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Abstract. The Galactic Center is visible from the South Pole throughout the year, at an
inclination of 61◦. High energy gamma-rays arriving at the South Pole from this direction, will
produce inclined air showers in the atmosphere. Since radio emission of inclined showers leaves
a large footprint on the ground, a measurement of the electromagnetic shower component using
the radio technique is possible. It is already known that radio detection of air showers helps in
the reconstruction of the shower maximum and the energy of the air shower with a very good
accuracy. Using radio detectors along with particle detectors enhances the detection accuracy
of the air shower events and helps in separating the gamma-ray induced events. IceCube-Gen2,
the proposed extension of the IceCube Neutrino Observatory, will enhance both the surface and
in-ice capabilities of the facility. Ideas for adding surface radio antennas are under discussion in
addition to the upgrade and extension of the IceTop surface array using scintillator detectors.
While the scintillators will primarily be used for improving the calibration and lowering the veto
energy threshold for distinguishing cosmic ray from astrophysical neutrino events, they can also
be used with radio antennas to search for photons of PeV energies from the Galactic Center.
Using such a setup at the South Pole can help in the identification of the Galactic Center as a
PeVatron. In particular, the key for such a search is to use frequencies higher than the standard
frequencies used by air-shower radio experiments, which thereby lowers the energy threshold.

1. Introduction
Recent observations from H.E.S.S. indicate the existence of a PeVatron at the center of our
Galaxy [1]. The Cherenkov telescope was able to observe gamma-rays near to the location of
Sgr A* with energies up to ≈ 40 TeV. The spectrum of these gamma-rays were not seen to have
a cut-off in the observed energies. The extent of hardness of the spectrum upon extending it
to PeV energies is unknown. The number of gamma-rays from the PeVatron at these energies
could be non-zero. We devise a possible way to search for PeV gamma-rays from the Galactic
Center.

A possible experimental location to conduct this search is that of the IceCube Neutrino
Observatory. IceCube is a neutrino detector with a cubic-kilometer volume, located at the South
Pole [2]. It has a complete temporal and spatial exposure to the Galactic Center, which always
lies at a zenith angle of 61◦ at the South Pole. IceTop, the surface array of cosmic ray detectors
at IceCube, is composed of ice-Cherenkov tanks [3]. The cosmic-ray setup is planned to be
enhanced using an array of scintillators [4]. Apart from this, a large surface array of scintillators
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is also expected to be a part of IceCube-Gen2 [5]. It is also possible to include a radio antenna
array along with this, forming a hybrid array of cosmic air-shower detectors. Such a hybrid
array can help us in measuring the different components of the air showers (electromagnetic and
muonic). This setup can be used to search for gamma-rays with PeV energy coming from the
Galactic Center.

Gamma-rays will produce air showers upon entering the Earth’s atmosphere. Since the
gamma-rays from the Galactic Center arrive at the South Pole with a zenith angle of 61◦, these
PeV air showers will be inclined in nature. Hence, the particle content of these showers will be
very low as the shower reaches the ground, which leaves fewer signals on the particle detectors.
The radio signal from these showers, on the other hand, will reach the ground unimpeded and
thus gives us a higher chance in detecting these gamma-rays.

Recent studies by the Auger Engineering Radio Array (AERA) have experimentally proven
that inclined air-showers will leave a large radio footprint on the ground [6]. So a large radio
footprint with a diameter of several 100 m can be expected from an air shower produced by a
gamma-ray approaching the IceCube Observatory from the Galactic Center. This footprint will
then be elliptical in shape due to the inclined nature of the shower.

We describe studies made on the detectability of radio signals from PeV gamma-ray showers,
focusing in particular on the improvement of the signal-to-noise ratio in order to lower the energy
threshold of detection to the PeV range. For this CORSIKA [7] simulations with the CoREAS
[8] plugin are used to obtain the radio signals from air showers. The simulations use SIBYLL-2.1
[9] as the high energy hadronic interaction model. The radio signals obtained are convolved with
the response of a a dipole antenna simulated using NEC2++ [10]. The simulations assume an
antenna array where one antenna is placed at the position of each IceTop station, giving 81
antennas in total. The simulated air-showers have a fixed azimuth angle, and are oriented such
that the shower axis is anti-parallel to the Magnetic North. Since the Earth’s magnetic field is
inclined at an angle of only 18◦ with respect to the vertical axis, the variation of the observed
radio signal on the azimuth can be safely neglected.

2. Radio detection of inclined PeV showers
The emission of the radio signal in air showers occurs mainly due to two mechanisms: the
Geomagnetic effect and the Askaryan effect. The Geomagnetic effect occurs due to the deflection
of the electrons and positrons of the air shower in the Earth’s magnetic field [11]. This causes the
production of a time-varying current that produces radio pulses. The Askaryan effect contributes
to the radio emission by the development of excess charge at the shower front as the shower
propagates through the atmosphere [12]. At higher frequencies, a Cherenkov ring is visible in
the radio footprint. This is the compression of radio pulses due to the refractive index of air,
causing the emission from various parts of the shower evolution to arrive at the same time at
certain lateral observer distances. These distances together form a ring structure [13]. The
Cherenkov ring is most pronounced at high frequencies. It is not usually visible at 30-80 MHz,
which is the standard frequency band for air shower experiments.

The energy range of air showers thought to be accessible with the technique of radio detection
is greater than 1016 eV [14][15]. At energies lower than this, the radio signals become weaker
and this makes it harder to separate them from the background radio noise, which is dominated
by the diffuse Galactic radio noise. This is especially the case for the band 30-80 MHz, which
is the most thoroughly studied frequency band for air showers. Hence, in order to measure PeV
events, the signal-to-noise ratio has to be increased. Thus, it is crucial to look for the frequency
band where we can lower the energy threshold for the detection of PeV gamma-rays.
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2.1. Noise estimation
A good understanding of the noise is required to optimize the signal-to-noise ratio so that there
is a better chance of observing gamma-rays from the Galactic Center. At the South Pole, the
major external contribution to radio noise comes from the Galactic diffuse radio background.
Apart from this, thermal noise related to the detection equipment and the surrounding ice will
also have contributions. The total noise has been studied by taking these two contributions into
account.

Figure 1: Noise temperature extracted from Galactic noise parametrization by Cane [16], added
to a thermal noise of 300 K.

The Galactic noise contribution is taken from a model that has been developed by Cane
[16], using measurements of the radio background from the South and North Galactic Poles.
In addition, a thermal noise of 300 K is added. The total noise temperature from these two
contributions and their behavior with respect to frequency is shown in Figure 1.

It is clear that the Galactic noise diminishes as we move to higher detection frequencies. At
higher frequencies, we are mainly limited by the thermal component of noise. This indicates
that the signal-to-noise ratio (SNR) could increase as we move to detection frequencies higher
than the usual band of 30-80 MHz. The noise temperature from such a distribution can be
converted to the power received by the antenna (P = kBT∆ν), which after convolving with the
antenna response can be seen as time traces. Such time traces are then compared with the signal
obtained from gamma-ray showers with energies within 1-10 PeV and a zenith angle of 61◦.

2.2. Understanding the optimum frequency band
The signal-to-noise ratio, defined as SNR = S2/N2 where S is the maximum amplitude of the
Hilbert envelope over the signal and N is the rms noise, can be looked at to obtain the optimum
frequency bands where we have a chance of observing gamma-rays from the Galactic Center.

A scan of the SNR at different possible frequencies of operation is shown in Figure 2. The x
axis shows the lower cut-off frequency of the frequency band and the upper cut-off frequency of
the band is shown on the y axis.

The frequency scan in Figure 2 shows that the region in red characterizes the frequencies
where a high level of signal-to-noise ratio is obtained. For example, the frequency band 100-190
MHz provides a much higher SNR for PeV gamma-ray showers from the Galactic Center. This
frequency band is used for further studies.

2.3. Zenith angle dependence
The variation in SNR in the case of 10 PeV gamma-ray showers for various zenith angles is
studied. This is done for two frequency bands: 30-80 MHz and 100-190 MHz in Figure 3 for
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Figure 2: SNR seen in a typical antenna at a distance of 107 m from the shower axis, where
the Cherenkov ring is visible, at various frequency bands. The scan is done for an air shower
induced by a 10 PeV gamma-ray with a zenith angle of 61◦.

antenna stations at various perpendicular distances to the shower axis. All antennas with a value
of SNR less than 10 have been set to the color white, since this is the typical detection threshold
in an individual antenna station. For the standard band of 30-80 MHz, the signal-to-noise ratio

30-80 MHz. 100-190 MHz.

Figure 3: SNR for gamma-ray air showers with an energy of 10 PeV for different zenith angles
for two frequency bands. Each zenith angle bin contains one typical shower.

is significantly lower than that for 100-190 MHz. A much higher level of signal-to-noise ratio is
obtained for the band 100-190 MHz for all zenith angles.

2.4. Dependence on the primary energy
A much higher level of SNR for the frequency band 100-190 MHz when compared to the other
bands indicates that this optimum band can be used for observing air showers of much lower
energies than what has been achieved so far. The radio signal obtained at the antenna scales
with the energy of the primary gamma-ray. This will directly influence the obtained SNR.
Figure 4 shows the SNR in antennas that are hit by gamma-ray showers with a zenith angle of
61◦. Each bin, with energies ranging from 1-9 PeV, contains one sample shower.
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Figure 4: SNR for gamma-ray air showers of zenith angle 61◦ at the frequency band of 100-190
MHz. Each energy bin contains a sample shower at that energy.

3. Results and Discussion
A maximum level of SNR at the frequency band of 100-190 MHz makes it possible to lower
the energy threshold for radio detection in this band. It is clear that for gamma-ray showers
of inclination 61◦, the threshold energy for the detection of radio signals can be lowered down
to the level of 1 PeV. In order to detect these showers, a minimum of three antennas with a
SNR greater than 10 should exist within a distance of around 50-180 m from the shower axis.
This is for an antenna array with an average spacing of 125 m at the South Pole. The existence
of cosmic-ray particle detectors at the IceCube Neutrino Observatory brings the possibility of
triggering the antennas using the IceTop tanks and scintillators. Such an array at the South
Pole can open new frontiers in the field of cosmic-ray and gamma-ray science.
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