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Zusammenfassung

Das Gebiet der Genomassemblierung beschäftigt sich mit der Entwick-
lung von Algorithmen, die Genome am Computer anhand von Sequenzie-
rungsdaten rekonstruieren. Es geriet erstmals in den Neunzigern mit dem
Human Genome Project in den Fokus der Öffentlichkeit. Da nur kurze Ab-
schnitte des menschlichen Genoms ausgelesen werden konnten, musste die
Rekonstruktion längerer Genomsequenzen aus den ausgelesenen Abschnit-
ten im Nachhinein am Computer erfolgen. Auch fast 20 Jahre nach der
Veröffentlichung der menschlichen Genomsequenzen stellt die Genomeassem-
blierung nach wie vor noch einen essentiellen Verarbeitungsschritt für Sequen-
zierungsdaten dar. Nur Datendurchsatz, Länge und Fehlerprofil der ausgele-
senen Genomabschnitte haben sich verändert und damit einhergehend auch
die algorithmischen Anforderungen.

Damit komplementiert das Forschungsgebiet der Genomeassemblierung
die Sequenzierungstechnologien, die sich mit enormer Geschwindigkeit wei-
ter entwickelt haben. Zusammen erlauben sie die Entschlüsselung der Geno-
me einer stark zunehmenden Anzahl von Lebewesen und bilden damit die
Grundlage für einen Großteil der Forschung in verschiedensten Bereichen der
Biologie und Medizin.

Trotz der beeindruckenden technologischen und algorithmischen Entwick-
lungen der vergangenen Jahrzehnte ist es bisher nur für bakterielle Genome
gelungen, die komplette Genomsequenz zu rekontruieren. Bei der Assemblie-
rung der wesentlich größeren eukaryotischen Genome bestehen mehrere un-
gelöste algorithmische Probleme. Diese Probleme hängen mit verschiedenen
repetitiven Strukturen zusammen, die in fast allen Genomen höherer Lebewe-
sen vorkommen. Deshalb werden eukaryotische Genome immer in wesentlich
mehr unzusammenhängenden Sequenzen veröffentlicht als die jeweiligen Le-
bewesen Chromosomen haben.

Die repetitiven Strukturen, die für die Lücken in den Genomsequenzen
verantwortlich sind, lassen sich grob in drei Klassen unterteilen. Mikrosatel-
liten und Minisatelliten sind sehr kurze Sequenzen, die sich tausende oder
zehntausende Male direkt aufeinander folgend wiederholen können. Dieses
Muster ist typisch für sogenannte Centromere und Telomere, die sich in der
Mitte und an den Enden vieler Chromosome befinden. Sogenannte Intersper-
sed Repeats, oft auch als Transposons bezeichnet, sind längere Sequenzen, die
häufig in fast identischer Form an unterschiedlichen Stellen im Genome vor-
kommen. Sogenannte Tandem Repeats dagegen sind längere Sequenzen, die
direkt aufeinanderfolgend mehrere Male in einem Genom auftreten können.
Oft sind Tandem Repeats Genkomplexe, das heißt Ansammlungen fast iden-
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tischer proteinkodierender Abschnitte, die es der Zelle erlauben, die kodierten
Proteine besonders schnell zu produzieren.

Jede dieser repetitive Strukturen stellt spezifische Anforderung an Assem-
blierungsalgorithmen. In dieser Doktorarbeit leisten wir mehrere Beiträge zur
Lösung der letzteren zwei vorgestellten Probleme, der Assemblierung von In-
terspersed Repeats und Tandem Repeats.

In Teil 1 der Arbeit stellen wir mehrere Datenverarbeitungsprozeduren
vor, die Sequenzierungsdaten aufbereiten, um die seltenen Unterschiede zwi-
schen mehrfach auftretenden Genomsequenzen zu identifizieren. Diese bein-
halten Softwareprogramme zur Berechnung und Optimierung von Multiplen
Sequenz Alignments (MSA) anhand dynamischer Programmierung und zur
statistischen Modellierung und Analyse der Unterschiede, wie das MSA sie
präsentiert.

In Teil 2 bauen wir auf dieser Analyse auf und präsentieren ein Software-
programm zur Assemblierung von Interspersed Repeats. Dieses Programm
baut auf mehreren algorithmischen Neuerungen auf und ist in der Lage,
Transposonfamilien mit sehr langen Sequenzen und sehr vielen verschiede-
nen Kopien effektiv zu assemblieren. Es ist das erste Programm dieser Art,
welches in der Lage ist, Transposonfamilien mit dutzenden von Kopien zu
assemblieren. Es gelingt uns zu zeigen, dass es auch für kleinere Transposon-
familien akkurater und schneller ist als das bisher einzige Konkurrenzpro-
gramm, welches auf dieses Assemblierungsproblem spezialisiert ist.

In Teil 3 beschreiben wir eine Analysepipeline, die es uns ermöglicht,
Genkomplexe aus dutzenden von Tandem Repeats zu assemblieren. Diese
Pipeline enthält Clustering und Graph Drawing Algorithmen. Ihr Herzstück
ist ein Fehlerkorrekturalgorithmus, der auf Neuronalen Netzwerken basiert.
Wir demonstrieren den praktischen Nutzen dieser Pipeline durch die Assem-
blierung des Drosophila Histone Komplexes.

Im Abschluss diskutieren wir die Möglichkeit, Mikro- und Minisatelliten
zu assemblieren und schlagen Forschungsansätze für weitere Verbesserungen
im Bereich der Interspersed Repeat- und Genkomplexassemblierung vor.
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Abstract
The research area of Genome Assembly engages in the development of

algorithms for the computational reconstruction of genomes. It was subject
of considerable media attention during the Human Genome Project in the
1990s and early 2000. Because only short sections of the genome could be
deciphered in one go, longer sections of the genome had to be reconstructed
on the computer in a post-processing step. Although it has almost been 20
years since the Human Genome Project published the sequence of the human
genome, Genome Assembly still constitutes an essential step for analysing
sequencing data. Only throughput, length, and error profile of the reads
provided by sequencing machines have changed considerably, and with them
the algorithmic requirements.

Genome Assembly is complementary to the rapidly developing sequenc-
ing technologies. Together, they allow for deciphering a steadily increasing
number of genomes and provide the foundation for a substantial part of the
research in different areas of biology and medicine.

Despite the extraordinary technological and algorithmic development over
recent decades, so far only bacterial genomes have been fully assembled.
There are several unresolved problems in the assembly of the substantially
larger eukaryotic genomes. These problems are due to different repeat struc-
tures, which occur in almost all genomes of higher organisms. The draft
genomes of eukaryotic genomes are currently published in many more dis-
parate parts than the respective animal or plant has chromosomes.

The repeat structures that are responsible for the preponderance of these
gaps in chromosomes can be roughly divided into three classes.

Micro- and Minisatellites are very short sequences that repeat directly
adjacent to each other for thousands or tens of thousands of times. This
pattern is typical for centromeric or telomeric regions in the middle and at the
end of many chromosomes. Interspersed repeats, also denoted as transposable
elements, are longer sequences that occur in almost identical form many times
in different regions of the genome. Tandem repeats are longer sequences that
occur numerous times directly adjacent to each other. Often, tandem repeats
form part of so called gene complexes, that means, collections of repeated
protein coding sequences that allow for the rapid production of the encoded
protein in the cell.

Each of these repetitive structures poses unique assembly challenges. In
this thesis, we contribute several ideas for improving the assembly of inter-
spersed repeats as well as gene complexes.

In part 1 of this thesis, we present several data processing procedures that
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allow for the detection and extraction of rare differences between different
copies of a repeat sequence. These are implemented in tools for comput-
ing and optimising multiple sequence alignments (MSA) utilising dynamic
programming, as well as a tool for the statistical modelling and analysis of
repeat differences as they can be extracted from the MSA.

In part 2, we build on these pre-processing procedures and present a soft-
ware program for the assembly of interspersed repeats. This program is based
on several novel algorithmic ideas and is capable of assembling transposon
families with long sequences and a high number of copies. It is the first
such program that can handle transposon families with dozens of copies. We
show that our method is superior in speed and accuracy to the only existing
competing repeat resolution tool.

In part 3, we describe an analysis pipeline for the assembly of gene com-
plexes, consisting of dozens of tandem repeats. This pipeline contains clus-
tering and graph drawing algorithms. Its core is a de-noising algorithm that
is based on neural networks. We demonstrate the practical utility of this
pipeline by assembling the Drosophila Histone Complex, a long standing gap
in the genome of this important model organism.
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Chapter 1

Introduction

1.1 Motivation

Knowing the precise sequence of bases that constitute a genome lies at the
heart of a wide range of scientific inquiries.

The genome is the vehicle of information on which evolution acts, and
deciphering it allows a uniquely accurate view into evolution’s unfolding.
Evolutionary processes can be reconstructed by the inferring of phylogenetic
trees, thereby determining the relatedness of existing species. They can also
be directly observed either in real time (for bacteria, viruses, and cancer cells)
or in retrospect, via paleo genetics, that is, the sequencing and assembly of
ancient (usually) human DNA. These scientific fields do not only shed light
on the origin of life and human development, but can also, for instance,
predict the spread of pathogens and the development of drug resistances.

In the last sixty years, we have gone from understanding the structure
and purpose of DNA to actively changing it in a variety of ways. Knock-
out mice have been at the forefront of gene function investigation and gene
interaction research for almost thirty years. In recent years, Crispr/Cas9
has made the manipulation of genes substantially more versatile and precise.
These and numerous other techniques rely on both the knowledge of what is
available for manipulation and the ability to check whether an intervention
was successful.

A large number of traits and diseases, however, do not depend on a single
gene or a small number of genes. Instead, they are polygenic, that is, influ-
enced by numerous genes. Some traits even depend on single nucleotide poly-
morphisms of small effect at thousands of positions in the human genome,
which makes it challenging to detect the variants that contribute causally
to the trait or disease. The difficulty of discovering causal gene variants
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for traits, that twin studies have conclusively established are significantly
heritable, has been dubbed the missing heritability problem. Most of the
scourges of modern societies like cancer, diabetes, obesity and heart disease
are massively polygenic. Therefore, this missing heritability led to some disil-
lusionment in the years after the successful completion of the human genome
project when it became apparent, that there was no “gene for cancer”. As
almost all causal gene variants of polygenic traits have small effect, massive
sample sizes are needed to detect them. We are now on the cusp of be-
ing able to achieve just that via genome wide association studies (GWAS)
with hundreds of thousands of (partly) sequenced genomes as provided by
comprehensive databases like the UK biobank.

Genome assembly also facilitates the classification of cancers into numer-
ous different diseases, as a one-size-fits-all approach to drugs is known to
be particularly ineffective in chemotherapy. Apart from adapting existing
chemotherapeutic drugs accurately to the tumour and patient, genome as-
sembly plays a major role in the development of new cancer therapies. The
approach to sequence cancer genomes and tailor immune cells to attack sur-
face proteins detected in the cancer genome, for example, is on the leading
edge of cancer research.

Thus, further improving genome assembly methods will yield advances
in almost all biological and medical research fields. In this thesis, the focus
is on improving the sequence resolution, that means, getting closer to recre-
ating fully contiguous sequences for each chromosome, instead of numerous
disparate parts. Only highly resolved genome assemblies allow the study of
structural variation. The term structural variation denotes large insertions,
deletions, duplications and inversions, which are a key mutational process in
cancer. Furthermore, highly resolved genome assemblies are a prerequisite
for investigations into repetitive regions of the genome and into the spatial
organisation of the chromosome molecule in the cell. These are essential for
developmental genetics and research into regulatory functions.

1.2 Scientific contribution and overview

In this thesis, we present several novel contributions to the field of genome as-
sembly. While these contributions primarily address the challenge of improv-
ing the sequence resolution of de novo assemblies, they are also potentially
relevant to the problems of haplotype disambiguation and metagenomics.

In Chapter 4, we present a tool for the refinement of multiple sequence
alignments. The typical multiple sequence alignment tool is specialised in
the alignment of proteins and limited in the number and length of sequences
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it can process. Our tool is specifically optimised for the alignments of long
read repeat sequences and can accommodate ten thousands of sequences,
each of them ten thousands of bases long. We show that our optimisation
objective translates well to the task of determining copy differences for repeat
resolution.

In Chapter 5, we introduce a highly parallelisable method to statistically
model and identify repeat copy differences in noisy long reads. This method
is implemented as a highly efficient bitvector algorithm.

In Chapter 6 and 7, several novel algorithms are introduced, that serve
to hierarchically cluster repeat sequences by the identified copy differences
and to use the resulting clusters to resolve repeat regions. We show that our
clustering tool significantly outperforms state-of-the-art methods in repeat
resolution.

In Chapter 9, we describe a de-noising algorithm utilising neural networks
to reduce the error rate in extracted copy differences to such a degree, that
automatic assembly of the highly conserved Drosophila Histone Complex
becomes possible. We believe that this novel algorithm has wide applicability
beyond the specific genome assembly problem.

Several of the presented tools and algorithms are integrated into a pipeline
for the automatic assembly of highly repetitive gene complexes, together with
further analysis steps including preprocessing, clustering and graph traversal
algorithms. These additional analyses and their results are presented in
Chapter 3 and 10.

This is the extent of the novel scientific contributions presented in this
thesis. The rest of this thesis is structured as follows.

In Chapter 1, we detail motivation and scientific contribution. In Chapter
2 we give a historical and methodological introduction to the field of genome
assembly. Similarly, we introduce the basics of neural networks in Chapter
8, while finishing the thesis with conclusion and outloook in Chapter 11.
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Chapter 2

Introduction to Genome
Assembly

2.1 Foundational research

The concept of a genome as the collection of the units of hereditary informa-
tion is the culmination of a long history of scientific and philosophical inquiry
into the nature of heredity [1].

While some of the cornerstones of modern genetics were already antici-
pated by de Maupertuis in the 18th century [2], the idea of discrete herita-
ble units containing hereditary information was systematically examined by
Gregor Mendel in his famous pea experiments [3]. The existence of genes is
implied by one of his three laws, the law of “independent assortment”, which
states that separate traits are passed on independently.

The term gene itself was only introduced later-on. The heritable units
were first called pangenes (or gemmules, see [4]) after Darwin’s 1868 work
The variation of Animals and Plants under Domestication [5], and finally
genes. The term genome was coined by Hans Winkler in 1920 to describe
the collection of all genes [6].

Only two decades later, the DNA macromolecule was identified as car-
rier of genetic information by Avery, MacLeod, and MacCarty [7], based
on earlier work by Frederick Griffith [8], via experiments with streptococcus
pneumoniae strains.

Another decade later, in 1953, Francis Crick and James D. Watson pub-
lished the paper Molecular Structure of Nucleic Acids: A Structure for De-
oxyribose Nucleic Acid [9], in which they describe the double helix structure
of DNA. This finding was based on a wealth of data collected by other re-
searcher, most notably maybe Rosalind Franklin and M.H.F. Wilkins.
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Earlier investigations into heredity were based on pedigrees and the mea-
surement of traits which yielded vague and often seemingly contradictory ev-
idence. The new knowledge about the chemical composition of the genome
introduced the possibility of deciphering the blueprint of life itself and to
base future inquiries onto firmer grounds.

Following Crick and Watson’s breakthrough, rapid progress in biochemi-
cal genetics allowed the elucidation of the genetic code and laid the ground
work for building the first DNA sequencers [10]. By then it was well known,
that the genomic information is laid out in chromosomes containing sequences
of four nucleobases: adenine, cytosine, guanine, and thymine, (A,C,G,T).
And it had also been discovered, that sub-sequences in each chromosome
code for proteins by encoding amino acids with three subsequent DNA bases.

DNA sequencing took its first small step with the full sequence of the
genome of bacteriophage MS2 determined in 1972 by Walter Fiers [11]. MS2
is a RNA virus that infect the bacterium Escherichia coli and has one of the
smallest known genomes with just 3.5 kilo base pairs. The major step forward
happened in 1977 with the invention of chain-termination DNA sequencing by
Frederick Sanger [12]. Sanger sequencing is conducted by primer extension.
Primer extension means starting with a given short sequence, the primer,
which is extended base by base in a fashion that facilitates the classification
of the extending bases. By creating the next primer from the newly sequenced
part, one slowly walks along the genome, deciphering its sequence primer by
primer and base by base.

Shortly after this, an alternative to primer walking was proposed by
Staden [13] and applied by Gardner et al. [14] for sequencing a viral genome.
This strategy was based on random shearing of the genome which allows
sequencing of many parts in parallel. The parallel nature of this process is
alluded to in the name shotgun sequencing. Shotgun sequencing requires the
use of computers to piece together the full sequence from many separately
sequenced parts, the so-called reads. From that moment on, DNA sequenc-
ing and genome assembly developed into two interlocking research fields, a
symbiosis that will likely last until the sequencing technology matures to the
point of reading whole chromosomes.

2.2 Algorithm development

The eighties witnessed a steady stream of algorithmic innovations that led
up to the early culmination of this young research area, the Human Genome
Project. Central to the field of genome assembly are pairwise sequence align-
ment algorithms that compute the similarity between two sequences. The
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Read1: aaagtaggatcgaccggccca
Read2: agcgatggccgggcctatagttt

Alignment:
aaagtag-gatcgaccggccc-a

||*|||*|*||||*||*|
agcgat-ggccgggcctatagttt

Edit script: 
dddddmmimmmdmsmmmmsmmimiiiiii

(a) Two reads are aligned according to an edit script.

a a a g t a g g a . . .

a
g
c
g
a
. . .

0 0 0 0 0 0 0 0 0 0 . . .

0 0 0 0 1 1 0 1 1 0 . . .

0 1 1 1 0 1 1 0 1 1 . . .

0 1 2 2 1 1 2 1 1 2 . . .

0 1 2 3 2 2 2 2 1 2 . . .

0 0 1 2 3 3 2 3 2 1 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) The edit script was extracted
by backtracking the optimal path
through the alignment matrix.

Figure 2.1: Illustration of alignment, edit script and partial alignment matrix.

Needleman-Wunsch sequence alignment algorithm [15] has become the stan-
dard alignment algorithm and was refined and adapted several times, by
Smith-Waterman, Gotoh, Altschul, Erickson, and Myers [16, 17, 18, 19, 20].
The Needleman-Wunsch algorithm, see Figure 1, utilizes dynamic program-
ming to compute an explicit sequence comparison. This sequence comparison
takes the form of an edit script E that encodes the most parsimonious way
to edit a sequence ai<m into another sequence bj<n. The edit script E lists
four edit operations, the match m, where the original base is adopted into
the edited sequence, the substitution s, where it is changed into a different
base, as well as the deletion d and the insertion i. The last two denote a base
being skipped or an additional base being added to the edited sequence.

Which edit script is most parsimonious depends on the scoring function
ω and the gap penalty g. In some versions of the algorithm, gaps are scored
by a function that takes the size of the gap into account. In this thesis we
only use a fixed gap penalty of g = 1. ω scores the substitution of bases,
with ω(b, b) = 0 and ω(b1, b2) = 1 for b1 6= b2. In many use cases ω will be
more complex and take for example the likelihood of certain mutations into
account. For the alignment of sequencing reads these binary values for g and
f are sufficient and computationally efficient.

The number of edit operations other than m, the so-called alignment
score, provides a measure of sequence similarity. If the alignment score is
sufficiently explained by the expected error rate, the two reads are likely to
have been sequenced from the same position in the genome.

The alignment score is computed by filling a matrix M . Each entry Mij

contains the score of the alignment of the prefixes of a and b that end with
the i-th and j-th base respectively. Naturally, M00 can be initialised with
0, as changing the empty sequence into the empty sequence requires no edit
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operations, see Figure 2.1.

However, comparing pairs of sequences is only at the beginning of the
assembly process. It is a priori not granted that a random sampling of reads
will cover all regions of a genome. Oversampling is a necessity. That means,
every position in the genome will on average be sampled several times. There
is a trade-off between the sampling rate and the length of regions that will
have enough coverage to be faithfully reconstructed.

Statistical concepts for the assembly of full genomes of higher organisms
as well as a computational framework for genome assembly were developed by
Lander and Waterman [21]. Originally, this work formulated the problem of
genome assembly as a shortest common superstring problem. This problem is
well known to be NP-complete [22] and therefore computationally intractable.
To circumvent this diffculty, efficient greedy algorithms were proposed by
Ukkonen and Tarhio [23].

2.3 The Human Genome Project

The Human Genome Project represents one of the scientific highlights of
the past century. Shortly after the invention of Sanger sequencing, before
even a less complicated bacterial genome had been fully sequenced, leading
biologists began to discuss a complete mapping of all human genes. The
project was officially launched in 1990 and represents the largest collaborative
biological research effort ever conducted.

The sequencing strategy was to conduct hierarchical shotgun, which means
shotgun sequencing of large sections of the genome. When the effort of se-
quencing the human genome was already under way, new theoretical results
made a different approach seem like a promising alternative.

In 1995, Roach et al. [24] showed on simulated data that paired end
sequencing with inserts of variable size was a feasible strategy, even for very
large genomes. Simultaneously, Kececioglu and Myers [25] introduced the
overlap layout consensus concept for whole genome shotgun sequencing, for
a simplified overview see Figure 2.2.

These developments motivated Craig Venter to try to overtake the public
effort with his company Celera, by using paired-end whole genome sequencing
on top of the data provided by the international effort.

Despite starting three years later, his plan almost succeeded [26] and
legal uncertainties forced the public project to publish the first human draft
genome already in 2001 [27], almost five years earlier than planned.
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Algorithm 1 Needlemann-Wunsch

1: ai<m ← sequencing read
2: bj<n ← sequencing read
3: ω ← scoring function
4: g ← gap penalty
5: procedure Dynamic programming
6: M0,0 ← 0
7: Mi,0 ← 0, 1 5 i 5 m
8: M0,j ← 0, 1 5 j 5 n
9: for 1 5 i 5 m do

10: for 1 5 j 5 n do

11: Mi,j ← max


Mi−1,j−1 + ω(ai, bj) Match/Substitution
Mi−1,j + g Deletion
Mi,j−1 + g Insertion

12: procedure Backtracking
13: i← m
14: j ← n
15: E ← ∅
16: while i > 0, j > 0 do
17: if Mi,j = Mi−1,j−1 + ω(ai, bj)

∧
ai = bj then

18: E ← m+ E
19: i← i− 1
20: j ← j − 1
21: else if Mi,j = Mi−1,j−1 + ω(ai, bj)

∧
ai 6= bj then

22: E ← s+ E
23: else if Mi−1,j + g then
24: E ← d+ E
25: i← i− 1
26: else if Mi,j−1 + g then
27: E ← i+ E
28: j ← j − 1
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Figure 2.2: In the overlap layout consensus approach, overlaps, that means partial
alignments, are calculated for all reads. The resulting graph can be quite com-
plicated. But it can be radically simplified by eliminating all fully contained or
transitively inferable overlaps. The resulting reduced overlap graph contains con-
tiguous paths without junctions, so called contigs, indicated by the green boxes.
These contigs are extracted from the graph and a consensus sequence is called on
their reads.

2.4 Next generation sequencing

With the completion of the Human Genome Project, the era of next gener-
ation sequencing NGS started. NGS is an umbrella term for a number of
sequencing technologies like 454 Life Sciences’ 454 GS (Genome Sequencer),
Illumina’s MiSeq and HiSeq, ABI’s SOLiD (Sequencing by Oligonucleotide
Ligation and Detection), and Life Technologies’ Ion Torrent and Proton Tor-
rent platforms. The NGS platforms all share certain defining features: The
reads are short, from dozens to up to approximately 400 bases, the error
rate is low (for the most recent machines even below 1%), and the price of
sequencing runs is low and continues dropping.

With Illumina being the dominant sequencing technology, the era of high
throughput sequencing had started and the algorithmic requirements changed
dramatically. To find candidates for overlapping reads, k-mer seeding was
necessary for the relatively long Sanger reads. K-mer seeding is the practice
of determining substrings of k bases, so-called k-mers, that are shared be-
tween two reads. K-mer seeding is done to assess the probability that reads
overlap before conducting a costly sequence alignment step.

With reads only being dozens or a few hundred bases long, the number
of reads increased. This constituted a problem, as the number of computa-
tionally expensive read comparisons increased quadratically in the number of
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ACGT
CGTT

CACGTTTGACGTCAT…

GTTT

TTTG

TTGA

TGAC

CGTC

GACG

TCAT

GTCACACG

…

…

Read:

DeBruijn
Graph

Figure 2.3: To build a DeBruijn graph substrings of fixed length (kmers) are
extracted from each read. These constitute the nodes of the graph. Kmers that
can be changed into each other by deleting a base on one end and appending a
base on the other end, are connected by edges. Touring the graph allows to recover
the genome sequence. But kmers that occur several times lead to cycles that are
not always resolvable.

reads. However, with k-mers spanning a substantial part of the short reads,
calculating actual pairwise alignments became less necessary. This led to the
introduction of the DeBruijn graph approach [28]: To build such a graph
only the k-mers were extracted from the reads and the genome was recreated
by touring the graph implicit in single base extensions of the counted k-mers,
see Figure 2.3.

This approach together with the low and decreasing cost, led to a deluge
of new genome assemblies. But the inexpensive data came at a cost. With
the short reads, the resolution of structural variations and repetitive sequence
was mostly impossible, see Figure 2.4. Consequently, the new genome assem-
blies generally could not reach the quality of the earlier Sanger assemblies.
The assembly resolution is quantified by statistics on the length of contigu-
ous sequences, so-called contigs. Most commonly for example in the N50
measure that is defined as the length of the longest contig, such that it and
all longer contigs constitute more than 50% of the assembly sequence.

Of course, maximizing the N50 or similar measures does not necessarily
lead to an assembly of higher quality. However, if the probability of mis-
assembly has been kept to a minimum and the accuracy of the final genome
sequence is sufficiently high to support downstream analysis, a more contigu-
ous assembly is a better assembly.

For instance, only with the currently feasible highly contiguous assemblies
can we begin to routinely investigate the full three dimensional structure
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Genome:

Short	reads:

Long	reads:

Short	read	graph:

Long	read	graph:

Figure 2.4: This figure illustrates the problem of interspersed repeats. Short reads
that do not fully span interspersed repeats will lead to cycles in the assembly graph
that are not resolvable. Long reads allow full resolution of interspersed repeats
that can be fully spanned.

of the folded DNA sequence, using techniques like chromatin conformation
capture [29]. This is a key requisite to create comprehensive genome-wide
interaction maps that are necessary to study the interaction of genes from
very different regions of a chromosome.

2.5 Single molecule real-time sequencing

After a decade of NGS, the field of genome sequencing underwent another
revolution. While Sanger sequencing and all NGS technologies were based
on the polymerase chain reaction (PCR) to amplify the genetic material and
create a strong signal, the new technologies by Pacific Biosciences [30] and
Oxford Nanopore [31, 32] were single molecule real time sequencing (SMRT).
This means that a single strand of DNA is sequenced at a time.

On the one hand, this entails that the error rate increased substantially,
as the signal was no longer amplified. On the other hand, these new reads are
substantially longer, with several thousand base pairs average read length,
and progressively becoming longer. Additionally, SMRT reads alleviated the
systematic errors and coverage gaps that are a result of amplification biases
typical for PCR. With a truly random error, even relatively high error rates
can be averaged out.

The high error rate of long read technologies made the prevailing De-
Bruijn graph paradigm infeasible. A return to the overlap-layout-consensus
approach was mandated and realized for instance by Koren et al. with the
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Canu assembler [33], Chin et al. with the Falcon assembler [34], and with
MARVEL [35] developed at HITS.

These assemblers made de novo assemblies of unprecedented quality pos-
sible [36]. MARVEL specializes on the assembly of large and repetitive
genomes. Using this assembler, it was possible to assemble the genome of
the axolotl (Ambystoma mexicanum) [35], which, with a size of 30 gbp (i.e.
30 billion bases), is roughly ten times larger than the human genome. The
improvement over earlier sequencing technologies is striking in the assembly
of the genome of the flatworm schmidtea mediterranea [37]. This genome
contains 61.7% repetitive sequence as well as a high AT-bias (i.e. a substan-
tially higher percentage of the bases A and T as compared to the bases C and
G), and could not be assembled with NGS short read data and respective
assemblers. Its existing Sanger sequencing assembly [38] had a N50 of only
19 kbp, which the MARVEL assembly improves upon by almost two orders
of magnitude.

Both, MARVEL and Canu, routinely assemble bacterial genomes per-
fectly. In less complicated eukaryotic genomes they occasionally manage to
assemble a full chromosome arm from the telomeric region at one end to the
centromeric region in the middle of the chromosome. In one case, MARVEL
even assembled a full chromosome of the yeast cyberlindnera.

Despite these advances, there still remain some repetitive structures that
can not be resolved by any existing assembler. Centromeric regions and
the telomeres are composed of micro-satellites, sequences of just a handful
of bases repeated hundreds of thousand times. Reads sampled from micro-
satellite sequence cannot be reasonably overlapped, see Figure 2.5. It is
likely that both, longer reads and lower error rates, are necessary to resolve
centromeres and telomeres.

More progress has been made in the resolution of interspersed repeats.
These repetitive sequences are typically transposable elements. Transposable
elements are subsequences within a genome that have the ability to insert a
copy of themselves into the genome at a different position [39]. They therefore
appear to be randomly strewn into the genome. Interspersed repeats can
be resolved by reads that span the entire repeat and can be anchored in
unique flanking sequence on both sides. The improved resolution of genomes
under the new long read paradigm is mainly due to the higher number of
spanning reads. However, numerous transposon families are longer than even
the longest current reads. This fact accounts for the number of contigs of
very complicated genomes that is still high.

While interspersed repeats may eventually all be spanned by reads of con-
tinuously increasing length, tandem repeat clusters pose an additional diffi-
culty. These repeats are placed side by side, sometimes comprising dozens
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Figure 2.5: In micro-satellite regions, the same combination of bases is repeated
thousands of times. Reads sequenced from such a region exhibit many well-scoring
overlaps because shifting a well-scoring alignment by the length of the repeated
pattern leads to another alignment with low error rate. The underlying relative
position in the genome is not recoverable from alignments alone.

of copies. This entails that flanking sequences of almost all copies are fur-
ther repeat copies and therefore not unique. Read lengths would have to
increase by orders of magnitude before spanning reads for these regions can
be sequenced.

Interspersed repeats and tandem repeat clusters are the current bottle-
neck in de novo genome assembly resolution and constitute the focus of this
thesis.
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Part II

Preprocessing
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Chapter 3

Preprocessing Preamble

In this thesis, we present algorithms for two distinct problems in genome
assembly. One problem is the disambiguation of repeat copies from families of
interspersed repeats. The other problem is the resolution of tandem repeats,
that is, repeats whose copies occur right next to each other in the genome.
Especially challenging is the resolution of repeat complexes where dozens of
repeat copies are tandemly repeated.

The solutions to both of these problems require the detection of dis-
ambiguating differences between repeat copies. However, for both repeat
types knowing these differences is not sufficient due to the presence of noise.
Therefore, the strategies for resolving these repeat types use the same pre-
processing steps to extract disambiguating differences. Thereafter, they use
different and unrelated analysis pipelines.

In the following, we first describe the shared preprocessing steps in part
II and then present the algorithmic ideas for the resolution of interspersed
repeats in part III. The pipeline for the assembly of tandem repeats will be
presented in the next and final part IV of this thesis.

We will first describe our method for computing multiple sequence align-
ments (MSAs). In MSAs sequences are aligned by inserting gaps such that
differences and similarities between the sequences line up and can be analysed
and extracted for downstream processing.

Then, we will explain the statistical analysis for detecting systematic
differences between repeat sequences and detail the choices we made for ex-
tracting these putative repeat copy differences.

After the introduction of these preprocessing steps, we will demonstrate
how the extracted differences can be used to identify and classify sequences
stemming from distinct repeat copies. We also show how these classes of
possible repeat copy groups can be used to resolve interspersed repeat regions
in genome assemblies.
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Chapter 4

Multiple Sequence Alignment

4.1 Introduction

Multiple sequence alignments (MSA) are used in numerous fields of Bioin-
formatics, in evolutionary and comparative studies, as well as for different
aspects of genome assembly and sequence analysis. In the former fields they
strive to identify homologous bases and proteins, that means, bases and pro-
teins with a common evolutionary history. This subsequently allows to in-
vestigate evolutionary processes, for example, by inferring phylogenetic trees.
The computation of MSAs for this purpose typically requires incorporating
evolutionary parameters into the alignment algorithm, for example, the prob-
ability of transitions from one nucleotide to another [40]. Additionally, there
is an intricate interplay between inferred phylogenies and MSAs: While phy-
logenetic trees are inferred on MSAs, knowing the phylogeny can also help to
avoid errors in the MSA computation [41]. Therefore, the reconstruction of
phylogenies and the computation of MSAs are inextricably linked. The tree
and the MSA can even be calculated simultaneously [42], though at a large
computational cost.

In genome assembly, however, computing MSAs is fortunately less com-
plex. The aim is usually to compute a consensus sequence on a set of given
sequences covering a genome region by averaging out sequencing error, or,
as is the case here, to detect underlying differences among highly similar
sequences that might be obscured by sequencing error. In the following, we
define the term MSA mathematically and introduce a task-appropriate MSA
optimality criterion. Then we present the algorithms used to compute and
optimise the MSA according to this criterion. Finally, we empirically justify
the chosen optimality criterion and discuss some of the limitations of our
approach.
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4.2 Definition

Given a set of DNA sequences Si with Si ∈ {A,C,G, T}li for all i < n, an
MSA of these sequences Si is a set of derived sequences S ′i ∈ {A,C,G, T, ,−}L,
where each S ′i is obtained by inserting the additional symbols {−, } (for
alignment gaps and coverage gaps) into Si such that all sequences S ′i have
the same length L. Coverage gaps are gaps between different sequences in
the same row of the MSA, or between the end or the beginning of a sequence
and the end or beginning of the MSA. Alignment gaps are opened within a
sequence while aligning it to the other sequences to accommodate for bases
in the other sequences that have no corresponding base in the sequence itself.

This mathematical definition of an MSA is a generalisation of the defi-
nition of a pairwise sequence alignment. But the purpose of computing an
MSA is often the exact opposite of the purpose of computing a pairwise
sequence alignment: Pairwise alignment intends to identify the similarities
between sequences, while an MSA aims to find the differences between se-
quences. Usually the sequences for which an MSA is computed are already
known to be similar. Thus, the goal of an MSA is to arrange them in such a
way that the differences between (groups of) the sequences become visible.

This is especially true when the differences of interest are obscured by
a comparatively high number of spurious differences introduced by random
sequencing error. In that case a single pair-wise sequence comparison is
not capable of determining which bases differ due to sequencing error and
which bases differ for biological reasons (e.g. repeat copies). For instance,
two PacBio reads sequenced from the exact same section of a genome will
contain such a substantial amount of sequencing errors, that their similarity
is only between 70-80%. However, by comparing each sequence to numerous
others, the bases with majority support can be determined for each of them.
Finding true repeat copy differences among the deviations from the respective
majority base is then within the realm of statistical analysis (see Chapter
5.1).

When computing an MSA, we attempt to optimise a scoring function
that is appropriate for the task at hand. This scoring function is usually
given by a substitution matrix that scores the mismatch of bases, and a
gap penalty function that punishes the introduction of gaps. The sum-
of-pairs unit score

∑
k<L

∑
j<n

∑
i<n U(Sj[k], Si[k]) where U(b, b) = 0 and

U(b1, b2) = 1 for b1 6= b2, L the width of the MSA and n the number of
sequences, constitutes a simple example of an MSA scoring function. Here,
the substitution matrix and the gap penalty function are both denoted by
U(b1, b2) as b1, b2 ∈ {A,C,G, T, ,−}.
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4.3 Algorithm

The definition of the MSA and its scoring function is a straightforward gen-
eralisation of the pairwise alignment case. The question arises if for any
number of sequences an actual MSA can be computed by generalising the
Needlemann-Wunsch algorithm 1. However, as the dynamic programming
matrix that has to be computed is n-dimensional, the runtime complexity of
this generalized algorithm is O(Ln).

Given this exponential time and space complexity, in practice initial
MSAs are computed using various heuristics and the resulting suboptimal
MSA is then further optimised in an additional processing step. There are
two basic approaches to refining an initial MSA (and combinations of these
approaches): Optimising the MSA row by row, or optimising it column by
column. The row-by-row optimisation method that we present in this chap-
ter was introduced by Anson [43]. The column by column optimisation is, for
example, used by the PacBio consensus program quiver [44] that we use in
Chapter 10.5 to compute the final consensus sequence of the finished assem-
bly of the Drosophila Histone Complex. The fundamental difference between
these two basic MSA refinement approaches is that only the row-by-row ap-
proach sidesteps the effect of the exponent of the runtime complexity. The
column-by-column optimisation is therefore limited to narrow sections of an
MSA, that means a small number of adjacent columns, and is consequently
only used for local refinement.

We implement a version of the row-by-row paradigm that optimises the
unit score of pairwise alignment as defined above [45]. This choice is moti-
vated by the specific properties of the task at hand. We do not attempt to
arrange sequences according to a biologically defined similarity score. This
would require the use of dedicated scoring functions that encode, for instance,
knowledge of bio-chemical similarities or of likely evolutionary changes among
protein-coding sequences. Instead, we align sequences whose differences are
to the largest extent a result of random sequencing error. This means, that
the only task-specific knowledge that we might exploit with our scoring func-
tion are the relative frequencies of indels (i.e. insertions and deletions) and
substitutions. Given the abundance of insertions in our data, it might seem
logical to penalize alignment gaps less severely. However, this would also
favour arranging substitutions in separate columns, which seems undesir-
able. Moreover, encouraging alignment gaps will increase the breadth of the
MSA significantly, which is a major runtime impediment of the refinement
algorithm. We therefore implemented the unit scoring as it accelerates com-
putation and ease of implementation.
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at-tcaatgcactcgggct-atcg
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Figure 4.1: When re-aligning a sequence to the remaining MSA we only compute
a part of the dynamic programming matrix. This part is a band (in orange)
around the backtracking path (in red) of the existing alignment of the sequence to
the MSA. The width of this band is a parameter that allows us to fine-tune the
accuracy versus speed trade-off.

Even when using unit scoring, MSAs of PacBio reads can grow to a con-
siderable breadth because an abundance of erroneous insertions that are dif-
ferent for each read has to be accommodated. This makes the optimal global
re-alignment of a sequence to the MSA prohibitively costly.Therefore, we
restrict our search for the alignment of a given sequence to a small part of
the dynamic programming matrix, see Figure 4.1. This part of the matrix is
defined by a band that is placed around the backtracking path of the align-
ment that resulted from the last round of realigning. The initial multiple
sequence alignment is calculated by aligning the sequences to a template se-
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quence. This template sequence can be one of the sequences, a consensus of
several sequences, or a repeat sequence that has already been published in
the literature. In this initial step, due to the limited length of the template
and because each pair-wise alignment is calculated only once, we can afford
computing the entries of the entire dynamic programming matrix, see Algo-
rithm 1. Once the initial MSA is computed, it is refined by the row-by-row
re-alignment algorithm, see Figure 4.2.

Figure 4.2: First we align all sequences to a template, building an initial alignment.
This template can be one of the sequences, a consensus of several sequences or a
known repeat sequence from the literature. In a second step, this initial alignment
is refined via row-by-row optimisation of the sum-of-pairs unit score.

In our pairwise realignment algorithm, we optimise a given MSA Mij,
where i < n sequences Si are arranged into j < m columns. For the i-th
sequence we define a path Ti = {j < m|Mij ∈ {A,C,G, T}}, which encodes
the existing alignment of the sequence Si to the MSA. We also define a scoring
function ωi(j, b) =

∑
k<n|k 6=i∧Mkj 6=b∧Mkj 6= 1. This scoring function penalises

all entries in a column j (apart from coverage gaps) that are different from
the base b ∈ A,C,G, T,−. Note, that we exclude the entries of the i-th row.
This can be interpreted as removing the sequence Si from the MSA to then
align it back to the remaining MSA. Additionally, we define the gap penalty
g(j) =

∑
k<n|k 6=i∧Mkj∈{A,C,G,T} 1 as the number of bases (without gaps) in the

column j after removing Si.
The pairwise realignment algorithm, see Algorithm 2, is a straightforward

generalisation of the Needlemann-Wunsch algorithm. Instead of aligning a
sequence to another sequence, we align a sequence to an MSA. The scoring
function defined above allows us to score the mismatch between columns of
the MSA and bases of the sequence that is being re-aligned. The initialisa-
tion avoids penalising alignment gaps before the beginning or after the end of
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the sequence because not every sequence will stretch over the entire width of
the MSA. The core of the algorithm consists of a dynamic programming pro-
cedure: The calculation of the alignment is broken down into alignments of
sequence/MSA prefixes that can be dynamically extended by either match-
ing the next base and column, or by inserting a gap in either sequence or
MSA. The computed prefix alignment scores are stored in an dynamic pro-
gramming (DP) matrix Dij. After filling the DP matrix, the best scoring
global alignment is extracted by backtracking through the DP matrix. The
backtracking starts with the entry of the DP matrix containing the score of
the full alignment of the sequence to the MSA. Then we successively go back
to the entry that was used to calculate the current score until we arrive at
the entry D00.
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Algorithm 2 Pairwise ReAligner

1: Si ← sequence in row i
2: ωi ← scoring function for Si

3: Ti ← path for row i
4: Dxy ← DP matrix
5: ni ← length of Si

6: m← number of columns
7: bh← width-of-band/2
8: procedure Dynamic programming
9: D0,y ← 0, 0 5 j 5 m

10: Dx,0 ← INT MAX, 1 5 x 5 ni

11: for 1 5 x 5 ni do
12: for max(1, Ti[x]− bh) 5 y 5 min(m,Ti[x] + bh) do

13: Dx,y ← min


Dx−1,y−1 + ωi(y, Si[x]) Base-column match
Dx−1,y + g(y) New column
Dx,y−1 + ωi(y,−) Alignment gap

14: procedure Backtracking
15: x← m
16: y ← n
17: E ← ∅
18: while x > 0, y > 0 do
19: if Dx,y = Dx−1,y−1 + ωi(y, Si[x]) then
20: E ← m+ E
21: x← x− 1
22: y ← y − 1
23: else if Dx,y = Dx−1,y + g(y) then
24: E ← d+ E
25: x← x− 1
26: else if Dx,y = Dx,y−1 + ωi(y,−) then
27: E ← i+ E
28: y ← y − 1

4.4 Empirical Accuracy Assessment

In the following, we empirically assess the performance of our realignment
tool. We start with several observations.

By design, we compute a part of the DP matrix that contains the back-
tracking path of the current alignment. Therefore, in the worst case, our
re-alignment computation will either result in the current alignment or an
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alignment with the same score. This means that the pairwise alignment score
is guaranteed to decrease monotonously. Therefore, when the pairwise align-
ment score converges, we know that within the band of evaluated alignments
each sequence is optimally aligned to the MSA. This, however, is not neces-
sarily the globally optimal MSA. We illustrate this by constructing a local
minimum:

… T- …
… T- …
… T- …
… T- …
… TA …
… -A …
… -A …
… -A …
… -A …
… T- …
… T- …

… T- …
… T- …
… T- …
… T- …
… TA …
… A- …
… A- …
… A- …
… A- …
… T- …
… T- …

?

Figure 4.3: In this MSA we observe a substitution of the prevalent nucleotide T
by a nucleotide A in several rows. In the left part of the Figure, this substitution
is arranged in a separate column. On the right part of the Figure, we see the
arrangement that reflects a substitution, with both variations being located in the
same column. This is also the better scoring version as it arranges the −’s into a
single column. However, under row-by-row realignment, the left version is unlikely
to transform into the right version, as in every realignment the A will be placed
with the other A’s.

The arrangement in Figure 4.3 constitutes a local optimum and is not
likely to be changed by additional realignments. We can escape this type of
local optimum via a column optimisation. However, the practical impact of
this approach is small, as there are other types of local optima that comprise
several columns. Such wider local optima, spanning more than one column,
are increasingly computationally expensive to optimise.

Additionally, it is not obvious a priori that a chosen optimisation crite-
rion correlates closely with the performance in the task for which the MSA
is computed. In our case, the downstream use involves the detection of un-
derlying variations between repeat copies among a substantial number of
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error-induced differences between reads. These repeat copy variations are
detected via a statistical method that we present in Chapter 5.1. In this
method we compute a negative log-probability to determine the statistical
significance score for each variation in a column. The detection of the true
variations that do distinguish repeat copies depends on their scores being
distinguishable from error-induced noise.

Thus, this statistical significance metric for distinguishing variations di-
rectly reflects the performance of our realignment heuristic in the context
of repeat resolution. Therefore, it allows to assess our choice of the specific
alignment scoring criterion. Figure 4.4 shows that there exists a strong pos-
itive correlation between decreasing pairwise alignment score and increasing
statistical significance score of distinguishing variations on simulated data.
The data set is simulated using the equidistant paradigm (see Section 6.2)
with a coverage of 20X, 20 repeat copies, 5% repeat copy difference dif-
ferences, 1000 bp repeat length, and the empirical PacBio error profile. We
simulate the data to gain statistical significance scores in an intermediate
range to illustrate the full correlation without range restriction.

The runtime of our PairwiseRealigner (available at
https://github.com/PhilippBongartz/RepeatResolver under GNU GPL v3.0)
is asymptotically linear in the number of sequences. Therefore, it is well-
suited for analysing the extremely large repeat families that we attempt to
resolve. The bandwidth parameter can be used to adjust the size of the band
in the DP matrix that is being computed. This allows for tuning the runtime
versus accuracy trade-off. Only computing a band of the DP matrix also
decouples the runtime from the MSA width. This is important as the MSA
width can change considerably during the refinement process.
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Figure 4.4: We depict the average statistical significance of the top 100 distin-
guishing variations in simulated data as the pairwise alignment score is decreased
by our PairwiseReAligner tool.
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Chapter 5

Variation extraction

5.1 Introduction

After computing and refining an MSA which comprises the repeat sequences,
we can now extract variations in these sequences. These variations allow us
to distinguish between the different repeat copies. Because of the substantial
error rate and the large number of sequences, each MSA column is likely to
contain all four bases as well as alignment gaps and coverage gaps. However,
completely random error will lead to statistically independent variations in
columns that are sufficiently distant to each other (i.e. have sufficiently many
columns between them). In contrast, those variations that are typical for the
same or strongly overlapping subsets of repeat copies will correlate.

Mathematically, we can express this using combinatorics. Every base b ∈
{A,C,G, T,−} in each column i of the MSA defines a group of sequences Gb

i .
This group Gb

i consists of exactly those sequences that exhibit a b at column
i. The likelihood of the intersection Gb2

j ∩ Gb1
i := {x|x ∈ Gb2

j ∧ x ∈ Gb1
i } of

two statistically independent groups exceeding a certain size, is described by
the cumulative hypergeometric probability CHG(Gb2

j , G
b1
i ) := min(P (X =

k), P (X < k)), with P (X = k) =
(K
k)(N−K

n−k )
(N
n)

, where N is the shared coverage

of both groups, K is the size of Gb1
i restricted to the shared coverage, n is

the size of Gb1
i restricted to the shared coverage, and finally k is the size of

the intersection Gb2
j ∩ Gb1

i [46, 47]. We use the shared coverage because not
every sequence has data for every column, so care has to be taken to restrict
this calculation to sequences that have data in both columns.

This is the well-known urn problem “drawing without replacement”: From
an urn with K white and N −K black balls we draw n balls. What is the
probability of drawing k white balls? In our use case the “drawing” is just
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the examination of the second base group and “drawing a white ball” repre-
sents a sequence that contains both variations and therefore is contained in
the intersection of the two base groups.

Consequently, a lower CHG-value yields a higher likelihood for the two
base groups being present due to non-random variation. We call variations
that define base groups that exhibit intersections with a CHG-value below a
certain threshold “statistically significant variations”. It might happen that
some true copy differences do not produce statistically significant variations.
However, this implies that there are no other variations delimiting a similar
subset of sequences. As our downstream processing depends on redundant
variations reinforcing each other, not identifying these copy differences will
not impede accuracy.

Even without discriminating variations, the CHG-scores will vary from
base group comparison to base group comparison. In that case the expected
lowest CHG-value is the inverse of the number of comparisons. This inverse
is therefore a sensible lowest threshold. All statistically significant variations
above this threshold are more significant than the most significant error in-
duced variation is expected to be. However, care has to be taken to avoid
comparing columns in immediate vicinity. In an MSA close columns are
not statistically independent. Therefore, we only compare base groups from
columns that have at least 40 columns between each other. Moreover, PacBio
reads do not always exhibit the same error rate. Some reads have a system-
atically higher error rate along the entire length of their sequence or at least
in substantial parts of the sequence. If sequence S has such an elevated error
rate, it is more likely to have a certain error induced variation in column x
and it is also more likely to have a different error induced variation in column
y. This induces a weak statistical dependence between errors in columns that
are located far apart and can yield low CHG-values slightly more likely than
predicted.

For our interspersed repeat resolution method this does not impact ac-
curacy too much, so we can use the lowest threshold. As we will see, in this
case downstream processing alleviates the pitfalls of low-quality data points.
For the assembly of gene complexes in Part IV of this thesis, however, we
will only use higher quality variations, as judged by the CHG-value.

We compute the CHG using the Gnu scientific library GSL [48]. The
pairwise comparison of base groups requires quadratic time in the number of
MSA columns. However, we can reduce compute time by almost two orders
of magnitude by only comparing columns which contain bases in a majority
of rows. Due to the high number of indels in PacBio data, each MSA contains
numerous columns that do not contain substantial amounts of information,
but rather accommodate inserted erroneous bases. This means that ignoring
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these columns for allowing a substantial computational speed-up represents
a reasonable trade-off. However, for the data sets used in this thesis, we do
not yet have to apply this short-cut. Instead, we leverage parallelisation to
gain comparable wall clock speed-ups.
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Part III

Interspersed repeats
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Chapter 6

Simple Repeat Resolution

This chapter is based on a peer-reviewed publication:

Philipp Bongartz.
”Resolving repeat families with long reads”
BMC Bioinformatics. 2019 May 11. 20:232.

Code and data available at
https://github.com/PhilippBongartz/RepeatResolver

Contributions: ”Resolving repeat families with long reads” is a single
author paper where problem selection, algorithm design, implementation,
testing and writing was done by Philipp Bongartz.

6.1 Introduction

Long read sequencing technologies [30, 31, 32, 49] have brought us almost
within reach of perfect genome assemblies. For circular bacterial genomes,
full resolution is already considered as being the current standard for as-
semblers that are based on long-read sequencing technologies [33]. Perfect
bacterial genome assemblies are achieved by spanning repeat elements with
reads that are long enough to be anchored in unique sequences on both sides
of the repeat [36]. However, eukaryotic organisms generally contain repeat
families that are not spanned by the current read lengths [37]. In complex
genomes, these repeat families are the most prevalent reason for assembly
breaks. Frequently, most interspersed repeats originate from but a few re-
peat families [35]. As the number of indistinguishable repeat copies grows,
it becomes increasingly unlikely to find a unique path through an assembly
graph (see Figure 2.2). Thus, the only strategy to resolve a given repeat
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family directly from the sequencing data is to detect distinguishing features
between the copies of a repeat family. Several approaches to detect and uti-
lize such repeat differences have been proposed [46] [47] [50]. However, these
existing repeat resolution methods are geared toward 2-10 repeat copies. This
limits their applicability to only a small subset of repeat structures as they
occur in complex genomes [35, 37].

Here, we present a method that is similar to that of Tammi [47]. It uses
clustering heuristics to overcome the limitation of Tammi’s method to an
error rate below 11%, and to repeat families with 10 or less copies. For sim-
ulated data sets with distinct repeat structures we are able to resolve repeat
families with 100 copies under the typical PacBio error rate of 15%, while as-
suming an absolute number of repeat copy differences comparable to that of
other methods. Our analysis of Drosophila melanogaster transposons proves
that similar results can be achieved with empirical data, while our compari-
son to an existing repeat resolving tool for long read data demonstrates the
improved accuracy (82.9% vs 50.6% resolved copies) and reduced runtime of
our method.

6.2 Data sets

Simulating repeat data

To avoid overfitting our method to one specific repeat family structure, we
use three different approaches to create simulated repeat families with ≥ x%
difference between copy pairs.

Equidistant Simulations: In equidistant simulated repeats, each copy has
x/2% variants that distinguish it from the initial template. In pairwise com-
parisons these per-copy differences then yield a difference of x%.

Distributed Variants Simulation: Additionally, we conduct a distributed
variant repeat family simulation. Here, we distribute each variant over a
subset of copies. Thus, each copy consists of an intersection of variants. In
turn, these variants characterize a subset of copies rather than a single copy.
Adding 3x% variants again yields an expected difference between copy pairs
of x%, as the probability of two sequences not sharing a specific variation
can be calculated as

∫ 1

0
2(r × (1− r))dr = 1

3
.

Tree-like Simulations: Finally, we simulate tree-like variant repeats. Here
we create a repeat family by building a binary tree of copies, each copy
obtaining x/2% variants that distinguish it from the parent copy. The leaves
of this tree create a repeat family where sister leaves show a difference of x%.
The binary tree simulates a simplified version of the phylogenesis of repeat
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families via copying and mutation [51] [52].
Our three simulation scenarios pose distinct algorithmic challenges in

variant detection and copy disambiguation. In general, a repeat resolving
method should perform well under all three simulation scenarios. To bench-
mark our algorithms, we create synthetic data sets for each scenario described
above. Each simulated data set contains 100 copies derived from a randomly
created 30 kbp template. These 100 copies are diversified with equal numbers
of substitutions, insertions and deletions of single bases. We create data sets
with 0.1%, 0.5% and 1% minimal copy differences respectively. To each copy
we add two unique 10 kbp flanking sequences on both sides of the 30 kbp re-
peat. From these copies 30-40X coverage is randomly sampled, with the read
length distribution modelled after the empirical PacBio data set described
in the following paragraph [53]. Each read exhibits the typical PacBio error
rate of 11.5% insertions, 3.4% deletions and 1.4% substitutions.

Transposon data sets

As simulated data is often less challenging to analyse than real data, we also
test our algorithms on several empirical PacBio data sets obtained from a
subline of the ISO1(y;cn,bw,sp) strain of Drosophila melanogaster [53]. Each
data set is created by selecting reads that fully map to a transposon template.
These templates are taken from the canonical transposon sequence set [54],
with a length cutoff of >4 kbp, as resolving even shorter repeat sequences
is not required due to current read lengths. There are seventeen transpo-
son data sets numbered from 0 to 21, with the missing numbers indicating
transposons below the length cutoff. The transposon template length varies
between 4.4 kbp and 7.5 kbp with a mean of 5.8 kbp and a median of 5.3 kbp,
the copy numbers lie between 7 and 157. Due to the selection of reads that
fully fit the template, the initial sequencing coverage of 90X is reduced to
35-54X. The ground truth for the resolution of each repeat family is man-
ually determined by clustering the flanking sequences of every transposon
data set according to the Levenshtein distance [55].

Extracting distinguishing variants

In a pre-processing step, the simulated reads are arranged into a multiple
sequence alignment (MSA) [45]. This initial MSA is computed by aligning
all reads to a repeat family template. In our test data sets we use simulated
repeat templates and templates extracted from existing genome assemblies,
but in practice any consensus sequence of a repeat family of interest can be
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used. As described in Chapter 4, the initial MSA is subsequently refined by
realigning all sequences until the sum of pairwise alignment scores does not
further improve.

Due to the high error rate, each column of this refined MSA contains
all four bases as well as coverage and alignment gaps. To find the columns
where this variation can be explained by significant differences between re-
peat copies that are beyond random error, we conduct a statistical anal-
ysis of the co-appearance of bases in different MSA columns. Every base
b ∈ {A,C,G, T, } in column j defines a group Gb

j containing the sequences
that have a b in column j. We then proceed to extract all base groups that
are statistically significant as detailed in Chapter 5 .

6.3 Refining base groups

A completely error free base group G extracted from the MSA could be
modelled as a union of true copy groups Ti with i ∈ IG. Here Ti contains
exactly those reads sampled from repeat copy number i and IG describes
which copies comprise the base that defines the base group G. Due to the
existing error rate, G will contain a fraction p of these true positives in the
Tis with i ∈ IG and also, a fraction q of the sequences in the Tis with i /∈ IG
as false positives.

In the following, we describe a framework to refine such groups and to
identify those, where the refinement induces a low proportion q of false pos-
itives and a high proportion p of true positives. In this analysis, we assume
that all groups have been restricted to contain only sequences that show no
coverage gaps in any of the MSA columns from which the groups are derived.

First, we calculate a clique C of n groups Gj, with j ∈ J and |J | = n, that
share the most significant positive intersection withG. A positive intersection
is an intersection that is larger than expected by chance, see Section 5.1.
The parameter n is chosen empirically. This is a clique in the graph that
contains groups as nodes and statistically significant intersections between
those groups as edges. Now we can define a consensus group Ck := {s|s ∈
Gj for j ∈ J with |J | > k} for every cut-off k ≤ n. The cut-off k determines
in how many groups of the clique a given read has to occur in order to be
included in the consensus group Ck. If the groups that constitute a clique all
share the same IG, that is, they all describe the same ground truth group,
the following formula gives the probability p that a specific read is in the
consensus group Ck:
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p =
n∑

l>k

∑
i+j=l

Pr(i, l, p)× Pr(j, n− l, q)

This formula is a sum over the probabilities that a given read occurs in
exactly l out of n groups, with l > k. A given read occurs in exactly l groups
if it occurs in i groups as true positive, that is, an element of the Ti with
i ∈ IG, and in j groups as false positive while i+j = l. These probabilities are
given by Pr(.,.,.), the probability mass function of the binomial distribution,
which takes as parameters the probabilities p,q of a group element being a
true positive or a false positive, respectively.

The fraction of false positives in Ck coming from the Ti with i /∈ IG
is described by the cumulative probability function

∑n
i=k+1

(
n
i

)
qi(1 − q)n−i

of the binomial distribution. As shown in Figure 6.1, this fraction of false
positives decreases quickly with increasing cut-off k, while the number of true
positives remains constant for larger k. This is due to p being significantly
larger than q. In reality, the subset of Tis described by the groups that
form a clique can vary considerably. Also, not every Ti is described by
either all or none of the groups. If we consider the Tis separately, we find
that if a Ti is contained in m groups of the clique, we expect the fraction∑m

l>k

∑
i+j=l Pr(i, l, p) × Pr(j, n − l, q) of the elements of Ti to occur in the

consensus group Ck. In this formula l is the number of groups, in which an
element occurs. This number is split into i true positives in the m groups
that describe Ti , and j false positives in the groups not describing Ti. For low
cut-offs k, this fraction is close to 100% and we expect all elements of Ti to
occur in Ck. As k increases, the expected number of true positives decreases
to zero. So, for every Ti there are three separate value ranges for the cut-off
k, the perfect range, in which all elements are contained, the dropping range,
in which the number of true positives decreases, and the zero range, where
no elements of Ti are part of Ck any more, see Figure 6.1 for an illustration.

For distinct Tis the k value ranges for perfect and dropping accuracy will
be different due to different values of m, the number of groups describing
Ti. If k is high enough for the number of false positives from the Tis not
described by any clique members to decrease to zero, the number of elements
of Ck is equal to the sum over the cardinalities of Ti ∩ Ck as given above.
As we will see, minimizing the difference between Ck and Ck+1 allows us to
determine the optimal cut-off value k, which places most Tis into, or close
to, either their perfect or zero range (see Figure 6.2).

We call the size difference between Ck and Ck+1 the drop-off between
Ck and Ck+1. The size of the drop-off is determined by the number of Tis
for which the cut-off value k is in the dropping range. Therefore, a drop-off
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Figure 6.1: If the groups Gj of a clique all describe a single Ti, the number of false
positives (red squares) coming from other groups Tj decreases quickly, while the
number of true positives (black dots) remains constant until the cut-off value is
relatively high. In the green areas, the cut-off guarantees to yield a consensus that
either perfectly contains Ti or is completely empty.

close to zero indicates that all Tis are either completely contained in Ck or
not contained therein at all. The drop-off allows to determine the optimal
cut-off value k for every clique of groups. More importantly, it allows to rank
the different clique consensuses by their likelihood of perfectly describing a
subset of Tis.

6.4 Clustering

The refinement procedure described above aims to extract sufficiently strong
signals to accurately classify the sequences into two subsets of copy versions.
It can then be applied recursively to each of the respective subsets. For a
recursive subdivision to work, it needs to be highly accurate. Otherwise, noise
will accumulate in subsets, making subsequent analyses increasingly difficult.
We achieve this increases accuracy in the recursion via the refinement and
the drop-off precision estimate for each refinement. The recursive subdivision
terminates, once no subset is left that can produce a consensus group which
is sufficiently refined for further subdivision.
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Figure 6.2: If the groups Gj of a clique describe several Ti, the size of the consensus
is determined by the aggregate of the true positives (black dots) from each Ti, as
well as the false positives (red squares) from the remaining Tjs. The green area
shows the cut-offs that create a consensus that accurately distinguishes one subset
of Tis from the rest. It is exactly this range where the perfect or zero ranges of all
Ti overlap. Furthermore, the aggregate number of true positives (denoted by the
uppermost black dots) stays constant in this range.

When the recursive subdivision process has terminated, we apply a simple
clustering algorithm to each of the remaining subsets. It assigns reads to
centroids according to the differences that are significant for the subset. To
that end, we initially recalculate the statistical significance of each variation
restricted to that subset. Only those variations that still show statistically
significant intersections of their base groups are then used for clustering. For
each read we extract the instances of these still significant variations into a
so-called read signature. Then, every signature is corrected with the four
most similar other signatures for noise reduction and is subsequently used
as a centroid. In the first round of clustering, signatures are assigned to
centroids by the best fit according to the Hamming distance. This creates
a large number of clusters of varying size. Some clusters will have fewer
elements than half the expected sequencing coverage. We resolve these small
clusters by merging their elements into other clusters, again according to the
smallest Hamming distance between the signature and the centroid.
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6.5 Resolution

The output of the recursive division step and the subsequent clustering con-
sists of groups of reads that are required to resolve a repetitive region. To
resolve a large repetitive region in a genome, we likely have to subdivide our
MSA into several sections whose reads are clustered separately. This keeps
the number of reads that completely cover each section high. Together, these
sections and their clusterings cover the entire repeat. Initially, however, we
examine a simplified one-clustering scenario with some of the reads of each
repeat copy having a unique flanking sequence on the 5′ end and the other
half having unique flanking sequences on the 3′ end. We now answer the
question how many of these flanking sequences we can accurately connect
using the clustering information.

We propose a model to calculate a confidence score for each possible con-
nection. This can be used as a basis for a resolution that takes the probability
of mis-assemblies into account as opposed to just providing a “best guess”.
In the one-clustering scenario it can also be used to assess how well a clus-
tering corresponds to the ground truth. The calculated clusters can be seen
as hubs which are entered by incoming reads and can be exited by outgoing
reads. We can, for instance, sample a random path from one flanking se-
quence cluster to another flanking sequence cluster on the other side of the
repetitive region. This is done by randomly choosing shared reads that con-
nect the current hub to the next, see Figure 6.3. We use the probability of
such a randomly sampled path to connect two flanking sequence clusters to
define a unidirectional connection confidence. The full connection confidence
is then calculated as the product of the unidirectional connection confidences
in both directions. It is normalized such that the connection confidences of
all possible connections for a flanking sequence cluster sum to 1.0. Naively,
calculating the fraction of randomly sampled paths that start from a 5′ flank-
ing sequence and end in a 3′ flanking sequence has a time complexity that
is exponential in the number of clusterings. To address this, we break down
the calculation into clustering-to-clustering path probability matrices that
can be multiplied to give the probability of a complete path. This is possible
because the probability of reaching a specific cluster from a given cluster is
independent of the path taken to the given cluster.

Let Xi<n be the 3′-flanking sequence clusters and Yi<m be the 5′-flanking
sequence clusters, while Hk

i<nk
denotes the 0 < k ≤ l calculated clusterings of

sections of the repetitive sequence that lie in between. The following matrices
describe the probability of a randomly chosen read from one particular cluster
to connect to a read from a cluster that is part of the next clustering.
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Figure 6.3: An MSA of a repetitive region is divided into 5 sections. The flanking
section sequences are clustered according to Levenshtein distance, the repeat sec-
tion are clustered according to the method presented in this thesis. By randomly
sampling shared reads between clusters of successive sections, we can sample paths
connecting flanking section with flanking section, providing the resolution of one
repeat copy.

Iij =
|Xi ∩H1

j |
|Xi|

∈ Q ∩ [0, 1]

Oij =
|Yi ∩H l

j|
|H l

j|
∈ Q ∩ [0, 1]

Ck
ij =

|Hk
i ∩Hk+1

j |
|Hk

i |
∈ Q ∩ [0, 1]

The probability of a longer path can then be calculated by multiplying
the connection probabilities between all clusters along the path. The overall
connection probability is calculated by summing over the connection proba-
bilities of all possible paths. In the one clustering scenario, the path possibil-
ities are given by the different clusters that can be taken, so the probability
of connecting Xi and Yk is Pik =

∑
j<n1

Iij × Ojk. In matrix notation this
simplifies to P = IO. For longer paths we can inductively expand this prob-
ability matrix for any number of clusterings. Thus, the overall probability of
connecting Xi to Yk for l clusters Hk is P = IC1C2 . . . C lO. This stepwise
path-probability calculation reduces runtime complexity to l matrix multi-
plications. The matrix size does not exceed the estimated number of repeat
copies. In the multi-step calculation of connection confidence, we analogously
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multiply the path-probability in both directions and normalize, so that the
confidences of all possible connections of a flanking sequence cluster sum to
1.0.
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Chapter 7

Simple Repeat Resolution
Results

This chapter is based on a peer-reviewed publication:

Philipp Bongartz.
”Resolving repeat families with long reads”
BMC Bioinformatics. 2019 May 11. 20:232.

Code and data available at
https://github.com/PhilippBongartz/RepeatResolver

Contributions: ”Resolving repeat families with long reads” is a single
author paper where problem selection, algorithm design, implementation,
testing and writing was done by Philipp Bongartz.

7.1 Introduction

We integrated the algorithms for realigning, detecting significant variants,
calculating drop-off consensus groups, subsequent hierarchical subdivision,
final clustering, and connecting flanking sequences into our repeat resolution
tool. We test it on nine simulated data sets, one for each combination of
the minimal copy differences 0.1%, 0.5%, 1% and the repeat structures be-
ing equidistant, distributed, and tree-like. We also conduct experiments on
17 empirical transposon data sets (see Chapter 6 Data sets). To assess the
resolution of isolated clusterings, we use the one-step resolution algorithm
introduced above. Here the ground truth groups are used to replace both
flanking clusterings. That means, we calculate the connection confidence
from a ground truth cluster to itself via the calculated clustering. If the
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calculated clustering does not differentiate between two ground truth groups
of sequences, each of these groups will not correctly or unambiguously be
connected to itself. We call two ground truth groups connected if for both
groups the other group provides the connection with the highest connection
confidence. If this connection is correct, that is, if the two connected groups
are identical, we say that the ground truth group or copy group is resolved
by the calculated clustering. If the connected ground truth groups are dif-
ferent groups, we call the connection a false positive. For the simulated data
sets we additionally calculate the connection confidences from one flanking
clustering to the other flanking clustering via the calculated clustering in be-
tween using the multi-step resolution algorithm. Here, we call two flanking
clusters connected if, for both clusters, the other group provides the connec-
tion with the highest connection confidence. A copy group is likewise called
resolved if both flanking clusters belonging to the copy group are connected
to each other. The multi-step resolution is necessary for the practical feasi-
bility of our clustering algorithm. We compare the single-step resolution of
the simulated MSA sections with the single-step resolution of the transposon
MSAs. We additionally examine the relationship between single-step reso-
lution results and multi-step resolution results to assess the applicability of
our algorithms to very long repeats.

7.2 Simulated data sets

To make the single-step resolution of our simulated data sets comparable
to the transposon data sets, we divide each MSA into six non-overlapping
sections that approximately cover 5 kbp of repeat sequence. We then compute
clusterings for each of these sections separately. We additionally use these
six clusterings to calculate a resolution for the entire repeat, that is, we
determine which flanking sequence clusters are connected by applying the
multi-step algorithm, see Chapter 6. Figure 7.1 shows that for both, single-
step resolution and multi-step resolution, the number of resolved copies is
high (≥95%) for all data sets with 0.5% or 1% minimal copy differences. In
fact, only the distributed data sets show an appreciable decline in resolved
copies between the 1% and 0.5% copy difference data sets. The number of
resolved copies for the single-step resolution of the 0.1% copy difference data
sets remains high. However, with just 0.1% minimal copy differences the
clusterings are not accurate enough to support robust multi-step resolution.
Only the tree-like data set with 0.1% copy differences can still resolve more
than 40% of its copies over the entire repeat length.

This failure of the multi-step resolution can be predicted from the single-
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Figure 7.1: We compare the average number of resolved copies of the single-step
resolutions, the minimal number of resolved copies of the single-step resolution
and the number of resolved copies of the multi-step resolution for all simulated
data sets.

step connection confidences. In Figure 7.2 we see, that for data sets with
just 0.1% minimal copy differences the connection confidences are generally
very low, with the exception of the tree-like data set. The tree-like data set
however, has on average only 84% resolved copies in the single step resolution.
The fraction of unresolved copies compounds over six resolution steps, which
explains the 44% multi-step resolved copies for that particular data set.

The simulated data sets show that multi-step resolution results depend
on two properties of the single step resolutions: The fraction of unresolved
copies and the connection confidence. In particular, resolved copies with a
connection confidence below 0.2 seem not to support the multi-step resolu-
tion. It is worth noting that there were no false positives in either single-step
resolutions or multi-step resolutions.

7.3 Transposon data sets

The simulated data sets are designed in such a way that the information nec-
essary to obtain a full resolution is available in each data set. Evidently, we
cannot expect to replicate these results for empirical data. Some transposon
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Figure 7.2: This figure shows the average number of resolved copies of the single-
step resolution above a specific connection confidence for all simulated data sets.

families will be too highly conserved, while others will contain at least some
members that have only recently diverged and did not yet accumulate suffi-
cient differentiating mutations. Moreover, the ground truth copy groups have
been obtained by clustering the unique flanking sequences. This process is
unlikely to provide a completely accurate ground truth, as is available for the
simulated data. Instead copy groups that have not been accurately resolved
in the ground truth will add noise to the assessment process,worsening the
apparent results. Despite these limitations, according to the metrics intro-
duced above, in all transposon data sets at least 65% of the copy groups are
resolved, while only a single data set shows false positives. Several of the
smaller data sets are perfectly resolved, while some of the larger data sets
are almost perfectly resolved with 35 out of 37, 33 out of 34, and 47 out of 49
copy groups being correctly resolved respectively. The three largest groups
with 89, 135 and 157 copies respectively, are resolved by more than 84%
on average. Moreover, the initial refinement step with recursive subdivision
already resolves more than 50% of all copies. This shows that it constitutes
an essential part of the clustering algorithm, see Figure 7.3.

These are surprisingly good results, that come, however, with a caveat.
Many of these copy groups are resolved only due to very few or just a single
and noisy distinguishing variant. The results on simulated data show that as
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Figure 7.3: This figure compares the number of resolved copies for the dropoff
subdivision algorithm and for the full algorithm with the additional kmeans-like
clustering to the total number of copies in each transposon data set.

few as 5 differences (0.1% of 5kbp) between repeat copies still allow for single-
step resolution. However, they also indicate that the resulting clusterings do
not necessarily support the multi-step resolution that is necessary to resolve
transposons of a realistic length. To put our results into perspective, we assess
the number of statistically significant differences between transposon copies.
To this end, we utilize the ground truth information to create consensus
signatures for each copy group that consist of the most common base for
that copy group in each statistically significant column in the respective
MSA. We then compare these consensus signatures to each other to obtain
an estimate of the number of differences between transposon copies.

This analysis shows that the percentage of copies that differ from all other
copies by at least n bases drops quickly with increasing n, see Figure 7.4. This
decrease is mirrored by the number of resolved copies that have a connection
confidence above a specific threshold, see Figure 7.5. Around 45-55% of
the copies exhibit sufficient differences. Consequently, this is the percentage
of transposon copies that achieve a high enough connection confidence to
support multi-step resolution.

This would be a relatively low number if the copies with high connection
confidence were to be different for every resolution step. However, given that
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Figure 7.4: The overall percentage of copies in all transposon data sets which
exhibit a minimal number of differences compared to the other copies.

the number of differences is a result of the evolutionary history shared by
the entire sequence of a copy, it is likely that the resolvable copies will tend
to remain unaltered for each section of the MSA. We observe this in the
transposon data, where the minimal number of differences to other copies
in the first half of a copy and the minimal number of differences in the
second half tend to correlate significantly for most data sets (median Pearson
correlation 0.483). This correlation, and the total number of differences, is
likely to increase with larger MSA sections.

7.4 Comparison with competing method

In this section, we compare our methods against the long read assemblers
Canu and MARVEL, and against the dedicated repeat resolving method
split dis that is part of the Daccord package [56].

Full-scale long read assemblers, like Canu and MARVEL, do not use re-
peat resolution methods that go down to specific differences in the repeat
copies. This fundamentally limits their repeat resolution capabilities. In
MARVEL, repeat resolution is restricted to the use of spanning reads and
the detection of unique combinations of repeat modules [35], making the
resolution of a 30 kbp repeat family challenging for MARVEL.
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Figure 7.5: The overall percentage of resolved copies in all transposon data sets
with a connection confidence above a specific threshold.

Canu has a dedicated repeat resolution step that is based on alignment
score differences of corrected reads. In the original Canu paper [33] this
resolution step of Canu and the resolution capability of FALCON are bench-
marked in a very similar fashion as we do on our simulated datasets: A
PacBio read dataset is simulated with a 30 kbp repeat and subsequently as-
sembled. For Canu, the simulated dataset cannot be assembled contiguously
for repeat differences below 3%, for FALCON [34] this threshold is 5%. The
parameter differences between this benchmark and our simulated data, with
2 repeat copies versus our 100 repeat copies, 12% read error versus our 15%
read error, and 3% copy differences versus the 1% or less we use, decrease
the chances of Canu resolving our simulated data.

To adapt our simulated data sets for the requirements of genome as-
semblers, we modified our simulated datasets with 1% copy differences to
model contiguous sequences (instead of just repeat sequence with flanking
sequence). To this end, we double the flanking sequences to avoid possi-
ble confusion stemming from reads spanning unique sequence between reads,
and concatenate all repeat copy sequences into a 7 mbp sequence. We then
sample PacBio-typical reads from this sequence with an error rate of 15%
and a coverage of 40 X.

We then proceeded to run Canu on the resulting dataset. As expected,
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all three types of simulated datasets were assembled into roughly one hun-
dred contigs, indicating an unsuccessful repeat resolution. Specifically, the
distributed dataset results in 97 contigs, the equidistant dataset results in
106 contigs, and the tree-like dataset results in 122 contigs.

We also executed MARVEL on all three simulated datasets, similarly
resulting in roughly one hundred disjointed contigs, see Figure 7.6. These
results confirm Canu’s earlier repeat resolution assessment and MARVEL’s
methodological limitations.

Figure 7.6: The MARVEL assembly graphs of our simulated data sets (distributed,
equidistant, tree-like) show that MARVEL cannot resolve 30 kbp repeats with 1%
copy differences. The distributed dataset results in 100 contigs, the equidistant
dataset results in 101 contigs, and the tree-like dataset results in 101 contigs.

However, there exists one dedicated repeat resolution tool for PacBio data
called split dis. The split dis tool [50] is part of the Daccord package [56].
The Daccord package contains a suite of tools for processing long reads, cen-
tered around the read correction program daccord. The processing necessary
for executing split dis involves computing local alignments with daligner [57],
calling a corrected consensus version of each read using the daccord program,
and computing quality values for the bases of each read. Split dis then filters
the local alignments for each read separately and retains only those that do
not exhibit differences that are likely to be associated with copy differences.
By finally selecting only those overlaps of the processed read, where the re-
tained local alignments span almost all of the overlapping region, we generate
a list of “true” overlaps for the read. In the following, we will refer to this
entire repeat resolving pipeline as Daccord, while we refer to our pipeline as
RepeatResolver.

According to its author, using Daccord is not feasible for repeat families

52



with substantially more than 10 copies (German Tischler, personal commu-
nication, 12.9.2018). Our results confirm this, as the runtime per read ranges
from minutes for the transposon data sets with fewer than 10 copies, to hours
for data sets with copy numbers between 10 and 20, and days for transposon
data sets with more than 20 copies (see Table 7.1). For comparison, the en-
tire RepeatResolver pipeline takes 2 hours for transposon data set 2, which
has 25 repeat copies. This amounts to 0.1 minutes per read as opposed to
1 day and 19 hours required by Daccord. As the data sets contain between
257 and 7317 reads (see Table 7.1) this makes the application of Daccord
infeasible for large repeat families. Accordingly, we assess performance only
for transposon data sets with less than 30 copies.

Table 7.1: Properties of the transposon data sets

No Average Copy Coverage Ground Daccord Number Average Number
length number truth runtime of reads comparison of

coverage per read compared cluster size reads

0 7215 bp 37 37 23 None None None 1388
1 7380 bp 49 45 27 None None None 2240
2 4672 bp 25 45 27 1d19h 18 15.5 1297
3 6850 bp 44 51 35 None None None 2207
4 6093 bp 16 37 29 16h 29 20.4 605
5 7538 bp 34 46 26 None None None 1575
6 4479 bp 7 51 41 3m 289 16.1 359
8 5168 bp 9 54 41 1h12m 73 19.0 487
9 6371 bp 13 49 33 13h 18 14.2 646
10 5201 bp 89 48 30 None None None 4284
11 4762 bp 135 48 33 None None None 6480
12 4690 bp 157 46 33 None None None 7317
15 4361 bp 8 48 29 8m 239 20.5 391
16 7481 bp 12 35 18 3h49m 66 16.3 423
19 6128 bp 5 51 32 35m 164 20.4 257
20 5376 bp 20 41 30 14h 17 30.3 832
21 5048 bp 22 43 32 1d17h 12 62.8 961

Daccord computes a list of overlaps for each read, while RepeatResolver
yields a clustering of reads. To compare the results, we transform the Re-
peatResolver output into Daccord-style output, by assigning to each read all
the reads in the same cluster as overlaps.

For the comparison, we only consider reads for which ground truth in-
formation is available. We test three methods of overlap selection to achieve
the highest possible resolution accuracy for Daccord. We 1.) select the 20
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longest overlaps, 2.) select the 20 longest local alignments provided by Dac-
cord, 3.) choose the 20 local alignments with the best alignment score among
those local alignments that span more than 90% of the overlapping region.
We compare the RepeatResolver result to the best result among these three
methods for each data set.

Selecting substantially more than 20 overlaps reduces accuracy, as more
than 30 reads with ground truth information are not always available for
each repeat copy. Selecting less than 20 overlaps does not increase accuracy.
The average number of reads per RepeatResolver cluster with ground truth
information varies from 14 to 62 between data sets. They cluster close to the
number of 20 chosen for the Daccord overlaps, see Table 7.1.

Figure 7.7: We compare the percentage of correct overlaps as provided by Daccord
and RepeatResolver for all transposon data sets with fewer than 30 repeat copies.

In Figure 7.7 we show the percentage of overlapping reads that match
the repeat copy of the underlying read for both pipelines and for all trans-
poson data sets with fewer than 30 copies. Daccord shows excellent results,
slightly outperforming RepeatResolver, in two out of ten data sets, proving
the method sound. In the other 8 data sets, however, RepeatResolver outper-
forms Daccord. This leads to an average accuracy difference over all 10 data
sets exceeding 30%, with an average accuracy of 82.9% for RepeatResolver
and an average accuracy of 50.6% for Daccord.
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7.5 Discussion

Overall our results indicate that, as long as sufficient signal is contained in
the data, our novel algorithms are capable of resolving repeats with extremely
high copy numbers. This even holds when the resolution has to proceed over
many steps to span repeats that are several tens of thousands bases long.
While the empirical transposon data shows that not all repeat sequences
in genomes are likely to be resolvable, it also indicates that our method is
capable of increasing the accuracy of genome assemblies.

Our comparison with the Daccord-pipeline shows that our method is su-
perior in accuracy to a current state-of-the-art repeat resolving method for
PacBio data, while at the same time remaining computationally feasible for
repeat families with a significantly higher number of repeat copies.
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Part IV

Tandem repeat complex
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Chapter 8

Introduction to Neural
Networks

8.1 History

Artificial neural networks (ANN) were originally conceived as computational
models of the nervous system. They were based on the neuron doctrine and
the all-or-none law of firing neurons. The neuron doctrine is a result of the
neurological work of Santiago Ramón y Cajal [58], which states that brains
are built of discrete individual cells, see Figure 8.1.

The all-or-none law of firing neurons [59] is the observation that neurons
have no graded response. If the input to a neuron exceeds a certain threshold,
the neuron emits an electro-chemical pulse, that can, in turn, excite other
neurons. The strength of this pulse does not depend on the strength of the
input. If the input does not reach the threshold the neuron remains inert.

McCulloch and Pitts [60] modelled these biological neurons as simple
integrate-and-fire threshold step functions. Frank Rosenblatt then arranged
the newly invented artificial neurons into the first influential ANN, the so-
called perceptron [61] which, unlike biological brains, is arranged in layers
without feedback information. The perceptron can be used to process an
input vector in a feed-forward fashion. Mathematically, the perceptron is
a nested function whose components switch between linear mappings and
non-linear activation functions. The combination of a linear function and
the accompanying activation function is called a layer.
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8.2 Mathematical definition

The linear functions Ll(x) are of the form W lx + bl for each layer l, where
x, bl ∈ Rn, are the input vector and the so-called bias vector respectively.
The matrix W l ∈ Rnl,nl−1 is called the weight matrix. The non-linear func-
tions ϕl can be chosen among a wide variety of possibilities which all at least
approximate the step-function. A typical example is the sigmoid function
ϕ(x) := 1

1+e−x . The original perceptron had three layers, an input layer, a
hidden layer, and the output layer: Px = ϕ3◦L3◦ϕ2◦L2◦ϕ1◦L1(x). This can
be generalized to any number of layers, though. In this thesis, we will initially
not require anything beyond a simple three-layer ANN. However, substan-
tially more layers and increasingly complex constructions are currently in
use. The perceptron can be visualised as a directed (and incidentally bipar-
tite) graph, where the synapse weights denote the multiplicative strength of
an edge and biases denote the additive strength of a node, see Figure 8.2.

8.3 Training

The purpose of an ANN is to process information. Each input vector is
transformed into an output vector. The desired mapping has to be learned
by adapting the weight matrices and the bias vectors. There is a variety of
learning algorithms to choose from, starting from the neurologically plausi-
ble Hebbian learning [62], over simple yet computationally inefficient genetic
algorithms [63, 64], to layer-wise learning of restricted Boltzmann machines
[65]. Nevertheless, ANNs experienced their first bloom in the eighties, when
an algorithm first introduced by Seppo Linnainmaa [66] seemed to promise
computationally tractable learning of ANNs with several layers: The back-
propagation algorithm [67]. The backpropagation algorithm is an efficient im-
plementation of the stochastic gradient descent (SGD) optimisation method
for ANNs. The fundamental idea of gradient descent is to follow the error
gradient of a cost function, for example C(x) = 1

2n
‖y(x) − P (x)‖2, towards

a minimum, with x being the input vector and y(x) the associated output
target vector. The term stochastic means that the training data of correct
mappings is not completely used for calculating each gradient. Instead, the
full gradient is approximated by the gradient of a random sample, called a
mini-batch. The training by gradient descent is the reason why today’s neural
networks approximate the step function with a differentiable function.

In the following, zl stands for the input vector of layer l, while al is the
output vector of layer l, the so-called activation vector. Here, � denotes the
elementwise multiplication or Hadamard product. The sigmoid ϕ function
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was already defined above. We use δ as the partial derivative symbol, while
∇a is the gradient in the direction aL. The term δl = ∂C

∂zl
can be interpreted

as the error in layer l that is progressively backpropagated through the layers.
Hence, the name backpropagation algorithm. The matrix multiplication with
the transpose of W l+1 moves the error one layer back, while the element-wise
multiplication with ϕ′(zl) can be seen as moving the error backward through
the activation function ϕ. This allows to efficiently compute the error at each
layer with a single pass through the network.

Algorithm 3 Backpropagation algorithm

1: procedure Forward pass
2: a1 ← ϕ(W 1x+ b1)
3: for l ∈ 2, 3...L do
4: zl ← W lal−1 + bl

5: al ← ϕ(zl)

6: procedure Backward pass
7: δL ← ∇aC � ϕ′(zL)
8: for l ∈ L,L− 1, ...2 do
9: δl ← ((W l+1)T δl+1)� ϕ′(zl)

10: procedure Weight update
11: W l

jk− = al−1k δlj = ∂C
∂W l

jk

12: blj− = δlj = ∂C
∂blj

The initial excitement generated by this apparent algorithmic break-
through quickly faded again when it turned out that, at the time, even the
backpropagation algorithm could not train a neural network to solve tasks
that went beyond small scale problems [68]. This disappointment in neural
networks among other things, like the failure of Lisp machines and expert
systems, led to the most severe of the so-called AI winters, enduring down-
turns in funding and public approval in the field of AI. It was only in the
2000s when due to a substantial increase in available computing power and
an equally substantial increase in available training data, the neural network
paradigm, rebranded as “Deep Learning”, became popular again.

8.4 Current use

In the 2010s, systems based on deep artificial neural networks became the
state of the art for several image recognition tasks. Most notably in the
ImageNet Challenge[69], where in the following years neural network entries
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improved the classification of pictures into one thousand categories surpass-
ing the performance of humans specifically trained for the task. Speech
recognition was another task that substantially profited from the introduc-
tion of neural networks [70] and finally reached a level that allowed practical
application at an unprecedented scale. Text-to-speech synthesis [71], the
complement to speech recognition, experienced analogous advancements in
just the last two years. Numerous natural language tasks [72] are now based
on the neural network paradigm and the game of go is now played on a
superhuman level, a decade earlier than anybody expected [73].

A plethora of projects in science, technology, and especially the medical
domain currently attempt to harness the modelling ability of deep neural net-
works. The architectures of the neural networks used are quickly diversifying.
This process is sometimes driven by meta-learning that means by applying
neural networks to the task of designing neural networks. In this thesis, we
use relatively simple 3-layer neural networks that are separately trained and
then combined into a more complex recursive de-noising function.
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Figure 8.1: Drawing of a section through the optic tectum of a sparrow from
”Structure of the nervous centres of the birds” by Santiago Ramon y Cajal, 1905.
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Figure 8.2: A neural network with an input layer, an output layer, and a single
hidden layer.
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Chapter 9

Correction of signatures

This chapter is based on a peer-reviewed publication:

Philipp Bongartz, Siegfried Schloissnig.
”Deep repeat resolution –
the assembly of the Drosophila Histone Complex”
Nucleic acids research. 2018 Nov 26.

Code and data available at
https://github.com/PhilippBongartz/DrosophilaHistoneComplex

Contributions: To the paper ”Deep repeat resolution –the assembly of
the Drosophila Histone Complex”, Philipp Bongartz contributed algo-
rithm design, implementation, testing and writing. Siegfried Schloissnig
contributed problem selection and feedback.

9.1 Introduction

Drosophila melanogaster (see Figure 9.1) has been one of the most important
model organisms for over a hundred years [74]. It has also played a crucial
role as a proof of concept genome [75] for the technologies and algorithms
that lead to the successful Human Genome Project [27], [26].

Despite the successful assembly of the Drosophila genome, the Drosophila
Histone Complex has eluded assembly by conventional assembly methods
[76]. It consists of over a hundred copies of a 5 kbp repeat sequence [77] that
contains the coding information of the four core histones (H2A/B, H3,H4)
as well as the linker histone H1. These proteins package the DNA into
structural units by acting as spools around which the DNA double helix is
wound, see Figure 9.2. The fast expression of histone proteins is essential
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Figure 9.1: This image shows a small male Drosophila melanogaster fly. This is a
photograph by Andre Karwath published under the CC ASA 2.5 Generic licence.

for DNA replication and cell division. Therefore, eukaryotes always contain
multiple clustered copies of the histone coding sequence.

The Drosophila Histone Complex contains tandemly repeated [78], highly
conserved coding sequences in an unusually high number of copies. It thus
represents a particularly challenging instance of a structure that occurs in
similar configurations in most eukaryotes, including humans. Therefore, it
provides a reasonable basis for investigating the resolution of repeat clusters.
The development of third generation sequencing technologies like the Pa-
cific Bioscience single molecule real-time sequencing [49], [30], [32], and more
recently, Oxford Nanopore Technologies nanopore sequencing [31], has rev-
olutionized de novo genome assembly. With read lengths exceeding 10 kbp,
the assembly of bacterial genomes can now be regarded as a solved problem
[36]. In addition, for eukaryotic genomes the contiguity of de novo assem-
blies has increased by orders of magnitude, due to the possibility to span
interspersed repeats with the support of unique flanking sequences. How-
ever, while genome assemblers like FALCON [34], MARVEL [35], and Canu
[33] have solved the problem of arranging millions of long reads into long
contiguous assemblies, tandemly arrayed repeats still generally remain unre-
solved. In particular, high quality Drosophila melanogaster long read assem-
blies have been created with each of these assemblers, but the Drosophila
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Figure 9.2: The crystal structure of the nucleosome core particle consisting of H2A,
H2B, H3 and H4 core histones, and DNA. The view is from the top through the
superhelical axis. This picture was published by Zephyris under the CC BY-SA
3.0 licence.

Histone Complex is not resolved in any of them. The resolution of tandemly
arrayed repeats is hindered by the occurrence of further repeat copies as
flanking sequences. This compels us to distinguish the slightly distinct copies
of the tandem repeat and to order copy versions between the unique flank-
ing sequences of the complex. The various copy versions of the repeated
sequence have to be classified by identifying the large-scale variations (i.e.,
indels >100 bp) and single nucleotide variants (SNVs) that characterize each
copy. Here, we introduce a novel correction heuristic based on artificial neu-
ral networks. Our heuristic decreases the error rate in extracted SNVs to
such a degree that automatic assembly of the complex becomes feasible.
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9.2 Data and preprocessing

Data

To test our correction heuristic, we use several repeat data sets: A data
set of reads sampled from the histone complex, a simulated repeat data set
and 17 transposon data sets (see Table 9.1 for an overview). Each data set is
constructed around a repeat sequence template. The templates are consensus
sequences of the repeat that is characteristic of the data set.

Data sets Copies Coverage Length Variations
Histone 107 30–90X 5kbp 185

Transposons 5–157 35–54X 4.3–7.5kbp 300
Simulated 100 50X 5kbp 300

Table 9.1: Properties of the data sets. The number of variations used for cor-
rection, is comparable in all data sets, as the histone correction uses additional
neighbouring signatures.

For the histone data set, the template is the histone coding sequence [77].
It is used to extract around 5000 reads that contain instances of this sequence
via mapping from a high quality PacBio data set sequenced from a subline
of the ISO1 (y;cn,bw,sp) strain of Drosophila melanogaster [79]. We extract
all reads that align to the template over 1 kbp with an alignment error below
30%. This data set has a coverage of >90X and an average read length of
>10 kbp.

To independently benchmark our correction heuristic, we extract reads
containing transposable elements from the same sequencing run to build 17
different transposon data sets. The extraction is again done via mapping,
with a minimal local alignment length of 1 kbp and a maximal alignment er-
ror of 30%. The transposon data sets (see Table 9.2) are based on templates
taken from the canonical transposon sequence set [54]
[https://github.com/cbergman/transposons/]. They contain Drosophila trans-
posons of comparable length (>4 kbp) as the histone repeat. Additionally,
we simulate a 5 kbp repeat family with 100 copies using a simulation tool we
implemented. As template for the simulation, we use an empirical sequence
that is randomly sampled from the E. coli reference. We then first create
100 identical copies of the template. These are subsequently perturbed via
a pool of 300 random single nucleotide variants (SNV), each of which we
assign to a random subset of the copies. Finally, the actual simulated reads
are obtained from these perturbed copies superimposing the typical PacBio
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No. Av. length Copies Coverage Ground truth coverage
0 7215 bp 37 37 23
1 7380 bp 49 45 27
2 4672 bp 25 45 27
3 6850 bp 44 51 35
4 6093 bp 16 37 29
5 7538 bp 34 46 26
6 4479 bp 7 51 41
8 5168 bp 9 54 41
9 6371 bp 13 49 33
10 5201 bp 89 48 30
11 4762 bp 135 48 33
12 4690 bp 157 46 33
15 4361 bp 8 48 29
16 7481 bp 12 35 18
19 6128 bp 5 51 32
20 5376 bp 20 41 30
21 5048 bp 22 43 32

Table 9.2: Properties of the transposon data sets. The numbering is according to
the transposon sequence canonical set, missing numbers are due to transposons
being below the length cut-off. Ground truth coverage is calculated on the basis
of the reads that can be assigned to a cluster of flanking sequences.

error rate (11.5% insertions, 3.4% deletions, 1.4% mismatches). We use this
simple version of a simulated repeat data set to verify our correction heuristic
and the associated preprocessing steps. The test on simulated data further
shows that the problems solved in the processing steps are not specific to the
selected empirical test datasets of the chosen genome. In the following we
provide an overview over the individual (pre-)processing steps.

Multiple sequence alignment

In the first preprocessing step, our objective is to subdivide each extracted
histone read into instances of the repeat sequence. Some of these instances
contain insertions, deletions, or duplications. If properly identified, inser-
tions, deletions, and duplications allow for assigning these instances either to
unique repeat copies or to small groups of repeat copies. All other instances
of the repeat sequence that do not deviate in such a significant way from
the histone template will have to be disambiguated by more sophisticated
means.
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Figure 9.3: a shows how raw sequencing data is categorized as repeat or unique
sequence using the mapping information of sub-sequences of the repeat template.
In b, the reads are cut and the repeat sequences are arranged into a multiple
sequence alignment. c shows the refinement of the multiple sequence alignment.
In d, corrections between rows are detected and statistically significant bases are
collected into signatures. e illustrates how the signatures are corrected via neural
networks. In f finally, the signatures are clustered and the resulting assembly
graph is traversed.

To that end, we map short (100-250 bp) substrings of the histone coding
sequence to each read. The mapping information is then used to detect sev-
eral insertions, deletions, or duplications between 100 bp and 8 kbp in length
(see Figure 9.3a). These large-scale deviations from the template uniquely
classify several distinct repeat copies. We then cut all histone reads into
such instances of uniquely classified copies and into all other, non-deviating
instances of the histone template [77] [80], see Figure 9.3b. Subsequently, the
non-deviating instances of the histone template are arranged into a global
multiple sequence alignment (MSA). The uniquely classified instances will
be used later on for providing additional information to the correction algo-
rithm and the assembly. The transposon reads are cut into unique flanking
sequences and transposon sequences, analogously. The transposon sequences
are also arranged into an MSA. The flanking sequences are clustered accord-
ing to alignment scores (Levenshtein distance) to provide the ground truth
for copy versions. For the simulated data, only repetitive sequences are gener-
ated. They can hence be immediately arranged into an MSA without any pre-
processing. All initial MSAs are built incrementally by aligning the repetitive
sequences to the respective repeat sequence template. These MSAs are then
refined by realigning the sequences iteratively, minimizing the unweighted
sum-of-pairs score [45], (see Figure 9.3c and Chapter 4.4). Both tools were
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implemented from scratch in the C programming language and are available
at https://github.com/PhilippBongartz/DrosophilaHistoneComplex.

Identifying discriminative columns

The refined MSAs contain sequences that are sampled from highly similar
but not identical repeat copies. These sequences are now arranged in such a
way that a difference between repeat copies becomes detectable as groups of
different bases or alignment gaps within a column. As detailed in Chapter 5
we compute statistical significance scores for the base groups in the columns
of our refined MSA. However, unlike in Chapter 6, we are not immediately
interested in these base groups. Instead, we extract columns that allow us
to discriminate between repeat copies. We call a column a discriminative
column if the statistical significance of the intersection of at least one of
its base groups with another base group is above the statistical significance
cutoff.

The ubiquity of erroneous insertions (11% in PacBio data) means that
discriminative insertions will share a column with a large number of false
positives. This makes the detection of discriminative insertions difficult,
while handling the noise in the detected discriminative insertions is even
more challenging. For this reason, we restrict our detection to columns that
contain a majority of bases as opposed to those containing mostly gaps.
We choose a relatively high significance cutoff of negative log-probability
−log(CHG(Gi

B1
, Gj

B2
)) > 15, see Chapter 5.1, based on an empirical assess-

ment via trial and error.
This gives us a set of 185 discriminative columns. In our correction heuris-

tic, we are going to utilise the discriminative columns of neighbouring repeat
sequences, whenever such a neighbouring repeat sequence exists. On average
this amounts to approximately 300 discriminative columns. The transpo-
son sequences are generally less highly conserved than the histone coding
sequence. Thus, we restrict the number of selected discriminative columns
in our transposon test sets to 300 to conduct an as fair as possible correction
comparison to the histone data set. For the same reason, we also extract the
top 300 columns from our simulated data set, which would, in the ideal case,
be the entirety of the added SNVs.

The selected discriminative columns D = {d1, d2, d3, ...dn} constitute the
n distinguishing features, on the basis of which we disambiguate the instances
of the repeat sequence. For each row i of the refined MSA M , we define a
signature Sj<n as a vector of entries {Mid|d ∈ D}, (see Figure 9.3d). For
the histone data set, we additionally assign a unique signature to each large-
scale variation which is likewise an element of {A,C,G, T,−}n. This allows
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us to model each read R := [S1, S2, S3, ...SNR ] as a list of signatures, with
NR being the number of histone coding sequence copies in the read R.

9.3 Correction

Introduction

The native sequencing error rate is expected to carry over into our extracted
signatures. Additionally, the high insertion/deletion rates in PacBio reads
result in an unavoidable bias. This bias arises as those frequently inserted
bases often provide better options for optimizing the alignment score than
the correct base. Consequently, rare variations are more likely to be treated
as an error by the MSA algorithm. Furthermore, the differences between
copies are distributed in a hierarchical fashion due to an evolutionary pro-
cess of copying and mutation [51]. This means that a large fraction of the
copies is highly similar, if not identical. Complicating matters even more,
not every read shows the average error rate. Instead, the error rate, espe-
cially the rate of insertions, varies strongly from read to read. For these
reasons, successfully extracting distinguishing features from the reads does
not automatically induce a correct disambiguation of repeat copies.

Note that the expectation that sequences with more similar features be-
long to the same repeat copy does not hold. The large number of copies, the
high and varying error rate, the MSA bias, and the small number of differ-
ences between repeat copies lead to the situation that similarity measures
between signatures are almost completely dominated by noise (see Figure
9.4a). Subreads sequenced from the same repeat copy are not characterized
by having more similar features, although on average this is the case, but
rather by sharing a characteristic subset of features which is a priori un-
known. This misleads standard clustering algorithms or read overlapping
approaches. Non-standard clustering approaches based on rare subsequences
of signatures face substantial run time limitations, as the number of pos-
sible subsequences quickly becomes prohibitive with increasing subsequence
length.

Neural networks

We develop a machine learning architecture that specifically exploits the
structure described above to correct signatures to a point where standard
approaches do become applicable. We use neural networks to utilise the
underlying characteristic subsets of features. The task of these networks is to
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predict the instance of a target feature within a signature, based on all other
entries of the signature and of the two neighbouring signatures within the
same read, if available. The two neighbouring signatures provide additional
information that allows the neural networks to improve prediction. However,
using even more bases from the same read would impede generalisation as
signatures with such a high number of neighbours become rare.

The basic structure of the neural networks we use is a simple, fully con-
nected network with one hidden layer, (for a comprehensive treatment of
neural networks, see [81]). Every i-th base B ∈ {A,C,G, T,−} in a sig-
nature S ∈ {A,C,G, T,−}n is encoded as a one-hot vector of length five

I i = (I iA, I
i
C , I

i
G, I

i
T , I

i) with I iB =

{
1 Si = B
0 Si 6= B

. The input vector I for a

given signature consists of a concatenation of the vectors I i<n of all bases of
the full signature or in the histone case of the signature and its two direct
neighbours, but excluding the target base Sj. The excluded target base Sj,
represented by the vector Ij, is then approximated by the output vector of
the neural network, O ∈ (0, 1)5 with

∑
B∈{A,C,G,T,−}OB = 1.0. The output

vector is calculated using a softmax function σ(zj) := ezj∑5
k=1 e

zk
and can be

interpreted as a probability distribution over {A,C,G, T,−}.

For each feature, a distinct and randomly initialised network is trained
using backpropagation with gradient descent [66]. For each given signature,
it strives to predict the base at the chosen feature using the bases at all
other features as input. Until a given accuracy is reached, the learning rate
is adapted. L2-regularisation [82] is used to aid generalisation. Dropout
[83] can be used, but is discarded if learning stalls. If possible, we train
until we reach a prediction accuracy of >97%. However, some networks stall
substantially below this threshold. Each trained neural network can then be
used to correct its target base in every signature by changing it to the most
probable predicted base.

As illustrated in Figure 9.4b, the hidden layer enables the network to
model the sub-signatures that characterize groups of signatures that share a
certain base at the target feature. The idea is that this allows the network
to create generalised predictions that are closer to the underlying truth than
the actual data, without being misled by overall similarity or dissimilarity
of the complete signatures. Consequently, simply using linear regression is
bound to fail, while deploying more hidden layers would not improve the
accuracy. This intuition behind the hidden layer can be verified by observing
certain sub-signatures that fully excite neurons of the hidden layer in trained
networks.
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Converging corrector

While some discriminative SNVs occur in many copies and in combination
with other SNVs, there also exist SNVs that only describe a single specific
copy and are the only SNV that does so. Therefore, the signal that has to
be recognized to accurately predict the different copy versions that lead to
a certain base at a certain feature varies greatly. Picking up the weakest
signal requires overfitting the network to the data. This means that the
network learns to predict the bases of individual signatures by recognizing
their specific pattern of erroneous bases. This initially impedes generalized
prediction.

By training a separate network, Nj : Si<n,i 6=j −→ Sj, for every feature
j < n that is part of the signatures, we create a signature to signature
function by concatenation, N := �j<nNj : Sj<n −→ Sj<n. A fixpoint of
this function is a signature in which all bases are consistent with each other
as judged by the neural networks. Intuitively, every error free signature
should be internally consistent and therefore constitute a fixpoint. This
suggests that one should repeatedly apply the function to a signature until
convergence. In the first pass over the data, the neural network might still
recognize individual signatures. Subsequent corrections can only rely on the
underlying pattern, since the characteristic signature errors have already been
corrected in earlier passes. This yields a generalized, instead of an overfitted
correction.

Regarded on a more abstract level, the function that outputs the number
of bases in a signature that are equal to the predicted base can be seen as de-
scribing a consistency landscape of signatures. Fixpoints are maxima in this
consistency landscape since every base is the predicted base. The repeated
application of our concatenated networks to a signature until convergence
can be seen as an ascent towards the nearest consistency maximum.

Results

To assess the results achieved by our correction heuristic, we use transposon
reads from the same data set, for which the ground truth is provided by
unique flanking sequences, as well as a simulated data set. For the histone
data set the ground truth is given by the manual assembly described above.

To quantify the results of the presented correction heuristic, we use the
following metrics that are calculated for those signatures that are assigned
to a ground truth group. For both, the first pass of the correction, and
the fully converged correction, each signature has a corresponding corrected
signature, a ground truth consensus of uncorrected signatures (consensus),
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and a ground truth consensus of corrected signatures (cor-consensus).

The “error” is the percentage of bases of the signatures that differ from
the respective consensus. We report the percentage of bases of the cor-
consensuses that differ from the consensuses as “collapsed variations”. “In-
ternal consistency” denotes the similarity of uncorrected signatures to the
consensus and corrected signatures to the cor-consensus, respectively.

“Recall” is the percentage of true positives among the correct positives
according to the consensus, or 100% - “error” as defined above, whereas
“precision” is the percentage of true positives among the positives.

Data Original Corrected Collapsed
sets error error variations

Histone 8.22% 1.32% 0.42%
Transposons(median) 6.51% 1.78% 0.41%

Transposon(mean) 7.26% 2.01% 0.80%
Transposons(best) 5.26% 0.20% 0.00%

Simulated 8.89% 1.34% 1.29%

Table 9.3: This table presents the error rate reduction of the converging corrector.
The error rate is the average percentage of the bases of a signature, that differ
from the consensus of the uncorrected signatures in the ground truth group (i.e.
manual assembly copy group) to which the signature belongs. “Original” denotes
the uncorrected signatures, “corrected” the corrected signatures. “Collapsed vari-
ations” are variations were the majority of signatures of a ground truth group have
been corrected towards the incorrect majority base.

Table 9.3 shows that we achieve significant error reduction in all data sets.
The comparison with Table 9.4 shows that the converging corrector leads to
a substantial accuracy improvement compared to the accuracy achieved in
the first pass. In our target data set, the Drosophila histone complex, the
error of 8.22% is reduced in the first pass to 4.64%. This is then further de-
creased to 1.32% in the converging corrector. Figure 9.5 illustrates how this
error reduction translates into substantially improved overlap accuracy and
“sharper” differences among signature groups. It is worth noting that rein-
serting the corrected SNVs into the reads would not substantially change the
read error. Our correction heuristic solely intends to “sharpen” the extracted
differences between repeat copies.

There is an intrinsic limit as to what de-noising algorithms can achieve.
The presented heuristic is no exception. If the information necessary to cor-
rect a certain feature for a certain copy is not part of the data, the variation
will be “collapsed”, that is, transformed into the majority instance of that
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Data Original Corrected Collapsed
sets error error variations

Histone 8.22% 4.64% 0.19%
Transposons(median) 6.51% 4.14% 0.05%

Transposon(mean) 7.26% 4.45% 0.12%
Transposons(best) 5.26% 2.04% 0.00%

Simulated 8.89% 2.49% 1.05%

Table 9.4: This table shows the error rate reduction of the first pass correction.This
table shows the error rate reduction of the first pass correction. The error rate is
the average percentage of the bases of a signature, that differ from the consensus
of the uncorrected signatures in the ground truth group (i.e., manual assembly
copy group) to which the signature belongs. “Original” denotes the uncorrected
signatures, “corrected” the corrected signatures. “Collapsed variations” are varia-
tions were the majority of signatures of a ground truth group have been corrected
towards the incorrect majority base.

particular feature. This collapse is unavoidable and more “sharply” distin-
guishes between signatures from different copies, in the sense that now all
(or most) signatures from this particular repeat copy have the same base at
the given position. This means that once the best possible distinction on
the basis of the corrected signatures has been achieved, it might be useful
or necessary to return to the original signatures for further refinement. A
collapse also occurs if error-induced false variations are above the significant
threshold. In this case the collapse is just a correction. Table 9.3 shows that
the collapse of variations does not represent a substantial problem in our
data sets.

The rarer bases at any given SNV position are subjected to a stronger
bias by the MSA. The incentive to maximize the count of the most frequent
base in every column is inseparable from the MSA algorithm itself. The high
insertion rate of PacBio data leads to an abundance of alignment options
and as a result the rarer base is often “shifted” out of the correct column.
Therefore, rare bases initially show a significantly higher error rate.

Rare bases describe but a few copies of the repeat family. This means
that they are more easily collapsed. Indeed, in 1 out of 17 transposon data
sets the average recall of the rare bases is clearly worse after the first pass
correction. This is due to a number of collapsed variations which decrease
the average recall, with their recall of 0.00%. In the corrected version, this
number grows to 5 out of 17. Table 9.5 shows that overall, even the rare
bases considerably improve recall.

Rare bases also compete with a high number of false positives, which
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Data sets Original recall First pass recall Corrected recall
Histone 77.7% 83.1% 88.6%

Transposons(median) 85.4% 87.6% 90.7%
Transposon(mean) 85.7% 87.8% 86.0%
Transposons(best) 92.7% 95.5% 99.7%

Simulated 85.4% 88.1% 90.7%

Table 9.5: This table presents the recall of rare bases. The percentage of true pos-
itives among the correct positives. “Original” denotes the uncorrected signatures,
“corrected” the corrected signatures, while “first pass” describes the signatures
after a single application of the neural network corrector.

from an assembly point of view is more problematic than the collapse of
variations. Our correction heuristic achieves improved precision for every
transposon data set. Table 9.6 depicts the overall results for rare base preci-
sion improvements.

Data Original First pass Corrected
sets precision precision precision

Histone 69.0% 79.1% 93.1%
Transposons(median) 86.3% 87.0% 91.4%

Transposon(mean) 80.0% 81.7% 89.8%
Simulated 94.1% 99.0% 99.7%

Table 9.6: This table shows the precision of rare bases. The percentage of true
positives among the positives. “Original” denotes the uncorrected signatures, “cor-
rected” the corrected signatures, while “first pass” describes the signatures after
a single application of the neural network corrector.

The collapse of variations may also lead to scenarios in which the average
accuracy of corrected bases presents a misleading picture. If a minority base
has been fully corrected for one group and collapsed for another group, the
average accuracy would be the same as when both groups show an accuracy
of 50%. In the former case however, the internal consistency of both groups
is higher, although the overall accuracy is the same. Table 9.7 shows that
while the correction improves the overall accuracy of rare bases, it improves
the internal consistency to an even larger degree.
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Data Original First pass Corrected
sets precision precision precision

Histone 91.7% 95.3% 98.8%
Histone rare 77.7% 83.4% 91.3%

Transposons(median) 93.4% 95.8% 99.2%
Transposon(mean) 92.7% 95.6% 98.8%
Transposon(best) 94.7% 98.1% 99.8%

Trans. rare(median) 85.4% 90.2% 96.8%
Trans. rare(mean) 85.7% 89.6% 95.4%
Trans. rare(best) 92.7% 95.5% 99.7%
Simulated rare 91.1% 98.5% 99.9%

Simulated 85.4% 95.8% 99.7%

Table 9.7: This table presents the internal consistency of groups over all data
sets before and after correction. “Original” denotes the uncorrected signatures,
“corrected” the corrected signatures, while “first pass” describes the signatures
after a single application of the neural network corrector. In the “corrected” and
“first pass” cases the internal consistency is the similarity of corrected signatures
of a ground truth group (i.e., manual assembly copy group) to the consensus of
the corrected group, instead of to the consensus of the uncorrected group. In the
uncorrected case, internal consistency is just accuracy, that means 100% - error
rate.
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Figure 9.4: In a, we illustrate the fundamental problem: A hypothetical master
consensus of all copy versions is more similar to the signatures than signatures
that belong to the same copy are to each other. With that property, it acts like a
vanishing point, signatures with low error rate all seem to be quite similar. The
neural network depicted in b solves this problem because it is able to pick up
on the sub-signatures shared by signatures from the same copy. In c, we show
the unrolled converging corrector: The signatures are repeatedly corrected by the
concatenated neural networks using them and both neighbouring signatures until
the bases stop changing. d shows one assembly graph greedily traversed starting
from one end of the complex. Node size and number give the size of each assembly
group after mapping all clusters, even those that do not fit anywhere well. This
overmapping allows us to double check on overrepresented groups and to catch the
two collapsed parts of the complex marked in red. The other coloured nodes stand
for large scale variations.
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Figure 9.5: In a, we examine full signatures with ground truth information. For
each signature, we calculate the likelihood that the n-th best overlapping signature
belongs to the same ground truth copy group. This likelihood starts low and
drops fast, whereas the corrected signatures have a significantly higher likelihood
of correct overlaps, which stays stable for the 25 best overlaps. b shows the error
reduction achieved by first pass correction and the converging corrector. In c
and d, we use a t-SNE visualisation to show how the correction facilitates the
separation of neighbouring groups of signatures.
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Chapter 10

Assembly

This chapter is based on a peer-reviewed publication:

Philipp Bongartz, Siegfried Schloissnig.
”Deep repeat resolution –
the assembly of the Drosophila Histone Complex”
Nucleic acids research. 2018 Nov 26.

Code and data available at
https://github.com/PhilippBongartz/DrosophilaHistoneComplex

Contributions: To the paper ”Deep repeat resolution –
the assembly of the Drosophila Histone Complex”, Philipp Bongartz con-
tributed algorithm design, implementation, testing and writing. Siegfried
Schloissnig contributed problem selection and feedback.

10.1 Clustering

After reducing the error rate of the signatures, we can cluster the corrected
signatures and traverse the assembly graph that is given by the resulting
clusters. The clustering algorithm we use on the corrected signatures is a
variation of the popular k-means clustering algorithm [84]. To reach the best
possible assembly result, we use all available information. This includes the
corrected signatures, the unique sections classified in our first preprocessing
step and the results of the following two additional analyses.

There exists a shorter version (4.8 kbp) of the repeat sequence that has
already been described in the literature [77]. It differs from the histone tem-
plate by a large deletion, that we also detect and classify in our preprocessing
analysis. We create a separate MSA for this 4.8 kbp repeat. Due to the sub-
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stantially lower copy number compared to the whole complex, the detected
SNVs allow us to divide these shorter sequences into 3 different copy versions.

Additionally, we extract indels of 3 to 30 bases by clustering sections of
the rows of the original MSA. These indels are challenging to detect from the
extracted features alone. Both, short versions and indels are added to the
corrected signatures in the form of fake triple base features. Furthermore,
we extend each signature to encompass the features of all neighbouring sig-
natures within the same read.

As centroids, we choose all extended and corrected signatures whose cov-
erage extends in both directions for at least c bases. The selected centroids
are restricted to these c bases, to ensure that all centroids have the same
coverage. The parameter c is empirically chosen to be 1.2 times the length
of a signature. This results in an average coverage of each repeat copy by
7 centroids. Thereby it is highly unlikely that a repeat copy is missed. Af-
ter this initialisation, all extended signatures S are distributed among the
centroids C by the first best fit according to D(C, S) =

∑
i<n|Si 6=Ci

1. In a
second round, the consensuses of these initial clusters are used as centroids.
Finally, all elements of clusters below a size cut-off are distributed among
the remaining clusters.

10.2 Graph touring

Due to the high number of initial centroids, the clustering generally splits
the signatures into more clusters than there could possibly be repeat copies.
These clusters ci, cj ∈ C naturally constitute the nodes of an assembly graph
G := (C,E0<n<3). Two nodes ci, cj ∈ C are connected by a directed edge if
there exists a read R = [...S1k, ..., Sk+d] such that Sk ∈ ci and Sk+d ∈ cj with
d ∈ [1, 2]. For a given distance d, the set of these directed edges is denoted
by Ed(ci, cj).

Therefore, the problem we need to solve is to draw a layered graph in
which clusters are linearly ordered into layers that can contain more than one
cluster, such that the order of these layers respects the order of signatures in
reads to the largest possible extent.

At each step, we choose the cluster whose best placement maximizes the
scoring function SF (c, l) := SF1 + 2× SF2 − SF3 − 2× SF4 − SF5, where

SF1 :=
∑

E1(v,c)|v∈Ll−1

1 +
∑

E1(v,c)|v∈Ll+1

1

SF2 :=
∑

E2(v,c)|v∈Ll−2

1 +
∑

E2(v,c)|v∈Ll+2

1
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SF3 :=
∑

E1(v,c)|v 6∈Ll−1

1 +
∑

E1(v,c)|6∈Ll+1

1

SF4 :=
∑

E2(vmc)|v 6∈Ll−2

1 +
∑

E2(v,c)|v 6∈Ll+2

1

SF5 :=
∑
v∈Ll

D(v, c), D(c, v) :=
∑

i<n|Cc[i]6=Cs[i]

1

and Cc is the consensus of cluster c, Ll contains the cluster elements currently
assigned to the l-th layer, and Ed(v, c) is the set of directed edges defined
above. This score rewards edges that are consistent with the already placed
clusters and punishes edges that are inconsistent with the preceding cluster
placements, as well as differences between the cluster consensuses within a
layer.

On the resulting assembly, we then call a consensus sequence using the
designated PacBio variant caller quiver [44]. This is expected to result in
a Q40 sequence (99.99% correct) for the minimal coverage of our assembly,
Q45 for 97% and Q55 for 82% of the complex (Qx is a quality score defined
by x = − log(e) for the error rate e).

10.3 Validation

To validate our automated assembly and to assess the accuracy of the correc-
tion algorithm, we also created a hand-curated assembly of the uncorrected
signatures. In the following, we describe several insights that make manual
assembly possible. The expansion of the complex by unequal recombination
[51] tends to create adjacent identical copies. This means that the instances of
a given distinguishing feature are likely to be clustered within the complex.
Such neighbour similarity yields overlapping approaches infeasible, mainly
due to the difficult statistical assessment of the trade-off between long over-
laps and “good” overlaps. However, with a simple statistical analysis we can
utilise the neighbour similarity to considerably reduce the problem size.

For each instance b ∈ {A,C,G, T,−} of a feature v < n, we define a clus-

tering coefficient Cc(v, b) :=
∑

S|Sv=b 1∑
S|Sv 6=b 1

for the S ∈ R with
∑

Si<NR|S
i
v=b 1 > 1,

where each readR is represented as a list of signaturesR := [S1, S2, S3, ...SNR ]
and n is the number of features in a signature. The clustering coefficient is
simply the number of occurrences of an instance divided by the number of
non-occurrences of the instance over all reads in which it occurs at least
twice.
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Intuitively, this number captures in how many contiguous parts the sub-
complex described by the instance b occurs within the complex, that is, how
strongly the copies belonging to the sub-complex are clustered. The problem
can now be broken down into smaller locally connected subclusters. This
is done by selecting subsets of reads that are defined by the occurrence of
an instance. We then manually analyse instances in order of decreasing
clustering coefficients.

In each of these smaller problems we try to identify combinations of fea-
tures that appear to describe a single repeat copy. Each of these combinations
of features defines a fixed group of signatures in which it occurs. These fixed
groups are connected if their signatures occur in the same reads. They are
strongly and consistently connected if their signatures occur often and with
a constant distance in the same reads. To each side a third of the signa-
tures has a full signature neighbour, that is a signature with coverage for
all features. Assuming a coverage of C and an independent assignment of
signatures to two fixed groups of size C1 and C2, we can expect C1×C2

C×3d consis-
tent connection between them if they accurately describe copies that have a
distance d in the complex. We use this observation to validate independently
fixed groups. We cannot always define unambiguous groups that are just one
or two copies away from each other. These gaps have to be filled with long
reads that can be anchored in validated fixed groups.

By this slow manual process, the whole complex can be assembled. This
manual assembly constitutes the ground truth for the automated assembly
described above.

10.4 Results

The greedy layered graph drawing algorithm can, in principle, be started
with any cluster. Here, the flanking sequences and the unique large-scale
variations constitute the obvious initial choices. Depending on the start-
ing cluster, our automated assembly algorithm correctly orders up to 90
consecutive copies out of 113 (including flanking sequences and large-scale
variations).

Starting from the left end of the complex and for most other unique large-
scale variations as starting cluster, our automated assembly algorithm only
fails at two histone complex locations. Around repeat copy 32, a combination
of two copy versions occurs twice, one after another, and is not resolved by
the clustering. Also at the right end of the complex, the copies are extremely
similar and therefore remain unresolved. Between these locations and the
flanking sequences, 35, 60, and 3 of the copies are correctly arranged. Figure
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9.4d shows the assembly graph resulting from a graph traversal starting from
the left end of the complex. The red nodes indicate misassemblies consisting
of collapsed copies.

The combination of clustering and a greedy layered graph traversal places
90% of the signatures into a layer which contains a majority of signatures
from the same copy according to the manual assembly, resulting in almost
identical consensus signatures.

The final assembly of the histone complex contains 107 copies of the
histone repeat sequence and stretches over 570 kbp. Two of these copies are
shortened by the same long deletion, and two are extended by a dublication of
the H2A gene. Finally, another two copies have insertions of different length.
The known 4.8 kbp repeat version [77] occurs 9 times loosely clustered at the
beginning of the complex.

The preprocessing showed 11 reads with a divergent arrangement of two
large-scale variations demonstrating the presence of a second haplotype rep-
resented by 10-15% of the data, despite the highly inbred strain. These reads
have been excluded from all our analyses. Beyond the 3′ end of the complex,
we found an assortment of dysfunctional histone copies. The mechanism
driving this local accumulation of degenerate copies is yet unknown. No
further copies outside the complex were found.

10.5 Discussion

We want to emphasize that assembly via clustering, including the very spe-
cific analyses it entails, does not represent a general repeat cluster assembly
algorithm. Instead, it illustrates the type of analysis that is feasible via our
correction heuristic.

We expect other repeat complexes to exhibit their own idiosyncrasies.
It is thus unlikely that our assembly approach will be directly applicable.
For instance, all histone reads were oriented according to the template upon
extraction by mapping. This simplifies downstream processing, but is only
possible because there is no strand reversal in the complex. However, strand
reversal does occur, for example, in the Drosophila rRNA-complex. The
rRNA-complex also contains several distinct repeat sequences which would
require further non-trivial adaptations of our clustering algorithm.

While the clustering and graph traversal resolves large stretches of the
complex correctly, an important question is how to detect possible misassem-
blies. Figure 1d shows the assembly graph with misassemblies consisting of
collapsed copies indicated by the red nodes. We detect these misassemblies
by mapping the clusters that could not be reliably placed onto the assembly
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which results in coverage anomalies (significantly more than the average 125
signatures per graph layer) in collapsed assembly groups. In Figure 1d the
coverage is indicated by both, the labels and the node diameters.

The first misassembly cuts out a large-scale variation by collapsing similar
copies at either side of the variation. Starting from this large-scale variation
we obtain an assembly which correctly orders the first 90 copies. For the
second misassembly, this trick does not work because the collapse already
occurs during the clustering phase. Here, we have to resolve the ambiguous
part on the basis of a few very long reads.

To our knowledge, this is the first approach that is capable of dealing
with the intrinsic complexity of tandem repeat resolution. We expect a wide
applicability of the presented methods for the resolution of tandem repeats
in genome assembly, but also for the resolution of non-tandem repeat clusters
and long transposable elements.
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Chapter 11

Conclusion and Outlook

In this thesis, we presented several novel ideas to improve long-read genome
assemblies. Specifically, we introduced algorithmic solutions for two impor-
tant problems: The resolution of interspersed repeats and the assembly of
tandem repeat complexes.

We implemented several tools for this purpose. All of them are freely
available at https://github.com/PhilippBongartz. The tool LargeScale-
Vars computes statistics about the occurrence of sections of a template in
a file containing reads. ReadCutter divides reads according to the occur-
rence of a repeat template. InitialAligner computes an initial MSA and
PW ReAligner, see Chapter 4.4, optimises the unit score of pairwise align-
ments for a given initial MSA. Correlation, see Chapter 5.1, then computes
the statistical significance score for each base group in each column of the
optimised MSA.

These pre-processing tools allowed us to base our repeat resolution algo-
rithms on sets of extracted differences between repeat copies. In the case of
our interspersed repeat resolution tool, we refined these differences combi-
natorically until we could subdivide the reads of our data set hierarchically.
This subdivision was then complemented with a clustering approach to cre-
ate clusters of reads that correspond to the underlying repeat copy groups.
These clusters were then used to resolve repeat families with dozens of copies
spanning over tens of thousands of bases.

For assembling tandem repeat complexes, we introduced a more powerful
refinement heuristic based on neural networks that additionally utilizes the
information in neighbouring repeats. Using the de-noised repeat differences
from the neural network then facilitated clustering and graph drawing al-
gorithms that can actually assemble almost the entire Drosophila Histone
Complex.

We benchmarked our interspersed repeat resolving tool against its only
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current competitor and found that it performs substantially better in terms of
runtime and accuracy. The assembly of the Drosophila Histone Complex had
so far eluded a large community of drosophila researchers and was missing in
the six genome releases published so far by the Berkeley Drosophila Genome
Project. This complex could also not be disentangled by existing long-read
assemblers, such as Canu, MARVEL, and FALCON. We managed to close
this gap in the drosophila melanogaster draft genome. We are confident that
the methods presented here are suitable to also close the other substantial
gap in this important genome assembly, the rRNA complex.

We hope that the methods presented here will enable the assembly of
full chromosome arms with long-reads. The most promising direction for
future research that will also improve the applicability of our methods is to
automate the classification of repetitive and unique sequence in a repeat data
set. This classification constitutes a necessary first step for analysing repeat
sequences and currently requires a substantial amount of manual work.

There are several potentially promising approaches for automating this
classification step. It might be sufficient to conduct a careful analysis of
local alignments between reads sampled from a repetitive region or of k-
mer distributions to arrange all repeat sections containing similar sequences
into MSAs. A possibly more powerful approach combines classical alignment
algorithms with machine learning ideas. A pool of weighted consensus se-
quences compete to represent sections of each read. If a consensus sequence
best represents a section of a read, this section becomes part of its consensus,
which constitutes a learning mechanism. After the learning, for each consen-
sus sequence one can create its corresponding MSA for the read sections it
represents.

Another idea for future work is to combine all neural networks that now
independently correct single variations into a single neural network that cor-
rects all variations. This allows to reuse internal representations of typical
sub-signatures of repeat copies and will be computationally more efficient.
It requires masking parts of the error gradient during learning to conceal the
respective input variation for each output variation. We call this setup a
self-blind autoencoder.

It might also be possible to improve clustering results by inferring the
centroids from the co-occurrence of variations. The idea is that there is a
set of centroids that optimally explain the co-occurrence of variations in our
signatures. This set of centroids can be computed by solving a set of linear
equations. This is a mathematically elegant way to choose centroids for the
k-means clustering step. However, it is possible that the error rate in our
data induces too much noise for this method to work.

The most straight-forward direction of future research is to work on the
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assembly of microsatellite regions. A solution to this problem is necessary to
enable “perfect” genome assemblies. A promising approach consists of de-
tecting pairs of k-mers of a certain frequency that co-vary in a fixed distance
to each other. It is likely that this method will become applicable in the near
future when even longer reads are available.

89



90



Bibliography

[1] M. Cobb, “Heredity before genetics: a history,” Nature Reviews Genet-
ics, vol. 7, no. 12, p. 953, 2006.

[2] P. L. M. de Maupertuis, Vénus physique. 1745.

[3] G. Mendel, “Versuche über pflanzenhybriden,” Verhandlungen des
naturforschenden Vereines in Brunn 4: 3, vol. 44, 1866.

[4] F. Galton, Hereditary genius: An inquiry into its laws and consequences,
vol. 27. Macmillan, 1869.

[5] C. Darwin, The variation of animals and plants under domestication,
vol. 2. O. Judd, 1868.

[6] H. Winkler et al., “Verbreitung und ursache der parthenogenesis im
pflanzen-und tierreiche,” 1920.

[7] O. T. Avery, C. M. MacLeod, and M. McCarty, “Studies on the chemical
nature of the substance inducing transformation of pneumococcal types:
induction of transformation by a desoxyribonucleic acid fraction isolated
from pneumococcus type iii,” Journal of experimental medicine, vol. 79,
no. 2, pp. 137–158, 1944.

[8] F. Griffith, “The significance of pneumococcal types,” Epidemiology &
Infection, vol. 27, no. 2, pp. 113–159, 1928.

[9] J. D. Watson, F. H. Crick, et al., “Molecular structure of nucleic acids,”
Nature, vol. 171, no. 4356, pp. 737–738, 1953.

[10] H. G. Khorana, “Nucleic acid synthesis in the study of the genetic code,”
Nobel Lectures: Physiology or Medicine (1963–1970), pp. 341–369, 1968.

[11] W. M. Jou, G. Haegeman, M. Ysebaert, and W. Fiers, “Nucleotide
sequence of the gene coding for the bacteriophage ms2 coat protein,”
Nature, vol. 237, no. 5350, p. 82, 1972.

91



[12] F. Sanger and A. R. Coulson, “A rapid method for determining se-
quences in dna by primed synthesis with dna polymerase,” Journal of
molecular biology, vol. 94, no. 3, pp. 441–448, 1975.

[13] R. Staden, “A strategy of dna sequencing employing computer pro-
grams,” Nucleic acids research, vol. 6, no. 7, pp. 2601–2610, 1979.

[14] R. C. Gardner, A. J. Howarth, P. Hahn, M. Brown-Luedi, R. J. Shep-
herd, and J. Messing, “The complete nucleotide sequence of an infec-
tious clone of cauliflower mosaic virus by m13mp7 shotgun sequencing,”
Nucleic acids research, vol. 9, no. 12, pp. 2871–2888, 1981.

[15] S. B. Needleman and C. D. Wunsch, “A general method applicable to
the search for similarities in the amino acid sequence of two proteins,”
Journal of molecular biology, vol. 48, no. 3, pp. 443–453, 1970.

[16] T. F. Smith and M. S. Waterman, “Comparison of biosequences,” Ad-
vances in applied mathematics, vol. 2, no. 4, pp. 482–489, 1981.

[17] O. Gotoh, “An improved algorithm for matching biological sequences,”
Journal of molecular biology, vol. 162, no. 3, pp. 705–708, 1982.

[18] S. F. Altschul and B. W. Erickson, “Optimal sequence alignment us-
ing affine gap costs,” Bulletin of mathematical biology, vol. 48, no. 5-6,
pp. 603–616, 1986.

[19] E. W. Myers and W. Miller, “Optimal alignments in linear space,” Bioin-
formatics, vol. 4, no. 1, pp. 11–17, 1988.

[20] G. Myers, “A fast bit-vector algorithm for approximate string matching
based on dynamic programming,” Journal of the ACM (JACM), vol. 46,
no. 3, pp. 395–415, 1999.

[21] E. S. Lander and M. S. Waterman, “Genomic mapping by fingerprint-
ing random clones: a mathematical analysis,” Genomics, vol. 2, no. 3,
pp. 231–239, 1988.
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