages 7.8 years (mean over all simulated experiments). Some of the published injury functions and/or parameterisations applied have intercepts unequal to 1 (a in Eq. 3.5; see Tab. 3.1), which induces reductions (a < 1) or increases (a > 1) in photosynthesis at zero ozone concentration and thus causes a bias in biomass and in particular foliage area at the end of the initialisation phase. To eliminate this bias, the nitrogen-specific photosynthetic capacity of a leaf was adjusted for each of the six parameterisations of the model

Ustad (S) 12.4		Zugerberg (CH) 8.54	Schönenbuch (CH) 7.5	Col-du-Donon (F) 7.08	Ebro Delta (SP) 0.5	Headley $(U.K.)$ -0.75	Col-du-Donon (F) 7.08	Ebro Delta (SP) 0.5	Grignon (F) 1.95	$Curno (I) \qquad 9.03$	Zugerberg (CH) 8.54	Zugerberg (CH) 8.54	Zugerberg (CH) 8.54	Schönenbuch (CH) 7.5	Kuopio (FIN) 27.58	Kuopio (FIN) 27.58	Kuopio (FIN) 27.58	Birmensdorf (CH) 8.45	Birmensdorf (CH) 8.45	Birmensdorf (CH) 8.45	Birmensdorf (CH) 8.45	$\ddot{\mathrm{O}}\mathrm{stad}~\mathrm{(S)}$ 12.4	[°E]	Site Longitude	
59 12	57.9	47.15	47.54	48.48	40.75	52.13	48.48	40.75	48.83	46.17	47.15	47.15	47.15	47.54	62.21	62.21	62.21	47.36	47.36	47.36	47.36	57.9	[°N]	Latitude	
$Pinus \ subvest ris$	$Picea \ abies$	$Picea \ abies$	$Picea \ abies$	$Pinus\ hale pensis$	$Pinus\ hale pensis$	Quercus robur or petraea	Quercus robur or petraea	$Quercus \ ilex$	$Populus\ spec.$	$Populus\ spec.$	$Fagus\ sylvatica$	$Fagus\ sylvatica$	$Fagus\ sylvatica$	$Fagus\ sylvatica$	$Betula\ pendula$	$Betula\ pendula$	$Betula\ pendula$	$Betula\ pendula$	$Betula\ pendula$	$Betula\ pendula$	$Betula\ pendula$	Betula pendula		Species	
1995	1992	1991	1991	1997	1993	1997	1999	1998	2008	2005	1991	1989	1987	1991	1994	1996	1994	1993	1992	1990	1989	1997	start year	O_3 treatment	
2	сл	2	2	2	4	2	2	ట	1	1	2	లు	2	2	τU	ట	2	1	1	1	1	2	[yrs]	Fumigation	

Table 3.2: List of fumigation experiments used by Büker et al. (2015) and simulated here.

Table 3.3: Original and adapted values of the nitrogen-specific photosynthetic capacity of a leaf (npl) for three out of four different O-CN versions (ID) including published injury functions. The intercept of the fourth O-CN version $(L12_{VC})$ is very close to 1 and simulations produce comparable LAI values without an adaption of npl.

ID	PFT	npl original	npl adapted
$W07_{PS}$	Broadleaf	1.50	1.60
$W07_{PS}$	Needleleaf	0.75	0.80
$L12_{PS}$	Broadleaf	1.50	1.45
$L12_{PS}$	Needleleaf	0.75	0.70
$L13_{PS}$	Broadleaf	1.50	1.75
$L13_{PS}$	Needleleaf	0.75	0.90

to obtain comparable leaf area index (LAI) values at the beginning of the experiment (see Tab. 3.3). This adaption of the nitrogen-specific photosynthetic capacity of a leaf only counterbalances the fixed increases or decreases in the calculation of photosynthesis implied by the intercepts unequal to 1 and has no further impact on ozone uptake and injury calculations.

The simulations of the experiments relied on the meteorological and atmospheric forcing of the experiment years. Simulations were made for all reported O_3 treatments of the specific experiment, including the respective control treatments. Büker et al. (2015) obtained estimates of biomass reductions due to ozone by calculating the hypothetical biomass at zero ozone uptake for all experiments that reported ozone concentrations greater than zero for the control group (e.g. for charcoal-filtered or non-filtered air) and calculated the biomass damage from the treatments against a completely undamaged biomass. Our model allows us to run simulations with zero ozone concentrations and skip the calculation of the hypothetical biomass at zero ozone concentrations as done by Büker et al. (2015). Following this, we ran additional reference simulations with zero O_3 and based our biomass damage calculations upon them.

3.2.4 Modelling protocol for mature trees

To test whether biomass dose-response relationships of mature forests will show a similar relationship as observed in the simulations of young trees, we ran additional simulations with mature trees. To allow the development of a mature forest where biomass accumulation reached a maximum, and high, and medium turnover soil pools reached an equilibrium, the model was run for 300 years in the initialisation phase. The simulations were conducted with the respective climate previous to the experiment period and zero atmospheric O_3 concentration. For the simulation years previous to 1901 the yearly climate is randomly chosen from the years 1901-1930. Constant values of atmospheric O_2 concentrations are used in simulated years previous to 1750 followed by increasing con-

centrations up to the experiment years. The subsequent experiment years are simulated in the same way as the simulations with the young trees. The ozone injury for mature trees is calculated based on the same tun_{VC} injury function (see Tab. 3.1) that is used in the simulation of young trees (see subsection 3.2.5 for details on the development of tun_{VC}).

3.2.5 Calculation of the biomass damage relationships

The ozone-induced biomass damage is calculated from the difference between a treatment and a control simulation. At each experiment site and for all treatments the annual reduction in biomass due to ozone (RB) is calculated as in Büker et al. (2015):

$$RB = \left(\frac{BM_{treat}}{BM_{zero}}\right)^{\frac{1}{n}},\tag{3.7}$$

where BM_{treat} represents the biomass of a simulation, which experienced an O₃ treatment and BM_{zero} the biomass of the control simulation with zero atmospheric O₃ concentration. The exponent imposes an equal fractional biomass reduction across all simulation years for experiments lasting longer than 1 year.

Büker et al. (2015) report the dose-response relationships for biomass reduction with reference to the PODy with flux thresholds y of 2 and 3 nmol m⁻²(leaf area) s⁻¹ (POD_2 and POD_3) for the needleleaf and broadleaf category, respectively, where the PODyvalues were derived from simulations with the DO_3SE model (Emberson et al., 2000b) given site-specific meteorology and ozone concentrations. To be able to compare the simulated biomass reduction by O-CN with these estimates, we also diagnosed these PODyvalues for each simulation from the accumulated ozone uptake of the top canopy layer $(PODy_{O-CN} = CUOY_{l=1})$. Note that the $PODy_{O-CN}$ is purely diagnostic, and not used in the injury calculations, which are based on the $CUOY_l$ (see Eq. 3.5). As O-CN computes continuous, half-hourly values of ozone uptake (see Franz et al. (2017), for details), the $PODy_{O-CN}$ values have to be transformed to be comparable to the simulated mean annual PODy values reported in Büker et al. (2015). For deciduous species, the yearly maximum of $PODy_{O-CN}$ was taken as a yearly increment $PODy_{O-CN,i}$. The $PODy_{O-CN}$ of every species was continuously accumulated over several years. To obtain the yearly increment $PODy_{O-CN,i}$, the $PODy_{O-CN}$ at the beginning of the year *i* is subtracted from the $PODy_{O-CN}$ at the end of the year *i*.

The selected yearly $PODy_{O-CN,i}$ was used to calculate mean annual values necessary for the formation of the dose-response relationships integrating all simulation years $(PODy^{dr})$ as

$$PODy_i^{dr} = \frac{\sum_{k=1}^{i} PODy_{O-CN,i}}{i}$$
(3.8)

where $PODy_{O-CN,i}$ is the PODy of the *i*-th year calculated by O-CN. The $PODy^{dr}$ values are used to derive biomass dose-response relationships.

Separate biomass dose-response relationships were estimated by grouping site data for broadleaved and needleleaf species. The biomass dose-response relationships are obtained from the simulation output by fitting a linear model to the simulated values of RB and $PODy^{dr}$ (with flux thresholds of 2 and 3 nmol m⁻²(leaf area) s⁻¹ for needleleaf and broadleaved species, respectively), where the regression line is forced through 1 at zero $PODy^{dr}$. Büker et al. (2015) report two alternative dose-response relationships for their data set: the simple and the standard model B_{SI} and B_ST , respectively. We evaluate our different model versions regarding their ability to reach the area between those two functions (target area) with the biomass-dose-response relationships computed from their output. The tuned injury relationships tun_{PS} and tun_{VC} were obtained by adjusting the slope b in Eq. 3.5 such that the corresponding biomass dose-response relationships fits the target area. The intercept of the injury relationships are forced to 1 to simulate zero ozone injury at ozone fluxes lower than 1 nmol m⁻²(leaf area) s⁻¹.

3.3 Results

3.3.1 Testing published injury functions

None of the versions where ozone injury is calculated based on previously published injury functions fit the observations well. Some versions strongly overestimate the simulated biomass dose-response relationship and others strongly underestimate it (see Fig. 3.1) compared to the dose-response relationships developed by Büker et al. (2015).

In the $W07_{PS}$ simulations, where injury is calculated based on the injury function by Wittig et al. (2007), biomass damage is strongly underestimated compared to the estimates from Büker et al. (2015). Ozone injury estimates are mainly driven by the intercept of the relationship, which assumes a reduction in net photosynthesis by 6.16%at zero ozone uptake. Little additional ozone damage occurs due to the accumulation of ozone uptake. As a consequence, the ozone treatments and reference simulations differ little in their simulated biomass. Similarly, the Lombardozzi et al. (2013) injury function $(L13_{PS})$ calculates ozone injury as a fixed reduction in net photosynthesis independent of the actual accumulated ozone uptake. The reference simulations with zero atmospheric ozone thus equal the simulations with ozone treatments and result in an identical simulated biomass. We tested accounting for effects of ozone on stomatal conductance besides net photosynthesis as suggested by Lombardozzi et al. (2013). However, this additional direct injury to stomatal conductance yielded a minimal decrease in simulated biomass accumulation in needleleaf trees, but did not qualitatively change the results (results not shown). These results indicate that injury functions, with a large intercept and a very shallow (or non-existing) slope cannot simulate the impact of spatially varying O_3 concentrations or altered atmospheric O₃ concentrations.

Figure 3.1: Biomass dose-response relationships for simulations based on published injury relationships, separate for a) broadleaved species and b) needleleaf species. The dose-response relationships by Büker et al. (2015) (B_{SI} and B_{ST}) define the target area (orange). The displayed dose-response relationships are simulated by model versions which base injury calculations either on net photosynthesis W07_{PS} (Wittig et al., 2007), L12_{PS}(Lombardozzi et al., 2012a), and L13_{PS} (Lombardozzi et al., 2013), or on V_{cmax} L12_{VC} (Lombardozzi et al., 2012a) (see Tab. 3.1 for more details). See Tab. 3.4 for slopes, intercepts, R² and p values of the displayed regression lines. Injury calculation in the simulations is based on CUOY (see Tab. 3.1) and not on POD2 or POD3 (see Sec. 3.2.5 for more details).

Table 3.4: Slopes and intercepts of biomass dose-response relationships for broadleaf and needleaf species simulated by O-CN versions based on published injury functions to net photosynthesis or V_{cmax} (see Tab. 3.1). B_{SI} and B_{ST} represent the simple and standard model of Büker et al. (2015).

ID	Intercept (a)	Slope (b)	\mathbf{R}^2	p value
Broadleaf				
B_{SI}	0.99	0.0082	0.34	< 0.001
B_{ST}	0.99	0.0098	0.38	< 0.001
$W07_{PS}$	1	0.00045	0.93	$1 \ge 10^{-24}$
$L12_{PS}$	1	0.0142	0.77	$2 \ge 10^{-14}$
$L15_{PS}$	1	0.0000	-	-
$L12_{VC}$	1	0.0120	0.80	$1.9 \ge 10^{-15}$
Needleleaf				
B_{SI}	1	0.0038	0.46	< 0.001
B_{ST}	1	0.0042	0.52	< 0.001
$W07_{PS}$	1	0.00058	0.93	$1.5 \ge 10^{-09}$
$L12_{PS}$	1	0.0119	0.83	$9.4 \ge 10^{-07}$
$L15_{PS}$	1	0.0000	-	-
$L12_{VC}$	1	0.0096	0.85	$3.5 \ge 10^{-07}$

The simulations $L12_{PS}$ and $L12_{VC}$ (net photosynthesis and V_{cmax} injury according to Lombardozzi et al. (2012a), respectively) strongly overestimate biomass damage compared to Büker et al. (2015). Both injury functions assume an extensive injury to carbon fixation at low ozone accumulation values (CUOY) of about 5 mmol O₃. This results in a very steep decline in relative biomass at low values of POD3. Notably, despite a linear injury function, the very steep initial decline in biomass of broadleaved trees at low values of POD3 is not continued at higher exposure, resulting in a non-linear biomass dose-response relationships. Higher accumulation of ozone doses does not result in higher injury rates beyond a threshold of about 5 mmol O₃ m⁻² leaf area, and relative biomass declines remain at 50% to 70%. Whereas non-linear dose-response relationships are observed in experiments e.g. for leaf injury (Marzuoli et al., 2009), such a non-linear relationship is not produced in the biomass dose-response relationship by Büker et al. (2015).

Figure 3.2: Simulated cumulative ozone uptake above a threshold of 0.8 nmol m⁻²(leaf area) s⁻¹ (CUOY), canopy-integrated net photosynthesis (A_n^{can}), leaf carbon content (*Leaf* C), total carbon in biomass (*biomass* C) and relative biomass (*RB*) of *Pinus halepensis* at the Ebro Delta fumigated with the NF+ ozone treatment. Simulations are conducted with the L12_{PS} model version. Panels (a-d) display the entire simulation period. The red line indicates the onset of O₃ fumigation (NF+) in the fifth of eight simulations years. The relative biomass compared to a control simulation with zero O₃ concentration (panel e) is displayed for the O₃ fumigation years.

We investigated the cause for this using the example of the *Pinus halepensis* stand in the Ebro Delta with a high ozone treatment as shown in Fig. 3.2. The simulated *CUOY* quickly increases after the onset of fumigation (Fig. 3.2a) and is paralleled by a rapid decline in canopy-integrated net photosynthesis (A_n^{can} , see Fig. 3.2b). Once all canopy layers accumulated more than 5 mmol O₃ m⁻², the canopy photosynthesis is fully reduced, and A_n^{can} becomes negative as a consequence of ongoing leaf maintenance respiration. Thereafter, leaf and total biomass steadily decline (Fig. 3.2c,d), and the plants are kept alive only by the consumption of stored non-structural carbon reserves. Despite the 100% reduction in gross photosynthesis, the biomass compared to a control simulation (relative biomass, *RB*) reaches only values of approximately 0.7 (Fig. 3.2e), because of the remaining woody and root tissues (see Eq. 3.7 for the calculation of *RB*).

3.3.2 Tuned injury relationships

We next tested whether a linear injury function is in principle able to reproduce the observed biomass dose-response relationships. Simulations conducted with our tuned injury relationships produce biomass dose-response relationships which fit the target area defined by the B_{SI} and B_{ST} dose-response relationships by Büker et al. (2015) (see Fig. 3.3 and Tab. 3.5).

Figure 3.3: Biomass dose-response relationships for simulations based on tuned injury functions (see Tab. 3.1 for abbreviations), separate for a) broadleaved species, and b) needleleaf species. The dose-response relationships by Büker et al. (2015) (B_{SI} and B_{ST}) define the target area (orange). See Tab. 3.5 for slopes, intercepts, \mathbb{R}^2 and p values of the displayed regression lines. Injury calculation in the simulations is based on *CUO1* (see Tab. 3.1) and not on *POD2* or *POD3* (see Sec. 3.2.5 for more details).

Table 3.5: Slopes and intercepts of biomass dose-response relationships for broadleaf and needleleaf species simulated by O-CN versions based on tuned injury functions to net photosynthesis or V_{cmax} (see Tab. 3.1). B_{SI} and B_{ST} represent the simple and standard model by Büker et al. (2015).

ID	Intercept (a)	Slope (b)	\mathbf{R}^2	p value
Broadleaf				
B_{SI}	0.99	0.0082	0.34	< 0.001
B_{ST}	0.99	0.0098	0.38	< 0.001
$ an_{PS}$	1	0.0093	0.94	$1.4 \ge 10^{-26}$
tun_{VC}	1	0.0091	0.93	$5 \ge 10^{-25}$
Needleleaf				
B_{SI}	1	0.0038	0.46	< 0.001
B_{ST}	1	0.0042	0.52	< 0.001
$ an_{PS}$	1	0.0039	0.94	$4.8 \ge 10^{-10}$
tun_{VC}	1	0.0042	0.93	$2.2 \ge 10^{-09}$

For the calibrated relationships used in these simulations, we chose a flux threshold value of 1 nmol m⁻²(leaf area) s⁻¹, as suggested by LRTAP-Convention (2017). We forced the intercept (a) of these relationships through 1, to simulate zero ozone injury at ozone fluxes lower than 1 nmol m⁻²(leaf area) s⁻¹. The resulting slope of the tun_{PS} function for broadleaved PFTs is approximately 30 times higher compared to the slope suggested by Wittig et al. (2007) and a fourth of the slope by Lombardozzi et al. (2012a). For the needleleaf PFT, the tuned slope (tun_{PS}) is approximately 10 times higher (lower) than the slopes by Wittig et al. (2007) and Lombardozzi et al. (2012a), respectively. Notably, we did not observe any difference in the model performance irrespective of whether net photosynthesis or photosynthetic capacity (V_{cmax} and simultaneously J_{max}) was reduced.

3.3.3 Ozone injury to mature trees

The simulation of young trees (simulated as in the previous section) compared to adult trees with the same model version reveals a distinct difference between the simulatedversus-observed dose-response relationship when expressed as reduction in biomass. Ozone injury causes a much shallower simulated biomass dose-response relationship for adult trees (\tan_{VC}^{mature} in Fig. 3.4a,b) compared to young trees (\tan_{VC}^{young} in Fig. 3.4a,b), both for broadleaved and needleleaf species. It is worth noting that this is primarily the consequence of the higher initial biomass of the adult trees before ozone fumigation starts (\tan_{VC}^{mature}).

Comparing the dose-response relationship of young and mature trees based on the

Figure 3.4: Biomass (RB) and NPP (RN) dose-response relationships of simulations with young (\tan_{VC}^{young}) and mature trees (\tan_{VC}^{mature}) separately for a,c) broadleaf species and b,d) needleleaf species.

annual NPP shows nearly identical slopes for needleleaf species (Fig. 3.4d and Tab. 3.6), whereas the slopes for broadleaved tree species (Fig. 3.4c and Tab. 3.6) suggest only a slightly lower reduction in NPP in mature compared to young trees, likely related to the larger amount of non-structural reserves that increases the resilience of mature versus young trees.

Table 3.6: Slopes and intercepts of biomass (RB) and NPP (RN) dose-response relationships (DRRs) for broadleaf and needleleaf species simulated by the tun_{VC} model version (see Tab. 3.1). The fumigation of young trees (tun_{VC}^{young}) with O₃ is compared to the fumigation of mature trees (tun_{VC}^{mature}) .

DRR	ID	Intercept (a)	Slope (b)	\mathbf{R}^2	p value
Broadleaf					
RB	$ au_{VC}^{young}$	1	0.0091	0.93	$5 \ge 10^{-25}$
RB	$ aun_{VC}^{mature}$	1	0.00142	0.91	$9.8 \ge 10^{-23}$
RN	$ au_{VC}^{young}$	1	0.0167	0.96	$6.2 \ge 10^{-30}$
RN	$ au_{VC}^{mature}$	1	0.0144	0.93	$1.4 \ge 10^{-24}$
Needleleaf					
RB	$ au_{VC}^{young}$	1	0.0042	0.93	$2.2 \ge 10^{-09}$
RB	$ aun_{VC}^{mature}$	1	0.000785	0.79	$4.2 \ge 10^{-06}$
RN	$ au_{VC}^{young}$	1	0.00858	0.97	$2.3 \ge 10^{-12}$
RN	$ au_{VC}^{mature}$	1	0.00808	0.99	$3.7 \ge 10^{-16}$

3.4 Discussion

Injury functions that relate accumulated ozone uptake to fundamental plant processes such as photosynthesis are a key component for models that aim to estimate the potential impacts of ozone pollution on forest productivity, growth and carbon sequestration. We tested four published injury functions for net photosynthesis and V_{cmax} within the framework of the O-CN model to assess their ability to reproduce the empirical wholetree biomass dose-response relationships derived by Büker et al. (2015). The biomass dose-response relationships calculated from the O-CN simulations show that the parameterisation of the injury functions included in the model has a large impact on the simulated whole-tree biomass. The published injury functions either substantially overor substantially underestimated whole-tree biomass reduction compared to the data presented by Büker et al. (2015). Our results highlight the importance for improved evaluation of injury functions applied in the simulation of ozone damage for large-scale risk assessments, and we discuss a number of important considerations for an improved parameterisation below.

The simulation results from the O-CN version applying an injury function based on a single, ozone-sensitive species (Lombardozzi et al., 2012a) to a range of European tree species leads to a strong overestimation of the simulated biomass damage compared to the observations used in this study. The problem of using such injury parameterisations based on short-term experiments of ozone-sensitive species is further highlighted when applying them in simulations of multiple season fumigation experiments and/or high ozone concentrations. Under such conditions, fumigation with high O_3 concentrations can lead to lethal doses, which might not be observed in field experiments due to restricted experiment lengths. Previous studies have suggested that in large areas of Europe, the eastern US and southeast Asia average growing season values of CUOY for recent years range between 10 and 100 mmol O₃ m⁻² (Lombardozzi et al., 2015; Franz et al., 2017). The injury relationships $L12_{PS}$ and $L12_{VC}$ by Lombardozzi et al. (2012a) assume a 100% injury to net photosynthesis or V_{cmax} at accumulation values of about 5 mmol O₃ m⁻². This would imply that in these large geographic regions, photosynthesis would have been completely impaired by ozone, which is clearly not the case. This result highlights the need for a representative set of species for the development of injury functions for large-scale biosphere models. Overall, our results suggest that the estimates by Lombardozzi et al. (2012a) of global GPP reduction as a result of ozone pollution are strongly overestimated.

Meta-analyses (Wittig et al., 2007; Lombardozzi et al., 2013) are designed to minimise the effect of species-specific ozone sensitivities and provide estimates of the average species response. However, we found that the relationships derived by these metaanalyses substantially underestimate biomass damage. Technically, the reasons for this are a weak or non-existent increase in the ozone injury with increased ozone uptake (shallow or non-existent slopes) and/or high ozone injury at zero accumulated ozone uptake (intercept lower than 1). Apparently, the diversity of species responses and experimental settings that are assembled in the meta-analyses by Wittig et al. (2007) and Lombardozzi et al. (2013), together with uncertainties in precisely estimating accumulated ozone uptake in these databases preclude the identification of injury functions that are consistent with the damage estimates by Büker et al. (2015). The high intercepts in the meta-analyses by Wittig et al. (2007) and Lombardozzi et al. (2013), which assume a considerable injury fraction even when no ozone is taken up at all, seem to be ecologically illogical and suggest that an alternative approach is necessary to simulate ozone injury. As a consequence of these points, the Europe-wide GPP reduction estimates by Franz et al. (2017), which have been based on the injury function by Wittig et al. (2007), may substantially underestimate actual GPP reduction. Similarly, global estimates as well as spatial variability in ozone damage to GPP by Lombardozzi et al. (2015), based on Lombardozzi et al. (2013), are virtually independent of actual ozone concentrations or uptake for all tree plant functional types and should be interpreted with caution.

A crucial aspect in forming dose-response relationships is the calculation of the accumulated ozone uptake (e.g. PODy or CUOY). The calculation of accumulated ozone uptake is realised in different ways in the meta-analyses and the study by Büker et al. (2015) as well as in our approach here. Experiments synthesised in the meta-analyses generally do not have access to stomatal conductance values at high resolution measured throughout the experiment, which impedes precise determination of O₃ uptake. The uncertainty in the necessary approximations of accumulated ozone uptake can be assumed to be considerable, and it is thus highly recommendable to measure and report required observations in future ozone fumigation experiments. Büker et al. (2015) use the DO₃SE model to simulate ozone uptake and accumulation in a similar way as in our model here. These modelled values for ozone uptake and accumulation can be assumed to be more reliable since both models simulate processes that determine ozone uptake continuously for the entire experiment length at high temporal resolution. They account for diurnal changes in stomatal conductance as well as climate factors restricting stomatal conductance and hence ozone uptake. However, both models (DO₃SE and O-CN) vary in their complexity of the simulated plants, carbon assimilation, and growth processes, which will also impact the estimates of ozone accumulation (PODy) and hence their suggested biomass dose-response relationships.

The meta-analyses do not account for non-stomatal ozone deposition (e.g. to the leaf cuticle or soil), which imposes a bias towards overestimating ozone uptake and accumulation contrary to the DO₃SE model used by Büker et al. (2015), which accounts for this. The O-CN model in principle can simulate non-stomatal ozone deposition from the free atmosphere to ground level (see chapter 2 or Franz et al. (2017)). The leaf boundary layer is implicitly included in the calculation of the aerodynamic resistance of O-CN and included in Franz et al. (2017). However, for the simulation of the chamber experiments we used the observed chamber O₃ concentrations, rather than estimating the canopy-level O₃ concentration based on the free atmosphere (approximately 45 m above the surface) and atmospheric turbulence. This required not accounting for aero-dynamic resistance and therefore also the leaf-boundary layer resistance as it prevented the calculation of the non-stomatal deposition, which may lead to a slight overestimation of ozone uptake and accumulation in our simulations.

The calibration of injury functions to net photosynthesis and V_{cmax} shows that in principle, the linear structure of Eq. 3.5 is sufficient to simulate biomass dose-response relationships comparable to Büker et al. (2015) in O-CN. An advantage of the injury functions derived here compared to previously published injury functions (Wittig et al., 2007; Lombardozzi et al., 2012a, 2013) is the intercept of 1, implying that simulated ozone injury is zero at zero accumulated O_3 and steadily increases with increased ozone accumulation. The flux threshold used in the simulations is $1 \text{ nmol } m^{-2}(\text{leaf area}) s^{-1}$ as suggested by the LRTAP-Convention (2017). Since the tuned injury functions are structurally identical to previously published injury functions based on accumulated ozone uptake they can be directly compared to them. Slopes of the tuned injury functions lie in between the values proposed by Wittig et al. (2007) and Lombardozzi et al. (2012a) and thus take values in an expected range. We did not find any significant difference in simulated biomass responses between the use of net photosynthesis or leaf-specific photosynthetic capacity (V_{cmax}) as a target for the ozone injury function, although we do note that the slopes were slightly lower for the net photosynthesis-based functions. The simulation of ozone effects on leaf-specific photosynthetic capacity (V_{cmax}) seems preferable over the adjustment of net photosynthesis because V_{cmax} and J_{max} are parameters in the calculation of net photosynthesis and thus are likely more easily transferable between models. Models with different approaches to simulate net photosynthesis might obtain better comparable results by using injury relationships that target V_{cmax} instead of net photosynthesis.

All injury functions included in the O-CN model base injury calculations on the injury index CUOY (canopy value) rather than PODy, as used by some other models, e.g. the DO₃SE model (Emberson et al., 2000b). We tested the effect of basing the injury

calculation on POD1 rather than CUO1, and found that these produced comparable biomass dose-response relationships as the injury relationships based on CUO1 presented in Fig. 3.3 (results not shown). The slopes of injury functions based on POD1 are approximately two-thirds and half compared to the slopes based on CUO1 for broadleaved and needleleaf species, respectively. The difference in the slope values associated with POD1 and CUO1 results from the different calculation and application of them. PODy is calculated in the top canopy layer and the respective injury fraction is then applied uniformly to all canopy layers. CUOY and the associated injury fraction is calculated separately for each canopy layer and varies with the canopy profile of stomatal conductance and therefore the distribution of light and photosynthetic capacity (other factors such as vertical gradients of temperature or ozone are currently not represented in O-CN). More analysis of the gradients of ozone injury within deep canopies are required to evaluate whether the scaling of top-of-the-canopy injury to whole-canopy injury is appropriate or if alternative simulation approaches need to be developed. Higher-frequency data on the ozone injury incurred by plants are required to disentangle whether an ozone injury parameterisation based on instantaneous (e.g. similar to the approach by Sitch et al. (2007)) or accumulated ozone uptake results in a more accurate simulation of the seasonal effects of ozone fumigation.

Further aspects that determine ozone sensitivity and damage to the carbon gain of plants, like leaf morphology (Calatayud et al., 2011; Bussotti, 2008), different sensitivity of sunlit and shaded leafs (Tjoelker et al., 1995; Wieser et al., 2002), early senescence (Gielen et al., 2007; Ainsworth et al., 2012), and costs for the detoxification of ozone and/or the repair of ozone injury that likely increases the plant's respiration costs (Dizengremel, 2001; Wieser and Matyssek, 2007), are not considered by either approach. Marzuoli et al. (2016) observed an ozone-induced reduction in biomass but no significant reduction in physiological parameters like V_{cmax} . They suggest that the reduced growth is caused by higher energy investments and reducing power for the detoxification of ozone whereas the photosynthetic apparatus remained uninjured (Marzuoli et al., 2016).

Species within the same plant functional type are known to exhibit different sensitivities to ozone (Wittig et al., 2007, 2009; Mills et al., 2011b; Büker et al., 2015). This suggests that the application of a single injury function for a large set of species and plant functional types may not be sufficient to yield reliable estimates of large-scale damage estimates. Species interaction and competition, differing genotypes, and individuals ontogeny may further alter ozone impacts on plants and ecosystems (Matyssek et al., 2010). For instance, a modelling study using an individual-based forest model showed that ozone may not reduce the carbon sequestration capacity in forests if at the ecosystem level the reduced carbon fixation of ozone-sensitive species is compensated for by an increased carbon fixation of less ozone-sensitive species (Wang et al., 2016). Firstgeneration dynamic global vegetation models such as O-CN do not simulate separate species but are based on plant functional types, which combine a large set of species. This restricts per se the ability of global models to simulate ozone-induced community dynamics and may therefore lead to overestimates of the net ozone impact if the parameterisation of the damage functions is entirely based on ozone-sensitive species. In our study, we have presented an approach to use the existing experimental evidence to parameterise a globally applicable model in a simple design to generate injury functions which are based on a relevant range of species rather than relying on species-specific injury functions as a first step towards a more reliable parameterisation of large-scale ozone damage.

Some studies have found that ozone-affected stomata respond much more slowly to environmental stimuli than unaffected cells (Paoletti and Grulke, 2005), which can delay closure and trigger stomatal sluggishness, an uncoupling of stomatal conductance and photosynthesis (Reich, 1987; Tjoelker et al., 1995; Lombardozzi et al., 2012b) and thus impact transpiration rates (Mills et al., 2009; Paoletti and Grulke, 2010; Lombardozzi et al., 2012b) and the plant's water use efficiency (Wittig et al., 2007; Mills et al., 2009: Lombardozzi et al., 2012b). The O-CN model is able to directly impair stomatal conductance, by uncoupling injury to net photosynthesis from the subsequent injury to stomatal conductance. In this version of the O-CN model both net photosynthesis and stomatal conductance can directly be injured by individual injury functions. The simulation of this kind of direct injury to stomatal conductance additional to the injury of net photosynthesis, both according to the injury functions by Lombardozzi et al. (2013), have a negligible impact on biomass production compared to not accounting for direct injury to the stomata (results not shown). However, our above-mentioned concerns regarding the structure of the injury relationships by Lombardozzi et al. (2013) should be taken into account when considering this result.

A key challenge for the use of fumigation experiments to parameterise ozone-injury in models is that trees (as opposed to grasses funigated from seeds) typically possess a certain amount of biomass at the beginning of the fumigation experiment. Even at lethal ozone doses, the relative biomass thus cannot decline to zero, and tree death may occur at values of a relative biomass greater than zero. The relative biomass is positive even if carbon fixation is fully reduced and the plants survive due to the use of stored carbon. The higher the initial biomass and the slower the annual biomass growth rate of the tree is, the harder it is to obtain low values of RB. When comparing RB values obtained from trees with substantially different initial biomass and tree species with different growth rates proportionate damage rates thus cannot be directly inferred. This indicates that the explanatory value of the relative biomass between a control and a treatment to estimate long-term plant damage at a given O_3 concentration is limited. This is particularly the case when evaluating the damage of more mature forests. The simulated biomass dose-response relationships of adult trees are much more shallow than dose-response relationships of young trees (see Fig. 3.4) because of the high initial biomass prior to fumigation. This suggests that the use of biomass injury functions derived from experiments with young trees to parameterise the biomass loss of adult trees, as done in Sitch et al. (2007), will likely lead to an overestimation of plant damage and loss of carbon storage. Dose-response relationships based on biomass increments or growth rates might be better transferable between young and mature trees and hence better suitable for parameterising global terrestrial biosphere models.

Our approach to overcome this challenge was to alter the vegetation model to sim-

ulate the ozone damage of young trees, where we could directly compare simulated biomass reductions to observations. Since we used injury relationships that are based on the calculation of leaf-level photosynthesis, we are able to apply the calibrated model also for mature stands. Our simulations have demonstrated that despite the different sizes of young and mature trees, and associated changes in the wood growth rate and the available amount of non-structural carbon reserves to repair incurred injury, the simulated effect of ozone on the net annual biomass production (NPP) was very similar when using an injury function associated with leaf-level photosynthesis. Overall our findings support the idea that the photosynthesis-based injury relationships developed here and evaluated against fumigation experiments of young trees, might be useful to estimate effect on forest production of older trees. Monitoring approaches of ozone damage that are either capable of measuring the actual increment of biomass or quantify at the leaf and canopy level the change in net photosynthesis over the growing season would allow us to develop injury/damage estimates that could be more readily translated into modelling frameworks.

The extrapolation of results from short-term experiments with young trees to estimate responses of adult trees grown under natural conditions is subject to several issues, e.g. due to the differing environmental conditions and changing ozone sensitivities with increasing tree size or age (Schaub et al., 2005; Cailleret et al., 2018). It is still uncertain whether the simulation of injury to photosynthesis based on experiments with young trees can indeed be transferred to adult trees to yield realistic biomass damage estimates. The sparse knowledge of ozone effects on the biomass of adult forest trees prevents an evaluation of simulated ozone damage of adult trees. Ozone fumigation is mostly found to reduce the biomass or diameter of adult trees (e.g. Matyssek et al. (2010) for an overview), but this is not always the case (Samuelson et al., 1996; Percy et al., 2007). Results from phytotron and free-air fumigation studies suggest that in natural forests a multitude of abiotic and biotic factors exist that have the potential to impact the plants ozone effects (Matyssek et al., 2010). If more data become available, e.g. regarding the changes in ozone sensitivity between young and mature trees a more realistic damage parameterisation of mature forests in terrestrial biosphere models might become possible.

Terrestrial biosphere models in general assume that plant growth is primarily determined by carbon uptake. However, an alternative concept proposes that plant growth is more limited by direct environmental controls (temperature, water and nutrient availability) than by carbon uptake and photosynthesis (Fatichi et al., 2014). The O-CN model provides a first step into this direction because it separates the step of carbon acquisition from biomass production, both in terms of a non-structural carbon buffer as well as a stoichiometric nutrient limitation on growth independent of the current photosynthetic rate. This would in principle allow us to account for ozone effects on the carbon sink dynamics within plants. However, it is not clear that data readily exist to parameterise such effects. Instead of targeting net photosynthesis as done in our approach here, ozone injury might be better simulated by targeting biomass growth rates or processes that limit these, e.g. stomatal conductance, which impacts the plants' water balance, assuming that suitable data to parameterise a large-scale model become available.

All in all, a multitude of aspects that impact ozone damage to plants has not yet been incorporated into global terrestrial biosphere models. The ongoing discussion of which processes are major drivers for observed damage, how they interact and impact different species and plant types, and the lack of suitable data needed to parameterise a global model are reasons why the simulation of ozone damage has up to now focused only on a few aspects where suitable data are available, as presented in our study.

3.5 Conclusion

The inclusion of previously published injury functions in the terrestrial biosphere model O-CN led to a strong over- or underestimation of simulated biomass damage compared to the biomass dose-response relationship by Büker et al. (2015). Injury functions included in terrestrial biosphere models are a key aspect in the simulation of ozone damage and have a great impact on the estimated damage in large-scale ozone risk assessments. The calibration of injury functions performed in this study provides the advantage of calculating ozone injury close to where the actual physiological injury might occur (photosynthetic apparatus) and simultaneously reproduces observed biomass damage relationships for a range of European forest species used by Büker et al. (2015). The calibration of ozone injury functions similar to our approach here in other ozone sub-models of terrestrial biosphere models might improve damage estimates compared to previously published injury functions and might lead to better estimates of terrestrial carbon sequestration. The comparison of simulated biomass dose-response relationships of young and mature trees shows strongly different slopes. This suggests that observed biomass damage relationships from young trees might not be suitable for estimating the biomass damage of mature trees. The comparison of simulated NPP dose-response relationships of young and mature trees shows similar slopes and suggests that they might more readily be transferred between trees differing in age.

Chapter 4

Simulated air pollution impacts from 1850-2099

4.1 Introduction

Ozone concentrations in 1860 were 15-25 ppb over the mid- and high-latitudes of Eurasia and North America, and increased to 40-50 ppb in the present (Akimoto, 2003). Tropospheric ozone concentrations in Western Europe increased by a factor 2 to 5 from pre-industrial values to the 1990s (Cooper et al., 2014; Marenco et al., 1994; Staehelin et al., 1994). The increases are paralleled by an increases in it's precursor nitrogen oxides (NO_x) by a factor of 4.5 between 1955 and 1985 (Cooper et al., 2014; Staehelin et al., 1994).

Ozone (O_3) is a toxic air pollutant that can injure plant leaves and substantially affect the plant's gross primary production (GPP). Part of the reactive nitrogen produced in or emitted to the atmosphere, like the O_3 precursors NO_x , are deposited back on land where they might be taken up by plants and stimulate plant growth in nitrogen limited regions. Both pollutants (O_3 and NO_x) are linked in their occurrence but impose opposing effects on plants.

During the 21st century the global nitrogen deposition is projected to remain relatively constant in all scenarios of the Representative concentration pathways (RCP), except in the most optimistic scenario RCP2.6, but changes occur on a regional basis (Ciais et al., 2013). In Fig. 4.1 past nitrogen deposition rates for the decades of 1850 and 1990 are displayed and projected rates suggested by RCP2.6 and RCP8.5 for the middle and end of the 21st century.

Due to stringent air pollution control ozone levels are projected to decline until the end of the 21st century (van Vuuren et al., 2011). See Fig. 4.2 for past and projected tropospheric O_3 concentrations suggested by RCP2.6 and RCP8.5. The application of the RCP scenarios (Moss et al., 2010; van Vuuren et al., 2011) in 14 global chemistry transport models results in the projection of declining annual global mean surface O_3 concentrations of as much as 2 ppb by 2050 in most regions of the globe except South Asia where increases are simulated (Wild et al., 2012). Contrary to this the application

Figure 4.1: Mean nitrogen deposition rates for the temperate and boreal Northern Hemisphere ($\geq 30^{\circ}$ N) in the decades of the years of 1850, 1990, 2050 and 2090, each according to the RCP2.6 and RCP8.5 pollution scenario.

of the IPCC SRES scenarios (which assume a large increase in O_3 precursor emissions) results in a simulated increase in annual global mean surface O_3 concentrations by 4-6 ppb which highlights the importance of emission control (Wild et al., 2012). The ensemble of six global atmospheric chemistry transport models driven by the emission scenarios RCP2.6 (most optimistic scenario), RCP4.5 and RCP8.5 (most pessimistic scenario) project changes in surface O_3 concentrations by 2010 compared to values in the early 2000s. The projected changes range from increases of 4-5 ppb in simulations based on the RCP8.5 scenario to reductions of 2-10 pbb based on the RCP2.6 scenario (Sicard et al., 2017). A similar pattern is found for the temperate and boreal Northern Hemisphere $\geq 30^{\circ}N$. Time series of the regional mean canopy O_3 concentration show increasing values until late in the 21st century for RCP8.5 and considerable decreases during the 21st century for RCP2.6 (see Fig. 4.3a).

Driven by projected reductions in surface O_3 concentrations the potential threat to vegetation under the emissions of the RCP4.5 scenario is projected to decline as well (Klingberg et al., 2014). By 2050 the ozone exposure index AOT40 (Accumulated expo-

Figure 4.2: Projected mean canopy level O_3 concentration for the temperate and boreal Northern Hemisphere ($\geq 30^{\circ}$ N) in the decades of the years of 1850, 1990, 2050 and 2090, each according to the RCP2.6 and RCP8.5 pollution scenario.

sure Over a Threshold of 40 ppb O₃) is projected to decrease over wide areas of Europe below critical levels defined by the EU directive 2008/50/EC and the LRTAP convention in simulations of a chemical transport model (CTM) driven by the RCP4.5 emission scenario (Klingberg et al., 2014). The more physiological based ozone damage index POD1 (Phytotoxic Ozone Dose above a threshold of 1 $nmol m^{-2} s^{-1}$) is projected to decline less compared to the AOT40 index and not below critical levels defined for forest trees (Klingberg et al., 2014). The ensemble of six global atmospheric chemistry transport models project improvements of the AOT40 index under the RCP2.6 and RCP4.5 but an exceedance of critical levels over many areas in the Northern Hemisphere by 2099 (Sicard et al., 2017). In these simulations the potential impact of O₃ on photosynthesis and carbon assimilation by 2099 is projected to decline by 61% under the RCP2.6 scenario, by 47% under RCP4.5 and increase by 70% under the RCP8.5 scenario compared to the early 2000s (Sicard et al., 2017).

Several models simulated present day or future impacts of ozone damage on GPP/NPP on regional and global scale (Felzer et al., 2005; Sitch et al., 2007; Franz et al., 2017;

Figure 4.3: Time series of the regional mean (temperate and boreal Northern Hemisphere $(\geq 30^{\circ}N)$) ozone concentration and summed nitrogen deposition according to the RCP2.6 and RCP8.5 pollution scenario.

Lombardozzi et al., 2015; Oliver et al., 2018) and found substantial ozone induced detrimental impacts. The models differ in various aspects which might affect simulated damage estimates. Franz et al. (2017) investigates the importance of the simulation of O_3 transport from the free atmosphere into the stomates on simulated O_3 uptake and accumulation (see chapter 2). Different models furthermore include non-identical injury functions which are applied to calculate ozone damage. Franz et al. (2018) investigated the ability of various injury functions to reproduce biomass damage relationships observed in a range of fumigation/filtration experiments with European tree species (see chapter 3). The injury function applied in Franz et al. (2017) was found to considerably underestimate biomass damage compared to the observed biomass damage relationships. The injury function applied by Lombardozzi et al. (2015) was found to be not able to reproduce the observed biomass damage relationships at all due to the lack of a dependence on the actual ozone concentration/ uptake into the plant.

The combined air pollution effect of O_3 and nitrogen deposition has not yet been addressed. Models that account for the growth stimulating effect of nitrogen deposition but not the detrimental effect induced by ozone might overestimate the stimulating effect on plant growth. The new RCP scenarios, which project stronger pollution control and lower tropospheric ozone concentrations compared to the IPCC SRES scenarios (Wild et al., 2012) are yet little applied to investigate future ozone impacts.

Here, the terrestrial biosphere of the Northern Hemisphere is simulated from preindustrial times (year 1850) until the end of the 21st century. Ozone damage is calculated based on injury functions tuned to reproduce observed biomass damage of a range of European tree species in fumigation/filtration experiments (see chapter 3 and Franz et al. (2018)). As the applied injury functions are based on experiments with boreal and temperate European tree species, the simulation scope is restricted to the temperate and boreal region of the Northern Hemisphere $\geq 30^{\circ}$ N. Two pollution scenarios are simulated with different combinations of transient or fixed CO₂, climate, nitrogen deposition, and O₃ for the most optimistic and most pessimistic RCP scenario (RCP2.6 and RCP8.5 respectively). In a factorial analysis the impact of the single drivers on plant growth, biomass and selected soil properties is calculated. The possible impact of O₃ to offset growth enhances induced by nitrogen deposition is evaluated as well as the interaction between O₃ and CO₂.

4.2 Methods

Simulations are conducted with the O-CN model (see section 1.6.1 for details) version tun_{VC} where ozone damage is calculated based on injury functions to V_{cmax} . The tun_{VC} injury functions were calibrated to reproduce observed biomass damage relationships of experiments with a range of European tree species in fumigation/filtration experiments (see chapter 3 or Franz et al. (2018) for details). As in chapter 3 a flux threshold 1 nmol m⁻² s⁻¹ is applied in the simulations here to account for the plants ability to detoxify part of the taken up O₃. The cumulative canopy O₃ uptake above a flux threshold of 1 nmol m⁻² s⁻¹ (CUO1) is used to calculate ozone induced damage to V_{cmax} . Contrary to Franz et al. (2018), in the simulations run for this study the ozone deposition scheme described in Franz et al. (2017) is applied (D-model version in Franz et al. (2017) or chapter 2).

4.2.1 Modelling protocol

The model is run at a spatial resolution of 1° x 1° on a spatial domain focused on the temperate region of the Northern Hemisphere $(30^{\circ}N - 90^{\circ}N)$. The model is driven by climate model output of the Institute Pierre Simon Laplace (IPSL) general circulation model IPSL-CM5A-LR (Dufresne et al., 2013), bias-corrected according to the Inter-Sectoral Impact Model Intercomparison Project (Hempel et al., 2013). Downward nitrogen deposition velocity and near surface ozone concentrations are provided by CAM, the community atmosphere model (Lamarque et al., 2010; Cionni et al., 2011). Land cover, soil, and N fertiliser application are used as in Zaehle et al. (2011) and kept at 2000 values throughout the simulation. Data on atmospheric CO_2 concentrations are obtained from Meinshausen et al. (2011). Through all simulations present day land-use information are applied for the year 2000 (Hurtt et al., 2011). O-CN is run for 1291 years to achieve an equilibrium in terms of the terrestrial vegetation and soil carbon and nitrogen pools by using the forcing data of the year 1850 data where available. The climate years are randomly iterated from the period of 1901 to 1930. The subsequent simulation years run from the year 1850 to 2099 with either transient forcing or fixed forcing to the reference values of the year 1850 (1901-1930 for climate), depending on the specific simulated factorial run (see Tab. 4.1). The period up to the year 2005 is simulated identical for both RCPs. Between 2005 and 2099 simulations are run using the forcing according to the RCP2.6 and are repeated using the RCP8.5 forcing (Moss

Table 4.1: Forcing setting of the factorial runs. Transient forcing indicates that the forcing of the respective simulation year is used (1850-2099 except for the climate forcing where the period 1850-1899 is simulated based on the years 1901-1930). Fixed indicates that the forcing of the reference year 1850 is used (1901-1930 for climate).

Factorial run	$\rm CO_2$	Climate	Nitrogen deposition	O_3
S1	transient	fixed	fixed	fixed
S2	transient	fixed	fixed	$\operatorname{transient}$
$\mathbf{S3}$	transient	transient	fixed	fixed
$\mathbf{S4}$	transient	transient	transient	fixed
S5	transient	$\operatorname{transient}$	transient	transient

et al., 2010; van Vuuren et al., 2011).

To investigate the impact of the ozone deposition scheme on the simulation results the factorial runs are repeated with a model version where the ozone deposition scheme is turned off (see ATM model version in chapter 2). In simulations where the ozone deposition module is turned off the canopy ozone concentration equals the O_3 concentration at 45 m above the surface which is the lowest level of the atmospheric chemistry transport model (CTM) that deliver the forcing for our runs here.

4.2.2 Factorial simulation runs

Five factorial simulation runs are simulated where key drivers of plant growth and carbon sequestration (CO₂, climate, nitrogen deposition, O₃) are simulated transient (progressively changing within the simulation period) or fixed to the reference year (see Tab. 4.1). The simulations are conducted for the Representative concentration pathway scenarios RCP2.6 and repeated for RCP8.5. To obtain an indication of the impact of the single forcing drivers on different output variables the simulation results are subtracted from each other.

4.2.3 Factorial analysis

The impact of a single forcing driver on the simulation results is of great interest and approximated by subtracting the simulation results of suitable factorial runs from one another (see Tab.4.2). In the following the term 'forcing driver' is used to refer to the input variables of the conducted simulations and 'single driver' refers to the approximated impact of a single forcing driver on the simulation results. The impact of increasing atmospheric CO₂ concentrations on the simulation results from the factorial run S1 is obtained by subtracting the mean value of the period 1850-1859 from each simulation year (1850-2099) of each output variable of interest. To obtain the impact of the other three drivers (climate, nitrogen deposition, O_3) on the simulation results suitable factorial runs are subtracted from each other (see Tab. 4.2). The described approach constitutes an approximation of the impact of the single drivers and assumes that the

Table 4.2: Calculation of the single driver effects (CO₂, climate, nitrogen deposition, O₃) from the conducted simulations. The term 'mean(S1(1850:1859))' refers to the mean value of the years 1850 to 1859 of the S1 factorial run. The relative change for CO₂ is only calculated for the time intervals displayed below in Tab. 4.3. yr and refYr constitute the years which span the respective time periods. The single drivers are calculated for multiple output variables.

Single driver	Calculation absolute value	Calculation relative value
CO_2	S1 - mean(S1(1850:1859))	$(S1_{yr} - S1_{refYr})/S1_{refYr}$
O_3 approach 1	S2-S1	(S2 - S1)/S1
O_3 approach 2	S5-S4	(S5 - S4)/S4
Climate	S3-S2	(S3 - S2)/S2
Nitrogen deposition	S5-S3	(S5 - S3)/S3

drivers effect on the analysed output variables is additive. The assumption of additive effects is a necessary simplification to restrict the number of simulations and computation time. For O_3 , a main driver of interest, two different approaches to calculate the single driver can be realised. In one approach the O_3 impact is calculated from the two factorial runs with only one/ two transient drivers (S1 and S2), and a second time from the factorial runs where all and all but one driver (S5 and S4 respectively) are simulated transient. The comparison of these two approaches to calculate the single driver might indicate the extend of impact of interacting forcing drivers on the estimate of the O_3 single driver.

4.3 Results

A strong increase in GPP and carbon storage in biomass and soils can be observed in the Northern Hemisphere $\geq 30^{\circ}$ N during the simulation period in the simulation of the 5 different factorial runs (S1-S5) (see Fig. 4.6a,d,g and Tab. 4.3). The major fraction of the observed increase can be attributed to increasing levels of atmospheric CO₂ concentrations and climate impacts as the second most import factor (see Fig. 4.6b,e and Tab. 4.3). The impact of air pollution (nitrogen deposition and tropospheric O₃ concentrations) on terrestrial carbon uptake and storage is presented in detail in the following subsections.

4.3.1 Regional means and sums of air pollution impacts

The regional means and sums reported in section 4.3.1 are based on simulations driven by RCP8.5, if not explicitly stated otherwise. In section 4.3.1.3 simulation results based on RCP8.5 are compared to results based on RCP2.6.

4.3.1.1 Ozone uptake and accumulation

The simulated change in ozone uptake (F_{st}) is mainly controlled by transient increasing O₃ concentrations through the entire simulation period (see Fig. 4.4b,c). Climate change induces a small increase in F_{st} and increasing CO₂ levels slightly decreases F_{st} , because of reduced rates of canopy conductance. Contrary to the F_{st} , cumulative canopy O₃ uptake above a flux threshold of 1 nmol m⁻² s⁻¹ (CUO1) does not keep relative constant values during the 21st century but reaches a maximum at the end of the 20th century and steadily declines afterwards. The CUO1 is mainly impacted by the increased O₃ in the first 150 simulation years (see Fig. 4.4a,b). In the last 100 simulation years the impact of the altered O₃ concentration decreases (see Fig. 4.4e,f). In the decade of 2090 the atmospheric CO₂ concentration and climate impact the CUO1 in a similar magnitude like the increased O₃ concentration compared to simulations based on pre-industrial O₃ concentrations (see Fig. 4.4f).

The steady decline of CUO1 during the 21st century is caused by a less frequent

Figure 4.4: Simulated regional mean ozone uptake (F_{st}) and regional mean cumulative canopy O₃ uptake above a flux threshold of 1 nmol m⁻² s⁻¹ (CUO1) of the simulations based on RCP8.5. The effect of the seasonal cycle is smoothed by the application of a moving average of 12 months(a,b,d,e). (a,d): Time series of all factorial runs (S1-S5), (b,e): Single drivers obtained by subtracting factorial runs, (c,f): Decadal means of the years 1850,1990,2050, and 2090 of the single drivers.

exceedance of the flux threshold of 1 nmol m⁻² s⁻¹. The simulated regional mean F_{st} remains at relative constant values during the 21st century, however the seasonal cycle is narrowing (see Fig. 4.5b). Simulated changes in the cumulative O₃ uptake without a flux threshold (CUO0) strongly follow changes in the O₃ concentrations during the entire simulation period. The narrowing seasonal cycle does not considerably impact CUO0, since all taken up O₃ is accumulated and the mean F_{st} remains constant. However the cumulative O₃ uptake above a flux threshold of 1 nmol m⁻² s⁻¹ (CUO1) strongly declines during the 21st century (see Fig. 4.4 and 4.5). The narrowing of the seasonal cycle of F_{st} causes a less frequent exceeding of the flux threshold of 1 nmol m⁻² s⁻¹ and hence a decline in CUO1. The increasing atmospheric CO₂ concentrations during the simulation period decrease the plants stomatal conductance and increase the plants water-use-efficiency (results not shown). Lower values of stomatal conductance reduce F_{st} and CUO1, even if though the O₃ concentrations slightly increase in simulations based on RCP8.5.

Figure 4.5: Simulated canopy O₃ concentration, ozone uptake (F_{st}) , cumulative O₃ uptake without a flux threshold (CUO0) and cumulative O₃ uptake above a flux threshold of 1 nmol m⁻² s⁻¹ (CUO1) of the factorial run S5 (all forcing variables are simulated transient) based on RCP8.5. Light red lines: monthly values, dark red lines: the effect of the seasonal cycle is smoothed by the application of a moving average of 12 month.

4.3.1.2 Carbon fixation and biomass production

Highest levels of GPP and C-biomass are simulated in the factorial run S4 (see Fig. 4.6a,d), which simulates all forcing drivers transient except O_3 . In all five factorial runs the simulated GPP increases strongly between 1850 and 2099 and approximately doubles for the runs S3-S5 (see Fig. 4.6a). The primary cause for this simulated increase is the CO_2 fertilisation effect and the increasing atmospheric CO_2 concentrations (see Fig. 4.6b and Tab. 4.3). In the period of 1970-1990 the growth simulating effect induced by rising CO_2 concentrations equals roughly the detrimental impact of O_3 (see Fig. 4.6b). The negative impact of O_3 on GPP shows a maximum approximately in the 1990s and steadily decreases in subsequent decades (see Fig. 4.6b,c). The growth stimulating effect induced by N-deposition is lower compared to negative impact induced by O_3 during the decade of 1990 and higher by the end of the 21st century (see Fig. 4.6b,c).

Ozone damage considerably impacts the simulated carbon above- and below-ground biomass (C-biomass) in the simulation area. In the simulations with transient O_3 (S2,S3,S5) the regional summed C-biomass ceases to grow in the 1950s for 30-50 years (see in Fig. 4.6d). The impact of ozone damage on the C-biomass is stronger in magnitude compared to GPP and shows a maximum in the middle of the 21st century (compare Fig. 4.6b,c and Fig. 4.6e,f).

The carbon soil organic matter (SOM C) is strongly impacted by the atmospheric CO_2 concentration (see Fig. 4.6h). Highest levels of SOM C are simulated for the factorial run S1 (see Fig. 4.6g) where only CO_2 is simulated transient. The SOM C is less impacted by N-deposition (slightly increased) compared to O_3 (decreased) until the end of the 21st century when they approximately balance themselves (see Fig. 4.6h,i).

4.3.1.3 Magnitude of impact and differences between the RCPs

The two different approaches (approach 1: (S2-S1)/S1 and approach 2:(S5-S4)/S4) to calculate the O₃ impact on the simulation results yield similar but not identical results (see Fig. 4.7). Approach 1 suggests smaller reductions for GPP and C-biomass compared to approach 2. The extend of the differences varies between the variables. Maximal differences do not exceed approximately 1% except for CUO1 where absolute changes are small (see Fig. 4.8).

The mean ozone uptake (F_{st}) increases about 70% until the year 2000 (see Fig. 4.7a). In simulations based on RCP8.5 F_{st} increases until the end of the 21st century and reaches values of more than 90% increase compared to simulations based on pre-industrial O₃ concentrations. In simulations based on RCP2.6 F_{st} declines strongly and by the end of the 21st century comparable values to simulations based on pre-industrial O₃ concentrations are reached. The mean CUO1 increases by approximately 1000% until the year 2000 and increases to values about 7000-14000% by 2099 in simulations based on RCP8.5 (see Fig. 4.7b). In simulations based on RCP2.6 the CUO1 values decline during the 21st century and reach comparable values to simulations based on pre-industrial O₃ concentrations by 2099. The strong relative increases in F_{st} and CUO1 results from small to moderate absolute changes of less than 0.4 nmol m⁻² s⁻¹ and less than 2.5

Figure 4.6: The amount of simulated regional summed GPP, regional summed stocks of total carbon biomass (C-biomass) and soil organic matter carbon (SOM C) of the simulations based on RCP8.5. (a,d,g): Time series of all factorial runs (S1-S5), (b,e,h): Single drivers obtained by subtracting factorial runs, (c,f,i): Decadal means of the years 1850,1990,2050, and 2090 of the single drivers.

of 1850 to 2004, simulation period 1850	tions based c) to 2099.	n RCP	8.5 and RCP	2.6 for the	time spans of	f 2005 to	5 2099, and fo	or the entire
RCP and time span	$\rm CO_2$	$\rm CO_2$	Climate	Climate	Ndep	Ndep	O_3	O_3
GPP	$[\rm PgCyr^{-1}]$	[%]	$[\rm PgCyr^{-1}]$	[%]	$[\rm PgCyr^{-1}]$	[%]	$[\rm PgCyr^{-1}]$	[%]
Past 1850:2004	4.4	14.8	1.1	3.2	0.7	2.2	-1.21.5	-3.54.1
RCP2.6 1850:2099	6.3	21.5	5.2	14.6	1	2.5	00.1	00.1
RCP8.5 1850:2099	16.3	55.6	12.9	28.4	1.5	2.6	-0.30.6	-0.61
RCP2.6 2005:2099	3.5	11	1.5	2.6	0.3	0.4	1.21.5	3.64.2
RCP8.5 2005:2099	13	39.6	9.8	18.6	0.7	0.4	0.9	2.83.1
C-biomass	[PgC]	[%]	[PgC]	[%]	[PgC]	[%]	[PgC]	[%]
Past 1850:2004	18.1	22.7	4.3	4.9	2	2.2	-8.910	-9.19.5
RCP2.6 1850:2099	42.7	53.7	20.2	17.2	4.4	3.2	-4.55.1	-3.53.7
RCP8.5 1850:2099	83.8	105.4	41.9	27.1	6.1	3.1	-8.410.1	-4.85.1
RCP2.6 2005:2099	25.2	26	15	11.2	2.4	1	4.44.9	5.56
RCP8.5 2005:2099	65.5	67	37	21.6	4	0.9	00.6	44.8
SOM C	[PgC]	[%]	[PgC]	[%]	[PgC]	[%]	[PgC]	[%]
Past 1850:2004	22.7	4.3	-1.8	-0.3	2.2	0.4	-7.48.1	-1.31.5
RCP2.6 1850:2099	64.8	12.2	-8.4	-1.4	5.7	1	-4.75.5	-0.80.9
RCP8.5 1850:2099	100.5	18.9	-37.6	-6	6	1	-7.58	-1.21.3
RCP2.6 2005:2099	42	7.6	-6.3	-	3.5	0.6	2.52.7	0.5
RCP8.5 2005:2099	77.2	13.9	-35.5	-5.6	3.7	0.6	00.2	0.10.2

concentrations. The differences in GPP, C-biomass and SOM C are presented for simulations of the past years (SOM C) induced by changing atmospheric CO_2 concentrations, climate, nitrogen deposition (Ndep), and O_3 Table 4.3: Absolute and relative change in GPP, total carbon biomass (C-biomass) and soil organic matter carbon mmol O₃ m⁻² respectively (see Fig. 4.4a,d for F_{st} and CUO1 of the different factorial runs and Fig. 4.8 for the change). During the 21st century the absolute difference in CUO1 between simulations based on RCP8.5 compared to simulations based on preindustrial O₃ declines (see Fig. 4.7b), the relative difference however keeps increasing (see Fig. 4.8b). This increasing relative difference is caused by a decline of CUO1 during the 21st century in the simulations using pre-industrial ozone concentrations (see S1 and S4 in Fig. 4.4d). The decrease of CUO1 is caused by increasing atmospheric CO₂ concentrations (see Fig. 4.4e,f), which reduce stomatal conductance and ozone uptake.

Figure 4.7: Ozone induced %-change of regional mean ozone uptake (F_{st}) , mean cumulative O₃ uptake above a flux threshold of 1 nmol m⁻² s⁻¹ (CUO1), summed GPP, summed carbon biomass (C-biomass) and summed carbon soil organic matter (SOM C) compared to pre-industrial values in the simulation region. Different colors indicate different approaches to calculate the ozone induced change from the factorial runs. Orange lines represent approach 1: (S2-S1)/S1, blue lines approach 2:(S5-S4)/S4. Solid lines indicate results from simulations based on RCP8.5, dotted lines results from simulations based on RCP2.6. The effect of the seasonal cycle is smoothed by the application of a moving average of 12 months.

The maximal O_3 induced reduction of the mean GPP in the simulation area compared to pre-industrial values occurs in the 1990 and constitutes approximately 4% (see Fig. 4.7c and Tab. 4.4). In the following decades the simulated ozone induced reduction in GPP declines to 1% by the end of the 21st century for RCP8.5 and to close to zero

Figure 4.8: Ozone induced absolute change of regional mean ozone uptake (F_{st}) and mean cumulative O₃ uptake above a flux threshold of 1 nmol m⁻² s⁻¹ (CUO1) compared to pre-industrial values in the simulation region. Different colours indicate different approaches to calculate the ozone induced change from the factorial runs. Orange lines represent approach 1: (S2-S1)/S1, blue lines approach 2:(S5-S4)/S4. Solid lines indicate results from simulations based on RCP8.5, dotted lines results from simulations based on RCP2.6. The effect of the seasonal cycle is smoothed by the application of a moving average of 12 months.

for RCP2.6. The simulated stocks of carbon in the simulation area exhibit the strongest ozone induced reduction in the period of 2000-2020 of approximately 9% and decline to 5% by 2099 for RCP8.5 and 4% for RCP2.6 (see Fig. 4.7d and Tab. 4.4). The SOM C is less strongly impacted by O_3 with simulated maximal reductions of approximately 1.7%.

Nitrogen deposition slightly increases F_{st} and induces an up to 12% increase in CUO1 in the second half of the 21st century (see Fig. 4.9a,b). Nitrogen deposition stimulates GPP and C-biomass to a similar amount. Peak increases of about 3% for GPP and 3.5% for C-biomass are simulated in the second half of the 21st century (see Fig. 4.9c,d and Tab. 4.5). The increasing effect of nitrogen deposition on GPP and C-biomass keeps growing in China until the of the 21st century (see Tab. 4.5). In Europe and the USA the GPP and C-biomass at the end of the 21st century is less enhanced by nitrogen deposition compared to during the middle of the 21st century. The SOM C is impacted less by nitrogen deposition and maximal increases of 1% compared to pre-industrial values are simulated at the end of the 21st century (see Fig. 4.9e and Tab. 4.3). Simulations based on RCP2.6 and RCP8.5 produce similar effects of nitrogen deposition on the displayed variables.

The magnitude of ozone induced damage on GPP exceeded the growth stimulating effect induced by nitrogen deposition until the end of the 20th century and the beginning of the 21st century (see Fig. 4.6b,c). Contrary to the tropospheric O_3 concentrations, the regional mean nitrogen deposition does not decline during the 21st century but slightly increases in RCP8.5 and RCP2.6. The growth stimulating effect on GPP induced by nitrogen deposition becomes higher in magnitude during the 21st century compared to the detrimental effect of ozone (see Fig. 4.6b,c and Tabs. 4.4 and 4.5).

The growth stimulating effect of nitrogen deposition on C-biomass remains lower in magnitude compared to the detrimental effects of ozone for both pollution scenarios throughout the entire simulation period (see Fig. 4.6e,f and Tab. 4.3). However, in simulations based on RCP2.6 the ozone induced reduction on C-biomass is only slightly higher in magnitude compared to the growth stimulating effect induced by nitrogen deposition (see Tabs. 4.4 and 4.5).

Figure 4.9: Nitrogen deposition induced %-change of regional mean ozone uptake (F_{st}) , mean cumulative O₃ uptake above a flux threshold of 1 nmol m⁻² s⁻¹ (CUO1), summed GPP, summed carbon biomass (C-biomass), and summed carbon soil organic matter (SOM C) compared to pre-industrial values in the simulation region. Solid lines indicate results from simulations based on RCP8.5, dotted lines results from simulations based on RCP2.6. The effect of the seasonal cycle is smoothed by the application of a moving average of 12 months (a,b).

Table 4.4: Mean percent change in GPP and C-biomass induced by ozone during the decades of 1990 (1990-1999), 2050 (2050-2059) and 2090 (2090-2099) compared to preindustrial values for the Northern Hemisphere north of $30^{\circ}N$ (NH₃₀), Europe, USA and China. The given range indicates the estimates according to both approaches to calculate the ozone impact.

Region	1990	2050 RCP8.5	2050 RCP2.6	2090 RCP8.5	2090 RCP2.6
GPP					
NH_{30}	-3.84.3	-1.72.3	-1.11.6	-0.71.0	00.2
Europe	-4.54.9	-1.82.1	-1.01.4	-0.8	-0.20.3
USA	-4.75.0	-1.82.0	-1.31.6	-0.81.1	0.31.0
China	-9.210.1	-6.58.8	-7.27.9	-1.62.8	-3.85.7
C-biomass					
NH_{30}	-8.58.9	-7.98.1	-6.76.9	-5.15.4	-3.83.9
Europe	-10.811.5	-9.29.8	-8.08.4	-6.16.4	-4.9
USA	11.912.5	-10.010.7	-8.69.0	-6.56.8	-4.14.3
China	-15.115.9	-24.727.5	-22.023.4	-15.818.5	-16.216.4

Table 4.5: Mean percent change in GPP and C-biomass induced by nitrogen deposition during the decades of 1990 (1990-1999), 2050 (2050-2059) and 2090 (2090-2099) compared to pre-industrial values for the Northern Hemisphere north of 30° N (NH₃₀), Europe, USA and China.

Region	1990	2050 RCP8.5	2050 RCP2.6	2090 RCP8.5	2090 RCP2.6
GPP					
NH ₃₀	1.8	2.7	2.3	2.5	2.4
Europe	2.7	3.7	2.9	2.9	2.5
USA	1.4	1.1	0.7	0.6	0.9
China	2.9	5.7	6.6	6.4	7
C-biomass					
NH_{30}	1.8	3.3	3.1	3.2	3.2
Europe	3.2	4.6	4.3	3.6	4
USA	1.6	1.7	1.6	1.5	1.3
China	1.6	3.2	4.4	3.9	6.2

4.3.1.4 Impact of the ozone deposition scheme

Simulations run with a model version where the ozone deposition scheme is turned off result in considerably higher estimates of F_{st} and CUO1 what induces higher damage

Figure 4.10: Ozone impacts on the regional mean ozone uptake (F_{st}) , mean cumulative O₃ uptake above a flux threshold of 1 nmol m⁻² s⁻¹ (CUO1), summed GPP, summed carbon biomass (C-biomass), and summed carbon soil organic matter (SOM C) compared to pre-industrial values in the simulation region. The displayed ozone impact is calculated based on approach 2. Orange lines: Results based on a model version where the ozone deposition scheme is turned on. Magenta lines: Results based on a model version where the ozone deposition scheme is turned off. Solid lines indicate results from simulations based on RCP8.5, dotted lines results from simulations based on RCP2.6. The effect of the seasonal cycle is smoothed by the application of a moving average of 12 months (a,b).

estimates (see Fig. 4.10). In simulations where the ozone deposition scheme is turned off ozone induced reductions in GPP and C-biomass are approximately twice as high compared to simulations where the ozone deposition scheme is turned on. Reductions in GPP in simulations where the ozone deposition scheme is turned off reach peak values of about 3 PgC yr⁻¹ (\approx 8%) compared to approximately 1.5 PgC yr⁻¹ (\approx 4%) in simulations where the deposition scheme is turned on. By the end of the 21st century simulations with the ozone deposition scheme turned on produce very similar estimates for GPP damage compared to simulations where the deposition scheme is turned off for RCP2.6. In simulations based on RCP8.5 where the deposition scheme is turned off estimated reductions to GPP at the end of the 21st century amount 1.3 PgC yr⁻¹ (\approx 2%) compared to 0.6 PgC yr⁻¹ (\approx 1%) for simulations where the deposition scheme is turned on. For C-biomass the difference between both model versions in simulations based on RCP8.5 at the end of the 21st century is even more pronounced. For C-biomass estimated reductions at the end of the 21st century for simulations based on RCP8.5 constitute 25 PgC ($\approx 11\%$) in runs where the deposition scheme is turned off and 10 PgC ($\approx 5\%$) in runs where the deposition scheme is turned on.

4.3.2 Simulated spatial differences of air pollution impacts

In this section ozone damage calculated only according to approach 2 (see Tab. 4.2) is displayed to minimise the amount of figures. Both approaches to calculate the ozone impact produce similar results where approach 2 indicates slightly higher ozone induced reductions compared to approach 1. Since in approach 2 all climate drivers are simulated transient contrary to approach 1 where one CO_2 and O_3 are simulated transient, approach 2 might indicate more realistic results.

Simulated values of CUO1 strongly vary in the simulated region. Highest values are found during the decade of 1990 in the eastern and north-eastern US, large parts of Europe central and eastern Asia (see Fig. 4.11a). Regions of peak increases in CUO1 (compared to pre-industrial values) coincide with regions of high cover fraction of the boreal needleleaf evergreen PFT (in Canada, the northern US and northern Eurasia) and the temperate broadleaved summer-green as well as the temperate needleleaf evergreen PFT (in Europe, eastern Asia, eastern and western US). The CUO1 values decline strongly during the 21st century in simulations based on both RCPs, though stronger for RCP2.6 (see Fig. 4.11). At the end of the 21st century simulated CUO1 values reach comparable values to pre-industrial times in large parts of the simulations based on RCP2.6. Increased atmospheric CO_2 concentrations compared to values in 1850 decrease the stomatal conductance, limit the O_3 uptake and cause lower values of CUO1.

The extend of simulated impact of ozone and nitrogen deposition on the terrestrial carbon uptake (GPP) and storage (C-biomass) differs strongly within the simulated region. Nitrogen deposition stimulates GPP compared to simulations run with preindustrial deposition values mainly in Europe and Eastern Asia. Simulated increases of GPP in these regions constitute about 80-140 gC m² yr⁻¹ for simulations run based on RCP8.5 (see left column in Fig. 4.12). In relative terms peak increases of 10-16% are found in parts of eastern, central and northern Asia and small parts of Europe (see left column in Fig. 4.13). Simulated increases in GPP are higher, and hotspot areas more extended, in the decade of 2090 compared to the 2050 decade for both RCPs. Simulations based on RCP8.5 but show a less strong increase in GPP induced by to nitrogen deposition.

The highest ozone induced absolute reductions in GPP occur in Europe, Eastern US and Eastern Asia where the respective increase in CUO1 is highest. Peak reductions of about 150-220 gCm²yr⁻¹ are simulated in the eastern US, southern Europe and eastern Asia during the decade of 1990.

Simulated ozone induced damage to GPP declines in the decades of 2050 and 2090 for both RCPs but considerable ozone induced reductions in GPP are simulated until the end of the 21st century in eastern Asia. Simulations based on RCP2.6 indicate

Figure 4.11: Absolute change in CUO1 compared to pre-industrial values induced by ozone, calculated according to approach 2. Displayed are the decade 1990 (mean of the years 1990-1999), 2050 (mean of the years 2050-2059) and of 2090 (mean of the years 2090-2099). For the decades 2050 and 2090 results from simulations based on RCP8.5 and RCP2.6 are displayed. See Tab. 4.2 for details on the calculation of the ozone impact.

for the end of the 21st century close to no ozone induced damage compared to preindustrial values over large parts of the simulation scope. Small absolute reductions are observed in parts of Europe and small absolute increases are simulated in the Eastern US induced by lower CUO1 values compared to pre-industrial values (see Fig. 4.11). Increased atmospheric CO_2 concentrations compared to pre-industrial values reduce the stomatal conductance, restrict ozone uptake and enable the increased GPP values.

The relative reductions in GPP exhibit a scattered pattern of increases and decreases in large areas of central Asia and the central US, where the simulated vegetation cover is dominated by grasses and crops. Peak values of relative reductions in GPP of 8-11% are simulated in the decade of 1990 in the eastern US, Europe and eastern Asia. In the decade of 2050 relative reductions in GPP of 4-8% are simulated in southern Europe, parts of the eastern and western US in simulations based on RCP8.5 (see Fig. 4.13). Peak relative decreases of 8-11% are simulated in eastern Asia. At the end of the 21st

Figure 4.12: Absolute change in GPP compared to pre-industrial values induced by nitrogen deposition (left column) and ozone calculated according to approach 2 (right column). The induced change in GPP is displayed for the decades 1990 (mean of the years 1990-1999), 2050 (mean of the years 2050-2059) and 2090 (mean of the years 2090-2099). For the decades 2050 and 2090 results from simulations based on RCP8.5 and RCP2.6 are displayed. See Tab. 4.2 for details on the calculation of the single drivers.

Figure 4.13: Relative change in GPP compared to pre-industrial values induced by nitrogen deposition (left column) and ozone calculated according to approach 2 (right column). The induced change in GPP is displayed for the decades 1990 (mean of the years 1990-1999), 2050 (mean of the years 2050-2059) and 2090 (mean of the years 2090-2099). For the decades 2050 and 2090 results from simulations based on RCP8.5 and RCP2.6 are displayed. See Tab. 4.2 for details on the calculation of the single drivers.

century ozone induced reductions in GPP decline, but reductions of above 8% are still simulated in small parts of eastern Asia. Slight increases in GPP are simulated in a large fraction of the Eastern US and small scattered areas in Asia.

Nitrogen deposition induces peak increases in C-biomass of 500-600 gCm⁻² compared to pre-industrial values in parts of Europe and eastern Asia (see left column of Fig. 4.14). Highest relative increases in C-biomass of 14-17% are simulated in the decades of 2050 and 2090 in regions of southern and northern Asia, where absolute changes are mostly small (see left column of Fig. 4.14 and Fig. 4.15). Simulations based on RCP8.5 exhibit slightly higher increases in C-biomass compared to RCP2.6. For both scenarios nitrogen deposition increases C-biomass stronger in 2090 compared to 2050.

Hotspots of ozone induced damage to C-biomass during the decade of 1990 are southern Europe and the eastern US with simulated decreases of 20-23% (see right column of Fig. 4.15). For both pollution scenarios, RCP2.6 and RCP8.5, the strongest ozone induced absolute reductions in C-biomass of 1400-1600 gCm⁻² occur in the decade of 2050 in the eastern US, southern Europe and eastern Asia (see right column of Fig. 4.14). By the end of the 21st century the hotspots of C-biomass reduction attenuate for both RCPs and abate stronger in simulations based on RCP2.6. The ozone induced C-biomass reductions in relative terms exceed 20% in parts of Europe, eastern and western US and eastern Asia in the middle of the 21st century for both RCPs (see right column of Fig. 4.15). By the end of the 21st century simulated decreases in these hotspots become smaller for both RCPs where attenuations are stronger for RCP2.6.

4.4 Discussion

The simulation of the Northern Hemisphere biosphere from 1850-2099 according to the Representative concentration pathway scenarios RCP8.5 and RCP2.6 indicates that air pollution (ozone and nitrogen deposition) might have considerably impacted carbon uptake and plant growth in the past and has the potential to continue a considerable impact during the 21st century.

4.4.1 Air pollution impacts on GPP and total carbon biomass

The ozone induced mean regional (Northern Hemisphere $\geq 30^{\circ}$ N) reductions in GPP increase from 1850 until the decade of 1990 where GPP is reduced by approximately 4% compared to simulations based on pre-industrial O₃ concentrations. Damage hotspots in southern Europe, eastern Asia and the eastern US exhibit ozone induced reductions of 8-11% for the decade of 1990. The regional mean value is lower compared to net photosynthesis damage estimated by meta-analyses of ozone damage to trees. In a metaanalyses by Wittig et al. (2009) net photosynthesis damage of trees grown in ambient O₃ concentrations vs. charcoal filtered air is estimated to amount 11% and 19% for trees grown in elevated O₃ concentrations vs. charcoal filtered air. Lombardozzi et al. (2013) estimates damage to net photosynthesis of temperate deciduous trees to amount 12% and 16% for temperate evergreen trees. A reduction of 28% in net photosynthesis

Figure 4.14: Absolute change in C-biomass compared to pre-industrial values induced by nitrogen deposition (left column) and ozone calculated according to approach 2 (right column). The induced change in C-biomass is displayed for the decades 1990 (mean of the years 1990-1999), 2050 (mean of the years 2050-2059) and 2090 (mean of the years 2090-2099). For the decades 2050 and 2090 results from simulations based on RCP8.5 and RCP2.6 are displayed. See Tab. 4.2 for details on the calculation of the single drivers.

Figure 4.15: Relative change in C-biomass compared to pre-industrial values induced by nitrogen deposition (left column) and ozone calculated according to approach 2 (right column). The induced change in C-biomass is displayed for the decades 1990 (mean of the years 1990-1999), 2050 (mean of the years 2050-2059) and 2090 (mean of the years 2090-2099). For the decades 2050 and 2090 results from simulations based on RCP8.5 and RCP2.6 are displayed. See Tab. 4.2 for details on the calculation of the single drivers.

is estimated for woody plants grown in elevated O_3 compared to a control by Li et al. (2017). Simulated ozone damage values in hotspot areas take values close to the lower damage estimates suggested by Wittig et al. (2009) and Lombardozzi et al. (2013).

Several process based models estimated ozone induced damage to NPP/GPP on global or regional scale. A mean global ozone induced reduction in NPP of 0.8 - 2.9% from 1989 to 1993 is estimated by the Terrestrial Ecosystem Model (Felzer et al., 2005). Simulations with the Community Land Model suggest a 10.8% reduction of global mean GPP for present day O₃ concentrations (Lombardozzi et al., 2015). A mean reduction in NPP of 4.5% in China between 1961-2000 is estimated by a process-based Dynamic Land Ecosystem Model (Ren et al., 2007). The simulation of ozone damage to China's forests suggest a 0.2-1.6% decrease in NPP from the 1960s to 2000–05 (Ren et al., 2011). Simulations using the Terrestrial Ecosystem Model estimate a mean reduction in NPP of 2.6-6.8% in the United States for the period of the late 1980s to early 1990s (Felzer et al., 2004). In the Euro-Mediterranean region a reduction in GPP of 22% is estimated for the year 2002 by the ORCHIDEE model (Anav et al., 2011). The mean GPP of the years 2001-2010 in Europe is simulated to be reduced by 7.6% compared to not accounting for ozone damage by the O-CN model (Franz et al., 2017).

During the 21st century the cumulative O_3 uptake above a flux threshold of 1 $nmol m^{-2} s^{-1}$ (CUO1), on which the damage calculations base, declines due to the impact of the CO_2 fertilisation effect on stomatal conductance and ozone uptake. This result is in agreement with Oliver et al. (2018), who found in Europe-wide simulations that elevated future CO_2 levels and reductions in O_3 concentrations result in reduced O_3 induced damage values by 2050. Induced by the simulated decline in CUO1 the mean regional reduction in GPP deceases in the decade of 2050 to approximately 2% in simulations based on RCP8.5 and 1-1.5% in simulations based on RCP2.6. By the end of the 21st century damage induced by elevated levels of O_3 decreases to approximately 1% in simulations based on RCP8.5 and close to zero for RCP2.6. Simulations with the JULES model estimate a 14-23% reduction in global GPP between 1901–2100 (Sitch et al., 2007). A more recent version of the JULES model suggest a 4 to 9% reduction in European GPP due to ozone by 2050 (Oliver et al., 2018). Both estimates are higher compared to the simulation results here (see Tab. 4.4). A possible reason for the higher estimates by Sitch et al. (2007) and Oliver et al. (2018) is the absence of an ozone deposition scheme in JULES, what might have caused higher surface ozone concentrations and hence increased ozone uptake and incurred damage.

On a regional mean basis very small ozone induced reductions are simulated by O-CN at the end of the 21st century, however in eastern Asia peak decreases amount more than 8% for both RCPs.

The stimulating effect of nitrogen deposition on regional mean GPP is lower in magnitude compared to the detrimental effect of O_3 during most of the simulation period for both RCPs (results for RCP2.6 not shown). Both effects approximately even out in their impact on the mean regional GPP by 2030-2050. By the end of the 21st century nitrogen deposition stronger increases GPP than O_3 impacts decline it. However, regions that experience strong ozone induced negative effects do not always coincide with regions that benefit from the stimulating effect of nitrogen deposition.

The ozone induced simulated mean regional reduction in total above- and belowground carbon biomass (C-biomass) reaches peak values of 8-10% at the end of the 20th and first half of the 21st century. Damage values of 20-23% are simulated in damage hotspots in southern Europe, eastern Asia and the eastern and western US for the decade of 1990. A meta-analyses with tree suggests a 7% reduction in total biomass for trees grown in ambient air compared to charcoal filtered air and a 17% reduction for trees grown in elevated O₃ concentrations compared to charcoal filtered air (Wittig et al., 2009). In a meta-analyses by Li et al. (2017) a 14% reduction in total biomass is calculated for trees grown in elevated O₃ concentrations (mean of 116 ppb) compared to controls grown in a mean O₃ concentration of 21 ppb. The simulated regional mean estimate of ozone induced damage to C-biomass is higher compared to the estimate of trees grown in albient vs. charcoal filtered air by Wittig et al. (2009) and lower compared to trees grown in elevated O₃ vs. charcoal filtered air or a mean of 21 ppb O₃ (Wittig et al., 2009; Li et al., 2017). Simulated damage values in the hotspots are higher compared to the estimates by the meta-analyses.

The stimulating effect of nitrogen deposition on regional mean C-biomass is lower in magnitude compared to the detrimental effects induced by O_3 for the entire simulation period for RCP8.5. In simulations based on RCP2.6 both effects approximately even out by 2099, and O_3 induced damage is only slightly higher compared to the stimulation induced by nitrogen deposition (results not shown).

4.4.2 Limitations of comparisons between publications

When interpreting the comparison of the results here and previously published simulation results one has to keep in mind that the different modelling approaches usually differ in several aspects that might considerably impact the damage estimate. Simulations often differ in the simulated time period, e.g. Sitch et al. (2007) (1901-2100), Lombardozzi et al. (2015) 25 years with an average O_3 concentration of the years 2002-2009, Franz et al. (2017) (1961-2011), and Oliver et al. (2018) (1901-2050). They differ in e.g. the representation of changing CO_2 concentrations, nitrogen deposition and land-cover/ land-use change. Sitch et al. (2007) simulate changing CO₂ concentrations, Lombardozzi et al. (2015) do include neither, Franz et al. (2017) account for changing CO_2 concentrations, nitrogen deposition but use static land-cover (kept fixed at 2005 levels), and Oliver et al. (2018) simulate changing CO_2 concentrations and a partly fixed land-cover. Furthermore damage estimates are calculated based on different references. Damage might be given as the difference between a simulation accounting for O_3 damage compared to a reference simulation not accounting for ozone damage (Lombardozzi et al., 2015; Franz et al., 2017). Another approach is to report the damage simulated between a specific time period. Sitch et al. (2007) calculate ozone induced damage between 1901-2100 and Oliver et al. (2018) between 1901-2001 and 2001-2050.

A further difference between the published results is the time resolution of the ozone forcing applied in the simulations. Some studies used hourly ozone forcing (e.g. Lombardozzi et al. (2015), Franz et al. (2017), and Oliver et al. (2018)) and others are forced

by monthly diurnal mean values (e.g. Sitch et al. (2007) and the simulations here). As the formation of ozone shows a pronounced diurnal cycle (Sanz et al., 2007), the use of monthly mean ozone concentrations probably impacts the simulated estimates of ozone uptake. However, to which extend the omission of a diurnal cycle impacts ozone uptake, accumulation and damage estimates is yet uncertain.

4.4.3 Potential impacts of vegetation dynamics

Ozone sensitivity differs between plant groups, plant species and between genotypes (Wittig et al., 2007; Lombardozzi et al., 2013; Li et al., 2017; Hayes et al., 2007; Karnosky et al., 2003). These differences ought to be reflected in injury functions included into models to be able to simulate average responses as attempted in global models. The injury function is a key aspect of the simulation of ozone damage and has a large impact on the extend of the estimate damage (see chapter 3). The scarcity of suitable data restricts the possibility to parameterise injury functions for all simulated PFTs (e.g. 12 PFTs in O-CN) and furthermore restricts the evaluation of ozone-submodels and the included injury functions. The injury functions used for the simulations here are tuned to reproduce observed biomass damage from filtration/fumigation experiments of broadleaved and needle-leaved tree species (see chapter 3 for more details).

Differing ozone sensitivities might induce changes in community composition (Barbo et al., 1998; Kubiske et al., 2007; Zak et al., 2011) as well as the interactive effects of changed CO₂ and O₃ concentrations (Karnosky et al., 2003). The responses of plants grown under interspecific competition, e.g. in forests, may not be transferred from results of filtration/fumigation experiments (with elevated CO₂ and/or O₃) of plants grown in monoculture (Kozovits et al., 2005). Zak et al. (2011) found that initial declines in forest productivity induced by elevated levels of O₃ were compensated for by the growth of ozone tolerant individuals resulting in an equivalent NPP between ambient and elevated levels of O₃. Simulations by an individual-based forest model indicate that the carbon sequestration capacity in forests might not be reduced by ozone damage if at the ecosystem level the reduced carbon fixation of ozone-sensitive species is compensated for by an increased carbon fixation of less ozone-sensitive species (Wang et al., 2016).

First generation dynamic global vegetation models such as O-CN simulate plant functional types (PFTs) rather than explicit species. The simulation of community dynamics is restricted in O-CN and might lead to an overestimation of simulated damage if the injury function is parametrised based on ozone-sensitive species. The injury function here is parameterised based on a relevant range of European tree species, rather than beeing a species-specific injury functions. Furthermore, the simulations are restricted to the Northern Hemisphere $\geq 30^{\circ}$ N to secure the simulation of temperate/boreal forest and thus similar species as used for the tuning of the injury functions. However, the biomass damage experiments used to parameterise the injury function are conducted with young trees grown in monocultures. The common attempt to estimate responses of adult trees grown under natural conditions by the extrapolation of results from shortterm experiments with young trees is subject to several issues, e.g. due to the differing environmental conditions and changing ozone sensitivities with increasing tree size or age (Schaub et al., 2005; Cailleret et al., 2018). It is yet uncertain if the simulation of injury to photosynthesis based on experiments with young trees can be transferred to adult trees to obtain realistic biomass damage estimates. The effect of interspecific competition on ozone damage is not reflected in the used injury function as the experiments are conducted with monocultures. A possible shift in the community composition to more ozone tolerant species can not be simulated by O-CN or other PFT based models. This might induce an overestimation of the simulated damage.

The included injury functions are parameterised for needle-leaved and broadleaved trees (see chapter 3). Simulated grasses and crops are damaged based on the injury function for broadleaved trees because of the lack of a suitable injury function for either of them. This simplification induces a considerable error of the damage estimate in non-forest/ agricultural areas.

4.4.4 Impact of the ozone deposition scheme

The tropospheric O_3 concentrations used in the simulations here to force the model are provided by CTMs which report O_3 concentrations in a height of approximately 45 m above the surface. The ozone deposition scheme included into O-CN uses the O_3 concentration of the free atmosphere to calculate the O_3 concentration at canopy level. If this step is omitted and the O_3 concentration provided by the CTMs is directly used as if being at canopy level the O-CN model simulates a higher ozone uptake and twice as high damage values to GPP and C-biomass compared to simulations where the deposition scheme is applied to calculate the canopy level O_3 concentration. This highlights the importance of using canopy level O_3 concentrations to calculate ozone uptake and damage to prevent a considerable overestimation of ozone induced damage.

4.5 Conclusion

 O_3 damage considerably reduced simulated carbon uptake (GPP) and storage (total carbon biomass) in the simulation area where the maximal impact occurs at the end of the 20th century and beginning of the 21st century respectively. The detrimental ozone impact declines during the 21st century and reaches mean regional reductions of 0-1% for GPP and 4-5% for total carbon biomass by the end of the 21st century compared to pre-industrial values. However in damage hotspots decreases in GPP of more than 8% (eastern Asia) and decreases in total carbon biomass of more than 15% (parts of Europe, eastern and western US and eastern Asia) are simulated at the end of the 21st century. Nitrogen deposition increases GPP less than O_3 impacts decrease it for most of the simulated period. The increasing effect of O_3 for the entire simulation period. Accounting for the stimulating effects of nitrogen deposition but omitting the detrimental effect of O_3 might lead to an over estimation of carbon uptake and storage.

Chapter 5

General conclusion and outlook

This thesis studied the importance of air pollution impacts on the terrestrial carbon and nitrogen cycling. A focus is placed on the impact of tropospheric ozone concentrations and nitrogen deposition on terrestrial carbon uptake and storage.

Ozone concentrations strongly increased since pre-industrial times over the mid- and high-latitudes of Eurasia and North America from 15-25 ppb in 1860 to 40-50 ppb in the present (Akimoto, 2003). Ozone is a toxic substance that can damage plant leaves and cause a wide range of effects. Prominent adverse effects are the formation of lesions or chlorosis (Langebartels et al., 1991; Wohlgemuth et al., 2002), reductions in photosynthetic capacity (Tjoelker et al., 1995; Wittig et al., 2007) as well as in growth and yield (Grantz et al., 2006; Hayes et al., 2007; Feng and Kobayashi, 2009; Wittig et al., 2009; Leisner and Ainsworth, 2012). Previously published modelling studies estimate substantial differing damage values for the present and the future (Anav et al., 2011; Lombardozzi et al., 2015; Franz et al., 2017; Sitch et al., 2007; Oliver et al., 2018). Present day ozone induced damage is for example estimated in the range of about 8-22% (Anav et al., 2011; Lombardozzi et al., 2015; Franz et al., 2015; Franz et al., 2017). Future projections of ozone damage are estimated to amount about 4-23% (Sitch et al., 2007; Oliver et al., 2018).

Observed increases in ozone coincide with an increase in it's precursor NO_x (nitrogen oxides) which increased for example between 1955 and 1985 by a factor of 4.5 (Cooper et al., 2014; Staehelin et al., 1994). Part of the reactive nitrogen produced in or emitted to the atmosphere is deposited back on land where it might be taken up by plants and stimulate their growth. However, the role of NO_x as precursors for ozone formation might significantly reduce the mitigating effect of anthropogenic nitrogen deposition on climate change due decreases in terrestrial net primary production caused by ozone damage to plants (Zaehle et al., 2011).

This thesis presents results acquired by the application of the updated terrestrial biosphere model O-CN. The updated version of O-CN simulates the detrimental effects of ozone as well as the growth enhancing effects of nitrogen deposition. I included an ozone deposition scheme into O-CN to obtain more realistic estimates of ozone uptake. To improve damage estimates an injury function was included into O-CN which is able to reproduce biomass damage relationships observed in fumigation/filtration experiments.

In the subsequent sections the answers to the key research questions addressed in this thesis are summarised, limitations of the findings given and and an outlook to possible future research on the topic proposed.

5.1 Answers to the underlying research questions

Answers to the three main research questions of this thesis is presented below. Detailed answers to the questions of this thesis are provided in chapters 2 to 4.

What are key factors in the simulation of ozone damage that might explain the strong variation in estimated ozone induced damage estimates found in the literature and how can they be improved to obtain more reliable damage estimates? Ozone damage to plants is simulated in this thesis by relating accumulated ozone uptake to injury in net photosynthesis or the maximum carboxylation capacity of the leaf (V_{cmax}). The simulation of ozone uptake and the relation of the accumulated ozone uptake to plant injury are key aspects in the estimation of ozone induced damage.

Chapter 2 has demonstrated that the estimation of ozone uptake is especially sensitive to the simulated canopy conductance and the canopy ozone concentration. The ozone concentrations provided by chemical transport models (CTMs) as input for terrestrial biosphere models report ozone concentrations in approximately 45 m height and not at canopy level. Up to now a common approach has been to directly use these forcing data to calculate ozone uptake into the plant. However, to consistently simulate the transport of ozone from the atmosphere into the plant leaves, the canopy ozone concentration can be calculated from the ozone concentrations provided by CTMs by applying a ozone deposition scheme that accounts for stomatal and non-stomatal deposition of ozone. An evaluation of key parameters of the deposition scheme can indicate the reliability of the implemented scheme. The inclusion of an ozone deposition scheme into the O-CN model showed that estimates of the cumulative canopy O_3 uptake (CUO) are reduced by 31%compared to simulations where O_3 concentrations provided by a CTM are directly used to calculate ozone uptake. A scheme that accounts for both stomatal and non-stomatal ozone deposition is highly recommendable since accounting for non-stomatal deposition alone reduces the CUO by 16% (see chapter 2). Results presented in chapter 4 indicate that not using an ozone deposition scheme can lead to a doubling of the estimated ozone induced damage.

Ozone is taken up into the plant leaves via stomatal conductance. An evaluation of the modelled canopy conductance (canopy integrated stomatal conductance) can indicate if the model can simulate realistic values for this key variable in the calculation of ozone uptake. In this thesis the simulated canopy conductance was evaluated against eddy covariance data from the FLUXNET database (Baldocchi et al., 2001) and a general good agreement of the simulated and measured data could be observed (see chapter 2). However, one ought to keep in mind that canopy conductance values derived from eddy covariance measurements are subject to a considerable range of uncertainties too (Knauer et al., 2018).

To calculate plant damage the calculated ozone uptake needs to be related to plant damage. A common approach to simulate plant damage is to injure photosynthesis. However, data that relate ozone uptake to injury in photosynthesis are scarce and only a few damage relationships are reported in the literature which relate accumulated ozone uptake to photosynthesis parameters. These damage relationships are subject to a large amount of uncertainty since the fumigation / filtration experiments on which they base can not directly measure ozone uptake and incurred damage. Stomatal conductance and for instance net photosynthesis are measured at certain time intervals, like once per day, to estimate ozone uptake and plant injury during the experiment period. Despite the substantial inherent uncertainty in these data and damage relationships, several such damage relationships have been included into terrestrial biosphere models as injury functions to relate accumulated ozone uptake to injury of net photosynthesis or V_{cmax} . Whether the application of these injury functions enables the models to simulate realistic values of biomass damage has up to now not been investigated. The publication of the biomass dose-response relationships by Büker et al. (2015) provided an independent dataset to, for the first time, evaluate injury functions previously applied in terrestrial biosphere models. The results presented in chapter 3 show that the use of differing damage relationships as injury functions in a terrestrial biosphere model can strongly impact the estimates of incurred plant damage. No damage relationship which was previously used as an injury function in a terrestrial biosphere model was able to reproduce the biomass dose-response relationships by Büker et al. (2015). To enable improved estimates of ozone damage, I tuned injury functions to net photosynthesis and V_{cmax} which reproduce the biomass dose-response relationships by Büker et al. (2015).

The use of an injury function which is evaluated against an independent set of data and found to be able to reproduce observed damage relationships can prevent strong over- or underestimations of damage. Multi-season fumigation/ filtration experiments with trees where besides stomatal conductance and photosynthesis parameters also the change in biomass is measured, for example by measuring changes in tree diameter, could possibly help to better understand and simulate ozone impacts on carbon uptake and plant growth.

How much impacted ozone damage and nitrogen deposition the terrestrial carbon uptake and storage in the past since pre-industrial times? The terrestrial biosphere model O-CN, which was updated to account for ozone damage (see chapter 2) and reproduce realistic biomass damage relationships observed in fumigation/filtration experiments (see chapter 3), was applied to simulate air pollution impacts during the past period from the years 1850 to 2004.

The results presented in chapter 4 show that the effects of ozone damage on carbon uptake (GPP) and storage (total carbon biomass) of the temperate and boreal Northern Hemisphere have increased since pre-industrial times and reached peak values at the end of the 20th century and beginning of the 21st century, respectively. Compared to other drivers of climate change like increased atmospheric CO₂ concentrations, air pollution impacts exert only a small impact on GPP. In the simulation of the past period, GPP was increased by atmospheric CO₂ concentrations by 4.4 PgC yr⁻¹ (14.8%) in 2004 compared to the reference year 1850 (mean over the simulation region 30°N to 90°N). In 2004, the last year of the simulation of the past period, ozone damage reduced GPP by ≈ 1.5 PgC yr⁻¹ ($\approx 4\%$) compared to GPP values in 1850. The stimulating effect of nitrogen deposition on GPP and total carbon biomass steadily increases from 1850 to 2004. In the year 2004 GPP is stimulated by nitrogen deposition by 0.7 PgC yr⁻¹ (2.2%). At the end of the 20th century peak values of ozone induced damage to GPP of 8-11% are simulated to occur in the eastern US, southern Europe and eastern Asia. Regions of simulated peak increases in GPP due nitrogen deposition are located in central Europe and parts of Asia.

The simulated mean regional ($30^{\circ}N$ to $90^{\circ}N$) damage to GPP at the beginning of the 21st century is lower compared to estimates of net photosynthesis damage to trees estimated by meta-analyses which suggest damage values of 11% to 19% (Wittig et al., 2009; Lombardozzi et al., 2013). Simulated peak damage values in polluted areas take values close to the lowest value observed in the meta-analyses. Previous simulations by terrestrial biosphere model suggest higher reductions in GPP compared to the results presented here. Anav et al. (2011) suggest a 22% reduction in GPP for the year 2002 in the Euro-Mediterranean region, (Lombardozzi et al., 2015) estimate a 10.8% reduction of global mean GPP for present day O₃ concentrations and Franz et al. (2017) estimate the ozone induced reduction in GPP to amount 7.6% in Europe during the years 2001-2010.

Carbon storage is impacted stronger by elevated levels of CO₂ and O₃ compared to the simulated changes in GPP. The CO₂ fertilisation effect induced an increase in total carbon biomass by 18.1 PgC (22.7%) in 2004 compared to the values in 1850. Ozone is simulated to have decreased total carbon biomass by about ≈ 9.5 PgC ($\approx 9\%$) in 2004 compared to reference year 1850. Nitrogen deposition is simulated to increase total carbon biomass by 2 PgC (2.2%) in 2004 compared to 1850 values. Nitrogen deposition exerts in relative terms an equal effect on GPP and total carbon biomass during this simulation period. Hotspot regions of air pollution impacts (nitrogen deposition and ozone) on total carbon biomass at the the end of the 20th century are southern Europe and the eastern US. Peak increases induced by nitrogen deposition amount 12-17% and peak decreases due to ozone damage 20-23%.

The simulated regional mean estimate of ozone induced damage to C-biomass is higher compared to the estimated 7% of trees grown in ambient vs. charcoal filtered air by Wittig et al. (2009) and lower compared to estimated 17% for trees grown in elevated O_3 vs. charcoal filtered air or a mean of 21 ppb O_3 (Wittig et al., 2009; Li et al., 2017). Simulated peak damage values in polluted regions are higher compared to the estimates by the meta-analyses.

During the simulation of the past period from 1850 to 2004 the stimulating effect of nitrogen deposition on GPP and total carbon biomass was outweighed by the detrimental effects of ozone damage.

What is the extend of ozone damage and nitrogen deposition on the terrestrial carbon uptake and storage during the 21st century in simulations based on RCP scenarios? The application of the updated O-CN model, to simulate future effects of air pollution on carbon uptake and storage, indicates that GPP is impacted less than expected from previous studies (see chapter 4). The simulated impact of air pollution by ozone and nitrogen deposition on Northern Hemisphere ($30^{\circ}N - 90^{\circ}N$) carbon uptake and storage at the end of the 21st century is minor compared to the effect of for instance elevated CO₂ concentrations. In the simulations here, GPP is stimulated by the CO₂ fertilisation effect by 22% in simulations based on RCP2.6 and by 56% in simulations based on RCP8.5 at the end of the 21st century compared to pre-industrial values. Total carbon biomass is increased by 54% under RCP2.6 and 105% under RCP8.5.

The maximum impact of ozone damage on GPP occurs at the end of the 20th century. During the simulation of the future projections period (the years 2005 to 2099) simulated ozone damage steadily decreases for both simulated pollution scenarios, RCP2.6 and RCP8.5. By the end of the 21st century GPP is increases by $\approx 3\%$ for RCP8.5 and $\approx 4\%$ for RCP2.6 due to reduced ozone damage compared to the values in 2005. By the end of the 21st century ozone damage is simulated to have close to zero effect on GPP on a regional mean (30°N - 90°N) compared to pre-industrial values for both investigated pollution scenarios. Only in damage hotspots, like eastern Asia, considerable damage values of more than 8% are simulated. These strongly declined regional mean ozone damage values occur because of the increased atmospheric CO_2 concentrations. The CO_2 fertilisation effect reduces stomatal conductance and peak ozone uptake rates. This causes a reduction in the cumulative canopy O_3 uptake above a flux threshold of 1 $nmol m^{-2} s^{-1}$, on which the damage calculations base. Even though the mean regional ozone concentrations slightly increase during the 21st century under RCP8.5, simulated damage declines due the impact of elevated levels of CO_2 on stomatal conductance and ozone uptake.

Previously published estimates of future ozone induced reductions in GPP amount for example 14-23% in global GPP between 1901–2100 (Sitch et al., 2007) and 4-9% in Europe by 2050 (Oliver et al., 2018). The lower estimates of future ozone induced damage here might be caused by the implementation of an ozone deposition scheme into the O-CN model. The ozone abundances provided by chemical transport models are not directly used to calculate ozone uptake, the ozone deposition scheme calculates ozone surface concentrations which are used in the calculation of ozone uptake.

Total carbon biomass is impacted stronger by ozone damage compared to GPP. Similar to GPP, total carbon biomass increases during the period of 2005 to 2099 due to reduced ozone accumulation above the flux threshold and hence reduced ozone induced damage. Total carbon biomass increases by $\approx 4.5\%$ compared to the values in 2005 in simulations based on RCP8.5 und by $\approx 6\%$ in simulations based on RCP2.6. The regional mean damage estimate of carbon biomass constitutes approximately ≈ 5 PgC ($\approx 3.5\%$) and ≈ 9 PgC ($\approx 5\%$) at the 21st century compared to pre-industrial values for RCP2.6 and RCP8.5 respectively.

Nitrogen deposition stimulated GPP in the simulation of the future projections be-

tween the years 2005-2099 by 0.7 $PgC yr^{-1}$ (0.4%) for RCP8.5 and by 0.3 $PgC yr^{-1}$ (0.4%) for RCP2.6. Compared to pre-industrial values (of the year 1850) nitrogen deposition stimulates GPP at the end of the 21st century by 1.5 $PgC yr^{-1}$ (2.6%) for RCP8.5 and 1 $PgC yr^{-1}$ (2.5%) for RCP2.6. Nitrogen deposition stimulates GPP compared to simulations run with pre-industrial deposition values mainly in Europe and Eastern Asia. At the end of the 21st century simulated increases of GPP in these regions constitute about 80-140 gCm^2yr^{-1} for simulations run based on RCP8.5. In relative terms peak increases of 10-16% are found in parts of eastern, central and northern Asia and small parts of Europe. Simulations based on RCP2.6 exhibit similar patterns compared to simulations based on RCP8.5 but show a less strong increase in GPP induced by to nitrogen deposition.

Carbon biomass is impacted stronger than GPP by nitrogen deposition between the years 2005-2099. For simulations based on RCP8.5 total carbon biomass is increased by 4 PgC (0.9%) and for simulations based on RCP2.6 by 2.4 PgC (1%). Compared to pre-industrial values total carbon biomass at the end of the 21st century is stimulated by 6.1 PgC (3.1%) under RCP8.5 and by 4.4 PgC (3.2%) under RCP2.6.

The combined impact of nitrogen deposition and ozone damage on the terrestrial carbon uptake in the Northern Hemisphere ($30^{\circ}N - 90^{\circ}N$) changes during the simulation of the future projections according to the RCP scenarios. At the beginning of the simulation period ozone damage outweighs the stimulating impact of nitrogen deposition on GPP. The effects of both air pollutants on GPP approximately evens out during the period of 2030-2050. In the second half of the 21st century nitrogen deposition stronger increases GPP than O₃ impacts decline it for both RCP scenarios. The impact of both air pollutants on total carbon biomass is dominated by the detrimental effects of ozone during the entire simulation period. All in all, accounting for the stimulating effects of nitrogen deposition but omitting the detrimental effect of O₃ might lead to an over estimation of carbon uptake and storage.

5.2 Limitations

The results presented in this thesis are subject to several sources of uncertainty caused by limited understanding of the involved processes, limited computational resources and most importantly limited data availability.

Terrestrial biosphere models simulate global/ regional plant growth and nutrient cycling. The terrestrial biosphere involves a diverse set of species and a complex set of processes, but the models can only include a restricted set of both. Simplifications like grouping species into plant functional types aim to simulate mean responses of plant groups, but prevent the simulation of species interaction and composition. The necessary adaptions of O-CN to simulate ozone damage are suspect to a range of uncertainties as well. These involve approximations in the parametrisation of the deposition scheme and the injury functions and uncertainties regarding the representation of ozone damage in the model (for more details see the discussion sections in chapters 2 to 4).

Aspects which have to be neglected in the simulation approach here are that species

interaction and competition, differing genotypes, and individuals ontogeny may alter ozone impacts on plants and ecosystems (Matyssek et al., 2010). A potential ozone induced shift in forest community compositions, where ozone tolerant species or genotypes replace sensitive ones, can not be simulated by first-generation dynamic global vegetation models such as O-CN. This may lead to an overestimation of the net ozone impact on carbon storage if the parameterisation of the injury functions is entirely based on ozone-sensitive species. Furthermore, terrestrial biosphere models generally base their ozone damage calculations on injury functions derived from experiments with young trees. However, it is still uncertain whether ozone injury observed in short-term experiments with young trees can indeed be transferred to adult trees grown under natural conditions.

Forcing data used to run terrestrial biosphere models (e.g. the atmosphere composition and climate) are output data created by other models (e.g. chemical transport models or climate models) and thus are subject to a range of uncertainties as well. Furthermore as the future development of emission of air pollutants is uncertain, future projections of ozone concentrations are regularly updated and can differ considerably between different types of scenarios. Considerable differences in the projected tropospheric ozone concentrations can for example be found between the IPCC SRES scenarios and the representative concentration pathway (RCP) scenarios (Wild et al., 2012). The application of a common set of scenarios in different climate models results in different magnitudes and differing spatial patterns of future carbon uptake and storage (Ciais et al., 2013). Possible causes for this are differing representations of simulated processes in the models and their parameterisation. This suggests that the choice of model used for the simulations in this thesis also impacted the simulated estimates of ozone damage, since stomatal conductance links carbon uptake to ozone uptake and hence to potential damage.

To sum up the results presented in this thesis are obtained by using a state-of-theart terrestrial biosphere model which as explained above is subject to a large range of uncertainties. Simulations run with such a model try to simulate the most important processes in the real world and approximate implications of induced changes in the drivers e.g. in the atmosphere composition and climate change. The simulation results by definition yield approximations of past, present or future plant growth and nutrient cycling.

5.3 Outlook

To better constrain the future impact of ozone damage on the terrestrial carbon sequestration and hence on climate change, a more realistic simulation of ozone induced damage, where injury calculations are based on damage-relationships for a larger set of plant types, is necessary.

The representation of ozone damage effects in terrestrial biosphere models is very basic. The availability of suitable data to parameterise ozone damage effects in terrestrial biosphere models is generally sparse and restricts up to now the inclusion of important factors/ processes. For instance processes of ozone damage like detoxification of O_3 , injury repair (Wieser and Matyssek, 2007; Ainsworth et al., 2012) and early senescence (Gielen et al., 2007; Ainsworth et al., 2012) are not accounted for in O-CN. The state-of-the-art approach to simulate the plants ability to detoxify part of the taken up ozone by the inclusion of a flux threshold is a very simplistic approach. A more realistic approach would be desirable which accounts for the need of resources to produce antioxidants, a consequent increase in respiration costs and incurred damage if the damage capacity of antioxidant production is exceed. The collection of data on this topic are a crucial aspect in the development of more realistic ozone damage calculations. Furthermore, if more data become available on the change in ozone sensitivity between young and mature trees, the damage simulation and parameterisation of mature forests in terrestrial biosphere models might become more realistic.

The simulations of future ozone impacts in this thesis are constrained to the temperate and boreal Northern Hemisphere as the applied injury functions are derived from tree species of the respective region. More ozone fumigation/filtration experiments that focus on for instance tropical tree species are necessary to develop more suitable injury functions for terrestrial biosphere models. The development of such injury functions could enable an extension of the simulation scope and yield an updated global estimate of present day and potential future ozone damage. However, if and when such injury functions become available is up to now uncertain.

Aspects of ozone induced damage that could be investigated directly now are for instance stomatal sluggishness. Ozone induced stomatal sluggishness causes a decoupling of photosynthesis and stomatal conductance and might impact GPP and transpiration damage estimates (Paoletti and Grulke, 2010). Accounting for direct impairment of the stomata might reduce the reported reductions in transpiration (for example in Franz et al. (2017)) or even cause an increase compared to simulations with no ozone damage. Increases in stomatal conductance can decrease the plants water use efficiency and through this impact carbon uptake and storage. A basic representation of stomatal sluggishness is already now included into the O-CN model. The comparison of simulations where stomatal sluggishness is accounted for or not accounted for might indicate to which extend the terrestrial carbon and water cycle could be impacted by this process.

The impact of diurnal cycling of ozone concentrations on damage estimates is an important aspect that still lacks investigation. In our simulations here monthly mean ozone concentrations are used to force the O-CN model. However, the formation of ozone exhibits a pronounced diurnal cycle (Sanz et al., 2007), and the impact of not accounting for this diurnal cycling on ozone damage estimates is yet unclear. The comparison of simulations applying monthly mean O_3 concentrations compared to simulations using hourly ozone concentrations might indicate whether the low estimates of future ozone induced damage presented in this thesis might partly be caused by the application of monthly mean ozone concentrations.

5.4 Final remarks

Climate change displays a major challenge for humanity. The ability of the terrestrial biosphere to store part of the carbon emitted to the atmosphere slows the growth of the atmospheric CO_2 concentration and thus ameliorates climate change. This thesis shows that air pollution impacts considerably decreased terrestrial carbon uptake and storage in the past. A reduction of future tropospheric ozone concentrations has the potential to lessen the ozone induced constraint on future carbon uptake and storage of the terrestrial biosphere. Air cleansing programs thus have the potential to improve human health in polluted areas as well as to a small amount mitigate climate change.

Acknowledgements

I would like to thank all the people who made this thesis possible. In particular I would like to thank:

First of all I am very grateful to my day-to-day supervisor at the MPI for biogeochemistry Sönke Zaehle. Many thanks for the guidance, sharing your knowledge and patience especially during the extended interruptions of my work on the thesis. You have been a great supervisor.

I am very grateful to Almut Arneth for supervising my thesis and the patience during the extended interruptions of my work on the thesis.

I am grateful to Julia Pongratz and Laurens Ganzeveld for reviewing this thesis.

Many thanks goes to David Simpson for advice on the inclusion of the EMEP deposition scheme into the O-CN model.

I would like to thank everyone who shared biomass damage data of their fumigation/filtration experiments and especially Patrick Büker for mediating the sharing of the data.

Many thanks to my colleagues who created a productive work environment.

This thesis was funded by the EU Framework programme through grant no. 282910 (ECLAIRE) and the Max Planck Society for the Advancement of Science e.V. through the ENIGMA project.

Bibliography

- Ainsworth, E. A. and Long, S. P. (2005). What have we learned from 15 years of free-air CO_2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO_2 . New Phytologist, 165(2):351–372.
- Ainsworth, E. A., Yendrek, C. R., Sitch, S., Collins, W. J., and Emberson, L. D. (2012). The Effects of Tropospheric Ozone on Net Primary Productivity and Implications for Climate Change. Annual Review of Plant Biology, 63:637–661.
- Akimoto, H. (2003). Global Air Quality and Pollution. Science, 302(5651):1716–1719.
- Amann, M., Klimont, Z., and Wagner, F. (2013). Regional and Global Emissions of Air Pollutants: Recent Trends and Future Scenarios. Annual Review of Environment and Resources, 38:31–55.
- Ammann, C., Flechard, C., Leifeld, J., Neftel, A., and Fuhrer, J. (2007). The carbon budget of newly established temperate grassland depends on management intensity. *Agriculture, Ecosystems & Environment*, 121(1):5–20.
- Anav, A., Menut, L., Khvorostyanov, D., and Viovy, N. (2011). Impact of tropospheric ozone on the Euro-Mediterranean vegetation. *Global Change Biology*, 17(7):2342–2359.
- Arneth, A., Harrison, S. P., Zaehle, S., Tsigaridis, K., Menon, S., Bartlein, P. J., Feichter, J., Korhola, A., Kulmala, M., O'donnell, D., Schurgers, G., Sorvari, S., and Vesala, T. (2010). Terrestrial biogeochemical feedbacks in the climate system. *Nature Geoscience*, 3(8):525–532.
- Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., Anthoni, P., Bernhofer, C., Davis, K., Evans, R., Fuentes, J., Goldstein, A., Katul, G., Law, B., Lee, X., Malhi, Y., Meyers, T., Munger, W., Oechel, W., Paw U, K. T., Pilegaard, K., Schmid, H. P., Valentini, R., Verma, S., Vesala, T., Wilson, K., and Wofsy, S. (2001). FLUXNET: A New Tool to Study the Temporal and Spatial Variability of Ecosystem-Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities. Bulletin of the American Meteorological Society, 82(11):2415–2434.
- Ball, J., Woodrow, I., and Berry, J. (1987). A Model Predicting Stomatal Conductance and its Contribution to the Control of Photosynthesis under Different Environmental

Conditions. In Biggins, J., editor, Prog. Photosynthesis Res. Proc. Int. Congress 7th, Providence. 10-15 Aug 1986, pages 221–224. Progress in Photosynthesis Research.

- Barbo, D., Chappelka, A., Somers, G., Miller-Goodman, M., and Stolte, K. (1998). Diversity of an early successional plant community as influenced by ozone. *The New Phytologist*, 138(4):653–662.
- Barnes, J. and Pfirrmann, T. (1992). The influence of CO₂ and O₃, singly and in combination, on gas exchange, growth and nutrient status of radish (*Raphanus sativus* L.). New Phytologist, 121(3):403–412.
- Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais, N., Rödenbeck, C., Arain, M. A., Baldocchi, D., Bonan, G. B., Bondeau, A., Cescatti, A., Lasslop, G., Lindroth, A., Lomas, M., Luyssaert, S., Margolis, H., Oleson, K. W., Roupsard, O., Veenendaal, E., Viovy, N., Williams, C., Woodward, F. I., and Papale, D. (2010). Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and Covariation with Climate. Science, 329(5993):834–838.
- Berbigier, P., Bonnefond, J.-M., and Mellmann, P. (2001). CO₂ and water vapour fluxes for 2 years above Euroflux forest site. Agricultural and Forest Meteorology, 108(3):183– 197.
- Bonan, G. B. (2008). Forests and Climate Change: Forcings, Feedbacks, and the Climate Benefits of Forests. Science, 320(5882):1444–1449.
- Bouwman, A. F., Beusen, A. H. W., Griffioen, J., Van Groenigen, J. W., Hefting, M. M., Oenema, O., Van Puijenbroek, P. J. T. M., Seitzinger, S., Slomp, C. P., and Stehfest, E. (2013). Global trends and uncertainties in terrestrial denitrification and N₂O emissions. *Philosophical Transactions of the Royal Society of London B: Biological Sciences*, 368(1621).
- Broadmeadow, M. S. and Jackson, S. (2000). Growth responses of *Quercus petraea*, *Fraxinus excelsior* and *Pinus sylvestris* to elevated carbon dioxide, ozone and water supply. *The New Phytologist*, 146(3):437–451.
- Büker, P., Feng, Z., Uddling, J., Briolat, A., Alonso, R., Braun, S., Elvira, S., Gerosa, G., Karlsson, P., Le Thiec, D., Marzuoli, R., Mills, G., Oksanen, E., Wieser, G., , Wilkinson, M., and Emberson, L. (2015). New flux based dose-response relationships for ozone for European forest tree species. *Environmental Pollution*, 206:163–174.
- Burg, S. (1968). Ethylene, Plant Senescence and Abscission. Plant Physiology, 43(9 Pt B):1503–1511.
- Bussotti, F. (2008). Functional leaf traits, plant communities and acclimation processes in relation to oxidative stress in trees: a critical overview. *Global Change Biology*, 14(11):2727–2739.

- Cailleret, M., Ferretti, M., Gessler, A., Rigling, A., and Schaub, M. (2018). Ozone effects on European forest growth—Towards an integrative approach. *Journal of Ecology*, 106(4):1377–1389.
- Calatayud, V., Cerveró, J., Calvo, E., García-Breijo, F.-J., Reig-Armiñana, J., and Sanz, M. J. (2011). Responses of evergreen and deciduous *Quercus* species to enhanced ozone levels. *Environmental Pollution*, 159(1):55–63.
- Cardoso-Vilhena, J. and Barnes, J. (2001). Does nitrogen supply affect the response of wheat (*Triticum aestivum* cv. Hanno) to the combination of elevated CO_2 and O_3 ? Journal of Experimental Botany, 52(362):1901–1911.
- Chiesi, M., Maselli, F., Bindi, M., Fibbi, L., Cherubini, P., Arlotta, E., Tirone, G., Matteucci, G., and Seufert, G. (2005). Modelling carbon budget of Mediterranean forests using ground and remote sensing measurements. *Agricultural and Forest Meteorology*, 135(1-4):22–34.
- Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A., DeFries, R., Galloway, J., Heimann, M., Jones, C., Le Quéré, C., Myneni, R. B., Piao, S., and Thornton, P. (2013). Carbon and other biogeochemical cycles. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)], chapter 6, pages 465–570. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
- Cieslik, S. A. (2004). Ozone uptake by various surface types: a comparison between dose and exposure. *Atmospheric Environment*, 38(15):2409–2420.
- Cionni, I., Eyring, V., Lamarque, J.-F., Randel, W., Stevenson, D., Wu, F., Bodeker, G., Shepherd, T., Shindell, D., and Waugh, D. (2011). Ozone database in support of CMIP5 simulations: results and corresponding radiative forcing. *Atmospheric Chemistry and Physics*, 11(21):11267–11292.
- Collins, W., Derwent, R., Garnier, B., Johnson, C., Sanderson, M., and Stevenson, D. (2003). Effect of stratosphere-troposphere exchange on the future tropospheric ozone trend. *Journal of Geophysical Research: Atmospheres*, 108(D12).
- Cooper, O. R., Parrish, D., Ziemke, J., Balashov, N., Cupeiro, M., Galbally, I., Gilge, S., Horowitz, L., Jensen, N., Lamarque, J.-F., Naik, V., Oltmans, S., Schwab, J., Shindell, D., Thompson, A., Thouret, V., Wang, Y., and Zbinden, R. (2014). Global distribution and trends of tropospheric ozone: An observation-based review. *Elementa: Science of the Anthropocene*, 2(1):000029.
- Coyle, M., Nemitz, E., Storeton-West, R., Fowler, D., and Cape, J. N. (2009). Measurements of ozone deposition to a potato canopy. Agricultural and Forest Meteorology, 149(3-4):655–666.

- Curtis, P. and Wang, X. (1998). A meta-analysis of elevated CO_2 effects on woody plant mass, form, and physiology. *Oecologia*, 113(3):299–313.
- Darrall, N. (1989). The effect of air pollutants on physiological processes in plants. *Plant, Cell & Environment*, 12(1):1–30.
- De Graaff, M., Van Groenigen, K., Six, J., Hungate, B., and Van Kessel, C. (2006). Interactions between plant growth and soil nutrient cycling under elevated CO_2 : A meta-analysis. *Global Change Biology*, 12(11):2077–2091.
- Dentener, F., Stevenson, D., Ellingsen, K., van Noije, T., Schultz, M., Amann, M., Atherton, C., Bell, N., Bergmann, D., Bey, I., Bouwman, L., Butler, T., Cofala, J., Collins, B., Drevet, J., Doherty, R., Eickhout, B., Eskes, H., Fiore, A., Gauss, M., Hauglustaine, D., Horowitz, L., Isaksen, I. S. A., Josse, B., Lawrence, M., Krol, M., Lamarque, J. F., Montanaro, V., Müller, J. F., Peuch, V. H., Pitari, G., Pyle, J., Rast, S., Rodriguez, J., Sanderson, M., Savage, N. H., Shindell, D., Strahan, S., Szopa, S., Sudo, K., Van Dingenen, R., Wild, O., and Zeng, G. (2006). The Global Atmospheric Environment for the Next Generation. *Environmental Science & Technology*, 40(11):3586–3594.
- Derwent, R., Collins, W., Johnson, C., and Stevenson, D. (2002). Global Ozone Concentrations and Regional Air Quality. *Environmental Science & Technology*, 36(19):379–382.
- Dizengremel, P. (2001). Effects of ozone on the carbon metabolism of forest trees. *Plant Physiology and Biochemistry*, 39(9):729–742.
- Dizengremel, P., Le Thiec, D., Bagard, M., and Jolivet, Y. (2008). Ozone risk assessment for plants: Central role of metabolism-dependent changes in reducing power. *Environmental Pollution*, 156(1):11–15.
- Dlugokencky, E. and Tans, P. (2016). Trends in atmospheric carbon dioxide. Earth System Research Laboratory, National Oceanic and Atmospheric Administration, USA: https://www.esrl.noaa.gov/gmd/ccgg/trends/global.html.
- Dolman, A., Moors, E., and Elbers, J. (2002). The carbon uptake of a mid latitude pine forest growing on sandy soil. Agricultural and Forest Meteorology, 111(3):157–170.
- Drake, B., Gonzàlez-Meler, M., and Long, S. (1997). MORE EFFICIENT PLANTS: A Consequence of Rising Atmospheric CO₂? Annual Review of Plant Physiology and Plant Molecular Biology, 48(1):609–639.
- Ducoudré, N. I., Laval, K., and Perrier, A. (1993). SECHIBA, a New Set of Parameterizations of the Hydrologic Exchanges at the Land-Atmosphere Interface within the LMD Atmospheric General Circulation Model. *Journal of Climate*, 6(2):248–273.

- Dufresne, J.-L., Foujols, M.-A., Denvil, S., Caubel, A., Marti, O., Aumont, O., Balkanski, Y., Bekki, S., Bellenger, H., Benshila, R., Bony, S., Bopp, L., Braconnot, P., Brockmann, P., Cadule, P., Cheruy, F., Codron, F., Cozic, A., Cugnet, D., de Noblet, N., Duvel, J.-P., Ethé, C., Fairhead, L., Fichefet, T., Flavoni, S., Friedlingstein, P., Grandpeix, J.-Y., Guez, L., Guilyardi, E., Hauglustaine, D., Hourdin, F., Idelkadi, A., Ghattas, J., Joussaume, S., Kageyama, M., Krinner, G., Labetoulle, S., Lahellec, A., Lefebvre, M.-P., Lefevre, F., Levy, C., Li, Z. X., Lloyd, J., Lott, F., Madec, G., Mancip, M., Marchand, M., Masson, S., Meurdesoif, Y., Mignot, J., Musat, I., Parouty, S., Polcher, J., Rio, C., Schulz, M., Swingedouw, D., Szopa, S., Talandier, C., Terray, P., Viovy, N., and Vuichard, N. (2013). Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5. *Climate Dynamics*, 40(9-10):2123–2165.
- Emberson, L., Ashmore, M., Cambridge, H., Simpson, D., and Tuovinen, J. (2000a). Modelling stomatal ozone flux across Europe. *Environmental Pollution*, 109(3):403–413.
- Emberson, L., Ashmore, M., Simpson, D., Tuovinen, J.-P., and Cambridge, H. (2001). Modelling and Mapping Ozone Deposition in Europe. Water, Air and Soil Pollution, 130:577–582.
- Emberson, L., Simpson, D., Tuovinen, J., Ashmore, M., and Cambridge, H. (2000b). Towards a model of ozone deposition and stomatal uptake over Europe. *EMEP MSC-W Note*, 6(2000):1–57.
- Engardt, M., Simpson, D., and Granat, L. (2017). Historical and projected (1900 to 2050) deposition of sulphur and nitrogen in europe. *submitted*.
- Falkowski, P., Scholes, R. J., Boyle, E., Canadell, J., Canfield, D., Elser, J., Gruber, N., Hibbard, K., Högberg, P., Linder, S., Mackenzie, F. T., Moore III, B., Pedersen, T., Rosenthal, Y., Seitzinger, S., Smetacek, V., and Steffen, W. (2000). The Global Carbon Cycle: A Test of Our Knowledge of Earth as a System. *Science*, 290(5490):291– 296.
- Farage, P., Long, S., Lechner, E., and Baker, N. (1991). The Sequence of Change within the Photosynthetic Apparatus of Wheat following Short-Term Exposure to Ozone. *Plant Physiology*, 95(2):529.
- Fares, S., Goldstein, A., and Loreto, F. (2010). Determinants of ozone fluxes and metrics for ozone risk assessment in plants. *Journal of Experimental Botany*, 61(3):629–633.
- Fatichi, S., Leuzinger, S., and Koerner, C. (2014). Moving beyond photosynthesis: from carbon source to sink-driven vegetation modeling. New Phytologist, 201(4):1086–1095.
- Felzer, B., Kicklighter, D., Melillo, J., Wang, C., Zhuang, Q., and Prinn, R. (2004). Effects of ozone on net primary production and carbon sequestration in the conterminous United States using a biogeochemistry model. *Tellus B*, 56(3):230–248.

- Felzer, B., Reilly, J., Melillo, J., Kicklighter, D., Sarofim, M., Wang, C., Prinn, R., and Zhuang, Q. (2005). Future Effects of Ozone on Carbon Sequestration and Climate Change Policy Using a Global Biogeochemical Model. *Climatic Change*, 73(3):345– 373.
- Feng, Z., Büker, P., Pleijel, H., Emberson, L., Karlsson, P. E., and Uddling, J. (2018). A unifying explanation for variation in ozone sensitivity among woody plants. *Global Change Biology*, 24(1):78–84.
- Feng, Z. and Kobayashi, K. (2009). Assessing the impacts of current and future concentrations of surface ozone on crop yield with meta-analysis. *Atmospheric Environment*, 43(8):1510–1519.
- Field, C., Jackson, R., and Mooney, H. (1995). Stomatal responses to increased CO₂: implications from the plant to the global scale. *Plant, Cell & Environment*, 18(10):1214– 1225.
- Fiscus, E., Booker, F., and Burkey, K. (2005). Crop responses to ozone: uptake, modes of action, carbon assimilation and partitioning. *Plant, Cell & Environment*, 28(8):997– 1011.
- Forkel, M., Carvalhais, N., Rödenbeck, C., Keeling, R., Heimann, M., Thonicke, K., Zaehle, S., and Reichstein, M. (2016). Enhanced seasonal CO₂ exchange caused by amplified plant productivity in northern ecosystems. *Science*, 351(6274):696–699.
- Fowler, D., Coyle, M., Skiba, U., Sutton, M. A., Cape, J. N., Reis, S., Sheppard, L. J., Jenkins, A., Grizzetti, B., Galloway, J. N., Vitousek, P., Leach, A., Bouwman, A. F., Butterbach-Bahl, K., Dentener, F., Stevenson, D., Amann, M., and Voss, M. (2013). The global nitrogen cycle in the twenty-first century. *Philosophical Transactions of the Royal Society of London B: Biological Sciences*, 368(1621).
- Fowler, D., Pilegaard, K., Sutton, M., Ambus, P., Raivonen, M., Duyzer, J., Simpson, D., Fagerli, H., Fuzzi, S., Schjoerring, J., Granier, C., Neftel, A., Isaksen, I., Laj, P., Maione, M., Monks, P., Burkhardt, J., Daemmgen, U., Neirynck, J., Personne, E., Wichink-Kruit, R., Butterbach-Bahl, K., Flechard, C., Tuovinen, J., Coyle, M., Gerosa, G., Loubet, B., Altimir, N., Gruenhage, N., Ammann, C., Cieslik, S., Paoletti, E., Mikkelsen, T., Ro-Poulsen, H., Cellier, P., Cape, J., Horváth, L., Loreto, F., Niinemets, Ü., Palmer, P., Rinne, J., Misztal, P., Nemitz, E., Nilsson, D., Pryor, S., Gallagher, M., Vesala, T., Skiba, U., Brüggemann, N., Zechmeister-Boltenstern, S., Williams, J., O'Dowd, C., Facchini, M., de Leeuw, G., Flossman, A., Chaumerliac, N., and Erisman, J. (2009). Atmospheric composition change: Ecosystems–atmosphere interactions. Atmospheric Environment, 43(33):5193–5267.
- Franz, M., Alonso, R., Arneth, A., Büker, P., Elvira, S., Gerosa, G., Emberson, L., Feng, Z., Le Thiec, D., Marzuoli, R., Oksanen, E., Uddling, J., Wilkinson, M., and Zaehle, S. (2018). Evaluation of simulated ozone effects in forest ecosystems against biomass damage estimates from fumigation experiments. *Biogeosciences*, 15(22):6941–6957.

- Franz, M., Simpson, D., Arneth, A., and Zaehle, S. (2017). Development and evaluation of an ozone deposition scheme for coupling to a terrestrial biosphere model. *Biogeosciences*, 14(1):45–71.
- Friedlingstein, P., Cox, P., Betts, R., Bopp, L., von Bloh, W., Brovkin, V., Cadule, P., Doney, S., Eby, M., Fung, I., Bala, G., John, J., Jones, C., Joos, F., Kato, T., Kawamiya, M., Knorr, W., Lindsay, K., Matthews, H. D., Raddatz, T., Rayner, P., Reick, C., Roeckner, E., Schnitzler, K.-G., Schnur, R., Strassmann, K., Weaver, A. J., Yoshikawa, C., and Zeng, N. (2006). Climate–Carbon Cycle Feedback Analysis: Results from the C⁴MIP Model Intercomparison. *Journal of Climate*, 19(14):3337– 3353.
- Friend, A. (2001). Modelling canopy CO₂ fluxes: are 'big-leaf'simplifications justified? Global Ecology and Biogeography, 10(6):603–619.
- Friend, A. and Kiang, N. (2005). Land surface model development for the giss gcm: Effects of improved canopy physiology on simulated climate. *Journal of Climate*, 18(15):2883–2902.
- Fuhrer, J. (1994). Effects of ozone on managed pasture: I. Effects of open-top chambers on microclimate, ozone flux, and plant growth. *Environmental pollution*, 86(3):297– 305.
- Fuhrer, J. and Booker, F. (2003). Ecological issues related to ozone: agricultural issues. Environment International, 29(2-3):141–154.
- Fusco, A. and Logan, J. (2003). Analysis of 1970–1995 trends in tropospheric ozone at Northern Hemisphere midlatitudes with the GEOS-CHEM model. J. Geophys. Res, 108(4449):1988–1997.
- Galloway, J. N., Dentener, F. J., Capone, D. G., Boyer, E. W., Howarth, R. W., Seitzinger, S. P., Asner, G. P., Cleveland, C. C., Green, P., Holland, E. A., Karl, D., Michaels, A., Porter, J., Townsend, A., and Vöosmarty, C. (2004). Nitrogen Cycles: Past, Present, and Future. *Biogeochemistry*, 70(2):153–226.
- Galloway, J. N., Schlesinger, W. H., Levy II, H., Michaels, A., and Schnoor, J. L. (1995). Nitrogen fixation: Anthropogenic enhancement-environmental response. *Global Bio-geochemical Cycles*, 9(2):235–252.
- Gedney, N., Cox, P., Betts, R., Boucher, O., Huntingford, C., and Stott, P. (2006). Detection of a direct carbon dioxide effect in continental river runoff records. *Nature*, 439(7078):835–838.
- Gerosa, G., Cieslik, S., and Ballarin-Denti, A. (2003). Micrometeorological determination of time-integrated stomatal ozone fluxes over wheat: a case study in Northern Italy. Atmospheric Environment, 37(6):777–788.

- Gerosa, G., Marzuoli, R., Cieslik, S., and Ballarin-Denti, A. (2004). Stomatal ozone fluxes over a barley field in Italy. "Effective exposure" as a possible link between exposure-and flux-based approaches. *Atmospheric Environment*, 38(15):2421–2432.
- Gerosa, G., Vitale, M., Finco, A., Manes, F., Denti, A. B., and Cieslik, S. (2005). Ozone uptake by an evergreen Mediterranean forest (*Quercus ilex*) in Italy. Part I: Micrometeorological flux measurements and flux partitioning. *Atmospheric Environment*, 39(18):3255–3266.
- Gielen, B., Löw, M., Deckmyn, G., Metzger, U., Franck, F., Heerdt, C., Matyssek, R., Valcke, R., and Ceulemans, R. (2007). Chronic ozone exposure affects leaf senescence of adult beech trees: a chlorophyll fluorescence approach. *Journal of Experimental Botany*, 58(4):785–795.
- Gilmanov, T., Soussana, J., Aires, L., Allard, V., Ammann, C., Balzarolo, M., Barcza, Z., Bernhofer, C., Campbell, C., Cernusca, A., Cescatti, A., Clifton-Brown, J., Dirks, B., Dore, S., Eugster, W., Fuhrer, J., Gimeno, C., Gruenwald, T., Haszpra, L., Hensen, A., Ibrom, A., Jacobs, A., Jones, M., Lanigan, G., Laurila, T., Lohila, A., Manca, G., Marcolla, B., Nagy, Z., Pilegaard, K., Pinter, K., Pio, C Raschi, A., Rogiers, N., Sanz, M., Stefani, P., Sutton, M., Tuba, Z., Valentini, R., Williams, M., and Wohlfahrt, G. (2007). Partitioning European grassland net ecosystem CO₂ exchange into gross primary productivity and ecosystem respiration using light response function analysis. Agriculture, Ecosystems & Environment, 121(1-2):93-120.
- Grace, J. (2004). Understanding and managing the global carbon cycle. *Journal of Ecology*, 92(2):189–202.
- Granier, A., Ceschia, E., Damesin, C., Dufrêne, E., Epron, D., Gross, P., Lebaube, S., Le Dantec, V., Le Goff, N., Lemoine, D., Lucot, E., Ottorini, J., Pontailler, J., and Saugier, B. (2000). The carbon balance of a young Beech forest. *Functional ecology*, 14(3):312–325.
- Grantz, D., Gunn, S., and VU, H. (2006). O₃ impacts on plant development: a metaanalysis of root/shoot allocation and growth. *Plant, Cell & Environment*, 29(7):1193– 1209.
- Grünwald, T. and Bernhofer, C. (2007). A decade of carbon, water and energy flux measurements of an old spruce forest at the Anchor Station Tharandt. *Tellus B*, 59(3):387–396.
- Grünzweig, J., Lin, T., Rotenberg, E., Schwartz, A., and Yakir, D. (2003). Carbon sequestration in arid-land forest. *Global Change Biology*, 9(5):791–799.
- Guderian, R. (1977). Air Pollution. Phytotoxicity of Acidic Gases and Its Significance in Air Pollution Control. Springer-Verlag, New York.

- Gurney, K. R., Baker, D., Rayner, P., and Denning, S. (2008). Interannual variations in continental-scale net carbon exchange and sensitivity to observing networks estimated from atmospheric CO_2 inversions for the period 1980 to 2005. Global Biogeochemical Cycles, 22(3).
- Hanson, P., Samuelson, L., Wullschleger, S., Tabberer, T., and Edwards, G. (1994). Seasonal patterns of light-saturated photosynthesis and leaf conductance for mature and seedling *Quercus rubra* L. foliage: differential sensitivity to ozone exposure. *Tree Physiology*, 14(12):1351–1366.
- Hardacre, C., Wild, O., and Emberson, L. (2015). An evaluation of ozone dry deposition in global scale chemistry climate models. Atmospheric Chemistry and Physics, 15(11):6419–6436.
- Hayes, F., Jones, M., Mills, G., and Ashmore, M. (2007). Meta-analysis of the relative sensitivity of semi-natural vegetation species to ozone. *Environmental Pollution*, 146(3):754–762.
- Hayes, F., Wagg, S., Mills, G., Wilkinson, S., and Davies, W. (2012). Ozone effects in a drier climate: implications for stomatal fluxes of reduced stomatal sensitivity to soil drying in a typical grassland species. *Global Change Biology*, 18(3):948–959.
- Heagle, A., Body, D., and Heck, W. (1973). An Open-Top Field Chamber to Assess the Impact of Air Pollution on Plants. *Journal of Environmental Quality*, 2(3):365–368.
- Heath, R. (1994). Possible mechanisms for the inhibition of photosynthesis by ozone. *Photosynthesis Research*, 39(3):439–451.
- Heath, R., Lefohn, A., and Musselman, R. (2009). Temporal processes that contribute to nonlinearity in vegetation responses to ozone exposure and dose. *Atmospheric Environment*, 43(18):2919–2928.
- Heinsch, F. A., , Running, S. W., Kimball, J. S., Nemani, R. R., Davis, K. J., Bolstad, P. V., Cook, B. D., Desai, A. R., Ricciuto, D. M., Law, B. E., Oechel, W. C., , , Wofsy, S. C., Dunn, A. L., Munger, J. W., Baldocchi, D. D., , Hollinger, D. Y., Richardson, A. D., Stoy, P. C., Siqueira, M. B. S., Monson, R. K., Burns, S. P., and Flanagan, L. B. (2006). Evaluation of remote sensing based terrestrial productivity from modis using regional tower eddy flux network observations. *IEEE Transactions on Geoscience and Remote Sensing*, 44(7):1908–1925.
- Helton, J. and Davis, F. (2002). Illustration of Sampling-Based Methods for Uncertainty and Sensitivity Analysis. *Risk Analysis*, 22(3):591–622.
- Hempel, S., Frieler, K., Warszawski, L., Schewe, J., and Piontek, F. (2013). A trendpreserving bias correction-the ISI-MIP approach. *Earth System Dynamics*, 4(2):219– 236.
- Hurtt, G. C., Chini, L. P., Frolking, S., Betts, R. A., Feddema, J., Fischer, G., Fisk, J. P., Hibbard, K., Houghton, R. A., Janetos, A., Jones, C. D., Kindermann, G., Kinoshita, T., Klein Goldewijk, K., Riahi, K., Shevliakova, E., Smith, S., Stehfest, E., Thomson, A., Thornton, P., van Vuuren, D. P., and Wang, Y. P. (2011). Harmonization of landuse scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. *Climatic Change*, 109(1):117.
- Hyvönen, R., Ågren, G., Linder, S., Persson, T., Cotrufo, M., Ekblad, A., Freeman, M., Grelle, A., Janssens, I., Jarvis, P., Kellomäki, S., Lindroth, A., Loustau, D., Lundmark, T., Norby, R. J., Oren, R., Pilegaard, K., Ryan, M. G., Sigurdsson, B. D., Strömgren, M., van Oijen, M., and Wallin, G. (2007). The likely impact of elevated [CO2], nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems: a literature review. New Phytologist, 173(3):463–480.
- Isebrands, J., McDonald, E., Kruger, E., Hendrey, G., Percy, K., Pregitzer, K., Sober, J., and Karnosky, D. (2001). Growth responses of *Populus tremuloides* clones to interacting elevated carbon dioxide and tropospheric ozone. *Environmental Pollution*, 115(3):359–371.
- Jenkin, M. (2008). Trends in ozone concentration distributions in the UK since 1990: Local, regional and global influences. *Atmospheric Environment*, 42(21):5434–5445.
- Joos, F. and Spahni, R. (2008). Rates of change in natural and anthropogenic radiative forcing over the past 20,000 years. *Proceedings of the National Academy of Sciences*, 105(5):1425–1430.
- Jung, M., Reichstein, M., Margolis, H., Cescatti, A., Richardson, A., Arain, M., Arneth, A., Bernhofer, C., Bonal, D., Chen, J., Gianelle, D., Gobron, N., Kiely, G., Kutsch, W., Lasslop, G., Law, B., Lindroth, A., Merbold, L., Montagnani, L., Moors, E., Papale, D., Sottocornola, M., Vaccari, F., and Williams, C. (2011). Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. *Journal of Geophysical Research: Biogeosciences (2005–2012)*, 116(G3). G00J07.
- Jung, M., Reichstein, M., Schwalm, C. R., Huntingford, C., Sitch, S., Ahlström, A., Arneth, A., Camps-Valls, G., Ciais, P., Friedlingstein, P., Gans, F., Ichii, K., Jain, A. K., Kato, E., Papale, D., Poulter, B., Raduly, B., Rödenbeck, C., Tramontana, G., Viovy, N., Ping Wang, Y., Weber, U., Zaehle, S., and Zeng, N. (2017). Compensatory water effects link yearly global land CO₂ sink changes to temperature. Nature, 541(7638):516–520.
- Kangasjärvi, J., Talvinen, J., Utriainen, M., and Karjalainen, R. (1994). Plant defence systems induced by ozone. *Plant, Cell & Environment*, 17(7):783–794.
- Karlsson, P. E., Uddling, J., Braun, S., Broadmeadow, M., Elvira, S., Gimeno, B., Le Thiec, D., Oksanen, E., Vandermeiren, K., Wilkinson, M., and Emberson, L.

(2004). New critical levels for ozone effects on young trees based on AOT40 and simulated cumulative leaf uptake of ozone. *Atmospheric Environment*, 38(15):2283–2294.

- Karnosky, D. F., Zak, D. R., Pregitzer, K. S., Awmack, C. S., Bockheim, J. G., Dickson, R. E., Hendrey, G. R., Host, G. E., King, J. S., Kopper, B. J., Kruger, E. L., Kubiske, M. E., Lindroth, R. L., Mattson, W. J., Mcdonald, E. P., Noormets, A., Oksanen, E., Parsons, W. F. J., Percy, K. E., Podila, G. K., Riemenschneider, D. E., Sharma, P., Thakur, R., Sôber, A., Sôber, J., Jones, W. S., Anttonen, S., Vapaavuori, E., Mankovska, B., Heilman, W., and Isebrands, J. G. (2003). Tropospheric O₃ moderates responses of temperate hardwood forests to elevated CO₂: a synthesis of molecular to ecosystem results from the Aspen FACE project. Functional Ecology, 17(3):289–304.
- Keenan, T., Sabate, S., and Gracia, C. (2010). Soil water stress and coupled photosynthesis–conductance models: Bridging the gap between conflicting reports on the relative roles of stomatal, mesophyll conductance and biochemical limitations to photosynthesis. Agricultural and Forest Meteorology, 150(3):443–453.
- Keronen, P., Reissell, A., Rannik, U., Pohja, T., Siivola, E., Hiltunen, V., Hari, P., Kulmala, M., and Vesala, T. (2003). Ozone flux measurements over a Scots pine forest using eddy covariance method: performance evaluation and comparison with flux-profile method. *Boreal Environment Research*, 8(4):425–444.
- King, J., Kubiske, M., Pregitzer, K., Hendrey, G., McDonald, E., Giardina, C., Quinn, V., and Karnosky, D. (2005). Tropospheric O_3 compromises net primary production in young stands of trembling aspen, paper birch and sugar maple in response to elevated atmospheric CO_2 . New Phytologist, 168(3):623–636.
- Kjellstrom, E., Nikulin, G., Hansson, U., Strandberg, G., and Ullerstig, A. (2011). 21st century changes in the European climate: uncertainties derived from an ensemble of regional climate model simulations. *Tellus Series A-Dynamic Meteorology and Oceanography*, 63(1):24–40.
- Klingberg, J., Danielsson, H., Simpson, D., and Pleijel, H. (2008). Comparison of modelled and measured ozone concentrations and meteorology for a site in southwest Sweden: Implications for ozone uptake calculations. *Environmental Pollution*, 115(1):99–111.
- Klingberg, J., Engardt, M., Karlsson, P., Langner, J., and Pleijel, H. (2014). Declining risk of ozone impacts on vegetation in europe 1990–2050 due to reduced precursor emissions in a changed climate. *Biogeosciences Discussions*, 11(1):625–655.
- Knauer, J., Werner, C., and Zaehle, S. (2015). Evaluating stomatal models and their atmospheric drought response in a land surface scheme: A multibiome analysis. *Journal* of Geophysical Research: Biogeosciences, 120(10):1894–1911.

- Knauer, J., Zaehle, S., Medlyn, B. E., Reichstein, M., Williams, C. A., Migliavacca, M., De Kauwe, M. G., Werner, C., Keitel, C., Kolari, P., Limousin, J.-M., and Linderson, M.-L. (2018). Towards physiologically meaningful water-use efficiency estimates from eddy covariance data. *Global Change Biology*, 24(2):694–710.
- Knauer, J., Zaehle, S., Reichstein, M., Medlyn, B. E., Forkel, M., Hagemann, S., and Werner, C. (2017). The response of ecosystem water-use efficiency to rising atmospheric CO₂ concentrations: sensitivity and large-scale biogeochemical implications. New Phytologist, 213(4):1654–1666.
- Kolb, T. and Matyssek, R. (2001). Limitations and perspectives about scaling ozone impacts in trees. *Environmental Pollution*, 115(3):373–393.
- Kozovits, A. R., Matyssek, R., Blaschke, H., Göttlein, A., and Grams, T. E. (2005). Competition increasingly dominates the responsiveness of juvenile beech and spruce to elevated CO_2 and/or O_3 concentrations throughout two subsequent growing seasons. *Global Change Biology*, 11(9):1387–1401.
- Krinner, G., Viovy, N., de Noblet-Ducoudré, N., Ogée, J., Polcher, J., Friedlingstein, P., Ciais, P., Sitch, S., and Prentice, I. (2005). A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. *Global Biogeochemical Cycles*, 19(1):GB1015.
- Kronfuß, G., Polle, A., Tausz, M., Havranek, W., and Wieser, G. (1998). Effects of ozone and mild drought stress on gas exchange, antioxidants and chloroplast pigments in current-year needles of young Norway spruce [*Picea abies* (L.) Karst.]. *Trees-Structure* and Function, 12(8):482–489.
- Krupa, S., Grünhage, L., Jäger, H., Nosal, M., Manning, W., Legge, A., and Hanewald, K. (1995). Ambient ozone (O₃) and adverse crop response: A unified view of cause and effect. *Environmental Pollution*, 87(1):119–126.
- Kubiske, M., Quinn, V., Marquardt, P., and Karnosky, D. (2007). Effects of Elevated Atmospheric CO_2 and/or O_3 on Intra-and Interspecific Competitive Ability of Aspen. *Plant Biology*, 9(2):342–355.
- Kuenen, J., Denier van der Gon, H., Visschedijk, A., van der Brugh, H., and van Gijlswijk, R. (2011). Macc european emission inventory for the years 2003-2007. TNO Report TNO-060-UT-2011-00588, TNO, Utrecht, The Netherlands, www.tno.nl.
- Kutsch, W. L., Kolle, O., Rebmann, C., Knohl, A., Ziegler, W., and Schulze, E.-D. (2008). Advection and resulting CO₂ exchange uncertainty in a tall forest in central Germany. *Ecological Applications*, 18(6):1391–1405.
- Lagergren, F., Lindroth, A., Dellwik, E., Ibrom, A., Lankreijer, H., Launiainen, S., Mölder, M., Kolari, P., Pilegaard, K., and Vesala, T. (2008). Biophysical controls on CO₂ fluxes of three Northern forests based on long-term eddy covariance data. Tellus B, 60(2):143–152.

- Laisk, A., Kull, O., and Moldau, H. (1989). Ozone Concentration in Leaf Intercellular Air Spaces is Close to Zero. *Plant Physiology*, 90(3):1163–1167.
- Lamarque, J. F., Bond, T. C., Eyring, V., Granier, C., Heil, A., Klimont, Z., Lee, D., Liousse, C., Mieville, A., Owen, B., Schultz, M. G., Shindell, D., Smith, S. J., Stehfest, E., Van Aardenne, J., Cooper, O. R., Kainuma, M., Mahowald, N., McConnell, J. R., Naik, V., Riahi, K., and van Vuuren, D. P. (2010). Historical (1850-2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application. Atmos. Chem. Physics, 10(15):7017–7039.
- Langebartels, C., Kerner, K., Leonardi, S., Schraudner, M., Trost, M., Heller, W., and Sandermann Jr, H. (1991). Biochemical Plant Responses to Ozone: I. Differential Induction of Polyamine and Ethylene Biosynthesis in Tobacco. *Plant Physiology*, 95(3):882.
- Le Quéré, C., Andrew, R. M., Canadell, J. G., Sitch, S., Korsbakken, J. I., Peters, G. P., Manning, A. C., Boden, T. A., Tans, P. P., Houghton, R. A., Keeling, R. F., Alin, S., Andrews, O. D., Anthoni, P., Barbero, L., Bopp, L., Chevallier, F., Chini, L. P., Ciais, P., Currie, K., Delire, C., Doney, S. C., Friedlingstein, P., Gkritzalis, T., Harris, I., Hauck, J., Haverd, V., Hoppema, M., Klein Goldewijk, K., Jain, A. K., Kato, E., Körtzinger, A., Landschützer, P., Lefèvre, N., Lenton, A., Lienert, S., Lombardozzi, D., Melton, J. R., Metzl, N., Millero, F., Monteiro, P. M. S., Munro, D. R., Nabel, J. E. M. S., Nakaoka, S.-i., O'Brien, K., Olsen, A., Omar, A. M., Ono, T., Pierrot, D., Poulter, B., Rödenbeck, C., Salisbury, J., Schuster, U., Schwinger, J., Séférian, R., Skjelvan, I., Stocker, B. D., Sutton, A. J., Takahashi, T., Tian, H., Tilbrook, B., van der Laan-Luijkx, I. T., van der Werf, G. R., Viovy, N., Walker, A. P., Wiltshire, A. J., and Zaehle, S. (2016). Global carbon budget 2016. *Earth System Science Data*, 8(2):605–649.
- Leakey, A., Ainsworth, E., Bernacchi, C., Rogers, A., Long, S., and Ort, D. (2009). Elevated co2 effects on plant carbon, nitrogen, and water relations: six important lessons from face. *Journal of Experimental Botany*, 60(10):2859–2876.
- LeBauer, D. and Treseder, K. (2008). Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. *Ecology*, 89(2):371–379.
- Leisner, C. and Ainsworth, E. (2012). Quantifying the effects of ozone on plant reproductive growth and development. *Global Change Biology*, 18(2):606–616.
- Li, P., Feng, Z., Catalayud, V., Yuan, X., Xu, Y., and Paoletti, E. (2017). A metaanalysis on growth, physiological and biochemical responses of woody species to ground-level ozone highlights the role of plant functional types. *Plant, Cell & Environment*, 40(10):2369–2380.
- Lindroth, A., Klemedtsson, L., Grelle, A., Weslien, P., and Langvall, O. (2008). Measurement of net ecosystem exchange, productivity and respiration in three spruce forests in Sweden shows unexpectedly large soil carbon losses. *Biogeochemistry*, 89(1):43–60.

- Lombardozzi, D., Levis, S., Bonan, G., Hess, P., and Sparks, J. (2015). The Influence of Chronic Ozone Exposure on Global Carbon and Water Cycles. *Journal of Climate*, 28(1):292–305.
- Lombardozzi, D., Levis, S., Bonan, G., and Sparks, J. (2012a). Predicting photosynthesis and transpiration responses to ozone: decoupling modeled photosynthesis and stomatal conductance. *Biogeosciences*, 9:3113–3130.
- Lombardozzi, D., Sparks, J., Bonan, G., and Levis, S. (2012b). Ozone exposure causes a decoupling of conductance and photosynthesis: implications for the Ball-Berry stomatal conductance model. *Oecologia*, 169(3):651–659.
- Lombardozzi, D., Sparks, J. P., and Bonan, G. (2013). Integrating O_3 influences on terrestrial processes: photosynthetic and stomatal response data available for regional and global modeling. *Biogeosciences*, 10(11):6815–6831.
- LRTAP-Convention (2017). Manual on Methodologies and Criteria for Modelling and Mapping Critical Loads and Levels; and Air Pollution Effects, Risks and Trends. https://icpvegetation.ceh.ac.uk/.
- Luo, Y., Hui, D., and Zhang, D. (2006). Elevated CO_2 stimulates net accumulations of carbon and nitrogen in land ecosystems: a meta-analysis. *Ecology*, 87(1):53–63.
- Luyssaert, S., Inglima, I., Jung, M., Richardson, A. D., Reichstein, M., Papale, D., Piao, S., SCHULZE, E.-D., Wingate, L., Matteucci, G., Aragao, L., Aubinet, M., Beer, C., Bernhofer, C., Black, K. G., Bonal, D., Bonnefond, J. M., Chambers, J., Ciais, P., Cook, B., Davis, K. J., Dolman, A. J., Gielen, B., Goulden, M., Grace, J., Granier, A., Grelle, A., Griffis, T., Grünwald, T., Guidolotti, G., Hanson, P. J., Harding, R., Hollinger, D. Y., Hutyra, L. R., Kolari, P., Kruijt, B., Kutsch, W., Lagergren, F., Laurila, T., Law, B. E., Le Maire, G., Lindroth, A., Loustau, D., Malhi, Y., Mateus, J., Migliavacca, M., Misson, L., Montagnani, L., Moncrieff, J., Moors, E., Munger, J. W., Nikinmaa, E., Ollinger, S. V., Pita, G., Rebmann, C., Roupsard, O., Saigusa, N., Sanz, M. J., Seufert, G., Sierra, C., Smith, M. L., Tang, J., Valentini, R., Vesala, T., and Janssens, I. A. (2007). CO₂ balance of boreal, temperate, and tropical forests derived from a global database. Global Change Biology, 13(12):2509–2537.
- Marcolla, B., Pitacco, A., and Cescatti, A. (2003). Canopy Architecture and Turbulence Structure in a Coniferous Forest. *Boundary-Layer Meteorology*, 108(1):39–59.
- Mareckova, K., Wankmüller, R., Pinterits, M., and Moosman, L. (2013). Inventory Review 2013. Stage 1 and 2 and review of gridded data. EMEP/CEIP Technical Report 1/2013, EEA/CEIP Vienna.
- Marenco, A., Gouget, H., Nédélec, P., Pagés, J., and Karcher, F. (1994). Evidence of a long-term increase in tropospheric ozone from Pic du Midi data series: Consequences: Positive radiative forcing. *Journal of Geophysical Research: Atmospheres* (1984–2012), 99(D8):16617–16632.

- Marzuoli, R., Gerosa, G., Desotgiu, R., Bussotti, F., and Denti, A. B. (2009). Ozone fluxes and foliar injury development in the ozone-sensitive poplar clone Oxford (*Pop-ulus maximowiczii* x *Populus berolinensis*): a dose-response analysis. *Tree physiology*, 29(1):67–76.
- Marzuoli, R., Monga, R., Finco, A., and Gerosa, G. (2016). Biomass and physiological responses of *Quercus robur* (L.) young trees during 2 years of treatments with different levels of ozone and nitrogen wet deposition. *Trees*, 30(6):1995–2010.
- Massman, W. (1998). A review of the molecular diffusivities of H_2O , CO_2 , CH_4 , CO, O_3 , SO_2 , NH_3 , N_2O , NO, and NO_2 in air, O_2 and N_2 near STP. Atmospheric Environment, 32(6):1111–1127.
- Matyssek, R., Karnosky, D. F., Wieser, G., Percy, K., Oksanen, E., Grams, T. E. E., Kubiske, M., Hanke, D., and Pretzsch, H. (2010). Advances in understanding ozone impact on forest trees: Messages from novel phytotron and free-air fumigation studies. *Environmental Pollution*, 158(6, SI):1990–2006.
- McAinsh, M., Evans, N., Montgomery, L., and North, K. (2002). Calcium signalling in stomatal responses to pollutants. *New Phytologist*, 153(3):441–447.
- McKay, M. D., Beckman, R. J., and Conover, W. J. (1979). Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code. *Technometrics*, 21(2):239–245.
- McManus, M. (2012). Annual Plant Reviews, the Plant Hormone Ethylene, volume 44. Wiley-Blackwell.
- Medlyn, B., Barton, C., Broadmeadow, M., Ceulemans, R., De Angelis, P., Forstreuter, M., Freeman, M., Jackson, S., Kellomäki, S., Laitat, E., et al. (2001). Stomatal conductance of forest species after long-term exposure to elevated CO₂ concentration: A synthesis. New Phytologist, 149(2):247–264.
- Medlyn, B. E., Badeck, F. W., De Pury, D. G. G., Barton, C. V. M., Broadmeadow, M., Ceulemans, R., De Angelis, P., Forstreuter, M., Jach, M. E., Kellomäki, S., Laitat, E., Marek, M., Philippot, S., Rey, A., Strassemeyer, J., Laitinen, K., Liozon, R., Portier, B., Roberntz, P., Wang, K., and Jstbid, P. G. (1999). Effects of elevated [CO₂] on photosynthesis in European forest species: a meta-analysis of model parameters. *Plant, Cell & Environment*, 22(12):1475–1495.
- Meinshausen, M., Smith, S. J., Calvin, K., Daniel, J. S., Kainuma, M., Lamarque, J.-F., Matsumoto, K., Montzka, S., Raper, S., Riahi, K., Thomson, A., Velders, G. J. M., and van Vuuren, D. P. (2011). The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. *Climatic Change*, 109(1-2):213.
- Meleux, F., Solmon, F., and Giorgi, F. (2007). Increase in summer European ozone amounts due to climate change. *Atmospheric Environment*, 41(35):7577–7587.

- Melillo, J., Steudler, P., Aber, J., Newkirk, K., Lux, H., Bowles, F., Catricala, C., Magill, A., Ahrens, T., and Morrisseau, S. (2002). Soil Warming and Carbon-Cycle Feedbacks to the Climate System. *Science*, 298(5601):2173–2176.
- Melillo, J. M., Butler, S., Johnson, J., Mohan, J., Steudler, P., Lux, H., Burrows, E., Bowles, F., Smith, R., Scott, L., Vario, C., Hill, T., Burton, A., Zhou, Y.-M., and Tang, J. (2011). Soil warming, carbon-nitrogen interactions, and forest carbon budgets. *Proceedings of the National Academy of Sciences*, 108(23):9508–9512.
- Migliavacca, M., Meroni, M., Manca, G., Matteucci, G., Montagnani, L., Grassi, G., Zenone, T., Teobaldelli, M., Goded, I., Colombo, R., and Seufert, G. (2009). Seasonal and interannual patterns of carbon and water fluxes of a poplar plantation under peculiar eco-climatic conditions. *Agricultural and Forest Meteorology*, 149(9):1460– 1476.
- Mikkelsen, T. N., Ro-Poulsen, H., Hovmand, M. F., Jensen, N. O., Pilegaard, K., and Egeløv, A. H. (2004). Five-year measurements of ozone fluxes to a Danish Norway spruce canopy. *Atmospheric Environment*, 38(15):2361–2371.
- Mills, G., Hayes, F., Simpson, D., Emberson, L., Norris, D., Harmens, H., and Büker, P. (2011a). Evidence of widespread effects of ozone on crops and (semi-) natural vegetation in Europe (1990–2006) in relation to AOT40-and flux-based risk maps. *Global Change Biology*, 17(1):592–613.
- Mills, G., Hayes, F., Wilkinson, S., and Davies, W. (2009). Chronic exposure to increasing background ozone impairs stomatal functioning in grassland species. *Global Change Biology*, 15(6):1522–1533.
- Mills, G., Pleijel, H., Braun, S., Büker, P., Bermejo, V., Calvo, E., Danielsson, H., Emberson, L., Fernández, I., Grünhage, L., Harmens, H., Hayes, F., Karlsson, P., and Simpson, D. (2011b). New stomatal flux-based critical levels for ozone effects on vegetation. Atmospheric Environment, 45(28):5064–5068.
- Monteith, J. and Unsworth, M. (2007). *Principles of environmental physics*. Academic Press.
- Morison, J. (1998). Stomatal response to increased CO_2 concentration. Journal of Experimental Botany, 49(Special Issue):443–452.
- Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., Van Vuuren, D. P., Carter, T. R., Emori, S., Kainuma, M., Kram, T., Meehl, G. A., Mitchell, J. F. B., Nakicenovic, N., Riahi, K., Smith, S. J., Stouffer, R. J., Thomson, A. M., Weyant, J. P., and Wilbanks, T. J. (2010). The next generation of scenarios for climate change research and assessment. *Nature*, 463(7282):747.
- Mott, K. (1988). Do Stomata Respond to CO_2 Concentrations Other than Intercellular? *Plant Physiology*, 86(1):200–203.

- Musselman, R., Lefohn, A., Massman, W., and Heath, R. (2006). A critical review and analysis of the use of exposure-and flux-based ozone indices for predicting vegetation effects. *Atmospheric Environment*, 40(10):1869–1888.
- Musselman, R. and Minnick, T. (2000). Nocturnal stomatal conductance and ambient air quality standards for ozone. Atmospheric Environment, 34(5):719–733.
- Musselman, R., Younglove, T., and McCool, P. (1994). Response of *Phaseolus vulgaris* L. to differing ozone regimes having identical total exposure. *Atmospheric Environment*, 28(16):2727–2731.
- Nakicenovic, N., Alcamo, J., Grubler, A., Riahi, K., Roehrl, R., Rogner, H.-H., and Victor, N. (2000). Special report on emissions scenarios (SRES), a special report of Working Group III of the intergovernmental panel on climate change. Cambridge University Press.
- New, M., Hulme, M., and Jones, P. (1999). Representing Twentieth-Century Space-Time Climate Variability. Part I: Development of a 1961-90 Mean Monthly Terrestrial Climatology. *Journal of climate*, 12(3):829–856.
- Niinemets, Ü., Keenan, T. F., and Hallik, L. (2015). A worldwide analysis of withincanopy variations in leaf structural, chemical and physiological traits across plant functional types. *New Phytologist*, 205(3):973–993.
- Noormets, A., Kull, O., Sôber, A., Kubiske, M., and Karnosky, D. (2010). Elevated CO₂ response of photosynthesis depends on ozone concentration in aspen. *Environmental Pollution*, 158(4):992–999.
- Noormets, A., Sober, A., Pell, E., Dickson, R., Podila, G., Sober, J., Isebrands, J., and Karnosky, D. (2001). Stomatal and non-stomatal limitation to photosynthesis in two trembling aspen (*Populus tremuloides* Michx.) clones exposed to elevated CO_2 and/or O_3 . *Plant, Cell & Environment*, 24(3):327–336.
- Norby, R. (1998). Nitrogen deposition: a component of global change analyses. *New Phytologist*, 139(1):189–200.
- Norby, R., Cotrufo, M., Ineson, P., O'Neill, E., and Canadell, J. (2001). Elevated CO_2 , litter chemistry, and decomposition: a synthesis. *Oecologia*, 127(2):153–165.
- Nunn, A., Weiser, G., Reiter, I., Häberle, K., Grote, R., Havranek, W., and Matyssek, R. (2006). Testing the unifying theory of ozone sensitivity with mature trees of *Fagus* sylvatica and *Picea abies*. Tree Physiology, 26(11):1391–1403.
- Oliver, R. J., Mercado, L. M., Sitch, S., Simpson, D., Medlyn, B. E., Lin, Y.-S., and Folberth, G. A. (2018). Large but decreasing effect of ozone on the European carbon sink. *Biogeosciences*, 15(13):4245–4269.

- Overmyer, K., Tuominen, H., Kettunen, R., Betz, C., Langebartels, C., Sandermann, H., and Kangasjärvi, J. (2000). Ozone-sensitive arabidopsis rcd1 mutant reveals opposite roles for ethylene and jasmonate signaling pathways in regulating superoxidedependent cell death. *The Plant Cell Online*, 12(10):1849–1862.
- Padro, J. (1996). Summary of ozone dry deposition velocity measurements and model estimates over vineyard, cotton, grass and deciduous forest in summer. Atmospheric Environment, 30(13):2363–2369.
- Paoletti, E., Contran, N., Bernasconi, P., Günthardt-Goerg, M. S., and Vollenweider, P. (2010). Erratum to" Structural and physiological responses to ozone in Manna ash (*Fraxinus ornus* L.) leaves of seedlings and mature trees under controlled and ambient conditions". *Science of the Total Environment*, 408(8):2014–2024.
- Paoletti, E. and Grulke, N. (2005). Does living in elevated CO₂ ameliorate tree response to ozone? A review on stomatal responses. *Environmental Pollution*, 137(3):483–493.
- Paoletti, E. and Grulke, N. (2010). Ozone exposure and stomatal sluggishness in different plant physiognomic classes. *Environmental Pollution*, 158(8):2664–2671.
- Parrish, D. D., Law, K. S., Staehelin, J., Derwent, R., Cooper, O. R., Tanimoto, H., Volz-Thomas, A., Gilge, S., Scheel, H.-E., Steinbacher, M., and Chan, E. (2012). Long-term changes in lower tropospheric baseline ozone concentrations at northern mid-latitudes. *Atmospheric Chemistry and Physics*, 12(23):11485–11504.
- Pathre, U., Sinha, A., Shirke, P., and Sane, P. (1998). Factors determining the midday depression of photosynthesis in trees under monsoon climate. *Trees-Structure and Function*, 12(8):472–481.
- Pell, E., Schlagnhaufer, C., and Arteca, R. (1997). Ozone-induced oxidative stress: Mechanisms of action and reaction. *Physiologia Plantarum*, 100(2):264–273.
- Percy, K., Nosal, M., Heilman, W., Dann, T., Sober, J., Legge, A., and Karnosky, D. (2007). New exposure-based metric approach for evaluating O_3 risk to North American aspen forests. *Environmental Pollution*, 147(3):554–566.
- Pereira, J. S., Mateus, J. A., Aires, L. M., Pita, G., Pio, C., David, J. S., Andrade, V., Banza, J., David, T. S., Paço, T. A., and Rodrigues, A. (2007). Net ecosystem carbon exchange in three contrasting Mediterranean ecosystems? The effect of drought. *Biogeosciences*, 4(5):791–802.
- Pleijel, H., Danielsson, H., Emberson, L., Ashmore, M., and Mills, G. (2007). Ozone risk assessment for agricultural crops in Europe: further development of stomatal flux and flux-response relationships for European wheat and potato. *Atmospheric Environment*, 41(14):3022–3040.

- Pleijel, H., Danielsson, H., Ojanperä, K., Temmerman, L. D., Högy, P., Badiani, M., and Karlsson, P. (2004). Relationships between ozone exposure and yield loss in European wheat and potato—a comparison of concentration-and flux-based exposure indices. *Atmospheric Environment*, 38(15):2259–2269.
- Rebmann, C., Anthoni, P., Falge, E., Göckede, M., Mangold, A., Subke, J.-A., Thomas, C., Wichura, B., Schulze, E.-D., Tenhunen, J., and Foken, T. (2004). Carbon budget of a spruce forest ecosystem. In *Biogeochemistry of Forested Catchments in a Changing Environment*, pages 143–159. Springer.
- Reich, P. (1987). Quantifying plant response to ozone: a unifying theory. *Tree Physiology*, 3(1):63–91.
- Reich, P. B., Hobbie, S. E., and Lee, T. D. (2014). Plant growth enhancement by elevated CO_2 eliminated by joint water and nitrogen limitation. *Nature Geoscience*, 7(12):920–924.
- Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M., Berbigier, P., Bernhofer, C., Buchmann, N., Gilmanov, T., Granier, A., Grünwald, T., Havránkovaá, K., Ilvesniemi, H., Janous, D., Knohl, A., Laurila, T., Lohila, A., Loustau, D., Matteucci, G., Meyers, T., Miglietta, F., Ourcival, J., Pumpanen, J., Rambal, S., Rotenberg, E., Sanz, M., Tenhunen, J., Seufert, G., Vaccari, F., Vesala, T., Yakir, D., and Valentini, R. (2005). On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. *Global Change Biology*, 11(9):1424–1439.
- Ren, W., Tian, H., Liu, M., Zhang, C., Chen, G., Pan, S., Felzer, B., and Xu, X. (2007). Effects of tropospheric ozone pollution on net primary productivity and carbon storage in terrestrial ecosystems of China. *Journal of Geophysical Research: Atmospheres*, 112(D22).
- Ren, W., Tian, H., Tao, B., Chappelka, A., Sun, G., Lu, C., Liu, M., Chen, G., and Xu, X. (2011). Impacts of tropospheric ozone and climate change on net primary productivity and net carbon exchange of China's forest ecosystems. *Global Ecology* and Biogeography, 20(3):391–406.
- Rey, A., Pegoraro, E., Tedeschi, V., De Parri, I., Jarvis, P. G., and Valentini, R. (2002). Annual variation in soil respiration and its components in a coppice oak forest in Central Italy. *Global Change Biology*, 8(9):851–866.
- Richardson, A. D., Aubinet, M., Barr, A. G., Hollinger, D. Y., Ibrom, A., Lasslop, G., and Reichstein, M. (2012). Uncertainty quantification. In *Eddy Covariance*, pages 173–209. Springer.
- Riikonen, J., Lindsberg, M.-M., Holopainen, T., Oksanen, E., Lappi, J., Peltonen, P., and Vapaavuori, E. (2004). Silver birch and climate change: variable growth and

carbon allocation responses to elevated concentrations of carbon dioxide and ozone. *Tree Physiology*, 24(11):1227–1237.

- Roeckner, E., Brokopf, R., Esch, M., Giorgetta, M., Hagemann, S., Kornblueh, L., Manzini, E., Schlese, U., and Schulzweida, U. (2006). Sensitivity of Simulated Climate to Horizontal and Vertical Resolution in the ECHAM5 Atmosphere Model. *Journal* of Climate, 19(16):3771–3791.
- Samuelson, L. and Kelly, J. (1996). Carbon partitioning and allocation in northern red oak seedlings and mature trees in response to ozone. *Tree Physiology*, 16(10):853–858.
- Samuelson, L., Kelly, J., Mays, P., and Edwards, G. (1996). Growth and nutrition of Quercus rubra l. seedlings and mature trees after three seasons of ozone exposure. Environmental Pollution, 91(3):317–323.
- Samuelsson, P., Jones, C. G., Willen, U., Ullerstig, A., Gollvik, S., Hansson, U., Jansson, C., Kjellstrom, E., Nikulin, G., and Wyser, K. (2011). The Rossby Centre Regional Climate model RCA3: model description and performance. *Tellus Series A: Dynamic Meteorology and Oceanography*, 63(1):4–23.
- Sanz, M., Calatayud, V., and Sánchez-Peña, G. (2007). Measures of ozone concentrations using passive sampling in forests of South Western Europe. *Environmental Pollution*, 145(3):620–628.
- Sanz, M., Carrara, A., Gimeno, C., Bucher, A., and Lopez, R. (2004). Effects of a dry and warm summer conditions on CO₂ and Energy fluxes from three Mediterranean ecosystems. In *Geophysical Research Abstracts*, volume 6, page 3239.
- Schaub, M., Skelly, J., Zhang, J., Ferdinand, J., Savage, J., Stevenson, R., Davis, D., and Steiner, K. (2005). Physiological and foliar symptom response in the crowns of *Prunus serotina*, *Fraxinus americana* and *Acer rubrum* canopy trees to ambient ozone under forest conditions. *Environmental Pollution*, 133(3):553–567.
- Scherer-Lorenzen, M., Schulze, E.-D., Don, A., Schumacher, J., and Weller, E. (2007). Exploring the functional significance of forest diversity: A new long-term experiment with temperate tree species (BIOTREE). *Perspectives in Plant Ecology, Evolution* and Systematics, 9(2):53–70.
- Schimel, D. S. (1995). Terrestrial ecosystems and the carbon cycle. Global Change Biology, 1(1):77–91.
- Sicard, P., Anav, A., Marco, A. D., and Paoletti, E. (2017). Projected global ground-level ozone impacts on vegetation under different emission and climate scenarios. *Atmo*spheric Chemistry and Physics, 17(19):12177–12196.
- Simpson, D., Arneth, A., Mills, G., Solberg, S., and Uddling, J. (2014a). Ozone the persistent menace: interactions with the n cycle and climate change. *Current Opinion* in Environmental Sustainability, 9-10:9–19.

- Simpson, D., Ashmore, M., Emberson, L., and Tuovinen, J.-P. (2007). A comparison of two different approaches for mapping potential ozone damage to vegetation. A model study. *Environmental Pollution*, 146(3):715–725.
- Simpson, D., Benedictow, A., Berge, H., Bergström, R., Emberson, L., Fagerli, H., Flechard, C., Hayman, G., Gauss, M., Jonson, J., Jenkin, M. E., Nyíri, A., Richter, C., Semeena, V. S., Tsyro, S., Tuovinen, J.-P., Valdebenito, A., and Wind, P. (2012). The EMEP MSC-W chemical transport model-technical description. *Atmospheric Chemistry and Physics*, 12:7825–7865.
- Simpson, D., Christensen, J., Engardt, M., Geels, C., Nyiri, A., Soares, J., Sofiev, M., Wind, P., and Langner, J. (2014b). Impacts of climate and emission changes on nitrogen deposition in europe: a multi-model study. *Atmospheric Chemistry and Physics*, 14:6995–7017.
- Simpson, D., Tuovinen, J.-P., Emberson, L., and Ashmore, M. (2003). Characteristics of an ozone deposition module II: sensitivity analysis. *Water, Air and Soil Pollution*, 143:123–137.
- Simpson, D., Winiwarter, W., Börjesson, G., Cinderby, S., Ferreiro, A., Guenther, A., Hewitt, C. N., Janson, R., Khalil, M. A. K., Owen, S., Pierce, T. E., Puxbaum, H., Shearer, M., Skiba, U., Steinbrecher, R., Tarrasón, L., and Öquist, M. G. (1999). Inventorying emissions from nature in Europe. *Journal of Geophysical Research: Atmospheres*, 104(D7):8113–8152.
- Sitch, S., Cox, P., Collins, W., and Huntingford, C. (2007). Indirect radiative forcing of climate change through ozone effects on the land-carbon sink. *Nature*, 448(7155):791– 794.
- Sitch, S., Friedlingstein, P., Gruber, N., Jones, S. D., Murray-Tortarolo, G., Ahlström, A., Doney, S. C., Graven, H., Heinze, C., Huntingford, C., Levis, S., Levy, P. E., Lomas, M., Poulter, B., Viovy, N., Zaehle, S., Zeng, N., Arneth, A., Bonan, G., Bopp, L., Canadell, J. G., Chevallier, F., Ciais, P., Ellis, R., Gloor, M., Peylin, P., Piao, S. L., Le Quéré, C., Smith, B., Zhu, Z., and Myneni, R. (2015). Recent trends and drivers of regional sources and sinks of carbon dioxide. *Biogeosciences*, 12(3):653–679.
- Smirnoff, N. (1996). Botanical briefing: The function and metabolism of ascorbic acid in plants. Annals of Botany, 78(6):661–669.
- Staehelin, J., Thudium, J., Buehler, R., Volz-Thomas, A., and Graber, W. (1994). Trends in surface ozone concentrations at Arosa (Switzerland). Atmospheric Environment, 28(1):75–87.
- Stan, H. and Schicker, S. (1982). Effect of repetitive ozone treatment on bean plants—stress ethylene production and leaf necrosis. Atmospheric Environment (1967), 16(9):2267–2270.

- Stevenson, D. S., Dentener, F. J., Schultz, M. G., Ellingsen, K., van Noije, T. P. C., Wild, O., Zeng, G., Amann, M., Atherton, C. S., Bell, N., Bergmann, D. J., Bey, I., Butler, T., Cofala, J., Collins, W. J., Derwent, R. G., Doherty, R. M., Drevet, J., Eskes, H. J., Fiore, A. M., Gauss, M., Hauglustaine, D. A., Horowitz, L. W., Isaksen, I. S. A., Krol, M. C., Lamarque, J.-F., Lawrence, M. G., Montanaro, V., Müller, J.-F., Pitari, G., Prather, M. J., Pyle, J. A., Rast, S., Rodriguez, J. M., Sanderson, M. G., Savage, N. H., Shindell, D. T., Strahan, S. E., Sudo, K., and Szopa, S. (2006). Multimodel ensemble simulations of present-day and near-future tropospheric ozone. Journal of Geophysical Research, 111(D8):D08301.
- Stocker, T. (2014). Climate change 2013: the physical science basis: Working Group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
- Stohl, A., Aamaas, B., Amann, M., Baker, L. H., Bellouin, N., Berntsen, T. K., Boucher, O., Cherian, R., Collins, W., Daskalakis, N., Dusinska, M., Eckhardt, S., Fuglestvedt, J. S., Harju, M., Heyes, C., Hodnebrog, Ø., Hao, J., Im, U., Kanakidou, M., Klimont, Z., Kupiainen, K., Law, K. S., Lund, M. T., Maas, R., MacIntosh, C. R., Myhre, G., Myriokefalitakis, S., Olivié, D., Quaas, J., Quennehen, B., Raut, J.-C., Rumbold, S. T., Samset, B. H., Schulz, M., Seland, Ø., Shine, K. P., Skeie, R. B., Wang, S., Yttri, K. E., and Zhu, T. (2015). Evaluating the climate and air quality impacts of short-lived pollutants. Atmospheric Chemistry and Physics, 15(18):10529–10566.
- Sun, G., McLaughlin, S. B., Porter, J. H., Uddling, J., Mulholland, P. J., Adams, M. B., and Pederson, N. (2012). Interactive influences of ozone and climate on streamflow of forested watersheds. *Global Change Biology*, 18(11):3395–3409.
- Suni, T., Rinne, J., Reissell, A., Altimir, N., Keronen, P., Rannik, U., Maso, M., Kulmala, M., and Vesala, T. (2003). Long-term measurements of surface fluxes above a Scots pine forest in Hyytiälä, southern Finland, 1996-2001. *Boreal Environment Research*, 8(4):287–302.
- Talhelm, A. F., Pregitzer, K. S., Kubiske, M. E., Zak, D. R., Campany, C. E., Burton, A. J., Dickson, R. E., Hendrey, G. R., Isebrands, J. G., Lewin, K. F., Nagy, J., and Karnosky, D. F. (2014). Elevated carbon dioxide and ozone alter productivity and ecosystem carbon content in northern temperate forests. *Global Change Biology*, 20(8):2492–2504.
- Tausz, M., Grulke, N., and Wieser, G. (2007). Defense and avoidance of ozone under global change. *Environmental Pollution*, 147(3):525–531.
- Tedeschi, V., Rey, A., Manca, G., Valentini, R., Jarvis, P. G., and Borghetti, M. (2006). Soil respiration in a Mediterranean oak forest at different developmental stages after coppicing. *Global Change Biology*, 12(1):110–121.
- Tingey, D., Standley, C., and Field, R. (1976). Stress ethylene evolution: A measure of ozone effects on plants. Atmospheric Environment (1967), 10(11):969–974.

- Tirone, G., Dore, S., Matteucci, G., Greco, S., and Valentini, R. (2003). Evergreen mediterranean forests. carbon and water fluxes, balances, ecological and ecophysiological determinants. In *Fluxes of carbon, water and energy of European forests*, pages 125–149. Springer.
- Tjoelker, M., Volin, J., Oleksyn, J., and Reich, P. (1995). Interaction of ozone pollution and light effects on photosynthesis in a forest canopy experiment. *Plant, Cell & Environment*, 18(8):895–905.
- Tuovinen, J.-P., Ashmore, M., Emberson, L., and Simpson, D. (2004). Testing and improving the EMEP ozone deposition module. Atmospheric Environment, 38(15):2373–2385.
- Tuovinen, J.-P., Emberson, L., and Simpson, D. (2009). Modelling ozone fluxes to forests for risk assessment: status and prospects. Annals of Forest Science, 66(4):1–14.
- Tuovinen, J.-P., Simpson, D., Emberson, L., Ashmore, M., and Gerosa, G. (2007). Robustness of modelled ozone exposures and doses. *Environmental Pollution*, 146(3):578– 586.
- Tuovinen, J.-P., Simpson, D., Mikkelsen, T., Emberson, L., Ashmore, M., Aurela, M., Cambridge, H., Hovmand, M., Jensen, N., Laurila, T., Pilegaard, K., and Ro-Poulsen, H. (2001). Comparisons of measured and modelled ozone deposition to forests in Northern Europe. *Water, Air and Soil Pollution: Focus*, 1(5-6):263–274.
- Uddling, J., Hogg, A., Teclaw, R., Carroll, M., and Ellsworth, D. (2010). Stomatal uptake of O_3 in aspen and aspen-birch forests under free-air CO_2 and O_3 enrichment. *Environmental Pollution*, 158(6):2023–2031.
- Utriainen, J. and Holopainen, T. (2001). Nitrogen availability modifies the ozone responses of Scots pine seedlings exposed in an open-field system. *Tree Physiology*, 21(16):1205–1213.
- van Aardenne, J. A., Dentener, F. J., Olivier, J. G. J., Goldewijk, C. G. M. K., and Lelieveld, J. (2001). A 1°x1° resolution data set of historical anthropogenic trace gas emissions for the period 1890–1990. *Global Biogeochemical Cycles*, 15(4):909–928.
- van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G. C., Kram, T., Krey, V., Lamarque, J.-F., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S. J., and Rose, S. K. (2011). The representative concentration pathways: an overview. *Climatic Change*, 109(1):5.
- Vickers, C. E., Gershenzon, J., Lerdau, M. T., and Loreto, F. (2009). A unified mechanism of action for volatile isoprenoids in plant abiotic stress. *Nature Chemical Biology*, 5(5):283–291.
- Vingarzan, R. (2004). A review of surface ozone background levels and trends. Atmospheric Environment, 38(21):3431–3442.

- Vitale, M., Gerosa, G., Ballarin-Denti, A., Manes, F., Denti, A. B., and Cieslik, S. (2005).
 Ozone uptake by an evergreen mediterranean forest (*Quercus ilex* L.) in Italy—Part II: flux modelling. Upscaling leaf to canopy ozone uptake by a process-based model. *Atmospheric Environment*, 39(18):3267–3278.
- Wang, B., Shugart, H. H., Shuman, J. K., and Lerdau, M. T. (2016). Forests and ozone: productivity, carbon storage, and feedbacks. *Scientific Reports*, 6:22133.
- Wieser, G. and Havranek, W. (1995). Environmental control of ozone uptake in Larix decidua Mill.: a comparison between different altitudes. Tree Physiology, 15(4):253– 258.
- Wieser, G., Hecke, K., Tausz, M., Haberle, K., Grams, T., and Matyssek, R. (2002). The role of antioxidative defense in determining ozone sensitivity of Norway spruce (*Picea abies* (L.) Karst.) across tree age: Implications for the sun-and shade-crown. *PHYTON-HORN*, 42(3):245–254.
- Wieser, G. and Matyssek, R. (2007). Linking ozone uptake and defense towards a mechanistic risk assessment for forest trees. New Phytologist, 174(1):7–9.
- Wieser, G., Matyssek, R., Kostner, B., Oberhuber, W., and Köstner, B. (2003). Quantifying ozone uptake at the canopy level of spruce, pine and larch trees at the alpine timberline: an approach based on sap flow measurement. *Environmental Pollution*, 126(1):5–8.
- Wild, O., Fiore, A. M., Shindell, D., Doherty, R., Collins, W., Dentener, F., Schultz, M., Gong, S., MacKenzie, I., Zeng, G., Hess, P., Duncan, B. N., Bergmann, D. J., Szopa, S., Jonson, J. E., Keating, T. J., and Zuber, A. (2012). Modelling future changes in surface ozone: a parameterized approach. *Atmospheric Chemistry and Physics*, 12(4):2037–2054.
- Wilkinson, S. and Davies, W. (2009). Ozone suppresses soil drying-and abscisic acid (ABA)-induced stomatal closure via an ethylene-dependent mechanism. *Plant, Cell* & *Environment*, 32(8):949–959.
- Wilson, K., Goldstein, A., Falge, E., Aubinet, M., Baldocchi, D., Berbigier, P., Bernhofer, C., Ceulemans, R., Dolman, H., Field, C., Grelle, A., Ibrom, A., Law, B., Kowalski, A., Meyers, T., Moncrieff, J., Monson, R., Oechel, W., Tenhunen, J., Valentini, R., and Verma, S. (2002). Energy balance closure at FLUXNET sites. Agricultural and Forest Meteorology, 113(1–4):223–243.
- Wittig, V., Ainsworth, E., and Long, S. (2007). To what extent do current and projected increases in surface ozone affect photosynthesis and stomatal conductance of trees? A meta-analytic review of the last 3 decades of experiments. *Plant, Cell & Environment*, 30(9):1150–1162.

- Wittig, V., Ainsworth, E., Naidu, S., Karnosky, D., and Long, S. (2009). Quantifying the impact of current and future tropospheric ozone on tree biomass, growth, physiology and biochemistry: a quantitative meta-analysis. *Global Change Biology*, 15(2):396– 424.
- Wohlfahrt, G., Anderson-Dunn, M., Bahn, M., Balzarolo, M., Berninger, F., Campbell, C., Carrara, A., Cescatti, A., Christensen, T., Dore, S., Eugster, W., Friborg, T., Furger, M., Gianelle, D., Gimeno, C., Hargreaves, K., Hari, P., Haslwanter, A., Johansson, T., Marcolla, B., Milford, C., Nagy, Z., Nemitz, E., Rogiers, N., Sanz, M., Siegwolf, R., Susiluoto, S., Sutton, M., Tuba, Z., Ugolini, F., Valentini, R., Zorer, R., and Cernusca, A. (2008a). Biotic, Abiotic, and Management Controls on the Net Ecosystem CO₂ Exchange of European Mountain Grassland Ecosystems. Ecosystems, 11(8):1338–1351.
- Wohlfahrt, G., Hammerle, A., Haslwanter, A., Bahn, M., Tappeiner, U., and Cernusca, A. (2008b). Seasonal and inter-annual variability of the net ecosystem CO₂ exchange of a temperate mountain grassland: Effects of weather and management. Journal of Geophysical Research: Atmospheres, 113(D8). D08110.
- Wohlgemuth, H., Mittelstrass, K., Kschieschan, S., Bender, J., Weigel, H., Overmyer, K., Kangasjärvi, J., Sandermann, H., and Langebartels, C. (2002). Activation of an oxidative burst is a general feature of sensitive plants exposed to the air pollutant ozone. *Plant, Cell & Environment*, 25(6):717–726.
- Wustman, B., Oksanen, E., Karnosky, D., Noormets, A., Isebrands, J., Pregitzer, K., Hendrey, G., Sober, J., and Podila, G. (2001). Effects of elevated CO_2 and O_3 on aspen clones varying in O_3 sensitivity: can CO_2 ameliorate the harmful effects of O_3 ? *Environmental Pollution*, 115(3):473–481.
- Yendrek, C. R., Leisner, C. P., and Ainsworth, E. A. (2013). Chronic ozone exacerbates the reduction in photosynthesis and acceleration of senescence caused by limited N availability in *Nicotiana sylvestris*. *Global Change Biology*, 19(10):3155–3166.
- Zaehle, S., Ciais, P., Friend, A. D., and Prieur, V. (2011). Carbon benefits of anthropogenic reactive nitrogen offset by nitrous oxide emissions. *Nature Geoscience*, 4(9):601–605.
- Zaehle, S. and Friend, A. (2010). Carbon and nitrogen cycle dynamics in the O-CN land surface model: 1. Model description, site-scale evaluation, and sensitivity to parameter estimates. *Global Biogeochemical Cycles*, 24(1):GB1005.
- Zak, D. R., Pregitzer, K. S., Kubiske, M. E., and Burton, A. J. (2011). Forest productivity under elevated CO_2 and O_3 : positive feedbacks to soil N cycling sustain decade-long net primary productivity enhancement by CO_2 . Ecology Letters, 14(12):1220–1226.
- Zhang, L., Brook, J., and Vet, R. (2003). A revised parameterization for gaseous dry deposition in air-quality models. Atmospheric Chemistry and Physics, 3(6):2067–2082.

Zhang, R., Lei, W., Tie, X., and Hess, P. (2004). Industrial emissions cause extreme urban ozone diurnal variability. *Proceedings of the National Academy of Sciences of* the United States of America, 101(17):6346–6350.

Appendix

The papers on which chapter 2 and 3 of this thesis build have been published in an open access journal and are attached in the following.

Biogeosciences, 14, 45–71, 2017 www.biogeosciences.net/14/45/2017/ doi:10.5194/bg-14-45-2017 © Author(s) 2017. CC Attribution 3.0 License.

Development and evaluation of an ozone deposition scheme for coupling to a terrestrial biosphere model

Martina Franz^{1,2}, David Simpson^{4,5}, Almut Arneth⁶, and Sönke Zaehle^{1,3}

¹Biogeochemical Integration Department, Max Planck Institute for Biogeochemistry, Jena, Germany
 ²International Max Planck Research School (IMPRS) for Global Biogeochemical Cycles, Jena, Germany
 ³Michael Stifel Center Jena for Data-driven and Simulation Science, Jena, Germany
 ⁴EMEP MSC-W, Norwegian Meteorological Institute, Oslo, Norway
 ⁵Department of Earth & Space Sciences, Chalmers University of Technology, Gothenburg, Sweden
 ⁶Karlsruhe Institute of Technology (KIT), Department of Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, Germany

Correspondence to: Martina Franz (mfranz@bgc-jena.mpg.de)

Received: 18 July 2016 – Published in Biogeosciences Discuss.: 28 July 2016 Revised: 11 November 2016 – Accepted: 12 December 2016 – Published: 6 January 2017

Abstract. Ozone (O_3) is a toxic air pollutant that can damage plant leaves and substantially affect the plant's gross primary production (GPP) and health. Realistic estimates of the effects of tropospheric anthropogenic O_3 on GPP are thus potentially important to assess the strength of the terrestrial biosphere as a carbon sink. To better understand the impact of ozone damage on the terrestrial carbon cycle, we developed a module to estimate O_3 uptake and damage of plants for a state-of-the-art global terrestrial biosphere model called OCN. Our approach accounts for ozone damage by calculating (a) O_3 transport from 45 m height to leaf level, (b) O_3 flux into the leaf, and (c) ozone damage of photosynthesis as a function of the accumulated O_3 uptake over the lifetime of a leaf.

A comparison of modelled canopy conductance, GPP, and latent heat to FLUXNET data across European forest and grassland sites shows a general good performance of OCN including ozone damage. This comparison provides a good baseline on top of which ozone damage can be evaluated. In comparison to literature values, we demonstrate that the new model version produces realistic O₃ surface resistances, O₃ deposition velocities, and stomatal to total O₃ flux ratios. A sensitivity study reveals that key metrics of the air-to-leaf O₃ transport and O₃ deposition, in particular the stomatal O₃ uptake, are reasonably robust against uncertainty in the underlying parameterisation of the deposition scheme. Nevertheless, correctly estimating canopy conductance plays a pivotal role in the estimate of cumulative O_3 uptake. We further find that accounting for stomatal and non-stomatal uptake processes substantially affects simulated plant O_3 uptake and accumulation, because aerodynamic resistance and non-stomatal O_3 destruction reduce the predicted leaf-level O_3 concentrations. Ozone impacts on GPP and transpiration in a Europe-wide simulation indicate that tropospheric O_3 impacts the regional carbon and water cycling less than expected from previous studies. This study presents a first step towards the integration of atmospheric chemistry and ecosystem dynamics modelling, which would allow for assessing the wider feedbacks between vegetation ozone uptake and tropospheric ozone burden.

1 Introduction

Tropospheric ozone (O_3) is a highly reactive and toxic gas. It enters the plants mainly through the stomata of the leaf, where it forms reactive oxygen species (ROSs), which have the potential to damage the leaf. While leaves possess physiological pathways to produce compounds like ascorbate and polyamines, which help to neutralise the oxidising power of ROSs (Kronfuß et al., 1998; Kangasjärvi et al., 1994; Tausz et al., 2007), ozone injury may occur when the leaf's antioxidant system becomes overwhelmed (Wieser and Matyssek, 2007).

Published by Copernicus Publications on behalf of the European Geosciences Union.

In western Europe, tropospheric O₃ levels increased approximately by a factor 2 to 5 from pre-industrial values to the 1990s (Cooper et al., 2014; Marenco et al., 1994; Staehelin et al., 1994) (although the low values at the start of this period are very uncertain) and approximately doubled between 1950 and 1990s in the Northern Hemisphere (Parrish et al., 2012; Cooper et al., 2014). The major causes for this increased O₃ formation are the increased emission of O_3 precursor trace gases such as NO_x and CO, primarily from combustion sources, non-methane volatile organic compounds from anthropogenic sources (combustion, solvents), and methane emissions from agriculture and industry (Fusco and Logan, 2003; Vingarzan, 2004). For instance, in western Europe, NO_x emissions rose by a factor of 4.5 between 1955 and 1985 (Staehelin et al., 1994). In addition, downward transport of O₃ from the stratosphere to the troposphere (Vingarzan, 2004; Young et al., 2013) and intercontinental transport (Vingarzan, 2004; Jenkin, 2008; Fiore et al., 2009) can increase local and regional O₃ concentrations.

A commonly observed consequence of elevated levels of O_3 exposure is a decline in net photosynthesis (Morgan et al., 2003; Wittig et al., 2007), which may result from the damage of the photosynthetic apparatus or increased respiration due to the production of defence compounds and investments in injury repair (Wieser and Matyssek, 2007; Ainsworth et al., 2012). The reduction in net photosynthesis results in reduced growth and hence a reduced leaf area and plant biomass (Morgan et al., 2003; Lombardozzi et al., 2013; Wittig et al., 2009). The tight coupling between photosynthesis and stomatal conductance further affects canopy conductance, and thereby transpiration rates (Morgan et al., 2003; Wittig et al., 2009; Lombardozzi et al., 2013), likely affecting the ecosystem water balance.

Due to its phytotoxic effect, elevated O_3 levels as a consequence of anthropogenic air pollution may affect the land carbon cycle and potentially reduce the net land carbon uptake capacity (Sitch et al., 2007; Arneth et al., 2010; Simpson et al., 2014a), which currently corresponds to about a quarter of the anthropogenic fossil fuel emissions as a result of a sustained imbalance between photosynthetic carbon uptake and carbon loss through respiration and disturbance processes (Le Quéré et al., 2015). However, the extent to which O_3 affects plant health regionally and thereby alters terrestrial biogeochemistry and the terrestrial water balance is still subject of large uncertainty (Simpson et al., 2014a).

A number of O_3 exposure indices have been proposed to assess the potential detrimental effect of tropospheric O_3 on the plants (LRTAP Convention, 2010; Mills et al., 2011b). In Europe, the standard method of these indices is the concentration-based AOTX (ppb h) (accumulated O_3 concentration over a threshold of X ppb), which relates the freeair O_3 concentration to observed plant damage. Models assessing ozone damage to gross or net primary production based on AOTX have been used for many years and indicate that substantial reduction in plant growth and carbon sequestration occurs globally and may reach reductions of more than 40% at O₃ hotspots (Felzer et al., 2004, 2005; Ren et al., 2011; Anav et al., 2011).

A significant caveat of concentration-based assessments of ozone toxicity effects is that species differ vastly in their canopy conductance as well as regional provenances of species. Stomatal control of the leaf gas exchange regulates photosynthesis and varies, inter alia, with plant-specific photosynthetic capacity and intrinsic water-use efficiency of photosynthesis; phenology; and environmental factors such as incident light, atmospheric vapour pressure deficit (VPD), and air temperature. The consequent differences in stomatal conductance implies that the actual O₃ dose, and thus the level of ozone-related damage, differs between species exposed to similar atmospheric O₃ concentrations (Wieser and Havranek, 1995). The O_3 dose, which is the integral of the instantaneous O₃ stomatal flux over a given period of time, has been observed to strongly correlate with the amount of injury of a plant suggesting that plants with higher stomatal conductance are subject to higher doses and hence more susceptible to injury (Reich, 1987; Wittig et al., 2009).

Accounting for the O₃ dose rather than the O₃ exposure in assessments of ozone damage results in diverging regional patterns of ozone damage, as regions with the highest exposure (O₃ concentrations) do not always coincide with regions of high uptake (Emberson et al., 2000; Mills et al., 2011a; Simpson et al., 2007). Regions with low AOT40 (AOTX above a threshold of 40 ppb) values might show moderate to high values of O₃ uptake because the flux approach accounts for climatic conditions that enable high stomatal conductances and hence high values of O₃ uptake (Mills et al., 2011a). Observed ozone damage in the field seems to be better correlated with flux-based risk assessment compared to concentration-based methods (Mills et al., 2011a). Following this the LRTAP Convention recommends flux-based methods as the preferred tool for risk assessment (LRTAP Convention, 2010).

When calculating the O_3 uptake into the plants, it is important to consider that stomatal uptake is not the only surface sink of O_3 . O_3 destruction also occurs at non-stomatal surfaces such as the leaves' cuticle and soil surface. The stomatal flux represents approximately half of the total O_3 flux to the surface (Gerosa et al., 2004; Fowler et al., 2009; Cieslik, 2004; Simpson et al., 2003). Accounting for this nonstomatal O_3 deposition reduces the amount of O_3 uptake into the plants by reducing the surface O_3 concentration (Tuovinen et al., 2009) and thus has the potential to affect flux-based ozone damage estimates.

A further challenge in estimating plant damage related to O_3 uptake is that plants differ in their ability to remove any ROS from the leaf before damage of leaf cellular organs is incurred (Luwe and Heber, 1995). Conceptually, one can describe the capacity as a plant-specific O_3 dose with which the antioxidant system of the leaves can cope such that no damage is observed (Musselman et al., 2006). The produc-

tion of defence compounds increases respiration costs and following this reduces net primary production what may result in reduced growth and biomass (Ainsworth et al., 2012). Ozone damage is only incurred once the O₃ flux into the leaf exceeds this dose. A commonly used index to assess fluxbased damage to plants is the PODy (phytotoxic ozone dose, nmol m⁻² s⁻¹), which gives the accumulated O₃ flux above a threshold of *Y* nmol m⁻² s⁻¹ for all daylight hours and a given time period. Common threshold values for PODy range from 1 to 6 nmol m⁻² s⁻¹ (Pleijel et al., 2007; LRTAP Convention, 2010; Mills et al., 2011b), depending on the specific species sensitivity to O₃.

Only a few terrestrial biosphere models have adopted the flux approach to relate O_3 exposure to plant damage and thus estimate O_3 -induced reductions in terrestrial carbon sequestration in a process-based manner. Sitch et al. (2007) developed a version of the JULES model in which stomatal O_3 uptake directly affects net primary production (NPP), thereby ignoring the effect of reduced photosynthesis under elevated levels of O_3 on water fluxes. Lombardozzi et al. (2015) proposed a revised version of the Community Land Model (CLM), in which O_3 imposes fixed reductions to net photosynthesis for two out of three modelled plant types. Atmospheric O_3 concentrations and the amount of cumulated O_3 uptake directly affect net photosynthesis only for one plant type.

In this paper, we present a new, globally applicable model to calculate O_3 uptake and damage in a process-oriented manner, coupled to the terrestrial energy, water, carbon, and nitrogen budget of the OCN terrestrial biosphere model (Za-ehle and Friend, 2010).

In this model, the canopy O_3 abundance is calculated using aerodynamic resistance and surface resistances to soil surface, vegetation surfaces, and stomatal cavities to take account of non-stomatal O_3 destruction. Canopy O_3 abundance is used to simulate stomatal O_3 uptake given instantaneous values of net photosynthesis and stomatal conductance. O_3 uptake and its effect on net photosynthesis is then calculated based on an extensive meta-analysis across 28 tree species by Wittig et al. (2007) considering the ability of plants to detoxify a proportion of the O_3 dose (Sitch et al., 2007).

We first give a detailed overview of the ozone scheme (Sect. 2.1); evaluate modelled gross primary production (GPP), canopy conductance, latent heat fluxes, and leaf area index (LAI) against data from the FLUXNET database (Baldocchi et al., 2001) to test the ability of the model to simulate observed values of key components affecting calculate O₃ uptake (Sect. 3.1); evaluate the simulated O₃ metrics against reported values in the literature (Sect. 3.2); provide a sensitivity analysis of critical variables and parameters of the deposition model to evaluate the reliability of simulated values of O₃ uptake (Sect. 3.3); give an estimate of the effect of the present-day O₃ burden on European GPP and transpiration(Sect. 3.4); and estimate the impact of using the O₃ deposition scheme on O₃ uptake and cumulated uptake (Sect. 3.5).

2 Methods

We developed an ozone deposition and leaf-uptake module for the terrestrial biosphere model OCN (Zaehle and Friend, 2010). OCN is a further development of the land-surface scheme ORCHIDEE (O) (Krinner et al., 2005), and simulates the terrestrial coupled carbon (C), nitrogen (N), and water cycles for 12 plant functional types (PFTs) driven by climate data, atmospheric composition (N deposition, as well as atmospheric CO₂ and O₃ burden), and land-use information (land cover and fertiliser application).

In OCN net photosynthesis is calculated for shaded and sunlit leaves in a multi-layer canopy with up to 20 layers (each with a thickness of up to 0.5 leaf area index) following a modified Farquhar scheme and considering the light profiles of diffuse and direct radiation (Zaehle and Friend, 2010). Photosynthetic capacity depends on leaf nitrogen concentration and leaf area, which are both affected by ecosystem available N. Increases in leaf nitrogen content enable higher net photosynthesis and higher stomatal conductance per unit leaf area. This in turn affects transpiration as well as O₃ uptake and ozone damage estimates. Leaf N is highest in the top canopy and monotonically decreases with increasing canopy depth. Following this, stomatal conductance and O₃ uptake is generally highest in the upper canopy and lowest in the bottom of the canopy.

The O₃ and N-deposition data used for this study are provided by the EMEP MSC-W (European Monitoring and Evaluation Programme Meteorological Synthesizing Centre - West) chemical transport model (CTM) (Simpson et al., 2012). The O₃ flux and deposition modules used in the EMEP model are advanced compared to most CTMs, and have been documented in a number of papers (Emberson et al., 2001; Tuovinen et al., 2004, 2009; Simpson et al., 2007, 2012; Klingberg et al., 2008). The ozone deposition scheme for OCN is adapted from the model used by EMEP MSC-W (Simpson et al., 2012) to fit the land-surface characteristics and process descriptions of the ORCHIDEE model. The leaf-level ozone concentrations computed by EMEP can not directly be used by OCN, since EMEP and OCN differ in a number of properties, as for instance in the number of simulated PFTs, and importantly their ecophysiological process representation. Both models differ in the simulation of various ecosystem processes (e.g. phenology, canopy processes, biogeochemical cycles, and vegetation dynamics, which are more explicitly represented in OCN), which in sum impact stomatal and non-stomatal ozone deposition and through this the leaf-level ozone concentration. A possible further development of the new OCN is the coupling to a CTM to allow for a consistent simulation of tropospheric O₃ burden and vegetation O3 uptake.

2.1 Ozone module

The ozone deposition scheme calculates O_3 deposition to the leaf surface from the free atmosphere, represented by the O_3 concentration at the lowest level of the atmospheric CTM, taken to be at 45 m above the surface. The total O_3 dry deposition flux (F_g) to the ground surface is calculated as

$$F_{\rm g} = V_{\rm g} \chi_{\rm atm}^{\rm O_3}, \tag{1}$$

where $\chi_{\text{atm}}^{O_3}$ is the O₃ concentration at 45 m and V_g is the deposition velocity at that height. In OCN V_g is taken to be dependent on the aerodynamic resistance (R_a), canopy-scale quasi-laminar layer resistance (R_b) and the compound surface resistance (R_c) to O₃ deposition.

$$V_{\rm g} = \frac{1}{R_{\rm a} + R_{\rm b} + R_{\rm c}}\tag{2}$$

 $R_{\rm b}$ is calculated from the friction velocity (u_*) as

$$R_{\rm b} = \frac{6}{u_*}.\tag{3}$$

The R_a between 45 m height and the canopy is not computed by OCN and is inferred from the logarithmic wind profile (for more details see Appendix A). R_c is calculated as the sum of the parallel resistances to stomatal/canopy $(1/G_c^{O_3})$ and non-stomatal O₃ uptake $(1/G_{ns})$ (Simpson et al., 2012, Eq. 55):

$$R_{\rm c} = \frac{1}{G_{\rm c}^{\rm O_3} + G_{\rm ns}}.$$
(4)

The stomatal conductance to $O_3 G_{st}^{O_3}$ (m s⁻¹) is computed by OCN (Zaehle and Friend, 2010) as

$$G_{\rm st}^{\rm O_3} = g_1 \frac{f(\Theta) f(q_{\rm air}) f(C_i) f({\rm height}) A_{n,\rm sat}}{1.51},\tag{5}$$

where $G_{st}^{O_3}$ is calculated as a function of net photosynthesis at saturating C_i ($A_{n,sat}$), where g_1 is the intrinsic slope between A_n and G_{st} . It further depends on a number of scalars to account for the effect of soil moisture ($f(\Theta)$), water transport limitation with canopy height (f (height)), and atmospheric drought ($f_{(qair)}$), as well as an empirical non-linear sensitivity to the internal leaf CO₂ concentration ($f(C_i)$), all as described in Friend and Kiang (2005). The factor 1.51 accounts for the different diffusivity of O₃ from water vapour (Massman, 1998). The canopy conductance to O₃ $G_c^{O_3}$ is calculated by summing the $G_{st}^{O_3}$ of all canopy layers. To yield reasonable conductance values in OCN compared to FLUXNET data (see Sect. 3.1), the original intrinsic slope between A_n and G_c called α in Friend and Kiang (2005) is adapted such that $g_1 = 0.7\alpha$. The non-stomatal conductance $G_{\rm ns}$ follows the EMEP approach (Simpson et al., 2012, Eq. 60) and represents the O₃ fluxes between canopy-air space and surfaces other than the stomatal cavities. The model accounts for O₃ destruction on the leaf surface ($r_{\rm ext}$), within-canopy resistance to O₃ transport ($R_{\rm inc}$), and ground surface resistance ($R_{\rm gs}$):

$$G_{\rm ns} = \frac{\rm SAI}{r_{\rm ext}} + \frac{1}{R_{\rm inc} + R_{\rm gs}},\tag{6}$$

where the surface area index (SAI) is equal to the LAI for herbaceous PFTs (grasses and crops) and SAI = LAI + 1 for tree PFTs according to Simpson et al. (2012) in order to account for O₃ destruction on branches and stems. Unlike EMEP, we do not apply a day of the growing season constraint for crop exposure to O₃, which in OCN is accounted for by the simulated phenology and seasonality of photosynthesis. The external leaf resistance (r_{ext}) per unit surface area is calculated as

$$r_{\rm ext} = r_{\rm ext,b} F_T,\tag{7}$$

where the base external leaf resistance $(r_{\text{ext},b})$ of 2500 m s⁻¹ is scaled by a low-temperature correction factor F_T and

$$F_T = e^{-0.2(1+T_s)},\tag{8}$$

with $1 \le F_T \le 2$ and T_s the 2 m air temperature (°C Simpson et al., 2012, Eq. 60). For temperatures below -1 °C nonstomatal resistances are increased up to two times (Simpson et al., 2012; Zhang et al., 2003). The within-canopy resistance (R_{inc}) is calculated as

$$R_{\rm inc} = b {\rm SAI} \frac{h}{u_*},\tag{9}$$

where *b* is an empirical constant (set to 14 s^{-1}) and *h* is the canopy height in m. The ground-surface resistance R_{gs} is calculated as

$$R_{\rm gs} = \frac{1 - 2f_{\rm snow}}{F_T \hat{R}_{\rm gs}} + \frac{2f_{\rm snow}}{R_{\rm snow}}$$
(10)

(Simpson et al., 2012, Eq. 59). \hat{R}_{gs} represents base values of R_{gs} and takes values of 2000 s m⁻¹ for bare soil, 200 s m⁻¹ for forests and crops, and 1000 s m⁻¹ for non-crop grasses (Simpson et al., 2012, Suppl.). As in EMEP, the ground-surface resistance of O₃ to snow (R_{snow}) is set to a value of 2000 s m⁻¹ according to Zhang et al. (2003). f_{snow} is calculated from the actual snow depth (s_d) simulated by OCN, and the maximum possible snow depth ($s_{d, max}$):

$$f_{\rm snow} = \frac{s_{\rm d}}{s_{\rm d,max}} \tag{11}$$

with the constraint of $0 \le f_{\text{snow}} \le 0.5$ to prevent negative values in the first fraction of Eq. (10). $s_{d,\text{max}}$ is taken to be 10 kgm^{-2} (Ducoudré et al., 1993).

Biogeosciences, 14, 45-71, 2017

www.biogeosciences.net/14/45/2017/

Given these resistances, the canopy O_3 concentration $(\chi_c^{O_3}, nmol \, m^{-3})$ is then calculated based on a constant flux assumption:

$$\chi_{\rm c}^{\rm O_3} = \chi_{\rm atm}^{\rm O_3} (1 - \frac{R_{\rm a}}{R_{\rm a} + R_{\rm b} + R_{\rm c}}). \tag{12}$$

 $\chi_c^{O_3}$ and the stomatal conductance to O_3 ($G_{st}^{O_3}$ in ms⁻¹) are used to calculate the O₃ flux into the leaf cavities (F_{st} , nmol m⁻² s⁻¹):

$$F_{\rm st} = (\chi_{\rm c}^{\rm O_3} - \chi_i^{\rm O_3}) G_{\rm st}^{\rm O_3}.$$
 (13)

According to Laisk et al. (1989) the leaf internal O₃ concentration ($\chi_i^{O_3}$) is assumed to be zero.

The OCN implementation of deposition and flux described above is a simplification of the deposition system used by EMEP in order to fit the process representation of OR-CHIDEE, from which OCN has inherited its biophysical modules. The external leaf resistance is not included in the calculation of F_{st} (Tuovinen et al., 2007, 2009), which results in an overestimation of stomatal O₃ uptake. Further, OCN's calculation of R_a is based upon neutral stability conditions (see Appendix), whereas the EMEP model makes use of rather detailed stability correction factors. However, a series of calculations with the full EMEP model have shown that the uncertainties associated with these simplifications are small, typically $0.5-5 \text{ mmol m}^{-2}$. As base-case values of POD0 are typically ca. $30-50 \text{ mmol m}^{-2}$ in EU regions, these approximations do not seem to be a major cause of error, at least in regions with substantial ozone (and carbon) uptake. The full coupling of OCN to a CTM would be desirable to eliminate this bias and allow for a consistent calculation of tropospheric and surface near O₃ burdens.

2.2 Relating stomatal uptake to leaf damage

An accumulation of F_{st} over time gives the accumulated uptake of O₃ for a particular canopy layer (CUO₁, mmol m⁻²), or for l = 1 (top canopy layer) the phytotoxic O₃ dose (POD, mmol m⁻²):

$$\frac{\mathrm{dCUO}_{\mathrm{l}}}{\mathrm{d}t} = (1 - f_{\mathrm{new}})\mathrm{CUO}_{\mathrm{l}} + cF_{\mathrm{st},\mathrm{l}},\tag{14}$$

where $c = 10^{-6}$ converts from nmol to mmol and the integration time step is 1800 s.

The phenology of leaves is accounted for by assuming that emerging leaves are undamaged and by reducing the CUO₁ by the fraction of newly developed leaves per time step and layer (f_{new}). Furthermore, deciduous PFTs shed all CUO at the end of the growing season and grow undamaged leaves the next spring. Evergreen PFTs shed proportionate amounts of CUO during the entire year whenever new leaves are grown.

The full canopy cumulative uptake of O_3 is calculated by summing CUO₁ over all present canopy layers (*n*):

$$CUO = \sum_{l=1}^{n} CUO_l.$$
(15)

The CUO₁ is used to approximate the damage to net photosynthesis (A_n) by using the damage relationship of Wittig et al. (2007):

$$d_1^{O_3} = \frac{0.22 \text{CUO}_1 + 6.16}{100},\tag{16}$$

where the factor 100 scales the percentage values of damage to fractions. Net photosynthesis accounting for ozone damage $(A_n^{O_3})$ is then calculated by subtracting the damage fraction from the undamaged value of A_n :

$$A_{n,l}^{O_3} = A_{n,l}(1 - d_l^{O_3}).$$
(17)

Since G_{st} and A_n are tightly coupled (see Eq. 5), a damage of A_n results in a simultaneous reduction in G_{st} . The canopyscale O₃ flux into the leaf cavities (F_{stC}) is calculated by summing F_{st} of all canopy layers, similar to the aggregation of $A_{n,1}$ and G_{st} and CUO₁. Canopy O₃ concentration, O₃ uptake, canopy cumulative O₃ uptake (CUO), and damage to net photosynthesis are solved iteratively to account for the feedbacks between ozone damage, canopy conductance and canopy-air O₃ concentrations.

Note that CUO and POD can be directly compared to estimates according to the LRTAP Convention (2010) notation when analysing only the top canopy layer (Mills et al., 2011b).

2.3 Sensitivity analysis

A sensitivity analysis is conducted to estimate the sensitivity of the modelled plant O₃ uptake to the parameterisation of the model, to establish the robustness of the model, and to identify the most influential parameters. Three parameters (ground-surface resistance (\hat{R}_{gs}), external leaf resistance (r_{ext}), and empirical constant (b); see Eqs. 10, 6, and 9 respectively) and three modelled quantities (canopy conductance (G_c), aerodynamic resistance (R_a), and canopy-scale quasi-laminar layer resistance (R_b); see Eqs. 5, 2), with considerable uncertainty due to the underlying parameters used to calculate these quantities, are perturbed within $\pm 20\%$ of their central estimate.

A set of 100 parameter combinations is created with a Latin hypercube sampling method (McKay et al., 1979), simultaneously perturbing all six parameter values (R package: FME; function: Latinhyper). For each parameter combination, a transient run (see Sect. 2.4) is performed creating an ensemble of estimates for the key prognostic variables F_{stC} (Eq. 13), R_c (Eq. 4), V_g (Eq. 2) and the O₃ flux ratio (F_R) calculated as the ratio of F_{stC} and the total O₃ flux to the surface (F_g , Eq. 1).

www.biogeosciences.net/14/45/2017/

The summer months June, July, and August (JJA) are selected from the simulation output and used for further analysis. For each prognostic variable (F_{stC} , R_c , V_g , F_R), the sensitivity to changes in all six perturbed parameters/variables is estimated by calculating partial correlation coefficients (PCCs) and partial ranked correlation coefficients (PRCCs) (Helton and Davis, 2002). PCCs record the linear relationship between two variables where the linear effects of all other variables in the analysis are removed (Helton and Davis, 2002). In the case of nonlinear relationships, PRCCs can be used, which implies a rank transformation to linearise any monotonic relationship, such that the regression and correlation procedures as in the PCCs can follow (Helton and Davis, 2002). We estimate the magnitude of the parameter effect by creating mean summer values of the four prognostic variables for each sensitivity run, and regressing these values against the corresponding parameter/variable scaling values of the respective model run.

2.4 Modelling protocol and data for site-level simulations

The site-level simulations (single-point simulations) at the FLUXNET sites are run using observed metrological forcing, soil properties, and land cover from the La Thuile Dataset (http://fluxnet.fluxdata.org/data/la-thuile-dataset/) of the FLUXNET project (Baldocchi et al., 2001). Data on atmospheric CO₂ concentrations are obtained from Sitch et al. (2015). Reduced and oxidised nitrogen deposition in wet and dry forms and hourly O₃ concentrations at 45 m height are provided by the EMEP model (see Sect. 2.5).

OCN is brought into equilibrium in terms of the terrestrial vegetation and soil carbon and nitrogen pools in a first step with the forcing of the year 1900. In the next step, the model is run with a progressive simulation of the period 1900 up until the start year of the respective site. For this period atmospheric O_3 and CO_2 concentrations as well as N deposition of the respective simulated years are used. Due to lack of observed climate for the sites for this period, the site-specific observed meteorology from recent years is iterated for these first two steps. The observation years (see Table A1) are simulated with the climate and atmospheric conditions (N deposition, CO_2 and O_3 concentrations) of the respective years.

For the evaluation of the model output, net ecosystem exchange (NEE), and latent heat flux (LE), as well as meteorological observations, are obtained for 11 evergreen needle-leaved forest sites, 10 deciduous broadleaved forest sites, and 5 C_3 grassland sites in Europe (see Table A1) from the La Thuile Dataset of the FLUXNET project (Baldocchi et al., 2001). Leaf area indices (LAIs) based on discrete point measurements are obtained from the La Thuile ancillary database.

NEE measurements are used to estimate gross primary production (GPP) by the flux-partitioning method according to (Reichstein et al., 2005). Canopy conductance (G_c)

is derived by inverting the Penman–Monteith equation given the observed LE and atmospheric conditions as described in Knauer et al. (2015).

The half-hourly FLUXNET and model fluxes are filtered prior to deriving average growing-season fluxes (bud break to litter fall) to reduce the effect of model biases on the model-data comparison. Night-time and morning/evening hours are excluded by removing data with lower than 20 % of the daily maximum shortwave downward radiation. To avoid any biases associated with the soil moisture or atmospheric drought response of OCN, we further exclude data points with a modelled soil moisture constraint factor (range between 0 and 1) below 0.8 and an atmospheric vapour pressure deficit larger than 0.5 kPa.

Daily mean values are calculated from the remaining time steps only where both modelled and observed values are present. The derived daily values are furthermore constrained to the main growing season by excluding days where the daily GPP is less than 20% of the yearly maximum daily GPP.

To derive representative diurnal cycles, data for the month July are filtered for daylight hours (taken as incoming short-wave radiation $\geq 100 \text{ W m}^{-2}$), with periods of soil or atmospheric drought stress excluded as above. This is done for modelled F_{stC} , R_c , V_g , and F_R and for both modelled and FLUXNET observed GPP and G_c .

2.5 Modelling protocol and data for regional simulations

For the regional simulations, OCN is run at a spatial resolution of $0.5^{\circ} \times 0.5^{\circ}$ on a spatial domain focused on Europe. Daily meteorological forcing (temperature, precipitation, shortwave and longwave downward radiation, atmospheric specific humidity, and wind speed) for the years 1961 to 2010 is obtained from RCA3 regional climate model (Samuelsson et al., 2011; Kjellstrom et al., 2011), nested in the ECHAM5 model (Roeckner et al., 2006), and has been bias-corrected for temperatures and precipitation using the CRU climatology (New et al., 1999). Reduced and oxidised nitrogen deposition in wet and dry forms and O3 concentrations at 45 m height for the same years are obtained from the EMEP model, which is also run with RCA3 meteorology (as in Simpson et al., 2014b). Emissions for the EMEP runs in current years are as described in Simpson et al. (2014b), and are scaled back to 1900 using data from UNECE and van Aardenne et al. (2001) - see Appendix B. Further details of the EMEP model setup for this grid and meteorology can be found in Simpson et al. (2014b) and Engardt et al. (2017). For OCN, land cover, soil, and N fertiliser application are used as in Zaehle et al. (2011) and kept at 2005 values throughout the simulation. Data on atmospheric CO₂ concentrations are obtained from Sitch et al. (2015).

OCN is brought into equilibrium in terms of the terrestrial vegetation and soil carbon and nitrogen pools by randomly

iterating the forcing from the period 1961–1970. This is followed by a simulation for the years 1961–2011 with timevarying climate and atmospheric conditions (N deposition, CO_2 , and O_3 concentrations) but with static land cover and land-use information (kept at year 2005 levels). An upscaled FLUXNET-MTE product of GPP (Jung et al., 2011), using the model tree ensembles (MTE) machine learning technique, is used to evaluate modelled GPP.

2.6 Impacts of using the ozone deposition scheme

In contrast to other terrestrial biosphere models, the OCN ozone module accounts for the effects of aerodynamic, stomatal and non-stomatal resistance to O_3 deposition. Due to these resistances, the deposition of O_3 to leaf level is reduced, and the canopy O_3 concentration is lower than the atmospheric O_3 concentration. Thus, using such a deposition scheme reduces modelled O_3 uptake into plants and accumulation. To get an estimate of the magnitude of this impact we compare simulations with the standard deposition scheme as described above (D) with a simulation where O_3 surface resistance is only determined by stomatal resistance and the non-stomatal depletion of O_3 is zero (D-STO), as well as a further simulation where no deposition scheme is used and the canopy O_3 concentration is equal to the atmospheric concentration (ATM).

3 Results

3.1 Evaluation against daily eddy-covariance data

Figure 1 a shows that, for most sites, modelled and observation-based GPP agree well (see Table A2 for R^2 and RMSE values). The standard deviation is larger for the observation-based estimates because of the high level of noise in the eddy-covariance data. For sites dominated by needle-leaved trees, the modelled and observation-based GPP values are very close, with only slight under- and overestimates by the model at some sites. At sites dominated by broadleaved trees, modelled GPP deviates more strongly from the observation-based GPP, underestimating the observations in 7 out of 10 cases. However, the results are within the range of standard deviation except for the drought-prone PT-Mi1 site (see Fig. A1a for an explicit site comparison). At C₃ grassland sites, modelled GPP is in good agreement with the observation-based GPP except for AT-Neu, which has the highest mean GPP of all sites observed by FLUXNET with a large standard deviation, which may reflect the effect of site management (e.g. mowing and fertilisation), for which no data were readily available as model forcing.

When comparing modelled and observed latent heat flux (LE), the model fits the observations best at the needle-leaved forest sites (Fig. 1c). However, LE is overestimated at 9 out of 10 broadleaved forest sites but remains within the range of the large observational standard deviation. At sites dom-

inated by C_3 grasses the modelled LE differs considerably from the observed value, at two sites overestimating and two underestimating the fluxes, again within the observational standard deviation.

In agreement with the comparison of GPP and LE, the comparison of modelled to observation-based canopy conductance (G_c) shows the best agreement for sites dominated by needle-leaved trees (Fig. 1b). At sites dominated by broadleaved trees, the modelled G_c varies more widely from the FLUXNET G_c . The modelled G_c at sites dominated by C₃ grasses is in very good agreement with FLUXNET G_c , with slight overestimation of G_c at two out of three sites, except for the DE-Meh site, where means differ outside the standard deviation (see Fig. A1b).

The comparison of the average modelled summertime LAI and point measurements at the FLUXNET illustrates that the variability in the measured LAI is much greater than that of OCN (Fig. 1d). The modelled LAI values approach lightsaturating, maximum LAI values and are not able to reproduce between-site differences in, for example, the growth stage, site history, or maximum possible LAI values. Furthermore, it should be borne in mind that the observed LAI values are averages of point measurements, which are not necessarily representative of the modelled time period, and that the model had not been parameterised specifically for the sites. Modelled GPP depends not only on LAI but also on light availability, temperature, and soil moisture. The much better represented values of GPP, Gc, and LE compared to FLUXNET data (Fig. 1a-c) indicate that OCN is able to adequately transform available energy into carbon uptake and water loss and thus simulate key variables impacting ozone uptake within a reasonable range.

3.2 Mean diurnal cycles of key O₃ parameters.

For further evaluation of the modelled O₃ uptake, we analysed the diurnal cycles of O_3 uptake (F_{stC}), O_3 surface resistance (R_c) , O₃ deposition velocity (V_g) , and flux ratio $(F_{\rm R})$) as well as GPP and $G_{\rm c}$. We selected three sites (a broadleaved, a needle-leaved, and a C₃ grass site) based on the selection criteria that modelled and FLUXNET GPP and LAI agree well and a minimum of five observation years is available to reduce possible biases from the inability of the model to simulate short-term variations from the mean. The selected sites are a temperate broadleaved summer green forest (IT-Ro1), a boreal needle-leaved evergreen forest (FI-Hyy), and a temperate C₃ grass land (CH-Oe1). We evaluate modelled GPP and G_c against observations from the FLUXNET sites. The modelled mean diurnal cycles of O₃ related variables (F_{stC} , R_c , V_g , F_R) are compared to reported values in the literature since we did not have access to sitespecific observations.

Modelled and observed mean diurnal cycles of GPP and G_c are in general agreement at the three selected FLUXNET sites (see Fig. 2a, g, m and b, h, n) with particularly good

Figure 1. Comparison of measured (a) GPP, (b) canopy conductance (G_c), (c) latent heat flux (LE), and (d) LAI at 26 European FLUXNET sites and simulations by OCN. Displayed are means and standard deviations of daily means of the measuring/simulation period, with the exception of FLUXNET-derived LAI, which is based on point measurements. Dots symbolise sites dominated by broadleaved trees, triangles sites dominated by needle-leaved trees, and asterisks sites dominated by C₃ grasses. The grey line constitutes the 1 : 1 line.

agreement for the mean diurnal cycle of GPP at the needleleaved site FI-Hyy, where the hourly means are very close and the observational standard deviation is narrow (see Fig. 2g). At the grassland site IT-Ro1 the overall daytime magnitude of the fluxes is reproduced in general except for the observed afternoon reduction in GPP (see Fig. 2a). The modelled hourly values fall in the range of the observed values. Modelled and observation-based hourly means of GPP at the site CH-Oe1 agree well except for the evening hours, where the observed values increase again. The mean diurnal cycles of G_c derived from the FLUXNET data are again best matched at the site FI-Hyy, whereas the model generally overestimates the diurnal cycle of G_c slightly at the site IT-Ro1, and overestimates peak G_c at the CH-Oe1 site. The fact that OCN does not always simulate the observed midday depression of $G_{\rm c}$, suggests that the response of stomata to atmospheric and soil drought in OCN requires further evaluation and improvement. Similar to the daily mean values (see Fig. 1a, b), the mean hourly values show the best match of GPP and G_c for the needle-leaved tree site and stronger deviations for the sites covered by broadleaved trees and C₃ grasses.

The stomatal O₃ uptake F_{stC} (Fig. 2c, i, o) is close to zero during night-time, when the stomata are assumed to be closed, because gross photosynthesis is zero. At FI-Hyy and CH-Oe1, peak uptake occurred at noon, when photosynthesis (Fig. 2g, m) and stomatal conductance (Fig. 2h, n) are highest, at values between 8 and $9 \text{ nmol m}^{-2} \text{ s}^{-1}$. At the Italian site IT-Ro1, maximum uptake occurs in the afternoon hours around 15 h, with much larger standard deviation compared to the other two sites (Fig. 2c). The magnitude of stomatal O3 uptake corresponds well to some values reported, for example, for crops (Gerosa et al., 2003, 2004; daily maxima of $4-9 \text{ nmol m}^{-2} \text{ s}^{-1}$) and holm oak (Vitale et al., 2005; approx. 7–8 nmol $m^{-2} s^{-1}$). Lower daily maximum values have been reported for an evergreen Mediterranean forest dominated by Holm Oak of $4 \text{ nmol m}^{-2} \text{ s}^{-1}$ under dry weather conditions (Gerosa et al., 2005) and 1–6 nmol $m^{-2} s^{-1}$ for diverse southern European vegetation types (Cieslik, 2004). Much higher values are reported for *Picea abies* $(50-90 \text{ nmol m}^{-2} \text{ s}^{-1})$, Pinus cembra (10–50 nmol m⁻² s⁻¹), and Larix decidua (10– $40 \text{ nmol m}^{-2} \text{ s}^{-1}$) at a site near Innsbruck, Austria (Wieser et al., 2003), where canopy O₃ uptake was estimated by sapflow measurements in contrast to the studies mentioned be-

Figure 2. Simulated and observed hourly means over all days of the months of July of 2002–2006 for CH-Oe1 and IT-Ro1, as well as for 2001–2006 for FI-Hyy. Plotted are mean hourly values (local time) of (**a**, **g**, **m**) GPP (blue: OCN; red: FLUXNET), (**b**, **h**, **n**) canopy conductance (G_c) (blue: OCN; red: FLUXNET), (**c**, **i**, **o**) O₃ uptake (F_{stC}), (**d**, **j**, **p**) the flux ratio (F_R), (**e**, **k**, **q**) O₃ deposition velocity (V_g), and (**f**, **l**, **r**) O₃ surface resistance (R_c). The error bars indicate the standard deviation from the hourly mean. The dotted line in panels (**d**), (**j**), and (**p**) indicates the daily mean value.

fore where the eddy-covariance technique was applied. The much higher F_{stC} values in that study result from much higher canopy conductances to O₃ ($G_c^{O_3}$), which are up to 12 times higher than the modelled $G_c^{O_3}$ values in our study (see Fig. 2, $G_c^{O_3} = \frac{G_c}{1.51}$).

The ratio between the stomatal O₃ uptake and the total surface uptake (F_R) is close to zero during night-time hours and increases steeply in the morning hours (Fig. 2d, j, p). The 24 h average is approximately 0.3 for IT-Ro1 and 0.4 for FI-Hyy and CH-Oe1 (Fig. 2d, j, p). Peak hourly mean values

www.biogeosciences.net/14/45/2017/

are close to 0.6 at IT-Ro1, around 0.7 at FI-Hyy, and close to 0.8 at CH-Oe1. These values are comparable to the ratios reported for crops (Gerosa et al., 2004; Fowler et al., 2009; 0.5–0.6), Norway spruce (Mikkelsen et al., 2004; 0.3– 0.33), and various southern European vegetation types (Cieslik, 2004; 0.12–0.69). The modelled flux ratios here show slightly higher daily maximum flux ratios than reported in the listed studies. Daily mean flux ratios are well within the reported range.

The modelled deposition velocities V_g are lowest during night-time, with values of approximately $0.002 \,\mathrm{m\,s^{-1}}$ (Fig. 2e, k, q). These values increase to maximum hourly means of $0.006-0.007 \,\mathrm{m \, s^{-1}}$ during daytime. These values compare well with reported values of deposition velocities, which range from 0.003 to 0.009 m s^{-1} at noon (Gerosa et al., 2004) for a barley field and are approximately $0.006 \,\mathrm{m\,s^{-1}}$ at noon for a wheat field (Tuovinen et al., 2004) and approximately $0.009 \,\mathrm{m\,s^{-1}}$ at noon at a potato field (Coyle et al., 2009). The estimates for FI-Hyy also agree well with maximum deposition velocities reported for Scots pine site of $0.006 \,\mathrm{m\,s^{-1}}$ (Keronen et al., 2003; Tuovinen et al., 2004) and noon values from Danish Norway spruce sites of $0.006-0.010 \,\mathrm{m\,s^{-1}}$ (Mikkelsen et al., 2004; Tuovinen et al., 2001). Mean daytime deposition velocities of $0.006 \,\mathrm{m\,s^{-1}}$ (range $0.003-0.008 \,\mathrm{m\,s^{-1}}$) are reported at a Finnish mountain birch site (Tuovinen et al., 2001). Simulated monthly mean values of $V_{\rm g}$ differ substantially between the sites (see Fig. A2). When comparing the monthly means over all sites (Fig. A2 dashed line) of a functional group (broadleaved, needle-leaved, C₃ grasses) to the ensemble mean of 15 CTMs (Hardacre et al., 2015), the values simulated here are higher for needle-leaved tree sites. For broadleaved tree sites and grassland sites, higher values, but which are still within the observed ensemble range, are found for the summer months.

The modelled hourly mean O_3 surface resistance R_c is highest during night-time, at approximately 400 s m⁻¹, and decreases during daytime to values of $100-180 \,\mathrm{s}\,\mathrm{m}^{-1}$, where the lowest surface resistance of approximately $100 \,\mathrm{s}\,\mathrm{m}^{-1}$ is modelled at the grassland site CH-Oe1 (Fig. 2f, l, r). These values are slightly higher than independent estimates (for grasses and crops obtained for other sites) of noon surface resistances ranging from 50 to $100 \,\mathrm{sm}^{-1}$ (Padro, 1996; Coyle et al., 2009; Gerosa et al., 2004; Tuovinen et al., 2004). Tuovinen et al. (2004) reported noon values of approximately 140 sm^{-1} for a Scots pine forest and 70–140 s m⁻¹ for a Norway spruce forest site (Tuovinen et al., 2001), which compares well with the modelled R_c values at the needle-leaved forest site (FI-Hyy; Fig. 2l). Higher noon values of approximately 250 s m⁻¹ are reported at a Danish Norway spruce site (Mikkelsen et al., 2004). For a mountain birch forest, noon values of $110-140 \text{ sm}^{-1}$ (Tuovinen et al., 2001) are observed which is slightly lower than the modelled value at the IT-Ro1 site (dominated by broadleaved tree PFT).

Figure 3. (a) Mean partial correlation coefficients and (b) strength of the correlation in % per %. R_a , b, r_{ext} , \hat{R}_{gs} , and G_c are perturbed within ± 20 % of their central estimate. Results from simulations at the FLUXNET site FI-Hyy for the simulation period 2001–2006.

3.3 Sensitivity analysis

We assess the sensitivity of the modelled O₃ uptake and deposition, represented by F_g , F_{stC} , V_g , and R_c , to uncertainty in six weakly constrained variables and parameters of the O₃ deposition scheme (R_a , b, r_{ext} , \hat{R}_{gs} , G_c , and R_b). Figure 3a shows, for example, the results for the boreal needle-leaved forest FI-Hyy. As expected, all uptake/deposition variables, except for the flux ratio (F_R) are negatively correlated with the aerodynamic resistance R_a , which describes the level of decoupling of the atmosphere and land surface. Increasing R_a decreases the canopy internal O₃ concentration and hence stomatal (F_{stC}) and total (F_g) deposition as well as the deposition velocity (V_g). The flux ratio F_R is slightly positively correlated with changes in R_a due to the stronger negative correlation of F_{stC} relative to F_g .

In decreasing order, but as expected, the level of external leaf resistance (r_{ext}), the scaling factor *b* (Eq. 9), the soil resistance (\hat{R}_{gs}), and the canopy-scale quasi-laminar layer re-

Figure 4. Ensemble range of key O₃ uptake/deposition variables resulting from the perturbation of R_a , b, r_{ext} , \hat{R}_{gs} , and G_c within $\pm 20\%$ of their central estimate. Shown are simulated daily mean values of (**a**) O₃ uptake (F_{stC}), (**b**) the O₃ flux ratio (F_R), (**c**) O₃ deposition velocity (v_g) and (**d**) O₃ surface resistance (R_c) for the boreal needle-leaved evergreen forest at the finish FLUXNET site FI-Hyy for the year 2001. Red dashed: unperturbed model; yellow: median of all sensitivity runs; light-grey area: min–max range of all sensitivity runs. Simulated daily mean values for the respective site and year of (**e**) atmospheric O₃ concentrations O₃ and (**f**) cumulative uptake of O₃ (CUO) and canopy conductance G_c .

sistance (R_b) increase R_c and consequently reduce F_g and V_g . Reducing the non-stomatal deposition by increasing r_{ext} , b, \hat{R}_{gs} , and R_b increases the canopy internal O₃ concentration and thus stomatal O₃ uptake (F_{stC}) . The combined effects of a reduction in total deposition F_g and an increase in F_{stC} cause a positive correlation of F_R to r_{ext} , b, \hat{R}_{gs} , and R_b .

Increasing canopy conductance (G_c) increases stomatal O₃ uptake (F_{stC}) and thereby also increases V_g and F_g . The increased total O₃ uptake (F_g) decreases the surface resistance to O₃ uptake R_c , resulting in a negative correlation of R_c with G_c . The stronger increase in F_{stC} relative to F_g results in a positive correlation of F_R .

Despite these partial correlations, only changed values for r_{ext} and G_{c} have a notable effect on the predicted fluxes (Fig. 3b), whereas for the other factors (R_{a} , b, and \hat{R}_{gs}) the impact on the simulated fluxes is less than 0.1% due to a 1% change in the variables/parameters of the deposition scheme.

The flux ratio $F_{\rm R}$ is very little affected by varying $r_{\rm ext}$ and $G_{\rm c}$.

Notwithstanding the perturbations, all four O₃ related flux variables show a fairly narrow range of simulated values (Fig. 4). For all four variables the unperturbed model and the ensemble mean lie on top of each other (see dashed red and

yellow line in Fig. 4a–d). The seasonal course of the surface resistances and fluxes is maintained. The simulations show a strong day-to-day variability in F_{stC} , which is conserved with different parameter combinations and which is largely driven by the day-to-day variations in G_c and the atmospheric O₃ concentration (see Fig. 4f and e respectively). Ozone uptake by the leaves reduces the O₃ surface resistance during the growing season such that R_c becomes lowest. The cumulative uptake of O₃ (CUO) is lowest at the beginning of the growing season but not zero because the evergreen pine at the Hyytiälä site accumulates O₃ over several years (Fig. 4f). The CUO increases during the growing season and declines in autumn, when a larger fraction of old needles are shed.

The minor impact of the perturbations on the simulated O_3 uptake and deposition variables suggests that the calculated O_3 uptake is relatively robust against uncertainties in the parameterisation of some of the lesser known surface properties.

3.4 Regional simulations

We used the model to simulate the vegetation productivity, O₃ uptake, and associated ozone damage of plant produc-

tion over Europe for the period 2001–2010 (see Sect. 2.5 for modelling protocol).

Simulated mean annual GPP for the years 1982-2011 shows in general good agreement with an independent estimate of GPP based on upscaled eddy-covariance measurements (MTE; see Sect. 2.5), with OCN on average underestimating GPP by 16 % (European mean). A significant exception are cropland dominated areas (Fig. 5) in parts of eastern Europe, southern Russia, Turkey, and northern Spain, which show consistent overestimation of GPP by OCN of 400- $900 \,\mathrm{g}\,\mathrm{C}\,\mathrm{m}^{-2}\,\mathrm{yr}^{-1}$ (58 % overestimation on average). Regions with a strong disagreement coincide with high simulated LAI values by OCN and a higher simulated GPP in summer compared to the summer GPP by MTE. In addition, OCN simulates a longer growing season for croplands since sowing and harvest dates are not considered. It is worth noting, nevertheless, that there are no FLUXNET stations present in the regions of disagreement hotspots, making it difficult to assess the reliability of the MTE product in this region.

North of 60° N, OCN has the tendency to produce lower estimates of GPP than inferred from the observationbased product, which is particularly pronounced in lowproductivity mountain regions of Norway and Sweden. It is unclear whether this bias is indicative of a N limitation that is too strong in the OCN model.

Average decadal O₃ concentrations generally increase from northern to southern Europe (Fig. 6a) and with increasing altitude, with local deviations from this pattern in centres of substantial air pollution. The pattern of foliar O₃ uptake differs distinctly from that of the O₃ concentrations, showing highest uptake rates in central and eastern Europe and parts of southern Europe (Fig. 6b), associated with centres of high rates of simulated gross primary production (Fig. 5a) and thus canopy conductance. The cumulative O_3 uptake reaches values of 40–60 mmol m⁻² in large parts of central Europe (Fig. 6c). The highest accumulation rates of $80-110 \text{ mmol m}^{-2}$ are found in eastern Europe and parts of Scandinavia as well as in Italy, the Alps, and the Bordeaux region. The concentration-based exposure index AOT40 (Fig. 6d) shows a strong north-south gradient similar to the O₃ concentration (Fig. 6a) and is distinctly different to the flux-based CUO pattern (Fig. 6c).

Simulated reduction in mean decadal GPP due to O_3 range from 80 to $160 \text{ g C m}^{-2} \text{ yr}^{-1}$ over large areas of central, eastern, and south-eastern Europe (Fig. 7a) and is generally largest in regions of high productivity. The relative reduction in GPP is fairly consistent across large areas in Europe and averages 6–10% (Fig. 7b). Higher reductions in relative terms are found in regions with high cover of C₄ PFTs, e.g. the Black Sea area. Lower relative reductions are found in northern Europe and parts of southern Europe, where productivity is low and stomatal O₃ uptake is reduced by, for example, low O₃ concentrations or drought control on stomatal fluxes respectively. Slight increases or strong decreases in relative terms are found in regions with very small productivity like in northern Africa and the mountainous regions of Scandinavia. A slight increase in GPP might be caused by feedbacks of GPP damage on LAI, canopy conductance, and soil moisture content such that water savings, for example, enable a prolonged growing season and thus a slightly higher GPP. Overall, simulated European productivity has been reduced from 10.6 to 9.8 Pg C yr^{-1} corresponding to a 7.6% reduction.

The O₃-induced reductions in GPP are associated with a reduction in mean decadal transpiration rates of 8-15 mm yr⁻¹ over large parts of central and eastern Europe (Fig. 7c). These reductions correspond to 3-6 % of transpiration in central Europe and 6-10 % in northern Europe. As expected, the relative reductions in transpiration rates are therefore slightly less than for GPP due to the role of aerodynamic resistance in controlling water fluxes in addition to canopy conductance. Very high reductions in transpiration are found in the eastern Black Sea area associated with strong reductions in GPP and in the mountainous regions of Scandinavia, where absolute changes in transpiration are very small. Regionally (in particular in eastern Spain, northern Africa, and around the Black Sea) lower reductions in transpiration or even slight increases are found (Fig. 7d). These are related to O₃-induced soil moisture savings during the wet growing season, leading to lower water stress rates during the drier season. The very strong reduction in transpiration west of the Crimean Peninsula are related to the strong reductions in GPP mentioned above. Overall, simulated European mean transpiration has been reduced from 170.4 to 163.3 mm corresponding to a 4.2 % reduction.

3.5 Impacts of using the ozone deposition scheme

At the FI-Hyy site the canopy O_3 concentration, uptake and accumulated uptake (CUO) increases approximately 10– 15% for the D-STO model (non-stomatal depletion of O_3 is zero) and 20–25% for the ATM model version (canopy O_3 concentration is equal to the atmospheric concentration) compared to the standard deposition scheme (D) used here (Figs. 8a–c and A3). The exact values however are site- and PFT-specific (see Fig. A3 for the CH-Oe1 and IT-Ro1 site).

The regional impact of using the ozone deposition scheme on CUO is shown in Fig. 9. CUO substantially decreases for the D-STO (Fig. 9b) compared to the ATM model (Fig. 9a). Using the standard deposition model D (Fig. 9c) further reduces the CUO compared to the ATM version where the stomata respond directly to the atmospheric O_3 concentration.

Calculating the canopy O_3 concentration with the help of a deposition scheme that accounts for stomatal and nonstomatal O_3 deposition thus reduces O_3 accumulation in the vegetation.

Figure 5. Europe-wide simulated GPP and difference between modelled GPP by OCN and a GPP estimate by a FLUXNET-MTE product. Plotted, for the years 1982–2011, are (a) the simulated mean GPP accounting for ozone damage in $gCm^{-2} yr^{-1}$, (b) the mean differences for OCN minus MTE GPP in $gCm^{-2} yr^{-1}$, and (c) the mean simulated grid cell cover of the C₃-crop PFT in OCN, given as fractions of the total grid cell area.

Figure 6. Mean decadal (a) O_3 concentration (ppb), (b) canopy-integrated O_3 uptake into the leaves (nmol m⁻² s⁻¹), (c) canopy-integrated cumulative uptake of O_3 (CUO) (mmol m⁻²), and (d) AOT40 (ppm yr⁻¹), for Europe of the years 2001–2010.

4 Discussion

We extended the terrestrial biosphere model OCN by a scheme to account for the atmosphere–leaf transfer of O_3 in order to better account for air pollution effects on net photosynthesis and hence regional to global water, carbon, and nitrogen cycling. This ozone deposition scheme calculates canopy O_3 concentrations and uptake into the leaves depending on surface conditions and vegetation carbon uptake

Estimates of the regional damage to annual average GPP (-7.6%) and transpiration (-4.2%) simulated by OCN for 2001–2010 are lower than previously reported estimates. Meta-analyses suggest on average a 11 % (Wittig et al., 2007)

and a 21 % (Lombardozzi et al., 2013) reduction in instantaneous photosynthetic rates. However, because of carry-over effects, this does not necessarily translate directly into reductions in annual GPP. Damage estimates using the CLM suggest GPP reductions of 10–25 % in Europe and 10.8 % globally (Lombardozzi et al., 2015). Reductions in transpiration have been estimated as 5–20 % for Europe and 2.2 % globally (Lombardozzi et al., 2015). Lombardozzi et al. (2015), however, used fixed reductions of photosynthesis (12–20 %) independent of cumulative O₃ uptake for two out of three simulated plant types. Damage was only related to cumulative O₃ uptake for one plant type with a very small slope and hence little increase in damage due to increases in cu-

Figure 7. Mean decadal (a) reduction in GPP ($gCm^{-2}yr^{-1}$), (b) percent reduction in GPP, (c) reduction in transpiration ($mmyr^{-1}$), and (d) percent reduction in transpiration due to ozone damage averaged for the years 2001–2010.

Figure 8. Mean daily values of the (**a**) O_3 surface concentration (ppb), (**b**) canopy-integrated O_3 uptake into the leaves (nmol m⁻² s⁻¹), and (**c**) canopy-integrated cumulative uptake of O_3 (CUO) (mmol m⁻²) at the FLUXNET site FI-Hyy. Black: ATM model; dark blue: D-STO model; light blue: standard deposition model (D).

mulative O₃ uptake. Sitch et al. (2007) simulated global GPP reductions of 8-14% (under elevated and fixed CO₂ respectively) for low plant ozone sensitivity and 15–23% (under elevated and fixed CO₂ respectively) for high plant ozone sensitivity for the year 2100 compared to 1901. For the Euro-Mediterranean region an average GPP reduction of 22% was estimated by the ORCHIDEE model for the year 2002 using an AOT40-based approach (Anav et al., 2011).

Possible causes for the discrepancies are differences in dose–response relationships, flux thresholds accounting for the detoxification ability of the plants, atmospheric O_3 concentrations, simulation periods, and simulation of climate

change (elevated CO_2) and air pollution (nitrogen deposition). We discuss the most important aspects below. To elucidate the reasons for the substantial differences in the damage estimates, further studies are necessary to disentangle the combined effects of differing flux thresholds, damage relationships, climate change, and deposition of nitrogen.

4.1 Atmosphere–leaf transport of ozone

The sensitivity analysis in Sect. 3.3 demonstrates that the estimate of canopy conductance (G_c) is crucial for calculating plant ozone uptake; therefore, reliable observations to

Figure 9. Mean decadal canopy-integrated cumulative uptake of O_3 (CUO) (mmol m⁻²) for Europe of the years 2001–2010. (a) Canopy O_3 concentration is equal to the atmospheric concentration (ATM) and (b) O_3 surface resistance is only determined by stomatal resistance (D-STO). (c) Standard ozone deposition scheme (D).

constrain modelled canopy conductance are highly important. The site-level evaluation shows that OCN produces reasonable estimates of simulated gross primary productivity (GPP), canopy conductance, and latent heat flux (LE) compared to FLUXNET observations. This agreement has to be seen in the light of the diverse set of random and systematic errors in the eddy-covariance measurements as well as derived flux and conductance estimates (Richardson et al., 2012; Knauer et al., 2016). Next to uncertainties about the strength of the aerodynamic coupling between atmosphere and canopy, problems exist at many sites with respect to the energy balance closure (Wilson et al., 2002). Failure to close the energy balance can cause underestimation of sensible and latent heat, as well as an overestimation of available energy, with mean bias of 20 % where the imbalance is greatest during nocturnal periods (Wilson et al., 2002). This imbalance propagates to estimates of canopy conductance, which is inferred from latent and sensible heat fluxes. The energy imbalance furthermore appears to affect estimates of CO₂ uptake and respiration (Wilson et al., 2002). Flux partitioning algorithms which extrapolate night-time ecosystem respiration estimates to daytime introduce an additional potential for bias in the estimation of GPP (Reichstein et al., 2005). Nevertheless, the general good agreement of $G_{\rm c}$ compared to FLUXNET estimates, together with the finding that modelled values of key ozone variables are within observed ranges, supports the use of the extended OCN model for determining the effect of air pollution on terrestrial carbon, nitrogen, and water cycling.

A key difference from previous studies is our use of the use of the ozone deposition scheme, which reduces O_3 surface concentrations and hence also the estimated O_3 uptake and accumulation (see Fig. 9). Accounting for stomatal and non-stomatal deposition in the calculation of the surface O_3 concentrations considerably impacts the estimated plant uptake of O_3 . O_3 uptake and cumulated uptake are considerably overestimated when atmospheric ozone concentrations are used to calculate O_3 uptake or when in the calculation of leaf-level O_3 concentrations only stomatal destruction of O_3 is regarded (see Sect. 3.5). Compared to the values that would have been obtained if the CTM O_3 concentrations of the atmosphere (from ca. 45 m height) had been used directly at the leaf surface, our simulations yield a decrease in CUO by 31 % (European means for the years 2001–2010). A significant fraction of the decreases is associated with nonstomatal O_3 uptake and destruction at the surface, which decreased the simulated cumulative O_3 uptake by 16 %. To obtain an estimate of CUO that is as accurate as possible, stomatal and non-stomatal destruction of O_3 and their impacts on canopy O_3 concentrations should be accounted for in terrestrial biosphere models (Tuovinen et al., 2009). Fluxbased ozone damage assessment models may overestimate ozone-related damage unless they properly account for nonstomatal O_3 uptake at the surface.

We note that vegetation type and dynamics also impact the stomatal and non-stomatal deposition of O₃, and hence the calculation of the leaf-level O₃ concentrations. This impedes the use of CTM-derived leaf-level O3 concentration, as CTM and vegetation specifications may differ strongly. Using the O₃ from the lowest level of the atmosphere reduces this problem, but running a terrestrial biosphere with a fixed atmospheric boundary condition (and not coupled to a atmospheric CTM) is still a simplification that prevents biosphere-atmosphere feedbacks and therefore to potential discrepancies between vegetation and CTM. Not accounting for this feedback and stomatal and non-stomatal O₃ deposition might result in an overestimation of O₃ uptake and hence potential damage in the vegetation model. The deposition scheme in OCN offers the potential to couple vegetation and chemical transport modelling and is thus a step forward towards coupled atmosphere-vegetation simulations.

4.2 Estimating vegetation damage from ozone uptake

A key aspect of ozone damage estimates are the assumed dose–response relationships, which relate O_3 uptake to plant damage. The use of flux-based relationships is generally thought to improve damage estimates compared to concentration-based metrics (e.g. AOT40), since stomatal constraints on O_3 uptake are taken into account, yielding

very different spatial patterns of exposure hotspots (Simpson et al., 2007). Similar to Simpson et al. (2007), we find strongly differing patterns between cumulative O_3 uptake (CUO) and AOT40 in our simulations here (see Fig. 6), where highest exposure is found not only in southern Europe, where the O_3 concentration is highest, but also in eastern Europe.

Several dose-response relationships exist for biomass or yield damage (see LRTAP Convention, 2010, for an overview), there are few estimates of the likely cause of this damage, i.e. the reduction in net photosynthesis. In this study, the damage relationship to net photosynthesis proposed by Wittig et al. (2007) is used. The major advantage of this relationship is that it has been obtained by meta-analysis of many different tree species and thus might indicate an average response. This relationship is therefore used for all modelled PFTs. However, a substantial disadvantage is that the meta-analysis implies a damage of 6.16% at zero accumulated O₃ uptake with a rather minor increase in damage with increasing O₃ uptake. This might be an important factor explaining the lower ozone damage estimates of OCN compared to other terrestrial biosphere models. In Lombardozzi et al. (2015) also a damage relationship derived from a meta-analysis is used; however, the disadvantage of predicted ozone damage at zero accumulated O₃ uptake there is even greater compared to Wittig et al. (2007). Two out of three modelled PFTs assume -12.5 and -16.1 % ozone damage at zero accumulated O3 uptake (broadleaved and needle-leaved species respectively) and the third PFT (grass and crop) assumes 19.8 % at zero accumulated O3 uptake together with a small increase in damage with increasing O3 uptake (Lombardozzi et al., 2015). An evaluation of the different proposed damage functions implemented in terrestrial biosphere models (e.g. Wittig et al., 2007; Lombardozzi et al., 2015; Sitch et al., 2007) is necessary to elucidate which are able to reproduce, for example, observed patterns of biomass damage and hence might be suitable to predict regional or global damage estimates. Furthermore, new damage relationships for different plant groups would be desirable for use in dynamic vegetation models to improve the ozone damage estimates, for example by ensuring an intercept close to one (zero damage at zero accumulated O_3).

The use of a (possibly PFT-specific) flux threshold and its magnitude naturally also impacts the CUOY (canopy cumulative O₃ uptake above a threshold of *Y* nmol m⁻² s⁻¹) and possible damage estimates (Tuovinen et al., 2007). The included damage function (Wittig et al., 2007) is designed for the CUO without a flux threshold (*Y* = 0). The impacts of using different flux thresholds on regional estimates of O₃ uptake, accumulation, and damage are still poorly understood and need further research.

It should be noted that using plant O_3 uptake based on leaf-level O_3 concentrations, as done here, together with empirical ozone damage functions, where O_3 uptake is calculated from atmospheric O_3 concentrations, introduces a discrepancy. The O_3 uptake rates of the experiments forming the damage relationship however are calculated from mean ozone concentrations, for example, over the exposure period and the respective average stomatal conductances (Wittig et al., 2007) such that the estimated O_3 uptake and cumulated uptake used to derive the damage relationship are coarse approximations and underlie considerable uncertainty. The error introduced in OCN by using leaf-level O_3 concentrations instead of atmospheric concentrations seems small, especially since the use of the leaf-level O_3 concentration is the physiologically more appropriate approach.

In the current version of OCN only ozone damage to net photosynthesis is accounted for. Other processes like detoxification of O₃ and injury repair (Wieser and Matyssek, 2007; Ainsworth et al., 2012), stomatal sluggishness (Paoletti and Grulke, 2010), and early senescence (Gielen et al., 2007; Ainsworth et al., 2012) are not accounted for. Decoupling of photosynthesis and stomatal conductance (e.g. through stomatal sluggishness) might impact GPP and transpiration damage estimates and requires further analysis. Accounting for direct impairment of the stomata might reduce the reported reductions in transpiration or even cause an increase compared to simulations with no ozone damage. Reduced carbon gain due to early senescence might impact the growth and biomass accumulation of plants (Gielen et al., 2007; Ainsworth et al., 2012) and ought to also be included in terrestrial biosphere models.

5 Conclusions

Estimates of O₃ impacts on plant gross primary productivity vary substantially. This uncertainty in the magnitude of damage and hence the potential impact on the global carbon budget is related to different approaches to model ozone damage. The use of a comparatively detailed ozone deposition scheme that accounts for non-stomatal as well as stomatal deposition when calculating surface O3 concentrations substantially affects O₃ uptake in our model. We therefore recommend that non-stomatal O₃ uptake be routinely included in model assessments of ozone damage to obtain a better estimate of ozone uptake and accumulation. We show that O₃ uptake into the stomata is mainly determined by the canopy conductance in the ozone deposition scheme used here. This highlights the importance of reliable modelling of canopy conductances as well as realistic surface O₃ concentrations to obtain as accurate as possible estimates of O₃ uptake, which are the basis for plant damage estimates. Suitable ozone damage relationships to net photosynthesis for different plant groups are essential to relate the accumulated O₃ uptake to plant damage in a model. Mean responses of plant groups similar to commonly modelled PFTs are also desirable. Only a few damage relationships exist, which indicate mean responses of several species (e.g. Wittig et al., 2007; Lombardozzi et al., 2013, which, however, propose very different relationships).

Furthermore, the impact of the plants ability to detoxify O_3 should be considered by using, for example, flux thresholds, as well as the combined effects of O_3 with air pollution (nitrogen deposition) and climate change (elevated CO_2) on the plants' carbon uptake.

6 Data availability

No original measurements were used. The FLUXNET measurements can be accessed from the La Thuile Dataset (http: //fluxnet.fluxdata.org/data/la-thuile-dataset/).

Appendix A: Aerodynamic resistance

To calculate the O₃ deposition of the free atmosphere at the lowest level of the CTM (approximately 45 m) to the vegetation canopy, it is necessary to know the aerodynamic resistance between these heights ($R_{a,45}$). These data are modeland land-cover-specific, and thus not provided by the CTM. Instead, we approximate $R_{a,45}$ from the wind speed at 45 m height (u_{45}) and the friction velocity u_* according to

$$R_{a,45} = \frac{u_{45}}{{u_*}^2},\tag{A1}$$

where u_* is calculated from the wind speed at 10 m height (u_{10}) using the atmospheric resistance calculations of the ORCHIDEE model (Krinner et al., 2005). The wind at 45 m (u_{45}) is approximated by assuming the logarithmic wind profile for neutral atmospheric conditions (Monteith and Unsworth, 2007) due to the lack of information on any other relevant atmospheric properties at 45 m height:

$$u_{45} = u_{10} \frac{\log(\frac{45}{z_0})}{\log(\frac{10}{z_0})},\tag{A2}$$

where z_0 is the roughness length.

eaves depending on surface conditions and vegetation carbon uptake.

Appendix B: Emissions inventory

Emissions for the EMEP model were derived by merging data from three main sources. Firstly, emissions for 2005 and 2010 were taken from the ECLIPSE database produced by IIASA for various EU Projects and the Task Force on Hemispheric Transport of Air Pollution (Amann et al., 2013; Stohl et al., 2015), although with improved spatial resolution over Europe by making use of the 7 km resolution MACC-2 emissions produced by TNO (Kuenen et al., 2014). For 1990, emissions from land-based sources were taken directly from the EMEP database for that year, since 1990 had been the subject of recent review and quality control (e.g. Mareckova et al., 2013). Emissions between 1990 and 2005 were estimated via linear interpolation between these 2005 and EMEP 1990 values. Emissions prior to 1990 were derived by scaling the EMEP 1990 emissions by the emissions ratios found in the historical data series of Lamarque et al. (2010).

Emissions of the biogenic hydrocarbon isoprene from vegetation are calculated using the model's land cover and meteorological data (Simpson et al., 2012, 1999). Emissions of NO from biogenic sources (soils, forest fires, etc.) were set to zero given both their uncertainty and sporadic occurrence. Tests have shown that this approximation has only a small impact on annual deposition totals to the EU area, even for simulations at the start of the 20th century. Volcanic emissions of sulfur dioxide (SO₂) were set to a constant value from the year 2010.
Longitude	Climate ^a	PFT ^b	Years	Reference
11.32	Cfb	TeH	2002-2005	Wohlfahrt et al. (2008b)
7.73	Cfb	TeH	2002-2006	Ammann et al. (2007)
11.87	Cfb	CEF	1997–1998	Rebmann et al. (2004)
10.45	Cfb	TeBDF	2000-2006	Kutsch et al. (2008)
10.66	Cfb	TeH	2004-2006	Scherer-Lorenzen et al. (2007)
13.57	Cfb	CEF	2004-2006	Grünwald and Bernhofer (2007)
12.08	Cfb	TeH	2005-2006	Gilmanov et al. (2007)
11.65	Cfb	TeBDF	1997-2006	Lagergren et al. (2008)
-0.32	Csa	CEF	1999–2004	Sanz et al. (2004)
24.29	Dfc	CEF	2001-2006	Suni et al. (2003)
7.06	Cfb	TeBDF	2001-2006	Granier et al. (2000)
-0.77	Cfb	CEF	2003-2006	Berbigier et al. (2001)
3.60	Csa	TeBEF	2001-2006	Keenan et al. (2010)
35.05	BSh	CEF	2001-2002	Grünzweig et al. (2003)
12.38	Csa	TeBEF	2001-2006	Tirone et al. (2003)
11.28	Cfb	CEF	2006-2006	Marcolla et al. (2003)
11.05	Cfb	TeH	2003-2006	Wohlfahrt et al. (2008a)
9.06	Cfa	TeBDF	2003-2004	Migliavacca et al. (2009)
11.93	Csa	TeBDF	2002-2006	Rey et al. (2002)

2002-2006

2003-2006

1997-2006

2002-2006

2003-2005

2000 - 2002

1996-1997

Tedeschi et al. (2006)

Chiesi et al. (2005)

Dolman et al. (2002)

Pereira et al. (2007)

Pereira et al. (2007)

Lindroth et al. (2008)

Lagergren et al. (2008)

Table A1. Characteristics of the FLUXNET sites used in this study.

Latitude

47.12

47.29

50.14

51.08

51.28

50.96

55.68

55.49

39.35

61.85

48.67

44.72

43.74

31.34

41.71

45.96

46.02

45.20

42.41

42.39

43.73

52.17

38.64

38.54

64.11

60.09

11.92

10.28

5.74

-8.60

-8.00

19.46

17.48

Csa

Csa

Cfb

Csa

Csa

Dfc

Dfb

Sites

AT-Neu

CH-Oe1

DE-Bay

DE-Hai

DE-Meh

DE-Tha

DK-Lva

DK-Sor

ES-ES1

FI-Hyy

FR-Hes

FR-LBr

FR-Pue

IL-Yat

IT-Cpz

IT-Lav

IT-MBo

IT-PT1

IT-Ro1

IT-Ro2

IT-SRo

NL-Loo

PT-Esp

PT-Mi1

SE-Fla

SE-Nor

^a Köppen–Geiger climate zone (BSh: hot arid steppe; Cfa: humid, warm temperate, hot summer; Cfb: humid, warm temperate, warm summer; Csa: summer dry, warm temperate, hot summer; Dfb: cold, humid, warm summer; Dfc: cold, humid, cold summer). ^b Plant functional type (TeBEF: temperate broadleaf evergreen forest; TeBDF: temperate broadleaf deciduous forest; CEF: coniferous evergreen forest; TeS: temperate open woodland with C_3 grass; TeH: C_3 grassland).

TeBDF

TeBEF

CEF

CEF

TeS

CEF

CEF

Table A2. Coefficient of determination (R^2) and root mean square error (RMSE) for GPP, canopy conductance (G_c), and latent heat flux (LE) for all sites and for sites dominated by broadleaved trees, needle-leaved trees, C₃ grass, and C₃ grass excluding the AT-Neu site (outlier).

	All sites	Broadleaved	Needle-leaved	C ₃ grass	C ₃ grass (excluding AT-Neu)
R^2 : GPP	0.465	0.714	0.8	0.139	0.058
RMSE: GPP	3.495	3.771	1.944	5.175	2.257
R^2 : G_c	0.458	0.69	0.722	0.013	0.01
RMSE: G _c	0.001	0.002	0.001	0.002	0.002
R^2 : LE	0.566	0.725	0.9	0.022	0.002
RMSE: LE	30.897	39.725	13.977	37.124	40.493

63

Figure A1. Comparison of measured (a) GPP, (b) G_c , (c) latent heat flux (LE), and (d) LAI at 26 European FLUXNET sites (red) and simulations by OCN (blue). Displayed are means and standard deviation of daily means of the measuring/simulation period, with the exceptions of FLUXNET-derived LAI, which is based on point measurements.

Figure A2. Simulated monthly mean values of O₃ uptake (F_{stC}), O₃ deposition velocity (V_g), O₃ surface resistance (R_c), and the flux ratio (F_R) for sites dominated by broadleaved trees (left column), needle-leaved trees (central column), and C₃ grasses (right column). The colour indicates the location of the site. Dark blue: Denmark, Sweden, and Finland; light blue: Germany, France, and Netherlands; green: Austria and Switzerland; red: Italy, Portugal, Spain, and Israel. Broken line: mean of all sites and years of the 12 months.

Figure A3. Differences in mean daily values of the (a) O_3 surface concentration (ppb), (b) canopy-integrated O_3 uptake into the leaves (nmol m⁻² s⁻¹), and (c) canopy-integrated cumulative uptake of O_3 (CUO) (mmol m⁻²) for the three FLUXNET sites CH-Oe1, FI-Hyy and IT-Ro1. Blue: difference between the D-STO model and the standard model (D); black: difference between the ATM model and the standard model (D).

M. Franz et al.: Development and evaluation of an ozone deposition scheme

Acknowledgements. We would like to thank Magnuz Engardt of the Swedish Meteorological and Hydrological Institute for providing the RCA3 climate dataset. The research leading to this publication was supported by the EU Framework Programme through grant no. 282910 (ECLAIRE), as well as the Max Planck Society for the Advancement of Science e.V. through the ENIGMA project. This project received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement no. 647204; QUINCY). Computer time for EMEP model runs was supported by the Research Council of Norway (Programme for Supercomputing).

Edited by: A. V. Eliseev

Reviewed by: F. Dentener and one anonymous referee

References

- Ainsworth, E. A., Yendrek, C. R., Sitch, S., Collins, W. J., and Emberson, L. D.: The Effects of Tropospheric Ozone on Net Primary Productivity and Implications for Climate Change, Ann. Rev. Plant Biol., 63, 637–661, 2012.
- Amann, M., Klimont, Z., and Wagner, F.: Regional and Global Emissions of Air Pollutants: Recent Trends and Future Scenarios, Ann. Rev. Env. Res., 38, 31–55, doi:10.1146/annurevenviron-052912-173303, 2013.
- Ammann, C., Flechard, C., Leifeld, J., Neftel, A., and Fuhrer, J.: The carbon budget of newly established temperate grassland depends on management intensity, Agr. Ecosys. Environ., 121, 5– 20, 2007.
- Anav, A., Menut, L., Khvorostyanov, D., and Viovy, N.: Impact of tropospheric ozone on the Euro-Mediterranean vegetation, Glob. Change Biol., 17, 2342–2359, 2011.
- Arneth, A., Harrison, S. P., Zaehle, S., Tsigaridis, K., Menon, S., Bartlein, P. J., Feichter, J., Korhola, A., Kulmala, M., O'Donnell, D., Schurgers, G., Sorvari, S., and Vesala, T.: Terrestrial biogeochemical feedbacks in the climate system, Nat. Geosci., 3, 525– 532, doi:10.1038/ngeo905, 2010.
- Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., Anthoni, P., Bernhofer, C., Davis, K., Evans, R., Fuentes, J., Goldstein, A., Katul, G., Law, B., Lee, X., Malhi, Y., Meyers, T., Munger, W., Oechel, W., and Paw, U. K.: FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities, Bull. Am. Meteorol. Soc., 82, 2415–2434, 2001.
- Berbigier, P., Bonnefond, J.-M., and Mellmann, P.: CO₂ and water vapour fluxes for 2 years above Euroflux forest site, Agr. Forest Meteorol., 108, 183–197, 2001.
- Chiesi, M., Maselli, F., Bindi, M., Fibbi, L., Cherubini, P., Arlotta, E., Tirone, G., Matteucci, G., and Seufert, G.: Modelling carbon budget of Mediterranean forests using ground and remote sensing measurements, Agr. Forest Meteorol., 135, 22–34, 2005.
- Cieslik, S. A.: Ozone uptake by various surface types: a comparison between dose and exposure, Atmos. Environ., 38, 2409–2420, 2004.
- Cooper, O. R., Parrish, D., Ziemke, J., Balashov, N., Cupeiro, M., Galbally, I., Gilge, S., Horowitz, L., Jensen, N., Lamarque, J.-F., Naik, V., Oltmans, S., Schwab, J., Shindell, D., Thompson, A., Thouret, V., Wang, Y., and Zbinden, R.: Global distribution and

trends of tropospheric ozone: An observation-based review, Elementa, 2, 000029, doi:10.12952/journal.elementa.000029, 2014.

- Coyle, M., Nemitz, E., Storeton-West, R., Fowler, D., and Cape, J. N.: Measurements of ozone deposition to a potato canopy, Agr. Forest Meteorol., 149, 655–666, 2009.
- Dolman, A., Moors, E., and Elbers, J.: The carbon uptake of a mid latitude pine forest growing on sandy soil, Agr. Forest Meteorol., 111, 157–170, 2002.
- Ducoudré, N. I., Laval, K., and Perrier, A.: SECHIBA, a new set of parameterizations of the hydrologic exchanges at the landatmosphere interface within the LMD atmospheric general circulation model, J. Clim., 6, 248–273, 1993.
- Emberson, L., Ashmore, M., Cambridge, H., Simpson, D., and Tuovinen, J.: Modelling stomatal ozone flux across Europe, Environ. Pollut., 109, 403–413, 2000.
- Emberson, L., Ashmore, M., Simpson, D., Tuovinen, J.-P., and Cambridge, H.: Modelling and mapping ozone deposition in Europe, Water Air Soil Pollut., 130, 577–582, 2001.
- Engardt, M., Simpson, D., and Granat, L.: Historical and projected (1900 to 2050) deposition of sulphur and nitrogen in Europe, submitted, 2017.
- Felzer, B., Kicklighter, D., Melillo, J., Wang, C., Zhuang, Q., and Prinn, R.: Effects of ozone on net primary production and carbon sequestration in the conterminous United States using a biogeochemistry model, Tellus B, 56, 230–248, 2004.
- Felzer, B., Reilly, J., Melillo, J., Kicklighter, D., Sarofim, M., Wang, C., Prinn, R., and Zhuang, Q.: Future effects of ozone on carbon sequestration and climate change policy using a global biogeochemical model, Climatic Change, 73, 345–373, 2005.
- Fiore, A., Dentener, F., Wild, O., Cuvelier, C., Schultz, M., Textor, C., Schulz, M., Atherton, C., Bergmann, D., Bey, I., Carmichael, G., Doherty, R., Duncan, B., Faluvegi, G., Folberth, G., Garcia Vivanco, M., Gauss, M., Gong, S., Hauglustaine, D., Hess, P., Holloway, T., Horowitz, L., Isaksen, I., Jacob, D., Jonson, J., Kaminski, J., keating, T., Lupu, A., MacKenzie, I., Marmer, E., Montanaro, V., Park, R., Pringle, K., Pyle, J., Sanderson, M., Schroeder, S., Shindell, D., Stevenson, D., Szopa, S., Van Dingenen, R., Wind, P., Wojcik, G., Wu, S., Zeng, G., and Zuber, A.: Multi-model estimates of intercontinental sourcereceptor relationships for ozone pollution, J. Geophys. Res., 114, doi:10.1029/2008JD010816, doi:10.1029/2008JD010816, 2009.
- Fowler, D., Pilegaard, K., Sutton, M., Ambus, P., Raivonen, M., Duyzer, J., Simpson, D., Fagerli, H., Fuzzi, S., Schjørring, J., Granieri, C., Neftel, A., Isaksen, I., Laj, P., Maione, M., Monks, P., Burkhardt, J., Daemmgen, U., Neirynck, J., Personne, E., Wichink-Kruit, R., Butterbach-Bahl, K., Flechard, C., Tuovinen, J., Coyle, M., Gerosa, G., Loubet, B., Altimir, N., Gruenhage, N., Ammann, C., Cieslik, S., Paoletti, E., Mikkelsen, T., Ro-Poulsen, H., Cellier, P., Cape, J., Horvath, L., Loreto, F., Niinemets, Ü., Palmer, P., Rinne, J., Misztal, P., Nemitz, E., Nilsson, D., Pryor, S., Gallagher, M., Vesala, T., Skiba, U., Brüggemann, N., and Zechmeister-Boltenstern, S.: Atmospheric composition change: ecosystems–atmosphere interactions, Atmos. Environ., 43, 5193–5267, 2009.
- Friend, A. and Kiang, N.: Land surface model development for the GISS GCM: Effects of improved canopy physiology on simulated climate, J. Clim., 18, 2883–2902, 2005.

- Fusco, A. and Logan, J.: Analysis of 1970–1995 trends in tropospheric ozone at Northern Hemisphere midlatitudes with the GEOS-CHEM model, J. Geophys. Res, 108, 1988–1997, 2003.
- Gerosa, G., Cieslik, S., and Ballarin-Denti, A.: Micrometeorological determination of time-integrated stomatal ozone fluxes over wheat: a case study in Northern Italy, Atmos. Environ., 37, 777– 788, 2003.
- Gerosa, G., Marzuoli, R., Cieslik, S., and Ballarin-Denti, A.: Stomatal ozone fluxes over a barley field in Italy, "Effective exposure" as a possible link between exposure-and flux-based approaches, Atmos. Environ., 38, 2421–2432, 2004.
- Gerosa, G., Vitale, M., Finco, A., Manes, F., Denti, A. B., and Cieslik, S.: Ozone uptake by an evergreen Mediterranean forest (Quercus ilex) in Italy. Part I: Micrometeorological flux measurements and flux partitioning, Atmos. Environ., 39, 3255–3266, 2005.
- Gielen, B., Löw, M., Deckmyn, G., Metzger, U., Franck, F., Heerdt, C., Matyssek, R., Valcke, R., and Ceulemans, R.: Chronic ozone exposure affects leaf senescence of adult beech trees: a chlorophyll fluorescence approach, J. Experim. Bot., 58, 785–795, doi:10.1093/jxb/erl222, 2007.
- Gilmanov, T., Soussana, J., Aires, L., Allard, V., Ammann, C., Balzarolo, M., Barcza, Z., Bernhofer, C., Campbell, C., Cernusca, A., Cescatti, A., Clifton-Brown, J., Dirks, B., Dore, S., Eugster, W., Fuhrer, J., Gimeno, C., Gruenwald, T., Haszpra, L., Hensen, A., Ibrom, A., Jacobs, A., Jones, M., Lanigan, G., Laurila, T., Lohila, A., Manca, G., Marcolla, B., Nagy, Z., Pilegaard, K., Pinter, K., Pio, C Raschi, A., Rogiers, N., Sanz, M., Stefani, P., Sutton, M., Tuba, Z., Valentini, R., Williams, M., and Wohlfahrt, G.: Partitioning European grassland net ecosystem CO₂ exchange into gross primary productivity and ecosystem respiration using light response function analysis, Agr. Ecosys. Environ., 121, 93–120, 2007.
- Granier, A., Ceschia, E., Damesin, C., Dufrêne, E., Epron, D., Gross, P., Lebaube, S., Le Dantec, V., Le Goff, N., Lemoine, D., Lucot, E., Ottorini, J., Pontailler, J., and Saugier, B.: The carbon balance of a young beech forest, Funct. Ecol., 14, 312–325, 2000.
- Grünwald, T. and Bernhofer, C.: A decade of carbon, water and energy flux measurements of an old spruce forest at the Anchor Station Tharandt, Tellus B, 59, 387–396, 2007.
- Grünzweig, J., Lin, T., Rotenberg, E., Schwartz, A., and Yakir, D.: Carbon sequestration in arid-land forest, Glob. Change Biol., 9, 791–799, 2003.
- Hardacre, C., Wild, O., and Emberson, L.: An evaluation of ozone dry deposition in global scale chemistry climate models, Atmos. Chem. Phys., 15, 6419–6436, doi:10.5194/acp-15-6419-2015, 2015.
- Helton, J. and Davis, F.: Illustration of sampling-based methods for uncertainty and sensitivity analysis, Risk Anal., 22, 591–622, 2002.
- Jenkin, M.: Trends in ozone concentration distributions in the UK since 1990: Local, regional and global influences, Atmos. Environ., 42, 5434–5445, 2008.
- Jung, M., Reichstein, M., Margolis, H., Cescatti, A., Richardson, A., Arain, M., Arneth, A., Bernhofer, C., Bonal, D., Chen, J., Gianelle, D., Gobron, N., Kiely, G., Kutsch, W., Lasslop, G., Law, B., Lindroth, A., Merbold, L., Montagnani, L., Moors, E., Papale, D., Sottocornola, M., Vaccari, F., and Williams, C.: Global patterns of land-atmosphere fluxes of carbon dioxide, la-

tent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations, J. Geophys. Res.-Biogeo., 116, g00J07, doi:10.1029/2010JG001566, 2011.

- Kangasjärvi, J., Talvinen, J., Utriainen, M., and Karjalainen, R.: Plant defence systems induced by ozone, Plant Cell Environ., 17, 783–794, 1994.
- Keenan, T., Sabate, S., and Gracia, C.: Soil water stress and coupled photosynthesis–conductance models: Bridging the gap between conflicting reports on the relative roles of stomatal, mesophyll conductance and biochemical limitations to photosynthesis, Agr. Forest Meteorol., 150, 443–453, 2010.
- Keronen, P., Reissell, A., Rannik, U., Pohja, T., Siivola, E., Hiltunen, V., Hari, P., Kulmala, M., and Vesala, T.: Ozone flux measurements over a Scots pine forest using eddy covariance method: performance evaluation and comparison with fluxprofile method, Boreal Environ. Res., 8, 425–444, 2003.
- Kjellstrom, E., Nikulin, G., Hansson, U., Strandberg, G., and Ullerstig, A.: 21st century changes in the European climate: uncertainties derived from an ensemble of regional climate model simulations, Tellus A, 63, 24–40, doi:10.1111/j.1600-0870.2010.00475.x, 2011.
- Klingberg, J., Danielsson, H., Simpson, D., and Pleijel, H.: Comparison of modelled and measured ozone concentrations and meteorology for a site in south-west Sweden: Implications for ozone uptake calculations, Environ. Poll., 115, 99–111, 2008.
- Knauer, J., Werner, C., and Zaehle, S.: Evaluating stomatal models and their atmospheric drought response in a land surface scheme: A multibiome analysis, J. Geophys. Res.-Biogeo., 120, 1894– 1911, 2015.
- Knauer, J., Zaehle, S., Reichstein, M., Medlyn, B. E., Forkel, M., Hagemann, S., and Werner, C.: The response of ecosystem wateruse efficiency to rising atmospheric CO₂ concentrations: sensitivity and large-scale biogeochemical implications, New Phytol., 2016–22438,, doi:10.1111/nph.14288, 2016.
- Krinner, G., Viovy, N., de Noblet-Ducoudré, N., Ogée, J., Polcher, J., Friedlingstein, P., Ciais, P., Sitch, S., and Prentice, I.: A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system, Global Biogeochem. Cy., 19, GB1015, doi:10.1029/2003GB002199, 2005.
- Kronfuß, G., Polle, A., Tausz, M., Havranek, W., and Wieser, G.: Effects of ozone and mild drought stress on gas exchange, antioxidants and chloroplast pigments in current-year needles of young Norway spruce (*Picea abies* (L.) Karst.), Trees-Struct. Funct., 12, 482–489, 1998.
- Kuenen, J., Denier van der Gon, H., Visschedijk, A., van der Brugh, H., and van Gijlswijk, R.: MACC European emission inventory for the years 2003–2007, TNO Report TNO-060-UT-2011-00588, TNO, Utrecht, the Netherlands, www.tno.nl, 2011.
- Kuenen, J., Visschedijk, A., Jozwicka, M., and Denier van der Gon, H.: TNO-MACC_II emission inventory; a multi-year (2003– 2009) consistent high-resolution European emission inventory for air quality modelling, Atmos. Chem. Phys., 14, 10963, doi:10.5194/acp-14-10963-2014, 2014.
- Kutsch, W. L., Kolle, O., Rebmann, C., Knohl, A., Ziegler, W., and Schulze, E.-D.: Advection and resulting CO₂ exchange uncertainty in a tall forest in central Germany, Ecol. Appl., 18, 1391– 1405, 2008.
- Lagergren, F., Lindroth, A., Dellwik, E., Ibrom, A., Lankreijer, H., Launiainen, S., Mölder, M., Kolari, P., Pilegaard, K., and Vesala,

M. Franz et al.: Development and evaluation of an ozone deposition scheme

T.: Biophysical controls on CO_2 fluxes of three northern forests based on long-term eddy covariance data, Tellus B, 60, 143–152, 2008.

- Laisk, A., Kull, O., and Moldau, H.: Ozone concentration in leaf intercellular air spaces is close to zero, Plant Physiol., 90, 1163– 1167, 1989.
- Lamarque, J. F., Bond, T. C., Eyring, V., Granier, C., Heil, A., Klimont, Z., Lee, D., Liousse, C., Mieville, A., Owen, B., Schultz, M. G., Shindell, D., Smith, S. J., Stehfest, E., Van Aardenne, J., Cooper, O. R., Kainuma, M., Mahowald, N., Mc-Connell, J. R., Naik, V., Riahi, K., and van Vuuren, D. P.: Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application, Atmos. Chem. Physics, 10, 7017–7039, doi:10.5194/acp-10-7017-2010, 2010.
- Le Quéré, C., Moriarty, R., Andrew, R. M., Peters, G. P., Ciais, P., Friedlingstein, P., Jones, S. D., Sitch, S., Tans, P., Arneth, A., Boden, T. A., Bopp, L., Bozec, Y., Canadell, J. G., Chini, L. P., Chevallier, F., Cosca, C. E., Harris, I., Hoppema, M., Houghton, R. A., House, J. I., Jain, A. K., Johannessen, T., Kato, E., Keeling, R. F., Kitidis, V., Klein Goldewijk, K., Koven, C., Landa, C. S., Landschützer, P., Lenton, A., Lima, I. D., Marland, G., Mathis, J. T., Metzl, N., Nojiri, Y., Olsen, A., Ono, T., Peng, S., Peters, W., Pfeil, B., Poulter, B., Raupach, M. R., Regnier, P., Rödenbeck, C., Saito, S., Salisbury, J. E., Schuster, U., Schwinger, J., Séférian, R., Segschneider, J., Steinhoff, T., Stocker, B. D., Sutton, A. J., Takahashi, T., Tilbrook, B., van der Werf, G. R., Viovy, N., Wang, Y.-P., Wanninkhof, R., Wiltshire, A., and Zeng, N.: Global carbon budget 2014, Earth Syst. Sci. Data, 7, 47–85, doi:10.5194/essd-7-47-2015, 2015.
- Lindroth, A., Klemedtsson, L., Grelle, A., Weslien, P., and Langvall, O.: Measurement of net ecosystem exchange, productivity and respiration in three spruce forests in Sweden shows unexpectedly large soil carbon losses, Biogeochemistry, 89, 43–60, 2008.
- Lombardozzi, D., Sparks, J. P., and Bonan, G.: Integrating O₃ influences on terrestrial processes: photosynthetic and stomatal response data available for regional and global modeling, Biogeosciences, 10, 6815–6831, doi:10.5194/bg-10-6815-2013, 2013.
- Lombardozzi, D., Levis, S., Bonan, G., Hess, P., and Sparks, J.: The Influence of Chronic Ozone Exposure on Global Carbon and Water Cycles, J. Clim., 28, 292–305, 2015.
- LRTAP Convention: Manual on Methodologies and Criteria for Modelling and Mapping Critical Loads and Levels; and Air Pollution Effects, Risks and Trends, http://www.rivm.nl/en/ themasites/icpmm/index.html, 2010.
- Luwe, M. and Heber, U.: Ozone detoxification in the apoplasm and symplasm of spinach, broad bean and beech leaves at ambient and elevated concentrations of ozone in air, Planta, 197, 448– 455, 1995.
- Marcolla, B., Pitacco, A., and Cescatti, A.: Canopy architecture and turbulence structure in a coniferous forest, Bound.-Layer Meteorol., 108, 39–59, 2003.
- Mareckova, K., Wankmüller, R., Pinterits, M., and Moosman, L.: Inventory Review 2013. Stage 1 and 2 and review of gridded data, EMEP/CEIP Technical Report 1/2013, EEA/CEIP Vienna, 2013.
- Marenco, A., Gouget, H., Nédélec, P., Pagés, J., and Karcher, F.: Evidence of a long-term increase in tropospheric ozone from Pic

du Midi data series: Consequences: Positive radiative forcing, J. Geophys. Res.-Atmos., 99, 16617–16632, 1994.

- Massman, W.: A review of the molecular diffusivities of H_2O , CO_2 , CH_4 , CO, O_3^- , SO_2 , NH_3 , N_2O , NO, AND NO_2 in air, O_2^- AND N_2^- near STP, Atmo. Environ., 32, 1111–1127, doi:10.1016/S1352-2310(97)00391-9, 1998.
- McKay, M. D., Beckman, R. J., and Conover, W. J.: Comparison of three methods for selecting values of input variables in the analysis of output from a computer code, Technometrics, 21, 239–245, 1979.
- Migliavacca, M., Meroni, M., Manca, G., Matteucci, G., Montagnani, L., Grassi, G., Zenone, T., Teobaldelli, M., Goded, I., Colombo, R., and Seufert, G.: Seasonal and interannual patterns of carbon and water fluxes of a poplar plantation under peculiar eco-climatic conditions, Agr. Forest Meteorol., 149, 1460–1476, 2009.
- Mikkelsen, T. N., Ro-Poulsen, H., Hovmand, M. F., Jensen, N. O., Pilegaard, K., and Egeløv, A. H.: Five-year measurements of ozone fluxes to a Danish Norway spruce canopy, Atmos. Environ., 38, 2361–2371, 2004.
- Mills, G., Hayes, F., Simpson, D., Emberson, L., Norris, D., Harmens, H., and Büker, P.: Evidence of widespread effects of ozone on crops and (semi-) natural vegetation in Europe (1990–2006) in relation to AOT40-and flux-based risk maps, Glob. Change Biol., 17, 592–613, 2011a.
- Mills, G., Pleijel, H., Braun, S., Büker, P., Bermejo, V., Calvo, E., Danielsson, H., Emberson, L., Fernández, I., Grünhage, L., Harmens, H., Hayes, F., Karlsson, P., and Simpson, D.: New stomatal flux-based critical levels for ozone effects on vegetation, Atmos. Environ., 45, 5064–5068, 2011b.
- Monteith, J. and Unsworth, M.: Principles of environmental physics, Academic Press, 2007.
- Morgan, P., Ainsworth, E., and Long, S.: How does elevated ozone impact soybean? A meta-analysis of photosynthesis, growth and yield, Plant Cell Environ., 26, 1317–1328, 2003.
- Musselman, R., Lefohn, A., Massman, W., and Heath, R.: A critical review and analysis of the use of exposure-and flux-based ozone indices for predicting vegetation effects, Atmos. Environ., 40, 1869–1888, 2006.
- New, M., Hulme, M., and Jones, P.: Representing twentieth-century space-time climate variability, Part I: Development of a 1961– 1990 mean monthly terrestrial climatology, J. Clim., 12, 829– 856, 1999.
- Padro, J.: Summary of ozone dry deposition velocity measurements and model estimates over vineyard, cotton, grass and deciduous forest in summer, Atmos. Environ., 30, 2363–2369, 1996.
- Paoletti, E. and Grulke, N.: Ozone exposure and stomatal sluggishness in different plant physiognomic classes, Environ. Pollut., 158, 2664–2671, 2010.
- Parrish, D. D., Law, K. S., Staehelin, J., Derwent, R., Cooper, O. R., Tanimoto, H., Volz-Thomas, A., Gilge, S., Scheel, H.-E., Steinbacher, M., and Chan, E.: Long-term changes in lower tropospheric baseline ozone concentrations at northern mid-latitudes, Atmos. Chem. Phys., 12, 11485–11504, doi:10.5194/acp-12-11485-2012, 2012.
- Pereira, J. S., Mateus, J. A., Aires, L. M., Pita, G., Pio, C., David, J. S., Andrade, V., Banza, J., David, T. S., Paço, T. A., and Rodrigues, A.: Net ecosystem carbon exchange in three contrast-

ing Mediterranean ecosystems – the effect of drought, Biogeosciences, 4, 791–802, doi:10.5194/bg-4-791-2007, 2007.

- Pleijel, H., Danielsson, H., Emberson, L., Ashmore, M., and Mills, G.: Ozone risk assessment for agricultural crops in Europe: further development of stomatal flux and flux–response relationships for European wheat and potato, Atmos. Environ., 41, 3022– 3040, 2007.
- Rebmann, C., Anthoni, P., Falge, E., Göckede, M., Mangold, A., Subke, J.-A., Thomas, C., Wichura, B., Schulze, E.-D., Tenhunen, J., and Foken, T.: Carbon budget of a spruce forest ecosystem, Springer, 2004.
- Reich, P.: Quantifying plant response to ozone: a unifying theory, Tree Physiol., 3, 63–91, 1987.
- Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M., Berbigier, P., Bernhofer, C., Buchmann, N., Gilmanov, T., Granier, A., Grünwald, T., Havránkovaá, K., Ilvesniemi, H., Janous, D., Knohl, A., Laurila, T., Lohila, A., Loustau, D., Matteucci, G., Meyers, T., Miglietta, F., Ourcival, J., Pumpanen, J., Rambal, S., Rotenberg, E., Sanz, M., Tenhunen, J., Seufert, G., Vaccari, F., Vesala, T., Yakir, D., and Valentini, R.: On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm, Glob. Change Biol., 11, 1424–1439, 2005.
- Ren, W., Tian, H., Tao, B., Chappelka, A., Sun, G., Lu, C., Liu, M., Chen, G., and Xu, X.: Impacts of tropospheric ozone and climate change on net primary productivity and net carbon exchange of China's forest ecosystems, Glob. Ecol. Biogeogr., 20, 391–406, 2011.
- Rey, A., Pegoraro, E., Tedeschi, V., De Parri, I., Jarvis, P. G., and Valentini, R.: Annual variation in soil respiration and its components in a coppice oak forest in Central Italy, Glob. Change Biol., 8, 851–866, 2002.
- Richardson, A. D., Aubinet, M., Barr, A. G., Hollinger, D. Y., Ibrom, A., Lasslop, G., and Reichstein, M.: Uncertainty quantification, Springer, 2012.
- Roeckner, E., Brokopf, R., Esch, M., Giorgetta, M., Hagemann, S., Kornblueh, L., Manzini, E., Schlese, U., and Schulzweida, U.: Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model, J. Clim., 19, 3771– 3791, doi:10.1175/JCLI3824.1, 2006.
- Samuelsson, P., Jones, C. G., Willen, U., Ullerstig, A., Gollvik, S., Hansson, U., Jansson, C., Kjellstrom, E., Nikulin, G., and Wyser, K.: The Rossby Centre Regional Climate model RCA3: model description and performance, Tellus A, 63, 4–23, doi:10.1111/j.1600-0870.2010.00478.x, 2011.
- Sanz, M., Carrara, A., Gimeno, C., Bucher, A., and Lopez, R.: Effects of a dry and warm summer conditions on CO₂ and Energy fluxes from three Mediterranean ecosystems, vol. 6, 2004.
- Scherer-Lorenzen, M., Schulze, E.-D., Don, A., Schumacher, J., and Weller, E.: Exploring the functional significance of forest diversity: a new long-term experiment with temperate tree species (BIOTREE), Perspect. Plant Ecol., 9, 53–70, 2007.
- Simpson, D., Winiwarter, W., Börjesson, G., Cinderby, S., Ferreiro, A., Guenther, A., Hewitt, C. N., Janson, R., Khalil, M. A. K., Owen, S., Pierce, T. E., Puxbaum, H., Shearer, M., Skiba, U., Steinbrecher, R., Tarrasón, L., and Öquist, M. G.: Inventorying emissions from Nature in Europe, J. Geophys. Res., 104, 8113– 8152, 1999.

- Simpson, D., Tuovinen, J.-P., Emberson, L., and Ashmore, M.: Characteristics of an ozone deposition module II: sensitivity analysis, Water Air Soil Pollut., 143, 123–137, 2003.
- Simpson, D., Ashmore, M., Emberson, L., and Tuovinen, J.-P.: A comparison of two different approaches for mapping potential ozone damage to vegetation. A model study, Environ. Pollut., 146, 715–725, 2007.
- Simpson, D., Benedictow, A., Berge, H., Bergström, R., Emberson, L. D., Fagerli, H., Flechard, C. R., Hayman, G. D., Gauss, M., Jonson, J. E., Jenkin, M. E., Nyíri, A., Richter, C., Semeena, V. S., Tsyro, S., Tuovinen, J.-P., Valdebenito, Á., and Wind, P.: The EMEP MSC-W chemical transport model – technical description, Atmos. Chem. Phys., 12, 7825–7865, doi:10.5194/acp-12-7825-2012, 2012.
- Simpson, D., Arneth, A., Mills, G., Solberg, S., and Uddling, J.: Ozone – the persistent menace: interactions with the N cycle and climate change, Current Opinion in Environmental Sustainability, 9/10, 9–19, doi:10.1016/j.cosust.2014.07.008, 2014a.
- Simpson, D., Christensen, J., Engardt, M., Geels, C., Nyiri, A., Soares, J., Sofiev, M., Wind, P., and Langner, J.: Impacts of climate and emission changes on nitrogen deposition in Europe: a multi-model study, Atmos. Chem. Physics, 14, 6995–7017, doi:10.5194/acp-14-6995-2014, 2014b.
- Sitch, S., Cox, P., Collins, W., and Huntingford, C.: Indirect radiative forcing of climate change through ozone effects on the landcarbon sink, Nature, 448, 791–794, 2007.
- Sitch, S., Friedlingstein, P., Gruber, N., Jones, S. D., Murray-Tortarolo, G., Ahlström, A., Doney, S. C., Graven, H., Heinze, C., Huntingford, C., Levis, S., Levy, P. E., Lomas, M., Poulter, B., Viovy, N., Zaehle, S., Zeng, N., Arneth, A., Bonan, G., Bopp, L., Canadell, J. G., Chevallier, F., Ciais, P., Ellis, R., Gloor, M., Peylin, P., Piao, S. L., Le Quéré, C., Smith, B., Zhu, Z., and Myneni, R.: Recent trends and drivers of regional sources and sinks of carbon dioxide, Biogeosciences, 12, 653– 679, doi:10.5194/bg-12-653-2015, 2015.
- Staehelin, J., Thudium, J., Buehler, R., Volz-Thomas, A., and Graber, W.: Trends in surface ozone concentrations at Arosa (Switzerland), Atmos. Environ., 28, 75–87, 1994.
- Stohl, A., Aamaas, B., Amann, M., Baker, L. H., Bellouin, N., Berntsen, T. K., Boucher, O., Cherian, R., Collins, W., Daskalakis, N., Dusinska, M., Eckhardt, S., Fuglestvedt, J. S., Harju, M., Heyes, C., Hodnebrog, Ø., Hao, J., Im, U., Kanakidou, M., Klimont, Z., Kupiainen, K., Law, K. S., Lund, M. T., Maas, R., MacIntosh, C. R., Myhre, G., Myriokefalitakis, S., Olivié, D., Quaas, J., Quennehen, B., Raut, J.-C., Rumbold, S. T., Samset, B. H., Schulz, M., Seland, Ø., Shine, K. P., Skeie, R. B., Wang, S., Yttri, K. E., and Zhu, T.: Evaluating the climate and air quality impacts of short-lived pollutants, Atmos. Chem. Phys., 15, 10529–10566, doi:10.5194/acp-15-10529-2015, 2015.
- Suni, T., Rinne, J., Reissell, A., Altimir, N., Keronen, P., Rannik, U., Maso, M., Kulmala, M., and Vesala, T.: Long-term measurements of surface fluxes above a Scots pine forest in Hyytiala, southern Finland, 1996–2001, Boreal Environ. Res., 8, 287–302, 2003.
- Tausz, M., Grulke, N., and Wieser, G.: Defense and avoidance of ozone under global change, Environ. Pollut., 147, 525–531, 2007.
- Tedeschi, V., Rey, A., Manca, G., Valentini, R., Jarvis, P. G., and Borghetti, M.: Soil respiration in a Mediterranean oak forest

www.biogeosciences.net/14/45/2017/

M. Franz et al.: Development and evaluation of an ozone deposition scheme

at different developmental stages after coppicing, Glob. Change Biol., 12, 110–121, 2006.

- Tirone, G., Dore, S., Matteucci, G., Greco, S., and Valentini, R.: Evergreen Mediterranean forests. carbon and water fluxes, balances, Ecological and ecophysiological determinants, Springer, 2003.
- Tuovinen, J.-P., Simpson, D., Mikkelsen, T., Emberson, L., Ashmore, M., Aurela, M., Cambridge, H., Hovmand, M., Jensen, N., Laurila, T., Pilegaard, K., and Ro-Poulsen, H.: Comparisons of measured and modelled ozone deposition to forests in Northern Europe, Water Air Soil Pollut., 1, 263–274, 2001.
- Tuovinen, J.-P., Ashmore, M., Emberson, L., and Simpson, D.: Testing and improving the EMEP ozone deposition module, Atmos. Environ., 38, 2373–2385, 2004.
- Tuovinen, J.-P., Simpson, D., Emberson, L., Ashmore, M., and Gerosa, G.: Robustness of modelled ozone exposures and doses, Environ. Pollut., 146, 578–586, 2007.
- Tuovinen, J.-P., Emberson, L., and Simpson, D.: Modelling ozone fluxes to forests for risk assessment: status and prospects, Ann. Forest Sci., 66, 1–14, 2009.
- van Aardenne, J. A., Dentener, F. J., Olivier, J. G. J., Goldewijk, C. G. M. K., and Lelieveld, J.: A 1° × 1° resolution data set of historical anthropogenic trace gas emissions for the period 1890–1990, Global Biogeochem. Cy., 15, 909–928, doi:10.1029/2000GB001265, 2001.
- Vingarzan, R.: A review of surface ozone background levels and trends, Atmos. Environ., 38, 3431–3442, 2004.
- Vitale, M., Gerosa, G., Ballarin-Denti, A., and Manes, F.: Ozone uptake by an evergreen mediterranean forest (*Quercus ilex* L.) in Italy – Part II: flux modelling. Upscaling leaf to canopy ozone uptake by a process-based model, Atmos. Environ., 39, 3267– 3278, 2005.
- Wieser, G. and Havranek, W.: Environmental control of ozone uptake in Larix decidua Mill.: a comparison between different altitudes, Tree Physiol., 15, 253–258, 1995.
- Wieser, G. and Matyssek, R.: Linking ozone uptake and defense towards a mechanistic risk assessment for forest trees, New Phytol., 174, 7–9, 2007.
- Wieser, G., Matyssek, R., Kostner, B., Oberhuber, W., and Kötner, B.: Quantifying ozone uptake at the canopy level of spruce, pine and larch trees at the alpine timberline: an approach based on sap flow measurement, Environ. Pollut., 126, 5–8, doi:10.1016/S0269-7491(03)00184-2, 2003.
- Wilson, K., Goldstein, A., Falge, E., Aubinet, M., Baldocchi, D., Berbigier, P., Bernhofer, C., Ceulemans, R., Dolman, H., Field, C., Grelle, A., Ibrom, A., Law, B., Kowalski, A., Meyers, T., Moncrieff, J., Monson, R., Oechel, W., Tenhunen, J., Valentini, R., and Verma, S.: Energy balance closure at FLUXNET sites, Agr. Forest Meteorol., 113, 223–243, 2002.

- Wittig, V., Ainsworth, E., and Long, S.: To what extent do current and projected increases in surface ozone affect photosynthesis and stomatal conductance of trees? A meta-analytic review of the last 3 decades of experiments, Plant Cell Environ., 30, 1150– 1162, 2007.
- Wittig, V., Ainsworth, E., Naidu, S., Karnosky, D., and Long, S.: Quantifying the impact of current and future tropospheric ozone on tree biomass, growth, physiology and biochemistry: a quantitative meta-analysis, Glob. Change Biol., 15, 396–424, 2009.
- Wohlfahrt, G., Anderson-Dunn, M., Bahn, M., Balzarolo, M., Berninger, F., Campbell, C., Carrara, A., Cescatti, A., Christensen, T., Dore, S., Eugster, W., Friborg, T., Furger, M., Gianelle, D., Gimeno, C., Hargreaves, K., Hari, P., Haslwanter, A., Johansson, T., Marcolla, B., Milford, C., Nagy, Z., Nemitz, E., Rogiers, N., Sanz, M., Siegwolf, R., Susiluoto, S., Sutton, M., Tuba, Z., Ugolini, F., Valentini, R., Zorer, R., and Cernusca, A.: Biotic, abiotic, and management controls on the net ecosystem CO₂ exchange of European mountain grassland ecosystems, Ecosystems, 11, 1338–1351, 2008a.
- Wohlfahrt, G., Hammerle, A., Haslwanter, A., Bahn, M., Tappeiner, U., and Cernusca, A.: Seasonal and inter-annual variability of the net ecosystem CO₂ exchange of a temperate mountain grassland: Effects of weather and management, J. Geophys. Res.-Atmos., 113, d08110, doi:10.1029/2007JD009286, 2008b.
- Young, P. J., Archibald, A. T., Bowman, K. W., Lamarque, J.-F., Naik, V., Stevenson, D. S., Tilmes, S., Voulgarakis, A., Wild, O., Bergmann, D., Cameron-Smith, P., Cionni, I., Collins, W. J., Dalsøren, S. B., Doherty, R. M., Eyring, V., Faluvegi, G., Horowitz, L. W., Josse, B., Lee, Y. H., MacKenzie, I. A., Nagashima, T., Plummer, D. A., Righi, M., Rumbold, S. T., Skeie, R. B., Shindell, D. T., Strode, S. A., Sudo, K., Szopa, S., and Zeng, G.: Preindustrial to end 21st century projections of tropospheric ozone from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP), Atmos. Chem. Physics, 13, 2063– 2090, doi:10.5194/acp-13-2063-2013, 2013.
- Zaehle, S. and Friend, A.: Carbon and nitrogen cycle dynamics in the O-CN land surface model: 1. Model description, site-scale evaluation, and sensitivity to parameter estimates, Global Biogeochem. Cy., 24, GB1005, doi:10.1029/2009GB003521, 2010.
- Zhang, L., Brook, J. R., and Vet, R.: A revised parameterization for gaseous dry deposition in air-quality models, Atmos. Chem. Phys., 3, 2067–2082, doi:10.5194/acp-3-2067-2003, 2003.
- Zaehle, S., Ciais, P., Friend, A. D., and Prieur, V.: Carbon benefits of anthropogenic reactive nitrogen offset by nitrous oxide emissions, Nat. Geosci., 4, 601–605, 2011.

Evaluation of simulated ozone effects in forest ecosystems against biomass damage estimates from fumigation experiments

Martina Franz^{1,2}, Rocio Alonso⁴, Almut Arneth⁵, Patrick Büker⁶, Susana Elvira⁴, Giacomo Gerosa⁷, Lisa Emberson⁶, Zhaozhong Feng⁸, Didier Le Thiec⁹, Riccardo Marzuoli⁷, Elina Oksanen¹⁰, Johan Uddling¹¹, Matthew Wilkinson¹², and Sönke Zaehle^{1,3}

¹Biogeochemical Integration Department, Max Planck Institute for Biogeochemistry, Jena, Germany

²International Max Planck Research School (IMPRS) for Global Biogeochemical Cycles, Jena, Germany

³Michael Stifel Center Jena for Data-driven and Simulation Science, Jena, Germany

⁴Ecotoxicology of Air Pollution, CIEMAT – Research Center for Energy, Environment and Technology, Avda. Complutense 40, edif.70, Madrid 28040, Spain

⁵Karlsruhe Institute of Technology (KIT), Department of Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, Germany

⁶Stockholm Environment Institute at York, Environment Dept., University of York, York, YO10 5NG, UK

⁷Department of Mathematics and Physics, Catholic University of Brescia, via Musei 41, Brescia, Italy

⁸State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences,

Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China

⁹Inra, Université de Lorraine, AgroParisTech, Silva, 54280 Champenoux, France

¹⁰Department of Environmental and Biological Sciences, University of Eastern Finland, 80101 Joensuu, Finland

¹¹Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden

¹²Centre for Sustainable Forestry and Climate Change, Forest Research, Farnham, UK

Correspondence: Martina Franz (mfranz@bgc-jena.mpg.de)

Received: 25 July 2018 – Discussion started: 27 July 2018 Revised: 4 November 2018 – Accepted: 5 November 2018 – Published: 21 November 2018

Abstract. Regional estimates of the effects of ozone pollution on forest growth depend on the availability of reliable injury functions that estimate a representative ecosystem response to ozone exposure. A number of such injury functions for forest tree species and forest functional types have recently been published and subsequently applied in terrestrial biosphere models to estimate regional or global effects of ozone on forest tree productivity and carbon storage in the living plant biomass. The resulting impacts estimated by these biosphere models show large uncertainty in the magnitude of ozone effects predicted. To understand the role that these injury functions play in determining the variability in estimated ozone impacts, we use the O-CN biosphere model to provide a standardised modelling framework. We test four published injury functions describing the leaf-level, photosynthetic response to ozone exposure (targeting the maximum carboxylation capacity of Rubisco (V_{cmax}) or net photosynthesis) in terms of their simulated whole-tree biomass responses against data from 23 ozone filtration/fumigation experiments conducted with young trees from European tree species at sites across Europe with a range of climatic conditions. Our results show that none of these previously published injury functions lead to simulated whole-tree biomass reductions in agreement with the observed dose–response relationships derived from these field experiments and instead lead to significant over- or underestimations of the ozone effect. By re-parameterising these photosynthetically based injury functions, we develop linear, plant-functional-typespecific dose–response relationships, which provide accurate simulations of the observed whole-tree biomass response across these 23 experiments.

1 Introduction

Ozone is a phytotoxic air pollutant which enters plants mainly through the leaf stomata, where reactive oxygen species (ROSs) are formed that can injure essential leaf functioning (Ainsworth et al., 2012). Ozone-induced declines in net photosynthesis (Morgan et al., 2003; Wittig et al., 2007) have been observed as the result of injury of the photosynthetic apparatus and increased respiration rates caused by investments in the repair of injury, as well as the production of defence compounds (Wieser and Matyssek, 2007; Ainsworth et al., 2012). At the leaf-scale, ozone injury occurs and accumulates when the instantaneous stomatal ozone uptake of leaves surpasses the ability of the leaf to detoxify ozone (Wieser and Matyssek, 2007). These effects are likely the primary cause for reduced rates of net photosynthesis and a decreased supply of carbon and energy for growth and net primary production (NPP), which contributes to the commonly observed ozone-induced reductions in leaf area and plant biomass (Morgan et al., 2003; Lombardozzi et al., 2013; Wittig et al., 2009). Changes in tropospheric ozone abundance and associated changes in ozone-induced injury thus have the potential to affect the ability of the terrestrial biosphere to sequester carbon (Harmens and Mills, 2012; Oliver et al., 2018). However, a quantitative understanding of the effect of ozone pollution on forest growth and carbon sequestration at the regional scale is still lacking. Terrestrial biosphere models can be used to obtain regional or global estimates of ozone damage based on an understanding of how ozone affects plant processes leading to C assimilation and growth. Modelling algorithms to estimate regional or global impacts of ozone on gross primary production (GPP) have been developed for several of these terrestrial biosphere models (Sitch et al., 2007; Lombardozzi et al., 2012a, 2015; Franz et al., 2017; Oliver et al., 2018). However, simulated reductions in GPP due to ozone-induced injury vary substantially between models and model versions (Lombardozzi et al., 2012a, 2015; Franz et al., 2017; Sitch et al., 2007).

This uncertainty is predominantly due to the different approaches that these models use to relate ozone uptake (or ozone exposure) to reductions in whole-tree biomass and in the exact parameterisation of the injury functions and doseresponse relationships applied (Karlsson et al., 2004; Pleijel et al., 2004; Wittig et al., 2007; Lombardozzi et al., 2012a, 2013). The injury functions employed by current terrestrial biosphere models differ decidedly in their slope (i.e. the change in injury per unit of time-integrated ozone uptake), intercept (ozone injury at zero time-integrated ozone uptake) and their assumed threshold, below which the ozone uptake rate is considered sufficiently low that ozone will be detoxified before any injury occurs (Karlsson et al., 2004; Pleijel et al., 2004; Lombardozzi et al., 2012a). For example, Sitch et al. (2007) relates the instantaneous ozone uptake exceeding a flux threshold to net photosynthetic injury via an empirically derived factor. An alternative approach has been

M. Franz et al.: Evaluation of simulated biomass

to relate ozone injury to net photosynthesis in response to the accumulated ozone uptake rather than to the instantaneous ozone uptake as in Sitch et al. (2007), e.g. by using the CUOY, which refers to the cumulative canopy O_3 uptake above a flux threshold of *Y* nmol m⁻² s⁻¹ (Wittig et al., 2007; Lombardozzi et al., 2012a, 2013; Cailleret et al., 2018).

The effect of ozone on plant growth has been investigated by ozone filtration/fumigation experiments either at the individual experimental level or by pooling data from multiple experiments that have been conducted according to a standardised experimental method. These experiments typically rely on young trees because of their small size. A challenge in developing and testing process-based models of ozone damage from these ozone fumigation experiments is that often only the difference in biomass accumulation between plants grown in an ozone treatment and in ambient or charcoalfiltered air at the end of the experiment are reported. Data from these studies provide evidence for a linear, speciesspecific relationship between accumulated ozone uptake and reductions in plant biomass (Pleijel et al., 2004; Mills et al., 2011; Nunn et al., 2006, e.g.). Sitch et al. (2007) for instance calibrated their instantaneous leaf-level injury function between ozone uptake and photosynthesis by relating simulated annual net primary production and accumulated ozone uptake to observed biomass dose-response relationships developed by Karlsson et al. (2004) and Pleijel et al. (2004), where biomass/yield damage is related to the phytotoxic ozone dose (POD_{ν}) . The POD_{ν} refers to the accumulated ozone uptake above a flux threshold of y nmol $m^{-2} s^{-1}$ by the leaves representative of the upper-canopy leaves of the plant. Such an approach applies biomass dose-response relationships of young trees to mature trees. However, the effects of ozone on leaf physiology (e.g. net photosynthesis and stomatal conductance) or plant carbon allocation may differ between juvenile and adult trees (Hanson et al., 1994; Samuelson and Kelly, 1996; Kolb and Matyssek, 2001; Paoletti et al., 2010). Whether or not biomass dose-response relationships can be used to calibrate injury functions for mature trees is uncertain.

An alternative approach is to directly simulate ozone injury to photosynthesis, which may have been a major cause for the observed decline in plant biomass production (Ainsworth et al., 2012). Possible injury targets in the simulations can be, for example, the net photosynthesis or leafspecific photosynthetic activity (such as represented by the maximum carboxylation capacity of Rubisco, V_{cmax}). For instance, Lombardozzi et al. (2012a) based their injury function on an experimental study involving a single forest tree species, whereas more recent publications (e.g. Lombardozzi et al., 2015 and Franz et al., 2017) have used injury functions from meta-analyses of a far larger set of filtration/fumigation studies. Meta-analyses have attempted to summarise the responses of plant performance to ozone exposure across a wider range of experiments and vegetation types (Wittig et al., 2007; Lombardozzi et al., 2013; Feng and Kobayashi,

2009; Li et al., 2017; Wittig et al., 2009) and to develop injury functions for plant groups that might provide an estimate of mean plant group responses to ozone. However, these meta-analyses suffer from a lack of consistency in the derivation of either plant injury or ozone exposure and generally report a large amount of unexplained variance. A further complication in the meta-analyses of ozone injury (e.g. Wittig et al., 2007; Lombardozzi et al., 2013) is that they have to indirectly estimate the cumulative ozone uptake underlying the observed ozone injury based on a restricted amount of data, which causes uncertainty in the derived injury functions.

Büker et al. (2015) provides an independent data set of whole-tree biomass plant responses to ozone uptake which is independent of data sets that were used to describe injury functions by Wittig et al. (2007) and Lombardozzi et al. (2013). This data set has been collected from experiments that follow a more standardised methodology to assess dose-responses and has associated meteorological and ozone data at a high time resolution that allow more accurate estimates of modelled ozone uptake to be made. These dose-response relationships describe whole-tree biomass reductions in young trees derived from standardised ozone filtration/fumigation methods for eight European tree species at 10 locations across Europe (see Table A2 for details; Büker et al., 2015). These data thus provide an opportunity to evaluate simulations of biosphere models that use leaf-level injury functions (describing the effect of ozone uptake on photosynthetic variables) to estimate C assimilation, growth and ultimately whole-tree biomass against these robust empirical dose-response relationships that relate ozone exposure directly to whole-tree biomass response.

Here we test four alternative, previously published ozone injury functions that target either net photosynthesis or the leaf carboxylation capacity (V_{cmax}), which have been included in state-of-the-art terrestrial biosphere models (Lombardozzi et al., 2012a, 2015; Franz et al., 2017) against these new biomass dose-response relationships by Büker et al. (2015). We incorporate these injury functions into a single modelling framework, the O-CN model (Zaehle and Friend, 2010; Franz et al., 2017). To reduce model-data mismatch, we test the functions in simulations that mimic to the extend possible the conditions of each of the experiments in the Büker et al. (2015) data set, in particular the young age, such that we can directly compare the simulated to the observed whole-tree biomass reductions in the empirically derived dose-response relationships. This allows us to identify the contribution of these alternative injury function formulations on the simulated whole-tree biomass response. The simulated biomass dose-response relationships are then compared to the data from the experiments to evaluate the capability of the different model versions to reproduce observed dose-response relationships. Based on these comparisons we use a similar approach to that of Sitch et al. (2007) and develop alternative parameterisations of the injury functions to improve the capability of the O-CN model to simulate the whole-tree biomass responses observed in the fumigation experiments, with the notable exception that we explicitly simulate in-fumigation experiments and the approximate age of the trees. Finally, we explore whether or not there is a substantial difference in the biomass response to ozone of young or mature trees by using a sequence of model simulations and comparing the response both in terms of whole-tree biomass as well as net primary production.

2 Methods

We use the O-CN terrestrial biosphere model (Zaehle and Friend, 2010; Franz and Zaehle, 2018), which is an extension of the ORCHIDEE model (Krinner et al., 2005) to simulate conditions of the ozone fumigation experiments described in Büker et al. (2015). The O-CN model, an average–individual dynamic vegetation model, simulates the terrestrial coupled carbon (C), nitrogen (N) and water cycles for up to 12 plant functional types and is driven by climate data and atmospheric composition.

O-CN simulates a multilayer canopy with up to 20 layers with a thickness of up to 0.5 leaf area index each. Net photosynthesis is calculated according to a modified Farquhar scheme for shaded and sunlit leaves considering the light profiles of diffuse and direct radiation (Zaehle and Friend, 2010). Leaf nitrogen concentration and leaf area determine the photosynthetic capacity. Increases in the leaf nitrogen content increase V_{cmax} and J_{max} (nitrogen-specific rates of maximum light harvesting, electron transport) and hence maximum net photosynthesis and stomatal conductance per leaf area. The leaf N content is highest at the top of the canopy and exponentially decreases with increasing canopy depth (Friend, 2001; Niinemets et al., 2015). Following this net photosynthesis, stomatal conductance and ozone uptake are generally highest in the top canopy and decrease with increasing canopy depth.

Canopy-integrated assimilated carbon enters a labile nonstructural carbon pool, which can either be used to fuel maintenance respiration (a function of tissue nitrogen), storage (for seasonal leaf and fine-root replacement and buffer of inter-annual variability in assimilation) or biomass growth. The labile pool responds within days to changes in GPP; the long-term reserve has a response time of several months, depending on its use to support seasonal foliage and fineroot development or sustain growth in periods of reduced photosynthesis. After accounting for reproductive production (flowers and fruits), biomass growth is partitioned into leaves, fine roots and sapwood according to a modified pipe model (Zaehle and Friend, 2010), accounting for the costs of biomass formation (growth respiration). In other words, changes in leaf-level productivity affect the build-up of plant pools and storage and thereby feed back on the ability of plants to acquire C through photosynthesis or nutrients through fine-root uptake.

6944

2.1 Ozone injury calculation in O-CN

Throughout the paper we refer to the biological response to O_3 uptake at the leaf level as "injury" and to responses of plant production, growth and biomass at the ecosystem level as "damage" following Guderian (1977). The relationship between ozone uptake and injury is called "injury function"; the relationship between ozone uptake and damage is called "dose–response relationship".

Leaf-level ozone uptake is determined by stomatal conductance and atmospheric O_3 concentrations, as described in Franz et al. (2017). To mimic the conditions of the fumigation experiments with plot-level controlled atmospheric O_3 concentrations, simulations are conducted with a model version of O-CN, in which atmospheric O_3 concentrations are directly used to calculate ozone uptake into the leaves, and the transfer and destruction of ozone between the atmosphere and the surface is ignored (ATM model version in Franz et al., 2017). Deviating from Franz et al. (2017), stomatal conductance g_{st} here is calculated based on the Ball and Berry formulation (Ball et al., 1987) as

$$g_{\text{st},l} = g_0 + g_1 \times \frac{A_{\text{n},l} \times \text{RH} \times f(\text{height}_l)}{C_{\text{a}}},\tag{1}$$

where net photosynthesis $(A_{n,l})$ is calculated as described in Zaehle and Friend (2010) as a function of the leaf-internal partial pressure of CO₂, absorbed photosynthetic photon flux density on shaded and sunlit leaves, leaf temperature, the nitrogen-specific rates of maximum light harvesting, electron transport (J_{max}) and carboxylation rates (V_{cmax}). RH is the atmospheric relative humidity, f (height_l) the water-transport limitation with canopy height, C_a the atmospheric CO₂ concentration, g_0 the residual conductance when A_n approaches zero, and g_1 the stomatal-slope parameter as in Krinner et al. (2005). The index l indicates that g_{st} is calculated separately for each canopy layer.

The stomatal conductance to ozone $g_{st l}^{O_3}$ is calculated as

$$g_{\text{st},l}^{\text{O}_3} = \frac{g_{\text{st},l}}{1.51},$$
 (2)

where the factor 1.51 accounts for the different diffusivity of O_3 from water vapour (Massman, 1998).

For each canopy layer, the O₃ stomatal flux $(f_{st,l}, nmol m^{-2} (leaf area) s^{-1})$ is calculated from the atmospheric O₃ concentration the plants in the field experiments were fumigated with $(\chi_{atm}^{O_3})$, and $g_{st,l}$ is calculated as

$$f_{\text{st},l} = (\chi_{\text{atm}}^{O_3} - \chi_i^{O_3}) g_{\text{st},l}^{O_3},$$
(3)

where the leaf-internal O₃ concentration $(\chi_i^{O_3})$ is assumed to be zero (Laisk et al., 1989).

The accumulation of ozone fluxes above a threshold of *Y* nmol m⁻² (leaf area) s⁻¹ ($f_{st,l,Y}$, nmol m⁻² (leaf area) s⁻¹) with

$$f_{\mathrm{st},l,Y} = \mathrm{MAX}(0, f_{\mathrm{st},l} - Y) \tag{4}$$

Biogeosciences, 15, 6941-6957, 2018

gives the CUOY_{*l*}. The canopy value of CUOY is calculated by summing CUOY_{*l*} over all canopy layers (Franz et al., 2017).

For comparison to observations, the POD (mmol m^{-2}) can be diagnosed by the accumulation of $f_{st,l}$ for the top canopy layer (l = 1), in accordance with LRTAP-Convention (2017) and Büker et al. (2015). The accumulation of ozone fluxes of the top canopy layer above a threshold of y nmol m^{-2} (leaf area) s^{-1} gives the POD_v. The estimates of POD_v (both POD2 and POD3) can be used offline to re-construct doseresponse relationships equivalent to those described in Büker et al. (2015). These modelled dose-response relationships can then be compared with the empirically derived doseresponse relationships to assess the ability of the model to estimate injury. As such, the POD2 and POD3 used for the formation of these modelled dose-response relationships are purely diagnostic variables and not involved in the injury calculation of the model. The flux thresholds (2 and 3 nmol m^{-2} (leaf area) s^{-1}) are not the flux thresholds that are used to estimate biomass response in the O-CN model simulations.

Ozone injury, i.e. the fractional loss of carbon uptake associated with ozone uptake $d_l^{O_3}$, is calculated as a linear function of the cumulative leaf-level uptake of ozone above a threshold of Y nmol m⁻² (leaf area) s⁻¹ (CUOY_l)

$$d_l^{O_3} = a - b \times \text{CUOY}_l,\tag{5}$$

where *a* is the intercept and *b* is the slope of the injury function. The injury fraction $(d_l^{O_3})$ is calculated separately for each canopy layer *l* based on the specific accumulated ozone uptake of the respective canopy layer (CUOY_l) and takes values between 0 and 1. The magnitude of $d_l^{O_3}$ in Eq. (5) varies between the canopy layers because CUOY_l varies driven by within-canopy gradients in stomatal conductance and photosynthetic capacity.

The effect of ozone injury on plant carbon uptake is calculated by

$$x_l^{O_3} = x_l (1 - d_l^{O_3}), (6)$$

where x_l is either leaf-level net photosynthesis $A_{n,l}$ or the maximum photosynthetic capacity ($J_{\max,l}$ and $V_{\max,l}$), which is used in the calculation of $A_{n,l}$. $J_{\max,l}$ and $V_{\max,l}$, are reduced in proportion such that the ratio between the two is not altered. While there is some evidence that ozone can affect the ratio between J_{\max} and V_{\max} , we believe that for the purpose of this paper, it is justifiable to assume a fixed ratio between them.

Reductions in $A_{n,l}$ cause a decline in stomatal conductance $(g_{st,l})$ due to the tight coupling between both. Other stress factors that impact $g_{st,l}$ are accounted for in the preceding calculation of the $g_{st,l}$ uninjured by ozone (see Eq. 1). Reductions in $g_{st,l}$ decrease the O₃ uptake into the plant $(f_{st,l})$ and slow the increase in CUOY_l and thus ozone injury.

www.biogeosciences.net/15/6941/2018/

2.2 Model set-up

Four published injury functions were applied within the O-CN model (see Table 1 for the respective slopes, intercepts and flux thresholds). As shown below in Fig. 1 and explained in the results section, these did not match well with the observed biomass dose-response relationships by Büker et al. (2015). Following this we manually calibrated two additional injury relationships – one each for A_n or V_{cmax} – based on the data presented in Büker et al. (2015) (see Table 1 for slopes and intercepts). For these calibrated injury functions, we chose a flux threshold value of 1 nmol m^{-2} (leaf area) s^{-1} , as suggested by LRTAP-Convention (2017). We forced the intercept (a) of these relationships to 1 to simulate zero ozone injury at zero accumulated O3 (for ozone levels that cause less then 1 nmol m⁻² (leaf area) s⁻¹ instantaneous ozone uptake). As described above, in all model versions, ozone injury is calculated independently for each canopy layer based on the accumulated O_3 uptake (CUOY₁) in that layer, above a specific flux threshold of Y nmol m^{-2} (leaf area) s^{-1} for the respective injury function (see Table 1).

2.3 Model and protocol for young trees

Single-point simulations were run for each fumigation experiment using meteorological input from the daily CRU-NCEP climate data set (CRU-NCEP version 5; (https://vesg.ipsl.upmc.fr/thredds/catalog/store/ LSCE p529viov/cruncep/V5_1901_2013/catalog.html, last access: 15 November 2018) at the nearest grid cell to the coordinates of the experiment sites. The meteorological data provided by the experiments incompletely described the atmospheric boundary conditions required to drive the O-CN model. Atmospheric CO₂ concentrations were taken from Sitch et al. (2015), and reduced as well as oxidised nitrogen deposition in wet and dry forms was provided by the EMEP model (Simpson et al., 2014). Hourly O3 concentrations were obtained from the experiments, as in Büker et al. (2015).

Büker et al. (2015) report data for eight tree species at 11 sites across Europe (see Table A2 for experiment and simulation details). The O-CN model simulates 12 plant functional types (PFTs) rather than explicit species; therefore, the species from the experiments were assigned to the corresponding PFT: all broadleaved species except *Quercus ilex* were assigned to the temperate broadleaved summer-green PFT. *Quercus ilex* was classified as temperate broadleaved evergreen PFT. All needleleaf species were assigned to the temperate needleleaf evergreen PFT.

The fumigation experiments were conducted on young trees or cuttings. Prior to the simulation of the experiment, the model was run in an initialisation phase from bare ground until the simulated stand-scale tree age was stable and representative of 1–2 year old trees. During this initialisation, O-CN was run with the climate of the years preceding the

experiment and zero atmospheric O_3 concentrations. Using ambient ozone concentrations during the initialisation phase would have resulted in different initial biomass values for the different response functions, which would have reduced the comparability of the different model runs. The impact of the ozone concentrations in the initialisation phase on our results here can be considered negligible since we only evaluate the simulated biomass from different treatments in relation to each other and do not evaluate it in absolute terms.

The duration of the initialisation phase depends on the site and PFT and averages 7.8 years (mean over all simulated experiments). Some of the published injury functions and/or parameterisations applied have intercepts unequal to 1 (a in Eq. 5; see Table 1), which induces reductions (a < 1) or increases (a > 1) in photosynthesis at zero ozone concentration and thus causes a bias in biomass and in particular foliage area at the end of the initialisation phase. To eliminate this bias, the nitrogen-specific photosynthetic capacity of a leaf was adjusted for each of the six parameterisations of the model to obtain comparable leaf area index (LAI) values at the beginning of the experiment (see Table A1). This adaption of the nitrogen-specific photosynthetic capacity of a leaf only counterbalances the fixed increases or decreases in the calculation of photosynthesis implied by the intercepts unequal to 1 and has no further impact on ozone uptake and injury calculations.

The simulations of the experiments relied on the meteorological and atmospheric forcing of the experiment years. Simulations were made for all reported O₃ treatments of the specific experiment, including the respective control treatments. Büker et al. (2015) obtained estimates of biomass reductions due to ozone by calculating the hypothetical biomass at zero ozone uptake for all experiments that reported ozone concentrations greater than zero for the control group (e.g. for charcoal-filtered or non-filtered air) and calculated the biomass damage from the treatments against a completely undamaged biomass. Our model allows us to run simulations with zero ozone concentrations and skip the calculation of the hypothetical biomass at zero ozone concentrations as done by Büker et al. (2015). Following this, we ran additional reference simulations with zero O₃ and based our biomass damage calculations upon them.

2.4 Modelling protocol for mature trees

To test whether biomass dose–response relationships of mature forests will show a similar relationship as observed in the simulations of young trees, we ran additional simulations with mature trees. To allow the development of a mature forest where biomass accumulation reached a maximum, and high and medium turnover soil pools reached an equilibrium, the model was run for 300 years in the initialisation phase. The simulations were conducted with the respective climate previous to the experiment period and zero atmospheric O_3 concentration. For the simulation years previous

Table 1. Slopes and intercepts, partly PFT specific, of all four published (W07_{PS}, L12_{PS}, L12_{VC}, L13_{PS}) and two tuned (tun_{PS}, tun_{VC}) injury functions included in O-CN. Targets of ozone injury are net photosynthesis (PS) or V_{cmax} . Injury calculations base on the CUOY with a specific flux threshold for each injury function.

ID	Target	Slope (b)	Intercept (a)	Plant group	Flux threshold (nmol m ⁻²) (leaf area) s ⁻¹)	Reference
W07 _{PS}	PS	0.0022	0.9384	All	0	Wittig et al. (2007)
$L12_{PS}$	PS	0.2399	1.0421	All	0.8	Lombardozzi et al. (2012a)
$L12_{VC}$	Vcmax	0.1976	0.9888	All	0.8	Lombardozzi et al. (2012a)
L13 _{PS}	PS	0	0.8752	Broadleaf	0.8	Lombardozzi et al. (2013)
L13 _{PS}	PS	0	0.839	Needleleaf	0.8	Lombardozzi et al. (2013)
tun _{PS}	PS	0.065	1	Broadleaf	1	Tuned here
tun _{PS}	PS	0.021	1	Needleleaf	1	Tuned here
tun _{VC}	V _{cmax}	0.075	1	Broadleaf	1	Tuned here
tun _{VC}	V _{cmax}	0.025	1	Needleleaf	1	Tuned here

to 1901, the yearly climate is randomly chosen from the years 1901–1930. Constant values of atmospheric CO_2 concentrations are used in simulated years previous to 1750 followed by increasing concentrations up to the experiment years. The subsequent experiment years are simulated in the same way as the simulations with the young trees. The ozone injury for mature trees is calculated based on the same tun_{VC} injury function (see Table 1) that is used in the simulation of young trees (see Sect. 2.5 for details on the development of tun_{VC}).

2.5 Calculation of the biomass damage relationships

The ozone-induced biomass damage is calculated from the difference between a treatment and a control simulation. At each experiment site and for all treatments, the annual reduction in biomass due to ozone (RB) is calculated as in Büker et al. (2015):

$$RB = \left(\frac{BM_{treat}}{BM_{zero}}\right)^{\frac{1}{n}},\tag{7}$$

where BM_{treat} represents the biomass of a simulation which experienced an O₃ treatment and BM_{zero} the biomass of the control simulation with zero atmospheric O₃ concentration. The exponent imposes an equal fractional biomass reduction across all simulation years for experiments lasting longer than 1 year.

Büker et al. (2015) report the dose–response relationships for biomass reduction with reference to POD_y with flux thresholds y of 2 and 3 nmol m⁻² (leaf area) s⁻¹ (POD₂ and POD₃) for the needleleaf and broadleaf category, respectively, where the POD_y values were derived from simulations with the DO₃SE model (Emberson et al., 2000) given site-specific meteorology and ozone concentrations. To be able to compare the simulated biomass reduction by O-CN with these estimates, we also diagnosed these POD_y values for each simulation from the accumulated ozone uptake of the top canopy layer (POD_{yO-CN} = CUOY_{*l*=1}). Note that the POD_{yO-CN} is purely diagnostic and not used in the injury calculations, which are based on the CUOY_{*l*} (see Eq. 5). As O-CN computes continuous, half-hourly values of ozone uptake (see Franz et al., 2017, for details), the POD_{yO-CN} values have to be transformed to be comparable to the simulated mean annual POD_y values reported in Büker et al. (2015). For deciduous species, the yearly maximum of POD_{yO-CN} was taken as a yearly increment POD_{yO-CN,*i*}. The POD_{yO-CN} of evergreen species was continuously accumulated over several years. To obtain the yearly increment POD_{yO-CN,*i*}, the POD_{yO-CN} at the beginning of the year *i* is subtracted from the POD_{yO-CN} at the end of the year *i*.

The selected yearly $\text{POD}_{yO-\text{CN},i}$ was used to calculate mean annual values necessary for the formation of the dose–response relationships integrating all simulation years $(\text{POD}_{y}^{\text{dr}})$ as

$$\text{POD}_{yi}^{\text{dr}} = \frac{\sum_{k=1}^{i} \text{POD}_{y\text{O-CN},i}}{i},$$
(8)

where $\text{POD}_{y\text{O-CN},i}$ is the POD_y of the *i*th year calculated by O-CN. The POD_y^{dr} values are used to derive biomass dose–response relationships.

Separate biomass dose–response relationships were estimated by grouping site data for broadleaved and needleleaf species. The biomass dose–response relationships are obtained from the simulation output by fitting a linear model to the simulated values of RB and POD^{dr}_y (with flux thresholds of 2 and 3 nmol m⁻² (leaf area) s⁻¹ for needleleaf and broadleaved species, respectively), where the regression line is forced through 1 at zero POD^{dr}_y. Büker et al. (2015) report two alternative dose–response relationships for their data set: the simple and the standard model – B_{SI} and B_{ST} , respectively. We evaluate our different model versions regarding their ability to reach the area between those two functions (target area) with the biomass dose–response relationships

Biogeosciences, 15, 6941-6957, 2018

Figure 1. Biomass dose–response relationships for simulations based on published injury relationships, separate for (a) broadleaved species and (b) needleleaf species. The dose–response relationships by Büker et al. (2015) (B_{SI} and B_{ST}) define the target area (orange). The displayed dose–response relationships are simulated by model versions which base injury calculations either on net photosynthesis W07_{PS} (Wittig et al., 2007), L12_{PS}(Lombardozzi et al., 2012a) and L13_{PS} (Lombardozzi et al., 2013) or on V_{cmax} L12_{VC} (Lombardozzi et al., 2012a) (see Table 1 for more details). See Tables A3 and A4 for slopes, intercepts, R^2 and p values of the displayed regression lines. Injury calculation in the simulations is based on CUOY (see Table 1) and not on POD2 or POD3 (see Sec. 2.5 for more details).

computed from their output. The tuned injury relationships tun_{PS} and tun_{VC} were obtained by adjusting the slope *b* in Eq. (5) such that the corresponding biomass dose–response relationships fits the target area. The intercept of the injury relationships are forced to 1 to simulate zero ozone injury at ozone fluxes lower than 1 nmol m⁻² (leaf area) s⁻¹.

3 Results

3.1 Testing published injury functions

None of the versions where ozone injury is calculated based on previously published injury functions fit the observations well. Some versions strongly overestimate the simulated biomass dose–response relationship and others strongly underestimate it (see Fig. 1) compared to the dose–response relationships developed by Büker et al. (2015).

In the W07_{PS} simulations, where injury is calculated based on the injury function by Wittig et al. (2007), biomass damage is strongly underestimated compared to the estimates from Büker et al. (2015). Ozone injury estimates are mainly driven by the intercept of the relationship, which assumes a reduction in net photosynthesis by 6.16% at zero ozone uptake. Little additional ozone damage occurs due to the accumulation of ozone uptake. As a consequence, the ozone treatments and reference simulations differ little in their simulated biomass. Similarly, the Lombardozzi et al. (2013) injury function (L13_{PS}) calculates ozone injury as a fixed reduction in net photosynthesis independent of the actual accumulated ozone uptake. The reference simulations with zero atmospheric ozone thus equal the simulations with ozone treatments and result in an identical simulated biomass. We tested accounting for effects of ozone on stomatal conductance besides net photosynthesis as suggested by Lombardozzi et al. (2013). However, this additional direct injury to stomatal conductance yielded a minimal decrease in simulated biomass accumulation in needleleaf trees, but did not qualitatively change the results (results not shown). These results indicate that injury functions, with a large intercept and a very shallow (or non-existing) slope cannot simulate the impact of spatially varying O_3 concentrations or altered atmospheric O_3 concentrations.

The simulations $L12_{PS}$ and $L12_{VC}$ (net photosynthesis and V_{cmax} injury according to Lombardozzi et al. (2012a), respectively) strongly overestimate biomass damage compared to Büker et al. (2015). Both injury functions assume an extensive injury to carbon fixation at low ozone accumulation values (CUOY) of about 5 mmol O₃. This results in a very steep decline in relative biomass at low values of POD3. Notably, despite a linear injury function, the very steep initial decline in biomass of broadleaved trees at low values of POD3 is not continued at higher exposure, resulting in a nonlinear biomass dose-response relationships. Higher accumulation of ozone doses does not result in higher injury rates beyond a threshold of about 5 mmol $O_3 m^{-2}$ leaf area, and relative biomass declines remain at 50 % to 70 %. Whereas non-linear dose-response relationships are observed in experiments, e.g. for leaf injury (Marzuoli et al., 2009), such a non-linear relationship is not produced in the biomass doseresponse relationship by Büker et al. (2015).

We investigated the cause for this using the example of the Pinus halepensis stand in the Ebro Delta with a high ozone treatment as shown in Fig. 2. The simulated CUOY quickly increases after the onset of fumigation (Fig. 2a) and is paralleled by a rapid decline in canopy-integrated net photosynthesis (A_n^{can}, see Fig. 2b). Once all canopy layers accumulated more than 5 mmol $O_3 m^{-2}$, the canopy photosynthesis is fully reduced, and A_n^{can} becomes negative as a consequence of ongoing leaf maintenance respiration. Thereafter, leaf and total biomass steadily decline (Fig. 2c, d), and the plants are kept alive only by the consumption of stored non-structural carbon reserves. Despite the 100 % reduction in gross photosynthesis, the biomass compared to a control simulation (relative biomass, RB) reaches only values of approximately 0.7 (Fig. 2e) because of the remaining woody and root tissues (see Eq. 7 for the calculation of RB).

3.2 Tuned injury relationships

We next tested whether a linear injury function is in principle able to reproduce the observed biomass dose–response relationships. Simulations conducted with our tuned injury relationships produce biomass dose–response relationships which fit the target area defined by the B_{SI} and B_{ST}

6948

Figure 2. Simulated cumulative ozone uptake above a threshold of 0.8 nmol m^{-2} (leaf area) s⁻¹ (CUOY), canopy-integrated net photosynthesis (A_n^{can}), leaf carbon content (Leaf C), total carbon in biomass (biomass C) and relative biomass (RB) of *Pinus halepensis* at the Ebro Delta fumigated with the NF+ ozone treatment. Simulations are conducted with the L12_{PS} model version. Panels (**a-d**) display the entire simulation period. The red line indicates the onset of O₃ fumigation (NF+) in the fifth of eight simulations years. The relative biomass compared to a control simulation with zero O₃ concentration (**e**) is displayed for the O₃ fumigation years.

dose-response relationships by Büker et al. (2015) (see Fig. 3 and Tables A5, A6). For the calibrated relationships used in these simulations, we chose a flux threshold value of 1 nmol m⁻² (leaf area) s⁻¹, as suggested by LRTAP-Convention (2017). We forced the intercept (a) of these relationships through 1, to simulate zero ozone injury at ozone fluxes lower than 1 nmol m^{-2} (leaf area) s⁻¹. The resulting slope of the tun_{PS} function for broadleaved PFTs is approximately 30 times higher compared to the slope suggested by Wittig et al. (2007) and a fourth of the slope by Lombardozzi et al. (2012a). For the needleleaf PFT, the tuned slope (tun_{PS}) is approximately 10 times higher (lower) than the slopes by Wittig et al. (2007) and Lombardozzi et al. (2012a), respectively. Notably, we did not observe any difference in the model performance irrespective of whether net photosynthesis or photosynthetic capacity (V_{cmax} and simultaneously J_{max}) was reduced.

3.3 Ozone injury to mature trees

The simulation of young trees (simulated as in the previous section) compared to adult trees with the same model version reveals a distinct difference between the simulatedversus-observed dose–response relationship when expressed as reduction in biomass. Ozone injury causes a much shallower simulated biomass dose–response relationship for adult trees (tun^{mature} in Fig. 4a, b) compared to young trees (tun^{young} in Fig. 4a, b), both for broadleaved and needleleaf

Figure 3. Biomass dose–response relationships for simulations based on tuned injury functions (see Table 1 for abbreviations), separate for (a) broadleaved species and (b) needleleaf species. The dose–response relationships by Büker et al. (2015) (B_{SI} and B_{ST}) define the target area (orange). See Tables A5 and A6 for slopes, intercepts, R^2 and p values of the displayed regression lines. Injury calculation in the simulations is based on CUO1 (see Table 1) and not on POD2 or POD3 (see Sect. 2.5 for more details).

Table 2. Slopes and intercepts of biomass (RB) and NPP (RN) dose–response relationships (DRRs) for broadleaved species simulated by the tun_{VC} model version (see Table 1). The fumigation of young trees (tun_{VC}^{young}) with O₃ is compared to the fumigation of mature trees (tun_{VC}^{mature}) .

DRR	ID	Intercept (<i>a</i>)	Slope (b)	<i>R</i> ²	p value
RB	tun _{VC}	1	0.0091	0.93	5×10^{-25}
RB	tun	1	0.00142	0.91	$9.8 imes 10^{-23}$
RN	tun _{VC}	1	0.0167	0.96	6.2×10^{-30}
RN	tun _{VC}	1	0.0144	0.93	1.4×10^{-24}

species. It is worth noting that this is primarily the consequence of the higher initial biomass of the adult trees before ozone fumigation starts (tun_{VC}^{mature}). Comparing the dose– response relationship of young and mature trees based on the annual NPP shows nearly identical slopes for needleleaf species (Fig. 4d and Table 3), whereas the slopes for broadleaved tree species (Fig. 4c and Table 2) suggest only a slightly lower reduction in NPP in mature compared to young trees, likely related to the larger amount of non-structural reserves that increases the resilience of mature versus young trees.

4 Discussion

Injury functions that relate accumulated ozone uptake to fundamental plant processes such as photosynthesis are a key component for models that aim to estimate the potential impacts of ozone pollution on forest productivity, growth and carbon sequestration. We tested four published injury functions for net photosynthesis and $V_{\rm cmax}$ within the frame-

Table 3. Slopes and intercepts of biomass (RB) and NPP (RN) dose–response relationships (DRRs) for needleleaf species simulated by the tun_{VC} model version (see Table 1). The fumigation of young trees $\left(tun_{VC}^{young}\right)$ with O₃ is compared to the fumigation of mature trees $\left(tun_{VC}^{mature}\right)$.

DRR	ID	Intercept (a)	Slope (b)	<i>R</i> ²	p value
RB	tun ^{young}	1	0.0042	0.93	2.2×10^{-09}
RB	tun	1	0.000785	0.79	4.2×10^{-06}
RN	tun young	1	0.00858	0.97	$2.3 imes 10^{-12}$
RN	tun _{VC}	1	0.00808	0.99	3.7×10^{-16}

Figure 4. Biomass (RB) and NPP (RN) dose–response relationships of simulations with young (tun_{VC}^{young}) and mature trees (tun_{VC}^{mature}) separately for **(a, c)** broadleaf species and **(b, d)** needleleaf species.

work of the O-CN model to assess their ability to reproduce the empirical whole-tree biomass dose–response relationships derived by Büker et al. (2015). The biomass dose– response relationships calculated from the O-CN simulations show that the parameterisation of the injury functions included in the model has a large impact on the simulated whole-tree biomass: the published injury functions either substantially over- or substantially underestimated wholetree biomass reduction compared to the data presented by Büker et al. (2015). Our results highlight the importance for improved evaluation of injury functions applied in the simulation of ozone damage for large-scale risk assessments, and we discuss a number of important considerations for an improved parameterisation below.

The simulation results from the O-CN version applying an injury function based on a single, ozone-sensitive species (Lombardozzi et al., 2012a) to a range of European tree species leads to a strong overestimation of the simulated biomass damage compared to the observations used in this study. The problem of using such injury parameterisations based on short-term experiments of ozone-sensitive species is further highlighted when applying them in simulations of multiple season fumigation experiments and/or high ozone concentrations. Under such conditions, fumigation with high O₃ concentrations can lead to lethal doses, which might not be observed in field experiments due to restricted experiment lengths. Previous studies have suggested that in large areas of Europe, the eastern US and southeast Asia average growing season values of CUOY for recent years range between 10 and 100 mmol O₃ m⁻² (Lombardozzi et al., 2015; Franz et al., 2017). The injury relationships $L12_{PS}$ and $L12_{VC}$ by Lombardozzi et al. (2012a) assume a 100 % injury to net photosynthesis or V_{cmax} at accumulation values of about 5 mmol $O_3 m^{-2}$. This would imply that in these large geographic regions, photosynthesis would have been completely impaired by ozone, which is clearly not the case. This result highlights the need for a representative set of species for the development of injury functions for large-scale biosphere models. Overall, our results suggest that the estimates by Lombardozzi et al. (2012a) of global GPP reduction as a result of ozone pollution are strongly overestimated.

Meta-analyses (Wittig et al., 2007; Lombardozzi et al., 2013) are designed to minimise the effect of species-specific ozone sensitivities and provide estimates of the average species response. However, we found that the relationships derived by these meta-analyses substantially underestimate biomass damage. Technically, the reasons for this are a weak or non-existent increase in the ozone injury with increased ozone uptake (shallow or non-existent slopes) and/or high ozone injury at zero accumulated ozone uptake (intercept lower than 1). Apparently, the diversity of species responses and experimental settings that are assembled in the metaanalyses by Wittig et al. (2007) and Lombardozzi et al. (2013), together with uncertainties in precisely estimating accumulated ozone uptake in these databases preclude the identification of injury functions that are consistent with the damage estimates by Büker et al. (2015). The high intercepts in the meta-analyses by Wittig et al. (2007) and Lombardozzi et al. (2013), which assume a considerable injury fraction even when no ozone is taken up at all, seem to be ecologically illogical and suggest that an alternative approach is necessary to simulate ozone injury. As a consequence of these points, the Europe-wide GPP reduction estimates by Franz et al. (2017), which have been based on the injury function by Wittig et al. (2007), may substantially underestimate actual GPP reduction. Similarly, global estimates as well as spatial variability in ozone damage to GPP by Lombardozzi et al. (2015), based on Lombardozzi et al. (2013), are virtually independent of actual ozone concentrations or uptake for

www.biogeosciences.net/15/6941/2018/

all tree plant functional types and should be interpreted with caution.

A crucial aspect in forming dose-response relationships is the calculation of the accumulated ozone uptake (e.g. POD_{y}) or CUOY). The calculation of accumulated ozone uptake is realised in different ways in the meta-analyses and the study by Büker et al. (2015) as well as in our approach here. Experiments synthesised in the meta-analyses generally do not have access to stomatal conductance values at high resolution measured throughout the experiment, which impedes precise determination of O₃ uptake. The uncertainty in the necessary approximations of accumulated ozone uptake can be assumed to be considerable, and it is thus highly recommendable to measure and report required observations in future ozone fumigation experiments. Büker et al. (2015) use the DO₃SE model to simulate ozone uptake and accumulation in a similar way as in our model here. These modelled values for ozone uptake and accumulation can be assumed to be more reliable since both models simulate processes that determine ozone uptake continuously for the entire experiment length at high temporal resolution. They account for diurnal changes in stomatal conductance as well as climate factors restricting stomatal conductance and hence ozone uptake. However, both models vary in their complexity of the simulated plants, carbon assimilation and growth processes, which will also impact the estimates of ozone accumulation (POD_{ν}) and hence their suggested biomass dose-response relationships.

The meta-analyses do not account for non-stomatal ozone deposition (e.g. to the leaf cuticle or soil), which imposes a bias towards overestimating ozone uptake and accumulation, contrary to the DO₃SE model used by Büker et al. (2015), which accounts for this. The O-CN model in principle can simulate non-stomatal ozone deposition from the free atmosphere to ground level (see Franz et al., 2017). The leaf boundary layer is implicitly included in the calculation of the aerodynamic resistance of O-CN and included in Franz et al. (2017). However, for the simulation of the chamber experiments we used the observed chamber O3 concentrations, rather than estimating the canopy-level O₃ concentration based on the free atmosphere (approximately 45 m above the surface) and atmospheric turbulence. This required not accounting for aerodynamic resistance and therefore also the leaf-boundary layer resistance as it prevented the calculation of the non-stomatal deposition, which may lead to a slight overestimation of ozone uptake and accumulation in our simulations.

The calibration of injury functions to net photosynthesis and V_{cmax} shows that, in principle, the linear structure of Eq. (5) is sufficient to simulate biomass dose–response relationships comparable to Büker et al. (2015) in O-CN. An advantage of the injury functions derived here compared to previously published injury functions (Wittig et al., 2007; Lombardozzi et al., 2012a, 2013) is the intercept of 1, implying that simulated ozone injury is zero at zero ac-

cumulated O₃ and steadily increases with increased ozone accumulation. The flux threshold used in the simulations is 1 nmol m^{-2} (leaf area) s⁻¹ as suggested by the LRTAP-Convention (2017). Since the tuned injury functions are structurally identical to previously published injury functions based on accumulated ozone uptake, they can be directly compared to them. Slopes of the tuned injury functions lie in between the values proposed by Wittig et al. (2007) and Lombardozzi et al. (2012a) and thus take values in an expected range. We did not find any significant difference in simulated biomass responses between the use of net photosynthesis or leaf-specific photosynthetic capacity (V_{cmax}) as a target for the ozone injury function, although we do note that the slopes were slightly lower for the net photosynthesis-based functions. The simulation of ozone effects on leaf-specific photosynthetic capacity (V_{cmax}) seems preferable over the adjustment of net photosynthesis because $V_{\rm cmax}$ and $J_{\rm max}$ are parameters in the calculation of net photosynthesis and thus are likely more easily transferable between models. Models with different approaches to simulate net photosynthesis might obtain better comparable results by using injury relationships that target V_{cmax} instead of net photosynthesis.

All injury functions included in the O-CN model base injury calculations on the injury index CUOY (canopy value) rather than POD_{y} , as used by some other models, e.g. the DO₃SE model (Emberson et al., 2000). We tested the effect of basing the injury calculation on POD1 rather than CUO1 and found that these produced comparable biomass doseresponse relationships as the injury relationships based on CUO1 presented in Fig. 3 (results not shown). The slopes of injury functions based on POD1 are approximately twothirds and half compared to the slopes based on CUO1 for broadleaved and needleleaf species, respectively. The difference in the slope values associated with POD1 and CUO1 results from the different calculation and application of them. POD_{y} is calculated in the top canopy layer and the respective injury fraction is then applied uniformly to all canopy layers. CUOY and the associated injury fraction is calculated separately for each canopy layer and varies with the canopy profile of stomatal conductance and therefore the distribution of light and photosynthetic capacity (other factors such as vertical gradients of temperature or ozone are currently not represented in O-CN). More analysis of the gradients of ozone injury within deep canopies are required to evaluate whether the scaling of top-of-the-canopy injury to wholecanopy injury is appropriate or if alternative simulation approaches need to be developed. Higher-frequency data on the ozone injury incurred by plants are required to disentangle whether an ozone injury parameterisation based on instantaneous (e.g. similar to the approach by Sitch et al., 2007) or accumulated ozone uptake results in a more accurate simulation of the seasonal effects of ozone fumigation.

Further aspects that determine ozone sensitivity and damage to the carbon gain of plants, like leaf morphology (Ca-

latayud et al., 2011; Bussotti, 2008), different sensitivity of sunlit and shaded leafs (Tjoelker et al., 1995; Wieser et al., 2002), early senescence (Gielen et al., 2007; Ainsworth et al., 2012), and costs for the detoxification of ozone and/or the repair of ozone injury that likely increases the plant's respiration costs (Dizengremel, 2001; Wieser and Matyssek, 2007), are not considered by either approach. Marzuoli et al. (2016) observed an ozone-induced reduction in biomass but no significant reduction in physiological parameters like V_{cmax} . They suggest that the reduced growth is caused by higher energy investments and reducing power for the detoxification of ozone whereas the photosynthetic apparatus remained uninjured (Marzuoli et al., 2016).

Species within the same plant functional type are known to exhibit different sensitivities to ozone (Wittig et al., 2007, 2009; Mills et al., 2011; Büker et al., 2015). This suggests that the application of a single injury function for a large set of species and plant functional types may not be sufficient to yield reliable estimates of large-scale damage estimates. Species interaction and competition, differing genotypes, and individuals ontogeny may further alter ozone impacts on plants and ecosystems (Matyssek et al., 2010). For instance, a modelling study using an individual-based forest model showed that ozone may not reduce the carbon sequestration capacity in forests if at the ecosystem level the reduced carbon fixation of ozone-sensitive species is compensated for by an increased carbon fixation of less ozonesensitive species (Wang et al., 2016). First-generation dynamic global vegetation models such as O-CN do not simulate separate species but are based on plant functional types, which combine a large set of species. This restricts per se the ability of global models to simulate ozone-induced community dynamics and may therefore lead to overestimates of the net ozone impact if the parameterisation of the damage functions is entirely based on ozone-sensitive species. In our study, we have presented an approach to use the existing experimental evidence to parameterise a globally applicable model in a simple design to generate injury functions which are based on a relevant range of species rather than relying on species-specific injury functions as a first step towards a more reliable parameterisation of large-scale ozone damage.

Some studies have found that ozone-affected stomata respond much more slowly to environmental stimuli than unaffected cells (Paoletti and Grulke, 2005), which can delay closure and trigger stomatal sluggishness, an uncoupling of stomatal conductance and photosynthesis (Reich, 1987; Tjoelker et al., 1995; Lombardozzi et al., 2012b) and thus impact transpiration rates (Mills et al., 2009; Paoletti and Grulke, 2010; Lombardozzi et al., 2012b) and the plant's water use efficiency (Wittig et al., 2007; Mills et al., 2009; Lombardozzi et al., 2012b). The O-CN model is able to directly impair stomatal conductance, by uncoupling injury to net photosynthesis from the subsequent injury to stomatal conductance. In this version of the O-CN model, both net photosynthesis and stomatal conductance can directly be injured by individual injury functions. The simulation of this kind of direct injury to stomatal conductance additional to the injury of net photosynthesis, both according to the injury functions by Lombardozzi et al. (2013), have a negligible impact on biomass production compared to not accounting for direct injury to the stomata (results not shown). However, our above-mentioned concerns regarding the structure of the injury relationships by Lombardozzi et al. (2013) should be taken into account when considering this result.

A key challenge for the use of fumigation experiments to parameterise ozone injury in models is that trees (as opposed to grasses fumigated from seeds) typically possess a certain amount of biomass at the beginning of the fumigation experiment. Even at lethal ozone doses, the relative biomass thus cannot decline to zero, and tree death may occur at values of a relative biomass greater than zero. The relative biomass is positive even if carbon fixation is fully reduced and the plants survive due to the use of stored carbon. The higher the initial biomass and the slower the annual biomass growth rate of the tree is, the harder it is to obtain low values of RB. When comparing RB values obtained from trees with substantially different initial biomass and tree species with different growth rates, proportionate damage rates thus cannot be directly inferred. This indicates that the explanatory value of the relative biomass between a control and a treatment to estimate long-term plant damage at a given O₃ concentration is limited. This is particularly the case when evaluating the damage of more mature forests. The simulated biomass dose-response relationships of adult trees are much more shallow than dose-response relationships of young trees (see Fig. 4) because of the high initial biomass prior to fumigation. This suggests that the use of biomass injury functions derived from experiments with young trees to parameterise the biomass loss of adult trees, as done in Sitch et al. (2007), will likely lead to an overestimation of plant damage and loss of carbon storage. Dose-response relationships based on biomass increments or growth rates might be better transferable between young and mature trees and hence better suitable for parameterising global terrestrial biosphere models.

Our approach to overcome this challenge was to alter the vegetation model to simulate the ozone damage of young trees, where we could directly compare simulated biomass reductions to observations. Since we used injury relationships that are based on the calculation of leaf-level photosynthesis, we are able to apply the calibrated model also for mature stands. Our simulations have demonstrated that despite the different sizes of young and mature trees and associated changes in the wood growth rate and the available amount of non-structural carbon reserves to repair incurred injury, the simulated effect of ozone on the net annual biomass production (NPP) was very similar when using an injury function associated with leaf-level photosynthesis. Overall our findings support the idea that the photosynthesis-based injury relationships developed here and evaluated against fumigation experiments of young trees might be useful to estimate effect

6952

M. Franz et al.: Evaluation of simulated biomass

on forest production of older trees. Monitoring approaches of ozone damage that are either capable of measuring the actual increment of biomass or quantify at the leaf and canopy level the change in net photosynthesis over the growing season would allow us to develop injury/damage estimates that could be more readily translated into modelling frameworks.

The extrapolation of results from short-term experiments with young trees to estimate responses of adult trees grown under natural conditions is subject to several issues, e.g. due to the differing environmental conditions and changing ozone sensitivities with increasing tree size or age (Schaub et al., 2005; Cailleret et al., 2018). It is still uncertain whether the simulation of injury to photosynthesis based on experiments with young trees can indeed be transferred to adult trees to yield realistic biomass damage estimates. The sparse knowledge of ozone effects on the biomass of adult forest trees prevents an evaluation of simulated ozone damage of adult trees. Ozone fumigation is mostly found to reduce the biomass or diameter of adult trees (e.g. Matyssek et al., 2010 for an overview), but this is not always the case (Samuelson et al., 1996; Percy et al., 2007). Results from phytotron and free-air fumigation studies suggest that in natural forests, a multitude of abiotic and biotic factors exist that have the potential to impact the plants ozone effects (Matyssek et al., 2010). If more data become available, e.g. regarding the changes in ozone sensitivity between young and mature trees, a more realistic damage parameterisation of mature forests in terrestrial biosphere models might become possible.

Terrestrial biosphere models in general assume that plant growth is primarily determined by carbon uptake. However, an alternative concept proposes that plant growth is more limited by direct environmental controls (temperature, water and nutrient availability) than by carbon uptake and photosynthesis (Fatichi et al., 2014). The O-CN model provides a first step into this direction because it separates the step of carbon acquisition from biomass production, both in terms of a non-structural carbon buffer as well as a stoichiometric nutrient limitation on growth independent of the current photosynthetic rate. This would in principle allow us to account for ozone effects on the carbon sink dynamics within plants. However, it is not clear that data readily exist to parameterise such effects. Instead of targeting net photosynthesis as done in our approach here, ozone injury might be better simulated by targeting biomass growth rates or processes that limit these, e.g. stomatal conductance, which impacts the plants' water balance, assuming that suitable data to parameterise a large-scale model become available.

All in all, a multitude of aspects that impact ozone damage to plants has not yet been incorporated into global terrestrial biosphere models. The ongoing discussion of which processes are major drivers for observed damage, how they interact and impact different species and plant types, and the lack of suitable data needed to parameterise a global model are reasons why the simulation of ozone damage has up to now focussed only on a few aspects where suitable data are available, as presented in our study.

5 Conclusion

The inclusion of previously published injury functions in the terrestrial biosphere model O-CN led to a strong over- or underestimation of simulated biomass damage compared to the biomass dose-response relationship by Büker et al. (2015). Injury functions included in terrestrial biosphere models are a key aspect in the simulation of ozone damage and have a great impact on the estimated damage in large-scale ozone risk assessments. The calibration of injury functions performed in this study provides the advantage of calculating ozone injury close to where the actual physiological injury might occur (photosynthetic apparatus) and simultaneously reproduces observed biomass damage relationships for a range of European forest species used by Büker et al. (2015). The calibration of ozone injury functions similar to our approach here in other ozone sub-models of terrestrial biosphere models might improve damage estimates compared to previously published injury functions and might lead to better estimates of terrestrial carbon sequestration. The comparison of simulated biomass dose-response relationships of young and mature trees shows strongly different slopes. This suggests that observed biomass damage relationships from young trees might not be suitable for estimating the biomass damage of mature trees. The comparison of simulated NPP dose-response relationships of young and mature trees shows similar slopes and suggests that they might more readily be transferred between trees differing in age.

Data availability. For data on the ozone fumigation/filtration experiments, please see Büker et al. (2015). The model source code can be found in Franz and Zaehle (2018).

Appendix A

Table A1. Original and adapted values of the nitrogen-specific photosynthetic capacity of a leaf (npl) for three out of four different O-CN versions (ID) including published injury functions. The intercept of the fourth O-CN version ($L12_{VC}$) is very close to 1 and simulations produce comparable LAI values without an adaption of npl.

ID	PFT	npl original	npl adapted
W07 _{PS}	Broadleaf	1.50	1.60
W07 _{PS}	Needleleaf	0.75	0.80
$L12_{PS}$	Broadleaf	1.50	1.45
L12 _{PS}	Needleleaf	0.75	0.70
L13 _{PS}	Broadleaf	1.50	1.75
L13 _{PS}	Needleleaf	0.75	0.90

Table A2. List of fumigation experiments used by Büker et al. (2015) and simulated here.

Site	Longitude	Latitude	Species	O ₃ treatment	Fumigation
	(° E)	(°N)		start year	(yr)
Östad (S)	12.4	57.9	Betula pendula	1997	2
Birmensdorf (CH)	8.45	47.36	Betula pendula	1989	1
Birmensdorf (CH)	8.45	47.36	Betula pendula	1990	1
Birmensdorf (CH)	8.45	47.36	Betula pendula	1992	1
Birmensdorf (CH)	8.45	47.36	Betula pendula	1993	1
Kuopio (FIN)	27.58	62.21	Betula pendula	1994	2
Kuopio (FIN)	27.58	62.21	Betula pendula	1996	3
Kuopio (FIN)	27.58	62.21	Betula pendula	1994	5
Schönenbuch (CH)	7.5	47.54	Fagus sylvatica	1991	2
Zugerberg (CH)	8.54	47.15	Fagus sylvatica	1987	2
Zugerberg (CH)	8.54	47.15	Fagus sylvatica	1989	3
Zugerberg (CH)	8.54	47.15	Fagus sylvatica	1991	2
Curno (I)	9.03	46.17	Populus spec.	2005	1
Grignon (F)	1.95	48.83	Populus spec.	2008	1
Ebro Delta (SP)	0.5	40.75	Quercus ilex	1998	3
Col-du-Donon (F)	7.08	48.48	Quercus robur or petraea	1999	2
Headley (U.K.)	-0.75	52.13	Quercus robur or petraea	1997	2
Ebro Delta (SP)	0.5	40.75	Pinus halepensis	1993	4
Col-du-Donon (F)	7.08	48.48	Pinus halepensis	1997	2
Schönenbuch (CH)	7.5	47.54	Picea abies	1991	2
Zugerberg (CH)	8.54	47.15	Picea abies	1991	2
Östad (S)	12.4	57.9	Picea abies	1992	5
Headley (UK)	-0.75	52.13	Pinus sylvestris	1995	2

Table A3. Slopes and intercepts of biomass dose–response relationships for broadleaved species simulated by O-CN versions based on published injury functions to net photosynthesis or V_{cmax} (see Table 1). B_{SI} and B_{ST} represent the simple and standard model of Büker et al. (2015). A dash ("–") indicates that no values were available.

ID	Intercept (a)	Slope (b)	R^2	p value
B_{SI}	0.99	0.0082	0.34	< 0.001
B_{ST}	0.99	0.0098	0.38	< 0.001
W07 _{PS}	1	0.00045	0.93	1×10^{-24}
L12 _{PS}	1	0.0142	0.77	2×10^{-14}
L15 _{PS}	1	0.0000	-	-
L12 _{VC}	1	0.0120	0.80	1.9×10^{-15}

Table A4. Slopes and intercepts of biomass dose–response relationships for needleleaf species simulated by O-CN versions based on published injury functions to net photosynthesis or V_{cmax} (see Table 1). B_{SI} and B_{ST} represent the simple and standard model by Büker et al. (2015). A dash ("–") indicates that no values were available.

ID	Intercept (a)	Slope (b)	R^2	p value
B _{SI}	1	0.0038	0.46	< 0.001
$B_{\rm ST}$	1	0.0042	0.52	< 0.001
W07 _{PS}	1	0.00058	0.93	1.5×10^{-09}
L12 _{PS}	1	0.0119	0.83	9.4×10^{-07}
L15 _{PS}	1	0.0000	_	_
L12 _{VC}	1	0.0096	0.85	3.5×10^{-07}

Table A5. Slopes and intercepts of biomass dose–response relationships for broadleaved species simulated by O-CN versions based on tuned injury functions to net photosynthesis or V_{cmax} (see Table 1). B_{SI} and B_{ST} represent the simple and standard model by Büker et al. (2015).

ID	Intercept (a)	Slope (b)	R^2	p value
B_{SI}	0.99	0.0082	0.34	< 0.001
B_{ST}	0.99	0.0098	0.38	< 0.001
tun _{PS}	1	0.0093	0.94	1.4×10^{-26}
tun _{VC}	1	0.0091	0.93	5×10^{-25}

Table A6. Slopes and intercepts of biomass dose–response relationships for needleleaf species simulated by O-CN versions based on tuned injury functions to net photosynthesis or V_{cmax} (see Table 1). B_{SI} and B_{ST} represent the simple and standard model by Büker et al. (2015).

ID	Intercept (a)	Slope (b)	R^2	p value
B_{SI}	1	0.0038	0.46	< 0.001
B_{ST}	1	0.0042	0.52	< 0.001
tun _{PS}	1	0.0039	0.94	4.8×10^{-10}
tun _{VC}	1	0.0042	0.93	2.2×10^{-09}

Author contributions. MF and SZ developed the experiment design. MF developed the model, performed the simulations and analyses, and led the writing of the paper. PB shared the data from Büker et al. (2015). All co-authors contributed to writing of the paper.

Competing interests. The authors declare that they have no conflict of interest.

Acknowledgements. We would like to thank Per Erik Karlsson of the IVL Swedish Environmental Research Institute, Göteborg, Sweden, Sabine Braun of the Institute for Applied Plant Biology, Witterswil, Switzerland, and Gerhard Wieser of the Federal Research and Training Centre for Forests, Natural Hazards and Landscape (BFW), Innsbruck, Austria, for providing collected data from their ozone fumigation experiments. The research leading to this publication was supported by the EU Framework programme through grant no. 282910 (ECLAIRE) and the Max Planck Society for the Advancement of Science e.V. through the ENIGMA project. This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement no. 647204; QUINCY).

The article processing charges for this open-access publication were covered by the Max Planck Society.

Edited by: Martin De Kauwe Reviewed by: Bin Wang and Marcus Schaub

References

- Ainsworth, E. A., Yendrek, C. R., Sitch, S., Collins, W. J., and Emberson, L. D.: The Effects of Tropospheric Ozone on Net Primary Productivity and Implications for Climate Change, Annu. Rev. Plant Biol., 63, 637–661, 2012.
- Ball, J. T., Woodrow, I. E., and Berry, J. A.: A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions, Prog. Photosynthesis Res. Proc. Int. Congress 7th, Providence, 10–15 August 1986, 221–224, 1987.
- Büker, P., Feng, Z., Uddling, J., Briolat, A., Alonso, R., Braun, S., Elvira, S., Gerosa, G., Karlsson, P., Le Thiec, D., Marzuoli, R., Mills, G., Oksanen, E., Wieser, G., Wilkinson, M., and Emberson, L.: New flux based dose-response relationships for ozone for European forest tree species, Environ. Pollut., 206, 163–174, https://doi.org/10.1016/j.envpol.2015.06.033, 2015.
- Bussotti, F.: Functional leaf traits, plant communities and acclimation processes in relation to oxidative stress in trees: a critical overview, Glob. Change Biol., 14, 2727–2739, 2008.
- Cailleret, M., Ferretti, M., Gessler, A., Rigling, A., and Schaub, M.: Ozone effects on European forest growth – Towards an integrative approach, J. Ecol., 106, 1377–1389, 2018.
- Calatayud, V., Cerveró, J., Calvo, E., García-Breijo, F.-J., Reig-Armiñana, J., and Sanz, M. J.: Responses of evergreen and deciduous Quercus species to enhanced ozone levels, Environ. Pollut., 159, 55–63, 2011.

- Dizengremel, P.: Effects of ozone on the carbon metabolism of forest trees, Plant Physiol. and Bioch., 39, 729–742, 2001.
- Emberson, L., Simpson, D., Tuovinen, J., Ashmore, M., and Cambridge, H.: Towards a model of ozone deposition and stomatal uptake over Europe, EMEP MSC-W Note, 6, 1–57, 2000.
- Fatichi, S., Leuzinger, S., and Koerner, C.: Moving beyond photosynthesis: from carbon source to sink-driven vegetation modeling, New Phytol., 201, 1086–1095, https://doi.org/10.1111/nph.12614, 2014.
- Feng, Z. and Kobayashi, K.: Assessing the impacts of current and future concentrations of surface ozone on crop yield with metaanalysis, Atmos. Environ., 43, 1510–1519, 2009.
- Franz, M. and Zaehle, S.: O-CN ozone version rev 298, available at: https://projects.bgc-jena.mpg.de/OCN/browser/branches/ozone (last access: 19 November 2018.), 2018.
- Franz, M., Simpson, D., Arneth, A., and Zaehle, S.: Development and evaluation of an ozone deposition scheme for coupling to a terrestrial biosphere model, Biogeosciences, 14, 45– 71, https://doi.org/10.5194/bg-14-45-2017, 2017.
- Friend, A.: Modelling canopy CO₂ fluxes: are "big-leaf" simplifications justified?, Global Ecol. Biogeogr., 10, 603–619, 2001.
- Gielen, B., Löw, M., Deckmyn, G., Metzger, U., Franck, F., Heerdt, C., Matyssek, R., Valcke, R., and Ceulemans, R.: Chronic ozone exposure affects leaf senescence of adult beech trees: a chlorophyll fluorescence approach., J. Exp. Bot., 58, 785–795, https://doi.org/10.1093/jxb/erl222, 2007.
- Guderian, R.: Air Pollution. Phytotoxicity of Acidic Gases and Its Significance in Air Pollution Control, Springer-Verlag, New York, 1977.
- Hanson, P., Samuelson, L., Wullschleger, S., Tabberer, T., and Edwards, G.: Seasonal patterns of light-saturated photosynthesis and leaf conductance for mature and seedling Quercus rubra L. foliage: differential sensitivity to ozone exposure, Tree Physiol., 14, 1351–1366, 1994.
- Harmens, H. and Mills, G.: Ozone Pollution: Impacts on carbon sequestration in Europe, NERC/Centre for Ecology & Hydrology, 2012.
- Karlsson, P. E., Uddling, J., Braun, S., Broadmeadow, M., Elvira, S., Gimeno, B. S., Le Thiec, D., Oksanen, E., Vandermeiren, K., Wilkinson, M., and Emberson, L.: New critical levels for ozone effects on young trees based on AOT40 and simulated cumulative leaf uptake of ozone, Atmos. Environ., 38, 2283–2294, 2004.
- Kolb, T. and Matyssek, R.: Limitations and perspectives about scaling ozone impacts in trees, Environ. Pollut., 115, 373–393, 2001.
- Krinner, G., Viovy, N., de Noblet-Ducoudré, N., Ogée, J., Polcher, J., Friedlingstein, P., Ciais, P., Sitch, S., and Prentice, I.: A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system, Global Biogeochem. Cy., 19, GB1015, https://doi.org/10.1029/2003GB002199, 2005.
- Laisk, A., Kull, O., and Moldau, H.: Ozone concentration in leaf intercellular air spaces is close to zero, Plant Physiol., 90, 1163– 1167, 1989.
- Li, P., Feng, Z., Catalayud, V., Yuan, X., Xu, Y., and Paoletti, E.: A meta-analysis on growth, physiological and biochemical responses of woody species to ground-level ozone highlights the role of plant functional types, Plant Cell Environ., 40, 2369– 2380, 2017.
- Lombardozzi, D., Levis, S., Bonan, G., and Sparks, J. P.: Predicting photosynthesis and transpiration responses to ozone: decou-

pling modeled photosynthesis and stomatal conductance, Biogeosciences, 9, 3113–3130, https://doi.org/10.5194/bg-9-3113-2012, 2012a.

- Lombardozzi, D., Sparks, J., Bonan, G., and Levis, S.: Ozone exposure causes a decoupling of conductance and photosynthesis: implications for the Ball-Berry stomatal conductance model, Oecologia, 169, 1–9, 2012b.
- Lombardozzi, D., Sparks, J. P., and Bonan, G.: Integrating O₃ influences on terrestrial processes: photosynthetic and stomatal response data available for regional and global modeling, Biogeosciences, 10, 6815–6831, https://doi.org/10.5194/bg-10-6815-2013, 2013.
- Lombardozzi, D., Levis, S., Bonan, G., Hess, P., and Sparks, J.: The Influence of Chronic Ozone Exposure on Global Carbon and Water Cycles, J. Climate, 28, 292–305, 2015.
- LRTAP-Convention: Manual on Methodologies and Criteria for Modelling and Mapping Critical Loads and Levels; and Air Pollution Effects, Risks and Trends, available at: https://icpvegetation.ceh.ac.uk/sites/default/files/ Chapter3-Mappingcriticallevelsforvegetation.pdf (last access: 14 November 2018), 2017.
- Marzuoli, R., Gerosa, G., Desotgiu, R., Bussotti, F., and Denti, A. B.: Ozone fluxes and foliar injury development in the ozonesensitive poplar clone Oxford (Populus maximowiczii x Populus berolinensis): a dose-response analysis, Tree Physiol., 29, 67–76, https://doi.org/10.1093/treephys/tpn012, 2009.
- Marzuoli, R., Monga, R., Finco, A., and Gerosa, G.: Biomass and physiological responses of Quercus robur (L.) young trees during 2 years of treatments with different levels of ozone and nitrogen wet deposition, Trees, 30, 1995–2010, 2016.
- Massman, W.: A review of the molecular diffusivities of H₂O, CO₂, CH₄, CO, O₃, SO₂, NH₃, N₂O, NO, AND NO₂ in air, O₂ AND N₂ near STP, Atmos. Environ., 32, 1111–1127, https://doi.org/10.1016/S1352-2310(97)00391-9, 1998.
- Matyssek, R., Karnosky, D. F., Wieser, G., Percy, K., Oksanen, E., Grams, T. E. E., Kubiske, M., Hanke, D., and Pretzsch, H.: Advances in understanding ozone impact on forest trees: Messages from novel phytotron and freeair fumigation studies, Environ. Pollut., 158, 1990–2006, https://doi.org/10.1016/j.envpol.2009.11.033, 2010.
- Mills, G., Hayes, F., Wilkinson, S., and Davies, W.: Chronic exposure to increasing background ozone impairs stomatal functioning in grassland species, Glob. Change Biol., 15, 1522–1533, 2009.
- Mills, G., Pleijel, H., Braun, S., Büker, P., Bermejo, V., Calvo, E., Danielsson, H., Emberson, L., Fernández, I., Grünhage, L., Harmens, H., Hayes, F., Karlsson, P., and Simpson, D.: New stomatal flux-based critical levels for ozone effects on vegetation, Atmos. Environ., 45, 5064–5068, 2011.
- Morgan, P., Ainsworth, E., and Long, S.: How does elevated ozone impact soybean? A meta-analysis of photosynthesis, growth and yield, Plant Cell Environ., 26, 1317–1328, 2003.
- Niinemets, Ü., Keenan, T. F., and Hallik, L.: A worldwide analysis of within-canopy variations in leaf structural, chemical and physiological traits across plant functional types, New Phytol., 205, 973–993, 2015.
- Nunn, A., Weiser, G., Reiter, I., H\u00e4berle, K., Grote, R., Havranek, W., and Matyssek, R.: Testing the unifying theory of ozone sen-

sitivity with mature trees of Fagus sylvatica and Picea abies, Tree Physiol., 26, 1391–1403, 2006.

- Oliver, R. J., Mercado, L. M., Sitch, S., Simpson, D., Medlyn, B. E., Lin, Y.-S., and Folberth, G. A.: Large but decreasing effect of ozone on the European carbon sink, Biogeosciences, 15, 4245– 4269, https://doi.org/10.5194/bg-15-4245-2018, 2018.
- Paoletti, E. and Grulke, N.: Does living in elevated CO₂ ameliorate tree response to ozone? A review on stomatal responses, Environ. Pollut., 137, 483–493, 2005.
- Paoletti, E. and Grulke, N.: Ozone exposure and stomatal sluggishness in different plant physiognomic classes, Environ. Pollut., 158, 2664–2671, 2010.
- Paoletti, E., Contran, N., Bernasconi, P., Günthardt-Goerg, M. S., and Vollenweider, P.: Erratum to "Structural and physiological responses to ozone in Manna ash (Fraxinus ornus L.) leaves of seedlings and mature trees under controlled and ambient conditions", Sci. Total Environ., 408, 2014–2024, 2010.
- Percy, K., Nosal, M., Heilman, W., Dann, T., Sober, J., Legge, A., and Karnosky, D.: New exposure-based metric approach for evaluating O₃ risk to North American aspen forests, Environ. Pollut., 147, 554–566, 2007.
- Pleijel, H., Danielsson, H., Ojanperä, K., Temmerman, L. D., Högy, P., Badiani, M., and Karlsson, P.: Relationships between ozone exposure and yield loss in European wheat and potato – a comparison of concentration-and flux-based exposure indices, Atmos. Environ., 38, 2259–2269, 2004.
- Reich, P.: Quantifying plant response to ozone: a unifying theory, Tree Physiol., 3, 63–91, 1987.
- Samuelson, L. and Kelly, J.: Carbon partitioning and allocation in northern red oak seedlings and mature trees in response to ozone, Tree Physiol., 16, 853–858, 1996.
- Samuelson, L., Kelly, J., Mays, P., and Edwards, G.: Growth and nutrition of Quercus rubra L. seedlings and mature trees after three seasons of ozone exposure, Environ. Pollut., 91, 317–323, 1996.
- Schaub, M., Skelly, J., Zhang, J., Ferdinand, J., Savage, J., Stevenson, R., Davis, D., and Steiner, K.: Physiological and foliar symptom response in the crowns of Prunus serotina, Fraxinus americana and Acer rubrum canopy trees to ambient ozone under forest conditions, Environ. Pollut., 133, 553–567, 2005.
- Simpson, D., Andersson, C., Christensen, J. H., Engardt, M., Geels, C., Nyiri, A., Posch, M., Soares, J., Sofiev, M., Wind, P., and Langner, J.: Impacts of climate and emission changes on nitrogen deposition in Europe: a multi-model study, Atmos. Chem. Phys., 14, 6995–7017, https://doi.org/10.5194/acp-14-6995-2014, 2014.
- Sitch, S., Cox, P., Collins, W., and Huntingford, C.: Indirect radiative forcing of climate change through ozone effects on the landcarbon sink, Nature, 448, 791–794, 2007.
- Sitch, S., Friedlingstein, P., Gruber, N., Jones, S. D., Murray-Tortarolo, G., Ahlström, A., Doney, S. C., Graven, H., Heinze, C., Huntingford, C., Levis, S., Levy, P. E., Lomas, M., Poulter, B., Viovy, N., Zaehle, S., Zeng, N., Arneth, A., Bonan, G., Bopp, L., Canadell, J. G., Chevallier, F., Ciais, P., Ellis, R., Gloor, M., Peylin, P., Piao, S. L., Le Quéré, C., Smith, B., Zhu, Z., and Myneni, R.: Recent trends and drivers of regional sources and sinks of carbon dioxide, Biogeosciences, 12, 653– 679, https://doi.org/10.5194/bg-12-653-2015, 2015.

6956

- Tjoelker, M., Volin, J., Oleksyn, J., and Reich, P.: Interaction of ozone pollution and light effects on photosynthesis in a forest canopy experiment, Plant Cell Environ., 18, 895–905, 1995.
- Wang, B., Shugart, H. H., Shuman, J. K., and Lerdau, M. T.: Forests and ozone: productivity, carbon storage, and feedbacks, Sci. Rep.-UK, 6, 22133, https://doi.org/10.1038/srep22133, 2016.
- Wieser, G. and Matyssek, R.: Linking ozone uptake and defense towards a mechanistic risk assessment for forest trees, New Phytol., 174, 7–9, 2007.
- Wieser, G., Hecke, K., Tausz, M., Haberle, K., Grams, T., and Matyssek, R.: The role of antioxidative defense in determining ozone sensitivity of Norway spruce (Picea abies (L.) Karst.) across tree age: Implications for the sun-and shade-crown, PHYTON-HORN-, 42, 245–254, 2002.
- Wittig, V., Ainsworth, E., and Long, S.: To what extent do current and projected increases in surface ozone affect photosynthesis and stomatal conductance of trees? A meta-analytic review of the last 3 decades of experiments, Plant Cell Environ., 30, 1150– 1162, 2007.

6957

- Wittig, V., Ainsworth, E., Naidu, S., Karnosky, D., and Long, S.: Quantifying the impact of current and future tropospheric ozone on tree biomass, growth, physiology and biochemistry: a quantitative meta-analysis, Glob. Change Biol., 15, 396–424, 2009.
- Zaehle, S. and Friend, A.: Carbon and nitrogen cycle dynamics in the O-CN land surface model: 1. Model description, site-scale evaluation, and sensitivity to parameter estimates, Global Biogeochem. Cy., 24, GB1005, https://doi.org/10.1029/2009GB003521, 2010.