KIT | KIT-Bibliothek | Impressum | Datenschutz

Effect of Environment on Microstructure Evolution and Friction of Au–Ni Multilayers

Cihan, Ebru; Jungjohann, Katherine; Argibay, Nicolas; Chandross, Michael; Dienwiebel, Martin

Abstract:
We present results from a systematic investigation of environmental effects on the frictional behavior of Au–Ni multilayer films of varying interlayer spacing. The current results, sliding against ruby spheres in a dry N2 atmosphere, are compared to prior work on the tribological behavior of these materials under ultra-high vacuum (UHV) (Cihan et al. in Sci Rep 9:1–10, 2019). Under both conditions, there is a regime of high friction when the interlayer spacing is large and a regime of low friction when the spacing is small. The low friction regime is associated with a critical grain size below which grain bound-ary sliding is expected to be the dominant mechanism of deformation. A shear-induced alloy formation (60–65 at.% Ni in Au) and a concomitant low friction coefficient was observed with multilayer spacings of 20 nm and lower under UHV. A distinct microstructure was found in dry N2, and is attributed to different interfacial characteristics due to adsorbed species; rather than mixing between Au and Ni layers, only the uppermost Au layers were affected by shearing. These observations are coupled with the friction and wear behavior of multilayer samples sliding under different environments.

Open Access Logo


Verlagsausgabe §
DOI: 10.5445/IR/1000105493
Veröffentlicht am 31.01.2020
Originalveröffentlichung
DOI: 10.1007/s11249-019-1245-9
Coverbild
Zugehörige Institution(en) am KIT Institut für Angewandte Materialien - Computational Materials Science (IAM-CMS)
Publikationstyp Zeitschriftenaufsatz
Jahr 2020
Sprache Englisch
Identifikator ISSN: 1023-8883, 1573-2711
KITopen-ID: 1000105493
Erschienen in Tribology letters
Band 68
Heft 1
Seiten 30
Vorab online veröffentlicht am 29.01.2020
Schlagworte Multilayer, Au–Ni,Friction,Plasticity, Dislocation, Grain boundary, Nanocrystalline
Nachgewiesen in Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page