

Lean Burn Gas Engine with a Pre-Chamber Ignition System: Grid Independence Study and Design Optimization

Restricted © Siemens AG 2018

Lean Burn Gas Engine with a Pre-Chamber Ignition System: Grid Independence Study and Design Optimization

03.12.2019

Ghael, Kamlesh; Rosenthal, Felix; Blesinger, Georg; Toedter, Olaf; Koch, Thomas

INSTITUT FÜR KOLBENMASCHINEN Head Prof. Dr. sc. techn. Thomas Koch

Introduction

Objectives and Challenges

- The passive pre-chamber ignition systems offers an attractive solution for the lean burn gas engines by providing following benefits:
 - Lean operation leads to lower CO₂ and NO_x emissions
 - Multiple ignition locations leads to faster combustion with combustion stability (less cycle to cycle variations)
 - Shorter flame travel towards crevices leads to lower UHC and unburnt CH₄ emissions
 - Higher efficiency in heavy duty operations
- To achieve these benefits, a detail investigation of the charge motion and flame development inside the pre-chamber ignition system is required
 - Experimental investigation → difficult to investigate optically due to small sizes
 - Numerical investigation → best possible alternative
- Pre-chambers requires local refinement, especially between electrodes and holes and thus requires an individual Grid Independence Study (GIS) of the Pre-chamber ignition system

Objectives:

Electrode gap

- Grid Independence Study (GIS) of the Pre-chamber ignition system
- Optimization of the Pre-chamber ignition system geometry

Introduction Operation of a Pre-Chamber Ignition System

- A pre-chamber is an enclosed volume with spark plug enclosed in it (and sometimes pilot fuel injection system - only in active type).
- It is connected with the main cylinder via holes

4

Introduction Engine and Simulation Description

Parameter	Dimension/Configuration
Туре	Single-cylinder heavy-duty engine
Displacement	2 litres
Compression ratio	12.5
Bore x Stroke	130mm x 150mm
Pre-chamber/main chamber volume ratio	0.5 %
Speed	1500 rpm
Valves	2 intake, 2 exhaust
Fuel	Natural gas (premixed)
Parameter	Model
Software	Star CD es-ice v4.30
Turbulence Model	k- ϵ RNG turbulence model
Wall function	Grumo-Unimore

5 03.12.2019 Lean Burn Gas Engine with a Pre-Chamber Ignition System: Grid Independence Study and Design Optimization

Head Prof. Dr. sc. techn. Thomas Koch

Introduction

Workflow

6

03.12.2019 Lean Burn Gas Engine with a Pre-Chamber Ignition System: Grid Independence Study and Design Optimization

Introduction **Validation Process**

03.12.2019 Lean Burn Gas Engine with a Pre-Chamber Ignition System: Grid Independence Study and Design Optimization 7

Grid Independence Study (GIS): Pre-Chamber Ignition System Simulation Settings

GIS is required to find the minimum grid size after which convergence (variation) of result becomes small (within some acceptable limit)

8

Title	Coarse	Fine	Very fine
Total number of cells in Pre-chamber	175,000	670,000	2,400,000
Cells in the electrode gap	5	10	20
Cells in the holes along the diameter	10	20	30
Timestep (°CA)	0.1	0.05	0.01
Simulation run time (CPU hours)	8800	19200	115200

Simulation is started before exhaust valve opening to analyse the effect of scavenging inside the pre-chamber ignition system

Initial mass distribution

Gas	Mass fraction
N ₂	0,7252
O ₂	0,0849
H ₂ O	0,07837
CO ₂	0,10062
CH_4	0,00049
НСНО	0,00271
CO	0,00027
NO _X	0,00744

03.12.2019 Lean Burn Gas Engine with a Pre-Chamber Ignition System: Grid Independence Study and Design Optimization

Grid Independence Study (GIS): Pre-Chamber Ignition System **Results**

680

720

760

/alve_Lift [mm]

9

Grid Independence Study (GIS): Pre-Chamber Ignition System

Results: Comparison of velocity profile in the holes

Grid Independence Study (GIS): Pre-Chamber Ignition System Results

11 03.12.2019 Lean Burn Gas Engine with a Pre-Chamber Ignition System: Grid Independence Study and Design Optimization

Institut für Kolbenmaschinen Head Prof. Dr. sc. techn. Thomas Koch

Grid Independence Study (GIS): Pre-Chamber Ignition System Results

Institut für Kolbenmaschinen Head Prof. Dr. sc. techn. Thomas Koch

Grid Independence Study (GIS): Pre-Chamber Ignition System

-- Coarse -- Fine -- Very_Fine -- InletValve_Lift ---- ExhaustValve_Lift

13 03.12.2019 Lean Burn Gas Engine with a Pre-Chamber Ignition System: Grid Independence Study and Design Optimization

Institut für Kolbenmaschinen

/alve_Lift [mm]

Head Prof. Dr. sc. techn. Thomas Koch

Grid Independence Study (GIS): Pre-Chamber Ignition System Results

14 03.12.2019 Lean Burn Gas Engine with a Pre-Chamber Ignition System: Grid Independence Study and Design Optimization

Geometries

5 different geometries along with the original geometry are analyzed in order to create the flow conditions for consistent and fast flame kernel development and flame propagation inside the pre-chamber ignition chamber

Targets:

- flow velocity should not be very high, so that it shears the flame kernel or very less in the electrode gap (no standard value available)
- High Turbulent Kinetic Energy(TKE) in the Pre-chamber but <u>low TKE in the electrode gap</u>
- Low residual exhaust gas in the Pre-chamber, especially in the electrode gap

Results: Comparison of velocity profile in the holes

Results

Results

Results

Scavenging in the electrode gap is similar for all the geometries as the flow from the holes is directed toward the electrode gap which pushes the residuals towards the upper area of pre-chamber.

Head Prof. Dr. sc. techn. Thomas Koch

Results

20 03.12.2019 Lean Burn Gas Engine with a Pre-Chamber Ignition System: Grid Independence Study and Design Optimization

Institut für Kolbenmaschinen Head Prof. Dr. sc. techn. Thomas Koch

Karlsruhe Institute of Technology

Summary

- 3D simulation results are validated with the experimental results.
- A new workflow of static mesh for pre-chamber ignition system is developed and presented.
- GIS of the pre-chamber ignition system applied successfully. Coarse mesh shows insufficient accuracy of the velocity. Fine mesh with 10 minimum cells in the electrode gap and 20 cells in the holes is required to accurately calculate the flow.
- Optimization study shows the influence of hole diameter, number of holes and hole edges on the TKE, velocity and residuals inside the pre-chamber and between the electrodes.

Geometry	Velocity in the holes (more)	Velocity in the electrode gap (less)	TKE in the pre- chamber (more)	Residual in the pre- chamber (less)
Original	0	0	0	0
VK1_5Holes	-	+	-	0
VK2_4SmallHoles	+	-	+	-
VK3_5SmallHoles	+	-	+	-
VK4_4RoundedHoles	-	+	-	+
VK5_4RoundedSmallHoles	+	0	+	-

• Further investigation of the pre-chamber geometry like tangential holes, holes axis angle etc. is required.

Special thanks to Siemens Technical Support team (<u>Mr. Oleksiy Kochevskyy</u>) and Steinbuch Centre for Computing – KIT (<u>Mr. Ngan Long Tu</u>)

THANK YOU!

22 03.12.2019 Lean Burn Gas Engine with a Pre-Chamber Ignition System: Grid Independence Study and Design Optimization

Institut für Kolbenmaschinen

Head Prof. Dr. sc. techn. Thomas Koch

