# Synthesis, characterization and physical/chemical properties of polyoxometalate-based materials 

Zur Erlangung des akademischen Grades eines DOKTORS DER NATURWISSENSCHAFTEN
(Dr. rer. nat.)
von der KIT-Fakultät für Chemie und Biowissenschaften des Karlsruher Instituts für Technologie (KIT)

genehmigte
Dissertation
von
M.Sc. Marcel Patrick Merkel aus

Mannheim-Neckarau, Deutschland
Karlsruhe, 2019

KIT-Dekan: Prof. Dr. Reinhard Fischer
Referent: Prof. Dr. Annie Powell
Korreferent: Prof. Dr. Peter Roesky
Tag der mündlichen Prüfung: 26. Juli 2019

## Acknowledgements

This thesis was carried out from October 2015 to June 2019 at the Institute for Inorganic Chemistry at the Karlsruhe Institute of Technology (KIT) under supervision of Prof. Dr. Annie K. Powell.

First of all I would like to thank Prof. Dr. Annie K. Powell for giving me the opportunity to do my PhD study in a comfortable and very welcoming atmosphere in her working group. Additionally, I would like to thank her for a very kindness, excellent support and interesting topic.

In addition, I would like to thank deeply from my heart to all:

- Dr. Masooma Ibrahim: for the many tips and suggestions and the wonderful support that I was allowed to enjoy during the time of this study.
- Gertraud Amschlinger: for her kindness and cozy atmosphere and for every help I got.
- Dr. Christopher Anson: for solving and refining my single crystal X-ray structures and nice conversations.
- Dr. Olaf Fuhr and Prof. Dr. Dieter Fenske: for measuring single crystals and nice conversations.
- Dr. Andreas Eichhöfer: for the introductions to single crystal X-ray diffractometers, powder X-ray diffractometer and for every help I received from him.
- Sven Stahl: for introduction in NMR-spectrometer, for ordering all chemicals, measuring all the elemental analyses and for every help.
- My colleagues: Dr. Nicolas Leblanc, Dr. Sebastian Schmidt, Dr. Yan Peng, Dr. Markus Schroth, Lena Friedrich, Anthony Carter, Hagen Kämmerer, Thomas Ruppert, Rouven Pfleger and Umaira Shuaib: for every kind conversation, help with reactions and cozy atmosphere.
- Cooperation Partners: Dr. George E. Kostakis, Dr. Mbomekalle Israël, Prof. Dr. Pedro De Oliveira and Dr. Ying-Chu Chen..
- My lovely family and friends: Especially to my parents Christoph and Gabrielle Merkel, my brother Dr. Marcus Merkel, my aunt Renate Ott, my uncle Thomas Ott and my grandparents Anna and Joachim Prudlik and Josef and Elfriede Cebulla: for supporting me and being always there for me. My dear girlfriend: Dr. Krisana Peewasan: for every support and every help I got from her.


## Annotation:

The ions shown in the figures are not to scale. Organic hydrogen atoms, as well as solvent molecules are often not shown for clarity. The numerical values such as bond lengths and angles are given in standard deviation. This is in parentheses after each value and refers to the last digit. The lengths are given in Angstroms, where $1 \AA=1.10-10 \mathrm{~m}$.

The abbreviation TM stands for transition metals in low oxidation state.

## SUMMARY

Polyoxometalate based metal organic frameworks (POMOFs) can be regarded in general terms as frameworks containing Polyoxometalates (POMs). Here, we can identify three distinct categories: (a) POMs occupying the cavities of a metal organic framework (MOF) structure (POM@MOF), (b) POMs used as secondary building units (SBUs) in the network and (c) POMs as part of the linker of the framework. For this research presented in this thesis, it was decided to concentrate on the barely explored area (c). Furthermore, it seemed a useful strategy to compare combining metals from the d series $(\mathrm{TM}=\mathrm{Cu}, \mathrm{Zn}, \mathrm{Cd}, \mathrm{Mn}, \mathrm{Mo})$ with rare earth metal ions $(\mathrm{RE}=\mathrm{Y}, \mathrm{La}-\mathrm{Lu})$.

The first stage of the exploration was to develop suitable $\mathrm{L}-\mathrm{POM}$ - L linkers, where L is a Tris-functionalized $\left(\left(\mathrm{OHCH}_{2}\right)_{3} \mathrm{CNH}_{2}\right)$ unit and POM is the AndersonEvans POM. This Polyanion was chosen because it provides three octahedrally arranged coordination sites above and below the central plane, which can be occupied by three hydroxyl groups of a Tris ligand. This Tris-ligand can be functionalized at the amine group using suitable N-R forming reagents, such as R'HC=O, R'HC-X $(\mathrm{X}=\mathrm{Cl}, \mathrm{Br})$ and R ' COCl . R was chosen such the terminus $\mathrm{T}_{\text {func }}$ provides a coordinating group for a TM or RE nodes. $\mathrm{T}_{\text {func }}$ can be for example $\mathrm{N}_{\mathrm{py}}$, $\mathrm{O}_{\mathrm{coo}}, \mathrm{N}_{\mathrm{C}=\mathrm{N}}$, etc. In this way $\mathrm{L}-\mathrm{POM}$ - L linkers were formed. Two of these L - POM - Ls proved to be particularly successful for producing transition metal based POMOFs, where the functional group is pyridyl and RE based POMOFs, where the functional group is carboxylate. These could be characterized using single crystal X-ray diffraction, which is important in this field since we ultimately should be able to relate the functionality to topology. In this context optical properties such as bandgap, UV-vis and Fourier Transform Infrared (FT-IR) Spectroscopy were investigated. The highlight within the TM-based series was the activity of $\left[\mathrm{N}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right]_{5}\left[\mathrm{CuCl}(\mathrm{DMF})\left\{\mathrm{MnMo}_{6} \mathrm{O}_{18}\left(\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CN}=\mathrm{CH}\right.\right.\right.$ $\left.\left.\left.\left(4-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)\right)_{2}\right\}_{2}\right] \cdot 3 \mathrm{DMF}$ (13) for the $\mathrm{A}^{3}$-Coupling without the need for inert conditions. For the RE-series the Dy based compound $\left[\mathrm{Dy}(\mathrm{DMF})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}\left[\mathrm{Dy}_{3}\right.$
(DMF) $\left.)_{6}\right]\left[\left(\left(\mathrm{MnMo}_{6} \mathrm{O}_{18}\right)\left(\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNHCH}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{COO}\right)_{2}\right]_{3} \cdot 5 \mathrm{DMF}\right.$ (12)-Dy proved to be the most versatile. Finally, a completely new topology was discovered for compound $\quad\left[\mathrm{Zn}(\mathrm{DMF})_{4}\right]\left[\mathrm{Zn}(\mathrm{DMF})_{2} \mathrm{MnMo}_{6} \mathrm{O}_{18}\left\{\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CN}=\mathrm{CH}\left(4-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)\right\}_{2}\right]_{2}$ $\cdot 10 \mathrm{DMF}$ (14A) and interestingly the synthesis for this compound has a bifurcation in terms of topology since the equally abundant component $\left[\left(\mathrm{Zn}(\mathrm{DMF})_{3}\right)_{2}\left(\mathrm{Zn}(\mathrm{DMF})_{4} \mathrm{MnMo}_{6} \mathrm{O}_{18}\left\{\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CN}=\mathrm{CH}\left(4-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)\right\}_{2}\right)_{2}\right] \cdot 9 \mathrm{DMF}$ (14B) of the reaction has a completely different topologically structure.

## Zusammenfassung

Polyoxometallat-basierte Metall organische Netzwerke (POMOFs) können allgemein als Netzwerke angesehen werden, welche Polyoxometallate (POMs) beinhalten. Hier lassen sich drei Kategorien unterscheiden: (a) POMs, welche die Hohlräume einer Metal organic framework (MOF)-Struktur belegen (POM@MOF), (b) POMs, die als Sekundary Building Units (SBUs) im Netzwerk verwendet werden und (c) POMs, die als Teil des Linkers des Frameworks genutzt werden. In der vorgestellten Arbeit wurden die POMOFs der Kategorie (c) untersucht. Darüber hinaus wurde die Kombination aus Metallen der d-Reihe $(\mathrm{TM}=\mathrm{Cu}, \mathrm{Zn}, \mathrm{Cd}, \mathrm{Mn}, \mathrm{Mo})$ mit Seltenerdmetallionen $(\mathrm{RE}=\mathrm{Y}, \mathrm{La}-\mathrm{Lu})$ verglichen.

Im ersten Teil der Forschungsarbeit wurden L-POM-L-Linker entwickelt, wobei L eine Tris-funktionalisierte $\left(\left(\mathrm{OHCH}_{2}\right)_{3} \mathrm{CNH}_{2}\right)$ Einheit und POM das Anderson-Evans-Polyanion ist. Dieses Polyanion weist drei oktaedrisch angeordnete Koordinationsstellen oberhalb und unterhalb der zentralen Ebene auf, die von drei Hydroxylgruppen eines Tris - Liganden besetzt werden können. Dieser Tris-Ligand kann an der Aminogruppe unter Verwendung geeigneter N -R-bildender Reagenzien wie $\mathrm{R}^{\prime} \mathrm{HC}=\mathrm{O}$, R'HC-X $(\mathrm{X}=\mathrm{Cl}, \mathrm{Br})$ und R' COCl funktionalisiert werden. R wurde so gewählt, dass der Terminus $\mathrm{T}_{\text {func }}$ eine koordinierende Gruppe für einen TM- oder RE-Knotenpunkt bereitstellt. $\mathrm{T}_{\text {func }}$ kann beispielsweise $\mathrm{N}_{\mathrm{py}}$, $\mathrm{O}_{\mathrm{Coo}}, \mathrm{N}_{\mathrm{C}=\mathrm{N}}$ usw. sein. Auf diese Weise wurden L-POM-L-Linker gebildet. Zwei dieser L-POM-Ls erwiesen sich als besonders erfolgreich für die Herstellung von übergangsmetallbasierten POMOFs, mit Pyridylgruppen als funktionelle Gruppen und RE-basierte POMOFs, bei denen die funktionelle Gruppen Carboxylate sind. Diese konnten mittels Einkristall-Röntgenstrukturanalyse charakterisiert werden, womit die Funktionalität mit der Topologie in Beziehung gesetzt werden konnte. In diesem Zusammenhang wurden optische Eigenschaften wie Bandlücken, UV-Visund Fourier-Transformierte-Infrarot- (FT-IR-) Spektroskopie untersucht. Das Highlight innerhalb der TM-basierten Reihe war die Aktivität von
$\left[\mathrm{N}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right]_{5}\left[\mathrm{CuCl}(\mathrm{DMF})\left\{\mathrm{MnMo}_{6} \mathrm{O}_{18}\left(\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CN}=\mathrm{CH} \quad\left(4-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)\right)_{2}\right\}_{2}\right] \cdot 3 \mathrm{DMF}$ (13) für $\mathrm{A}^{3}$-Kupplungsreaktionen ohne Luftausschluss. Für die RE-Reihe erwies sich die auf Dy basierende Verbindung $\left[\mathrm{Dy}(\mathrm{DMF})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}\left[\mathrm{Dy}_{3}\right.$ (DMF) 6$]\left[\left(\left(\mathrm{MnMo}_{6} \mathrm{O}_{18}\right)\left(\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNHCH}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{COO}\right)_{2}\right]_{3} \cdot 5 \mathrm{DMF}\right.$ (12)-Dy als die vielseitigste. Schließlich wurde für eine weitere Verbindung $\left[\mathrm{Zn}(\mathrm{DMF})_{4}\right]$ $\left[\mathrm{Zn}(\mathrm{DMF})_{2} \mathrm{MnMo}_{6} \mathrm{O}_{18}\left\{\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CN}=\mathrm{CH}\left(4-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)\right\}_{2}\right]_{2} \cdot 10 \mathrm{DMF}(\mathbf{1 4 A})$ eine völlig neue Topologie entdeckt. Interessanterweise weist die Synthese für diese Verbindung eine Bifurkation in Bezug auf die Topologie auf, da die ebenso häufig vorkommende Komponente $\quad\left[\left(\mathrm{Zn}(\mathrm{DMF})_{3}\right)_{2}\left(\mathrm{Zn}(\mathrm{DMF})_{4} \mathrm{MnMo}_{6} \mathrm{O}_{18}\left\{\left(\mathrm{OCH}_{2}\right)_{3}\right.\right.\right.$ $\left.\left.\left.\mathrm{CN}=\mathrm{CH}\left(4-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)\right\}_{2}\right)_{2}\right] \cdot 9 \mathrm{DMF}(\mathbf{1 4 B})$ der Reaktion eine völlig andere topologische Struktur aufweist.

## Table of Contents

1 Historical Background ..... 7
2 Motivation and Objective ..... 9
3 Introduction ..... 11
3.1 Polyoxometalates ..... 11
3.1.1 Classification of POMs ..... 13
3.1.2 Isomers of polyoxometalates ..... 23
3.1.3 Lacunary derivatives of polyanions ..... 25
3.2 Metal-Organic Frameworks (MOFs) ..... 27
3.2.1 Primary Buildings Units (PBUs) ..... 28
3.2.2 Linkers for MOFs ..... 28
3.2.3 Secondary Building Units (SBUs) ..... 30
3.2.4 Topological consideration of MOFs ..... 31
3.2.5 Crystal-to-crystal (CTC) (topotactic) transformation ..... 33
3.3 Polyoxometalate-based Metal-Organic Frameworks (POMOFs) ..... 34
3.3.1 Properties of POMOFs ..... 36
3.4 Catalysis ..... 38
3.4.1 $\quad \mathrm{A}^{3}$-coupling ..... 38
3.4.2 Catalytic reaction for the implementation of furfural with amines ..... 39
3.4.3 Electrocatalysis ..... 41
3.4.4 Photo-electrocatalysis ..... 45
4 Experimental Section ..... 48
4.1 Instrumentation ..... 48
4.1.1 Fourier Transform-Infrared (FT-IR) Spectroscopy ..... 48
4.1.2 Elemental Analysis (EA) ..... 48
4.1.3 Single crystal X-ray diffraction (SCXRD) ..... 48
4.1.4 Powder X-ray diffraction (PXRD) ..... 49
4.1.5 Nuclear Magnetic Resonance (NMR) Spectroscopy ..... 49
4.1.6 Topology ..... 50
4.1.7 Analysis of the coordination geometry of the metal centres ..... 50
4.1.8 Solid state UV-vis spectroscopy ..... 50
4.1.9 Electrochemistry ..... 50
4.1.10 Photo-electrochemistry ..... 51
4.2 Synthesis and synthetic strategies ..... 51
4.3 Synthesis of previously reported precursors (Pre) and linkers ..... (L) 53
4.3.1 $\quad\left[\mathrm{N}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right]_{4}\left[\mathrm{Mo}_{8} \mathrm{O}_{26}\right]$ (1) ..... 53
4.3.2 $\mathrm{Na}_{3}\left[\mathrm{Al}(\mathrm{OH})_{6} \mathrm{Mo}_{6} \mathrm{O}_{18}\right] \cdot 2 n \mathrm{H}_{2} \mathrm{O}(n=2-10)(2)$ ..... 54
4.3.3 $\quad\left[\mathrm{N}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right]_{3}\left[\mathrm{MnMo}_{6} \mathrm{O}_{18}\left\{\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNH}_{2}\right\}_{2}\right]$ (3) ..... 54
4.3.4 $\left[\mathrm{N}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right]_{3}\left[\mathrm{MnMo}_{6} \mathrm{O}_{18}\left\{\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CN}=\mathrm{CH}\left(4-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)\right\}_{2}\right] \cdot 3 \mathrm{DMF}$ ..... (4). 55
4.3.5 $\quad 4-\mathrm{HOOC}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{CH}_{2} \mathrm{NHC}\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{3}(\mathrm{~L} 1)$ ..... 55
4.4 Synthesis of novel precursors (Pre) and potential linkers (L) ..... 56
4.4.1 $\quad\left[\mathrm{N}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right]_{4}\left[\left(\mathrm{MnMo}_{6} \mathrm{O}_{18}\right)\left(\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNHCH}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{COOH}\right)\left(\left(\mathrm{OCH}_{2}\right)_{3}\right.\right.$ $\left.\left.\mathrm{CNHCH}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{COO}\right)\right] \cdot 3 \mathrm{DMF}$ (5) ..... 56
4.4.2 $\left[\mathrm{N}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right]_{3}\left[\left(\mathrm{AlMo}_{6} \mathrm{O}_{18}\right)\left(\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CCH}_{2} \mathrm{OCH}_{2} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{3}\right)_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$(6)57
4.4.3 $\quad 4-\mathrm{N} \equiv \mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{CH}_{2} \mathrm{NHC}\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{3}(\mathrm{~L} 2)$ ..... 58
4.4.4 $\left[\mathrm{N}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right]_{3}\left[\left(\mathrm{MnMo}_{6} \mathrm{O}_{18}\right)\left(\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNH}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{C} \equiv \mathrm{N}\right)_{2}\right] \cdot 6 \mathrm{MeCN}$ ..... (7) 58
4.4.5 $\quad 4-\mathrm{NO}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{C}=\mathrm{ONHC}\left(\mathrm{HOCH}_{2}\right)_{3}(\mathrm{~L} 3)$ ..... 59
4.4.6 $\left[\mathrm{N}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right]_{3}\left[\mathrm{MnMo}_{6} \mathrm{O}_{18}\left\{\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNHC}=\mathrm{O}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{NO}_{2}\right\}_{2}\right] \cdot 6 \mathrm{DMF}$(8)60
4.4.7 $\quad\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{NHC}\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{3}(\mathrm{~L} 4)$ ..... 60
4.4.8 $\quad\left[\mathrm{N}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right]_{3}\left[\left(\mathrm{MnMo}_{6} \mathrm{O}_{18}\right)\left(\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNHC}_{6} \mathrm{H}_{5}\right)_{2}\right] \cdot \mathrm{MeCN} \cdot \mathrm{H}_{2} \mathrm{O}$ (9) ..... 61
4.4.9 $\quad\left[\mathrm{N}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right]_{2}\left[\mathrm{Mn}_{2} \mathrm{Mo}_{4} \mathrm{O}_{14}\left(\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right)_{2}\right](10)$ ..... 62
4.5 Synthesis of extended structures ..... 63
4.5.1 Synthesis of rare earth containing polyoxometalate-based metal organic frameworks (RE-POMOFs) ..... 63
4.5.2 Synthesis of transition metal containing polyoxometalate-based metal organic frameworks (TM-POMOFs) ..... 71
4.6 Catalytic studies ..... 73
4.6.1 $\quad \mathrm{A}^{3}$-Coupling ..... 73
4.6.2 Catalytic reaction for the implementation of furfural with morpholine 75
4.6.3 Photo-electrocatalytic studies ..... 75
4.6.4 Electrocatalytic studies ..... 76
5 Results and Discussion ..... 77
5.1 Previously reported precursors (Pre) ..... 77
5.1.1 $\quad\left[\mathrm{N}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right]_{3}\left[\mathrm{MnMo}_{6} \mathrm{O}_{18}\left\{\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CN}=\mathrm{CH}\left(4-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)\right\}_{2}\right] \cdot 3 \mathrm{DMF}$(4)77
5.2 Novel precursors (Pre) ..... 82
5.2.1 $\quad\left[\mathrm{N}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right]_{4}\left[\left(\mathrm{MnMo}_{6} \mathrm{O}_{18}\right)\left(\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNHCH}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{COOH}\right)\left(\left(\mathrm{OCH}_{2}\right)_{3}\right.\right.$ $\left.\left.\mathrm{CNHCH}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{COO}\right)\right] \cdot 3 \mathrm{DMF}$ (5) ..... 82
5.2.2 $\quad\left[\mathrm{N}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right]_{3}\left[\left(\mathrm{AlMo}_{6} \mathrm{O}_{18}\right)\left(\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CCH}_{2} \mathrm{OCH}_{2} \mathrm{C}_{\left.\left.\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{3}\right)_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}}\right.\right.$(6)90
5.2.3 $\left[\mathrm{N}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right]_{3}\left[\left(\mathrm{MnMo}_{6} \mathrm{O}_{18}\right)\left\{\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNH}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{C} \equiv \mathrm{N}\right\}_{2}\right] \cdot 6 \mathrm{MeCN}$(7)96
5.2.4 $\left[\mathrm{N}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right]_{3}\left[\mathrm{MnMo}_{6} \mathrm{O}_{18}\left\{\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNHC}=\mathrm{O}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right)\right\}_{2}\right] \cdot 6 \mathrm{DMF}$ (8) ..... 101
5.2.5 Steps towards developing the POM as linker strategy (c) to the synthesis of POMOFs ..... 105
5.2.6 $\left[\mathrm{N}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right]_{2}\left[\mathrm{Mn}_{2} \mathrm{Mo}_{4} \mathrm{O}_{14}\left(\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right)_{2}\right]$ (10). ..... 109
5.3 Extended structures ..... 115
5.3.1 Rare earth containing polyoxometalate-based metal organic frameworks (RE-POMOFs) ..... 118
5.3.2 Transition metal containing polyoxometalate-based metal organic frameworks (TM-POMOFs) ..... 150
6 Conclusion and Outlook ..... 185
7 References ..... 188
8 Appendix ..... 199
8.1 Crystallographic data ..... 199
8.2 SHAPE analysis results for coordination polyhedra ..... 212
8.2.1 SHAPE analysis for compound (10) ..... 212
8.2.2 SHAPE analysis for compound (11)-Ce ..... 217
8.2.3 SHAPE analysis for compound (12)-Dy ..... 234
8.2.4 SHAPE analysis for compound (13) ..... 238
8.2.5 SHAPE analysis for compound (14A) ..... 240
8.2.6 SHAPE analysis for compound (14B) ..... 242
8.2.7 SHAPE analysis for compound (15) ..... 245
8.3 Publications ..... 249
8.4 Conferences ..... 249
8.5 Work shops ..... 249
8.6 Stay Abroad ..... 250
8.7 Collaborations ..... 250
8.8 Teaching assistant ..... 250
9 Eidesstattliche Erklärung ..... 252

## List of Abbreviations

| 1D | One-dimension |
| :---: | :---: |
| 2D | Two-dimension |
| 3D | Three-dimension |
| 。 | Degree |
| ${ }^{\circ} \mathrm{C}$ | Degree Celsius |
| 4,4'-BPY | 4,4'-bipyridine |
| A | Ångstrom |
| acac | Acetylacetonate |
| $\mathrm{A}_{\text {ox }}$ | Activity of oxidized species |
| $\mathrm{A}_{\text {red }}$ | Activity of reduced species |
| a.u. | Arbitrary units |
| ADTP | 1,3,5,7-tetrakis(4- phosphonophenyl)adamantine |
| ADTS | 1,3,5,7-tetrakis(4sulfonophenyl)adamantine |
| BDC | 1,4-benzenedicarboxylate |
| BPCN | 4,4'-biphenyldicarbonitrile |
| BPDC | Biphenyl-4,4'-dicarboxylate |
| BTC | 1,3,5-benzenetricarboxylate |
| C | Coulomb |
| Cat. | Catalyst |


| cm | Centimetre |
| :---: | :---: |
| CMOS | Complementary-Metal-OxideSemiconductor |
| CP | Coordination Polymers |
| CTC | Crystal-to-crystal |
| CV | Cyclic voltammetry |
| DABCO | 1,4-diazabicyclo[2.2.2]octane |
| DCM | Dichloromethane |
| DMF | Dimethylformamid |
| DMSO | Dimethyl sulfoxide |
| E | Potential |
| EA | Elemental Analysis |
| $\mathrm{e}^{-}$ | Electron |
| $\mathrm{E}_{0}$ | Standard potential |
| E入 | Reversal potential |
| eq. | Equivalent |
| $\mathrm{E}_{\text {start }}$ | Initial potential |
| $\mathrm{Et}_{2} \mathrm{O}$ | Diethyl ether |
| eV | Electronvolt |
| F | Faraday constant ( $=96,487 \mathrm{~A} \mathrm{~s} / \mathrm{mol}$ ) |
| FT-IR | Fourier-Transform- Infrared |
| FTO | Fluorine-doped tin oxide |


| g | Gram |
| :---: | :---: |
| $\mathrm{h}^{+}$ | Hole |
| h | Hour |
| HER | Hydrogen evolution reaction |
| HKUST | Hong Kong University of Science and Technology |
| HMT | Hexamethylenetetramine |
| HOMO | Highest occupied molecular orbital |
| HPA | Hybrid Pixel Array |
| HPC | Hybrid Photon Counting |
| HPOM | Heteropolyoxometalates |
| HSAB | Hard and Soft (Lewis) Acids and Bases |
| Hz | Hertz |
| IRMOF | Isoreticular Metal Organic Framework |
| IPOM | Isopolyoxometalates |
| i-PrOH | Isopropanol |
| J | Joule |
| K | Kelvin |
| L | Linker |
| 1 | Layering |
| LMCT | Ligand-Metal Charge Transfer |
| Ln | Lanthanide |


| LSV | Linear sweep voltammetry |
| :---: | :---: |
| LUMO | Lowest unoccupied molecular orbital |
| mM | Millimolar |
| M | Molar |
| MB | Methylene blue |
| MeCN | Acetonitrile |
| MeOH | Methanol |
| MHz | Megahertz |
| MIL | Matériaux de l'Institut Lavoisier |
| min | Minute |
| mL | Millilitre |
| mmol | Millimol |
| MOF | Metal Organic Framework |
| NENU | Northeast Normal University |
| nm | Nanometre |
| NMR | Nuclear Magnetic resonance |
| OAc | Acetate |
| OER | Oxygen evolution reaction |
| o.n. | Overnight |
| $\mathrm{O}_{\mathrm{t}}$ | Terminal oxygen |
| PBU | Primary building unit |
| POM | Polyoxometalate |
| ppm | Parts per million |
| Pre | Precursor |
| r.t. | Room temperature |


| PXRD | Powder X-ray diffraction |
| :---: | :---: |
| py | Pyridine |
| R | Gas constant |
| R-BDC | R group (such as Br-, NH2-, etc.) functionalised BDC |
| RE | Rare earth |
| RhB | Rhodamine B |
| S | stirring |
| SBU | Secondary building unit |
| SCXRD | Single crystal X-ray diffraction |
| simu | Simulated |
| T | Temperature |
| TBA | Tetrabutylammonium |
| TCO | Transparent conducting oxide |
| $\mathrm{TEAH}_{3}$ | Triethanolamine |
| TM | Transition metal |
| TMS | Tetramethylsilane |
| Tris | Tris(hydroxymethyl)methane |
| UV | Ultraviolet |
| V | Volt |
| vis | Visible |
| XRD | X-ray diffraction |
| z | Number of electrons |

The nomenclature used in this thesis is based on the Chemical Abstracts ${ }^{\mathrm{a}}$ and on the guidelines recommended by the IUPAC-IUB Commission ${ }^{\text {b }}$. Technical terms are written in italics.
a Chemical Abstracts, Index Guide, 77.
b IUPAC Commission on Nomenclature of Organic Chemistry (CNOC) und IUPAC-IUB Commission on Biochemical Nomenclature (CBN), Tentative Rules for Carbohydrate Nomenclature, Biochemistry 1971, 10, 3983-4004; Eur. J. Biochem. 1971, 21, 455-477.

Conversion of energy units: $1 \mathrm{eV}=1.602 \cdot 10^{-19} \mathrm{~J}=11604.52500617 \mathrm{~K}=$ $1239.84193 \mathrm{~nm}=8065.54429 \mathrm{~cm}^{-1}=3.288465396(20) \cdot 10^{15} \mathrm{~Hz}$

## 1 Historical Background

In 1826, Berzelius reported the formation of a dark grey precipitate on mixing aqueous solutions of $\mathrm{MoCl}_{5}$ and $\mathrm{Na}_{2} \mathrm{HPO}_{4}{ }^{1}$ The resultant powder turned into a black solution on addition of aqueous ammonia. The molecular structure of this compound could not be determined since X-ray crystallography was first established in the early 1900's. In 1933, the crystal structure of the polyanion was formulated as $\mathrm{H}_{3}\left[\mathrm{PMo}_{12} \mathrm{O}_{40}\right] \cdot 5 \mathrm{H}_{2} \mathrm{O}$ by Keggin and was named after him. ${ }^{2}$ The progression of single crystal X-ray diffraction plays a crucial role in the development of POM chemistry and since then many other structures based on V , $\mathrm{Nb}, \mathrm{Ta}, \mathrm{Cr}, \mathrm{Mo}$ and W have been determined and reported. ${ }^{3,4}$ Applications for POMs include catalysis, ${ }^{5-8}$ medicine, ${ }^{9-11}$ and battery materials. ${ }^{6,12}$

In 1913, Werner was the first inorganic chemist receiving the Nobel Prize "in recognition of his work on the linkage of atoms in molecules by which he has thrown new light on earlier investigations and opened up new fields of research especially in inorganic chemistry." ${ }^{13}$ With his work, he paved the way for nowadays' coordination chemistry and thus of coordination polymers termed by Bailar in 1964. ${ }^{14}$ Such coordination polymers may be 1-, 2- or 3-dimensional materials constructed from coordination complexes featuring bridging ligands. Over the past few decades, this class of material has been termed Scaffolding-like materials, metal organic frameworks (MOFs), hybrid organic-inorganic materials and organic zeolite analogues with unavoidable overlap with experts on this field such as Yaghi, Robson, Long and Rowsell. ${ }^{15,16}$ These materials have potential applications in various fields such as gas storage, ${ }^{17-19}$ separation, ${ }^{18,20}$ (enantioselective) catalysis, ${ }^{17,18,21}$ magnetism, ${ }^{22}$ proton conduction, ${ }^{23}$ drug delivery ${ }^{24,25}$ and nonlinear optical materials. ${ }^{17,18,20,22,25}$

The combination of the aforementioned two classes of material results in the designation POMOF, firstly reported by Hasuhalter et al in 1997. ${ }^{26}$ This new

1. Historical Background
material has the potential to combine the properties of POMs with those of porous frameworks.

## 2 Motivation and ObjEctive

Coordination Polymers (CPs), also called MOFs, consist of organic building blocks (so-called linkers) and inorganic building blocks (so-called secondary building units (SBUs)) forming 3D porous frameworks. Here, the linkers contain functional groups, such as carboxylate, ${ }^{21,27}$ amine $^{28}$, pyridyl, ${ }^{21}$ nitrile, ${ }^{29}$ sulfonate ${ }^{29}$ or phosphonate ${ }^{30}$, coordinating to the SBUs, which may be based on $\mathrm{Zn},{ }^{27,28} \mathrm{Ni},{ }^{30}$ $\mathrm{Cu},{ }^{21,31} \mathrm{Na},{ }^{29} \mathrm{Ag},{ }^{29} \mathrm{Mg},{ }^{28} \mathrm{Fe},{ }^{32} \mathrm{Cr}^{17}$ or other metals ions and thus building up a network. Nowadays, many time honoured compounds, such as Prussian Blue and Hofmann clathrates are part of the class of coordination polymers. ${ }^{33,34}$ Due to the fact that Prussian Blue has pores, it has a much lower density compared to FeO . ${ }^{35}$ Although in Prussian Blue the organic linker is relatively small, this is sufficient to consider this material as a MOF. This leads to the consideration of how the properties of the resulting 3D network can be influenced by modifying the building units. When examining the ligands in the two compounds Prussian Blue and FeO , it is noticeable that the cyanide ion is longer than an oxo ligand, which explains the porosity of Prussian Blue. This results in the assumption that the surface area of a framework can be adjusted by the length of the linker. Extending a linker in a coordination network decrease the density in two ways - organic moieties are lighter than most metal ions and the creation of larger spacers decrease the proportion of the heavier metal atoms.

Since it is already known that a large number of POMs are electrocatalytically active, they are potential candidates for electrode materials. However, there are some drawbacks linked to high solubilities and low surface areas of POMs. These kinds of issues can be solved by introducing suitable organic ligands, whereby the solubility of the frameworks in aqueous solutions decreases and by building up a framework also the surface area of the compound increases. A combination of POMs and MOFs result in polyoxometalate-based metal organic frameworks, so-
called POMOFs. ${ }^{36,37,38}$ These compounds may combine and/or improve the properties of POMs and MOFs. Until now, as shown in Figure 2.1, three subgroups of POMOFs are known in literature: (a) POMs occupy the cavities of a MOF structure (POM@MOF), ${ }^{39-42}$ (b) POMs used as SBUs in the network ${ }^{36,37,43,44,45}$ and (c) POMs as part of the linker of the framework. ${ }^{46,47}$
(a)

(b)

(c)


Figure 2.1: (a) POM@MOF structure published by Su et al. ${ }^{48}$, colour code: Cu: light blue, $O$ : red, C: grey wireltick, Keggin polyanions: green polyanion with orange polyhedral model; (b) Kegging ions as SBUs in an organic-inorganic framework published by Dolbecq et al. ${ }^{37}$, colour code: Zn: light blue, O: red, C: greywire/stick, Keggin polyanions: green polyhedral models and (c) Anderson-Evans POMs as part of the linker of the framework published by Yang et al. ${ }^{47}$, colour code: Cu: light blue, I: violet, $O$ : red, $C$ : grey wire/stick, $N$ : blue, Anderson-Evans polyanions: green ring with red polyhedral models.

This field of research is still in its infancy but currently getting an increasing amount of attention due to emergent applications in many fields such as catalysis, ${ }^{42,47,49}$ proton conduction, ${ }^{50,51}$ sorption ${ }^{41}$ and electrode materials. ${ }^{37}$

Since the POMs as linkers approach is the least explored area of POMOF chemistry and its formation of the product is predictable compared to the other approaches, this was chosen as the basis for the research presented in this thesis.

## 3 INTRODUCTION

### 3.1 Polyoxometalates

Polyoxometalates (POMs) are anionic metal oxide clusters composed of transition metals (so-called metal addenda atoms $\mathrm{M}=\mathrm{W}, \mathrm{Mo}, \mathrm{Nb}, \mathrm{V}$ and Ta ) in high oxidation states. ${ }^{4,37}$ Since the first report of a POM $\left[\mathrm{PMo}_{12} \mathrm{O}_{40}\right]^{3-}$ by Berzelius in $1826,{ }^{1}$ the application of polyoxometalates in different areas such as catalysis, ${ }^{5-8}$ medicine ${ }^{9-11}$ and as electrode materials ${ }^{6,12}$ amongst many others have been developed. In an alkaline-aqueous medium, metal ions $\mathrm{M}^{\mathrm{n}+}$ with oxidation states of 5+ and 6+ and an ionization energy of 50 to 80 eV form monomeric tetraoxoanions $\left[\mathrm{MO}_{4}\right]^{3-}$ and $\left[\mathrm{MO}_{4}\right]^{2-.}{ }^{4}$ Under acidic conditions, however, $\mathrm{M}^{\mathrm{n+}}$ ions initially form mixed oxo-hydroxo species that later react by polycondensation to form polyoxometalates. Not only does the pH have an influence on the formation of POM structures, but also the concentration of the reactants, counterions and temperature are responsible for the shape of POMs. ${ }^{52,53}$ Generally, POMs are built from $\mathrm{MO}_{6}$ octahedral units (so-called addenda octahedra) that are linked through edge-, corner- or face-sharing units, whereas the last case is rare due to the repulsion of the metal centres (see Figure 3.1). ${ }^{4}$ In the initial phase of the formation of $\mathrm{MO}_{6}$ units $(\mathrm{M}=\mathrm{V}, \mathrm{Nb}, \mathrm{Ta}, \mathrm{Mo}$ and W$)$, the coordination state of the metal ions increase from four to six, whereby the metal atom is coordinated to six oxygen atoms. ${ }^{4}$ In the case of links via shared edges, the structure can be stabilised by avoiding the electrostatic repulsion between metal atoms due to the location of metal atoms far from one another. ${ }^{4}$


Figure 3.1: The three possible unions between two $\mathrm{MO}_{6}$ octahedral units. (a): cornersharing, (b): edge-sharing and (c): face-sharing. Each corner represents an oxygen position.

With increasing grade of condensation, it becomes progressively difficult for the metal ions to avoid electrostatic repulsion, whereby, the linking by edges ceases. ${ }^{54}$ However, another explanation for this behaviour is that, i.e. for $\mathrm{Mo}^{6+}$ and $\mathrm{W}^{6+}$ the terminal oxygen atoms are strongly $\pi$-bound. ${ }^{4}$ Terminal oxygen atoms are not trans to each other regarding competition of the same $\mathrm{t}_{2 \mathrm{~g}}$-metal orbital. ${ }^{4}$ Thus, each terminal oxygen atom is opposite to a bridging oxygen atom, whereby, the metal atom is located to the terminal oxygen (trans-effect). Furthermore, the localization of two metal atoms is due to electric repulsion between these metal centres. Due to the $\pi$-bond to the terminal oxygen, the affinity to neighbouring metal ions is reduced. Additionally, Lipscomb and co-workers discovered that no $\mathrm{MO}_{6}$ octahedron in POMs have more than two terminal oxygen atoms. ${ }^{4}$ Figure 3.2 shows the Lindqvist polyanion with its metal, terminal and bridging oxygen atoms.


Figure 3.2: Ball-and-stick representation of the Lindqvist polyanion with its terminal and bridging oxygen atoms.

### 3.1.1 Classification of POMs

### 3.1.1.1 Iso- and heteropolyoxometalates

In general, polyoxometalates can be subdivided into two groups: isopolymetalate (IPOM) ( $\left[\mathrm{M}_{\mathrm{m}} \mathrm{O}_{\mathrm{y}}\right]^{\mathrm{p}^{-}}$with $\mathrm{M}=\mathrm{Mo}, \mathrm{W}, \mathrm{V}, \mathrm{Nb}$ and Ta ) and heteropolymetalate (HPOM) $\left(\left[\mathrm{X}_{\mathrm{x}} \mathrm{M}_{\mathrm{m}} \mathrm{O}_{\mathrm{y}}\right]^{\mathrm{q}^{-}}\right.$with $\mathrm{x} \leq \mathrm{m}$, in which X is a heteroatom, i.e. $\mathrm{Co}, \mathrm{Al}, \mathrm{Fe}, \mathrm{Ga}$, $\mathrm{Si}, \mathrm{Ge}, \mathrm{P}, \mathrm{As}, \mathrm{V}$, and S$).{ }^{4,55,56}$ Amongst the IPOM metals, $\mathrm{Mo}^{6+}$ and $\mathrm{W}^{6+}$ are more easily studied since they form $\mathrm{d} \pi$ - $\mathrm{p} \pi$-M-O-bonds more readily then the other metals, such as their ionic radius and charge issues. ${ }^{57}$

As aforementioned, in 1826, Berzelius reported the synthesis of the first POM formulated as $\mathrm{H}_{3}\left[\mathrm{PMo}_{12} \mathrm{O}_{40}\right] \cdot 5 \mathrm{H}_{2} \mathrm{O}$ by Keggin in 1933. ${ }^{1,2}$ This Polyoxometalate is in the subclass HPOM. To date, more than 70 elements (except the noble gases), which can function as heteroatoms, have been reported. ${ }^{58}$ Here, the heteroatoms may be tetrahedral, octahedral, square-antiprismatic or icosahedral coordinated. A HPOM containing only one heteroatom is called a mononuclear complex. In the case of two heteroatoms, it is called a binuclear complex. The term "ternary HPOM"
means that the complex contains one type of heteroatom and two different poly atoms (also called mixed HPOM). ${ }^{4,59}$ The following Table 3.1 shows examples for different classes of polyoxometalate based materials.

Table 3.1: Examples for different kinds of POMs. ${ }^{60,61}$
$\left.\begin{array}{|c|c|}\hline \text { Class of POM } & \text { Examples } \\ \hline & {\left[\mathrm{V}_{4} \mathrm{O}_{12}\right]^{4-},\left[\mathrm{Nb}_{6} \mathrm{O}_{19}\right]^{18-},\left[\mathrm{Ta}_{6} \mathrm{O}_{19}\right]^{8-},} \\ {\left[\mathrm{Cr}_{4} \mathrm{O}_{13}\right]^{2-},\left[\mathrm{Mo}_{7} \mathrm{O}_{24}\right]^{6-},\left[\mathrm{Mo}_{8} \mathrm{O}_{26}\right]^{4-1},} \\ {\left[\mathrm{Mo}_{36} \mathrm{O}_{112}\left(\mathrm{H}_{2} \mathrm{O}\right)_{16}\right]^{18-},\left[\mathrm{W}_{6} \mathrm{O}_{19}\right]^{2-},\left[\mathrm{W}_{7} \mathrm{O}_{24}\right]^{6-}} \\ \text { Isopolyanions } & ,\left[\mathrm{H}_{2} \mathrm{~W}_{12} \mathrm{O}_{42}\right]^{10-}\end{array}\right]$

### 3.1.1.1.1 Lindqvist Anion $\left[\mathrm{M}_{6} \mathrm{O}_{19}\right]^{\mathrm{n}-}$

An example for an IPOM is the Lindqvist $\left[\mathrm{M}_{6} \mathrm{O}_{19}\right]^{\mathrm{p}-}$ anion $\left(\mathrm{M}=\mathrm{Mo}^{6+}, \mathrm{W}^{6+}, \mathrm{p}=2\right.$; $\mathrm{M}=\mathrm{V}^{5+}, \mathrm{Nb}^{5+}, \mathrm{Ta}^{5+}, \mathrm{p}=8$ ) made up of 6 edge-sharing octahedral units resulting in an expanded octahedron of $O_{h}$ symmetry (see Figure 3.3). ${ }^{62-64}$ This compound can be further used as starting material for the synthesis of other POMs. ${ }^{65}$


Figure 3.3: Lindqvist hexatungstate anion $\left[M_{6} O_{19}\right]^{2-}$.

### 3.1.1.1.2 Octamolybdate $\left[\mathrm{MosO}_{26}\right]^{4-}$

There are in total six isomers $(\alpha, \beta, \gamma, \delta, \varepsilon, \xi)$ of octamolybdates known, whereby the most stable ones are the $\alpha$ - and $\beta$ isomers. ${ }^{52}$ The case of the isomers of the octamolybdate demonstrates a good example for the effect of counterions on the shape of the polyanion. Since the $\alpha$ isomer is formed using large organic cations at $\mathrm{pH}=3-4$, the $\beta$ isomer is mainly formed utilizing small counterions at $\mathrm{pH}=2$. In the following only the $\alpha$ isomer will be discussed. The $\alpha$ isomer, shown in Figure 3.4, consists of a ring of six $\mathrm{MoO}_{6}$ edge shared octahedral bicapped $\mathrm{MoO}_{4}$ tetrahedra resulting to a polyanion with symmetry close to $\mathrm{D}_{3 \mathrm{~d}}$. Amongst others, this compound is used as precursor for the synthesis of $\mathrm{Mn}^{3+}$ and $\mathrm{Fe}^{3+}$ based Anderson-Evans POMs (see section 3.1.1.2.1.1). ${ }^{66}$
(a)

(b)


Figure 3.4: $\left[\alpha-\mathrm{Mo}_{8} \mathrm{O}_{26}\right]^{4-}$ : (a): Ball-and-Stick and (b): polyhedral representation. Colour code: addenda atom Mo/octahedron: turquois sphere/octahedron and $O$ : red sphere.

### 3.1.1.2 Examples of heteropolyoxometalates

### 3.1.1.2.1 Anderson-Evans polyanion $\left[\mathrm{X}(\mathrm{OH})_{6} \mathrm{M}_{6} \mathrm{O}_{18}\right]^{\mathrm{n}-}$

The Anderson-Evans polyoxometalate has a planar structure as shown in Figure 3.5. It is composed of six edge-shared addenda octahedra $\left(\mathrm{MO}_{6}\right)$ with a central octahedron heteroatom X . In this polyanion, X is connected to metal addenda atoms M via six triple-bridging $\mu_{3}-\mathrm{O}$ atoms forming the central octahedron. Using $\mu_{3}$ - and double-bridging $\mu_{2}-\mathrm{O}$ atoms, the metal addenda atoms are linked to each other. Including terminal $\mathrm{O}_{\mathrm{t}}$ atoms, the octahedra of the metal addenda atoms are completed. In general, the Anderson-Evans structure can be divided into two subclasses: the non-protonated $A$-Type with the general formula $\left[\mathrm{X}^{\mathrm{n}+} \mathrm{M}_{6} \mathrm{O}_{24}\right]^{(12-\mathrm{n})-}$ which has the central heteroatom in high oxidation states (e.g. $\mathrm{Te}^{6+},{ }^{67} \mathrm{I}^{7+},{ }^{68}$ $\mathrm{M}=\mathrm{Mo}^{6+}$ or $\mathrm{W}^{6+}$ ) and the protonated $B$-Type with the general formula $\left[\mathrm{X}^{\mathrm{n}+}(\mathrm{OH})_{6} \mathrm{M}_{6} \mathrm{O}_{18}\right]^{(6-\mathrm{n})-}$ with heteroatoms in low a oxidation state (such as $\mathrm{Al}^{3+},{ }^{69} \mathrm{Cr}^{3+},{ }^{70} \mathrm{Fe}^{3+} ;{ }^{71} \mathrm{M}=\mathrm{Mo}^{6+}$ or $\left.\mathrm{W}^{6+}\right) .{ }^{72}$

In the $B$-Type, the six protons are located at the six $\mu_{3}-\mathrm{O}$ atoms at the heteroatom's octahedron, meaning that there are three $\mu_{3}-\mathrm{OH}$ groups triangularly above and three $\mu_{3}-\mathrm{OH}$ groups triangularly below the plane of the POM at the heteroatom X with the triangles in an antiprismatic (octahedral) arrangement (Figure 3.6).

The symmetry of the Anderson-Evans structure is $D_{3 d}$. Numerous Anderson-Evans POMs containing heteroatoms with oxidation states from 2+ to 7+ are reported and summarised in Table 3.2.



Figure 3.5: Anderson-Evans POM anion $\left[X M_{6} O_{24}\right]^{n-}$ seen from a top view (top) and a side view (bottom). Colour code: Heteroatom X: orange sphereloctahedron, addenda atom/octahedron: $M$ turquois sphere/octahedron and $O$ : red sphere.


Figure 3.6: B-Type Anderson-Evans POM with six protons located at the six $\mu_{3}-O$ atoms at the heteroatom's octahedron. Colour code: Heteroatom X: orange sphereloctahedron, addenda atom/octahedron: M turquois sphereloctahedron, $O$ : red sphere, H: black sphere.

Table 3.2: Examples for different Anderson-Evans POMs with oxidation states from $2+-$ $7+$ and associated references.

| Heteroatom | Anderson-Evans <br> POM | ref. |
| :---: | :---: | :---: |
| $\mathrm{Te}^{6+}$ | $\left[\mathrm{TeW}_{6} \mathrm{O}_{24}\right]^{6-}$ | 67 |
| $\mathrm{I}^{7+}$ | $\left[\mathrm{IMo} \mathrm{O}_{24}\right]^{5-}$ | 68 |
| $\mathrm{Al}^{3+}$ | $\left[\mathrm{Al}(\mathrm{OH})_{6} \mathrm{Mo}_{6} \mathrm{O}_{18}\right]^{3-}$ | 69 |
| $\mathrm{Cr}^{3+}$ | $\left[\mathrm{OH}(\mathrm{OH})_{6} \mathrm{Mo}_{6} \mathrm{O}_{18} \mathrm{~W}_{6} \mathrm{O}_{21}\right]^{5-}$ | 70 |
| $\mathrm{Pt}^{4+}$ | $\left[\mathrm{MnW}_{6} \mathrm{O}_{24}\right]^{8-}$ | 73 |
| $\mathrm{Mn}^{4+}$ | $\left[\mathrm{SbW} \mathrm{O}_{24}\right]^{7-}$ | 74 |
| $\mathrm{Sb}^{5+}$ | $\left[\mathrm{Zn}(\mathrm{OH})_{6} \mathrm{Mo}_{6} \mathrm{O}_{18}\right]^{4-}$ | 75 |
| $\mathrm{Zn}^{2+}$ |  | 76 |

Table 3.2 continue:

| Heteroatom | Anderson-Evans <br> POM | ref. |
| :---: | :---: | :---: |
| $\mathrm{Cu}^{2+}$ | $\left[\mathrm{Cu}(\mathrm{OH})_{6} \mathrm{Mo}_{6} \mathrm{O}_{18}\right]^{4-}$ | 77 |
| $\mathrm{Ni}^{2+}$ | $\left[\mathrm{Ni}(\mathrm{OH})_{6} \mathrm{Mo}_{6} \mathrm{O}_{18}\right]^{4-}$ | 78 |
| $\mathrm{Pt}^{4+}$ | $\left[\mathrm{Pt}(\mathrm{OH})_{6} \mathrm{Mo}_{6} \mathrm{O}_{18}{ }^{12-}\right.$ | 79 |
| $\mathrm{Co}^{3+}$ | $\left[\mathrm{Co}(\mathrm{OH})_{6} \mathrm{Mo}_{6} \mathrm{O}_{18}\right]^{3-}$ | 80 |
| $\mathrm{Rh}^{3+}$ | $\left[\mathrm{Rh}(\mathrm{OH})_{6} \mathrm{Mo}_{6} \mathrm{O}_{18}\right]^{3-}$ | ${ }^{31}$ |
| $\mathrm{Ga}^{3+}$ | $\left[\mathrm{Ga}(\mathrm{OH})_{6} \mathrm{Mo}_{6} \mathrm{O}_{18}\right]^{3-}$ | 82 |
| $\mathrm{Te}^{6+}$ | $\left[\mathrm{TeMo}_{6} \mathrm{O}_{24}\right]^{6-}$ | 83 |

In the case of $\left[\mathrm{IMo}_{6} \mathrm{O}_{24}\right]^{5-}$ and $\left[\mathrm{TeMo}_{6} \mathrm{O}_{24}\right]^{6-}$, John Stuart Anderson attributed these structures to the $\left[\mathrm{MoO}_{6} \mathrm{Mo}_{6} \mathrm{O}_{18}\right]^{6-}$ type, but the shape of both types of structures differs. ${ }^{4}$ Aforementioned, $\left[\mathrm{X}(\mathrm{OH})_{6} \mathrm{M}_{6} \mathrm{O}_{18}\right]^{\text {n- }}$ has a planar structure, but in the case of $\left[\mathrm{MO}_{6} \mathrm{M}_{6} \mathrm{O}_{18}\right]^{\mathrm{n}-}(\mathrm{M}=\mathrm{Mo}, \mathrm{W})$, it has a tub-shape structure (see Figure 3.7) because it does not contain a heteroatom, it belongs to the group of IPOMs. ${ }^{84,85}$

## (a)

top view

(b)
side view


Figure 3.7: Tub-shaped structure of $\left[\mathrm{MoO}_{6} \mathrm{Mo}_{6} \mathrm{O}_{18}\right]^{6-}$, polyhedral representation seen from a top view (a) and a side view (b).

The motif of the Anderson-Evans structure is not only present in POM chemistry, but also occurs in other areas such as cationic clusters. An example is $\left[\mathrm{Al}_{7}(\mathrm{OH})_{12}\left(\mathrm{H}_{2} \mathrm{O}\right)_{12}\right]^{9+}$, where a ring of six $\mathrm{Al}^{3+}$ is surrounding a central $\mathrm{Al}^{3+}$ ion. ${ }^{86}$ The hydroxyl groups in this structure are both $\mu_{2}$ and $\mu_{3}$ oxygen atoms in this Anderson-Evans motif. The $12 \mathrm{H}_{2} \mathrm{O}$ molecules coordinate to the addenda atoms and replace the terminal oxygen atoms.

### 3.1.1.2.1.1 The inorganic-organic Anderson-Evans polyoxometalate hybrid

 As previously mentioned, the protonated $B$-Type Anderson-Evans POM contains six protons situated at the six $\mu_{3}-\mathrm{O}$ atoms at the heteroatom's octahedron. Introducing organic tris(hydroxymethyl)methane ligands $\left(\left(\mathrm{OHCH}_{2}\right)_{3} \mathrm{CR}\right)$ (Tris-R), each of the three protons above and below the plane of the POM can be substituted by the organic ligand (see Figure 3.8). ${ }^{72}$ In principle, the group R can be any imaginable group such as $-\mathrm{NH}_{2},-\mathrm{OH},-\mathrm{CH}_{2} \mathrm{OH}$, -Aryl and further derivatives of imines and amides. So far, three approaches to achieve modified Anderson-Evans POMs have been reported: (I) The Tris-ligands are synthesized first, followed by a condensation reaction in order to attach them to the POM (pre-functionalization), (II) the Tris-ligands, $\left[\alpha-\mathrm{Mo}_{8} \mathrm{O}_{26}\right]^{4-}$ and a metal salt (such as $\mathrm{Mn}(\mathrm{OAc})_{3}$ or Fe (acac) ${ }_{3}$ ) are used as starting materials and form the POM hybrid and (III) the Tris-ligands, which are already grafted onto the POM can be further modified by organic reactions such as amindation and Schiff base reaction (post-functionalization). ${ }^{72,87}$ The $\left[\alpha-\mathrm{Mo}_{8} \mathrm{O}_{26}\right]^{4-}$ precursor (section 3.1.1.1.2) in approach (II) already contains the ring of six $\mathrm{MoO}_{6}$ edge shared octahedra. The bicapping $\mathrm{MoO}_{4}$ tetrahedra can be replaced by $\mathrm{Mn}^{3+}$ or $\mathrm{Fe}^{3+}$ ions by introducing them in the plane of the ring, thus forming the Anderson-Evans structure.

Figure 3.8: The three approaches to synthesizing Anderson Evans-hybrids: (I) prefunctionalization; (II) reaction of $\left[\alpha-\mathrm{MO}_{8} \mathrm{O}_{26}\right]^{4}$, metal salt and ligand; (III) postfunctionalization. Colour code: Heteroatom-octahedron $\mathrm{XO}_{6}$ : orange octahedron, addenda octahedron $\mathrm{MO}_{6}$ : turquois octahedron, C: grey, H: black, N: blue, $R:=-\mathrm{NH}_{2},-\mathrm{OH},-\mathrm{CH}_{2} \mathrm{OH},-$ Aryl and further derivatives of imines and amides. (H atoms are omitted for clarity, except in the case of (I) for protonated Anderson-Evans anion.)

### 3.1.1.2.2 Keggin polyanion [ $\left.\mathrm{XM}_{12} \mathrm{O}_{40}\right]^{\mathrm{n}-}$

The Keggin polyanion is in the subclass HPOM and consists of twelve $\mathrm{MO}_{6}$ octahedra, surrounding a tetrahedrally coordinated heteroatom $\left[\mathrm{XO}_{4}\right] .{ }^{53}$ In other words, this $\left[\mathrm{XO}_{4}\right]$ unit is encapsulated by four $\left[\mathrm{M}_{3} \mathrm{O}_{13}\right]$ units ("triads") which are linked by corner sharing to each other and to the central $\left[\mathrm{XO}_{4}\right]$ tetrahedron. ${ }^{4}$ The metal addenda atoms for most of the Keggin polyanions are molybdenum and tungsten. There is a number of reports of possible heteroatoms known, including 3d transition metals and main group elements $\left(\mathrm{B}^{3+}, \mathrm{C}, \mathrm{As}^{5+}, \mathrm{Fe}^{3+}, \mathrm{Co}^{2+}, \mathrm{Co}^{3+}\right.$ and $\left.\mathrm{Cu}^{2+}\right)$,
but the most commonly used are $\mathrm{P}^{5+}, \mathrm{Si}^{4+}$ and $\mathrm{Ge}^{4+} .4,53$ This type of POM has an overall symmetry of $T_{d}$ (see Figure 3.9). ${ }^{2}$


Figure 3.9: Keggin structure with tetrahedron centre surrounded by four corner shared [ $\left.M_{3} O_{13}\right]$ triads.

Depending on the metal addenda atoms molybdenum or tungsten, the $T_{d}$ symmetry of the Keggin structure may differ and become i.e. $\mathrm{D}_{2 \mathrm{~d}}$. Furthermore, it is known that in the case of molybdenum there is a displacement in the Mo-O-Mo bonds from "short" to "long". This difference in bond lengths reduces the symmetry based on the mirror planes of $\mathrm{M}_{2}$ triplets. ${ }^{56}$

### 3.1.1.2.3 The Wells-Dawson polyanion $\left[\mathrm{X}_{2} \mathrm{~W}_{18} \mathrm{O}_{62}\right]^{6-}\left(\mathbf{X}=\mathbf{P}^{\mathbf{V}}, \mathrm{As}^{\mathbf{V}}\right)$

In the case of the Wells-Dawson polyanions the most common heteroatoms are $\mathrm{P}^{5+}$ and $\mathrm{As}^{5+} .{ }^{88}$ The structure of the Wells-Dawson POM is formed from the direct union of two $\left[A-\alpha-\mathrm{XW}_{9} \mathrm{O}_{34}\right]^{\mathrm{n}-}$ or two $\left[A-\beta-\mathrm{XW}_{9} \mathrm{O}_{34}\right]^{\mathrm{n}-}$ trilacunary Keggin units (see
section 3.1.3.1) through the six upper crown oxygens (see Figure 3.10). The [ $\alpha$ $\left.\mathrm{X}_{2} \mathrm{~W}_{18} \mathrm{O}_{62}\right]^{6-}\left(\mathrm{X}=\mathrm{P}^{5+}, \mathrm{As}^{5+}\right]$ Wells-Dawson $\alpha$ isomer results from two $[A-\alpha-$ $\left.\mathrm{XW}_{9} \mathrm{O}_{34}\right]$ units, whereas the $\beta$ isomer is obtained by the union of $\left[A-\alpha-\mathrm{XW}_{9} \mathrm{O}_{34}\right]$ and $\left[A-\beta-\mathrm{XW}_{9} \mathrm{O}_{34}\right]$ fragments. By combining two $\left[A-\beta-\mathrm{XW}_{9} \mathrm{O}_{34}\right]$ isomeric units, the $\gamma$ isomer is formed. The different isomerisation of POMs will be discussed in section 3.1.2. ${ }^{88}$


Figure 3.10: Wells-Dawson $\left[\alpha-X_{2} W_{18} O_{62}\right]^{6-}\left(X=P^{5+}\right.$, As $\left.^{5+}\right]$ polyanion.

### 3.1.2 Isomers of polyoxometalates

### 3.1.2.1 Isomers of Keggin- and Wells-Dawson-type polyoxometalate

According to the structural studies on POMs by Baker and Figgis in 1970, there are five structural isomers of Keggin polyanions ( $\alpha, \beta, \gamma, \delta$ and $\varepsilon$ isomer) (see Figure 3.11). ${ }^{89,90}$ The $\alpha$ isomer represents the parent anion, whereas the $\beta, \gamma, \delta$ and $\varepsilon$ isomers
are generated by rotation of $1,2,3$ and $4\left[\mathrm{M}_{3} \mathrm{O}_{13}\right]$ triads through $60^{\circ}$. The parent anion and their resulting isomers have symmetries of $T_{d}, C_{3 v}, C_{2 v}, C_{3 v}$ and $T_{d}$, respectively. ${ }^{91}$ Amongst them, the $\alpha$ isomer shows the highest stability, due to an increase of rotated triads reducing the stability of the structure. ${ }^{91}$ This observation results from the increase of Coulomb repulsion which hinders the $\mathrm{p} \pi-\mathrm{d} \pi$ orbital overlapping. ${ }^{4}$ These isomers can be obtained by slight changes in reaction conditions, which underline the flexible nature of POMs.

Similar to the Keggin-type structures, the Wells-Dawson POM can have three structural isomers. The $\alpha$ isomer is the parent anion, whereas the $\beta$ and $\gamma$ isomers can be obtained by rotation of 1 and 2 triads through $60^{\circ}$, respectively. ${ }^{88}$


Figure 3.11: The five Baker-Figgis isomers of Keggin polyanion. Rotated $\left[M_{3} O_{13}\right]$ triads are represented in the dark red polyhedra.

As for the Anderson-Evans structure, there is also a famous Al based analogous cation to the $\varepsilon$-Keggin structure $\left[\varepsilon-\mathrm{AlO}_{4} \mathrm{Al}_{12}(\mathrm{OH})_{24}\left(\mathrm{H}_{2} \mathrm{O}\right)_{12}\right]^{7+}$ (" $\mathrm{Al}_{13}$ ") discovered by Johansson et al. ${ }^{4}$ The central $\mathrm{AlO}_{4}$ tetrahedron is connected to twelve
surrounding $\mathrm{AlO}_{6}$ octahedra via edge-shared hydroxyl groups and the octahedral corners are occupied by $\mathrm{H}_{2} \mathrm{O}$ molecules.

### 3.1.3 Lacunary derivatives of polyanions

Lacunary derivatives of parent anions can be achieved by removing a various number of octahedra under different reaction conditions. Lacunary species can be obtained from $\alpha, \beta$ and $\gamma$ isomers. ${ }^{91-93}$ In this thesis, only the $\alpha$ isomer based lacunary polyanions will be discussed.

### 3.1.3.1 Lacunary derivatives based on the Keggin ion $\left[\alpha-\mathrm{XM}_{12} \mathrm{O}_{40}\right]^{\mathrm{n}-}$

Three possible lacunary species can be derived from a plenary $\left[\alpha-\mathrm{XM}_{12} \mathrm{O}_{40}\right]^{\mathrm{n}-}$ Keggin structure, are shown in Figure 3.12. By elimination of one octahedron, the mono-lacunary species $\left[\alpha-\mathrm{XM}_{11} \mathrm{O}_{40}\right]^{\mathrm{p}}$ can be formed. On the other hand, the $A$ Type species $\left[A-\alpha-\mathrm{XM}_{9} \mathrm{O}_{40}\right]^{\mathrm{q}-}$ is obtained by removing a corner shared-triad. Likewise, the $B$-Type fragment $\left[B-\alpha-\mathrm{XM}_{9} \mathrm{O}_{40}\right]^{\mathrm{m}-}$ results from the removal of edgeshared triads. ${ }^{92,93}$


Figure 3.12: Mono- and trilacunary species derived from $\left[\alpha-X_{12} \mathrm{O}_{40}\right]^{n-}$ Keggin polyanion.

### 3.1.3.2 Lacunary derivatives based on the Wells-Dawson ion $\left[\alpha-\mathrm{X}_{2} \mathrm{~W}_{18} \mathrm{O}_{62}\right]^{6-}$

For the $\alpha$-Wells-Dawson polyanion, four possible lacunary species are known. The monolacunary $\alpha_{1}$ - and $\alpha_{2}$-type derivatives are formed by removing one octahedron from the belt or from the cap, respectively. The latter trilacunary species $\left[\mathrm{P}_{2} \mathrm{~W}_{15} \mathrm{O}_{56}\right]^{12-}$ (see Figure 3.13 (a)) is obtained by the removal of one $\left[\mathrm{M}_{3} \mathrm{O}_{13}\right]$ triad corresponding to a cap, whereas the hexalacunary $\left[\mathrm{H}_{2} \mathrm{P}_{2} \mathrm{~W}_{12} \mathrm{O}_{48}\right]^{12-}$ (see Figure 3.13 (b)) is formed when two triads from the belt portion of the parent anion are removed. ${ }^{94}$
(a)

(b)


Figure 3.13: Tri- and Hexalacunary species of the $\alpha$-Wells-Dawson heteropolyanions (a) $\left[\mathrm{P}_{2} W_{15} \mathrm{O}_{56}\right]^{12-}$, (b) $\left[\mathrm{H}_{2} \mathrm{P}_{2} W_{12} \mathrm{O}_{48}\right]^{12-}$.

### 3.2 Metal-Organic Frameworks (MOFs)

Recently, there is a growing interest in the field of metal-organic frameworks (MOFs), resulting in an increasing number of reported structures. These materials have potential applications in various fields such as gas storage, , ${ }^{17-19}$ separation, ${ }^{18,20}$ (enantioselective) catalysis, ${ }^{17,18,21}$ magnetism, ${ }^{22}$ proton conduction, ${ }^{23}$ drug delivery ${ }^{24,25}$ and nonlinear optical materials. ${ }^{17,18,20,22,25}$ Metal-organic-frameworks are constructed of inorganic building blocks, so-called secondary building units (SBUs) and organic ligands (also called linkers) which generate a 3D network.

### 3.2.1 Primary Buildings Units (PBUs)

The term "Primary Building Units" (PBUs) comprises the organic ligands and metal atoms or polyatomic clusters, respectively. ${ }^{95}$ The latter can be based on $\mathrm{Zn},{ }^{27,28} \mathrm{Ni},{ }^{30}$ $\mathrm{Cu},{ }^{21,31} \mathrm{Na},{ }^{29} \mathrm{Ag},{ }^{29} \mathrm{Mg},{ }^{28} \mathrm{Fe},{ }^{32} \mathrm{Cr}^{17}$ and other metals ions, whereas the linkers have essential functional groups (see section 3.2.2), in order to coordinate to the SBUs (see section 3.2.3) resulting from the metal ions.

### 3.2.2 Linkers for MOFs

As shown in Figure 3.14, organic ligands, which are used in MOF structures, contain coordinating functional groups such as carboxylate, ${ }^{21,27}$ amine ${ }^{28}$, pyridyl, ${ }^{21}$ nitrile, ${ }^{29}$ sulfonate ${ }^{29}$ or phosphonate ${ }^{30}$. However, there are also some ligands, which contain more than one type of functional group.

## Carboxylate

Sulfonate

BDC

R-BDC




Amine


HMT

DABCO

4,4'-bipyridine

## Nitrile

Phosphate


ADTP

Figure 3.14: Examples of organic ligands used for MOF constructions.

One representative is R-BDC, where besides the carboxylate functional groups in BDC , a Br - or $\mathrm{NH}_{2}$-group is present in ortho position. Every linker has a given geometry of linking point, ranging from linear up to tetrahedral geometry. The abbreviation codes and the geometry of the linkers are listed in Table 3.3.

Table 3.3: Names of ligands, their abbreviation codes and associated references.

| Abbreviations | Name | geometry | ref. |
| :---: | :---: | :---: | :---: |
| BDC | 1,4-benzenedicarboxylate | linear | 17 |
| R-BDC | R group (such as Br-, $\mathrm{NH}_{2}-$, <br> etc.) functionalised BDC | linear | 17,19 |
| BPDC | biphenyl-4,4'-dicarboxylate | linear | 17 |
| BTC | 1,3,5-benzenetricarboxylate | trigonal | 17 |
| ADTS | $1,3,5,7-$-tetrakis(4- <br> sulfonophenyl)adamantine | tetrahedral | 96 |
| HMT | hexamethylenetetramine | tetrahedral | 97 |
| DABCO | 1,4-diazabicyclo[2.2.2]octane | linear | 98 |
| 4,4'-BPY | 4,4'-bipyridine | linear | 99 |
| BPCN | 4,4'-biphenyldicarbonitrile | linear | 97 |
| ADTP | $1,3,5,7-t e t r a k i s(4-~$ <br> phosphonophenyl)adamantine | tetrahedral | 96 |

### 3.2.3 Secondary Building Units (SBUs)

The metal atoms or polyatomic clusters mentioned in the notion of PBUs, form socalled Secondary Building Units (SBUs) in solution. These SBUs can be seen as junctions between linkers with a certain geometry. Figure 3.15 shows three examples for carboxylate based SBUs. The SBU, used in the isoreticular MOFs (IRMOFs)-series, ${ }^{17}$ is the $\mathrm{Zn}_{4} \mathrm{O}$ cluster, in which a central oxygen atom is tetrahedrally coordinated by four $\mathrm{Zn}^{2+}$ ions. Furthermore, each Zn atom is coordinated by one O atom of three carboxylate ligands. The first report of the use
of $\mathrm{Zn}_{4} \mathrm{O}$ as SBU was established by Yaghi et al. in $1999 .{ }^{100}$ Another example for a junction is the $\mathrm{Cu}_{2}$ core utilized in HKUST-1, which was first reported in 1999 by Williams et al. where two $\mathrm{Cu}^{2+}$ ions are coordinated by four carboxylate ligands and two water molecules forming a paddle wheel shape node. ${ }^{101}$ Moreover, these two $\mathrm{H}_{2} \mathrm{O}$ molecules can be replaced by a neutral N -donor ligand (e.g. DABCO, 4,4'BPY) in order to expand the framework. ${ }^{98,99,102}$ Similar to the $\mathrm{Zn}_{4} \mathrm{O}$ cluster in the IRMOF-series, the SBU in MIL-101 which was first reported by Margiolaki et al. in 2005, contains a central oxygen atom. ${ }^{103}$ In this case, however, this central O atom is triply bridging three $\mathrm{Cr}^{3+}$ ions establishing a trigonal SBU. In addition, each Cr atom is further coordinated by one O atom of four carboxylate and one $\mathrm{H}_{2} \mathrm{O}$ ligand.

However, it is not necessary that a SBU is built from multicore clusters, even single metal atoms such as $\mathrm{Na}, \mathrm{Ni}$ and Ag can function as a junction. ${ }^{29}$

### 3.2.4 Topological consideration of MOFs

The combination of the building blocks SBU and linker leads to a framework. The topology is influenced by both the structure of the SBU and of the linker. Figure 3.15 shows three examples of SBUs and the corresponding MOF structure obtained by using the associated linker.
(1)
$\mathrm{T}_{\mathrm{d}}$ node



(2)
Paddle Wheel




Figure 3.15: Three possible secondary building units (SBUs) and the associated linkers forming three different frameworks: (1) $\mathrm{Zn}_{4} \mathrm{O}$ (Colour code: Zn : light blue, O: red, C: grey) and BDC forming MOF-5; (2) $\mathrm{Cu}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ (Colour code: Cu: violet, O: red, C: grey) and BTC forming HKUST-1;(3) Cr 3 O (Colour code: Cr: green, O: red, C: grey) and BDC forming MIL-101. In order to see the coordination sites, the metal cores of the SBU units are already coordinated by carboxylate groups. H atoms are omitted for clarity.

In the cases of MOF-5 and MIL-101 the utilized linker is BDC, however, the resulting topology of the two structures is different. This indicates that the choice of the SBU is essential for the topology of the framework.

By replacing BTC with BDC in HKUST-1, the resulting compound forms 2D sheets of $\mathrm{Cu}(\mathrm{BDC})$, which evidence further that the choice of the linker influences the topology of the framework. ${ }^{104}$ In this case, the $\mathrm{H}_{2} \mathrm{O}$ molecules which coordinate via the O to the Cu atom, are replaced by DMF molecules. In order to achieve a 3D structure these DMF molecules can be substituted by 4,4 '-BPY or DABCO, thus providing connections between the 2D layers.

Changing the geometry of the linker within a coordination polymer is not the only option to achieve a novel structure, also extending the organic backbone of the rigid linker results in a new framework. Replacing BDC by BPDC in MOF-5 for example results in an elongated network with an isoreticular structure (so-called IR-MOF), which reveals that both structures have the same topology. ${ }^{105}$ However, if the chosen organic ligand is too long, the stability of the network is reduced. ${ }^{106}$ This results in catenation of frameworks, which stabilizes the overall material. There are two types of catenation: interpenetration and interweaving. ${ }^{106,107}$ In the case of interpenetration the networks are maximally displaced from each other by shifting the second framework exactly one half of the pore size in the $a, b$ and $c$ directions. This reduces the pore size of the material without a blockage of adsorptive sites. In interwoven frameworks, the distance between two networks is minimized without atomic overlapping, thus blocking potential adsorptive sites. This results that the topology of the resultant material can not longer be described by a single network, but how the individual frameworks are related to each other. ${ }^{108}$

### 3.2.5 Crystal-to-crystal (CTC) (topotactic) transformation

The crystal-to-crystal (CTC) transformation of coordination polymers is an interesting topic having an effect of the dimensionality and the physical properties of the material. The crystal structure transformation can be influenced by the expansion of coordination numbers, the removal/exchange of solvent molecules
and the rearrangement of bonds. ${ }^{109}$ To date, a CTC transformation can be done by the change of the temperature of the MOF structure, via reactions of the framework with small molecules or by photochemical reactions. ${ }^{110}$

Englert et al. demonstrated the change of the dimensions of an 1D chain of $\left[\mathrm{ZnCl}_{2}(\mu \text {-bipy })\right]_{\infty}$ to a 2D structure $\left[\mathrm{Zn}(\mu-\mathrm{Cl})_{2}(\mu \text {-bipy })\right]_{\infty}$ by cooling down the crystals below $130 \mathrm{~K} .{ }^{111}$ This process is reversible by warming up the compound to 360 K . Heat treating of MOF structures can cause the loss of solvent molecules, which might result in the distortion and sliding of networks, change in conformation, coordination environment or space groups. ${ }^{112-120}$ The removal of the solvent molecules in the pores of the network also affect the properties of the structure, such as magnetism and luminescence properties. ${ }^{121,122}$ Furthermore, the solvent molecules can be also reversible replaced by guest molecules or other solvent molecules. ${ }^{118}$

An example for the reaction of CPs with small molecules is the oxidation of $\mathrm{Ni}^{2+}$ to $\mathrm{Ni}^{3+}$ with $\mathrm{I}_{2}$ in $\left[\mathrm{Ni}_{2} \mathrm{~L}\right]_{3}(\mathrm{BTC})_{4} \cdot 6 \mathrm{py} \cdot 36 \mathrm{H}_{2} \mathrm{O}\left(\mathrm{L}=\right.$ bismacrocyclic ligand $\left.\left(\mathrm{C}_{26} \mathrm{H}_{52} \mathrm{~N}_{10}\right)\right)$ to form $\left[\mathrm{Ni}_{2} \mathrm{~L}\right]_{3}(\mathrm{BTC})_{4}\left(\mathrm{I}_{3}\right)_{4} \cdot \mathrm{nI}_{2} \cdot 17 \mathrm{H}_{2} \mathrm{O}$, whereas the channels of the new formed networks contain $\mathrm{I}_{3}{ }^{-}$ions and $\mathrm{I}_{2}$ molecules. ${ }^{115}$

The CTC transformation via photocatalytic reaction requires olefins as part of the linker in the MOF system. Under irradiation these olefins can react intermolecular in a $2+2]$ cycloaddition, resulting in a change of the network. ${ }^{123}$

### 3.3 Polyoxometalate-based Metal-Organic Frameworks (POMOFs)

A combination of the aforementioned materials namely POMs and MOFs result in polyoxometalate-based metal organic frameworks, so-called POMOFs. ${ }^{36,37,38}$ These generated compounds may combine and/or improve or even have new properties
which the individual components POMs and MOFs do not have. To date, three subgroups of POMOFs are known in the literature: (a) POMs occupying the cavities of a MOF structure (POM@MOF), ${ }^{39-42}$ (b) POMs used as SBUs in the network ${ }^{36,37,43,44,45}$ and (c) POMs as part of the linker of the framework. ${ }^{46,47}$ Figure 3.16 illustrates these three examples of POMOFs. (a) POM@MOF system, Keggin anions occupy the hollow space in a HKUST-1 network, the so-called NENUseries, published by Su et al. ${ }^{48}$ (b) Keggin ions can also be part of SBUs in a 3Dframework, as reported by Dolbecq et al. ${ }^{37}$. (c) In order to achieve a structure where POMs are part of the linker, the Anderson-Evans anion is a good candidate, published by Yang et al. ${ }^{47}$ Table 3.4 contains information of the three subgroups of POMOF systems with associated examples of POMs and references.


Figure 3.16:(a) POM@MOF structure published by Su et al. ${ }^{48}$, colour code: Cu: light blue, O: red, C: black, Keggin polyanions green polyanion with dark blue polyhedral model; (b) Kegging ions as SBUs in an organic-inorganic framework published by Dolbecq et al. ${ }^{37}$, colour code: Zn: light blue, O: red, C: black, Keggin polyanions green polyhedral models and (c) Anderson-Evans POMs as part of the linker of the framework published by Yang et al. ${ }^{47}$, colour code: Cu: light blue, I: violet, $O$ : red, C: black, N: blue, Anderson-Evans polyanions (green ring with red polyhedral models).

Table 3.4: Table of different POMOF systems and associated references.

| POM building unit | POM@MOF | POM as SBU | POM as Linker | ref. |
| :---: | :---: | :---: | :---: | :---: |
| TMS-POM(lacunary Kegging ion) | X |  |  | 42 |
| Keggin ion | X |  |  | 40 |
| Keggin ion | X |  |  | 41 |
| Lindqvist ion | X |  |  | 39 |
| Keggin ion |  | X |  | 36 |
| Keggin ion |  | X |  | 37 |
| Keggin ion |  | X |  | 43 |
| Keggin ion |  | X |  | 44 |
| Keggin ion |  | X |  | 50 |
| Keggin ion |  | X |  | 124 |
| Keggin ion |  | X |  | 125 |
| Anderson-Evans ion |  | X |  | 49 |
| TMS-POM(lacunary Keggin ion) |  | X |  | 38 |
| Wells-Dawson ion |  | X |  | 45 |
| Anderson-Evans ion |  |  | X | 46 |
| Anderson-Evans ion |  |  | X | 47 |
| Lindqvist ion |  |  | X | 126 |

### 3.3.1 Properties of POMOFs

POMOF materials may have properties, which the individual components POMs and MOFs do not have. In the following, some examples of the three subgroups of POMOFs and their properties will be discussed.
(a): In the case of POM@MOF, Craig et al. reported aerobic $\mathrm{H}_{2} \mathrm{~S}$ and thiol oxidation by taking advantage of the catalytic properties of the POM and the large surface area of the MOF in $\left[\mathrm{Cu}_{3}\left(\mathrm{C}_{9} \mathrm{H}_{3} \mathrm{O}_{6}\right)_{2}\right]_{4}\left[\left\{\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~N}\right\}_{4} \mathrm{CuPW}_{11} \mathrm{O}_{39} \mathrm{H}\right] .{ }^{42}$
(b): In order to use POMs as SBUs in a 3D network, a bridging atom such as $\mathrm{Ni},{ }^{38,51,127} \mathrm{Zn},{ }^{36,37,44} \mathrm{Cu},{ }^{49,50,128}$ or $\mathrm{Ag}^{125,40,129}$ between the terminal oxygen atoms of the POM and the functional group of an organic linker (usually a carboxylate or an N -donor ligand) is needed. These compounds were investigated as a catalyst for the Hydrogen Evolution Reaction (HER), ${ }^{37,44}$ electro-catalyst for the reduction of bromate, ${ }^{36}$ proton conductor ${ }^{50}$ and photocatalyst for the reduction of rhodamine-B $(\mathrm{RhB}){ }^{128}$ and methylene blue (MB), ${ }^{49}$ respectively. Nohra et al. synthesised a compound with the formula $(\mathrm{TBA})_{3}\left[\mathrm{PMo}^{\mathrm{V}}{ }_{8} \mathrm{Mo}^{\left.\mathrm{VI}_{4} \mathrm{O}_{36}(\mathrm{OH})_{4} \mathrm{Zn}_{4}\right]\left[\mathrm{C}_{6} \mathrm{H}_{3}(\mathrm{COO})_{3}\right]_{4 / 3} \cdot 6 \mathrm{H}_{2} \mathrm{O} \text { also called }\left(\varepsilon(\text { trim })_{4 / 3}\right) ~}\right.$ that shows the onset for the hydrogen evolution reaction (HER) in an $(1 \mathrm{M} \mathrm{LiCl}$ and $\mathrm{HCl}(\mathrm{pH}=1))$ medium at $+20 \mathrm{mV} .{ }^{37}$ Compared to platinum as an electrode which has an onset for HER at -242 mV , ( $\varepsilon$ (trim) $)_{4 / 3}$ ) shows an anodic shift which means that this material is more active than $\mathrm{Pt}^{37}$

Regarding the field of hydrogen technology, Wei et al. reported three POMOF composites $\left\{\left[\mathrm{X}(\mathrm{Hbpdc})\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{2}\left[\mathrm{PM}_{12} \mathrm{O}_{40}\right]\right\}^{\mathrm{n}-}\left(\mathrm{X}=\mathrm{Cu}^{2+}, \mathrm{Ni}^{2+} ; \mathrm{M}=\mathrm{Mo}, \mathrm{W}\right)$, which could be potential candidates for proton exchange membranes in fuel cells. ${ }^{50,51}$ However, compared to Nafion ${ }^{\circledR}$ (standard proton exchange membrane), which has an activation energy $\mathrm{E}_{\mathrm{a}}$ of ca. 0.15 eV (when it is fully humidified), these POMOF systems exhibit a much higher activation energy of about $1 \mathrm{eV} . .^{51,50}$ That means, in the case of POMOFs, further investigation is needed in order to apply them as an alternative candidate to Nafion ${ }^{\circledR}$.
(c):The third approach is based on the use of organic-inorganic-POM hybrids, which already contain organic ligands with suitable coordination groups, thus the candidates for this purpose are Lindqvist- and Anderson-Evans-based POM hybrids. In 2008, Hasenknopf et al. published amongst others the hybrids $\left[\mathrm{V}_{6} \mathrm{O}_{13}\left\{\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CCH}_{2} \mathrm{OC}(\mathrm{O})\left(4-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)\right\}_{2}\right]^{2-}$ and $\left[\mathrm{MnMo}_{6} \mathrm{O}_{18}\left\{\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNHCO}\right.\right.$
$\left.\left.\left(4-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)\right\}_{2}\right]^{3-}$, where these were used in a second step to coordinate to a Ru-porphyrin-derivative via the pyridyl groups. ${ }^{87}$ Ross et al. also used the previously mentioned Mn-Anderson-Evans-hybrid in order to form 2D- and 3D-structures with $\mathrm{Cu}^{2+}$ and $\mathrm{Zn}^{2+}$, respectively. ${ }^{46}$ Furthermore, $\left.\left[\mathrm{MnMo}_{6} \mathrm{O}_{18}\left\{\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{C}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)\right\}_{2}\right]\right)^{3-}$ was also used for the coordination to $\mathrm{Cu}^{2+}$ and $\mathrm{Zn}^{2+}$. ${ }^{46}$ In 2016, Yang et al. employed the aforementioned hybrid with CuI under various conditions and demonstrated coordination polymers linked by $\mathrm{Cu}_{\mathrm{x}} \mathrm{I}_{\mathrm{x}}$ moieties (where $\mathrm{x}=2$, 4) building up 2Dand 3D-structures. ${ }^{47}$ In this study, the 3D structure $(\text { TBA })_{6}\left[\mathrm{Cu}_{4} \mathrm{I}_{4}\right]\left[\mathrm{MnMo}_{6} \mathrm{O}_{18}\left(\left(\mathrm{OH}_{2} \mathrm{C}\right)_{3} \mathrm{C}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)\right)_{2}\right]_{2}$ was also investigated as a catalyst for click reactions between azide- and alkyne-derivatives.

### 3.4 Catalysis

### 3.4.1 $\quad \mathbf{A}^{3}$-coupling

A three-component coupling of an aldehyde, an amine and an alkyne ( $\mathrm{A}^{3}$-Coupling) using $\mathrm{Cu}^{1+/ 2+}$ or $\mathrm{Ag}^{1+}$ as catalyst, has proved to be a powerful method in order to synthesize propargylic amines in one-pot reactions as a versatile building block for biological active compounds. ${ }^{130,131}$ Figure 3.17 shows an example of $\mathrm{A}^{3}$-Coupling using $\mathrm{R}^{1}$ to $\mathrm{R}^{4}$ for imaginary residue. In the first step the aldehyde and the secondary amine form an iminium cation. ${ }^{132}$ Theoretically, it is also possible to use primary amines instead of secondary amines, whereby an imine is formed as the product of the first step (also termed Schiff base). ${ }^{132}$ Via tautomerism, the positive charge at the nitrogen atom can be transferred to the carbon atom of the former aldehyde group. In parallel, a Cu based catalyst coordinates to an alkyne, followed by an insertion of the Cu ion between the triple bond and the terminal hydrogen atom. This activated form of alkyne couples with the corresponding iminium ion to form the desired product.

In previous reports, this kind of reaction required harsh and inert conditions. We were therefore interested in developing novel catalysts, which can work under mild and aerobic conditions. ${ }^{131}$


Figure 3.17: $A^{3}$-Coupling of an aldehyde, an amine and an alkyne in order to form propargylic amines.

### 3.4.2 Catalytic reaction for the implementation of furfural with amines

Rare earth metal $\left(\mathrm{RE}^{3+}=\mathrm{Dy}, \mathrm{Eu}, \mathrm{La}\right)$ containing compounds are well known as catalysts for the reaction of furfural and amines, to form trans-4,5diaminocyclopentenones. These structural motifs are versatile building blocks for the retrosynthetic pathway of $(-)$-agelastatin $\mathrm{A} .{ }^{133}$ This architecturally unique cytotoxic tetracyclic alkaloid was first isolated from the axinellid sponge Agelas dendromorpha. ${ }^{134,135}$ Over decade, the conversion of the commercially available biomass furfural to diastereoselective cyclopentenones have been intensively established and explored. Figure 3.18 shows the reaction of furfural with morpholine to form trans-4,5-dimorpholinocyclopent-2-en-1-one. ${ }^{136,137}$


Figure 3.18: Synthesis of trans-4,5-dimorpholinocyclopent-2-en-1-one from furfural and morpholine.

Figure 3.19 illustrates the propose mechanism of this reaction. ${ }^{136}$ In the first step, a $\mathrm{RE}^{3+}$ ion coordinates to the formyl group of furfural, thus increasing the electrophilicity on the carbon of the aldehyde. The activated formyl group reacts with the amino group of the secondary amine forming an iminium cation and releasing an $\mathrm{OH}^{-}$anion. In the next step, a $\mathrm{RE}^{3+}$ ion coordinates to the oxygen of the furan ring, which results in an increased electrophilicity on C 5 of the furan ring. A nucleophile (e.g. $\mathrm{R}_{2} \mathrm{NH}$ ) can react with this carbon atom, releasing $\mathrm{H}^{+}$, which forms $\mathrm{H}_{2} \mathrm{O}$ with the previously released $\mathrm{OH}^{-}$ion. The $\mathrm{RE}^{3+}$ then detaches from the oxygen of the furan ring which is followed by a ring-opening step, causing a charge separation (oxygen atom is negatively charged, nitrogen atom is positively charged). A ring closing step follows (shown with red arrows), connecting the C5 and C 1 atoms of the aforementioned intermediate, resulting in a neutral trans-4,5-diaminocyclopent-2-enone derivative.


Figure 3.19: Proposed overview of the general mechanism of the reaction of furfural and a secondary amine using a rare earth metal in oxidation state 3+ as Lewis acid, which acts as a catalyst.

### 3.4.3 Electrocatalysis

Another interesting field of catalysis is electrocatalysis, where a catalyst can be utilized as an electrode material (heterogeneous electrocatalysis) ${ }^{44}$ or in solution (homogeneous electrocatalysis). ${ }^{138}$ One interesting area in this field is the splitting of water into its components (equation (3.1)). ${ }^{37}$

$$
\begin{equation*}
2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}_{2}+\mathrm{O}_{2} \tag{3.1}
\end{equation*}
$$

Amongst many other methods, linear sweep voltammetry (LSV) and cyclic voltammetry (CV) are the most common methods used in electrochemistry. Here, the three-electrode setup is used, where the potential is measured between the reference and the working electrode and the current is detected between the working and the counter-electrode. ${ }^{139,140}$ During an electrochemical process a reactant can be oxidized or reduced, respectively:

$$
\begin{gather*}
+e^{-} \quad+e^{-} \\
A_{o x} \stackrel{\rightharpoonup}{\rightleftharpoons} \stackrel{A^{-}}{\rightleftharpoons} A_{\text {red }}  \tag{3.2}\\
\\
-e^{-} \\
-e^{-}
\end{gather*}
$$

As shown in Figure 3.20, a linear sweep voltammogram starts at an initial potential $\mathrm{E}_{\text {start }}$ (1), at which no electrode process takes place. Subsequently, the potential will be altered by a constant rate (so-called scan rate) $v$, until the reversal potential $\mathrm{E}_{\lambda}(2)$ is reached, indicated by the arrow in the direction of the sweep scan.


Figure 3.20: Linear sweep voltammetry.

Before describing and explaining the shape of a cyclic voltammogram, it should be noted that in this work the convention according to IUPAC is used for the evaluation of cyclic voltammogram, which is: "The international, or IUPAC convention displays negative (reducing) potentials to the left of 0.00 , and positive (oxidizing) potentials to the right. Cathodic (reduction) currents are displayed as negative (down) values along the ordinate, while anodic (oxidation) currents are displayed as positive (up)." ${ }^{141}$

As shown in Figure 3.20, the linear sweep voltammogram begins at $\mathrm{E}_{\text {start }}$ (1) on the left hand side of the current/voltage plot where no current flows. As the voltage is
increased by a constant scan rate to the right (oxidative values), a potential is reached at which the reactant A is being electrochemically oxidized. At this stage two parallel processes take place: ${ }^{142}$

By increasing the potential E , the oxidation of species A takes place, which causes a concentration gradient at the electrode and an increase of the current.

According to the Nernst equation:

$$
\begin{equation*}
E=E_{0}+\frac{R T}{z F} \ln \frac{A_{o x}}{A_{\text {red }}} \tag{3.3}
\end{equation*}
$$

Inserting the constants R and F , transforming from natural logarithm to decadal logarithm and choosing the temperature $25^{\circ} \mathrm{C}$, the equation is:

$$
\begin{equation*}
E=E_{0}+\frac{0.059 \mathrm{~V}}{z} \log \frac{A_{o x}}{A_{\text {red }}} \tag{3.4}
\end{equation*}
$$

E: potential
$\mathrm{E}_{0}$ : standard potential
R : gas constant $(8.314510 \mathrm{~J} /(\mathrm{mol} \cdot \mathrm{K}))^{143}$
T: temperature in Kelvin
z: number of electrons involved in the electrochemical reaction
F: Faraday constant $\left(=9.6485309 \cdot 10^{4} \mathrm{C} / \mathrm{mol}\right)^{143}$
$\mathrm{A}_{\mathrm{ox}}$ : activity of oxidized species
$\mathrm{A}_{\text {red }}$ activity of reduced species
the concentration of the reduced species A decreases. However, a diffusion layer $\delta$ is gradually formed, surrounding the surface of the electrode, which counteracts the
concentration gradient and thus reduces the number of electrochemical reactions. The resulting current sinks again, an oxidation peak (I) is observed and the potential reaches $\mathrm{E}_{\lambda}$, where the voltammogram ends.

In the case of cyclic voltammetry (a cyclic voltammogram is shown in Figure 3.21) the electrochemical processes are the same as in linear sweep voltammetry. However, a cyclic voltammogram does not stop at $\mathrm{E}_{\lambda}$, rather, this value is fixed as a turning point and the sign of the scan rate will be changed.


Figure 3.21: Cyclic voltammogram.

At this point, the resulting product $\mathrm{A}_{\mathrm{ox}}$ is partly distributed due to diffusion processes into the electrolyte; however, the environment of the electrode is still surrounded by it. This means the concentration of the initial species A around the electrode approaches zero. This can be also seen in the cyclic voltammogram, as with the change of the sign of the scan rate the current continues to decrease. At this stage the oxidized species gets reduced again, whereas with further continuing scan rate the concentration of A increases around the electrode surface. At a certain
potential, species A, which surrounds the electrode, becomes reduced to $\mathrm{A}_{\text {red }}$. This is accompanied by a strong increase of negative current, where the processes mentioned for the anodic current are also taking place for the cathodic one, but for the reduction of A to $\mathrm{A}_{\text {red }}$. This results in a reduction peak (II) and the cyclic voltammogram ends at the initial potential $\mathrm{E}_{\text {start }}$.

### 3.4.4 Photo-electrocatalysis

Photocatalysts can facilitate chemical reactions with the help of irradiation. This type of material must fulfill certain properties in order to be called a photocatalyst. As before, the catalyst can be present in homogenous or heterogeneous media. In this work, only heterogeneous catalysis will be discussed, but firstly, the differences between conductors, semi-conductors and insulators are described. As shown in Figure 3.22, all three types of materials have a valence and conduction band, and in the case of semi-conductors and insulators, a bandgap is added. The valence (HOMO) band contains electrons, whereas the conduction (LUMO) band is empty by definition. Furthermore, a bandgap is an area separating the valance band from the conduction band. In the case of a conductor, the valence band and the conduction band overlap. By applying an electric voltage, movement of the valence electrons takes place because these have enough unoccupied energy states in the conduction band to move. ${ }^{144}$ If the valence band and the conduction band are energetically separated from each other, first a small bandgap is created, as is the case for the semi-conductor (Figure 3.22 (b)). In order to bring the electrons from the valence band into the conduction band, a certain amount of energy is needed. For semi-conductors such as ZnO and $\mathrm{TiO}_{2}$ the value is about 3.2 eV , which corresponds to 388 nm or $25810 \mathrm{~cm}^{-1} .{ }^{145,146}$ By increasing the bandgap, the energy which is needed to bring electrons from the valence to the conduction band is increased, until this barrier is too large for any electron transfer. This kind of
material is called an insulator. The bandgap can be calculated by using the absorbance of the solid state UV-vis spectrum for the Tauc method.
(a)
(b)
(c)



Figure 3.22: Schematic drawing of a conductor (a), semi-conductor (b) and insulator (c).

For a photocatalyst, the material class of a semiconductor is required because the electrons in the valence band can be transported to the conduction band by irradiation (heat or light). ${ }^{144}$ By a transition of an electron from HOMO to LUMO, a hole $\left(\mathrm{h}^{+}\right)$is created in the valence band. This results in a charge separation, whereby the negatively charged electrons can be used for a reduction and the positively charged holes for an oxidation of one or more reactants. ${ }^{147}$ In principle, this charge separation is easier to achieve when the bandgap is small, but would increase the probability of a recombination of $\mathrm{e}^{-}$and $\mathrm{h}^{+}$, reducing the efficiency of the system. ${ }^{148}$ On the other hand, a charge separation in a semi-conductor with a large bandgap requires more energy.

The combination of photo- and electrocatalysis creates the field of photoelectrocatalysis. Here, the photocatalyst serves as a working electrode. Linear sweep voltammetry (explained in section 3.4.3) is the method used and a Xe lamp ( $300 \mathrm{~W}, \lambda=185-2000 \mathrm{~nm}$ ) is utilized with a frequency chop light scan of for
example 0.33 Hz . Figure 3.23 shows an example for a photocatalytic study. At the moment when the light is switched on the current increases dramatically. When the light is switched off, however, it drops again. This behavior indicates a photocatalytically active material.


Figure 3.23: Linear sweep voltammetry with a certain frequency chop light scan shining on the catalyst.

## 4 EXPERIMENTAL SECTION

### 4.1 Instrumentation

### 4.1.1 Fourier Transform-Infrared (FT-IR) Spectroscopy

Infrared spectra were recorded on a Perkin Elmer Spectrum GX FT-IR spectrometer as KBr pellets in the range $400 \mathrm{~cm}^{-1}$ to $4000 \mathrm{~cm}^{-1}$ with a resolution of $8 \mathrm{~cm}^{-1}$. The following abbreviations were used to describe the peak characteristics: $\mathrm{br}=$ broad, $\mathrm{sh}=$ shoulder, $\mathrm{s}=$ strong, $\mathrm{m}=$ medium and $\mathrm{w}=$ weak .

### 4.1.2 Elemental Analysis (EA)

To determine the carbon, hydrogen, nitrogen and sulfur fractions of the samples, elemental analysis was carried out using a "Vario Micro Cube" device from Perkin Elmer.

### 4.1.3 Single crystal X-ray diffraction (SCXRD)

The structures in this thesis were measured using single crystal X-ray diffraction (SCXRD) on area detector diffractometers: IPDS II (Mo-K $\alpha, \lambda=0.71073 \AA$, detector: image plate), STADIVARI (Mo-K $\alpha, \lambda=0.71073 \AA$ © $\mathrm{Cu}-\mathrm{K} \alpha$, $\lambda=1.5405 \AA$ A , detector: Dectris Pilatus 300K (detector: CMOS)) and STADIVARI ( $\mathrm{Ga}-\mathrm{K} \alpha, \lambda=1.34143$ Å, detector: Dectris Eiger2 R 4M (detector type: HPC)) (STOE) and Supernova (Mo-K $\alpha, \lambda=0.71073 \AA ; \mathrm{Cu}-\mathrm{K} \alpha, \lambda=1.5405 \AA$, detector: Dectris Pilatus R 200K (detector: HPA)) (Rigaku). The measurements were taken
at temperatures of 150 K and 180 K . The crystals were attached to the goniometer head with perfluoroether oil. In order to determine the unit cell, first some frames were recorded at different angles of rotation. Then a complete measurement based on the orientation matrix and the lattice constant was performed, the data integrated and corrected for Lorentz and polarization factors. The structure determination and refinement were performed using SHELXTL ${ }^{149}$ or OLEX2. ${ }^{150}$ Figures were produced using the program Diamond 4.1. ${ }^{151}$

### 4.1.4 Powder X-ray diffraction (PXRD)

To check the purity of crystalline compounds, diffractograms of the samples were recorded using a STOE STADI-P diffractometer with $\mathrm{Cu}-\mathrm{K} \alpha$ radiation $(\lambda=1.5405 \AA)$ at room temperature and processed using the WinXPow software. ${ }^{152}$ The simulated PXRD patterns of the crystal structures were generated using PowderCell 2.3. ${ }^{153}$

### 4.1.5 Nuclear Magnetic Resonance (NMR) Spectroscopy

NMR spectra of the compounds were measured using a Bruker Ultrashield plus 500 ( 500 MHz ) and Varian 500 MHz spectrometer. ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-measurements were recorded using deuterated solvents and referenced to tetramethylsilane (TMS) as an internal standard ( $\delta=0 \mathrm{ppm}$ ).

### 4.1.6 Topology

The topologies of some of the obtained crystal structures were assigned using the program ToposPro 5.3.3.4 and the figures were produced using the program Mercury 3.10.1. ${ }^{154,155}$

### 4.1.7 Analysis of the coordination geometry of the metal centres

The coordination geometries of selected metal centres within the crystal structures were determined using the program SHAPE. ${ }^{156}$

### 4.1.8 Solid state UV-vis spectroscopy

Solid state UV-vis spectra were recorded on a VARIAN CARY 500 Scan UV-vis NIR spectrophotometer in the range 200 nm to 800 nm at a scan rate of $600 \mathrm{~nm} / \mathrm{min}$. Samples were dispersed in a drop of mineral oil for spectroscopy (Nujol mulls) and sandwiched between two quartz glass plates.

### 4.1.9 Electrochemistry

Electrocatalytic studies were performed using an EG \& G 273 A. Potentials are quoted against a saturated calomel electrode (SCE). The counter electrode was a platinum gauze of large surface area. All experiments were performed at room temperature.

### 4.1.10 Photo-electrochemistry

Photo-electrocatalytic studies were performed utilizing a Xe lamp (300 W, $\lambda=185-2000 \mathrm{~nm}$ ) with a 0.33 Hz chop light scan and a potentiometer CS350 single channel potentiostat of the company CorrTest ${ }^{\circledR}$ Instruments with a linear sweep voltammetry scan mode over the range -0.8 V to 1.4 V at a scan rate of $0.01 \mathrm{~V} / \mathrm{s}$. A 3-electrode system with $\mathrm{Ag} / \mathrm{AgCl}$ as a reference electrode and a platinum wire as a counter electrode was used. The sample to be examined was spin-coated onto a ZnO -coated fluorine-doped tin oxide (FTO) substrate and used as working electrode.

### 4.2 Synthesis and synthetic strategies

All reactions were carried out in both in air, under inert atmosphere and solvothermal conditions (Figure 4.1). Crystals were obtained either by diethyl ether vapour diffusion into the mother liquor (Figure 4.2) or using layering method (Figure 4.3). Crystalline powder of these compounds and ligands were obtained by stirring of the reactants. The methods of pre- and post-functionalization are described in section 3.1.1.2.1.1. Chemicals were purchased from Alfa Aesar, Sigma Aldrich, VWR Chemicals, ROTH, Merck, TCI or Honeywell and were used without further purification.


Figure 4.1: Setup for solvothermal reaction (autoclave), Reaction mixture is placed in teflon container $(A)$ and closed with teflon lid $(B)$. This container will be placed in the stainless steal container $(C)$, covered with metal plate $(D)$ and $(E)$, the spring is put on top of $(E)$, followed by $(G)$ and sealed with $(H)$. Then the autoclave can be transferred in an oven and the reaction can be started.


Figure 4.2: Diethyl ether vapour diffusion. The vial containing the mother liquor is covered with an aluminium foil. This vial is then transferred into a bigger vial containing diethyl ether. The bigger vial will be sealed and kept for crystallization.


Figure 4.3: Layering method. Reactant $A$ in solvent $A$ is put into the vial, followed by the buffer layer consisting of solvent $A$ and $B$ in ration 1:1. Then reactant $B$ in solvent $B$ will be layered on top of the buffer layer. The vial will be sealed and kept for crystallization.

### 4.3 Synthesis of previously reported precursors (Pre) and linkers (L)

### 4.3.1 $\left[\mathrm{N}\left(n-\mathrm{C}_{4} \mathrm{H} 9\right)_{4}\right]_{4}\left[\mathrm{Mos}_{8} \mathrm{O}_{26}\right](1)$

$\left[\mathbf{N}(\boldsymbol{n}-\mathbf{C} 4 \mathbf{H} 9)_{4}\right] 4\left[\alpha-\mathbf{M o s}_{8} \mathbf{O}_{26}\right](\mathbf{1})$ was synthesized according to the literature method. ${ }^{65}$ A solution of $\mathrm{Na}_{2} \mathrm{MoO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}(5.00 \mathrm{~g}, 20.70 \mathrm{mmol})$ dissolved in $12 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ was acidified with 5.17 mL of $6,0 \mathrm{M}$ aqueous $\mathrm{HCl}(31.00 \mathrm{mmol})$ with vigorous stirring over a period of 2 min at room temperature. Then a solution of tetrabutylammonium bromide ( $3.34 \mathrm{~g}, 10.40 \mathrm{mmol}$ ) dissolved in $10 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ was added and the resulting suspension stirred for 10 min . The resulting white precipitate was isolated by filtration and was washed with 20 mL of $\mathrm{H}_{2} \mathrm{O}, 20 \mathrm{~mL}$ of ethanol, 50 mL acetone and 20 mL diethyl ether, The solid was air dried to yield $4.85 \mathrm{~g}(2.30 \mathrm{mmol}, 89 \%$ based on Mo). The product was characterized using FT-IR spectroscopy ( KBr , $\mathrm{cm}^{-1}$ ): 3473 (br, w), 2968 (s), 2938 (sh), 2878 (s), 2742 (w), 1883 (br, w), 1702 (w), 1484 ( s), 1386 (m), 1348 (sh), 1288 (w), 1138 (w), 954 (sh), 918 ( s), 857 (s), 812 ( s$), 664(\mathrm{~s}), 559(\mathrm{~m}), 522(\mathrm{~m}), 501(\mathrm{~m}), 417(\mathrm{w})$.

### 4.3.2 $\mathrm{Na}_{3}\left[\mathrm{Al}(\mathrm{OH})_{6} \mathrm{Mo}_{6} \mathrm{O}_{18}\right] \cdot 2 n^{2} \mathrm{H}_{2} \mathrm{O}(n=2-10)(2)$

$\mathbf{N a} 3\left[\mathbf{A l}(\mathbf{O H})_{6} \mathbf{M o 6}_{6} \mathbf{O}_{18}\right]$ (2) was synthesized according to the literature method. ${ }^{157}$ To a solution of 25 mL of $\mathrm{H}_{2} \mathrm{O}$ and 10 mL of acetic acid $\mathrm{AlCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(1.5 \mathrm{~g}$, $6.21 \mathrm{mmol})$ and $\mathrm{Na}_{2} \mathrm{MoO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}(3.5 \mathrm{~g}, 14.50 \mathrm{mmol})$ were added under stirring. The pH value was adjusted to 1.8 by addition of $35 \%$ hydrochloric acid. The resulting reaction mixture was kept at room temperature in an open 100 mL flask and after one week white crystals were isolated by filtration and dried in air to yield $2.0 \mathrm{~g}(1.76 \mathrm{mmol}, 73 \%$ based on Mo). The product was characterized using FT-IR spectroscopy (KBr, cm¹): 3299 (br, s), 1619 (m), 957 (sh), 919 (s), 798 (w), 648 (s), 576 (sh), 525 (sh), 451 (m), 388 (s).

### 4.3.3 $\left[\mathrm{N}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right]_{3}\left[\mathrm{MnMo}_{6} \mathrm{O}_{18}\left\{\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNH}_{2}\right\}_{2}\right]$ (3)

$\left[\mathrm{N}\left(\boldsymbol{n}-\mathbf{C}_{4} \mathbf{H}_{9}\right)_{4}\right]_{3}\left[\mathbf{M n M o}_{6} \mathrm{O}_{\mathbf{1 8}}\left\{\left(\mathbf{O C H}_{2}\right)_{\mathbf{3}} \mathbf{C N H}_{2}\right\}_{2}\right]$ (3) was synthesized according to the literature method. ${ }^{66}$ A mixture of $\left[\mathrm{N}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right]_{4}\left[\alpha-\mathrm{Mo}_{8} \mathrm{O}_{26}\right]$ (1) $(8.00 \mathrm{~g}$, $3.70 \mathrm{mmol}), \quad \mathrm{Mn}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O} \quad(1.49 \mathrm{~g}, \quad 5.60 \mathrm{mmol}) \quad$ and tris(hydroxymethyl)amino methane ( $1.56 \mathrm{~g}, 12.80 \mathrm{mmol}$ ) in 150 mL acetonitrile was refluxed for 20 h . Then the orange suspension was cooled to room temperature and the brown precipitate was filtered off and discarded. The filtrate was placed in a diethyl ether atmosphere and after 2 h the resulting white precipitate was filtered off and discarded. Then the filtrate was again exposed to diethyl ether vapour. After one day, orange crystals had formed. For a higher yield, the diethyl ether diffusion was continued for another 10 days. The crystals were collected by filtration and airdried to yield 7.45 g ( $3.94 \mathrm{mmol}, 80 \%$ based on Mn ). The product was characterized using FT-IR spectroscopy ( $\mathrm{KBr}, \mathrm{cm}^{-1}$ ): 3442 (br, m), 2961 (m), 2938 (sh), 2878 (m), 1650 (w), 1484 (m), 1386 (w), 1230 (w), 1047 (s), 941 (sh), 920 (s), 902 (sh), 830 (w), 799 (w), 662 (br, s), 562 (w), 459 (w), 414 (w).

### 4.3.4 $\left[\mathrm{N}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right]_{3}\left[\mathrm{MnMo}_{6} \mathrm{O}_{18}\left\{\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CN}=\mathrm{CH}\left(4-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)\right\}_{2}\right] \cdot 3 \mathrm{DMF}$ (4)

For the synthesis of $\left.\left[\mathbf{N}\left(\boldsymbol{n}-\mathbf{C}_{4} \mathbf{H}_{9}\right)\right)_{4}\right]_{3}\left[\mathrm{MnMo}_{6} \mathbf{O}_{18}\left\{\left(\mathbf{O C H}_{2}\right)_{3} \mathbf{C N}=\mathbf{C H}(4-\right.\right.$ $\mathbf{C}_{5} \mathbf{H}_{4} \mathbf{N}$ ) $\}_{2}$ ].3DMF (4) reported in the literature, ${ }^{66}$ an alternative procedure was developed. A mixture of $\left[\mathrm{N}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right]_{3}\left[\mathrm{MnMo}_{6} \mathrm{O}_{18}\left\{\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNH}_{2}\right\}_{2}\right]$ (3) $(100 \mathrm{mg}$, 0.053 mmol ) and 4-pyridinecarboxaldehyde ( $0.1 \mathrm{~mL}, 114 \mathrm{mg}, 1.06 \mathrm{mmol}$ ) were dissolve in 2 mL DMF by heating gently. The reaction mixture was placed in a diethyl ether atmosphere and after 1 day, orange crystals had formed. A quantitative yield of 107 mg was achieved by continuing the diethyl ether diffusion for further 7 days. Elemental analysis (\%) calc. for $\mathrm{MnMo}_{6} \mathrm{O}_{24.5} \mathrm{C}_{69.5} \mathrm{~N}_{7.5} \mathrm{H}_{133.5}$ $(2096.918 \mathrm{~g} / \mathrm{mol}) \quad\left[\mathrm{N}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right]_{3}\left[\mathrm{MnMo}_{6} \mathrm{O}_{18}\left\{\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CN}=\mathrm{CH}\left(4-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)\right\}_{2}\right] \cdot 0.5$ DMF: C: 39.81; N: 5.01; H: 6.42. Found: C: 39.40; N: 5.22; H: 6.57. FT-IR (KBr, $\mathrm{cm}^{-1}$ ): 3571 (br), 3433 (br), 2972 (s), 2925 (sh), 2866 (s), 1674 (s), 1641 (sh), 1599 (m), 1563 (w), 1487 (m), 1461 (sh), 1408 (sh), 1385 (m), 1326 (w), 1260 (w), 1230 (w), 1174 (sh), 1155 (w), 1095 (s), 1026 (s), 941 (s), 921 (s), 905 (sh), 822 (w), 803 (w), 740 (sh), 668 (s), 566 (m), 520 (sh), 464 (w).

### 4.3.5 4- $\mathrm{HOOC}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{CH}_{2} \mathrm{NHC}\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{3}(\mathrm{~L} 1)$






4- $\mathbf{H O O C}\left(\mathbf{C}_{6} \mathrm{H}_{4}\right) \mathrm{CH}_{2} \mathbf{N H C}\left(\mathbf{C H}_{2} \mathbf{O H}\right)_{3}(\mathbf{L 1})$ was synthesized according to the literature method. ${ }^{126}$ 4-(chloromethyl)benzoic acid ( $10.0 \mathrm{~g}, 58.6 \mathrm{~mol}$ ) was added over a period of 2 min to a solution of tris(hydroxymethyl)amino methane ( 35.6 g , 294 mmol ) in $300 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$. The reaction mixture was stirred for 20 h at room
temperature, whereas the solid 4-(chloromethyl)benzoic acid was completed dissolved after 30 min and a white precipitate occurred after 7 h of addition. The white precipitate was filtered off and washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 20 \mathrm{~mL})$ and acetone (2 x 15 mL ), followed by drying under vacuum to yield 10.2 g ( $68 \%$ ). The product was characterized using ${ }^{1} \mathrm{H}$ NMR (DMSO-d 6 ): $\delta=3.21$ (s, 6 H ), 3.82 (s, 2H), 7,43 (d,2H), 7.81 (d, 2H).

### 4.4 Synthesis of novel precursors (Pre) and potential linkers (L)

### 4.4.1 $\left[\mathrm{N}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right) 4\right]_{4}\left[\left(\mathrm{MnMo}_{6} \mathrm{O}_{18}\right)\left(\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNHCH}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{COOH}^{2}\right)\left(\left(\mathrm{OCH}_{2}\right) 3\right.\right.$ $\left.\left.\mathrm{CNHCH}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{COO}\right)\right] \cdot 3 \mathrm{DMF}$ (5)

A mixture of $\left[\mathrm{N}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right]_{4}\left[\alpha-\mathrm{Mo}_{8} \mathrm{O}_{26}\right](1)(1.100 \mathrm{~g}, 0.50 \mathrm{mmol}), \mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ $(0.201 \mathrm{~g}, \quad 0.75 \mathrm{mmol}), \quad 4-\mathrm{HOOC}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{CH}_{2} \mathrm{NHC}\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{3} \quad$ (L1) $\quad(0.438 \mathrm{~g}$, 1.71 mmol ), tetrabutylammonium bromide ( $0.215 \mathrm{~g}, 0.67 \mathrm{mmol}$ ) and 20 mL DMF was stirred for 22 h at $85^{\circ} \mathrm{C}$. The resulting suspension was centrifuged and the orange supernatant was placed in a diethyl ether atmosphere and after 2 days orange crystals had formed. For a higher yield, the diethyl ether diffusion was continued for another 13 days and the crystals were air dried to yield 1.012 g ( $57 \%$ based on Mn ; 64 \% based on Mo). Elemental analysis (\%) calc. for $\mathrm{MnMo}_{6} \mathrm{O}_{28} \mathrm{C}_{88} \mathrm{~N}_{6} \mathrm{H}_{171}$ $(2391.901 \mathrm{~g} / \mathrm{mol})\left(\left[\mathrm{N}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right] 4\left[\left(\mathrm{MnMo}_{6} \mathrm{O}_{18}\right)\left(\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNHCH}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{COOH}\right)\right.\right.$ $\left.\left.\left(\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNHCH}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{COO}\right)\right]\right): \mathrm{C}: 44.19 ; \mathrm{N}: 3.51 ; \mathrm{H}: 7.21$. Found: C: 44.26; N: 3.58; H: 7.28. FT-IR (KBr, cm ${ }^{-1}$ ): 3470 (br, m), 2964 (s), 2932 (sh), 2875 (s), 1713 (sh), 1675 (s), 1611 (sh, w), 1479 (s), 1390 (m), 1258 (w), 1156 (w), 1087 (m), 1043 (m), 942 (sh), $922(\mathrm{~s}), 904$ (sh), 771 (sh), 670 (s), 569 (w), 505 (w), 455 (w).

### 4.4.2 $\left[\mathrm{N}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right]_{3}\left[\left(\mathrm{AlMo}_{6} \mathrm{O}_{18}\right)\left(\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CCH}_{2} \mathrm{OCH}_{2} \mathrm{C}_{\left.\left.\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{3}\right)_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}}\right.\right.$

(6)

A mixture of $\mathrm{Na}_{3}\left[\mathrm{Al}(\mathrm{OH})_{6} \mathrm{Mo}_{6} \mathrm{O}_{18}\right] \cdot 2 n \mathrm{H}_{2} \mathrm{O}(n=2-10)(2)(0.354 \mathrm{~g}, 0.33 \mathrm{mmol})$ and dipentaerythritol ( $0.170 \mathrm{~g}, 0.66 \mathrm{mmol}$ ) was dissolved in $10 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ under stirring. The resultant white turbid solution was then stirred for 30 min . After addition of tetrabutylammonium bromide ( $0.333 \mathrm{~g}, 1.03 \mathrm{mmol}$ ), the mixture was stirred for 20 more $\min (\mathrm{pH}=5)$. Then the reaction mixture was transferred in a 25 mL Teflon container, which was sealed in a stainless steel reactor. The reaction mixture was heated to $120^{\circ} \mathrm{C}$ over 1 h and then kept at that temperature for 96 hours, followed by cooling to room temperature with a cooling rate of $3.96 \mathrm{~K} / \mathrm{h}$. White crystals were obtained and air dried to yield $0.398 \mathrm{~g}(0.18 \mathrm{mmol}, 54 \%$ based on Mo). Elemental analysis (\%) calc. for $\mathrm{C}_{68} \mathrm{H}_{160} \mathrm{AlMo}_{6} \mathrm{~N}_{3} \mathrm{O}_{39}(2191.48 \mathrm{~g} / \mathrm{mol})$ $\left(\left[\mathrm{N}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right]_{3}\left[\left(\mathrm{AlMo}_{6} \mathrm{O}_{18}\right)\left(\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CH}_{2} \mathrm{COCH}_{2} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{3}\right)_{2}\right] \cdot 7 \mathrm{H}_{2} \mathrm{O}\right): \mathrm{C}: 36.35$; N: 1.87; H: 7.17. Found: C: 36.59; N: 2.10; H: 6.97. FT-IR (KBr, cm ${ }^{-1}$ ): 3438 (br, m), 2961 (s), 2937 (sh), 2878 (s), 1648 (w), 1480 (m), 1375 (w), 1313 (w), 1197 (w), 1135 (m), 1109 (sh), 1020 (m), 944 (sh), 921 (s), 898 (sh), 826 (w), 743 (sh), 665 (s), 569 (w), 523 (w), 477 (sh), 450 (w).

### 4.4.3 4-N $\equiv \mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{CH}_{2} \mathrm{NHC}\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{3}(\mathrm{~L} 2)$



4-(bromomethyl)benzonitril ( $5.0 \mathrm{~g}, 0.03 \mathrm{~mol}$ ) was added over a period of 2 min to a solution of tris(hydroxymethyl)aminomethane ( $15.5 \mathrm{~g}, 0.13 \mathrm{~mol}$ ) in $150 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$. The suspension was stirred for 1 h , followed by refluxing for 30 min . During this time, the suspension turned to a colourless, clear solution. The solution volume was reduced to 50 mL on a rotary evaporator. This solution was extracted with ethyl acetate ( $6 \times 100 \mathrm{~mL}$ ) and the organic phase dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under vacuum and the residue washed with diethyl ether ( $3 \times 50 \mathrm{~mL}$ ). The solid was dried under vacuum to yield 4.43 g of product ( $74 \%$ ). Elemental analysis (\%) calc. for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}$ ( $236.27 \mathrm{~g} / \mathrm{mol}$ ): C: 61.00; $\mathrm{N}: 11.86 ; \mathrm{H}: 6.83$. Found: C : 61.07; N: 11.55; H: 6.84. ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{DMSO}$ ): $\delta 7.75$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$ ), $7.57(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.31(\mathrm{t}, J=5.4 \mathrm{~Hz}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 2 \mathrm{H}), 3.39(\mathrm{~d}, J=5.3 \mathrm{~Hz}$, $6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{DMSO}$ ): $148\left(\mathrm{p}-\mathrm{C}_{\mathrm{Bz}} \mathrm{CH}_{2}\right), 132\left(\mathrm{o}-\mathrm{C}_{\mathrm{Bz}}\right), 129\left(\mathrm{~m}-\mathrm{C}_{\mathrm{Bz}}\right), 119$ $\left(\mathrm{C}_{\mathrm{C} \equiv \mathrm{N}}\right), 109\left(\mathrm{C}_{\mathrm{Bz}}-\mathrm{C} \equiv \mathrm{N}\right), 61\left(\mathrm{HOCH}_{2}\right), 61(\mathrm{CNH}), 45\left(\mathrm{CH}_{2} \mathrm{NH}\right)$.

### 4.4.4 $\left[\mathrm{N}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right) 4\right]_{3}\left[\left(\mathrm{MnMo}_{6} \mathrm{O}_{18}\right)\left(\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNH}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{C} \equiv \mathrm{N}\right)_{2}\right] \cdot 6 \mathrm{MeCN}(7)$

A mixture of $\left[\mathrm{N}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right]_{4}\left[\alpha-\mathrm{Mo}_{8} \mathrm{O}_{26}\right](\mathbf{1})(0.822 \mathrm{~g}, 0.38 \mathrm{mmol}), \mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ ( $0.155 \mathrm{~g}, 0.58 \mathrm{mmol}), 4-\mathrm{N} \equiv \mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{CH}_{2} \mathrm{NHC}\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{3}(\mathbf{L} 2)(0.312 \mathrm{~g}, 1.32 \mathrm{mmol})$ and 15 mL MeCN was refluxed for 21 h . The resulting suspension was centrifuged and the orange supernatant was placed in a diethyl ether atmosphere and after 6
days orange crystals had formed. For a higher yield, the diethyl ether diffusion was continued for another 8 days and the crystals were air dried to yield 0.44 g ( $36 \%$ based on $\mathrm{Mn}, 41.3$ \% based on Mo). Elemental analysis (\%) calc. for $\mathrm{MnMo}_{6} \mathrm{O}_{24} \mathrm{C}_{72} \mathrm{~N}_{7} \mathrm{H}_{130}(2086.41 \mathrm{~g} / \mathrm{mol})\left(\left[\mathrm{N}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right]_{3}\left[\left(\mathrm{MnMo}_{6} \mathrm{O}_{18}\right)\left(\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNH}\right.\right.\right.$ $\left.\left.\left.\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{C} \equiv \mathrm{N}\right)_{2}\right]\right): \mathrm{C}: 40.34$; $\mathrm{N}: 4.70$; H: 6.29. Found: C: 39.97 ; $\mathrm{N}: 4.67$; H: 6.36. FTIR (KBr, cm ${ }^{-1}$ ): 3450 (br, m), 2964 (s), 2938 (sh), 2875 (s), 2231 (m), 1675 (m), 1611 (m), 1485 (s), 1384 (m), 1156 (w), 1081 (s), 1043 ( s), 941 (sh), 920 (s), 902 (sh), 828 (w), 670 (s), 569 (m), 468 (m).

### 4.4.5 4- $\mathrm{NO}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{C}=\mathbf{O N H C}\left(\mathrm{HOCH}_{2}\right)_{3}(\mathrm{~L} 3)$


$\mathrm{K}_{2} \mathrm{CO}_{3}$ ( $17.27 \mathrm{~g}, 125 \mathrm{mmol}$ ), tris(hydroxymethyl)aminomethane ( $15.14 \mathrm{~g}, 125$ $\mathrm{mmol})$ and tetrabutylammonium hydrogensulfate (TBAHSO 4$)(0.17 \mathrm{~g}, 0.01 \mathrm{mmol}$, $0.0002 \mathrm{~mol} \%$ ) were added to a solution of 4-nitrobenzoyl chloride $(9.278 \mathrm{~g}$, 50.00 mmol ) in 150 ml acetonitrile. The resulting mixture was refluxed overnight. The resulting mixture was filtered off and the solvent of the filtrate was removed under vacuum to yield 11.08 g of a white solid (yield: $82 \%$ ). Elemental analysis (\%) calc. for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{6}$ (270.241 g/mol): C: 48.89; N: 10.37; H: 5.22. Found: C: 49.24; N: 10.52; H: 5.16. ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{DMSO}$ ) $\delta(\mathrm{ppm})=8.26-8.28(\mathrm{~m}$, 2 H ), $8.02-8.04$ (m, 2 H ), 4.75 (t, $J=5.95 \mathrm{~Hz}, 3 \mathrm{H}$ ), 3.74 (d, $J=5.95 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{DMSO}$ ): $\delta(\mathrm{ppm})=166.0(\mathrm{C}), 149.1(\mathrm{C}), 144.4(\mathrm{C}), 129.3$ $(2 \times \mathrm{CH}), 123.6(2 \times \mathrm{CH}), 63.5(\mathrm{C}), 60.3\left(\mathrm{CH}_{2}\right)$.

### 4.4.6 $\left[\mathrm{N}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right]_{3}\left[\mathrm{MnMo}_{6} \mathrm{O}_{18}\left\{\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNHC}=\mathrm{O}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{NO}_{2}\right\}_{2}\right] \cdot 6 \mathrm{DMF}(8)$

A mixture of $\left[\mathrm{N}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right]_{4}\left[\alpha-\mathrm{Mo}_{8} \mathrm{O}_{26}\right] \quad$ (1) $\quad(0.822 \mathrm{~g}, \quad 0.382 \mathrm{mmol})$, $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.155 \mathrm{~g}, 0.578 \mathrm{mmol}), 4-\mathrm{NO}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{C}=\mathrm{ONHC}\left(\mathrm{HOCH}_{2}\right)_{3}(\mathbf{L} 3)$ $(0.357 \mathrm{~g}, 1.32 \mathrm{mmol})$ and 15 mL DMF was stirred for 24 h at $85^{\circ} \mathrm{C}$. The resulting suspension was centrifuged and the orange supernatant was placed in a diethyl ether atmosphere and after 3 days orange crystals had formed. For a higher yield, the diethyl ether diffusion was continued for another 4 days and the crystals were air dried to yield $0.214 \mathrm{~g} \quad(15 \%$ based on $\mathrm{Mn}, 17.5 \%$ based on Mo). Elemental analysis (\%) calc. for $\mathrm{MnMo}_{6} \mathrm{O}_{33} \mathrm{C}_{79} \mathrm{~N}_{10} \mathrm{H}_{151}(2399.669 \mathrm{~g} / \mathrm{mol})$ $\left(\left[\mathrm{N}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right]_{3}\left[\mathrm{MnMo}_{6} \mathrm{O}_{18}\left\{\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNHC}=\mathrm{O}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right)\right\}_{2}\right] \cdot 3 \mathrm{DMF}\right): \mathrm{C}: 39.54 ;$ N: 5.84; H: 6.34. Found: C: 39.24; N: 5.91; H: 6.27. FT-IR (KBr, $\mathrm{cm}^{-1}$ ): 3299 (br, m), 3058 (w), 2961 (s), 2930 (sh), 2870 (s), 1657 (s), 1605 (m), 1552 (sh, m), 1529 (m), 1492 (m), 1378 (w), 1341 (m), 1288 (w), 1154 (w), 1102 (m), 1028 (m), 941 (s), 922 ( s), 906 (sh, s), 871 (w), 848 (w), 811 (w), 719 (sh, w), 670 (br, s), 560 (w), 512 (w), 460 (w).

### 4.4.7 $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{NHC}\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{3}(\mathrm{~L} 4)$


$\mathrm{KOH}(5.61 \mathrm{~g}, 0.1 \mathrm{~mol})$ and tris(hydroxymethyl)aminomethane ( $18.17 \mathrm{~g}, 150 \mathrm{~mol}$ ) were placed in a Schlenk flask followed by its evacuation. Then under $\mathrm{N}_{2}$ flow CuCl $(0.74 \mathrm{~g}, 15 \mathrm{~mol} \%)$, bromobenzene ( $5.2237 \mathrm{~mL}, 7.851 \mathrm{~g}, 0.05 \mathrm{~mol}$ ) and 50 mL dry DMF were added. Oxygen was removed using a freeze-pump-thaw process. The
reaction mixture was refluxed for 17 h , followed by cooling to room temperature and quenching by adding $50 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ under ice bath cooling. The resulting precipitate was filtered off and washed with 50 mL DCM. The aqueous phase was extracted with DCM (4 x 50 mL ). The combined organic phases were dried over dry $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. The crude product was dissolved in a minimum amount of DCM and purified by column chromatography (gradient: $0-10 \%$, $\mathrm{MeOH}-\mathrm{DCM}$ ) to yield $1.288 \mathrm{~g}(13 \%)$. Elemental analysis (\%) calc. for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{NO}_{3}$ (197.23 g/mol): C: 60.90; $\mathrm{N}: 7.10 ; \mathrm{H}$ : 7.67. Found: C: 60.59 ; N: 6.96 ; H: 7.42. ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{DMSO}$ ): $\delta(\mathrm{ppm})=$ 7.79 (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.57(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{t}, J$ $=5.3 \mathrm{~Hz}, 3 \mathrm{H}(\mathrm{OH}), 1 \mathrm{H}(\mathrm{NH})), 3.55(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 126 MHz , DMSO): $\delta(\mathrm{ppm})=147(\mathrm{C}), 129(\mathrm{CH}), 117(\mathrm{CH}), 116(\mathrm{CH}), 61\left(\mathrm{CH}_{2}\right), 61(\mathrm{CH})$.

### 4.4.8 $\left[\mathrm{N}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right]_{3}\left[\left(\mathrm{MnMo}_{6} \mathrm{O}_{18}\right)\left(\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNHC}_{6} \mathrm{H}_{5}\right)_{2}\right] \cdot \mathrm{MeCN} \cdot \mathrm{H}_{2} \mathrm{O}(9)$

A mixture of $\left[\mathrm{N}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right]_{4}\left[\alpha-\mathrm{Mo}_{8} \mathrm{O}_{26}\right] \quad$ (1) $\quad(0.822 \mathrm{~g}, \quad 0.38156 \mathrm{mmol})$, $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.155 \mathrm{~g}, 0.5775 \mathrm{mmol}),\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{NHC}\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{3}(\mathrm{~L} 4)(0.260 \mathrm{~g}$, 1.32 mmol ) and 10 mL MeCN was refluxed for 19 h . Then the orange suspension was cooled to room temperature and the brown precipitate was filtered off and discarded. The filtrate was placed in a diethyl ether atmosphere and after 7 days, a dark brown oily phase had formd on the bottom of the vial. Another 3 days later, brown-orange crystals had formed on top of the oily phase. For a higher yield, the diethyl ether diffusion was continued for another 8 days. The crystals were collected by filtration and air-dried to yield 0.40 g ( $34 \%$ based on $\mathrm{Mn}, 39.0 \%$ based on Mo ). Elemental analysis (\%) calc. for $\mathrm{MnMo}_{6} \mathrm{O}_{24} \mathrm{C}_{70} \mathrm{~N}_{6} \mathrm{H}_{135}$ ( $2075.424 \mathrm{~g} / \mathrm{mol}$ ) $\left(\left[\mathrm{N}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right]_{3}\left[\left(\mathrm{MnMo}_{6} \mathrm{O}_{18}\right)\left(\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNHC}_{6} \mathrm{H}_{5}\right)_{2}\right] \cdot 1 \mathrm{MeCN} \cdot 1 \mathrm{H}_{2} \mathrm{O}\right): \mathrm{C}: 40.16 ; \mathrm{N}$ : 4.01; H: 6.59. Found: C: 40.49; N: 3.98; H: 6.79. FT-IR (KBr, $\mathrm{cm}^{-1}$ ): 3417 (w), 3337 (w), 3191 (w), 3059 (w), 2964 (s), 2932 (sh), 2875 (s), 1675 (m), 1605 (s),

1504 (sh), 1479 (s), 1384 (m), 1321 (w), 1295 (w), 1251 (w), 1194 (w), 1156 (w), 1099 (sh), 1087 (sh), 1055 (s), 1024 (sh), 941 (s), 920 (s), 903 (sh), 849 (w), 813 (br, w), 756 (w), 666 (br, s), 565 (w), 503 (w), 458 (w), 444 (w), 420 (w), 418 (w).

### 4.4.9 $\left[\mathrm{N}\left(n-\mathrm{C}_{4} \mathrm{H} 9\right)_{4}\right]_{2}\left[\mathrm{Mn}_{2} \mathrm{Mo}_{4} \mathrm{O}_{14}\left(\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right)_{2}\right](10)$

A mixture of $\left[\mathrm{N}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right]_{4}\left[\alpha-\mathrm{Mo}_{8} \mathrm{O}_{26}\right](\mathbf{1})(0.82 \mathrm{~g}, 0.38 \mathrm{mmol}), \mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ $(0.16 \mathrm{~g}, 0.58 \mathrm{mmol})$ and triethanolamine $\left(\mathrm{TEAH}_{3}\right)(0.51 \mathrm{~g}, 3.40 \mathrm{mmol})$ in 20 mL acetonitrile was refluxed for 20 h . Then the violet suspension was cooled to room temperature and the brown precipitate was filtered off and discarded. The resulting violet filtrate was placed in a diethyl ether atmosphere and after 2 days white crystals had formed, followed by violet crystals another 4 days later. The diethyl ether diffusion was continued for another 16 days until the solution became colourless. The mixture of white and violet crystals was filtered off, stirred in 4 mL acetonitrile for a few minutes and the left over white crystals were filtered off and discarded. These transparent crystals were analysed as $\left[\mathrm{MoO}_{2}\left\{\left(\mathrm{HOC}_{2} \mathrm{H}_{4} \mathrm{~N}\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}\right)_{2}\right\}\right] .{ }^{158}\right.$ The pure phase of violet crystals was obtained after a diethyl ether diffusion into the violet filtrate for 18 days to yield 0.22 g ( $19 \%$ based on Mo, $50 \%$ based on Mn). Elemental analysis (\%) calc. for $\mathrm{Mn}_{2} \mathrm{Mo}_{4} \mathrm{O}_{20} \mathrm{C}_{44} \mathrm{~N}_{4} \mathrm{H}_{96}(1496.90 \mathrm{~g} / \mathrm{mol})\left(\left[\mathrm{N}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right]_{2}\left[\mathrm{Mn}_{2} \mathrm{Mo}_{4}(\mathrm{O})_{14}\left(\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right)_{2}\right.\right.\right.$ $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right)_{2}$ ]): C: 35.30; N: 3.74; H: 6.60. Found: C: 35.21; N: 3.77; H: 6.49. FT-IR (KBr, cm ${ }^{-1}$ ): 3419 (br, m), 2964 (s), 2938 (sh), 2875 (s), 1744 (w), 1637 (w), 1485 (s), 1384 (m), 1295 (w), 1251 (w), 1175 (w), 1156 (w), 1074 (s), 1049 (sh), 992 (w), 930 ( s), 907 ( s), 782 ( s), 717 ( s), 665 (s), 602 (w), 580 (w), 534 (w), 464 (w).

### 4.5 Synthesis of extended structures

### 4.5.1 Synthesis of rare earth containing polyoxometalate-based metal organic frameworks (RE-POMOFs)

### 4.5.1.1 RE(DMF) $)_{6}$ RE(DMF) $)_{5 \mathrm{RE}_{3}(\mathrm{DMF})_{10}\left[\left(\mathrm{MnMo}_{6} \mathrm{O}_{18}\right)\left(\left(\mathrm{OCH}_{2}\right) 3\right.\right.}$ $\left.\left.\mathrm{CNHCH}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{COO}\right)_{2}\right]_{3} \cdot x \mathrm{xDMF}(\mathrm{RE}=\mathrm{La}-\mathrm{Nd})(11)$

A boundary layer of a mixture of $\mathrm{DMF} / \mathrm{MeOH}(1: 1 / \mathrm{v}: \mathrm{v}, 2 \mathrm{~mL})$ was rapidly pipetted over a solution of $\left[\mathrm{N}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right] 4\left[\left(\mathrm{MnMo}_{6} \mathrm{O}_{18}\right)\left(\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNHCH}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{COOH}\right)\right.$ $\left.\left(\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNHCH}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{COO}\right)\right] \cdot 3 \mathrm{DMF}$ (5) $(10 \mathrm{mg}, 0.0042 \mathrm{mmol})$ dissolved in 1 mL DMF. A solution of $\mathrm{RE}\left(\mathrm{NO}_{3}\right)_{3} \cdot 5 / 6 \mathrm{H}_{2} \mathrm{O} \quad(\mathrm{RE}=\mathrm{La}-\mathrm{Nd}) \quad(10 \mathrm{mg}$, 0.0231 mmol ) dissolved in 1 mL MeOH was rapidly pipetted on top to give a three layered system. Yellow crystals of (11) were obtained from the lower layer after five days and were dried under vacuum.

The following compounds were synthesized according to the aforementioned layering method:

Compound (11)-La layering: Yield: 4.5 mg ( $47 \%$ based on (5)). Elemental analysis (\%) calc. for $\mathrm{C}_{147} \mathrm{H}_{253} \mathrm{La}_{5} \mathrm{Mn}_{3} \mathrm{Mo}_{18} \mathrm{~N}_{31} \mathrm{O}_{109}(6784.987 \mathrm{~g} / \mathrm{mol})\left(\mathrm{La}(\mathrm{DMF})_{6} \mathrm{La}(\mathrm{DMF})_{5}\right.$ $\left.\mathrm{La}_{3}(\mathrm{DMF})_{10}\left[\left(\mathrm{MnMo}_{6} \mathrm{O}_{18}\right)\left(\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNHCH}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{COO}\right)_{2}\right]_{3} \cdot 4 \mathrm{DMF}\right): \mathrm{C}: 26.02, \mathrm{~N}$ : 6.40 , H: 3.76. Found: C: 26.15 , N: 6.52, H: 3.91. FT-IR (KBr, $\mathrm{cm}^{-1}$ ): 4312 (br, sh), 3315 (br, w), 2930 (m), 2855 (sh), 2817 (sh), 1650 (s), 1612 (sh), 1552 (w), 1499 (w), 1424 (m, sh), 1386 (m), 1303 (w), 1251 (m), 1175 (w), 1115 (m), 1070 (m), 1040 (m), 949 (s), 912 (s), 776 (w), 663 (br, s), 565 (sh), 460 (w), 414 (w).

Compound (11)-Ce layering: Yield: 3.9 mg ( $42 \%$ based on (5)). Elemental analysis (\%) calc. for $\mathrm{C}_{144} \mathrm{H}_{246} \mathrm{~N}_{30} \mathrm{O}_{108} \mathrm{Mn}_{3} \mathrm{Mo}_{18} \mathrm{Ce}_{5}(6717.945 \mathrm{~g} / \mathrm{mol})\left(\mathrm{Ce}(\mathrm{DMF})_{6}\right.$ $\left.\mathrm{Ce}(\mathrm{DMF})_{5} \mathrm{Ce}_{3}(\mathrm{DMF})_{10}\left[\left(\mathrm{MnMo}_{6} \mathrm{O}_{18}\right)\left(\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNHCH}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{COO}\right)_{2}\right]_{3} \cdot 3 \mathrm{DMF}\right):$ C: $25.75, \mathrm{~N}: 6.25, \mathrm{H}: 3.69$. Found: C: 25.64 , N: 6.35, H: 3.44. FT-IR ( $\mathrm{KBr}, \mathrm{cm}^{-1}$ ):

4315 (br, sh), 3317 (br, w), 2932 (m), 2857 (sh), 2820 (sh), 1655 (s), 1613 (sh), 1549 (w), 1501 (w), 1427 (m, sh), 1387 (m), 1300 (w), 1253 (m), 1178 (w), 1118 (m), 1073 (m), 1043 (m), 951 (s), 915 (s), 777 (w), 665 (br, s), 566 (sh), 461 (w), 415 (w).

Compound (11)-Pr layering: Yield: 3.2 mg ( $35 \%$ based on (5)). Elemental analysis (\%) calc. for $\mathrm{C}_{135} \mathrm{H}_{225} \mathrm{~N}_{27} \mathrm{O}_{105} \mathrm{Mn}_{3} \mathrm{Mo}_{18} \mathrm{Pr}_{5}(6502.622 \mathrm{~g} / \mathrm{mol})\left(\operatorname{Pr}(\mathrm{DMF})_{6} \operatorname{Pr}(\mathrm{DMF})_{5}\right.$ $\left.\mathrm{Pr}_{3}(\mathrm{DMF})_{10}\left[\left(\mathrm{MnMo}_{6} \mathrm{O}_{18}\right)\left(\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNHCH}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{COO}\right)_{2}\right]_{3}\right): \mathrm{C}: 24.94, \mathrm{~N}: 5.82, \mathrm{H}:$ 3.47. Found: C: $25.18, \mathrm{~N}: 5.44, \mathrm{H}: 3.47$. FT-IR ( $\mathrm{KBr}, \mathrm{cm}^{-1}$ ): 4315 (br, sh), 3316 (br, w), 2933 (m), 2858 (sh), 2821 (sh), 1653 (s), 1612 (sh), 1550 (w), 1500 (w), 1428 (m, sh), 1389 (m), 1300 (w), 1251 (m), 1176 (w), 1114 (m), 1071 (m), 1042 (m), 950 (s), 913 (s), 775 (w), 664 (br, s), 563 (sh), 460 (w), 413 (w).

Compound (11)-Nd layering: Yield: 3.7 mg ( 41 \% based on (5)). Elemental analysis (\%) calc. for $\mathrm{C}_{135} \mathrm{H}_{225} \mathrm{~N}_{27} \mathrm{O}_{105} \mathrm{Mn}_{3} \mathrm{Mo}_{18} \mathrm{Nd}_{5} \quad(6519.294 \mathrm{~g} / \mathrm{mol}) \quad\left(\mathrm{Nd}(\mathrm{DMF})_{6}\right.$ $\left.\mathrm{Nd}(\mathrm{DMF})_{5} \mathrm{Nd}_{3}(\mathrm{DMF})_{10}\left[\left(\mathrm{MnMo}_{6} \mathrm{O}_{18}\right)\left(\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNHCH}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{COO}\right)_{2}\right]_{3}\right): \mathrm{C}:$ 24.87 , N: 5.80, H: 3.48. Found: C: 24.52, N: 5.73, H: 3.46. FT-IR (KBr, $\mathrm{cm}^{-1}$ ): 4310 (br, sh), 3313 (br, w), 2932 (m), 2857 (sh), 2818 (sh), 1651 (s), 1613 (sh), 1553 (w), 1498 (w), 1425 (m, sh), 1387 (m), 1305 (w), 1252 (m), 1176 (w), 1117 (m), 1071 (m), 1041 (m), 948 (s), 913 (s), 777 (w), 664 (br, s), 567 (sh), 461 (w), 415 (w).

In order to obtain larger amounts in microcrystalline powder form of (11) $\left[\mathrm{N}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right]_{4}\left[\left(\mathrm{MnMo}_{6} \mathrm{O}_{18}\right)\left(\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNHCH}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{COOH}\right)\left(\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNHCH}_{2}\right.\right.$ $\left.\left.\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{COO}\right)\right] \cdot 3 \mathrm{DMF}(5)(200 \mathrm{mg}, 0.084 \mathrm{mmol})$ was dissolved in 20 mL DMF and a solution of $\mathrm{RE}\left(\mathrm{NO}_{3}\right)_{3} \cdot 5 / 6 \mathrm{H}_{2} \mathrm{O}(\mathrm{RE}=\mathrm{La}-\mathrm{Nd})(200 \mathrm{mg}, 0.462 \mathrm{mmol})$ dissolved in 20 mL MeOH was added under stirring over a period of 1 minute at room temperature. The solution turned turbid within 30 seconds and was stirred for a further 1.5 h . The resulting powder was dried under vacuum.

The La - Nd containing compounds (11) could best be obtained using a stirring method:

Compound (11)-La stirring: Yield: 76 mg ( $41 \%$ based on (5)). Elemental analysis (\%) calc. for $\mathrm{C}_{141} \mathrm{H}_{239} \mathrm{~N}_{29} \mathrm{O}_{107} \mathrm{Mn}_{3} \mathrm{Mo}_{18} \mathrm{La}_{5}(6638.799 \mathrm{~g} / \mathrm{mol})\left(\mathrm{La}(\mathrm{DMF})_{6} \mathrm{La}(\mathrm{DMF})_{5}\right.$ $\left.\mathrm{La}_{3}(\mathrm{DMF})_{10}\left[\left(\mathrm{MnMo}_{6} \mathrm{O}_{18}\right)\left(\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNHCH}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{COO}\right)_{2}\right]_{3} \cdot 2 \mathrm{DMF}\right): \mathrm{C}: 25.51, \mathrm{~N}$ : 6.12, H: 3.63. Found: C: 25.33 , N: 6.37, H: 3.97. FT-IR (KBr, cm ${ }^{-1}$ ): 4311 (br, sh), 3317 (br, w), 2931 (m), 2856 (sh), 2815 (sh), 1651 (s), 1613 (sh), 1553 (w), 1498 (w), 1425 (m, sh), 1388 (m), 1304 (w), 1252 (m), 1176 (w), 1116 (m), 1073 (m), 1041 (m), 951 (s), 913 (s), 778 (w), 660 (br, s), 567 (sh), 461 (w), 415 (w).

Compound (11)-Ce stirring: Yield: 77 mg ( $40 \%$ based on (5)). Elemental analysis (\%) calc. for $\mathrm{C}_{150} \mathrm{H}_{260} \mathrm{~N}_{32} \mathrm{O}_{110} \mathrm{Mn}_{3} \mathrm{Mo}_{18} \mathrm{Ce}_{5}(6864.133 \mathrm{~g} / \mathrm{mol})\left(\mathrm{Ce}(\mathrm{DMF})_{6} \mathrm{Ce}(\mathrm{DMF})_{5}\right.$ $\left.\mathrm{Ce}_{3}(\mathrm{DMF})_{10}\left[\left(\mathrm{MnMo}_{6} \mathrm{O}_{18}\right)\left(\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNHCH}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{COO}\right)_{2}\right]_{3} \cdot 5 \mathrm{DMF}\right): \mathrm{C}: 26.25, \mathrm{~N}$ : 6.53 , H: 3.82. Found: C: 26.02 , N: 6.74, H: 3.93. FT-IR (KBr, cm ${ }^{-1}$ ): 4310 (br, sh), 3317 (br, w), 2931 (m), 2856 (sh), 2818 (sh), 1651 (s), 1613 (sh), 1555 (w), 1497 (w), 1423 (m, sh), 1384 (m), 1301 (w), 1254 (m), 1178 (w), 1119 (m), 1073 (m), 1042 (m), 952 (s), 913 (s), 778 (w), 662 (br, s), 567 (sh), 461 (w), 415 (w).

Compound (11)-Pr stirring: Yield: 82 mg ( $45 \%$ based on (5)). Elemental analysis (\%) calc. for $\mathrm{C}_{135} \mathrm{H}_{225} \mathrm{~N}_{27} \mathrm{O}_{105} \mathrm{Mn}_{3} \mathrm{Mo}_{18} \operatorname{Pr}_{5}(6502.622 \mathrm{~g} / \mathrm{mol})\left(\operatorname{Pr}(\mathrm{DMF})_{6} \operatorname{Pr}(\mathrm{DMF})_{5}\right.$ $\left.\mathrm{Pr}_{3}(\mathrm{DMF})_{10}\left[\left(\mathrm{MnMo}_{6} \mathrm{O}_{18}\right)\left(\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNHCH}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{COO}\right)_{2}\right]_{3}\right): \mathrm{C}: 24.94, \mathrm{~N}: 5.82, \mathrm{H}:$ 3.47. Found: C: 25.13 , N: 5.47, H: 3.48. FT-IR ( $\mathrm{KBr}, \mathrm{cm}^{-1}$ ): 4312 (br, sh), 3315 (br, w), 2931 (m), 2852 (sh), 2817 (sh), 1653 (s), 1612 (sh), 1552 (w), 1489 (w), 1424 (m, sh), 1387 (m), 1305 (w), 1253 (m), 1178 (w), 1117 (m), 1072 (m), 1042 (m), 950 (s), 913 (s), 777 (w), 662 (br, s), 566 (sh), 460 (w), 415 (w).

Compound (11)-Nd stirring: Yield: 79 mg ( $43 \%$ based on (5)). Elemental analysis (\%) calc. for $\mathrm{C}_{135} \mathrm{H}_{225} \mathrm{~N}_{27} \mathrm{O}_{105} \mathrm{Mn}_{3} \mathrm{Mo}_{18} \mathrm{Nd}_{5} \quad(6519.294 \mathrm{~g} / \mathrm{mol})\left(\mathrm{Nd}(\mathrm{DMF})_{6}\right.$ $\left.\mathrm{Nd}(\mathrm{DMF})_{5} \mathrm{Nd}_{3}(\mathrm{DMF})_{10}\left[\left(\mathrm{MnMo}_{6} \mathrm{O}_{18}\right)\left(\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNHCH}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{COO}\right)_{2}\right]_{3}\right): \quad \mathrm{C}:$ 24.87 , N: 5.80, H: 3.48. Found: C: 24.62, N: 5.63, H: 3.56. FT-IR (KBr, $\mathrm{cm}^{-1}$ ): 4312 (br, sh), 3315 (br, w), 2932 (m), 2855 (sh), 2819 (sh), 1650 (s), 1613 (sh), 1552 (w), 1497 (w), 1424 (m, sh), 1386 (m), 1306 (w), 1251 (m), 1175 (w), 1116 (m), 1070 (m), 1042 (m), 949 (s), 914 (s), 776 (w), 663 (br, s), 566 (sh), 460 (w), 414 (w).

The purity of the microcrystalline compounds resulting from the stirring method was confirmed by PXRD (section 5.3.1.1.3).

### 4.5.1.2 $\left[\mathrm{RE}(\mathrm{DMF})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}\left[\mathrm{RE}_{3}(\mathrm{DMF})_{6}\right]\left[\left(\mathrm{MnMo}_{6} \mathrm{O}_{18}\right)\left(\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNHCH}_{2}\right.\right.$ $\left.\left.\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{COO}\right)_{2}\right]_{3} \cdot \mathrm{xDMF}(\mathrm{RE}=\mathbf{Y}, \mathrm{Sm}-\mathrm{Lu})(12)$

A boundary layer of a mixture of $\mathrm{DMF} / \mathrm{MeOH}(1: 1 / \mathrm{v}: \mathrm{v}, 2 \mathrm{~mL})$ was rapidly pipetted over a solution of $\left[\mathrm{N}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right] 4\left[\left(\mathrm{MnMo}_{6} \mathrm{O}_{18}\right)\left(\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNHCH}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{COOH}\right)\right.$ $\left.\left(\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNHCH}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{COO}\right)\right] \cdot 3 \mathrm{DMF}$ (5) ( $10 \mathrm{mg}, 0.0042 \mathrm{mmol}$ ) dissolved in 1 mL DMF. A solution of $\mathrm{RE}\left(\mathrm{NO}_{3}\right)_{3} \cdot 5 / 6 \mathrm{H}_{2} \mathrm{O}(\mathrm{RE}=\mathrm{Y}, \mathrm{Sm}-\mathrm{Lu})(10 \mathrm{mg}$, 0.0231 mmol ) dissolved in 1 mL MeOH was rapidly pipetted on top to give a three layered system. Yellow crystals of (12) were obtained from the lower layer after five days and were dried under vacuum.

The following compounds were synthesized according to the aforementioned layering method:

Compound (12)-Y layering: Yield: 3.2 mg ( $35 \%$ based on (5)). Elemental analysis (\%) calc. for $\mathrm{C}_{138} \mathrm{H}_{236} \mathrm{~N}_{28} \mathrm{O}_{108} \mathrm{Mn}_{3} \mathrm{Y}_{5} \mathrm{Mo}_{18}(6351.738 \mathrm{~g} / \mathrm{mol})$ ([Y(DMF) $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}$ $\left[\mathrm{Y}_{3}(\mathrm{DMF})_{6}\left[\left(\mathrm{MnMo}_{6} \mathrm{O}_{18}\right)\left(\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNHCH}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{COO}\right)_{2}\right]_{3} \cdot 8 \mathrm{DMF}\right): \mathrm{C}: 26.09, \mathrm{~N}:$
6.18, H: 3.75. Found: C: 25.76 , N: 6.44, H: 4.11. FT-IR (KBr, cm ${ }^{-1}$ ): 4314 (br, sh), 3315 (br, w), 2930 (m), 28556(sh), 2817 (sh), 1650 (s), 1613 (sh), 1552 (w), 1450 (w), 1424 (m, sh), 1386 (m), 1304 (w), 1251 (m), 1175 (w), 1165 (m), 1070 (m), 1040 (m), 952 (s), 912 (s), 776 (w), 665 (br, s), 565 (sh), 460 (w), 412 (w).

Compound (12)-Sm layering: Yield: 4.5 mg (52 \% based on (5)). Elemental analysis (\%) calc. for $\mathrm{C}_{120} \mathrm{H}_{194} \mathrm{~N}_{22} \mathrm{O}_{102} \mathrm{Mn}_{3} \mathrm{Mo}_{18} \mathrm{Sm}_{5} \quad(6220.446 \mathrm{~g} / \mathrm{mol})$ $\left(\left[\mathrm{Sm}(\mathrm{DMF})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}\left[\mathrm{Sm}_{3}(\mathrm{DMF})_{6}\left[\left(\mathrm{MnMo}_{6} \mathrm{O}_{18}\right)\left(\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNHCH}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{COO}\right)_{2}\right]_{3}\right.\right.$. 2DMF): C: 23.17, N: 4.95, H: 3.14. Found: C: 23.01, N: 5.20, H: 3.45. FT-IR (KBr, $\mathrm{cm}^{-1}$ ): 4313 (br, sh), 3313 (br, w), 2930 (m), 2855 (sh), 2819 (sh), 1650 (s), 1613 (sh), 1554 (w), 1499 (w), 1425 (m, sh), 1386 (m), 1305 (w), 1251 (m), 1177 (w), 1117 (m), 1071 (m), 1041 (m), 949 (s), 912 (s), 776 (w), 665 (br, s), 565 (sh), 462 (w), 414 (w).

Compound (12)-Eu layering: Yield: 5.6 mg (62 \% based on (5)). Elemental analysis (\%) calc. for $\mathrm{C}_{129} \mathrm{H}_{215} \mathrm{~N}_{25} \mathrm{O}_{105} \mathrm{Mn}_{3} \mathrm{Mo}_{18} \mathrm{Eu}_{5} \quad(6447.747 \mathrm{~g} / \mathrm{mol})$ $\left(\left[\mathrm{Eu}(\mathrm{DMF})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}\left[\mathrm{Eu}_{3}(\mathrm{DMF})_{6}\right]\left[\left(\mathrm{MnMo}_{6} \mathrm{O}_{18}\right)\left(\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNHCH}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{COO}\right)_{2}\right]_{3}\right.$. 5DMF): C: 24.03, N: 5.43, H: 3.36. Found: C: 23.95, N: 5.71, H: 3.60. FT-IR (KBr, $\mathrm{cm}^{-1}$ ): 4313 (br, sh), 3315 (br, w), 2930 (m), 2856 (sh), 2817 (sh), 1650 (s), 1612 (sh), 1553 (w), 1499 (w), 1424 (m, sh), 1386 (m), 1305 (w), 1251 (m), 1175 (w), 1114 (m), 1070 (m), 1042 (m), 949 (s), 912 (s), 778 (w), 665 (br, s), 565 (sh), 460 (w), 414 (w).

Compound (12)-Gd layering: Yield: 3.6 mg ( $42 \%$ based on (5)). Elemental analysis (\%) calc. for $\mathrm{C}_{117} \mathrm{H}_{187} \mathrm{~N}_{21} \mathrm{O}_{101} \mathrm{Mn}_{3} \mathrm{Mo}_{18} \mathrm{Gd}_{5}(6181.802 \mathrm{~g} / \mathrm{mol})\left(\left[\mathrm{Gd}(\mathrm{DMF})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}\right.$ $\left.\left[\mathrm{Gd}_{3}(\mathrm{DMF})_{6}\right]\left[\left(\mathrm{MnMo}_{6} \mathrm{O}_{18}\right)\left(\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNHCH}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{COO}\right)_{2}\right]_{3} \cdot 1 \mathrm{DMF}\right): \mathrm{C}: 22.73$, $\mathrm{N}: 4.76, \mathrm{H}: 3.05$. Found: C: 22.37, N: 4.95, H: 3.35. FT-IR (KBr, cm ${ }^{-1}$ ): 4312 (br, sh), 3317 (br, w), 2930 (m), 2855 (sh), 2819 (sh), 1650 (s), 1613 (sh), 1552 (w),

1499 (w), 1424 (m, sh), 1388 (m), 1303 (w), 1251 (m), 1175 (w), 1118 (m), 1070 (m), 1040 (m), 949 (s), 913 (s), 776 (w), 663 (br, s), 565 (sh), 462 (w), 414 (w).

Compound (12)-Tb layering: Yield: 4.1 mg ( $45 \%$ based on (5)). Elemental analysis (\%) calc. for $\mathrm{C}_{129} \mathrm{H}_{215} \mathrm{~N}_{25} \mathrm{O}_{105} \mathrm{Mn}_{3} \mathrm{Mo}_{18} \mathrm{~Tb}_{5}(6482.554 \mathrm{~g} / \mathrm{mol})\left(\left[\mathrm{Tb}(\mathrm{DMF})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}\right.$ $\left[\mathrm{Tb}_{3}(\mathrm{DMF})_{6}\right]\left[\left(\mathrm{MnMo}_{6} \mathrm{O}_{18}\right)\left(\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNHCH}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{COO}_{2}\right]_{3} .5 \mathrm{DMF}\right): \mathrm{C}: 23.90$, N: 5.40, H: 3.42. Found: C: 23.75 , N: 5.56, H: 3.58. FT-IR (KBr, cm ${ }^{-1}$ ): 4312 (br, sh), 3315 (br, w), 2930 (m), 2855 (sh), 2818 (sh), 1650 (s), 1612 (sh), 1556 (w), 1498 (w), 1424 (m, sh), 1387 (m), 1303 (w), 1251 (m), 1176 (w), 1115 (m), 1071 (m), 1040 (m), 948 (s), 912 (s), 776 (w), 663 (br, s), 566 (sh), 460 (w), 415 (w).

Compound (12)-Dy layering: Yield: 4.2 mg ( $48 \%$ based on (5)). Elemental analysis (\%) calc. for $\mathrm{C}_{117} \mathrm{H}_{187} \mathrm{Dy}_{5} \mathrm{Mn}_{3} \mathrm{Mo}_{18} \mathrm{~N}_{21} \mathrm{O}_{101} \quad(6208.411 \mathrm{~g} / \mathrm{mol})$ $\left(\left[\mathrm{Dy}(\mathrm{DMF})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}\left[\mathrm{Dy}_{3}(\mathrm{DMF})_{6}\left[\left(\mathrm{MnMo}_{6} \mathrm{O}_{18}\right)\left(\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNHCH}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{COO}\right)_{2}\right]_{3}\right.\right.$. 1DMF): C: 22.63, N: 4.74, H: 3.04. Found: C: 22.51, N: 5.06, H: 3.38. FT-IR (KBr, $\mathrm{cm}^{-1}$ ): 4312 (br, sh), 3315 (br, w), 2931 (m), 2855 (sh), 2817 (sh), 1651 (s), 1612 (sh), 1552 (w), 1499 (w), 1425 (m, sh), 1386 (m), 1304 (w), 1251 (m), 1175 (w), 1115 (m), 1071 (m), 1040 (m), 949 (s), 912 (s), 775 (w), 663 (br, s), 565 (sh), 461 (w), 414 (w).

Compound (12)-Ho layering: Yield: 4.0 mg ( 43 \% based on (5)). Elemental analysis (\%) calc. for $\mathrm{C}_{126} \mathrm{H}_{208} \mathrm{~N}_{24} \mathrm{O}_{104} \mathrm{Mn}_{3} \mathrm{Mo}_{18} \mathrm{Ho}_{5} \quad(6439.485 \mathrm{~g} / \mathrm{mol})$ $\left(\left[\mathrm{Ho}(\mathrm{DMF})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}\left[\mathrm{Ho}_{3}(\mathrm{DMF})_{6}\left[\left(\mathrm{MnMo}_{6} \mathrm{O}_{18}\right)\left(\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNHCH}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{COO}\right)_{2}\right]_{3}\right.\right.$. 4DMF): C: 23.50 , N: 5.22, H: 3.26. Found: C: $23.26, \mathrm{~N}: 5.44, \mathrm{H}: 3.58$. FT-IR (KBr, $\mathrm{cm}^{-1}$ ): 4312 (br, sh), 3316 (br, w), 2930 (m), 2855 (sh), 2817 (sh), 1651 (s), 1612 (sh), 1552 (w), 1499 (w), 1426 (m, sh), 1386 (m), 1305 (w), 1251 (m), 1175 (w), 1116 (m), 1070 (m), 1041 (m), 949 (s), 912 (s), 776 (w), 665 (br, s), 565 (sh), 461 (w), 414 (w).

Compound (12)-Er layering: Yield: 3.8 mg ( $39 \%$ based on (5)). Elemental analysis (\%) calc. for $\mathrm{C}_{147} \mathrm{H}_{257} \mathrm{~N}_{31} \mathrm{O}_{111} \mathrm{Mn}_{3} \mathrm{Mo}_{18}{ }_{8} \mathrm{Er}_{5} \quad(6962.785 \mathrm{~g} / \mathrm{mol})$ $\left(\left[\mathrm{Er}(\mathrm{DMF})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}\left[\mathrm{Er}_{3}(\mathrm{DMF})_{6}\right]\left[\left(\mathrm{MnMo}_{6} \mathrm{O}_{18}\right)\left(\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNHCH}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{COO}\right)_{2}\right]_{3}\right.$. 11DMF): C: 25.36, N: 6.24, H: 3.72. Found: C: 24.98, N: 6.45, H: 3.93. FT-IR (KBr, cm ${ }^{-1}$ ): 4312 (br, sh), 3316 (br, w), 2930 (m), 2856 (sh), 2817 (sh), 1650 (s), 1613 (sh), 1552 (w), 1499 (w), 14254 (m, sh), 1386 (m), 1305 (w), 1251 (m), 1175 (w), 1115 (m), 1071 (m), 1040 (m), 949 (s), 913 (s), 776 (w), 663 (br, s), 566 (sh), 460 (w), 414 (w).

Compound (12)-Tm layering: Yield: 3.4 mg ( $35 \%$ based on (5)). Elemental analysis (\%) calc. for $\mathrm{C}_{147} \mathrm{H}_{257} \mathrm{~N}_{31} \mathrm{O}_{111} \mathrm{Mn}_{3} \mathrm{Mo}_{18} \mathrm{Tm}_{5} \quad(6971.161 \mathrm{~g} / \mathrm{mol})$ $\left(\left[\mathrm{Tm}(\mathrm{DMF})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}\left[\mathrm{Tm}_{3}(\mathrm{DMF})_{6}\left[\left(\mathrm{MnMo}_{6} \mathrm{O}_{18}\right)\left(\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNHCH}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{COO}\right)_{2}\right]_{3}\right.\right.$ -11DMF): C: 25.33, N: 6.23, H: 3.72. Found: C: 25.22, N: 6.46, H: 3.89. FT-IR (KBr, cm ${ }^{-1}$ ): 4313 (br, sh), 3315 (br, w), 2931 (m), 2855 (sh), 2817 (sh), 1651 (s), 1612 (sh), 1552 (w), 1499 (w), 1422 (m, sh), 1386 (m), 1303 (w), 1252 (m), 1175 (w), 1115 (m), 1071 (m), 1040 (m), 949 (s), 912 ( s$), 778$ (w), 663 (br, s), 565 (sh), 461 (w), 414 (w).

Compound (12)-Yb layering: Yield: 3.8 mg ( 44 \% based on (5)). Elemental analysis (\%) calc. for $\mathrm{C}_{129} \mathrm{H}_{215} \mathrm{~N}_{25} \mathrm{O}_{105} \mathrm{Mn}_{3} \mathrm{Mo}_{18} \mathrm{Yb}_{5}(6553.127 \mathrm{~g} / \mathrm{mol})\left(\left(\left[\mathrm{Yb}(\mathrm{DMF})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}\right.\right.$ $\left[\mathrm{Yb}_{3}(\mathrm{DMF})_{6}\left[\left(\mathrm{MnMo}_{6} \mathrm{O}_{18}\right)\left(\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNHCH}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{COO}\right)_{2}\right]_{3} \cdot 5 \mathrm{DMF}\right): \mathrm{C}: 23.64, \mathrm{~N}$ : $5.34, \mathrm{H}: 3.31$. Found: C: 23.93 , N: $5.71, \mathrm{H}: 3.38$. FT-IR ( $\mathrm{KBr}, \mathrm{cm}^{-1}$ ): 4312 (br, sh), 3315 (br, w), 2932 (m), 2855 (sh), 2817 (sh), 1652 (s), 1612 (sh), 1552 (w), 1499 (w), 1426 (m, sh), 1386 (m), 1303 (w), 1253 (m), 1175 (w), 1117 (m), 1070 (m), 1041 (m), 949 (s), 912 (s), 775 (w), 663 (br, s), 566 (sh), 460 (w), 415 (w).

Compound (12)-Lu layering: Yield: 3.1 mg ( 34 \% based on (5)). Elemental analysis (\%) calc. for $\mathrm{C}_{129} \mathrm{H}_{215} \mathrm{~N}_{25} \mathrm{O}_{105} \mathrm{Mn}_{3} \mathrm{Mo}_{18} \mathrm{Lu}_{5}(6562.762 \mathrm{~g} / \mathrm{mol})\left(\left[\mathrm{Lu}(\mathrm{DMF})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}\right.$
$\left[\mathrm{Lu}_{3}(\mathrm{DMF})_{6}\left[\left(\mathrm{MnMo}_{6} \mathrm{O}_{18}\right)\left(\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNHCH}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{COO}\right)_{2}\right]_{3} .5 \mathrm{DMF}\right): \mathrm{C}: 23.61, \mathrm{~N}$ : 5.34 , H: 3.30. Found: C: 23.24 , N: 5.66 , H: 3.65. FT-IR (KBr, cm ${ }^{-1}$ ): 4313 (br, sh), 3315 (br, w), 2932 (m), 2855 (sh), 2817 (sh), 1651 (s), 1612 (sh), 1553 (w), 1499 (w), 1425 (m, sh), 1386 (m), 1305 (w), 1251 (m), 1175 (w), 1116 (m), 1070 (m), 1040 (m), 949 (s), 913 (s), 776 (w), 663 (br, s), 565 (sh), 461 (w), 414 (w).

In order to obtain larger amounts in microcrystalline powder form of Dy containing (12) $\left[\mathrm{N}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right]_{4}\left[\left(\mathrm{MnMo}_{6} \mathrm{O}_{18}\right)\left(\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNHCH}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{COOH}\right)\left(\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNH}\right.\right.$ $\left.\left.\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{COO}\right)\right] \cdot 3 \mathrm{DMF}$ (5) ( $200 \mathrm{mg}, 0.084 \mathrm{mmol}$ ) was dissolved in 20 mL DMF and a solution of $\mathrm{Dy}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(200 \mathrm{mg}, 0.462 \mathrm{mmol})$ dissolved in 20 mL MeOH was added under stirring over a period of 1 minute at room temperature. The solution turned turbid within 30 seconds and was stirred for a further 1.5 h . The resulting powder was dried under vacuum to yield 78 mg ( $40 \%$ based on (5)). Elemental analysis (\%) calc. for $\mathrm{C}_{150} \mathrm{H}_{264} \mathrm{Dy}_{5} \mathrm{Mn}_{3} \mathrm{Mo}_{18} \mathrm{~N}_{32} \mathrm{O}_{112}(7012.443 \mathrm{~g} / \mathrm{mol})$ $\left(\left[\mathrm{Dy}(\mathrm{DMF})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}\left[\mathrm{Dy}_{3}(\mathrm{DMF})_{6}\right]\left[\left(\mathrm{MnMo}_{6} \mathrm{O}_{18}\right)\left(\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNHCH}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{COO}\right)_{2}\right]_{3}\right.$ -12DMF): C: 25.69 , N: 6.39, H: 3.79. Found: C: 25.42, N: 6.12, H: 3.96. FT-IR ( $\mathrm{KBr}, \mathrm{cm}^{-1}$ ): 4313 (br, sh), 3315 (br, w), 2931 (m), 2855 (sh), 2817 (sh), 1651 (s), 1613 (sh), 1552 (w), 1499 (w), 1425 (m, sh), 1386 (m), 1305 (w), 1251 (m), 1176 (w), 1115 (m), 1071 (m), 1040 (m), 949 (s), 913 (s), 776 (w), 663 (br, s), 566 (sh), 460 (w), 415 (w).

The purity of this microcrystalline compound resulting from the stirring method was confirmed by PXRD (section 5.3.1.2.3).

### 4.5.2 Synthesis of transition metal containing polyoxometalate-based metal organic frameworks (TM-POMOFs)

### 4.5.2.1 $\left[\mathrm{N}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right]_{5}\left[\mathrm{CuCl}(\mathrm{DMF})\left\{\mathrm{MnMo}_{6} \mathrm{O}_{18}\left(\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CN}=\mathbf{C H}\left(4-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)\right)_{2}\right\}_{2}\right]$ -3DMF (13)

4-pyrdinecarboxaldehyde ( $0.4 \mathrm{~mL}, 456 \mathrm{mg}, 4.24 \mathrm{mmol}$ ) was added to a solution of $\left[\mathrm{N}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right]_{3}\left[\mathrm{MnMo}_{6} \mathrm{O}_{18}\left\{\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNH}_{2}\right\}_{2}\right] \quad$ (3) $\quad(200 \mathrm{mg}, \quad 0.11 \mathrm{mmol})$ and $\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(9 \mathrm{mg}, 0.05 \mathrm{mmol})$ dissolved in 4 mL DMF. This reaction mixture was sealed and stirred at $85^{\circ} \mathrm{C}$ for 20 h . The reaction was cooled to room temperature and the suspension was centrifuged. Then the supernatant was placed in a diethyl ether atmosphere and after 1 day, dark green crystals had formed. For a higher yield, the diethyl ether diffusion was continued for another 14 days. The crystals were collected by filtration and air-dried to yield 170 mg ( $80 \%$ based on Cu ). Elemental analysis (\%) calc. for $\mathrm{C}_{123} \mathrm{H}_{231} \mathrm{~N}_{14} \mathrm{O}_{49} \mathrm{ClMn}_{2} \mathrm{CuMo}_{12} \quad\left[\mathrm{~N}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right]_{5}$ $\left[\mathrm{CuCl}(\mathrm{DMF})\left\{\mathrm{MnMo}_{6} \mathrm{O}_{18}\left(\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CN}=\mathrm{CH}\left(4-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)\right)_{2}\right\}_{2}\right](4050.36999 \mathrm{~g} / \mathrm{mol}): \mathrm{C}:$ 36.47; N: 4.84; H: 5.75. Found: C: 36.21; N: 4.63; H: 5.82. FT-IR (KBr, $\mathrm{cm}^{-1}$ ): 3482 (br, m), 2964 (s), 2932 (sh), 2875 (s), 1675 (s), 1561 (w), 1485 (m), 1384 (m), 1321 (w), 1251 (w), 1156 (w), 1093 (s), 1030 (s), 943 (s), 923 (s), 904 (sh), 830 (w), 803 (w), 665 (br, s), 563 (w), 518 (w), 462 (w).

### 4.5.2.2 $\left[\mathrm{Zn}(\mathrm{DMF})_{4}\right]\left[\mathrm{Zn}(\mathrm{DMF})_{2} \mathrm{MnMo}_{6} \mathrm{O}_{18}\left\{\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CN}=\mathrm{CH}\left(4-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)\right\}_{2}\right]_{2}$. 10DMF (14A) and $\left[\left(\mathbf{Z n}(D M F)_{3}\right)_{2}(\mathbf{Z n}(D M F))_{4} \mathbf{M n M o f}_{6} \mathbf{O}_{18}\right.$ $\left.\left.\left\{\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CN}=\mathrm{CH}\left(4-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)\right\}_{2}\right)_{2}\right] \cdot 9 \mathrm{DMF}(14 \mathrm{~B})$

Compounds (14A) and (14B) were obtained as a mixture of crystals using a layering method. A boundary layer of a mixture of DMF/acetonitrile ( $1: 1 / \mathrm{v}: \mathrm{v}, 2 \mathrm{~mL}$ ) was rapidly pipetted over a solution of $\left[\mathrm{N}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right]_{3}\left[\mathrm{MnMo}_{6} \mathrm{O}_{18}\left\{\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CN}=\mathrm{CH}(4-\right.\right.$ $\left.\left.\left.\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)\right\}_{2}\right] \cdot 3 \mathrm{DMF}$ (4) ( $10 \mathrm{mg}, 0.005 \mathrm{mmol}$ ) dissolved in 1 mL DMF. A solution of
$\mathrm{ZnCl}_{2}(9 \mathrm{mg}, 0.051 \mathrm{mmol})$ dissolved in 1 mL acetonitrile was rapidly pipetted on top to give a three layered system. Crystals of (14A) and (14B) were obtained from the buffer layer after one day. FT-IR (KBr, $\mathrm{cm}^{-1}$ ) (14A)+(14B): 3418 (br), 2972 (s), 2925 (sh), 2866 (s), 1648 (s), 1612 (sh), 1563 (w), 1490 (w), 1434 (m), 1375 (m), 1326 (w), 1247 (m), 1174 (w), 1148 (w), 1115 (sh), 1089 (m), 1063 (sh), 1023 (s), 947 (s), 922 (sh), 912 (sh), 888 (sh), 866 (sh), 839 (w), 802 (w), 671 (s), 655 (s), 592 (sh), 566 (sh), 543 (sh), 520 (sh), 461 (w), 421 (w).

### 4.5.2.3 $\left[\mathrm{Cd}(\mathrm{DMF})_{2}\right][\mathrm{Cd}]\left[\mathrm{N}\left(\boldsymbol{n}-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right]_{2}\left[\mathrm{MnMo}_{6} \mathrm{O}_{18}\left\{\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CN}=\mathbf{C H}(4-\right.\right.$ $\left.\left.\left.\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)\right\}_{2}\right]_{2} \cdot 2 \mathrm{DMF}$ (15)

A boundary layer of a mixture of DMF/acetonitrile ( $1: 1 / \mathrm{v}: \mathrm{v}, 2 \mathrm{~mL}$ ) was rapidly pipetted over a solution of $\left[\mathrm{N}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right]_{3}\left[\mathrm{MnMo}_{6} \mathrm{O}_{18}\left\{\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CN}=\mathrm{CH}(4-\right.\right.$ $\left.\left.\left.\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)\right\}_{2}\right] \cdot 3 \mathrm{DMF}(4)(10 \mathrm{mg}, 0.005 \mathrm{mmol})$ dissolved in 1 mL DMF. A solution of $\mathrm{Cd}\left(\mathrm{NO}_{3}\right)_{2} 4 \mathrm{H}_{2} \mathrm{O}(15 \mathrm{mg}, 0.049 \mathrm{mmol})$ dissolved in 1 mL acetonitrile was rapidly pipetted on top to give a three layered system. Crystals of (15) were obtained from the buffer layer after one day and were dried under vacuum to yield 8.8 mg (quantitative yield). Elemental analysis (\%) calc. for $\mathrm{C}_{84} \mathrm{H}_{144} \mathrm{~N}_{14} \mathrm{O}_{52} \mathrm{Mn}_{2} \mathrm{Mo}_{12} \mathrm{Cd}_{2}$ $(3668.083 \mathrm{~g} / \mathrm{mol})$ [Cd•2DMF][Cd][N( $\left.\left.n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right]_{2}\left[\mathrm{MnMo}_{6} \mathrm{O}_{18}\left\{\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CN}=\mathrm{CH}(4-\right.\right.$ $\left.\left.\left.\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)\right\}_{2}\right]_{2}$ 2DMF: C: 27.50 ; N: 5.35; H: 3.96. Found: C: 27.55 ; N: 5.52; H: 3.74. FT-IR (KBr, cm ${ }^{-1}$ ): 3405 (br, m), 3224 (sh), 3156 (sh), 2960 (sh), 2936 (m), 2870 (m), 1646 (s), 1560 (sh, w), 1492 (sh, w), 1461 (sh, w), 1436 (m), 1382 (m), 1323 (w), 1294 (sh), 1249 (w), 1116 (sh), 1091 (m), 1060 (sh), 1026 (s), 950 (s), 922 (s), 907 (sh), 879 (sh, s), 825 (w), 803 (w), 662 (br, s), 566 (m), 518 (sh), 461 (w), 413 (w).

In order to obtain larger amounts in microcrystalline powder form of (15) $\left[\mathrm{N}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right]_{3}\left[\mathrm{MnMo}_{6} \mathrm{O}_{18}\left\{\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CN}=\mathrm{CH}\left(4-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)\right\}_{2}\right] \cdot 3 \mathrm{DMF} \quad$ (4) (100 mg, 0.048 mmol ) was dissolved in 20 mL DMF and a solution of $\mathrm{Cd}\left(\mathrm{NO}_{3}\right)_{2} 4 \mathrm{H}_{2} \mathrm{O}$
( $150 \mathrm{mg}, 0.486 \mathrm{mmol}$ ) dissolved in 20 mL acetonitrile was added under stirring over a period of 1 minute at room temperature. The solution turned turbid within 30 seconds and was stirred for a further 1.5 h . The resulting powder was dried under vacuum to yield 88 mg (quantitative yield). Elemental analysis (\%) calc. for $\mathrm{C}_{84} \mathrm{H}_{144} \mathrm{~N}_{14} \mathrm{O}_{52} \mathrm{Mn}_{2} \mathrm{Mo}_{12} \mathrm{Cd}_{2} \quad(3668.083 \mathrm{~g} / \mathrm{mol}) \quad\left[\mathrm{Cd}(\mathrm{DMF})_{2}\right][\mathrm{Cd}]\left[\mathrm{N}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right]_{2}$ $\left[\mathrm{MnMo}_{6} \mathrm{O}_{18}\left\{\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CN}=\mathrm{CH}\left(4-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)\right\}_{2}\right]_{2} \cdot 2 \mathrm{DMF}: \mathrm{C}: 27.50 ; \mathrm{N}: 5.35 ; \mathrm{H}: 3.96$. Found: C: 27.61; N: 5.65; H: 3.61. FT-IR (KBr, $\mathrm{cm}^{-1}$ ): 3405 (br, m), 3224 (sh), 3156 (sh), 2960 (sh), 2936 (m), 2870 (m), 1646 (s), 1560 (sh, w), 1492 (sh, w), 1461 (sh, w), 1436 (m), 1382 (m), 1323 (w), 1294 (sh), 1249 (w), 1116 (sh), 1091 (m), 1060 (sh), 1026 (s), 950 (s), 922 (s), 907 (sh), 879 (sh, s), 825 (w), 803 (w), 662 (br, s), 566 $(\mathrm{m}), 518(\mathrm{sh}), 461(\mathrm{w}), 413(\mathrm{w})$. The purity of this microcrystalline compound resulting from the stirring method was determined by PXRD (section 5.3.2.4.3).

### 4.6 Catalytic studies

### 4.6.1 $\quad \mathbf{A}^{3}$-Coupling

The basis of $\mathrm{A}^{3}$-Coupling is described in section 3.4.1.
General reaction procedure: 250 mg of $4 \AA$ molecular sieves were placed into a vial. In the course of the reaction, 1 eq. of water is produced as a side product, which is excluded by the use of the molecular sieves. Then $5 \mathrm{~mol} \%$ of compound (13) and 5 mL of isopropanol were added. Subsequently, alkyne ( $3.6 \mathrm{mmol}, 1.2 \mathrm{eq}$.), aldehyde ( $3.0 \mathrm{mmol}, 1.0$ eq.) and amine ( $3.3 \mathrm{mmol}, 1.1 \mathrm{eq}$. ) were added. The reaction mixture was refluxed overnight. After completion of the reaction (TLC monitoring) the reaction mixture was cooled to room temperature and filtered over Celite ${ }^{\circledR}$. The residue was washed with 15 mL isopropanol, then the solvent was removed under reduced pressure. The resulting crude product (yellow oil) was
dissolved in minimum amount of ethylacetate and purified by column chromatography (gradient: $0-5 \%$, ethylacetate - hexane).

## Compound (16): 1-(1,3-diphenylprop-2-ynyl)piperidine

Pale yellow oil, $430 \mathrm{mg}, 52 \%$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta(\mathrm{ppm})=7.67(\mathrm{~d}, \mathrm{~J}=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.58-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.29(\mathrm{~m}, 6 \mathrm{H}), 4.83(\mathrm{~s}, 1 \mathrm{H}), 2.62-2.57(\mathrm{~m}, 4 \mathrm{H})$, $1.62(\mathrm{dp}, \mathrm{J}=12.9,7.5 \mathrm{~Hz}, 4 \mathrm{H}), 1.48(\mathrm{dd}, \mathrm{J}=11.8,5.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right.$, $126 \mathrm{MHz}) \delta(\mathrm{ppm})=138.5(\mathrm{C}), 131.7(2 \times \mathrm{CH}), 128.4(2 \times \mathrm{CH}), 128.1(2 \times \mathrm{CH}), 127.9$ $(2 \times \mathrm{CH}), 127.3(2 \times \mathrm{CH}), 123.2(\mathrm{C}), 87.7(\mathrm{C}), 85.9(\mathrm{C}), 62.3\left(2 \times \mathrm{CH}_{2}\right), 50.6(\mathrm{CH})$, $26.1\left(2 \times \mathrm{CH}_{2}\right)$, $224.3\left(2 \times \mathrm{CH}_{2}\right)$.

Compound (17): 1-(3-(4-fluorophenyl)-1-(4-phenylprop-2-ynyl) pyrrolidine
Pale yellow oil, $437 \mathrm{mg}, 49 \% ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta(\mathrm{ppm})=7.63-7.52$ $(\mathrm{m}, 2 \mathrm{H}), 7.50-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.11-6.93(\mathrm{~m}, 3 \mathrm{H}), 4.85(\mathrm{~s}, 1 \mathrm{H}), 2.72-6.60(\mathrm{~m}, 4 \mathrm{H})$, 1,87-1.72 (m, 4H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta(\mathrm{ppm})=163,5(\mathrm{C}), 161.6(\mathrm{C})$, 135.4 (C), 133.7 ( $2 \times \mathrm{CH}$ ), 129.9 ( $2 \times \mathrm{CH}$ ), 119.2 (C), 115.7 ( $2 \times \mathrm{CH}$ ), 115.2 ( $2 \times \mathrm{CH}$ ), $86.2(\mathrm{C}), 86.1(\mathrm{C}), 58.4(\mathrm{CH}), 50.2\left(\mathrm{CH}_{2}\right), 23.6\left(\mathrm{CH}_{2}\right)$.

Compound (18): 1-(1-cyclopentyl-3-phenylprop-2-ynyl)piperidine
Pale yellow oil, $746 \mathrm{mg}, 93 \% ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta(\mathrm{ppm})=7.49-7.43$ $(\mathrm{m}, 2 \mathrm{H}), 7.34-7.25(\mathrm{~m}, 3 \mathrm{H}), 3.24(\mathrm{~d}, \mathrm{~J}=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{~s}, 2 \mathrm{H}), 2.47(\mathrm{~s}, 2 \mathrm{H})$, 2.32-2.17 (m, 1H), 1.97-1.86 (m, 1H), 1.84-1.74 (m, 1H), 1.71-1.41 (m, 12H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta(\mathrm{ppm})=131.6(2 \times \mathrm{CH}), 128.0(2 \times \mathrm{CH}), 127.5(\mathrm{CH})$, $123.7(\mathrm{C}), 88.0(\mathrm{C}), 85.6(\mathrm{C}), 63.6(\mathrm{CH}), 50.8(\mathrm{C}), 42.3\left(\mathrm{CH}_{2}\right), 30.7\left(\mathrm{CH}_{2}\right), 30.2$ $\left(\mathrm{CH}_{2}\right), 26.2\left(\mathrm{CH}_{2}\right), 25.3\left(\mathrm{CH}_{2}\right), 25.1\left(\mathrm{CH}_{2}\right), 24.6\left(\mathrm{CH}_{2}\right)$.

### 4.6.2 Catalytic reaction for the implementation of furfural with morpholine

The basis of catalytic reaction for the implementation of furfural with a secondary amine is described in section 3.4.2.

General reaction procedure: In air, $4 \AA$ molecular sieves ( 250 mg ) were weighed into a vial. The use of molecular sieves is necessary, since 1 eq. of water is produced as a side product during the reaction. Then 4 mL of MeCN , the appropriate amount of (11)-Ce or (12)-Dy) ( $0.5 \%$ and $1 \%$ ), furfural ( $41 \mu \mathrm{~L}, 0.048 \mathrm{~g}, 0.5 \mathrm{mmol}, 1 \mathrm{eq}$. and morpholine ( $87 \mu \mathrm{~L}, 0.087 \mathrm{~g}, 1 \mathrm{mmol}, 2 \mathrm{eq}$.) were subsequently added. The reaction was stirred at room temperature and the conversion of the reaction was monitored by sampling and determined by NMR measurements. Therefore, the samples was filtered over Celite ${ }^{\circledR}$, washed with DCM and the filtrate was concentrated under reduced pressure.

Compound (19): trans-4,5-dimorpholinocyclopent-2-en-1-one:
yellow oil, which solidified on standing, 1 H NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.61(1 \mathrm{H}$, $\mathrm{dd}, J=6.2,2.2 \mathrm{~Hz}), 6.24(1 \mathrm{H}, \mathrm{dd}, J=6.2,1.8 \mathrm{~Hz}), 3.82,(1 \mathrm{H}, \mathrm{s}), 3.73(4 \mathrm{H}, \mathrm{t}, J=$ $4.5 \mathrm{~Hz}), 3.69(4 \mathrm{H}, \mathrm{t}, J=4.7 \mathrm{~Hz}), 3.29(1 \mathrm{H}, \mathrm{d}, J=3.0 \mathrm{~Hz}), 2.87-2.80(2 \mathrm{H}, \mathrm{m}), 2.70-$ 2.56 ( $6 \mathrm{H}, \mathrm{m}$ ).

### 4.6.3 Photo-electrocatalytic studies

The basis of photo-electrocatalytic studies is described in section 3.4.4.
Samples for photo-electrocatalytic studies were prepared by spin coating. 10 mg of the respective compound was suspended in 1 mL methanol and $50 \mu \mathrm{~L}$ of this suspension were spin coated ( 1000 rpm ) onto a ZnO based coated fluorine-doped tin oxide (FTO) substrate and heat treated with an infrared lamp for 1 min . This process was repeated ten times for every sample.

Then the sample and a gold electrode were sandwiched between plastic plates, thus they are connected and can be utilized as working electrode. A Xe lamp ( 300 W ) with a 0.33 Hz chop light scan and a potentiometer with linear sweep voltammetry over the range -0.8 V to 1.4 V at a scan rate of $0.01 \mathrm{~V} / \mathrm{s}$ as method were used for the studies.

### 4.6.4 Electrocatalytic studies

A one-compartment cell with a standard three-electrode configuration was used for cyclic voltammetry experiments. The reference electrode was a saturated calomel electrode (SCE) and the counter electrode a platinum gauze of large surface area; both electrodes were separated from the bulk electrolyte solution via fritted compartments filled with the same electrolyte. The working electrode was a 3 mm outer diameter GC. Prior to each experiment, solutions were thoroughly de-aerated for at least 30 min with pure argon. A positive pressure of this gas was maintained during subsequent work. The concentration of compound (12)-Dy in aqueous media was 0.4 mM . The composition of the various media in which the experiments were performed was as follows: for $\mathrm{pH}=3.0,0.2 \mathrm{M} \mathrm{Na} 2 \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4}$; for $\mathrm{pH}=5.0$, $0.4 \mathrm{M} \mathrm{NaCH} 33 \mathrm{COO}+\mathrm{CH}_{3} \mathrm{COOH}$; for $\mathrm{pH}=7.0,0.4 \mathrm{M} 0.4 \mathrm{M} \mathrm{NaH}{ }_{2} \mathrm{PO}_{4}+\mathrm{NaOH}$. The stability of the different compounds in solution was assessed by cyclic voltammetry. All experiments were performed at room temperature, which is controlled and fixed for the laboratory at $20^{\circ} \mathrm{C}$. Results were very reproducible from one experiment to the other and slight variations observed over successive runs are rather attributed to the uncertainty associated with the detection limit of the equipment and not to the working electrode pre-treatment nor to possible fluctuations in temperature.

## 5 RESULTS AND DISCUSSION

The core of compounds (4) to (9) contain an Anderson-Evans POM $\left\{\mathrm{M}^{3+} \mathrm{Mo}_{6} \mathrm{O}_{18}\right\}$ $\left(\mathrm{M}^{3+}=\mathrm{Al}^{3+}\right.$ or $\left.\mathrm{Mn}^{3+}\right)$ fragment. In all cases, two triply deprotonated tris(hydroxymethyl)methane-based ligands are attached to this moiety at the $\mathrm{M}^{3+}$ centre via the deprotonated hydroxyl groups, above and below the plane, thus completing the core structure of the Anderson-Evans POM $\left\{\mathrm{M}^{3+} \mathrm{Mo}_{6} \mathrm{O}_{24}\right\}$. The resulting general formula is $\left\{\mathrm{L}-\left(\mathrm{M}^{3+} \mathrm{Mo}_{6} \mathrm{O}_{24}\right)-\mathrm{L}\right\}^{\mathrm{n}-}(\mathrm{n}=3$ or 4$)$, so-called L - POM - L or POM hybrid. The six Mo metal addenda atoms and the central heteroatom $\mathrm{M}^{3+}$ have octahedral coordination geometry and the coordination sites of $\mathrm{M}^{3+}$ are filled by six oxo ligands, which are further shared with the organic ligand and Mo centres of the surrounding octahedra. In order to define the length of the potential L - POM - L linker, the distance between the terminating atoms of the organic unit is given in terms of $\mathrm{T}_{\text {func }}$, where T is the terminal atom and func is the functional group it belongs to.

### 5.1 Previously reported precursors (Pre)

### 5.1.1 $\left[\mathrm{N}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right]_{3}\left[\mathrm{MnMo}_{6} \mathrm{O}_{18}\left\{\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CN}=\mathrm{CH}\left(4-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)\right\}_{2}\right] \cdot 3 \mathrm{DMF}$ (4)

The reaction was carried out via a post-functionalization (section 3.1.1.2.1.1) by dissolving a mixture of $\left[\mathrm{N}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right]_{3}\left[\mathrm{MnMo}_{6} \mathrm{O}_{18}\left\{\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNH}_{2}\right\}_{2}\right]$ (3) and 4-Pyridinecarboxaldehyde in DMF, followed by exposure to ether vapour in order to isolate compound (4) in the form of crystals.

### 5.1.1.1 Single crystal structure

The crystallographic data of compound (4) are given in Table 8.1.
The single crystal X-ray diffraction analysis reveals that compound (4) crystallizes in the triclinic space group $P-1$ with the unit cell parameters $\mathrm{a}=16.346(3) \AA$, $\mathrm{b}=17.020(3) \AA, \mathrm{c}=20.078(4) \AA, \alpha=83.67(3)^{\circ}, \beta=71.79(3)^{\circ}, \gamma=67.63(3)^{\circ}$ and $V=4907(2) \AA^{3}$. The structure of the polyanion in (4), which is shown in Figure 5.1, is composed of an Anderson-Evans POM $\left\{\mathrm{MnMo}_{6} \mathrm{O}_{18}\right\}$ fragment and two triply deprotonated ligands $\left\{\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CN}=\mathrm{CH}\left(4-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)\right\}^{3-}$. The general description of this kind of compound was explained at the beginning of this chapter.


Figure 5.1: L-POM - L moiety in (4). Colour code: Anderson-Evans polyanions: green ring with red polyhedral models, $H$ : black, $O$ : red, C: grey, $N$ : blue. TBA counterions and DMF molecules are omitted for clarity.

The $\mathrm{N}_{\mathrm{py}}-\mathrm{N}_{\mathrm{py}}$ distance of the ligands attached to the Anderson-Evans POM within one L - POM - L is $18.8 \AA$. As previously mentioned, the synthesis of (4) has already been reported, but so far without any crystal structure. For this reason, there is no possibility to compare the $\mathrm{N}_{\mathrm{py}}-\mathrm{N}_{\mathrm{py}}$ distance of compound (4) of this work with the previously published one. ${ }^{66}$ Instead, the $\mathrm{N}_{\mathrm{py}}-\mathrm{N}_{\mathrm{py}}$ distance can be compared to that of $\left[\mathrm{MnMo}_{6} \mathrm{O}_{18}\left\{\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{C}\left(4-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)\right\}_{2}\right]^{3-}$ and $\left[\mathrm{MnMo}_{6} \mathrm{O}_{18}\left\{\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNHCO}\right.\right.$ $\left.\left.\left(4-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)\right\}_{2}\right]^{3-}$, which have distances of $14.7 \AA$ and $19 \AA$, respectively. ${ }^{46,47}$

The POM hybrid has a total charge of 3-, which is balanced by three tetrabutylammonium $\left(\left[\mathrm{N}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right]^{+}\right)$cations. Furthermore, there are three DMF molecules per asymmetric unit, whereas one of these was identified in the lattice via the SQUEEZE function within PLATON. ${ }^{159}$

### 5.1.1.2 Powder X-ray diffraction

Figure 5.2 shows the simulated (simu) and experimental (exp) PXRD-patterns of (4). It is clearly seen that the experimental result shows a good accordance to (4)simu. Merely, the ratio of the intensities of the respective reflections differ. This deviation can be explained due to the fact that the simulated pattern was generated from a single crystal measurement made at 180 K , whereas, in contrast, the experimental PXRD was performed at room temperature.


Figure 5.2: Simulated (simu) and experimental (exp) PXRD-patterns of (4).

### 5.1.1.3 Solid state UV-vis studies

Figure 5.3 shows the solid state UV-vis spectrum of compound (4). The spectrum reveals one absorption band at $\lambda=525 \mathrm{~nm}$, which can be allocated to a d-d electron transfer from the $\mathrm{t}_{2 \mathrm{~g}}$ orbital to the $\mathrm{e}_{\mathrm{g}}{ }^{*}$ orbital within one $\mathrm{Mn}^{3+}$ ion. Additionally, the maximum absorption at $\lambda=280 \mathrm{~nm}$ can be assigned to electron transfers from highest occupied molecule orbitals (HOMOs) of oxygen atoms (ligand $=\mathrm{e}^{-}$-donors) to lowest unoccupied molecular orbitals (LUMOs) of metal atoms (= $\mathrm{e}^{-}$-acceptors), so-called ligand to metal charge transfer (LMCT). The change of absorbance at $\lambda=350 \mathrm{~nm}$ was caused by the change of the lamp during the record of the spectrum. The bandgap of 2.85 eV was found using the Tauc method.


Figure 5.3: Solid state UV-vis spectrum of compound (4).

### 5.1.1.4 Conclusion

Compound (4) was obtained via a post-functionalization by dissolving a mixture of $\left[\mathrm{N}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right]_{3}\left[\mathrm{MnMo}_{6} \mathrm{O}_{18}\left\{\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNH}_{2}\right\}_{2}\right]$ (3) and 4-pyridinecarboxaldehyde in DMF, followed by exposure to ether vapour in order to isolate compound (4) in the form of crystals. This is an alternative synthetic route, which simplifies the isolation of the desired product and also gives a higher yield compared to the reported synthesis strategy. ${ }^{66}$ Furthermore, isolation in the form of single crystals allowed for a SCXRD to be performed. The compound was also characterized by PXRD, EA, UV-vis and FT-IR spectroscopy.

### 5.2 Novel precursors (Pre)

### 5.2.1 [ $\left.\mathrm{N}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right]_{4}\left[\left(\mathrm{MnMo}_{6} \mathrm{O}_{18}\right)\left(\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNHCH}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{COOH}\right)\left(\left(\mathrm{OCH}_{2}\right)_{3}\right.\right.$ $\left.\left.\mathrm{CNHCH}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{COO}\right)\right] \cdot 3 \mathrm{DMF}$ (5)

The reaction was carried out by stirring a mixture of $\left[\mathrm{N}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right]_{4}\left[\mathrm{Mo}_{8} \mathrm{O}_{26}\right]$ (1), 4$\mathrm{HOOC}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{CH}_{2} \mathrm{NHC}\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{3}(\mathbf{L 1}), \mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and DMF for 22 h at $85^{\circ} \mathrm{C}$. Afterwards, compound (5) was isolated as crystalline material by exposure to ether vapour.

### 5.2.1.1 Single crystal structure

The crystallographic data of compound (5) are given in Table 8.2.
The single crystal X-ray diffraction analysis shows that compound (5) crystallizes in the monoclinic space group $P 2_{1} / c$ with the unit cell parameters: $\mathrm{a}=22.3589(8) \AA, \quad \mathrm{b}=17.1768(9) \AA, \quad \mathrm{c}=32.5454(12) \AA, \quad \beta=100.346(3)^{\circ}$ and $V=12296.0(9) \AA^{3}$. The structure of the polyanion in (5), which is shown in Figure 5.4 (a), is composed of an Anderson-Evans POM $\left\{\mathrm{MnMo}_{6} \mathrm{O}_{18}\right\}$ fragment, one triply deprotonated ligand (L1) $\left\{\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNHCH}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{COOH}\right\}^{3-}$ and one fourfold deprotonated ligand (L1) $\left\{\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNHCH}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{COO}\right\}^{4-}$.


Figure 5.4: L-POM - L moiety in (5): Single hybrid (a) and lD "zigzag" chains (b). Colour code: Anderson-Evans polyanions: green ring with red polyhedral models, $O$ : red, C: grey, N: blue, H: black. TBA counterions and DMF molecules are omitted for clarity. For (b): C and $N$ atoms: wire/stick design and only $H$ atoms of carboxylate groups are shown.

The general description of this kind of compound was explained at the beginning of this chapter.

The Ocoo- Ocoo distance of the ligands attached to the Anderson-Evans POM within one POM hybrid ranges from $22.3 \AA$ to $22.9 \AA$. In comparison to compound (4), precursor (5) is on average $4.3 \AA$ longer.

The POM hybrid has a total charge of 4 -, which is balanced by four tetrabutylammonium $\left(\left[\mathrm{N}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right]^{+}\right)$cations. Furthermore, there are three DMF molecules per asymmetric unit, whereas one of these could be identified in the lattice via the SQUEEZE function within PLATON. ${ }^{159}$

The single hybrids of (5) form 1D zigzag chains via hydrogen bonds between two carboxylate groups of the organic ligands of two different hybrid units. Here, the $\mathrm{H} \cdots \mathrm{O}$ distance between two hybrids is $1.4939(36) \AA$ and the $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ angle
amounts to $163.6^{\circ}$. According to Legon and Millen, these suggest moderate hydrogen bonds. ${ }^{160}$ Figure 5.4 (b) shows one of these "zigzag" chains, where it is also seen that the carboxylate groups of the hybrid in the middle are both deprotonated. On the other hand, the other two hybrids contain protonated carboxylate groups, which means that the hybrid in the middle should have a charge of -5 and the other two polyanions a charge of -3 . Due to the fact that the hybrids are in principle identical it can be assumed that statistically each hybrid contains one protonated and one deprotonated ligand and has a charge of -4 .

Figure 5.5 shows an extract of the chains formed by the POM hybrids in perspectives along $a, b$ and $c$-axis, respectively. In the structure, two types of L - POM - L units form the chains resulting in two types of chains with an A-B alternation. For a better understanding, these two types of links within the chains are coloured in green and red. The view along the $b$-axis (see Figure 5.5 (b)) shows that each chain is formed by an A-B alternation of green and red hybrids. It also reveals that in the $a-c$ plane, the chains lie parallel to each other and the shortest distance between two terminal oxygen atoms of two neighbouring polyanions is $8.7 \AA$ A. In the $b-c$ plane (Figure 5.5 (a)) and the $a-b$ plane (Figure 5.5 (c)) the chains have a tilted angle of $107.5^{\circ}$ and $96.3^{\circ}$, respectively.


Figure 5.5: View along the a-axis (a), b-axis (b) and c-axis (c). Colour code: AndersonEvans polyanions: green, red, polyhedral models, $O$ : red, H (only of carboxylate groups): black, C: grey wire/stick, N: blue wire stick. TBA counterions and DMF molecules are omitted for clarity.

### 5.2.1.2 Powder X-ray diffraction

Figure 5.6 shows the simulated (simu) and experimental (exp) PXRD-patterns of (5). The $2 \theta$ values of the reflections of (5)-exp shows a good agreement to (5)-simu.


Figure 5.6: Simulated (simu) and experimental (exp) PXRD-patterns of (5).

### 5.2.1.3 Solid state UV-vis studies

Figure 5.7 shows the solid state UV-vis spectrum of compound (5). The spectrum reveals one absorption band at $\lambda=524 \mathrm{~nm}$, which can be allocated to a d-d electron transfer from the $\mathrm{t}_{2 \mathrm{~g}}$ orbital to the $\mathrm{e}_{\mathrm{g}}{ }^{*}$ orbital within one $\mathrm{Mn}^{3+}$ ion. Furthermore, the maximum absorption at $\lambda=300 \mathrm{~nm}$ can be allocated to a LMCT. The change of absorbance at $\lambda=350 \mathrm{~nm}$ was caused by the change of the lamp during the record of the spectrum. The bandgap of 3.12 eV was found using the Tauc method.


Figure 5.7: Solid state UV-vis spectrum of compound (5).

### 5.2.1.4 Catalytic studies

## Photo-electrocatalytic studies

Photo-electrocatalytic studies of compound (5) were performed with a Xe lamp ( 300 W ) with a 0.33 Hz chop light scan and a potentiometer with linear sweep voltammetry over the range -0.8 V to 1.4 V at a scan rate of $0.01 \mathrm{~V} / \mathrm{s}$ in 0.5 M $\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{pH}=8.6)$ solution. A 3-electrode system with $\mathrm{Ag} / \mathrm{AgCl}$ as a reference electrode and a platinum wire as a counter electrode were used. Compound (5) was taken up in methanol and spin-coated on a ZnO -coated Fluorine-doped Tin Oxide (FTO) substrate and used as working electrode.

The results of the photo-electrocatalytic studies, shown in Figure 5.8, demonstrate that compound (5) is a potential catalyst for water splitting.

By the use of linear sweep voltammetry under irradiation of artificial sunlight (see Figure 5.8 (a)), the current starts to develop at a potential of -0.2 V vs. $\mathrm{Ag} / \mathrm{AgCl}$
and shows the highest value of $5.81 \cdot 10^{-1} \mathrm{~mA} / \mathrm{cm}^{2}$ at 1.4 V vs. $\mathrm{Ag} / \mathrm{AgCl}$. Due to the fact that these values do not significant change after repeating the measurement another two times, the stability of compound (5) can be confirmed under these conditions.

Since compound (5) was applied onto a ZnO -based substrate and ZnO absorbs light in the UV region, which also has photo-electrocatalytic properties for water splitting, the measurement was repeated with UV-cutoff filter ( $<420 \mathrm{~nm}$ ) in order to exclude the catalytic effect of the ZnO based substrate (see Figure 5.8 (b)). In addition, three measurements of linear sweep voltammetry were recorded in order to confirm the stability of compound (5) under these conditions.


Figure 5.8: Photo-electrocatalytic results of compound (5) recorded in $0.5 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$ ( $\mathrm{pH}=8.6$ ) over the range -0.3 V to 1.4 V at a scan rate of $0.01 \mathrm{~V} / \mathrm{s}$ and sunlight simulation without any filter (a) and with a filter filtering the radiation below 420 nm (b).


Figure 5.9: Comparison of photocatalytic studies of compound (5) in $0.5 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$ $(p H=8.6)$ over the range -0.3 V to 1.4 V at a scan rate of $0.01 \mathrm{~V} / \mathrm{s}$ : Studies with and without filter ( $<420 \mathrm{~nm}$ ), for comparison in each case the final 3 rd cycle was chosen.

Figure 5.9 shows the direct comparison of catalytic studies with and without filter. It is clearly seen that a development of a current with the filter occurs at a potential of 0 V vs. $\mathrm{Ag} / \mathrm{AgCl}$, which corresponds to a shift of +0.2 V compared to measurement without any filter. On alternation of the scan rate the current increases to a maximum of $1.31 \cdot 10^{-1} \mathrm{~mA} / \mathrm{cm}^{2}$ at $1.4 \mathrm{~V} \mathrm{vs} . \mathrm{Ag} / \mathrm{AgCl}$. This shows that filtering radiation below 420 nm reduces the catalytic activity of the system by. $77 \%$.

### 5.2.1.5 Conclusion

Compound (5) was successfully synthesized by stirring a mixture of $\left[\mathrm{N}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right]_{4}\left[\mathrm{Mo}_{8} \mathrm{O}_{26}\right] \quad$ (1), $\quad\left(4-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{COOH}\right) \mathrm{CH}_{2} \mathrm{NHC}\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{3} \quad$ (L1), $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and DMF for 22 h at $85^{\circ} \mathrm{C}$ and was isolated in the form of crystals, whereby a crystal structure could be determined. Furthermore, this
compound was also characterized by PXRD, EA, UV-vis and FT-IR spectroscopy. Preliminary photo-electrocatalytic studies reveal that compound (5) shows catalytic properties applicable to water splitting. These studies require further investigation including optimizing the coating of (5) onto the substrate.

### 5.2.2 $\left[\mathrm{N}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right) 4\right]_{3}\left[\left(\mathrm{AlMo}_{6} \mathrm{O}_{18}\right)\left(\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CCH}_{2} \mathrm{OCH}_{2} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{3}\right)_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$

 (6)The reaction was carried out via a pre-functionalization (section 3.1.1.2.1.1) under solvothermal conditions. A mixture of $\mathrm{Na}_{3}\left[\mathrm{Al}(\mathrm{OH})_{6} \mathrm{Mo}_{6} \mathrm{O}_{18}\right] \cdot 2 n \mathrm{H}_{2} \mathrm{O}(n=2-10)$, dipentaerythritol, tetrabutylammonium bromide and $\mathrm{H}_{2} \mathrm{O}$ was stirred for 30 min in a Teflon container, which was then sealed in a stainless steel reactor. The reaction mixture was heated to $120^{\circ} \mathrm{C}$ within 1 h period and then kept at that temperature for 96 hours, followed by cooling to room temperature with a cooling rate of 3.96 $\mathrm{K} / \mathrm{h}$, resulting in white crystalline material.

### 5.2.2.1 Single crystal structure

The crystallographic data of compound (6) are given in Table 8.3.
The single crystal X-ray diffraction analysis reveals that compound (6) crystallizes in the monoclinic space group $P 2{ }_{1} / n$ with the unit cell parameters: $\mathrm{a}=13.9305(11) \AA, \quad \mathrm{b}=23.8385(13) \AA, \quad \mathrm{c}=15.3355(12) \AA, \quad \beta=113.593(7)^{\circ}$, $\mathrm{V}=4667.0(6) \AA^{3}$. The structure of the polyanion in (6), which is shown in Figure 5.10, is composed of an Anderson-Evans POM $\left\{\mathrm{AlMo}_{6} \mathrm{O}_{18}\right\}$ fragment and two triply deprotonated dipentaerythritol $\left\{\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CCH}_{2} \mathrm{OCH}_{2} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{3}\right\}^{3-}$ ligands. The general description of this kind of compound was explained at the beginning of this chapter. The none-coordinating methoxy groups of the organic ligands
attached to the POM unit are disordered and the longest $\mathrm{O}_{\text {methoxy }}$ - $\mathrm{O}_{\text {methoxy }}$ distance within one L-POM - L is 18.9 A .


Figure 5.10: L-POM - L unit in (6). One part of disorder is omitted for clarity. Colour code: Anderson-Evans polyanions: green ring with orange polyhedral models, $O$ : red, $C$ : grey, H: black. TBA counterions and water molecules are omitted for clarity.

The POM hybrid has a total charge of 3-, which is balanced by three tetrabutylammonium $\left(\left[\mathrm{N}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right]^{+}\right)$cations. The $n$-butyl groups of the TBA ions are highly disordered with one disordered over a special position of an inversion centre. The central-N atoms is disordered either side of the inversion centre and could not be refined satisfactorily. The electron density of this TBA ion was calculated using the SQUEEZE function within PLATON. ${ }^{159}$ In addition, two lattice water molecules were identified.

The single L - POM - Ls of (6) form 1D zigzag chains via hydrogen bonds between a hydroxyl group of the end of a ligand and a terminal oxygen of the $\left\{\mathrm{AlMo}_{6} \mathrm{O}_{18}\right\}$ unit (see Figure 5.11 and Figure 5.12). Here, the $\mathrm{H} \cdots \mathrm{O}$ distance between two hybrids is $1.93 \AA$ and the $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ angle is in the range $163.3^{\circ}$ to $133.4^{\circ}$ due to the
disorder of the ligand. According to Legon and Millen, these suggest moderate hydrogen bonds. ${ }^{160}$


Figure 5.11: H-bond between a hydroxyl group of the end of a ligand and a terminal oxygen of the $\left\{\mathrm{AlMo}_{6} \mathrm{O}_{18}\right\}$ unit. Only H atoms of hydroxyl groups are shown. Colour code: Anderson-Evans polyanions: green ring with orange polyhedral models, O: red, C: grey, H: black. TBA counterions and water molecules are omitted for clarity.

Figure 5.12 shows an extract of the chains formed by the POM hybrids along $a, b$ and $c$-axis, respectively, whereas the view long the $c$-axis shows the side view of the chains. In the crystal structure, two different types of chains with an A-B alternation are present. The tilted angle between two of these chains amounts to $162.472(542)^{\circ}$. Furthermore, the chains might be held together by electrostatic interaction of $\mathrm{H}_{2} \mathrm{O}$ molecules and TBA cations.


Figure 5.12: View along the a-axis (a), b-axis (b) and c-axis (c). Colour code: AndersonEvans polyanions: green ring with orange polyhedral models, $O$ : red, C: grey wire/stick. TBA counterions, water molecules and $H$ atoms are omitted for clarity.

### 5.2.2.2 Powder X-ray diffraction

Figure 5.13 shows the simulated (simu) and experimental (exp) PXRD-patterns of (6). The comparison of both patterns show that the ratio of intensities of reflections and their shifts along the $2 \theta$ axis are not in good accordance. This deviation can be explained due to the fact that the simulated pattern was generated from a single crystal measurement made at 180 K , whereas, in contrast, the experimental PXRD was performed at room temperature and it is impossible to account for a solvent loss.


Figure 5.13: Simulated (simu) and experimental (exp) PXRD-patterns of (6).

### 5.2.2.3 Solid state UV-vis studies

Figure 5.14 shows the solid state UV-vis spectrum of compound (6). The spectrum reveals one maximum absorption at $\lambda=258 \mathrm{~nm}$, which can be assigned as LMCT. No d-d transitions are observed in line with the lack of delectrons. The bandgap of 3.77 eV was found using the Tauc method.


Figure 5.14: Solid state $U V$-vis spectrum of compound (6).

### 5.2.2.4 Conclusion

Compound (6) was successfully synthesized via a pre-functionalization under solvothermal conditions and isolated in the form of crystals. The crystal structure reveals that the hybrids form 1D zigzag chains via hydrogen bonds between an methoxy group of one hybrid and a terminal oxygen of a neighbouring hybrid. Furthermore, (6) was also characterized by PXRD, EA, UV-vis and FT-IR spectroscopy. This compound, with its terminal oxygen atoms and the organic ligands, is a potential linker for the construction of POMOFs. However, a synthesis of such a framework based on this POM hybrid has not been developed yet.

### 5.2.3 $\left[\mathrm{N}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right]_{3}\left[\left(\mathrm{MnMo}_{6} \mathrm{O}_{18}\right)\left\{\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNH}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{C} \equiv \mathrm{N}\right\}_{2}\right] \cdot 6 \mathrm{MeCN}$ (7)

The reaction was carried out by refluxing a mixture of $\left[\mathrm{N}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right]_{4}\left[\mathrm{Mo}_{8} \mathrm{O}_{26}\right]$ (1), $4-\mathrm{N} \equiv \mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{CH}_{2} \mathrm{NHC}\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{3}(\mathbf{L 2}), \mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ in MeCN for 21 h . The desired compound (7) was isolated as crystalline material by exposure to ether vapour.

### 5.2.3.1 Single crystal structure

The crystallographic data of compound (7) are given in Table 8.4.
The single crystal X-ray diffraction analysis reveals that compound (7) crystallizes in the triclinic space group $P-1$ with the unit cell parameters $\mathrm{a}=20.3358$ ( 3 ) $\AA$, $b=28.4667(5) \AA, \quad c=30.2411(5) \AA, \quad \alpha=67.3340(10)^{\circ}, \quad \beta=70.1380(10)^{\circ}$, $\gamma=76.5140(10)^{\circ}$ and $\mathrm{V}=15087.5(5) \AA^{3}$. The structure of the polyanion in (7), which is shown in Figure 5.15, is composed of an Anderson-Evans POM $\left\{\mathrm{MnMo}_{6} \mathrm{O}_{18}\right\}$ fragment and two triply deprotonated ligands (L2) \{4$\left.\mathrm{N} \equiv \mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{CH}_{2} \mathrm{NHC}\left(\mathrm{CH}_{2} \mathrm{O}\right)_{3}\right\}^{3-}$.

The general description of this kind of compound was explained at the beginning of this chapter.

The $\mathrm{N}_{\mathrm{C}=\mathrm{N}}-\mathrm{N}_{\mathrm{C} \equiv \mathrm{N}}$ distance of the ligands attached to the Anderson-Evans POM within one POM hybrid ranges from 22.1 Å to $23.7 \AA$.


Figure 5.15: L- POM - L moiety in (7). Colour code: Anderson-Evans polyanions: green ring with red polyhedral models, O: red, C: grey, N: blue, H: black. TBA counterions and MeCN molecules are omitted for clarity.

Figure 5.16 shows an extract of (7) with a disordered organic ligand. This disorder can be explained by the inversion of the nitrogen in the amine, which connects the Tris unit with the organic residue. ${ }^{161}$ Furthermore, most of the structures of this work contain this kind of disorder caused by the kink at N atoms (kink at N disorder). Not only amines but also Schiff bases are affected by this effect.


Figure 5.16: L-POM moiety in (7) with disordered organic ligand. Colour code: Anderson-Evans polyanions: green ring with red polyhedral models, O: red, C: grey, N:
blue. TBA counterions, MeCN molecules and H atoms are omitted for clarity.

The POM hybrid has a total charge of 3-, which is balanced by three tetrabutylammonium $\left(\left[\mathrm{N}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right]^{+}\right)$cations. Furthermore, there are eighteen MeCN molecules per asymmetric unit, whereas eleven of these could be identified in the lattice via the SQUEEZE function within PLATON. ${ }^{159}$

### 5.2.3.2 Powder X-ray diffraction

Figure 5.17 shows the simulated (simu) and experimental (exp) PXRD-patterns of (7). It is clearly seen that the experimental result shows a good accordance to (7)simu. The five weak low angle reflections in the simulated pattern are not observable in the measured one as a result of the signal to noise ratio at low diffractions angles.


Figure 5.17: Simulated (simu) and experimental (exp) PXRD-patterns of (7).

### 5.2.3.3 Solid state UV-vis studies

Figure 5.18 shows the solid state UV-vis spectrum of compound (7). The spectrum reveals one absorption band at $\lambda=527 \mathrm{~nm}$, which can be assigned to a d-d electron transfer from the $\mathrm{t}_{2 \mathrm{~g}}$ orbital to the $\mathrm{e}_{\mathrm{g}}{ }^{*}$ orbital within one $\mathrm{Mn}^{3+}$ ion. The maximum absorption at $\lambda=271 \mathrm{~nm}$ can be allocated to a LMCT. The change of absorbance at $\lambda=350 \mathrm{~nm}$ was caused by the change of the lamp during the record of the spectrum. The bandgap of 3.12 eV was found using the Tauc method.


Figure 5.18: Solid state $U V$-vis spectrum of compound (7).

### 5.2.3.4 Conclusion

Compound (7) was successfully synthesized by refluxing a mixture of $\left[\mathrm{N}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right]_{4}\left[\mathrm{Mo}_{8} \mathrm{O}_{26}\right] \quad$ (1), $\quad 4-\mathrm{N} \equiv \mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{CH}_{2} \mathrm{NHC}\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{3} \quad$ (L2), $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and MeCN for 21 h and was isolated in the form of crystals, whereby a crystal structure could be determined. Furthermore, this compound was also characterized by PXRD, EA, UV-vis and FT-IR spectroscopy. This compound, with its terminal oxygen atoms and the organic ligands, is a potential linker for the construction of POMOFs. However, a synthesis of such a framework based on this L - POM - L has not been developed yet. Although amorphous material results from reactions aimed at creating frameworks no single crystals have been obtained to date.

### 5.2.4 $\left[\mathrm{N}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right]_{3}\left[\mathrm{MnMo}_{6} \mathrm{O}_{18}\left\{\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNHC}=\mathrm{O}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right)\right\}_{2}\right] \cdot 6 \mathrm{DMF}(8)$

The reaction was carried out by stirring a mixture of $\left[\mathrm{N}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right]_{4}\left[\mathrm{Mo}_{8} \mathrm{O}_{26}\right]$ (1), 4$\mathrm{NO}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{C}=\mathrm{ONHC}\left(\mathrm{HOCH}_{2}\right)_{3}(\mathbf{L 3}), \mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and DMF for 24 h at $85^{\circ} \mathrm{C}$. Afterwards, compound (8) was isolated as crystalline material by exposure to ether vapour.

### 5.2.4.1 Single crystal structure

The crystallographic data of compound (8) are given in Table 8.5.
The single crystal X-ray diffraction analysis reveals that compound (8) crystallizes in the orthorhombic space group Pbcn with the unit cell parameters: $a=63.585(4) \AA, b=18.1926(12) \AA, c=26.6998(12) \AA, V=30886(3) \AA^{3} . T h e$ structure of the polyanion in (8), which is shown in Figure 5.19, is composed of an Anderson-Evans POM $\left\{\mathrm{MnMo}_{6} \mathrm{O}_{18}\right\}$ fragment and two triply deprotonated ligands (L3) $\left\{\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNHC}=\mathrm{O}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right)\right\}^{3-}$.


Figure 5.19: L-POM - L unit in (8). Colour code: Anderson-Evans polyanions: green ring with red polyhedral models, $O$ : red, C: grey, $N:$ blue, H: black. TBA counterions, DMF molecules and $H$ atoms are omitted for clarity.

The general description of this kind of compound was explained at the beginning of this chapter.

The $\mathrm{O}_{\text {noo }}-\mathrm{O}_{\mathrm{Noo}}$ distance of the ligands attached to the Anderson-Evans POM within one L-POM - L ranges from $22.8 \AA$ to $23.3 \AA$.

The POM hybrid has a total charge of 3-, which is balanced by three tetrabutylammonium $\left(\left[\mathrm{N}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right]^{+}\right)$cations.

The asymmetric unit contains one complete $\left[\mathrm{MnMo}_{6} \mathrm{O}_{18}\left\{\left(\mathrm{OCH}_{2}\right)_{3}\right.\right.$ $\left.\left.\mathrm{CNHC}=\mathrm{O}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right)\right\}_{2}\right]^{3-} \quad$ polyanion, one half of the hybrid $\left[\mathrm{MnMo}_{6} \mathrm{O}_{18}\left\{\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNHC}=\mathrm{O}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right)\right\}_{2}\right]^{3-}, 4.5$ tetrabutylammonium cations and 6 DMF molecules, whereas four of the cations and four DMF molecules could be refined, the N atom and one $n$-butyl group of the remaining half of a TBA cation are disordered about the twofold axis. The remaining $n$-butyl groups are disordered, thus the cation could not be refined satisfactorily. Electron density apparently resulting from two further DMF molecules was also observed, but could not be
modelled. The contribution of the half cation and two DMF molecules were therefore modelled using the SQUEEZE function within PLATON. ${ }^{159}$

### 5.2.4.2 Powder X-ray diffraction

Figure 5.20 shows the simulated (simu) and experimental (exp) PXRD-patterns of (8). It is clearly seen that the experimental result shows a good accordance to (8)simu.


Figure 5.20: Simulated (simu) and experimental (exp) PXRD-patterns of (8).

### 5.2.4.3 Solid state UV-vis studies

Figure 5.21 reveals the solid state UV-vis spectrum of compound (8). The spectrum shows one absorption band at $\lambda=526 \mathrm{~nm}$, which can be allocated to a d-d electron transfer from the $\mathrm{t}_{2 \mathrm{~g}}$ orbital to the $\mathrm{e}_{\mathrm{g}}{ }^{*}$ orbital within one $\mathrm{Mn}^{3+}$ ion. The maximum absorption at $\lambda=291 \mathrm{~nm}$ can be allocated to a LMCT. The change of absorbance
at $\lambda=350 \mathrm{~nm}$ was caused by the change of the lamp during the record of the spectrum. The bandgap of 2.92 eV was found using the Tauc method.


Figure 5.21: Solid state $U V$-vis spectrum of compound (8).

### 5.2.4.4 Conclusion

Compound (8) was successfully synthesized by stirring a mixture of $\left[\mathrm{N}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right]_{4}\left[\mathrm{Mo}_{8} \mathrm{O}_{26}\right] \quad$ (1), $\quad 4-\mathrm{NO}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{C}=\mathrm{ONHC}\left(\mathrm{HOCH}_{2}\right)_{3} \quad$ (L3), $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and DMF for 24 h at $85^{\circ} \mathrm{C}$ and was isolated in the form of crystals, whereby a crystal structure could be determined. Furthermore, this compound was also characterized by PXRD, EA, UV-vis and FT-IR spectroscopy. This compound, with its terminal oxygen atoms and the organic ligands, is a potential linker for the construction of POMOFs. The nitro group can be converted into an amine group and thus become a suitable functional group for building up
networks. However, a synthesis of such a framework based on this POM hybrid has not been developed yet.

### 5.2.5 Steps towards developing the POM as linker strategy (c) to the synthesis of POMOFs

### 5.2.5.1 $\left[\mathrm{N}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right]_{3}\left[\left(\mathrm{MnMo}_{6} \mathrm{O}_{18}\right)\left(\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right] \cdot \mathrm{MeCN} \cdot \mathrm{H}_{2} \mathrm{O}\right.$ (9)

The first strategy was to synthesize (9) as a "proof of principle" if the "inverse" POMOF methodology might proof fruitful. This approach inverts the nature of the node to be organic rather than inorganic. For reasons of wanting to establish robust and simple approach this line of inquiry was abandoned. The reaction was carried out by refluxing a mixture of $\left[\mathrm{N}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right]_{4}\left[\mathrm{Mo}_{8} \mathrm{O}_{26}\right](\mathbf{1}),\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{NHC}\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{3}$ (L4), $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and MeCN for 19 h . Afterwards, compound (9) was isolated as crystalline material by exposure to ether vapour.

### 5.2.5.2 Single crystal structure

The crystallographic data of compound (9) are given in Table 8.6.
The single crystal X-ray diffraction analysis reveals that compound (9) crystallizes in the triclinic space group $P-1$ with the unit cell parameters $\mathrm{a}=13.9550(10) \AA$, $b=17.1438(14) \AA, \quad c=19.1438(16) \AA, \quad \alpha=81.478(7)^{\circ}, \quad \beta=78.320(6)^{\circ}$, $\gamma=83.957(6)^{\circ}$ and $\mathrm{V}=4422.2(6) \AA^{3}$. The structure of the polyanion in (9), which is shown in Figure 5.22, is composed of an Anderson-Evans POM \{ $\left.\mathrm{MnMo}_{6} \mathrm{O}_{18}\right\}$ fragment and two triply deprotonated ligands $\left.(\mathbf{L 4})\left\{\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNHC}_{6} \mathrm{H}_{5}\right)\right\}^{3-}$.

The general description of this kind of compound was explained at the beginning of this chapter.

The $\mathrm{C}_{\text {para- }} \mathrm{C}_{\text {para }}$ distance of the ligands attached to the Anderson-Evans POM within one L-POM - L amounts to $15.7 \AA$.


Figure 5.22: L-POM - L unit in (9). Colour code: Anderson-Evans polyanions: green ring with red polyhedral models, O: red, C: grey, N: blue, H: black.

The POM hybrid has a total charge of 3-, which is balanced by three tetrabutylammonium $\left(\left[\mathrm{N}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right]^{+}\right)$cations. Additionally, there are one MeCN and one water molecules per POM hybrid.

### 5.2.5.3 Powder X-ray diffraction

Figure 5.23 shows the simulated (simu) and experimental (exp) PXRD-patterns of (9). The comparison of both patterns shows that the simulated pattern is shifted by $+0.3^{\circ}$ in $2 \theta$. This can be explained, considering the fact that the simulated pattern
was generated from a single crystal measurement made at 180 K , whereas, in contrast, the experimental PXRD pattern was obtained at room temperature.


Figure 5.23: Simulated (simu) and experimental ( exp) PXRD-patterns of (9).

### 5.2.5.4 Solid state UV-vis studies

Figure 5.24 shows the solid state UV-vis spectrum of compound (9). The spectrum reveals one absorption band at $\lambda=527 \mathrm{~nm}$, which can be allocated to a d-d electron transfer from the $\mathrm{t}_{2 \mathrm{~g}}$ orbital to the $\mathrm{e}_{\mathrm{g}}{ }^{*}$ orbital within one $\mathrm{Mn}^{3+}$ ion. Furthermore, the maximum absorption at $\lambda=278 \mathrm{~nm}$ can be allocated to a LMCT. The change of absorbance at $\lambda=350 \mathrm{~nm}$ was caused by the change of the lamp during the record of the spectrum. The bandgap of 2.83 eV was found using the Tauc method.


Figure 5.24: Solid state $U V$-vis spectrum of compound (9).

### 5.2.5.5 Conclusion

Compound (9), which was designed to test an inversive approach, was successfully synthesized by refluxing a mixture of $\left[\mathrm{N}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right]_{4}\left[\mathrm{Mo}_{8} \mathrm{O}_{26}\right]$ (1), $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{NHC}\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{3}(\mathbf{L 4}), \mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and MeCN for 19 h and was isolated in the form of crystals, whereby a crystal structure could be determined. Furthermore, this compound was also characterized by PXRD, EA, UV-vis and FTIR spectroscopy. The L-POM - L can be further modified by e.g. Friedel-Crafts acylation/alkylation. This compound is a potential linker for the construction of POMOFs. However, this synthetic approach demands too many steps creating the desired POMOFs.

### 5.2.6 $\left[\mathrm{N}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right]_{2}\left[\mathrm{Mn}_{2} \mathrm{Mo}_{4} \mathrm{O}_{14}\left(\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right)_{2}\right](10)$

In order to see if trialcohol ligands could be used to occupy the $\mu_{3}$-OR sited of the Anderson-Evans POM, the use of triethanolamine was explored. Under the conditions used two crystalline products could be isolated. One is the previously reported $\left[\mathrm{MoO}_{2}\left\{\left(\mathrm{HOC}_{2} \mathrm{H}_{4} \mathrm{~N}\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}\right)_{2}\right\}\right]^{158}\right.$ (see Figure 5.25) and the second is (10). As already described in section 4.4.9 compound (10) can be isolated using fractional crystallization. Neither compound involves the Anderson-Evans POM but compound (10) does have a heterometallic POM core. The reaction was carried out by refluxing a mixture of $\left[\mathrm{N}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right]_{4}\left[\mathrm{Mo}_{8} \mathrm{O}_{26}\right](\mathbf{1})$, triethanolamine $\left(\mathrm{TEAH}_{3}\right)$, $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and MeCN for 20 h . Afterwards, compound (10) was isolated as crystalline material by exposure to ether vapour.


Figure 5.25: Structure of $\left[\mathrm{MoO}_{2}\left\{\left(\mathrm{HOC}_{2} \mathrm{H}_{4} \mathrm{~N}_{( } \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}\right)_{2}\right\}\right]$. Colour code: Mo: green, O : red, C: grey, N: blue, H: black.

### 5.2.6.1 Single crystal structure

The crystallographic data of compound (10) are given in Table 8.7.
Compound $\left.\quad\left[\mathrm{Mn}_{2} \mathrm{Mo}_{4}\left(\mu_{2}-\mathrm{O}\right)_{6}\left(\mathrm{O}_{\mathrm{t}}\right)_{8}\left(\left(\mu_{3}-\mathrm{O}\right) \mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right)_{2}\right]^{2-}$
crystallizes in the monoclinic space group $P 2_{1} / n$ with the unit cell parameters: $\mathrm{a}=9.9770(11) \AA, \quad \mathrm{b}=16.1440(18) \AA, \quad \mathrm{c}=18.730(2) \AA, \quad \beta=95.186(9)^{\circ} \quad$ and $\mathrm{V}=3004.5(6) \AA^{3}$. The structure of the polyanion in (10), which is shown in Figure 5.26, is composed of the centrosymmetric dianionic heteropolymolybdate $\left\{\mathbf{M n}_{2} \mathbf{M o 4}_{\mathbf{4}} \mathbf{1 6}^{6}\right\}$ and two twofold deprotonated triethanolamine ligands, whereas the charge of the polyanion is balanced by two tetrabutylammonium cations.

## (a)


(b)


Figure 5.26: L-POM - L moiety in (10) without (a) and with (b) polyhedral model. Colour code: $\mathrm{MoO}_{6} / \mathrm{MoO}_{5}$ : green polyhedra, $\mathrm{MnO}_{5} \mathrm{~N}$ : red polyhedra, Mn: orange, Mo: green, $O$ : red, C: grey, N: blue, H: black. TBA counterions are omitted for clarity.

The inorganic core structure is built from two $\left\{\mathrm{Mo}^{6+} \mathrm{O}_{6}\right\}$, two $\left\{\mathrm{Mo}^{6+} \mathrm{O}_{5}\right\}$ and two $\left\{\mathrm{Mn}^{3+} \mathrm{O}_{5} \mathrm{~N}\right\}$ moieties. The oxidation states of the metal centres were calculated by valance sum calculator. As shown in Figure 5.26 the Mn atoms are opposite to each other and each Mn atom is between two Mo atoms. This means that each $\left\{\mathrm{MnO}_{5} \mathrm{~N}\right\}$ octahedron is edge sharing with a $\left\{\mathrm{MoO}_{6}\right\}$ octahedron and a $\left\{\mathrm{MoO}_{5}\right\}$ pentahedron, whereas a $\left\{\mathrm{MoO}_{6}\right\}$ and a $\left\{\mathrm{MoO}_{5}\right\}$ unit, which are opposite to each other, are sharing an edge.

The analysis with the computer program SHAPE ${ }^{156}$ reveals that the geometries of the five-coordinated Mo atom in the $\left\{\mathrm{MoO}_{5}\right\}$ unit, the six-coordinated Mo atom in the $\left\{\mathrm{MoO}_{6}\right\}$ moiety and the six-coordinated Mn atom in the $\left\{\mathrm{MnO}_{5} \mathrm{~N}\right\}$ part (shown in Figure 5.27) are distorted from the ideal shape. The deviation value of Mo from the idealized Johnson trigonal bipyramid (JTBPY) geometry is 1.903. In the case of the $\left\{\mathrm{MoO}_{6}\right\}$ moiety, the deviation value of Mo from the idealized pentagonal pyramid (PPY) geometry is 30.345 . For Mn in the $\left\{\mathrm{MnO}_{5} \mathrm{~N}\right\}$ part, the deviation value from the idealized octahedron (OC) geometry is 2.977 . The continuous shape measurements (CShM's) are listed in Table 8.14 in section 8.2.1.
(a)

(b)
(c)


Figure 5.27: Coordination polyhedra of Mo in $\left\{\mathrm{MoO}_{5}\right\}(\mathrm{a})$, Mo in $\left\{\mathrm{MoO}_{6}\right\}$ (b) and Mn in $\left\{\mathrm{MnO}_{5} \mathrm{~N}\right\}$ (c).

In the $\left\{\mathrm{MoO}_{6}\right\}$ units the Mo-O bond lengths display large variation ranging from $1.700(2)-2.3228(19) \AA$ (shortest: Mo-terminal O atom $\left(\mathrm{O}_{\mathrm{t}}\right)$; longest: Mo$\mathrm{O}_{\text {TEA }} / \mu_{3}-\mathrm{O}$ ), while the O-Mo-O angles are between 68.55(7)-162.20(10) ${ }^{\circ}$.

In the case of the $\left\{\mathrm{MoO}_{5}\right\}$ group the Mo-O bond lengths reach from 1.706(3) $2.517(2) \AA$. Also in this case, the largest distance is attributed to a Mo-OTEA and the shortest to a $\mathrm{Mo}-\mathrm{O}_{\mathrm{t}}$ bond. The $\mathrm{O}-\mathrm{Mo}-\mathrm{O}$ angles extent from 70.70(8)-170.87(11) ${ }^{\circ}$. In the $\left\{\mathrm{MnO}_{5} \mathrm{~N}\right\}$ part, the Mn-O distances are between 1.865(2) and 2.315(2) $\AA$, while the O-Mn-O angles are in the region of 74.34(8) - 176.79(10) ${ }^{\circ}$. The Mn-N bond length is $2.286(3) \AA$, whereas the $\mathrm{N}-\mathrm{Mn}-\mathrm{O}$ angles fall in the range $79.32(9)-148.74(8)^{\circ}$. At the same time, the angle of $148.74(8)^{\circ}$ corresponds to the elongated Jahn-Teller axis of $\mathrm{Mn}^{3+}$, which is defined by the $\mathrm{N}_{\text {TEA }}$ atom of a triethanolamine ligand and an $\mathrm{O}_{\text {TEA }}$ of a deprotonated ethoxy group of another triethanolamine ligand, lying opposite to each other.

The triethanolamine ligands are connected to the inorganic core via two deprotonated ethoxy groups forming an $\mathrm{O} \mu_{3}$ coordination site binding to one Mn and two Mo centres. The third ethoxy group is still protonated and not coordinating to any metal. The $\mathrm{O}_{\text {ethoxy }}-\mathrm{O}_{\text {ethoxy }}$ distance between two ends of the ligands within one POM hybrid is $13.6 \AA$.

### 5.2.6.2 Powder X-ray diffraction

Figure 5.28 shows the simulated (simu) and experimental (exp) PXRD-patterns of (10). It is clearly seen that the experimental result shows a good accordance to (10)simu.


Figure 5.28: Simulated (simu) and experimental (exp) PXRD-patterns of (10).

### 5.2.6.3 Solid state UV-vis studies

Figure 5.29 shows the solid state UV-vis spectrum of compound (10). The spectrum reveals three absorption bands at $\lambda=751 \mathrm{~nm}, 534 \mathrm{~nm}$ and 479 nm , which can be allocated to $d$-d electron transfers from the $t_{2 g}$ orbital to the $e_{g}{ }^{*}$ orbital within one $\mathrm{Mn}^{3+}$ ion. The maximum absorption at $\lambda=290 \mathrm{~nm}$ can be allocated to a LMCT. The change of absorbance at $\lambda=350 \mathrm{~nm}$ was caused by the change of the lamp during the record of the spectrum. The bandgap of 3.31 eV was found using the Tauc method.


Figure 5.29: Solid state UV-vis spectrum of compound (10).

### 5.2.6.4 Conclusion

Compound (10) was successfully synthesized by refluxing a mixture of $\left[\mathrm{N}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right]_{4}\left[\mathrm{Mo}_{8} \mathrm{O}_{26}\right]$ (1), triethanolamine $\left(\mathrm{TEAH}_{3}\right), \mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and MeCN for 20 h and was isolated in the form of crystals, whereby a crystal structure could be determined. Furthermore, this compound was also characterized by PXRD, EA, UV-vis and FT-IR spectroscopy. This compound, with its terminal oxygen atoms and the organic ligands, is a potential linker for the construction of POMOFs. Furthermore, the hydroxyl groups can be transformed to an azide using $\mathrm{NaN}_{3}$ and used as a reactive group for click reaction to form a triazole-based network. Though, a synthesis of such a framework based on this POM hybrid has not been developed yet. As a strategy for Anderson-Evans POM-based POMOFs, this clearly needs much more study.

### 5.3 Extended structures

Table 5.1 summarizes the previously reported and novel $\mathrm{L}-\mathrm{POM}-\mathrm{L}$ hybrids.

Table 5.1: Summary of the previously reported and novel $L-P O M-L$ hybrids.

L- POM - L


Abbreviation for Linker
no (postfunctionalization)


L1

Hetero / central atom of POM

Length
Extended structures
(13), (14A),
(114B), (15)
$\mathrm{Mn}^{3+}$
$22.9 \AA$
$2.9 \AA(11),(12)$
functiona
group group

Additional remarks POMOFs with $\mathrm{Cu}, \mathrm{Zn}$ and Cd
carboxylate
POMOFs
with RE ( $\mathrm{RE}=\mathrm{Y}$, La - Lu)

Table 5.1 continue:
L - POM - L

## Abbreviation Hetero / central for Linker atom of POM

Length
Extended
structures
functional Additional group remarks
 no
(commercially
available)

L2
$\mathrm{Al}^{3+}$
18.9 Å
no hydroxyl
no

$\mathrm{Mn}^{3+}$
$23.7 \AA$
no
nitrile
no

$\mathrm{Mn}^{3+}$
23.3 Å
no
nitro
no

Table 5.1 continue:

L- POM - L


Length
Extended structures for Linker atom of POM

L4
no
(commercially available)
$\mathrm{Mn}^{3+}$
$15.7 \AA$
no
phenyl
hydroxyl

Additional remarks
functional group
no

Disruption strategy

### 5.3.1 Rare earth containing polyoxometalate-based metal organic frameworks (RE-POMOFs)

### 5.3.1.1 RE(DMF $)_{6} \mathbf{R E}(\mathrm{DMF})_{5} \mathrm{RE}_{3}(\mathrm{DMF})_{10}\left[\left(\mathrm{MnMo}_{6} \mathrm{O}_{18}\right)\left(\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNHCH}_{2}\right.\right.$ $\left.\left.\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{COO}\right)_{2}\right]_{3} \cdot \mathrm{xDMF}(\mathrm{RE}=\mathrm{La}-\mathrm{Nd})(11)$

The series of compound comprising the family (11) could be obtained both by layering method and by stirring of the reactants $\left[\mathrm{N}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right]_{4}\left[\left(\mathrm{MnMo}_{6} \mathrm{O}_{18}\right)\left(\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNHCH}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{COOH}\right)\left(\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNHCH}_{2}\right.\right.$ $\left.\left.\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{COO}\right)\right] \cdot 3 \mathrm{DMF}(5)$ with the respective $\mathrm{RE}\left(\mathrm{NO}_{3}\right)_{3}$ salt.

### 5.3.1.1.1 Single crystal structure

For the description of the structure of the series of (11), Ce was chosen as a representative for RE.

The crystallographic data of compound (11)-Ce are given in Table 8.8.
The single crystal X-ray diffraction analysis reveals that compound (11)-Ce crystallizes in the monoclinic space group $P 2{ }_{1}$ with the unit cell parameters: $a=19.2936(2) \AA, \quad b=25.6462(2) \AA, \quad c=26.1388(3) \AA, \quad \beta=90.1440(10)^{\circ}$ and $V=12933.6(2) \AA^{3}$. The network structure of compound (11)-Ce is shown in Figure 5.30 and consists of three $\left\{\left(\mathrm{MnMo}_{6} \mathrm{O}_{18}\right)\left(\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNHCH}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{COO}\right)_{2}\right\}^{5-}$, one $\left\{\mathrm{Ce}(\mathrm{DMF})_{6}\right\}^{3+}$, one $\left\{\mathrm{Ce}(\mathrm{DMF})_{5}\right\}^{3+}$ and one $\left\{\mathrm{Ce}_{3}(\mathrm{DMF})_{10}\right\}^{9+}$ units.


Figure 5.30: Structure of (11)-Ce. Colour code: Anderson-Evans polyanions: green ring with red polyhedral models, Ce: orange, O: red, C: grey wire/stick, N: blue wire/stick. Lattice DMF molecules and H atoms are omitted for clarity. DMF molecules coordinating to Ce atoms are represented by their $O$ atoms.

For a simple description of the structure, Anderson-Evans POMs with different connection modes are marked in different colours. As shown in Figure 5.31 (a) an Anderson-Evans hybrid (shown in green) coordinates to one $\left\{\mathrm{Ce}(\mathrm{DMF})_{5}\right\}^{3+}$ unit (with Ce 2 as central atom) via one terminal oxygen $\left(\mathrm{O}_{\mathrm{t}}\right)$ atom. Furthermore, another Anderson-Evans hybrid (coloured in red) binds to this $\left\{\mathrm{Ce}(\mathrm{DMF})_{5}\right\}^{3+}$ moiety via two $\mathrm{O}_{\mathrm{t}}$ atoms opposite to the green Anderson-Evans POM. This red marked Anderson-Evans hybrid is also attached to one $\left\{\mathrm{Ce}(\mathrm{DMF})_{6}\right\}^{3+}$ (with Ce 1 as centre) unit through two $\mathrm{O}_{\mathrm{t}}$ atoms, which lie across from the two $\mathrm{O}_{\mathrm{t}}$ atoms coordinating to the first $\left\{\mathrm{Ce}(\mathrm{DMF})_{5}\right\}^{3+}$ moiety. A third Anderson-Evans hybrid (marked in blue) is connected to the $\left\{\mathrm{Ce}(\mathrm{DMF})_{6}\right\}^{3+}$ unit via one $\mathrm{O}_{\mathrm{t}}$ atom opposite to the ones of the red Anderson-Evans polyanion. This blue coloured Anderson-Evans hybrid also links via a carboxylate group, which is part of the organic linker, to one $\left\{\mathrm{Ce}_{3}(\mathrm{DMF})_{10}\right\}^{9+}$ unit. As shown in Figure 5.31 (b), five additional Anderson-Evans POMs coordinate to this $\left\{\mathrm{Ce}_{3}(\mathrm{DMF})_{10}\right\}^{9+}$ unit via carboxylate groups coming from two green, two blue and two red Anderson-Evans hybrids.
(a)


Figure 5.31: (a): Structure of (11)-Ce. DMF molecules and H atoms are omitted for clarity. (b): six Anderson-Evans polyanion coordinating to $\left\{C e_{3}(D M F)_{10}\right\}^{9+}$ unit via carboxylate groups. Colour code: Anderson-Evans polyanions: green, red, blue polyhedral models, Ce: orange, $O$ : red, C: grey wire/stick, $N$ : blue wire/stick. Lattice DMF molecules and $H$ atoms are omitted for clarity. DMF molecules coordinating to $C e$ atoms are represented by their $O$ atoms.

The distance between the $\mathrm{Ce}^{3+}$ centres in the $\left\{\mathrm{Ce}(\mathrm{DMF})_{5}\right\}^{3+}$ and the $\left\{\mathrm{Ce}(\mathrm{DMF})_{6}\right\}^{3+}$ units is $12.4 \AA$, whereas the distances between two Mn atoms of the POM moieties are about $12.2 \AA$. The Mn -Ce distance between a core of a hybrid and a Ce ion of the $\left\{\mathrm{Ce}(\mathrm{DMF})_{5}\right\}^{3+}$ and the $\left\{\mathrm{Ce}(\mathrm{DMF})_{6}\right\}^{3+}$ parts, respectively, ranges from $6.1 \AA$ to $6.9 \AA$. The Ce-Ce distances within the $\left\{\mathrm{Ce}_{3}(\mathrm{DMF})_{10}\right\}^{9+}$ unit are $4.2 \AA$, whereas the $\mathrm{Ce}-\mathrm{Mn}$ distance between the $\mathrm{Ce}_{3}$ unit and a hybrid is in the range $12.1 \AA$ to $14.0 \AA$. The $\mathrm{O}_{\text {coo-Ocoo }}$ distance within one POM hybrid ranges from $22.4 \AA$ to $23.2 \AA$. In comparison to compound (5), the hybrids in (11)-Ce are on average compressed by 0.3 Å.

In (11)-Ce several DMF molecules, which coordinate to the Ce centres, are disordered. For this reason, only the O atoms of two DMF molecules of the $\left\{\mathrm{Ce}(\mathrm{DMF})_{6}\right\}^{3+}$ unit, one DMF molecule of the $\left.\{\mathrm{CeDMF})_{5}\right\}^{3+}$ moiety and six DMF molecules of the $\left\{\mathrm{Ce}_{3}(\mathrm{DMF})_{10}\right\}^{9+}$ part could be refined. Furthermore, there are two

DMF molecules in the lattice, whereas 15 additional DMF molecules can be identified in the lattice via the SQUEEZE function within PLATON. ${ }^{159}$

The green coloured Anderson-Evans polyanion is disordered. During the refinement process it was not possible to model this disorder with partial occupancy atoms, but only as single components with highly-anisotropic thermal ellipsoids with significant residual electron density surrounding this polyanion. Considering the Anderson-Evans POM as a wheel the organic parts $\left\{\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNHCH}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{COO}\right\}$ corresponds to its axle. The POM can rotate around this axis and is bonded to just one Ce atom, so that the POM can undergo a high amplitude of vibration. The amplitude of the vibration of the atoms within the POM increases as we move further from the central Mn atom. Due to the fact that the organic ligands are not linear, with the C-N bond forming a kink, this organic part is also twofold disordered about the direction of rotation (kink at N disorder, see section 5.2.3.1). For some of these ligands this disorder could be modelled, for others it was necessary to use one set of highly-anisotropic atoms.

The analysis with the computer program SHAPE ${ }^{156}$ reveals that the geometries of the eight-coordinated Ce atom in the $\left\{\mathrm{Ce}(\mathrm{DMF})_{5}\left(\mathrm{O}_{\mathrm{t}}\right)_{3}\right\}$ unit (with Ce 2 as centre), the nine-coordinated Ce atom in the $\left\{\mathrm{Ce}(\mathrm{DMF})_{6}\left(\mathrm{O}_{\mathrm{t}}\right)_{3}\right\}$ moiety (with Ce 1 as core), the eight coordinated Ce atom in the $\left\{\mathrm{Ce}(\mathrm{DMF})_{4}\left(\mathrm{O}_{2, \mathrm{Coo}}\right)\left(\mathrm{O}_{\mathrm{Coo}}\right)_{2}\right\}$ part (with Ce 3 as centre), the nine-coordinated Ce atom in $\left\{\mathrm{Ce}(\mathrm{DMF})\left(\mathrm{O}_{2, \mathrm{Coo}}\right)_{2}\left(\mathrm{O}_{\mathrm{Coo}}\right)_{4}\right\}$ unit (with Ce 4 as central atom) and the nine-coordinated Ce atom in the $\left\{\mathrm{Ce}(\mathrm{DMF})\left(\mathrm{O}_{2, \mathrm{Coo}}\right)\left(\mathrm{O}_{\mathrm{Coo}}\right)_{6}\right\}$ moiety (with Ce 5 as core) (shown in Figure 5.32) are distorted from their ideal shapes.

The deviation values of Ce 2 and Ce 3 from the idealized square antiprism (SAPR) geometry are 0.517 and 0.307 , respectively. The deviation value for $\mathrm{Ce} 1, \mathrm{Ce} 4$ and Ce5 from the idealized spherical capped square antiprism (CSAPR) geometry are $1.538,2.542$ and 1.289 , respectively. The continuous shape measurements (CShM's) are listed in Table 8.15 in section 8.2.2.


Figure 5.32: Environment of the $\left\{\mathrm{Ce}(D M F)_{5}\left(O_{t}\right)_{3}\right\}(a),\left\{\mathrm{Ce}(D M F)_{6}\left(O_{t}\right)_{3}\right\}$ (b) and $\left\{\mathrm{Ce}_{3}(\mathrm{DMF})_{10}\left(\mathrm{OOC}\left(\mathrm{C}_{6} H_{4}\right)_{6}\right\}\right.$ (c) units. Colour code: Ce: orange, O: red, C: grey wire/stick. DMF molecules coordinating to Ce atoms are represented by their $O$ atoms.

### 5.3.1.1.2 Topological analysis

Compound (11)-Ce forms a 3D network and therefore its topological analysis requires the identification of the appropriate "bricks and building units". The topological analysis reveals that the structure of compound (11)-Ce includes four different topological relevant units. Amongst others it contains two Mn cores resulting from two independent $\left\{\left(\mathrm{MnMo}_{6} \mathrm{O}_{18}\right)\left(\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNHCH}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{COO}\right)_{2}\right\}$ units (green and blue spheres), representing triply coordinating linker hybrids. Furthermore, it comprises one $\mathrm{MnCe}_{2}$ unit, which is based on one $\left\{\left(\mathrm{MnMo}_{6} \mathrm{O}_{18}\right)\left(\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNHCH}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{COO}\right)_{2}\right\}$, one $\left\{\mathrm{Ce}^{3+}(\mathrm{DMF})_{6}\right\}$ and one $\left\{\mathrm{Ce}^{3+}(\mathrm{DMF})_{5}\right\}$ units (red spheres), whereas the POM coordinates to the Ce ions via each two terminal atoms, which means that this hybrid was originally a sixfold
linker, but became extended by the Ce cations and thus reduced to a fourfold linker. The blue and green spheres are connected to these red spheres, which represent the coordination of the blue and green labelled Anderson-Evans POM moieties of the hybrids to the $\left\{\mathrm{Ce}^{3+}(\mathrm{DMF})_{6}\right\}$ and $\left\{\mathrm{Ce}^{3+}(\mathrm{DMF})_{5}\right\}$ units, respectively, via terminal oxygen atoms of the POMs. The fourth component of the topology are the $\mathrm{Ce}_{3}$ centres originating from one $\left\{\mathrm{Ce}_{3}{ }^{9+}(\mathrm{DMF})_{10}\right\}$ unit (purple sphere). As shown in Figure 5.33 it is clearly seen that each purple sphere is hexagonally connected to each two green, blue and red spheres. This represents the coordination of the POMhybrids to the $\left\{\mathrm{Ce}_{3}{ }^{9+}(\mathrm{DMF})_{10}\right\}$ moiety via the carboxylate groups. Furthermore, each blue and green sphere binds to each two purple and one red sphere. Additionally, every red sphere links to two purple, one green and one blue sphere.



Figure 5.33: Topological net of (11)-Ce along the a-axis created from the $L-P O M-L$ 3-connecting, which is green and blue, from the 4-connecting, which is red and 6connecting, which is the Ce $e_{3}$ unit.

The topology can be identified as a 3,4,6-coordinated 3-nodal net with point symbol $\left\{6^{10} \cdot 8^{3} \cdot 10^{2}\right\}\left\{6^{3}\right\} 2\left\{6^{5} \cdot 10\right\}$ and labeled as $\mathbf{3 , 4 , 6 T 2 8 1}$.

### 5.3.1.1.3 Powder X-ray diffraction

Figure 5.34 shows the PXRD patterns of series (11)-RE with $\mathrm{RE}=\mathrm{La}-\mathrm{Nd}$. The simulated pattern ((11)-Ce simu) serves as reference. From all PXRD patterns of (11)-RE, it is clearly seen that the samples contain the desired products. However, the patterns with the labelling "l" (= synthesized via layering method) show some extra reflections at e.g. $6.2^{\circ}$ in $2 \theta$ and $24.1^{\circ}$ in $2 \theta$, respectively. This reveals that during the crystallization process at least one other unknown compound crystallizes. It was found that the formation of this by-product could be avoided using stirring method (labelled in Figure 5.34 with " $s$ ").


Figure 5.34: PXRD-patterns of the (11)-RE series (with $R E=L a-N d$ ), simu is abbreviation for simulation, " $s$ " is abbreviation for stirring method, " $l$ " is abbreviation for layering method.

For further characterization and properties compound (11)-Ce was chosen as a representative for this RE-series.

### 5.3.1.1.4 Solid state UV-vis studies

Figure 5.35 shows the solid state UV-vis spectrum of compound (11)-Ce. The spectrum demonstrate one absorption band at $\lambda=526 \mathrm{~nm}$, which can be assigned to a d-d electron transfer from the $\mathrm{t}_{2 \mathrm{~g}}$ orbital to the $\mathrm{e}_{\mathrm{g}}{ }^{*}$ orbital within one $\mathrm{Mn}^{3+}$ ion atom. The maximum absorption at $\lambda=300 \mathrm{~nm}$ can be allocated to a LMCT. The change of absorbance at $\lambda=350 \mathrm{~nm}$ was caused by the change of the lamp during the record of the spectrum. The bandgap of 2.76 eV was found using the Tauc method.


Figure 5.35: Solid state UV-vis spectrum of compound (11)-Ce.

### 5.3.1.1.5 Catalytic studies

## Catalysis of the reaction of furfural with morpholine

Rare earth metal containing compounds are well known as catalysts for the reaction of furfural and morpholine, to form trans-4,5-dimorpholinocyclopent-2-en-1-one (19). ${ }^{137}$ Therefore, the catalytic performance of compound (11)-Ce was investigated for this reaction (see Figure 5.36).

(19)

Figure 5.36: Synthesis of trans-4,5-dimorpholinocyclopent-2-en-1-one from furfural and morpholine.

Figure 5.37 and Figure 5.38 show the time-dependent studies of the conversion of furfural to (19) using ${ }^{1} \mathrm{H}-\mathrm{NMR}$ for loadings of 0.5 and $1 \mathrm{~mol} \%$, respectively.


Figure 5.37: Time-dependent studies of conversion using ${ }^{l} H$-NMR for loading of $0.5 \mathrm{~mol} \%$.

In order to follow the progress of the conversion, the integral of the proton in the ${ }^{1} \mathrm{H}$ spectra of the aldehyde group of furfural at 9.67 ppm was compared to the desired trans-product's coupling constant of H 4 and H 5 at 3.29 ppm , which has the $\mathrm{J}=3.0 \mathrm{~Hz}$.


Figure 5.38: Time-dependent studies of conversion using ${ }^{1} \mathrm{H}$-NMR for loading of $1 \mathrm{~mol} \%$.

Additionally, Figure 5.39 shows the summary of the results from the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ studies shown in Figure 5.37 and Figure 5.38. The results reveals that the catalyst (11)-Ce is highly efficient for the reaction of furfural with morpholine to form trans-4,5-dimorpholinocyclopent-2-en-1-one. It was found that after 30 min the conversion for the reaction with the loading of $0.5 \mathrm{~mol} \%$ achieved a value of $86 \%$, whereas a plateau was reached with the completion of the conversion after three hours (red line). In comparison, the reaction with $1 \mathrm{~mol} \%$ loading of the catalyst provided a conversion of $76 \%$, but the plateau, indicating the completion of the conversion (blue line), was also reached after three hours. The study demonstrates that the efficiency of the catalyst (11)-Ce found to be similar although the amount of catalyst was decreased to $0.5 \mathrm{~mol} \%$, resulting in the insignificant decrease in conversion of the desired product.


Figure 5.39: Conversion of furfural as a function of time in the reaction of furfural with morpholine with $0.5 \mathrm{~mol} \%$ and $1 \mathrm{~mol} \%$ loadings of the catalyst (11)-Ce , respectively. The conversion was determined by ${ }^{1} H$ NMR spectroscopy.

## Photo-electrocatalytic studies

The preparation of the working electrode and photo-electrocatalytic studies of compound (11)-Ce were performed under the same conditions of (5) (see section 5.2.1.4).

Figure 5.40 shows the results of the photo-electrocatalytic studies of (11)-Ce and thus its potential application for water splitting.

Utilizing artificial sunlight during linear sweep voltammetry (see Figure 5.40 (a)), an onset of the current appears at a potential of $-0.3 \mathrm{~V} \mathrm{vs} . \mathrm{Ag} / \mathrm{AgCl}$ with a maximum value of $3.47 \cdot 10^{-1} \mathrm{~mA} / \mathrm{cm}^{2}$ at 1.4 V vs. $\mathrm{Ag} / \mathrm{AgCl}$. The stability of compound (11)-

Ce under these conditions was confirmed by recording three measurements of linear sweep voltammetry where the values did not change considerably.

Likewise, in the case of utilizing the filter with a UV-cutoff, three runs of linear sweep voltammetry were recorded, in order to confirm the stability of compound (11)-Ce under these conditions. (see Figure 5.40 (b)). The direct comparison of catalytic studies with and without filter are shown in Figure 5.41.


Figure 5.40: Photo-electrocatalytic results of compound (11)-Ce recorded in 0.5 M
$\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{pH}=8.6)$ in the range -0.5 V to 1.4 V and a scan rate of $0.01 \mathrm{~V} / \mathrm{s}$ and sunlight simulation without any filter (a) and with filtering the radiation below $420 \mathrm{~nm}(b)$.

For the filtered sample the onset of current begins at a potential of -0.2 V vs. $\mathrm{Ag} / \mathrm{AgCl}$, which corresponds to a shift of +0.1 V (anodic shift) compared to measurement without filter. Over the course of the scan the current increases to reach a maximum of $7.66 \cdot 10^{-2} \mathrm{~mA} / \mathrm{cm}^{2} 1.4 \mathrm{~V}$ vs. $\mathrm{Ag} / \mathrm{AgCl}$. This reveals that
filtering radiation below 420 nm reduces the catalytic activity of the system by $75 \%$.

Additionally, starting at a potential of +1.2 V the current slightly increases at phases even when the light of the Xe lamp is switched off. Since this process is light independent, this behavior occurs both under filtered and unfiltered light conditions, indicating a mere electrochemical process.


Figure 5.41: Comparison of photocatalytic studies of compound (11)-Ce in $0.5 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$ ( $\mathrm{pH}=8.6$ ) in the range -0.5 V to 1.4 V and a scan rate of $0.01 \mathrm{~V} / \mathrm{s}$ : Studies with and without filter $(<420 \mathrm{~nm})$, for comparison in each case the final 3rd run was chosen.

### 5.3.1.1.6 Conclusion

The family of (11) was successfully synthesized and isolated in the form of crystals and powder. This series contains the rare earth metals from La to Nd , whereas the Ce containing compound was chosen as a representative for characterizations such
as SCXRD, UV-vis spectroscopy and additionally, catalytic properties of this series.

The PXRD patterns of the whole series reveal that by changing the reaction conditions from the layering method to stirring conditions of the reactants the desired POMOFs could be obtained in the form of pure powders and an unknown impurity, which appears during the crystallization process of the layering method, could be avoided. Furthermore, the whole series was characterized by FT-IR spectroscopy.

Compound (11)-Ce shows interesting catalytic properties for the reaction of furfural and morpholine to form trans-4,5-dimorpholinocyclopent-2-en-1-one. In the absence of a catalyst, under similar conditions the reaction takes longer ( $\approx 80$ days) and the thermodynamically stable product 2,4 -diaminocyclopentene-2-enone is formed instead of the desired product trans-4,5-dimorpholinocyclopent-2-en-1one. ${ }^{162}$ In respect of the successful transformation of furfural to the desired product in high conversion requires further investigation of (11)-Ce with alternative amine derivatives using primary and secondary amines, in particular aniline derivatives, pyperidine, pyridine etc.

Preliminary photo-electrocatalytic studies reveal that compound (11)-Ce shows catalytic water splitting properties. However, these studies need further investigation and the process of coating of (11)-Ce onto the substrate has to be optimized.

### 5.3.1.2 $\left[\mathrm{RE}(\mathrm{DMF})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}\left[\mathrm{RE}_{3}(\mathrm{DMF})_{6}\right]\left[\left(\left(\mathrm{MnMo}_{6} \mathrm{O}_{18}\right)\left(\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNHCH}_{2}\right.\right.\right.$ $\left.\left.\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{COO}\right)_{2}\right]_{3} \cdot \mathbf{x D M F}(\mathrm{RE}=\mathbf{Y}, \mathbf{S m}-\mathrm{Lu})(12)$

The series of compound (12)-RE $(\mathrm{RE}=\mathrm{Y}, \mathrm{Sm}-\mathrm{Lu})$ was obtained by over-layering a buffer solution of $\mathrm{DMF} / \mathrm{MeOH}(1: 1 / \mathrm{v}: \mathrm{v})$ on top of a solution of $\left[\mathrm{N}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right] 4\left[\left(\mathrm{MnMo}_{6} \mathrm{O}_{18}\right)\left(\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNHCH}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{COOH}\right)\left(\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNHCH}_{2}\right.\right.$
$\left.\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{COO}\right)$ ]•3DMF (5) in DMF. Afterwards, a solution of the respective $\mathrm{RE}\left(\mathrm{NO}_{3}\right)_{3}$ salt in MeOH was layered on top of the buffer layer. Due to the diffusion of the reactants through the layers, crystals formed, whereby a series of (12) could be obtained. Furthermore, it was possible to obtain the Dy-based POMOF of (12) in the form of powder by mixing the reactant (5) dissolved in DMF with $\mathrm{Dy}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ dissolved in MeOH.

### 5.3.1.2.1 Single crystal structure

For the description of the structure of the series of (12), Dy was chosen as a representative for RE.

The crystallographic data of compound (12)-Dy are given in Table 8.9.
The single crystal X-ray diffraction analysis shows that compound (12)-Dy crystallizes in the monoclinic space group $P 2_{1} / c$ with the unit cell parameters: $\mathrm{a}=19.5819(7) \AA, \quad \mathrm{b}=25.2560(10) \AA, \quad \mathrm{c}=25.3233(9) \AA, \quad \beta=90.306(3)^{\circ}$ and $\mathrm{V}=12523.7(8) \AA^{3}$. The unit cell is very similar to the one of compound (11)-Ce and is closely isostructural, but the smaller ionic radius of $\mathrm{Dy}^{3+}$ seems to have resulted in a change of the space group from $P 2_{1}$ to the centrosymmetric space group $P 2_{1} / c$. The framework structure of compound (12)-Dy is shown in Figure 5.42 and consists of three $\left\{\left(\mathrm{MnMo}_{6} \mathrm{O}_{18}\right)\left(\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNHCH}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{COO}\right)_{2}\right\}^{5-}$, two $\left\{\mathrm{Dy}(\mathrm{DMF})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right\}^{3+}$ and one $\left\{\mathrm{Dy}_{3}(\mathrm{DMF})_{6}\right\}^{9+}$ moieties. Furthermore, five DMF molecules can be determined in the lattice by using the Olex 2 solvent mask. ${ }^{163}$
(a)

(b)


Figure 5.42: Structure of compound (12)-Dy. Colour code: Anderson-Evans polyanions: green ring with red polyhedral models (a), Anderson-Evans polyanions: green, red polyhedral models (b), Dy: orange, O: red, C: grey wire/stick, N: blue wire/stick. Lattice DMF molecules and H atoms are omitted for clarity. DMF and $\mathrm{H}_{2} \mathrm{O}$ molecules of the $\left\{D y(D M F)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right\}^{3+}$ units are represented by their o atoms. DMF molecules of the $\left\{D y_{3}(D M F)_{6}\right\}^{9+}$ moiety are omitted for clarity.

For a simple description of the structure, Anderson-Evans POMs with different coordination modes are marked in different colours. As shown in Figure 5.42 (b) the red coloured Anderson-Evans POM coordinates to two $\left\{\mathrm{Dy}(\mathrm{DMF})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right\}^{3+}$ units via two terminal oxygen atoms. Additionally, these $\mathrm{Dy}^{3+}$ moieties are further linked to green marked hybrids by one terminal oxygen atom resulting in a coordination number of eight. Within this part of the structure (Figure 5.43) the DyMn distances are $6.1 \AA$ and $6.8 \AA$ and the $\mathrm{Mn}-\mathrm{Mn}$ distance between one green and one red hybrid is $12.1 \AA$. The $\mathrm{Mn}-\mathrm{Mn}$ distance between one to another green POM amounts to $23.6 \AA$. The Dy-Dy distance is $12.1 \AA$. The length of one $\mathrm{O}_{\mathrm{COO}}$ functional group to the other one within one hybrid ranges from $22.7 \AA$ to $22.9 \AA$, which is in comparison to the free hybrid (5) compressed on average by $0.3 \AA$.


Figure 5.43: Extracts of the structure of (12)-Dy. Colour code: Anderson-Evans polyanions: green, red, polyhedral models, Dy: orange, O: red, C: grey wire/stick, $N$ : blue wire/stick. DMF, water molecules and H atoms are omitted for clarity.

The analysis with the computer program SHAPE ${ }^{156}$ reveals that the geometry of the eight-coordinated Dy atom in the $\left\{\mathrm{Dy}(\mathrm{DMF})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\left(\mathrm{O}_{\mathrm{t}}\right)_{3}\right\}$ unit (Figure 5.44) is distorted from the ideal shape.


Figure 5.44: The environment of the $\left\{\mathrm{Dy}(\mathrm{DMF})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\left(\mathrm{O}_{t}\right)_{3}\right\}$. Colour code: Dy: orange, O: red.

The deviation value of this $\mathrm{Dy}^{3+}$ core from the idealized square antiprism (SAPR) geometry is 0.646 . The continuous shape measurements (CShM's) are listed in Table 8.16 in section 8.2.3.
(a)


Figure 5.45: (a) Six Anderson-Evans polyanion coordinating to the $\left\{D y_{3}(D M F)_{6}\right\}^{9+}$ unit via carboxylate groups, (b) extract of the disordered $\left\{D y_{3}(D M F)_{6}\right\}^{9+}$ unit. Colour code: Anderson-Evans polyanions: green, red, polyhedral models, Dy: orange, O: red, C: grey wire/stick, N: blue wire/stick, dummy atom: brown. DMF, water molecules and $H$ atoms are omitted for clarity.

In addition, the carboxylate groups of the hybrids coordinate to the $\left\{\mathrm{Dy}_{3}(\mathrm{DMF})_{6}\right\}^{9+}$ moiety, where the ratio of red to green polyanions coordinating to this core is $4: 2$ (see Figure 5.45 (a)).

The inversion centre of the centrosymmetric space group $P 2_{1} / c$ in the crystal structure of (12)-Dy is between Dy3 and its inversion equivalent Dy3A (see Figure 5.45 (b)) within the $\left\{\mathrm{Dy}_{3}(\mathrm{DMF})_{6}\right\}^{9+}$ moiety. Due to this inversion center the middle Dy atom of the $\left\{\mathrm{Dy}_{3}(\mathrm{DMF})_{6}\right\}^{9+}$ unit is disordered. Furthermore, the coordinating carboxylate groups and the phenyl groups bound to these carboxylate groups are also disordered (kink at N disorder, see section 5.2.3.1). Nevertheless, the twofold disorder could be modelled for all of the organic ligands.

Due to the high degree of disorder, it was not possible to determine the geometries of the Dy atoms within the $\left\{\mathrm{Dy}_{3}(\mathrm{DMF})_{6}\right\}^{9+}$ unit.

Placing a dummy atom (Figure 5.45 (b)) between the twofold disordered Dy3 atom (Dy3A and Dy3B) approximate distances of $12.6 \AA$ to $13.7 \AA$ between the Dy atoms of the $\left\{\mathrm{Dy}_{3}(\mathrm{DMF})_{6}\right\}^{9+}$ moiety to the Mn atoms of the $\mathrm{L}-\mathrm{POM}-\mathrm{L}$ units could be estimated.

### 5.3.1.2.2 Topological analysis

The topological analysis of (12)-Dy reveals that the structure has the same topology as for the closely isostructural compound (11)-Ce (see section 5.3.1.1.2) In Figure 5.33 , in this case the blue and the green $\mathrm{L}-\mathrm{POM}-\mathrm{Ls}$ are equivalent.

### 5.3.1.2.3 Powder X-ray diffraction

Figure 5.46 shows the PXRD patterns of series (12)-RE with RE $=\mathrm{Y}, \mathrm{Sm}-\mathrm{Lu}$. The simulated pattern ((12)-Dy simu) serves as reference. It is clearly seen that all the measured samples, as well the ones with " 1 "(= synthesized via layering method) as the one with " $s$ "(= synthesized under stirring conditions) show a good accordance to (12)-Dy simu. However, the synthesis under stirring condition was only successful in the case of Dy, in all other ten cases the PXRD patterns did not agree to the simulated pattern. For this reason, these patterns are not shown in Figure 5.46.


Figure 5.46: PXRD-patterns of the (12)-RE series (with RE $=Y$, Sm-Lu), simu is abbreviation for simulation, " $s$ ". is abbreviation for stirring method, " $l$ " is abbreviation for layering method.

For further characterization and properties compound (12)-Dy was chosen as a representative for this RE-series.

### 5.3.1.2.4 Solid state UV-vis studies

The UV-vis spectrum of compound (12)-Dy is shown in Figure 5.47. This spectrum shows one absorption band at $\lambda=530 \mathrm{~nm}$, which can be denoted to a d-d electron transfer from the $t_{2 g}$ orbital to the $e_{g}{ }^{*}$ orbital within one $\mathrm{Mn}^{3+}$ ion. The maximum absorption at $\lambda=276 \mathrm{~nm}$ can be allocated to a LMCT. The change of absorbance at $\lambda=350 \mathrm{~nm}$ was caused by the change of the lamp during the record of the spectrum. The bandgap of 2.46 eV was found using the Tauc method.


Figure 5.47: Solid state UV-vis spectrum of compound (12)-Dy.

### 5.3.1.2.5 Catalytic Studies

## Catalysis of the reaction of furfural with morpholine

According to the catalytic properties of (11)-Ce, which can catalyze a domino condensation/ring-opening/electrocyclization process of the transformation of biomass furfural to trans-4,5-dimorpholinocyclopent-2-en-1-one, an alternative hard Lewis acid rare earth metal ion is required. Considering the series of rare earth metls La-Lu, there is a decrease in both the atomic radii and in the radii of the $\mathrm{RE}^{3+}$ ions, caused by the lanthanide contraction. ${ }^{164}$ According to the HSAB principle, the Lewis acidity increases with decreasing of the ionic radii. Therefore, (12)-Dy was chosen as alternative catalyst.

Figure 5.48 and Figure 5.49 show the time-dependent studies of the conversion of furfural to (19) using ${ }^{1} \mathrm{H}-\mathrm{NMR}$ for loadings of 0.5 and $1 \mathrm{~mol} \%$ of (12)-Dy, respectively. The results show similarities to the investigations of (11)-Ce with an
increase of efficiency related to the conversion of furfural of $7 \%$ at a loading of $1 \mathrm{~mol} \%$ after 30 min .


Figure 5.48: Time-dependent studies of conversion using ${ }^{1}$ H-NMR for loading of $0.5 \mathrm{~mol} \%$.


Figure 5.49: Time-dependent studies of conversion using ${ }^{1} \mathrm{H}$-NMR for loading of $1 \mathrm{~mol} \%$

In summary, Figure 5.50 shows the results from the ${ }^{1} \mathrm{H}$-NMR studies of Figure 5.48 and Figure 5.49. The catalyst (12)-Dy is highly efficient for the reaction of furfural with morpholine to form trans-4,5-dimorpholinocyclopent-2-en-1-one. Considering the $0.5 \mathrm{~mol} \%$ loading of (12)-Dy, a conversion of $85 \%$ is achieved after 30 minutes and a plateau is reached after three hours, indicating the completion of conversion (red line). In the case of the loading of $1 \mathrm{~mol} \%$ a conversion of $83 \%$ is achieved after 30 min , but the plateau, indicating the completion of the conversion (blue line), was also reached after three hours.

These results are a proof that a $0.5 \mathrm{~mol} \%$ loading of (12)-Dy is adequate, where the completion of the reaction is reached after three hours.


Figure 5.50: Conversion of furfural as a function of time in the reaction of furfural with morpholine with $0.5 \mathrm{~mol} \%$ and $1 \mathrm{~mol} \%$ loadings of the catalyst (12)-Dy, respectively. The conversion was determined by ${ }^{1} H$ NMR spectroscopy.

## Photo-electrocatalytic studies

Compound (12)-Dy has also been studied as a photo catalyst for photoelectrochemical catalysis of water splitting. Therefore, the preparation of the working electrode and the catalytic studies were performed under the same conditions of (5) (see section 5.2.1.4).

The photo-electrocatalytic studies of compound (12)-Dy are shown in Figure 5.51 and Figure 5.52 and exhibit photo-electrocatalytic properties of this compound for water splitting.

Using an artificial sunlight while a run of a linear sweep voltammetry (see Figure 5.51 (a)), the current begins to develop at a potential of -0.15 V vs. $\mathrm{Ag} / \mathrm{AgCl}$ with
a maximum value of $4.04 \cdot 10^{-1} \mathrm{~mA} / \mathrm{cm}^{2}$ at 1.4 V vs. $\mathrm{Ag} / \mathrm{AgCl}$. Recording three runs of linear sweep voltammetry, the stability of compound (12)-Dy was confirmed under these conditions where the values did not change significantly.

Additionally, measurements utilizing a filter with a UV-cutoff ( $<420 \mathrm{~nm}$ ) were performed three times in order to approve the stability of (12)-Dy under these conditions (see Figure 5.51 (b)).


Figure 5.51: Photo-electrocatalytic results of compound (12)-Dy recorded in 0.5 M $\mathrm{Na}_{2} \mathrm{SO}_{4}(p \mathrm{H}=8.6)$ over the range -0.2 V to 1.4 V at a scan rate of $0.01 \mathrm{~V} / \mathrm{s}$ and sunlight simulation without any filter (a) and with filtering the radiation below 420 nm (b).


Figure 5.52: Comparison of photocatalytic studies of compound (12)-Dy in $0.5 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$ ( $\mathrm{pH}=8.6$ ) over the range -0.2 V to 1.4 V at a scan rate of $0.01 \mathrm{~V} / \mathrm{s}$ : Studies with and without filter ( $<420 \mathrm{~nm}$ ), for comparison in each case the final 3rd cycle was chosen.

The direct comparison of catalytic studies with and without filter are shown in Figure 5.52. It is clearly seen that a development of the current for filtered sample occurs at a potential of 0.1 V vs. $\mathrm{Ag} / \mathrm{AgCl}$, which corresponds to a shift of +0.25 V compared to measurement without filter (anodic shift). With progress of the scan the current increases to reach a maximum of $1.10 \cdot 10^{-1} \mathrm{~mA} / \mathrm{cm}^{2}$ at 1.4 V vs. $\mathrm{Ag} / \mathrm{AgCl}$. This demonstrates that filtering radiation below 420 nm reduces the catalytic activity of the system by $73 \%$.

In addition, a mere electrochemical process occurs, indicated by an onset at a potential of +0.8 V , which is light-independent, since this behavior is observable in phases both with and without irradiating light on the photo-electrode and under filtered and unfiltered light conditions.

This behavior appears to be more pronounced at (12)-Dy than at (11)-Ce, resulting in the performance of subsequently electrocatalytic studies.

## Electrocatalytic studies

The electrocatalytic studies on (12)-Dy were performed by the group of Prof. P. De Oliveira from Laboratoire de Chimie Physique, UMR8000 - Université ParisSud Bâtiment 349 - Campus d'Orsay 15, avenue Jean Perrin 91405 Orsay, FRANCE).

Compound (12)-Dy, which may be regarded as a representative of series (11) and (12), was studied in three different media: $0.2 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{pH}=3,0.4 \mathrm{M}$ $\mathrm{CH}_{3} \mathrm{COONa}+\mathrm{CH}_{3} \mathrm{COOH}, \mathrm{pH}=5$ and $0.4 \mathrm{M} \mathrm{NaH}_{2} \mathrm{PO}_{4}+\mathrm{NaOH} ; \mathrm{pH}=7$.
At $\mathrm{pH}=3$, the cyclic voltammogram $(\mathrm{CV})$ of the compound rapidly evolves, as shown in Figure 5.53, with the progressive fading of the reduction wave at 0.08 V vs. SCE, and the increase of the current of the reduction wave peaking at -0.7 V vs. SCE.


Figure 5.53: Evolution of the CVs of (12)-Dy recorded in $0.2 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{pH}=3$ as a function of time upon successive scanning over the range 0.70 V to -0.95 V. Scan rate: $100 \mathrm{mV} / \mathrm{s}$. Working electrode: glassy carbon; counter electrode: platinum; reference electrode: SCE.

After a few tens of cycles, a stable CV is obtained which is characterised by a reduction wave peaking at $\mathrm{E}_{\mathrm{pc}}=-0.7 \mathrm{~V}$ vs. SCE (see Figure 5.54 (a)) and an oxidation wave at $\mathrm{E}_{\mathrm{pa}}=1.16 \mathrm{~V}$ vs. SCE (see Figure 5.54 (b)). The evolution of the peak currents reveals that the electron transfer phenomena are diffusion-controlled and that there is no formation of deposits on the surface of the working electrode (see Figure 5.55).



Figure 5.54: CVs of (12)-Dy recorded in $0.2 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{pH}=3$ at different scan rates, ranging from 10 to $100 \mathrm{mV} / \mathrm{s}$. The slowest scan rate is the central one. (a) Potential range 0.7 V to -0.95 V . (b) Potential range 0.4 V to 1.3 V . Working electrode: glassy carbon; counter electrode: platinum; reference electrode: SCE.


Figure 5.55: Evolution of the reduction (black) and the oxidation (red) peak currents as a function of the scan rate, between 10 and $100 \mathrm{mV} / \mathrm{s}$. The values were taken from CVs of (12)-Dy recorded in $0.2 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{pH}=3$. Working electrode: glassy carbon; counter electrode: platinum; reference electrode: SCE.

A pH 3 medium is not the most convenient one for the study of the electro-catalytic oxidation of water. Therefore, the study was carried on in two other media having higher pH values: $0.4 \mathrm{M} \mathrm{CH}_{3} \mathrm{COONa}+\mathrm{CH}_{3} \mathrm{COOH}, \mathrm{pH}=5$ and $0.4 \mathrm{M} \mathrm{NaH}_{2} \mathrm{PO}_{4}+$ $\mathrm{NaOH}, \mathrm{pH}=7$. The redox behaviour of (12)-Dy in these two media is very similar, but quite distinct from the response observed at $\mathrm{pH}=3$. The CV was reproducible upon successive scanning. There is a reduction wave peaking at -0.06 V vs. SCE, which corresponds to that one observed at 0.08 V vs. SCE at $\mathrm{pH}=3$, but the latter disappears fast. This wave is stable at $\mathrm{pH}=5$ and the electron transfer associated with it is diffusion-controlled. At $\mathrm{pH}=7$, it shifts to more negative potentials, as expected, peaking at -0.14 V vs. SCE (see Figure 5.56 (a)). However, the oxidation wave observed in the CVs seems to be pH -independent between $\mathrm{pH}=5$ and $\mathrm{pH}=7$. In fact, it peaks at 1.08 V vs. SCE in both media (see Figure 5.56 (a)).

When the potential range was extended up to 1.6 V vs. SCE in order to explore the electro-catalytic properties of this compound towards the oxidation of water, it is observed that the process is more efficient at $\mathrm{pH}=7$ than at $\mathrm{pH}=5$, even if the redox behaviour is similar in the two media (see Figure 5.56 (b)).


Figure 5.56: CVs of (12)-Dy recorded in $0.4 \mathrm{M} \mathrm{CH}_{3} \mathrm{COONa}+\mathrm{CH}_{3} \mathrm{COOH}, \mathrm{pH}=5$ (black) and in $0.4 \mathrm{M} \mathrm{NaH}_{2} \mathrm{PO}_{4}+\mathrm{NaOH}, \mathrm{pH}=7$ (red). (a) Potential range 1.2 V to -1.05 V. (b) Potential range 0.4 V to 1.6 V . Scan rate: $100 \mathrm{mV} / \mathrm{s}$. Working electrode: glassy carbon; counter electrode: platinum; reference electrode: SCE.

The CVs of (12)-Dy at $\mathrm{pH}=5$ and $\mathrm{pH}=7$ with the scan rates from 10 to $100 \mathrm{mV} / \mathrm{s}$ over the range 1.2 V to -1.05 V and 0.4 V to 1.6 V , respectively, are shown in Figure 5.57 and Figure 5.58.


Figure 5.57: CVs of (12)-Dy recorded in $0.4 \mathrm{M} \mathrm{CH} 33 \mathrm{COONa}+\mathrm{CH}_{3} \mathrm{COOH}, \mathrm{pH}=5 \mathrm{at}$ different scan rates ranging from 10 to $100 \mathrm{mV} / \mathrm{s}$. The slowest scan rate is the central one. (a) Potential range 1.2 V to -1.05 V. (b) Potential range 0.4 V to 1.6 V . Working electrode: glassy carbon; counter electrode: platinum; reference electrode: SCE.


Figure 5.58: CVs of (12)-Dy recorded in $0.4 \mathrm{M} \mathrm{NaH}_{2} \mathrm{PO}_{4}+\mathrm{NaOH}, \mathrm{pH}=7$ at different scan rates ranging from 10 to $100 \mathrm{mV} / \mathrm{s}$. The slowest scan rate is the central one. (a) Potential range 1.2 V to -1.05 V. (b) Potential range 0.4 V to 1.6 V. Working electrode: glassy carbon; counter electrode: platinum; reference electrode: SCE.

In order to assess the catalytic efficiency of (12)-Dy, both qualitatively and quantitatively, it is necessary to carry out a CV study at a small scan rate ( $2 \mathrm{mV} / \mathrm{s}$ ) in the absence (just the electrolyte) and in the presence of the compound (see Figure 5.59). At a potential of 1.6 V vs. SCE , the normalised catalytic current, calculated
with the formula $\mathrm{I}_{\text {CAT }}=\left[\left(\mathrm{I}_{(\mathbf{1 2}) \text {-Dy }}-\mathrm{I}_{0}\right) / \mathrm{I}_{0}\right] \times 100$, where $\mathrm{I}_{(\mathbf{1 2}) \text {-Dy }}$ and $\mathrm{I}_{0}$ are the currents in the presence and in the absence of compound (12)-Dy, respectively, equals $183 \%$.


Figure 5.59: CVs recorded in $0.4 \mathrm{M} \mathrm{NaH} \mathrm{N}_{2} \mathrm{PO}_{4}+\mathrm{NaOH}, \mathrm{pH}=7$ : electrolyte alone (black) ; (12)-Dy (red). (a) Potential range 0.4 V to 1.6 V . (b) Potential range 0.4 V to 1.5 V. Scan rate: $2 \mathrm{mV} / \mathrm{s}$. Working electrode: glassy carbon; counter electrode: platinum; reference electrode: SCE.

### 5.3.1.2.6 Conclusion

The series of (12), containing the rare earth metals Y and Sm to Lu , was successfully synthesized and isolated in the form of crystals.

Due to the lanthanide contraction, the radii of the earlier rare earth metal ions ( $\mathrm{La}-\mathrm{Nd}$ ) are bigger, thus the closely isostructural 3D networks of the series (11) are crystalizing in the space group $P 2_{1}$, whereas the 3D structures of the series of (12) have the space group $P 2_{1} / c$.

The results of the powder X-ray diffractograms of series (12) reveal that all the utilized rare earth metal ions show similar PXRD patterns. These results further demonstrate that the Dy containing structure was the only one, which could be also obtained under stirring conditions of the reactant (5) with the Dy salt.

Additionally, the whole series was characterized by FT-IR spectroscopy.

For this reason, the Dy comprising compound was chosen as a representative for the series (12) and characterizations such as SCXRD, UV-vis spectroscopy and in addition, catalytic properties were investigated.

The catalytic studies on (12)-Dy for the implementation of furfural and morpholine to form trans-4,5-dimorpholinocyclopent-2-en-1-one show an increase of the efficiency related to the conversion compared to the catalyst (11)-Ce As aforementioned for (11)-Ce, also for (12)-Dy the variation of amine derivatives should be investigated for this kind of reaction.

In addition, preliminary photo-electrocatalytic studies reveal that compound (12)Dy shows catalytic properties for the application of water splitting. However, these studies require further investigation, as well as the process of coating of (12)-Dy onto the substrate has to be optimized.

Compound (12)-Dy was chosen as a representative for both series (11) and (12) for electrocatalytic studies and reveals promising results.

Further investigation of this compound as electro-catalyst requires $\mathrm{O}_{2}$ evolution experiments.

### 5.3.2 Transition metal containing polyoxometalate-based metal organic frameworks (TM-POMOFs)

### 5.3.2.1 $\left[\mathrm{N}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right]_{5}\left[\mathrm{CuCl}(\mathrm{DMF})\left\{\mathrm{MnMo}_{6} \mathrm{O}_{18}\left(\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CN}=\mathbf{C H}\left(4-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)\right)_{2}\right\}_{2}\right]$ .3DMF (13)

The reaction was carried out by stirring a mixture of $\left[\mathrm{N}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right]_{3}\left[\mathrm{MnMo}_{6} \mathrm{O}_{18}\left\{\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNH}_{2}\right\}_{2}\right]$
$\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$,
4-pyrdinecarboxaldehyde and DMF for 20 h at $85^{\circ} \mathrm{C}$. Afterwards, compound (13) was isolated as crystalline material by exposure to ether vapour.

### 5.3.2.1.1 Single crystal structure

The crystallographic data of compound (13) are given inTable 8.10.
The single crystal X-ray diffraction analysis reveals that compound (13) crystallizes in the monoclinic space group $I 2 / a$ with the unit cell parameters: $\mathrm{a}=27.9207(12) \AA$, $\mathrm{b}=27.5317(11) \AA, \mathrm{c}=27.9543(13) \AA, \beta=99.258(4)^{\circ}$ and $\mathrm{V}=21208.7(16) \AA^{3}$. The structure of compound (13), shown in Figure 5.60, is built from $\left\{\mathrm{MnMo}_{6} \mathrm{O}_{18}\left\{\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CN}=\mathrm{CH}\left(4-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)\right\}_{2}\right\}^{3-}$ units coordinating via the pyridyl groups (Npy) of the organic ligands to $\{\mathrm{CuCl}(\mathrm{DMF})\}^{1+}$ moieties, forming 2D sheets, which lie parallel to each other with an A-B alternation (see Figure 5.61).


Figure 5.60: Structure of (13) Colour code: Anderson-Evans polyanions: green ring with red polyhedral models, Cu: violet, O: red, C: grey wirelstick, N: blue, Cl: green. TBA counterions, DMF molecules and H atoms are omitted for clarity.


Figure 5.61: View along the $a$-axis (a), b-axis (b) and c-axis (c). Colour code: AndersonEvans polyanions: green ring with red polyhedral models, Cu: violet, O: red, C: grey wire/stick, N: blue wire/stick. DMF molecules, Cl atoms, TBA counterions and H atoms are omitted for clarity.

Forgan et al. reported a compound containing [ $\left.\mathrm{MnMo}_{6} \mathrm{O}_{18}\left\{\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CC}_{5} \mathrm{H}_{4} \mathrm{~N}\right\}_{2}\right]^{3-}$ polyanions, which coordinate to $\mathrm{Cu}^{2+}$ ions via pyridyl groups forming 2D square grids, similar to compound (13). ${ }^{46}$ In the following, the bond lengths and angles within the crystal structure of (13) will be compared to the ones of Forgan et al., where these values are in parentheses after the parameters of (13). The $\mathrm{N}_{\mathrm{py}}-\mathrm{Cu}-\mathrm{N}_{\mathrm{py}}$ angle within one sheet is in the range $86.9^{\circ}$ to $174.0^{\circ}\left(90.9^{\circ}\right.$ to $\left.178.7^{\circ}\right)$. The $\mathrm{N}_{\mathrm{py}}-$ $\mathrm{N}_{\text {py }}$ distance within one POM hybrid is $18.8 \AA(14.6 \AA$ ), which is the length of hybrid (4) without coordination to any metal atom. As shown in Figure 5.62, the shortest $\mathrm{Mn}-\mathrm{Cu}$ and $\mathrm{Cu}-\mathrm{Cu}$ distances within one sheet are $11.4 \AA$ (9.3 $\AA$ ) and $22.7 \AA(18.7 \AA)$, respectively. The Mn-Mn distance between two cis coordinating hybrids is $13.8 \AA(13.1 \AA)$, whereas the $\mathrm{Mn}-\mathrm{Mn}$ distance between two trans coordinating hybrids is $22.7 \AA$ ( $18.6 \AA$ ). The distances between two Cu atoms opposite to each other within one rhombus are $27.5 \AA(26.2 \AA)$ and $36.2 \AA(26.4 \AA)$. The shortest $\mathrm{Cu}-\mathrm{Cu}$ distance between two sheets is $14.0 \AA(13.6 \AA)$.


Figure 5.62: View on top of one $2 D$ layer (a) and parallel to $2 D$ layers (b). Colour code: Anderson-Evans polyanions :green ring with red polyhedral models, Cu: violet, O: red,
$C$ : grey stick/wire, $N$ : blue stick/wire. DMF molecules, Cl atoms, counterions and $H$ atoms are omitted for clarity.

The comparison of the two structures reveals that due to the difference of the length of the hybrid linkers, the parameters of rhombs of the square lattice in (13) are bigger then in the structure of Forgan and co-workers.

In compound (13), the $\mathrm{Cl}, \mathrm{DMF}$ and two out of four $\mathrm{N}_{\mathrm{py}}$ groups coordinating to the Cu centre are disordered (kink at N disorder, see section 5.2.3.1). Nevertheless, the twofold disorder could be modelled for all the ligands.

The charge is balanced by tetrabutylammonium $\left(\left[\mathrm{N}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right]^{+}\right)$cations in the lattice. Considering the asymmetric unit, which contains two $\left\{\mathrm{MnMo}_{6} \mathrm{O}_{18}\left\{\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CN}=\mathrm{CH}\left(4-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)\right\}_{2}\right\}^{3-}$ units and one $\{\mathrm{CuCl}(\mathrm{DMF})\}^{1+}$ moiety, five $\left[\mathrm{N}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right]^{+}$ions balance the charge. One of the TBA ion is presumably disordered over an inversion centre. Electron density resulting from three DMF molecules was also observed, but could also not be modelled. The contribution of half of the cation and three DMF molecules were therefore calculated using the SQUEEZE function within PLATON. ${ }^{159}$

Considering the $\left\{\mathrm{CuCl}(\mathrm{DMF})\left(\mathrm{N}_{\mathrm{py}}\right)_{4}\right\}$ unit, the analysis with the computer program SHAPE ${ }^{156}$ reveals that the geometry of the six-coordinated Cu atom in this moiety (shown in Figure 5.63) is distorted from the idealized octahedron (OC) geometry by 2.976. The continuous shape measurements (CShM's) are listed in Table 8.17 in section 8.2.4.


Figure 5.63: The environment of the $\left\{\operatorname{CuCl}(D M F)\left(N_{p y}\right)_{4}\right\}$. The DMF molecule and $N_{p y}$ groups are represented as $O$ and $N$ atoms, respectively. Colour code: Cu : violet, $O$ : red, N: blue, Cl: green.

### 5.3.2.1.2 Topological analysis

Figure 5.64 shows an extract of the topological analysis of (13).
Considering the $\left\{\mathrm{MnMo}_{6} \mathrm{O}_{18}\left\{\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CN}=\mathrm{CH}\left(4-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)\right\}_{2}\right\}$ unit (marked as green stick) as a linear linker, which connects two Cu centres (marked as magenta sphere), 2D sheets with an A-B-A alternation are formed. The topology can be identified as a 4-coordinated, unidonal net with point symbol $\left\{4^{4} .6^{2}\right\}$ and the topological type square lattice (sql).


Figure 5.64: Topological extract of (13).Colour code: Cu: magenta sphere, hybrid (4): green stick.

### 5.3.2.1.3 Powder X-ray diffraction

Figure 5.65 shows the simulated (simu) and experimental (exp) PXRD-patterns of (13). The simulated pattern serves as reference. The experimental pattern shows a good accordance to (13)-simu.


Figure 5.65: Simulated (simu) and experimental (exp) PXRD-patterns of (13).

### 5.3.2.1.4 Solid state UV-vis studies

Figure 5.66 shows the solid state UV-vis spectrum of compound (13). The spectrum shows one absorption band at $\lambda=659 \mathrm{~nm}$, which can be assigned to a d-d electron transfer from the $\mathrm{t}_{2 \mathrm{~g}}$ orbital to the $\mathrm{e}_{\mathrm{g}}{ }^{*}$ orbital within one $\mathrm{Cu}^{2+}$ ion.


Figure 5.66: Solid state UV-vis spectrum of compound (13).

Additionally, an absorption band at $\lambda=524 \mathrm{~nm}$ observable, which can be denoted to a d-d electron transfer from the $\mathrm{t}_{2 \mathrm{~g}}$ orbital to the $\mathrm{e}_{\mathrm{g}}{ }^{*}$ orbital within one $\mathrm{Mn}^{3+}$ ion. The maximum absorption at $\lambda=321 \mathrm{~nm}$ can be allocated to a LMCT. The change of absorbance at $\lambda=350 \mathrm{~nm}$ was caused by the change of the lamp during the record of the spectrum. The bandgap of 2.82 eV was found using the Tauc method.

### 5.3.2 2 Catalytic studies

## $A^{3}$-Coupling

$\mathrm{Cu}^{1+/ 2+}$ and $\mathrm{Ag}^{1+}$ containing compounds are well known as catalysts for threecomponent coupling of an aldehyde, an amine and an alkyne ( $\mathrm{A}^{3}$-Coupling, a scheme for this reaction is shown in Figure 5.67), which has been figured out as a powerful method in order to synthesize propargylic amines. ${ }^{131,132}$ Therefore, the catalytic performance of compound (13) was investigated for this kind of reaction.


Figure 5.67: $A^{3}$-Coupling of an aldehyde, an amine and an alkyne in order to form propargylic amines.

Table 5.2 shows the summary of $\mathrm{A}^{3}$-Coupling reactions using the general procedure described in section 4.6.1.

Table 5.2: Summary of $A^{3}$-Coupling reactions.
Aldehyde
N.R. = no reaction.

### 5.3.2.2.1 Conclusion

Compound (13) was successfully synthesized by stirring a mixture of $\left[\mathrm{N}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right]_{3}\left[\mathrm{MnMo}_{6} \mathrm{O}_{18}\left\{\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNH}_{2}\right\}_{2}\right] \quad$ (3), $\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, 4-pyrdinecarboxaldehyde and DMF for 20 h at $85^{\circ} \mathrm{C}$ and was isolated in the form of crystals, whereby a crystal structure could be determined. Furthermore, this compound was also characterized by PXRD, EA, UV-vis and FT-IR spectroscopy. Additionally, compound (13) shows catalytic properties for a series of $\mathrm{A}^{3}$-Coupling reactions with moderate to high yields.

Furthermore, electrochemical studies were performed, however, the decomposition of (13) in water was observed, and therefore further studies were not continued.

### 5.3.2.3 $\left[\mathrm{Zn}(\mathrm{DMF})_{4}\right]\left[\mathrm{Zn}(\mathrm{DMF})_{2} \mathrm{MnMo}_{6} \mathrm{O}_{18}\left\{\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CN}=\mathrm{CH}\right.\right.$ $\left.\left.\left(4-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)\right\}_{2}\right]_{2} \cdot 10 \mathrm{DMF}(14 \mathrm{~A}) \quad$ and $\quad\left[\left(\mathrm{Zn}(\mathrm{DMF})_{3}\right)_{2}\left(\mathrm{Zn}(\mathrm{DMF})_{4}\right.\right.$ $\left.\left.\mathrm{MnMo}_{6} \mathrm{O}_{18}\left\{\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CN}=\mathrm{CH}\left(4-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)\right\}_{2}\right)_{2}\right]$.9DMF (14B)

Compounds (14A) and (14B) were obtained by over-layering a buffer solution of DMF/MeCN (1:1/v:v) on top of a solution of $\left[\mathrm{N}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right]_{3}\left[\mathrm{MnMo}_{6} \mathrm{O}_{18}\left\{\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CN}=\mathrm{CH}\left(4-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)\right\}_{2}\right] \cdot 3 \mathrm{DMF}$ (4) in DMF. Afterwards, a solution of the $\mathrm{ZnCl}_{2}$ in MeCN was layered on top of the buffer layer. Due to the diffusion of the reactants through the layers crystals of (14A) and (14B) were formed.

### 5.3.2.3.1 Single crystal structure of $\left[\mathrm{Zn}(\mathrm{DMF})_{4}\right]\left[\mathrm{Zn}(\mathrm{DMF})_{2} \mathbf{M n M o}_{6} \mathrm{O}_{18}\right.$ $\left.\left\{\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CN}=\mathrm{CH}\left(4-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)\right\}_{2}\right]_{2} \cdot 10 \mathrm{DMF}(14 \mathrm{~A})$

The crystallographic data of compound (14A) are given in Table 8.11.
The single crystal X-ray diffraction analysis reveals that compound (14A) crystallizes in the cubic space group $I 432$ with unit cell parameters $a=36.7518(7) \AA, V=49640(3) \AA^{3}$. The framework structure, shown in Figure 5.68, is built from $\left\{\mathrm{MnMo}_{6} \mathrm{O}_{18}\left\{\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CN}=\mathrm{C}\left(4-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)\right\}_{2}\right\}^{3-}$ (4) units linking to $\left\{\mathrm{Zn}(\mathrm{DMF}\}^{2+}\right.$ (Zn1) moieties, form a 3D network (see Figure 5.68 (c)). The coordination sphere of the Zn 1 ion in the framework is filled by two DMF molecules, two terminal oxygen $\left(\mathrm{O}_{\mathrm{t}}\right)$ atoms of two POMs (4) and two $\mathrm{N}_{\mathrm{py}}$ groups of two other hybrids (4) (see Figure 5.68 (a)). The two DMF molecules, as well as the two $\mathrm{N}_{\mathrm{py}}$ are cis to one another, whereas the $\mathrm{O}_{\mathrm{t}} \mathrm{s}$ are trans to each other. In addition, every POM hybrid (4) coordinates to two Zn 1 ions via two pyridyl groups and to another two Zn 1 centres via two terminal oxygens (see Figure 5.68 (b)).

The charge of the framework is balanced by $\left\{\mathrm{Zn}(\mathrm{DMF})_{4}\right\}^{2+}(\mathrm{Zn} 2)$ units, which are located in the lattice (see Figure 5.68 (a)), thus leading to the chemical ratio of POM (4): $\left\{\mathrm{Zn}^{2+}\right\}$ of 2:3.

The DMF molecules coordinating to the metal centres Zn 1 and Zn 2 are twofold disordered. Furthermore, there are ten DMF molecules in the lattice, which were identified via the SQUEEZE function within PLATON. ${ }^{159}$


Figure 5.68: (a) The environment of the $\mathrm{Zn}^{2+}$ ions, (b) environment of the AndersonEvans hybrid and (c) the 3D framework of compound (14A). Colour code: C: grey wire/stick, N: blue wire/stick, Zn (light blue), O (red), Anderson-Evans polyanions (greens ring with red polyhedral models). Solvent molecules in lattice and $H$ atoms are omitted for clarity.

In Figure 5.69, some selected distances are noted within the structure of (14A). In $\mathbf{( 1 4 A )}$ the length of the hybrid from $\mathrm{N}_{\mathrm{py}}$ to $\mathrm{N}_{\mathrm{py}}$ amounts to $18.7 \AA$. In comparison to the "naked" hybrid (4) (in which the $\mathrm{N}_{\mathrm{py}}-\mathrm{N}_{\mathrm{py}}$ distance is $18.8 \AA$ ) the POM-unit in compound $(\mathbf{1 4 A})$ is compressed by $0.1 \AA$. The distance between two Zn atoms coordinated by the pyridyl groups of one hybrid is $22.9 \AA$, whereas the distance between two Mn centres of two POMs linked via a Zn atom by a terminal oxygen is $13.4 \AA$. The distance between two Zn atoms coordinated by two terminal oxygen atoms of one polyanion is $11.1 \AA$. Furthermore the diameter of a channel in the POMOF system is $9.8 \AA$.


Figure 5.69: Distances noted in some extracts of (14A). Colour code: C: grey wire/stick, N: blue wire/stick, Zn (light blue), $O$ (red), Anderson-Evans polyanions (greens ring with red polyhedral models).

The analysis with the computer program SHAPE ${ }^{156}$ reveals that the geometries of the six-coordinated Zn 1 atom in the $\left\{\mathrm{Zn}(\mathrm{DMF})_{2}\left(\mathrm{O}_{\mathrm{t}}\right)_{2}\left(\mathrm{~N}_{\mathrm{py}}\right)_{2}\right\}$ unit and the four-
coordinated Zn 2 ion in the $\left\{\mathrm{Zn}(\mathrm{DMF})_{4}\right\}$ (Figure 5.70) are distorted from the idealized octahedron (OC) geometry by 0.114 . The continuous shape measurements (CShM's) are listed in Table 8.18 in section 8.2.5.8.2.2


Figure 5.70: Environment of six-coordinated Zn 1 in the $\left\{\mathrm{Zn}(\mathrm{DMF})_{2}\left(O_{t}\right)_{2}\left(N_{p y}\right)_{2}\right\}$. Colour code: Zn : light blue, $O$ : red, N: blue.

### 5.3.2.3.2 Topological analysis of $[\mathrm{Zn}(\mathrm{DMF}) 4]\left[\mathrm{Zn}(\mathrm{DMF})_{2} \mathbf{M n M o}_{6} \mathrm{O}_{18}\right.$ $\left.\left\{\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CN}=\mathrm{CH}\left(4-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)\right\}_{2}\right]_{2} \cdot 10 \mathrm{DMF}(14 \mathrm{~A})$

Figure 5.71 shows an extract of the topological analysis of (14A). A 3D network results from the fourfold connection through $\left\{\mathrm{MnMo}_{6} \mathrm{O}_{18}\left\{\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CN}=\mathrm{CH}(4-\right.\right.$ $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}$ ) $\left.\}_{2}\right\}$ linkers (purple spheres) between the Zn 1 nodes (light blue spheres). Considering the $\left\{\mathrm{MnMo}_{6} \mathrm{O}_{18}\left\{\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CN}=\mathrm{CH}\left(4-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)\right\}_{2}\right\}$ unit as a fourfold coordinating linker with its Mn core (purple spheres) and the Zn metals (light blue spheres) as nodes connecting the linkers, thus forming a 3D network. The topology can be identified as a $(4,4)$ binodal net with point symbol $\left\{4^{2} \cdot 8^{3} \cdot 10\right\}\left\{4^{2} \cdot 6^{4}\right\}$. The stoichiometry of the nodes is $1: 1$ and the topology of this network has never been reported before, therefore this topology has been assigned as "mpm1".


Figure 5.71: Topological extract of (14A). Colour code: hybrid (4): purple sphere, Zn : light blue sphere.

### 5.3.2.3.3 Single crystal structure of $\left[\left(\mathbf{Z n}(\mathrm{DMF})_{3}\right)_{2}\left(\mathrm{Zn}(\mathrm{DMF})_{4} \mathbf{M n M o}_{6} \mathrm{O}_{18}\right.\right.$ $\left.\left.\left\{\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CN}=\mathrm{CH}\left(4-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)\right\}_{2}\right)_{2}\right] \cdot 9 \mathrm{DMF}(14 \mathrm{~B})$

The crystallographic data of compound (14B) are given in Table 8.12.
Compound
$\left[\left(\mathbf{Z n}(\mathrm{DMF})_{3}\right)_{2}\left(\mathbf{Z n}(\mathrm{DMF})_{4} \mathbf{M n M o}_{6} \mathrm{O}_{18}\left\{\left(\mathbf{O C H}_{2}\right)_{3} \mathbf{C N}=\mathbf{C H}(4-\right.\right.\right.$
$\mathrm{C}_{5} \mathrm{H}_{4} \mathbf{N}$ ) $\left.\left.\}_{2}\right)_{2}\right]$.9DMF ( $\mathbf{1 4 B}$ ) crystallizes in the monoclinic space group $C 2 / c$ with unit cell parameters $a=44.0133(6) \AA, \quad b=12.9451(2) \AA, \quad c=28.3784(4) \AA$, $\beta=102.002(1)^{\circ}, V=15815.3(4) \AA^{3}$. As in the structure (14A), units of $\left\{\mathrm{MnMo}_{6} \mathrm{O}_{18}\left\{\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CN}=\mathrm{CH}\left(4-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)\right\}_{2}\right\}$ (4) also coordinate to Zn atoms via pyridyl groups and terminal oxygen $\left(\mathrm{O}_{\mathrm{t}}\right)$ atoms in structure (14B), resulting in a 3D network. In contrast to compound (14A), compound (14B) contains two different octahedral coordination spheres of the $\{\mathrm{Zn}\}^{2+}$ cations within the framework. Zn 1 is coordinated by three DMF molecules, two $\mathrm{N}_{\mathrm{py}}$ groups of two hybrids (4) and one $\mathrm{O}_{\mathrm{t}}$ atom of one POM (4). The two $\mathrm{N}_{\mathrm{py}}$ groups are trans to each other, whereas the terminal oxo group and the three DMF molecules lie in the square plane (see Figure 5.72 (a)). Zn 2 is coordinated by four DMF molecules in the square plane and two
terminal oxygen atoms of two POM hybrids (4), which are trans to each other (see Figure 5.72 (b)). This combination of these Zn -nodes results in the 3D-structure shown in Figure 5.72 (c) and (d).

In the structure, every second pyridyl group of the organic ligand is disordered by the kink at N disorder, mentioned in section 5.2.3.1. Nevertheless, the twofold disorder could be satisfactory modelled. Additionally, in the lattice one DMF molecule could be refined, whereas further eight DMF molecules were identified via the SQUEEZE function within PLATON. ${ }^{159}$ As in the case of compound (14A) the ratio of POM (4): $\left\{\mathrm{Zn}^{2+}\right\}$ is 2:3, giving the chemical formula, $\left[\mathrm{Zn}\left(\mathrm{DMF}_{3}\right)_{2} \mathrm{Zn}(\mathrm{DMF})_{4} \mathrm{POM}(4)\right]_{2} \cdot 9 \mathrm{DMF}$.

The following distances within the structure (14B) are shown in Figure 5.72. The distance between the Mn core of a POM to a Zn 2 atom, connected though a terminal oxygen of the polyanion is $6.5 \AA$, whereas the space between a Mn core and a Zn 1 centre, which are also linked via a $\mathrm{O}_{\mathrm{t}}$ is about $0.1 \AA$ longer. The distance between one Mn centre of a POM coordinating to one Zn 1 atom via a $\mathrm{N}_{\mathrm{py}}$ group is $11.5 \AA$. The space between two neighboring Zn 1 and Zn 2 nodes bridged by a POM via terminal oxygen atoms is $11.2 \AA$. The parameters of a rhombus, forming 1D channels in the network, are $11.4 \AA$ and $22.9 \AA$, respectively. Additionally, the length from $\mathrm{N}_{\mathrm{py}}$ to $\mathrm{N}_{\mathrm{py}}$ of one hybrid (4) in compound (14B) amounts to $18.8 \AA$, which corresponds to the length of the non-coordinating starting material.


Figure 5.72: Compound (14B): (a) The environment of the Zn1. (b) The environment of the Zn2. (c)+(d) the 3D framework of compound (14B). Colour code: C: grey wire/stick, N: blue wire/stick, Zn: light blue, O: red, Anderson-Evans polyanions: green ring with red polyhedral models. Solvent molecules in the lattice and H atoms are omitted for clarity. DMF molecules coordinating to Zn atoms are represented by their $O$ atom.

The analysis with the computer program SHAPE ${ }^{156}$ reveals that the geometries of the six-coordinated Zn 1 and Zn 2 atoms in the $\left\{\mathrm{Zn}(\mathrm{DMF})_{3}\left(\mathrm{O}_{\mathrm{t}}\right)\left(\mathrm{N}_{\mathrm{py}}\right)_{2}\right\}$ and $\left\{\mathrm{Zn}(\mathrm{DMF})_{4}\left(\mathrm{O}_{\mathrm{t}}\right)_{2}\right\}$ units, respectively, (shown in Figure 5.73) are distorted from the ideal shape. The deviation value of Zn 1 and Zn 2 from the idealized octahedron (OC) geometries are 0.477 and 0.130 , respectively.


Figure 5.73: Coordination octahedra of $\mathrm{Zn1}$ in $\left\{\mathrm{Zn}(\mathrm{DMF})_{3}\left(O_{t}\right)\left(N_{p y}\right)_{2}\right\}$ (a) and Zn 2 in $\left\{\mathrm{Zn}(\mathrm{DMF})_{4}\left(O_{t}\right)_{2}\right\}(b)$.

The continuous shape measurements (CShM's) are listed in Table 8.19 in section 8.2.6.

### 5.3.2.3.4 Topological analysis of $\left[\left(\mathbf{Z n}(\mathrm{DMF})_{3}\right)_{2}\left(\mathbf{Z n}(\mathrm{DMF})_{4} \mathbf{M n M o}_{6} \mathrm{O}_{18}\right.\right.$ $\left.\left.\left\{\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CN}=\mathrm{CH}\left(4-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)\right\}_{2}\right)_{2}\right] \cdot 9 \mathrm{DMF}(\mathbf{1 4 B})$

Figure 5.74 shows an extract of the topological analysis of (14B). As in compound (14A), also in structure (14B) the $\left\{\mathrm{MnMo}_{6} \mathrm{O}_{18}\left\{\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CN}=\mathrm{CH}\left(4-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)\right\}_{2}\right\}$ unit is considered as a fourfold coordinating linker with its Mn core (purple spheres) linking to the Zn metal centres (light blue spheres). Zn 1 coordinates to two N atoms belonging to two different $\left\{\mathrm{MnMo}_{6} \mathrm{O}_{18}\left\{\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CN}=\mathrm{CH}\left(4-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)\right\}_{2}\right\}$ units and to one terminal O atom of the inorganic $\left\{\mathrm{MnMo}_{6} \mathrm{O}_{18}\right\}$ moiety belonging to a third $\left\{\mathrm{MnMo}_{6} \mathrm{O}_{18}\left\{\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CN}=\mathrm{CH}\left(4-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)\right\}_{2}\right\}$ unit, thus forming a three connected T shaped node (Figure 5.74: light blue colour). Zn 2 connects via an $\mathrm{O}_{\mathrm{t}}$ to two $\left\{\mathrm{MnMo}_{6} \mathrm{O}_{18}\right\}$ units forming a 2 -connected node, however according to the topological regulations (two connected nodes do not contribute in the overall
topology, therefore these should be omitted) it can not be considered as node, but as an extension of the linker that links two adjacent $\left\{\mathrm{MnMo}_{6} \mathrm{O}_{18}\right\}$ units. Therefore, each $\left\{\mathrm{MnMo}_{6} \mathrm{O}_{18}\left\{\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CN}=\mathrm{CH}\left(4-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)\right\}_{2}\right\}$ linker connects to three Zn 1 centres (two from the pyridyl groups and one via an $\mathrm{O}_{\mathrm{t}}$ atom) and to one $\left\{\mathrm{MnMo}_{6} \mathrm{O}_{18}\left\{\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CN}=\mathrm{CH}\left(4-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)\right\}_{2}\right\}$ linker via a Zn 2 node (Figure 5.74: pink colour). Thus, the topology can be identified as a $(3,4)$ binodal net with point symbol $\{4.6 .8\}\left\{4.6^{2} .8 .10^{2}\right\}$ and labeling $\mathbf{f s x} \mathbf{- 3 , 4 - C 2 / c - 2}$. As shown in Figure 5.74 the resulting topology is completely different from that found for (14A). This illustrates the value of the topological analysis approach.


Figure 5.74: Topological extract of (14B). Colour code: hybrid (4): purple sphere, Zn : light blue sphere. The topological analysis for (14A) is shown on the right for comparison.

### 5.3.2.3.5 Solid state UV-vis studies

Figure 5.75 shows the solid state UV-vis spectrum of compound (14B). The spectrum reveals one absorption band at $\lambda=524 \mathrm{~nm}$, which can be allocated to a dd electron transfer from the $\mathrm{t}_{2 \mathrm{~g}}$ orbital to the $\mathrm{e}_{\mathrm{g}}{ }^{*}$ orbital within one $\mathrm{Mn}^{3+}$ ion. Furthermore, the maximum absorption at $\lambda=296 \mathrm{~nm}$ can be allocated to a LMCT. The change of absorbance at $\lambda=350 \mathrm{~nm}$ was caused by the change of the lamp
during the record of the spectrum. The bandgap of 2.89 eV was found using the Tauc method.


Figure 5.75: Solid state $U V$-vis spectrum of the mixture of (14A) and (14B).

### 5.3.2.3.6 Catalytic studies

## Photo-electrocatalytic studies

The preparation of the working electrode and photo-electrocatalytic studies of the mixture of $\mathbf{( 1 4 A )}$ and (14B) were performed under the same conditions of (5) (see section 5.2.1.4). The results of the photocatalytic studies, shown in Figure 5.76 and Figure 5.77, demonstrate photo-electrocatalytic properties of these compounds for water splitting.

Utilizing linear sweep voltammetry from -0.8 V to 1.4 V under irradiation of artificial sunlight (see Figure 5.76 (a)), the current starts to develop at a potential of -0.14 V vs. $\mathrm{Ag} / \mathrm{AgCl}$ with a maximum value of $4.74 \cdot 10^{-1} \mathrm{~mA} / \mathrm{cm}^{2}$ at a potential of 1.4 V vs. $\mathrm{Ag} / \mathrm{AgCl}$. The stability of the mixture of (14A) and (14B) under these
conditions was confirmed by measuring three runs of linear sweep voltammetry where the values did not change significant.


Figure 5.76: Photo-electrocatalytic results of the mixture of (14A) and (14B) recorded in $0.5 \mathrm{M} \mathrm{Na} \mathrm{SO}_{4}(\mathrm{pH}=8.6)$ over the range -0.1 V to 1.4 V at a scan rate of $0.01 \mathrm{~V} / \mathrm{s}$ and sunlight simulation without any filter (a) and filtering the radiation below 420 nm (b).

The measurements with a UV-cutoff ( $<420 \mathrm{~nm}$ ) were also performed three times, revealing the stability of the mixture under these conditions (see Figure 5.76 (b)).


Figure 5.77: Comparison of photocatalytic studies of the mixture of (14A) and (14B) in $0.5 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{pH}=8.6)$ over the range -0.1 V to 1.4 V at a scan rate of $0.01 \mathrm{~V} / \mathrm{s}$ : Studies with and without filter $(<420 \mathrm{~nm})$, for comparison in each case the final 3rd cycle was chosen.

The direct comparison of catalytic studies with and without filter are shown in Figure 5.77.

For the filtered sample the onset of current begins at a potential of 0.07 V vs. $\mathrm{Ag} / \mathrm{AgCl}$, which corresponds to a shift of +0.21 V compared to measurement without filter. With progress of the scan the current increases to reach a maximum of $1.33 \cdot 10^{-1} \mathrm{~mA} / \mathrm{cm}^{2}$ at 1.4 V vs. $\mathrm{Ag} / \mathrm{AgCl}$. This reveals that filtering radiation below 420 nm also reduces the catalytic activity of the system by $72 \%$.

### 5.3.2.3.7 Conclusion

The reaction of compound (4) with $\mathrm{ZnCl}_{2}$ results in two POMOF structures in the form of crystals, which could not be isolated separately in spite of many trials. Additionally, the mixture of (14A) and (14B) shows photo-electrocatalytic
properties for water splitting. Furthermore, the topological analysis reveals that (14A) exhibits a new topology in 3D framework structures.

### 5.3.2.4 $\left[\mathrm{Cd}(\mathrm{DMF})_{2}\right][\mathrm{Cd}]\left[\mathrm{N}\left(\boldsymbol{n}-\mathrm{C} 4 \mathrm{H}_{9}\right)_{4}\right]_{2}\left[\mathrm{MnMo}_{6} \mathrm{O}_{18}\left\{\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CN}=\mathrm{CH}\right.\right.$ <br> (4-C5 $\left.\left.\left.\mathrm{H}_{4} \mathrm{~N}\right)\right\}_{2}\right]_{2} \cdot 2 \mathrm{DMF}$ (15)

Compound (15) was obtained by over-layering a buffer solution of DMF/MeCN (1:1/v:v) on top of a solution of $\left[\mathrm{N}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right]_{3}\left[\mathrm{MnMo}_{6} \mathrm{O}_{18}\left\{\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CN}=\mathrm{CH}(4-\right.\right.$ $\left.\left.\left.\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)\right\}_{2}\right] \cdot 3 \mathrm{DMF}$ (4) in DMF. Afterwards, a solution of the $\mathrm{Cd}\left(\mathrm{NO}_{3}\right)_{2} 4 \mathrm{H}_{2} \mathrm{O}$ in MeCN was layered on top of the buffer layer. Crystals of (15) were formed due to the diffusion of the reactants though the layers.

### 5.3.2.4.1 Single crystal structure

The crystallographic data of compound (15) are given in Table 8.13.
The single crystal X-ray diffraction analysis reveals that compound (15) crystallizes in the triclinic space group $P-1$ with the unit cell parameters $\mathrm{a}=11.9141$ (5) $\AA$, $b=13.4714(6) \AA, \quad c=22.9561(9) \AA, \quad \alpha=96.999(3)^{\circ}, \quad \beta=101.332(3)^{\circ}$, $\gamma=113.688(3){ }^{\circ}$ and $\mathrm{V}=3224.5(2) \AA^{3}$. The network structure of compound (15) is shown in Figure 5.78 and consist of two $\left\{\mathrm{MnMo}_{6} \mathrm{O}_{18}\left\{\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CN}=\mathrm{CH}(4-\right.\right.$ $\left.\left.\left.\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)\right\}_{2}\right\}^{-3}$, one $\left\{\mathrm{Cd}(\mathrm{DMF})_{2}\right\}^{2+}$, one $\{\mathrm{Cd}\}^{2+}$ and two $\left[\mathrm{N}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right]^{+}$units. Furthermore, there are two DMF molecule in the lattice.


Figure 5.78: Structure of (15). Colour code: Anderson-Evans polyanions :green ring with red polyhedral models, Cd: brown, O: red, C: grey wire/stick, N: blue wire/stick. TBA counterions and DMF molecules in the lattice are omitted for clarity. DMF molecules coordinating to $C d$ ions are represented by their $O$ atom.

The Anderson-Evans hybrids coordinate to the Cd centres in two ways: On the one hand via the pyridyl groups of the organic ligand, which is attached to the inorganic $\left\{\mathrm{MnMo}_{6} \mathrm{O}_{18}\right\}$ part by means via a tris residue, and on the other hand via one (Figure 5.79 (a)) or two (Figure 5.79 (b))terminal oxygen atoms of the inorganic part of the hybrid. Figure 5.79 (a) and (b) also show the environments of the two octahedrally coordinated Cd cations $\left(\{\mathrm{Cd}\}^{2+}(\mathrm{Cd} 1)\right.$ and $\left\{\mathrm{Cd}(\mathrm{DMF})_{2}\right\}^{2+}(\mathrm{Cd} 2)$ ).

In order to describe the structure of the network in a simple way, the inorganic parts of the Anderson-Evans POM hybrids with different connectivities are shown in different colours (see Figure 5.79). The $\{\mathrm{Cd}\}^{2+}$ (Cd1) is coordinated by two $\mathrm{N}_{\mathrm{py}}$ ligands from two different hybrids (coloured in red), which are trans to each other,
and by two terminal oxygen atoms of two different $\left\{\mathrm{MnMo}_{6} \mathrm{O}_{18}\right\}$ units (shown in green) (see Figure 5.79 (a)).


Figure 5.79: The coordination environments of the Cd ions of (15): $\left\{\mathrm{Cd}^{+2}\right.$ ) and $\left\{C d(D M F)_{2}\right\}^{+2}$. Colour code: Anderson-Evans polyanions :green and red polyhedral models, Cd: brown, $O$ : red, C: grey wire /stick, $N$ : blue wire/stick. TBA counterions and DMF molecules in the lattice are omitted for clarity. DMF molecules coordinating to Cd ions are represented by their $O$ atom.

The $\left\{\mathrm{Cd}(\mathrm{DMF})_{2}\right\}^{2+}(\mathrm{Cd} 2)$ centre is coordinated by two DMF molecules, two terminal oxygen atoms of two different POMs (shhown in red) and two $\mathrm{N}_{\mathrm{py}}$ from another two different hybrids (shown in green). The DMF, terminal oxygen and pyridyl ligands are trans to each other (Figure 5.79 (b)).

Considering the connection between the $\left\{\mathrm{Cd}(\mathrm{DMF})_{2}\right\}^{2+}$ and $\{\mathrm{Cd}\}^{2+}$ moieties via the red and green marked Anderson-Evans hybrids a 3D structure is constructed. An extract of this framework is shown in Figure 5.80. This figure also reveals that the red and green Anderson-Evans polyanions are arranged in an alternating A-BA sequence.


Figure 5.80: Extract of the 3D structure of (15). Colour code: Anderson-Evans polyanions: green, red, Cd: brown, $O$ : red, C: grey wire/stick, N: blue wire/stick. DMF molecules, $H$ atoms and TBA counterions are omitted for clarity.

In the following, some parameters within the structure of (15) will be described and the values are also given in Figure 5.81. The Cd2-Cd2' distance of two Cd 2 ions coordinated by each one terminal oxygen atom of one POM is $13.5 \AA$, whereas the Cd1-Cd1' distance coordinated by each two terminal oxygen atoms of one polyanion is $11.9 \AA$. The $\mathrm{N}_{\mathrm{py}}$ to $\mathrm{N}_{\mathrm{py}}$ distance within one L - POM - L coordinating to two Cd 1 ions is $18.8 \AA$ and $18.6 \AA$ for the coordination to two Cd 2 ions. In comparison to the non-coordinating hybrid (4) (in which the $\mathrm{N}_{\mathrm{py}}-\mathrm{N}_{\mathrm{py}}$ distance is $18.8 \AA$ ) the POM-unit in compound (15) is compressed by $0.1 \AA$. The distance between two Cd1 ions coordinated on both pyridyl groups amounts to $23.2 \AA$, in comparison, the distance of two Cd 2 coordinated by two $\mathrm{N}_{\mathrm{py}}$ groups of one
polyanion is $23.0 \AA$. The diagonal of one 1D channel from one Cd 1 to a Cd 2 centre is $11.9 \AA$.


Figure 5.81: Distances noted in some extracts of (15). Colour code: Anderson-Evans polyanions: green ring with red polyhedral models, Cd: brown, O: red, C: grey wire/stick, $N$ : blue wire/stick.

The analysis with the computer program SHAPE ${ }^{156}$ reveals that the geometries of the six-coordinated Cd 1 and Cd 2 atoms in the $\left\{\mathrm{Cd}(\mathrm{DMF})_{2}\left(\mathrm{O}_{\mathrm{t}}\right)_{2}\left(\mathrm{~N}_{\mathrm{py}}\right)_{2}\right\}$ and $\left\{\mathrm{Cd}\left(\mathrm{N}_{\mathrm{py}}\right)_{2}\left(\mathrm{O}_{\mathrm{t}}\right)_{4}\right\}$ units, respectively, (shown in Figure 5.82) are distorted from idealized octahedral geometry (OC) by 0.185 and 0.044 , respectively.


Figure 5.82: Coordination octahedra of Cd1 in $\left\{C d(D M F)_{2}\left(O_{t}\right)_{2}\left(N_{p y}\right)_{2}\right\}$ (a) and $C d 2$ in $\left\{C d\left(N_{p y}\right)_{2}\left(O_{t}\right)_{4}\right\}(b)$.

The continuous shape measurements (CShM's) are listed in Table 8.20 in section 8.2.7.

### 5.3.2.4.2 Topological analysis

An extract of the topological analysis of (15) is shown in Figure 5.83. From the topological point of view, the $\left\{\mathrm{MnMo}_{6} \mathrm{O}_{18}\left\{\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CN}=\mathrm{CH}\left(4-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)\right\}_{2}\right\}$ unit can be considered as a fourfold linker with its Mn centre connecting to Cd metal nodes. In terms of coordination, the Anderson-Evans POM hybrid, which links to Cd1 ions via terminal oxygen atoms, is a sixfold linker binding via four terminal oxygens and two $\mathrm{N}_{\text {py }}$ groups to Cd metals. Due to the fact that this POM only binds to one Cd1 ion via two $\mathrm{O}_{\mathrm{t}}$ groups, it is a fourfold linker in topological terms. Cd 1 (light brown sphere) is coordinated by two N atoms belonging to two different $\left\{\mathrm{MnMo}_{6} \mathrm{O}_{18}\left\{\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CN}=\mathrm{CH}\left(4-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)\right\}_{2}\right\}$ units (red sphere) and by two $\mathrm{O}_{\mathrm{t}}$ atoms of the inorganic $\left\{\mathrm{MnMo}_{6} \mathrm{O}_{24}\right\}$ moiety (green sphere) belonging to two other $\left\{\mathrm{MnMo}_{6} \mathrm{O}_{18}\left\{\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CN}=\mathrm{CH}\left(4-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)\right\}_{2}\right\}$ units, thus forming a four connected
cross shaped node (see Figure 5.83 (a)). Cd2 (dark brown sphere) connects via two terminal O atoms to two $\left\{\mathrm{MnMo}_{6} \mathrm{O}_{24}\right\}$ units (red sphere) and two N atoms belonging to two different $\left\{\mathrm{MnMo}_{6} \mathrm{O}_{18}\left\{\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CN}=\mathrm{CH}\left(4-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)\right\}_{2}\right\}$ units (green sphere) forming a four-connected node (see Figure 5.83 (a)). Figure 5.83 (b) shows the topological network without any regard to the type of Cd atom (blue sphere) and the POM hybrids (magenta sphere). This is a valid approach since the Cd ions are topologically equivalent to each other, which is also the case for the L - POM - Ls. Thus, the topology can be identified as a 4-coordinated uninodal net with point symbol $\left\{4^{2} .8^{4}\right\}$ and labelled $\mathbf{I v t}$; 4/4/t1.
(a)
(b)

$-\quad=0$
0
$=\operatorname{cdr}$

- $=\mathrm{Cd} 2$

- $=\mathrm{Cd}$
$0=8$

Figure 5.83: Topological extract of (15). Colour code: (a)
$\left\{\mathrm{MnMo}_{6} \mathrm{O}_{18}\left\{\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CN}=\mathrm{CH}\left(4-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)\right\}_{2}\right\}$ unit: red and green sphere, Cd1: light brown sphere, Cd2: dark brown sphere, (b) $\left\{\mathrm{MnMo}_{6} \mathrm{O}_{18}\left\{\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CN}=\mathrm{CH}\left(4-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)\right\}_{2}\right\}$ unit: magenta sphere, Cd: blue sphere.

### 5.3.2.4.3 Powder X-ray diffraction

Figure 5.84 shows the PXRD patterns of (15) simulated (simu) and recorded PXRD-patterns of (15). The simulated (simu) pattern serves as reference. From all PXRD patterns of (15), it is clearly seen that the samples contain the desired products.


Figure 5.84: Simulated (simu) and experimental PXRD-patterns of (15). Hereby, a. r. is abbreviation for alternative route, means stirring, l. m. is abbreviation for layering method.

However, the patterns with the labelling "l" (= synthesized by layering method) and "s" (= stirring method) show some extra reflections at e.g. $5.8^{\circ}$ in $2 \theta, 6.9^{\circ}$ in $2 \theta$, $11.3^{\circ}$ in $2 \theta$ and $11.6^{\circ}$ in $2 \theta$, respectively. This reveals that during the reactions at least one other unknown compound was formed.

### 5.3.2.4.4 Solid state UV-vis studies

Figure 5.85 shows the solid state UV-vis spectrum of compound (15).
The absorption band at $\lambda=526 \mathrm{~nm}$ can be denoted to a d-d electron transfer from the $\mathrm{t}_{2 \mathrm{~g}}$ orbital to the $\mathrm{e}_{\mathrm{g}}{ }^{*}$ orbital within one $\mathrm{Mn}^{3+}$ ion. Additionally, the maximum absorption at $\lambda=292 \mathrm{~nm}$ can be assigned to a LMCT. The change of absorbance at $\lambda=350 \mathrm{~nm}$ was caused by the change of the lamp during the record of the spectrum. The bandgap of 2.89 eV was found using the Tauc method.


Figure 5.85: Solid state UV-vis spectrum of compound (15).

The maximum absorption is in the range 440 nm to 220 nm . The change of absorbance at 350 nm was caused by the change of the lamp during recording of the spectrum.

### 5.3.2 4. Catalytic studies

## Photo-electrocatalytic studies

The preparation of the working electrode and the photo-electrocatalytic studies were performed under the same condition of (5) (see section 5.2.1.4).

Figure 5.86 and Figure 5.87 show the results of the photo-electrocatalytic studies of compound (15) and reveal photo-electrocatalytic properties for water splitting.


Figure 5.86: Photo-electrocatalytic results of compound (15) recorded in $0.5 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$ ( $p \mathrm{H}=8.6$ ) over the range -0.3 V to 1.4 V at a scan rate of $0.01 \mathrm{~V} / \mathrm{s}$ and sunlight simulation without any filter (a) and with filtering the radiation below 420 nm (b).

Performing linear sweep voltammetry combined with artificial sunlight irradiating the working electrode, an onset at a potential of -0.2 V vs. $\mathrm{Ag} / \mathrm{AgCl}$ with a
maximum photocurrent of $4.92 \cdot 10^{-1} \mathrm{~mA} / \mathrm{cm}^{2}$ at a potential of 1.4 V vs. $\mathrm{Ag} / \mathrm{AgCl}$ are observable (see Figure 5.86 (a)). The stability of compound (15) was confirmed by repeating the experiment another two times where the values did not change considerably. The three runs of linear sweep voltammetry filtering light below 420 nm are shown in Figure 5.86 (b). It is clearly seen that under these conditions the LSV shows a stable behavior.

The direct comparison of catalytic studies with and without filter are shown in Figure 5.87. A development of a current for the filtered sample occurs at a potential of 0.14 V vs. $\mathrm{Ag} / \mathrm{AgCl}$, thus having a shift of +0.34 V compared to measurement without filter. At a potential of 1.4 vs . $\mathrm{Ag} / \mathrm{AgCl}$, the voltammogram shows a maximum of $1.24 \cdot 10^{-1} \mathrm{~mA} / \mathrm{cm}^{2}$, revealing that filtering radiation below 420 nm also reduces the catalytic activity of the system by $75 \%$.


Figure 5.87: Comparison of photocatalytic studies of compound (15) in $0.5 \mathrm{M} \mathrm{Na} \mathrm{Na}_{2} \mathrm{SO}_{4}$ ( $\mathrm{pH}=8.6$ ) over the range -0.3 V to 1.4 V at a scan rate of $0.01 \mathrm{~V} / \mathrm{s}$ : Studies with and without filter $(<420 \mathrm{~nm})$, for comparison in each case the final 3rd cycle was chosen.

Additionally, starting at a potential of +1.3 V the current slightly increases at phases, when the light of the Xe lamp is switched off. Since this process is lightindependent, this behavior occurs both under filtered and unfiltered light conditions indicating mere electrochemical processes.

### 5.3.2.4.6 Conclusion

Compound (15) was successfully synthesized and isolated in the form of crystals, whereby a crystal structure could be determined. Furthermore, this compound was also characterized by PXRD, EA, UV-vis and FT-IR spectroscopy. Initial photoelectrocatalytic studies reveal that compound (15) shows catalytic properties for the application of water splitting. These studies, however, need further investigation and the process of coating of (15) onto the substrate needs to be optimized. This is the first Cd based POMOF in which the POM is part of the linker.

## 6 CONCLUSION AND OUTLOOK

POMOFs can be regarded in general terms as frameworks containing POMs. Here, we can identify three distinct categories: (a) POMs occupying the cavities of a MOF structure (POM@MOF), (b) POMs used as SBUs in the network and (c) POMs as part of the linker of the framework. The work presented in this thesis concentrated on developing approach (c) since very few examples of this type of network exist in the literature. During the course of this doctoral research, several organicinorganic Anderson-Evans POM hybrid linkers, designated L-POM-Ls, $\left(\left[\mathrm{MnMo}_{6} \mathrm{O}_{18}\left\{\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CN}=\mathrm{CH}\left(4-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)\right\}_{2}\right]^{3-}\right.$
$\left[\left(\mathrm{MnMo}_{6} \mathrm{O}_{18}\right)\left(\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNHCH}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{COOH}\right)\left(\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNHCH}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{COO}\right)\right]^{4-}$ (5), $\left[\left(\mathrm{AlMo}_{6} \mathrm{O}_{18}\right)\left(\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CH}_{2} \mathrm{COCH}_{2} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{3}\right)_{2}\right]^{3-}(6)$,
$\left[\left(\mathrm{MnMo}_{6} \mathrm{O}_{18}\right)\left(\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNH}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{C} \equiv \mathrm{N}_{2}\right]^{3-}(7)\right.$,
$\left[\mathrm{MnMo}_{6} \mathrm{O}_{18}\left\{\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNHC=O}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right)\right\}_{2}\right]^{3-}$.(8) and $\left[\left(\mathrm{MnMo}_{6} \mathrm{O}_{18}\right)\left(\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\right)_{2}\right]^{3-} .(9)$ were synthesized and structurally characterized using single crystal X-ray diffraction. These should be used as linking units within POMOFs, i.e. multifunctional POM based frameworks. In this work only (4) and (5) proofed to provide single crystals of the desired POMOFs with TM $(\mathrm{TM}=\mathrm{Cu}, \mathrm{Zn}, \mathrm{Cd})$ or $\mathrm{RE}(\mathrm{RE}=\mathrm{Y}, \mathrm{La}-\mathrm{Lu})$, respectively.

Given that $\mathrm{Cu}^{2+}, \mathrm{Zn}^{2+}$ and $\mathrm{Cd}^{2+}$ have a strong affinity to coordinate to pyridyl groups, it was decided that hybrid (4) is particularly suitable for synthesizing TM based POMOF frameworks. The inclusion of these metal centres, not only plays a role in forming these networks, but can also tune the physical and chemical properties of the resultant materials. The presence of POM moiety, organic linker and metal ions within the same framework suggests a plethora of possible applications. For example $\left[\mathrm{CuCl}(\mathrm{DMF})\left\{\mathrm{MnMo}_{6} \mathrm{O}_{18}\left(\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CN}=\mathrm{CH}(4-\right.\right.\right.$ $\left.\left.\left.\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)\right)_{2}\right\}_{2}$ ] (13) showed catalytic acitivity for $\mathrm{A}^{3}$ coupling reactions and
$\left[\mathrm{Zn}(\mathrm{DMF})_{4}\right]\left[\mathrm{Zn}(\mathrm{DMF})_{2} \mathrm{MnMo}_{6} \mathrm{O}_{18}\left\{\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CN}=\mathrm{CH}\left(4-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)\right\}_{2}\right]_{2}$
(14A),
$\left[\left(\mathrm{Zn}(\mathrm{DMF})_{3}\right)_{2}\left(\mathrm{Zn}(\mathrm{DMF})_{4} \mathrm{MnMo}_{6} \mathrm{O}_{18}\left\{\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CN}=\mathrm{CH}\left(4-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)\right\}_{2}\right)_{2}\right](\mathbf{1 4 B})$
and $\quad\left[\mathrm{Cd}(\mathrm{DMF})_{2}\right][\mathrm{Cd}]\left[\mathrm{N}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right]_{2}\left[\mathrm{MnMo}_{6} \mathrm{O}_{18}\left\{\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CN}=\mathrm{CH}\left(4-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)\right\}_{2}\right]_{2}$ (15) were used as photo-electrocatalyst for water splitting. This work also demonstrates that small changes in reaction parameters and variation of the transition metals affect the overall structure and thus the properties. Using a Zn salt, two framework structures with different topologies were obtained and the topology of this ( $\mathbf{1 4 A}$ ) has never been reported before, therefore this topology has been assigned as "mpm1".

The L-POM - L (5) unit was chosen to explore incorporation of rare earth metal ions since carboxylate groups should suite these oxophilic ions. The interaction of RE ions with (5) result in two series of compounds $\mathrm{RE}(\mathrm{DMF})_{6}$ $\mathrm{RE}(\mathrm{DMF})_{5} \mathrm{RE}_{3}(\mathrm{DMF})_{10}\left[\left(\mathrm{MnMo}_{6} \mathrm{O}_{18}\right)\left(\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNHCH}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{COO}\right)_{2}\right]_{3}$
$(\mathrm{RE}=\mathrm{La}-\mathrm{Nd}) \quad(11) \quad$ and $\quad\left[\mathrm{RE}(\mathrm{DMF})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}\left[\mathrm{RE}_{3}(\mathrm{DMF})_{6}\right]\left[\left(\mathrm{MnMo}_{6} \mathrm{O}_{18}\right)\right.$ $\left.\left(\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNHCH}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{COO}\right)_{2}\right]_{3}(\mathrm{RE}=\mathrm{Y}, \mathrm{Sm}-\mathrm{Lu})(\mathbf{1 2})$. The formation of these two families reflects the change in ionic radius of the RE cations. The factors affecting the crystallization process were explored and it was found for family (11) a stirring method was required, whereas for family (12) layering method proofed most fruitful. The preliminary investigation of (11)-Ce and (12)-Dy as catalysts for the reaction of furfural and morpholine to form trans-4,5-dimorpholinocyclopent-2-en-1-one was performed and showed an increase in efficiency using the more Lewis acidic metal ion $\mathrm{Dy}^{3+}$. Additionally, these two compounds were also selected to investigate their photo-electrocatalytic activities for water splitting.

In photocatalysis three characteristic values of the compound are decisive for the catalytic activity: a low bandgap, a low onset potential and a high maximum of the photocurrent at a low potential. Table 6.1 summarizes these values for the compounds investigated in this work on photocatalytic properties.

Table 6.1: Summary of the values for the compounds investigated in this work on photocatalytic properties.

| Compound | Bandgap <br> $[\mathbf{e V}]$ | onset <br> potential <br> $[\mathbf{V}]$ | maximum of <br> Photocurrent <br> $\left[\mathbf{A} / \mathbf{c m}^{2}\right]$ |
| :---: | :---: | :---: | :---: |
| $\mathbf{( 5 )}$ | 2.85 | -0.2 | $5.81 \cdot 10^{-4}$ |
| $(\mathbf{1 1})-\mathrm{Ce}$ | 2.76 | -0.3 | $3.47 \cdot 10^{-4}$ |
| $(\mathbf{1 2})-\mathrm{Dy}$ | 2.46 | -0.15 | $4.04 \cdot 10^{-4}$ |
| $(\mathbf{1 4 A})+(\mathbf{1 4 B})$ | 2.89 | -0.14 | $4.74 \cdot 10^{-4}$ |
| $(\mathbf{1 5})$ | 2.89 | -0.2 | $4.92 \cdot 10^{-4}$ |

Amongst all the photo-electrocatalytic studies in this doctoral research, (12)-Dy has the smallest bandgap, (11)-Ce showed the lowest onset of activity and compound (5) revealed the highest photocurrent at a potential of 1.4 V vs $\mathrm{Ag} / \mathrm{AgCl}$.

During the course of this research work, a novel and unique self-assemble POM system $\left[\mathrm{Mn}_{2} \mathrm{Mo}_{4} \mathrm{O}_{14}\left(\left(\mathrm{OCHCH}_{2}\right)_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right)_{2}\right](10)$ was also synthesized and characterized. This hybrid with different inorganic core and backbone might be an interesting potential building block for the engineering of functional new nanoscale architectures.

All the above mentioned compounds were characterized by Single Crystal X-ray Diffraction (SCXRD), Powder X-ray Diffraction (PXRD), Elemental Analysis (EA), UV-vis and Fourier Transform Infrared (FT-IR) Spectroscopy.

In conclusion POMOFs of type (c) offer a promising means to provide multifunctional materials sometimes with completely new topologies.

## 7 REFERENCES

(1) Berzelius, J. J. Ann. d. Phys. 1826, B82, 369.
(2) Keggin, J. F. Nature 1933, 351.
(3) Long, D. L.; Tsunashima, R.; Cronin, L. Angew. Chem. Int. Ed. 2010, 49, 1736.
(4) Huheey, J.; Keiter, E.; Keiter, R. Anorganische Chemie, 5th ed.; De Gruyter: Berlin, 2014.
(5) Gouzerh, P.; Che, M. Actual. Chim. 2006, 298, 9.
(6) Pope, M. T.; Müller, A. Anal. Chim. Acta 2007, 587, 124.
(7) Sadakane, M.; Steckhan, E. Chem. Rev. 1998, 98, 219.
(8) Hoffmann, N. Angew. Chem. Int. Ed. 2013, 52, 11456.
(9) Pope, M. T.; Müller, A. Angew. Chem. Int. Ed. 1991, 30, 34.
(10) Song, Y.-F.; Tsunashima, R. Chem. Soc. Rev. 2012, 41, 7384.
(11) Ilyes, E.; Florea, M.; Madalan, A. M.; Haiduc, I.; Parvulescu, V. I.; Andruh, M. Inorg. Chem. 2012, 51, 7954.
(12) Yang, H.; Song, T.; Liu, L.; Devadoss, A.; Xia, F.; Han, H.; Park, H.; Sigmund, W.; Kwon, K.; Paik, U. J. Phys. Chem. C 2013, 117, 17376.
(13) Constable, E. C.; Housecroft, C. E. Chem. Soc. Rev. 2013, 42, 1429.
(14) Janiak, C. J. Chem. Soc., Dalt. Trans. 2003, 2781.
(15) Hoskins, B. F.; Robson, R. J. Am. Chem. Soc. 1990, 112, 1546.
(16) Rowsell, J. L. C.; Yaghi, O. M. Microporous Mesoporous Mater. 2004, 73, 3.
(17) Bauer, S.; Stock, N. Chem. Unserer Zeit 2008, 42, 12.
(18) Ma, S.; Wang, X. S.; Yuan, D.; Zhou, H. C. Angew. Chem. Int. Ed. 2008, 47,
4130.
(19) Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; Keeffe, M. O.; Yaghi, O. M.; Eddaoudi, M.; Kimrn, J.; Rosi, N.; Yaghil, O. M. Science 2002, 295, 469.
(20) Bhadra, B. N.; Jhung, S. H. ACS Appl. Mater. Interfaces 2016, 8, 6770.
(21) Brown, K.; Zolezzi, S.; Aguirre, P.; Venegas-Yazigi, D.; Paredes-Garcia, V.; Baggio, R.; Novak, M. A.; Spodine, E. Dalt. Trans. 2009, 1422.
(22) Mingabudinova, L. R.; Vinogradov, V. V.; Milichko, V. A.; Hey-Hawkins, E.; Vinogradov, A. V. Chem. Soc. Rev. 2016, 45, 5408.
(23) Shimizu, G. K. H.; Taylor, J. M.; Kim, S. Science 2013, 341, 354.
(24) Long, J. R.; Yaghi, O. M.; Zhou, H.-C. Chem. Rev. 2012, 112, 673.
(25) Huxford, R. C.; Della Rocca, J.; Lin, W. Curr. Opin. Chem. Biol. 2010, 14, 262.
(26) Hagrman, D.; Zubieta, C.; Rose, D. J. Angew. Chem. 1997, 1, 904.
(27) Rowsell, J. L. C.; Eckert, J.; Yaghi, O. M. J. Am. Chem. Soc. 2005, 127, 14904.
(28) Siegelman, R. L.; McDonald, T. M.; Gonzalez, M. I.; Martell, J. D.; Milner, P. J.; Mason, J. A.; Berger, A. H.; Bhown, A. S.; Long, J. R. J. Am. Chem. Soc. 2017, 139, 10526.
(29) Lennartson, A.; Christine, J. M. J. Coord. Chem. 2012, 65, 4194.
(30) Bendi, R.; Kumar, V.; Bhavanasi, V.; Parida, K.; Lee, P. S. Adv. Energy Mater. 2016, 6, 1.
(31) Liu, J.; Lukose, B.; Shekhah, O.; Arslan, H. K.; Weidler, P.; Gliemann, H.; Bräse, S.; Grosjean, S.; Godt, A.; Feng, X.; Müllen, K.; Magdau, I. B.; Heine, T.; Wöll, C. Sci. Rep. 2012, 2, 1.
(32) Song, G.; Wang, Z.; Wang, L.; Li, G.; Huang, M.; Yin, F. Chin. J. Catal.

2014, 35, 185.
(33) Maeng, H. J.; Kim, D. H.; Kim, N. W.; Ruh, H.; Lee, D. K.; Yu, H. Curr. Appl. Phys. 2018, 18, S21.
(34) Okamura, T.; Wu, B.; Iguchi, H.; Breedlove, B. K.; Yamashita, M.; Kosaka, W.; Miyasaka, H.; Takaishi, S. Chem. Commun. 2017, 53, 6512.
(35) Schenck, H.; Frohberg, M. G.; Hoffmann, K. Arch. für das Eisenhüttenwes. 1962, 33, 369.
(36) Rodriguez-Albelo, L. M.; Ruiz-Salvador, A. R.; Sampieri, A.; Lewis, D. W.; Gómez, A.; Nohra, B.; Mialane, P.; Marrot, J.; Sécheresse, F.; MellotDraznieks, C.; Biboum, R. N.; Keita, B.; Nadjo, L.; Dolbecq, A. J. Am. Chem. Soc. 2009, 131, 16078.
(37) Nohra, B.; El Moll, H.; Rodriguez Albelo, L. M.; Mialane, P.; Marrot, J.; Mellot-Draznieks, C.; O’Keeffe, M.; Ngo Biboum, R.; Lemaire, J.; Keita, B.; Nadjo, L.; Dolbecq, A. J. Am. Chem. Soc. 2011, 133, 13363.
(38) Zheng, S. T.; Zhang, J.; Yang, G. Y. Angew. Chem. Int. Ed. 2008, 47, 3909.
(39) Sha, J.; Huang, L.; Peng, J.; Pang, H.; Tian, A.; Zhang, P.; Chen, Y.; Zhu, M. Solid State Sci. 2009, 11, 417.
(40) Shi-Zhou; Kong, Z. G.; Wang, Q. W.; Li, C. B. Inorg. Chem. Commun. 2012, 20, 131.
(41) Yang, H.; Li, J.; Zhang, H.; Lv, Y.; Gao, S. Micropor. Mesopor. Mat. 2014, 195, 87.
(42) Song, J.; Luo, Z.; Britt, D. K.; Furukawa, H.; Yaghi, O. M.; Hardcastle, K. I.; Hill, C. L. J. Am. Chem. Soc. 2011, 133, 16839.
(43) Li, S.; Ma, H.; Pang, H.; Zhang, L.; Zhang, Z.; Lin, H. Inorg. Chem. Commun. 2014, 44, 15.
(44) Qin, J. S.; Du, D. Y.; Guan, W.; Bo, X. J.; Li, Y. F.; Guo, L. P.; Su, Z. M.; Wang, Y. Y.; Lan, Y. Q.; Zhou, H. C. J. Am. Chem. Soc. 2015, 137, 7169.
(45) Zhu, P. P.; Sun, L. J.; Sheng, N.; Sha, J. Q.; Liu, G. D.; Yu, L.; Qiu, H. Bin; Li, S. X. Cryst. Growth Des. 2016, 16, 3215.
(46) Yazigi, F.-J.; Wilson, C.; Long, D.-L.; Forgan, R. S. Cryst. Growth Des. 2017, 17, 4739.
(47) Li, X. X.; Wang, Y. X.; Wang, R. H.; Cui, C. Y.; Tian, C. Bin; Yang, G. Y. Angew. Chem. Int. Ed. 2016, 55, 1.
(48) Sun, C.; Liu, S.; Liang, D.; Shao, K.; Ren, Y. J. Am. Chem. Soc. 2009, 131, 1883.
(49) Wang, X.; Chang, Z.; Lin, H.; Tian, A.; Liu, G.; Zhang, J. Dalt. Trans. 2014, 43, 12272.
(50) Wei, M.; Wang, X.; Duan, X. Chem. Eur. J. 2013, 19, 1607.
(51) Wei, M.; Wang, X.; Sun, J.; Duan, X. J. Solid State Chem. 2013, 202, 200.
(52) Bridgeman, A. J. J. Phys. Chem. A 2002, 106, 12151.
(53) Pope, M. T. Polyoxometalate Chemistry From Topology via Self-Assembly to Applications; Springer-Verlag, 2002.
(54) T., P. M. Heteropoly and Isopoly Oxometalates; Springer-Verlag: Berlin, 1983.
(55) Himeno, S.; Murata, S.; Eda, K. Dalt. Trans. 2009, 6114.
(56) Pope, M. T. Heteropoly and Isopoly Oxometalates; Springer-Verlag: New York, 1983; Vol. 8.
(57) Lis, S. Acta Phys. Pol. A 1996, A90, 275.
(58) Hao, J. Self-Assembled Structures: Properties and Applications in Solution and on Surfaces; Taylor \& Francis Group: New York, 2010.
(59) Sanchez, C.; Livage, J.; Launay, J. P.; Fournier, M.; Jeannin, Y. J. Am. Chem. Soc. 1982, 104, 3194.
(60) Contant, R.; Teze, A. Inorg. Chem 1985, 24, 4610.
(61) Zhang, J.; Liu, Z.; Huang, Y.; Zhang, J.; Hao, J.; Wei, Y. Chem. Commun. 2015, 51, 9097.
(62) Su, X.-F.; Zhu, B.; Wu, C.-X.; Yan, L.-K.; Su, Z.-M. J. Theor. Comput. Chem. 2017, 16, 1750054.
(63) Nagano, O.; Sasaki, Y. Acta Cryst. 1979, B35, 2387.
(64) Yan, L.; López, X.; Carbó, J. J.; Sniatynsky, R.; Duncan, D. C.; Poblet, J. M. J. Am. Chem. Soc. 2008, 130, 8223.
(65) Klemperer, W. G., Ginsberg, A. P., E. Inorganic Syntheses; John Wiley \& Sons, 1990; Vol. 27.
(66) Marcoux, P. R.; Hasenknopf, B.; Vaissermann, J.; Gouzerh, P. Eur. J. Chem. 2003, 2406.
(67) Schmidt, K. J.; Schrobilgen, G. J.; Sawyer, J. F. Acta Cryst. Sect. C 1986, 42, 1115.
(68) Kondo, H.; Kobayashi, A.; Sasaki, Y. Acta Cryst. 1980, B36, 661.
(69) Shivaiah, V.; Das, S. K. J. Chem. Sci. 2005, 117, 227.
(70) Perloff, A. Inorg. Chem. 1970, 9, 2228.
(71) Wu, C.; Lin, X.; Yu, R.; Yang, W.; Lu, C.; Zhuang, H. Sci. China, Ser. B Chem. 2001, 44, 49.
(72) Blazevic, A.; Rompel, A. Coord. Chem. Rev. 2016, 307, 42.
(73) Lee, B. Y. U. K.; Kobayashi, A.; Sasaki, Y. Acta Cryst. Sect. C 1983, 817.
(74) Nolan, A. L.; Burns, R. C.; Lawrance, G. A.; Craig, D. C. Acta Cryst. Sect. C 2000, 56, 729.
(75) Naruke, H.; Yamase, T. Acta Cryst. Sect. C 1992, 48, 597.
(76) Allen, C. C.; Burns, R. C.; Lawrance, G. A.; Turner, P.; Hambley, T. W. Acta Cryst. Sect. C 1997, 53, 7.
(77) Ito, F.; Ozeki, T.; Ichida, H.; Miyamae, H.; Sasaki, Y. Acta Cryst. Sect. C

1989, 45, 946.
(78) Liu, F. X.; Marchal-Roch, C.; Dambournet, D.; Acker, A.; Marrot, J.; Sécheresse, F. Eur. J. Chem. 2008, 2191.
(79) Lee, U.; Joo, H. C. Acta Cryst. 2010, E62, i231.
(80) Lee, U.; Joo, H.-C.; Kwon, J.-S.; Cho, M.-A. Acta Cryst. Sect. E 2001, 57, i112.
(81) Ozawa, Y.; Hayashi, Y.; Isobe, K. Acta Cryst. Sect. C 1991, 47, 637.
(82) Mensinger, Z. L.; Zakharov, L. N.; Johnson, D. W. Acta Cryst. 2008, E64, $i 8$.
(83) Evans, H. T. J. Am. Chem. Soc. 1948, 70, 1291.
(84) Lindqvist, I. Acta Cryst. 1950, 3, 159.
(85) Bridgeman, A. J.; Cavigliasso, G. J. Chem. Soc., Dalt. Trans. 2002, 2244.
(86) Wang, W.; Liu, W.; Chang, I.-Y.; Wills, L. A.; Zakharov, L. N.; Boettcher, S. W.; Cheong, P. H.-Y.; Fang, C.; Keszler, D. A. PNAS 2013, 110, 18397.
(87) Allain, C.; Favette, S.; Chamoreau, L. M.; Vaissermann, J.; Ruhlmann, L.; Hasenknopf, B. Eur. J. Chem. 2008, 3433.
(88) Contant, R.; Thouvenot, R. Inorg. Chim. Acta 1993, 212, 41.
(89) Baker, L. C. W.; Figgis, J. S. J. Am. Chem. Soc. 1970, 92, 3794.
(90) López, X.; Poblet, J. M. Inorg. Chem. 2004, 43, 6863.
(91) Weinstock, I. A.; Cowan, J. J.; Barbuzzi, E. M. G.; Zeng, H.; Hill, C. L. J. Am. Chem. Soc. 1999, 121, 4608.
(92) Hervé, G.; Tézé, A. Inorg. Chem. 1977, 16, 2115.
(93) Canny, J.; Tézé, A.; Thouvenot, R.; Hervé, G. Inorg. Chem. 1986, 25, 2114.
(94) Contant, R.; Ciabrini, J. P. J. Inorg. Nucl. Chem. 1981, 43, 1525.
(95) Dey, C.; Kundu, T.; Biswal, B. P.; Mallick, A.; Banerjee, R. Acta Cryst.

2014, B70, 3 .
(96) Shimizu, G. K. H.; Vaidhyanathan, R.; Taylor, J. M. Chem. Soc. Rev. 2009, 38, 1430.
(97) Wise, D. L. Electrical and Optical Polymer Systems: Fundamentals: Methods, and Applications; 1998.
(98) Seki, K.; Takamizawa, S.; Mori, W. Chem. Lett. 2001, 30, 332.
(99) Sakata, Y.; Furukawa, S.; Kondo, M.; Hirai, K.; Horike, N.; Takashima, Y.; Uehara, H.; Louvain, N.; Meilikhov, M.; Tsuruoka, T.; Isoda, S.; Kosaka, W.; Sakata, O.; Kitagawa, S. Science 2013, 339, 193.
(100) Yaghi, O. M.; O’Keeffe, M.; Eddaoudi, M.; Li, H. Nature 1999, 402, 276.
(101) Chui, S. S. Y.; Lo, S. M. F.; Charmant, J. P. H.; Orpen, A. G.; Williams, I. D. Science 1999, 283, 1148.
(102) Lo, S. M. F.; Chui, S. S. Y.; Shek, L. Y.; Lin, Z.; Zhang, X. X.; Wen, G. H.; Williams, I. D. J. Am. Chem. Soc. 2000, 122, 6293.
(103) Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surblé, S.; Margiolaki, I. Science 2005, 309, 2040.
(104) Carson, C. G.; Hardcastle, K.; Schwartz, J.; Liu, X.; Hoffmann, C.; Gerhardt, R. A.; Tannenbaum, R. Eur. J. Chem. 2009, 2338.
(105) Rosi, N. L.; Eckert, J.; Eddaoudi, M.; Vodak, T.; Kim, J.; Keeffe, M. O.; Yaghi, O. M. Science 2003, 300, 1127.
(106) Jiang, H. L.; Makal, T. A.; Zhou, H. C. Coord. Chem. Rev. 2013, $257,2232$.
(107) Han, S. S.; Mendoza-Cortés, J. L.; Goddard, W. A. Chem. Soc. Rev. 2009, 38, 1460.
(108) Batten, S. R. CrystEngComm 2001, 18, 1.
(109) Gao, Y.; Cao, J.; Song, Y.; Zhang, G.; Wang, Y.; Liu, Z. Cryst. Eng. Comm. 2013, 15, 8522.
(110) Vittal, J. J. Coord. Chem. Rev. 2007, 251, 1781.
(111) Hu, C.; Englert, U. Angew. Chem. Int. Ed. 2005, 44, 2281.
(112) Kondo, M.; Shimamura, M.; Noro, S. I.; Kimura, Y.; Uemura, K.; Kitagawa, S. J. Solid State Chem. 2000, 152, 113.
(113) Wu, C. De; Lin, W. Angew. Chem. Int. Ed. 2005, 44, 1958.
(114) Zhang, J. P.; Lin, Y. Y.; Zhang, W. X.; Chen, X. M. J. Am. Chem. Soc. 2005, 127, 14162.
(115) Suh, M. P.; Ko, J. W.; Choi, H. J. J. Am. Chem. Soc. 2002, 124, 10976.
(116) Zeng, M.-H.; Feng, X.-L.; Chen, X.-M. Dalt. Trans. 2004, 2217.
(117) Chem, A.; Ed, I.; Biradha, K.; Hongo, Y.; Fujita, M. Angew. Chem. Int. Ed. 2002, 41, 3395.
(118) Biradha, K.; Fujita, M. Angew. Chem. Int. Ed. 2002, 41, 3392.
(119) Maji, T. K.; Uemura, K.; Chang, H.; Matsuda, R.; Kitagawa, S. Angew. Chem. Int. Ed. 2004, 43, 3269.
(120) Chen, C. L.; Goforth, A. M.; Smith, M. D.; Su, C. Y.; Zur Loye, H. C. Angew. Chem. Int. Ed. 2005, 44, 6673.
(121) Kurmoo, M.; Kumagai, H.; Chapman, K. W.; Kepert, C. J. Chem. Commun. 2005, 3012.
(122) Wong, K. L.; Law, G. L.; Yang, Y. Y.; Wong, W. T. Adv. Mater. 2006, 18, 1051.
(123) Macgillivray, L. R.; Papaefstathiou, G. S.; Friscic, T.; Hamilton, T. D.; Bucar, D.-K.; Chu, Q.; Varshney, D. B.; Georgiev, I. G. Acc. Chem. Res. 2008, 41, 280.
(124) Wei, M.; Wang, X.; Sun, J.; Duan, X. J. Solid State Chem. 2013, 202, 200.
(125) Sha, J.-Q.; Sun, J.-W.; Wang, C.; Li, G.-M.; Yan, P.-F.; Li, M.-T.; Liu, M.Y. Cryst. Eng. Comm. 2012, 14, 5053.
(126) Jong, W. H.; Hill, C. L. J. Am. Chem. Soc. 2007, 129, 15094.
(127) Zheng, S.-T.; Zhang, J.; Yang, G.-Y. Angew. Chem. Int. Ed. 2008, 120, 3973.
(128) Gan, X.; Hu, X.; Shi, Z.; Yin, Y. J. Coord. Chem. 2013, 66, 2930.
(129) Sha, J. Q.; Sun, J. W.; Wang, C.; Li, G. M.; Yan, P. F.; Li, M. T. Cryst. Growth Des. 2012, 12, 2242.
(130) Fan, W.; Yuan, W.; Ma, S. Nat. Commun. 2014, 5, 1.
(131) Loukopoulos, E.; Kallitsakis, M.; Tsoureas, N.; Abdul-Sada, A.; Chilton, N. F.; Lykakis, I. N.; Kostakis, G. E. Inorg. Chem. 2017, 56, 4898.
(132) Zhao, C.; Seidel, D. J. Am. Chem. Soc. 2015, 137, 4650.
(133) Duspara, P. A.; Batey, R. A. Angew. Chem. Int. Ed. 2013, 52, 1.
(134) Nunes, J. P. M.; Afonso, C. A. M.; Caddick, S. RSC Adv. 2013, 3, 14975.
(135) Menjo, Y.; Hamajima, A.; Sasaki, N.; Hamada, Y. Org. Lett. 2011, 13, 5744.
(136) Li, S. W.; Batey, R. A. Chem. Commun. 2007, 8, 3759.
(137) Mattock, J. D.; Kumar, P.; Coles, S. J.; Griffiths, K.; Kostakis, G. E.; Vargas, A.; Pitak, M. B.; Abdul-Sada, A.; Navarro, O. Inorg. Chem. 2016, 55, 6988.
(138) Goberna-Ferrón, S.; Vigara, L.; Soriano-López, J.; Galán-Mascarós, J. R. Inorg. Chem. 2012, 51, 11707.
(139) Govindaraju, G. V.; Wheeler, G. P.; Lee, D.; Choi, K. S. Chem. Mater. 2017, 29, 355.
(140) Speiser, B. Chem. Unserer Zeit 1981, 15, 21.
(141) Neghmouche, N. S. Anal. Electrochem. 2007, 2, 2.
(142) Speiser, B. Chem. Unserer Zeit 1981, 15, 62.
(143) Ebel, H. F.; Bliefert, C.; Greulich, W. Schreiben und Publizieren in den Naturwissenschaften, 5th ed.; WILEY-VCH Verlag GmbH \& Co. KGaA: Weinheim, 2006.
(144) Riedel, E. Anorganische Chemie, 6th ed.; de Gruyter GmbH \& Co.KG: Berlin, 2004.
(145) Srikant, V.; Clarke, D. R. J. Appl. Phys. 1998, 83, 5447.
(146) Dette, C.; Pérez-Osorio, M. A.; Kley, C. S.; Punke, P.; Patrick, C. E.; Jacobson, P.; Giustino, F.; Jung, S. J.; Kern, K. Nano Lett. 2014, 14, 6533.
(147) Muuronen, M.; Parker, S. M.; Berardo, E.; Le, A.; Zwijnenburg, M. A.; Furche, F. Chem. Sci. 2017, 8, 2179.
(148) Ando, Y.; Ishizuka, S.; Wang, S.; Chen, J.; Islam, M. M.; Shibata, H.; Akimoto, K.; Sakurai, T. Jpn. J. Appl. Phys. 2018, 57, 08 RC08.
(149) Sheldrick, G. M. SHELXTL 6.12; Bruker AXS, 2003.
(150) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. Cryst. 2009, 42, 339.
(151) Putz, H.; Brandenburg, K. Diam. 4, Cryst. IMPACT GbR; Bonn, Deutschland, 2014.
(152) Stoe WinXPow V2.25; STOE \& Cie GmbH, Darmstadt, 2005.
(153) Kraus, W.; Nolze, G. Appl. Crystallogr. 1996, 29, 301.
(154) Blatov, V. A.; Shevchenko, A. P.; Proserpio, D. M. Cryst. Growth Des. 2014, 14, 3576.
(155) Macrae, C. F.; Bruno, I. J.; Chisholm, J. A.; Edgington, P. R.; Mccabe, P.; Pidcock, E.; Rodriguez-monge, L.; Taylor, R.; Streek, J. Van De; Wood, P. A. Appl. Crystallogr. 2008, 41, 466.
(156) Llunell, M.; Casanova, D.; Cirera, J.; Alvarez, S.; Alemany, P. SHAPE: Program for the Stereochemical Analysis of Molecular Fragments by Means of Continuous Shape Measures and Associated Tools, version 2.1: Universitat de Barcelona: Barcelona 2013,.
(157) Manikumari, S.; Shivaiah, V.; Das, S. K. Inorg. Chem. Commun. 2002, 41,
6953.
(158) Liu, S.; Ma, L.; McGowty, D.; Zubieta, J. Polyhedron 1990, 9, 1541.
(159) Spek, A. L. Acta Cryst. Sect. C 2015, 71, 9.
(160) Legon, A. C.; Millen, D. J. Chem. Soc. Rev. 1987, 16, 467.
(161) Walwil, A. M. J. Lab. Chem. Educ. 2016, 4, 4.
(162) Procopio, A.; Costanzo, P.; Curini, M.; Nardi, M.; Oliverio, M.; Sindona, G. ACS Sustain. Chem. Eng. 2013, 1, 541.
(163) Guzei, I. A. Notes on OLEX2; 2013.
(164) Cotton, S. Lanthanide and Actinide Chemistry; John Wiley \& Sons: Uppingham, 2006.

## 8 APPENDIX

### 8.1 Crystallographic data

Table 8.1: Crystal data of compound (4).

| Compound | (4) |
| :---: | :---: |
| Empirical formula | $\mathrm{C}_{77} \mathrm{H}_{151} \mathrm{MnMo}_{6} \mathrm{~N}_{10} \mathrm{O}_{27}$ |
| Formula weight [ $\mathrm{g} / \mathrm{mol}$ ] | 2279.65 |
| Temperature [K] | 180.15 |
| Crystal system | triclinic |
| Space group | $P$-1 |
| a [ $\AA$ ] | 16.3464(12) |
| b [ $\AA$ ] | 17.0199(12) |
| c [ $\AA$ ] | 20.0780(14) |
| $\alpha{ }^{\circ}{ }^{\circ}$ | 83.675(6) |
| $\beta\left[{ }^{\circ}\right]$ | 71.790(5) |
| $\gamma\left[{ }^{\circ}\right]$ | 67.634(5) |
| Volume [ $\AA^{3}$ ] | 4906.8(6) |
| Z | 2 |
| $\rho_{\text {calcg }}\left[\mathrm{cm}^{3}\right]$ | 1.543 |
| $\mu\left[\mathrm{mm}^{-1}\right]$ | 0.94 |
| $\mathrm{F}(000)$ | 2352 |
| Crystal size [ $\mathrm{mm}^{3}$ ] | $0.38 \times 0.24 \times 0.07$ |
| Radiation | $\operatorname{MoK} \alpha(\lambda=0.71073)$ |
| $2 \Theta$ range for data collection [ ${ }^{\circ}$ ] | 2.82 to 54.916 |
| Index ranges | $\begin{aligned} & -21 \leq \mathrm{h} \leq 20,-21 \leq \mathrm{k} \leq 22,-25 \leq 1 \leq \\ & 25 \end{aligned}$ |
| Reflections collected | 41247 |
| Independent reflections | $\begin{aligned} & 21451\left[\mathrm{R}_{\text {int }}=0.0224, \mathrm{R}_{\text {sigma }}=\right. \\ & 0.0210] \end{aligned}$ |
| Data/restraints/parameters | 21451/44/1057 |
| Goodness-of-fit on $\mathrm{F}^{2}$ | 1.04 |
| Final R indexes [I> $=2 \sigma(\mathrm{I})$ ] | $\mathrm{R}_{1}=0.0268, \mathrm{wR}_{2}=0.0739$ |
| Final R indexes [all data] | $\mathrm{R}_{1}=0.0323, \mathrm{wR}_{2}=0.0762$ |
| Largest diff. peak/hole [e $\AA^{-3}$ ] | 0.83/-0.46 |

Table 8.2: Crystal data of compound (5).

| Compound | (5) |
| :---: | :---: |
| Empirical formula | $\mathrm{C}_{97} \mathrm{H}_{190} \mathrm{MnMo}_{6} \mathrm{~N}_{9} \mathrm{O}_{31}$ |
| Formula weight [ $\mathrm{g} / \mathrm{mol}$ ] | 2609.15 |
| Temperature [K] | 180.15 |
| Crystal system | monoclinic |
| Space group | $P 2{ }_{1} / \mathrm{c}$ |
| a [ A ] | 22.3589(8) |
| b [ $\AA$ ] | 17.1768(9) |
| c [ A ] | 32.5454(12) |
| $\alpha\left[{ }^{\circ}\right]$ | 90 |
| $\beta\left[^{\circ}\right]$ | 100.346(3) |
| $\gamma\left[{ }^{\circ}\right]$ | 90 |
| Volume [ ${ }^{\text { }}$ ] | 12296.0(9) |
| Z | 4 |
| $\rho_{\text {calcg }}\left[\mathrm{cm}^{3}\right]$ | 1.409 |
| $\mu\left[\mathrm{mm}^{-1}\right]$ | 0.762 |
| $\mathrm{F}(000)$ | 5440 |
| Crystal size [ $\mathrm{mm}^{3}$ ] | $0.45 \times 0.21 \times 0.12$ |
| Radiation | $\mathrm{MoKa}(\lambda=0.71073)$ |
| $2 \Theta$ range for data collection [ ${ }^{\circ}$ ] | 2.866 to 51.364 |
| Index ranges | $\begin{aligned} & -23 \leq \mathrm{h} \leq 27,-20 \leq \mathrm{k} \leq 20,-39 \leq 1 \leq \\ & 39 \end{aligned}$ |
| Reflections collected | 89648 |
| Independent reflections | $\begin{aligned} & 23307\left[\mathrm{R}_{\text {int }}=0.0845, \mathrm{R}_{\text {sigma }}=\right. \\ & 0.0605] \end{aligned}$ |
| Data/restraints/parameters | 23307/3/1256 |
| Goodness-of-fit on $\mathrm{F}^{2}$ | 0.875 |
| Final R indexes [I> = 2 $\sigma(\mathrm{I})$ ] | $\mathrm{R}_{1}=0.0467, \mathrm{wR}_{2}=0.1166$ |
| Final R indexes [all data] | $\mathrm{R}_{1}=0.0739, \mathrm{wR}_{2}=0.1278$ |
| Largest diff. peak/hole [e $\AA^{-3}$ ] | 0.83/-0.51 |

Table 8.3: Crystal data of compound (6).

| Compound | (6) |
| :---: | :---: |
| Empirical formula | $\mathrm{C}_{68} \mathrm{H}_{150} \mathrm{AlMo}_{6} \mathrm{~N}_{3} \mathrm{O}_{34}$ |
| Formula weight [ $\mathrm{g} / \mathrm{mol}]$ | 2156.52 |
| Temperature [K] | 180(2) |
| Crystal system | monoclinic |
| Space group | $P 2_{1} / n$ |
| a [ A ] | 13.9305(11) |
| b [ A ] | 23.8385(13) |
| c [ A ] | 15.3355(12) |
| $\left.\alpha{ }^{[ }{ }^{\circ}\right]$ | 90 |
| $\beta{ }^{\circ}{ }^{\circ}$ | 113.593(7) |
| $\left.\gamma{ }^{[ }{ }^{\circ}\right]$ | 90 |
| Volume [ ${ }^{\text { }}$ ] | 4667.0(6) |
| Z | 2 |
| $\rho_{\text {calc }}$ [ $\left[\mathrm{cm}^{3}\right]$ | 1.535 |
| $\mu\left[\mathrm{mm}^{-1}\right]$ | 0.869 |
| $\mathrm{F}(000)$ | 2232 |
| Crystal size [ $\mathrm{mm}^{3}$ ] | $0.44 \times 0.32 \times 0.23$ |
| Radiation | $\operatorname{MoK} \alpha(\lambda=0.71073)$ |
| $2 \Theta$ range for data collection [ ${ }^{\circ}$ ] | 3.344 to 50.7 |
| Index ranges | $\begin{aligned} & -16 \leq \mathrm{h} \leq 16,-26 \leq \mathrm{k} \leq 28,-18 \leq 1 \leq \\ & 18 \end{aligned}$ |
| Reflections collected | 23421 |
| Independent reflections | $8465\left[\mathrm{R}_{\text {int }}=0.0332, \mathrm{R}_{\text {sigma }}=0.0417\right]$ |
| Data/restraints/parameters | 8465/157/494 |
| Goodness-of-fit on $\mathrm{F}^{2}$ | 0.905 |
| Final R indexes [ $\mathrm{I}>=2 \sigma(\mathrm{I})$ ] | $\mathrm{R}_{1}=0.0476, \mathrm{wR}_{2}=0.1284$ |
| Final R indexes [all data] | $\mathrm{R}_{1}=0.0775, \mathrm{wR}_{2}=0.1419$ |
| Largest diff. peak/hole [e $\AA^{-3}$ ] | 0.82/-0.38 |

Table 8.4: Crystal data of compound (7).

| Compound | (7) |
| :---: | :---: |
| Empirical formula | $\mathrm{C}_{84} \mathrm{H}_{170} \mathrm{MnMo}_{6} \mathrm{~N}_{13} \mathrm{O}_{24}$ |
| Formula weight [ $\mathrm{g} / \mathrm{mol}$ ] | 2376.9 |
| Temperature [K] | 180.15 |
| Crystal system | triclinic |
| Space group | $P$-1 |
| a [ $\AA$ ] | 20.3358(3) |
| b [ $\AA$ ] | 28.4667(5) |
| c [ A ] | 30.2411(5) |
| $\alpha\left[{ }^{\circ}\right]$ | 67.3340(10) |
| $\beta{ }^{\circ}{ }^{\circ}$ | 70.1380(10) |
| $\gamma\left[{ }^{\circ}\right]$ | 76.5140(10) |
| Volume [ ${ }^{\text { }}$ ] | 15087.5(5) |
| Z | 6 |
| $\rho_{\text {calcg }}\left[\mathrm{cm}^{3}\right]$ | 1.57 |
| $\mu\left[\mathrm{mm}^{-1}\right]$ | 0.92 |
| $\mathrm{F}(000)$ | 7404 |
| Crystal size [ $\mathrm{mm}^{3}$ ] | $0.52 \times 0.43 \times 0.33$ |
| Radiation | $\operatorname{MoK} \alpha(\lambda=0.71073)$ |
| $2 \Theta$ range for data collection [ ${ }^{\circ}$ ] | 3.554 to 54.206 |
| Index ranges | $\begin{aligned} & -26 \leq \mathrm{h} \leq 15,--36 \leq \mathrm{k} \leq 33,-38 \leq 1 \leq \\ & 35 \end{aligned}$ |
| Reflections collected | 136907 |
| Independent reflections | $\begin{aligned} & 65534\left[\mathrm{R}_{\mathrm{int}}=0.0314, \mathrm{R}_{\text {sigma }}=\right. \\ & 0.0372] \end{aligned}$ |
| Data/restraints/parameters | 65534/2574/2855 |
| Goodness-of-fit on $\mathrm{F}^{2}$ | 1.017 |
| Final R indexes [I> $=2 \sigma(\mathrm{I})$ ] | $\mathrm{R}_{1}=0.0682, \mathrm{wR}_{2}=0.1860$ |
| Final R indexes [all data] | $\mathrm{R}_{1}=0.1010, \mathrm{wR}_{2}=0.2187$ |
| Largest diff. peak/hole [e $\AA^{-3}$ ] | 2.78/-1.83 |

Table 8.5: Crystal data of compound (8).

| Compound | (8) |
| :---: | :---: |
| Empirical formula | $\mathrm{C}_{82} \mathrm{H}_{158} \mathrm{MnMo}_{6} \mathrm{~N}_{11} \mathrm{O}_{34}$ |
| Formula weight [ $\mathrm{g} / \mathrm{mol}$ ] | 2472.76 |
| Temperature [K] | 293(2) |
| Crystal system | orthorhombic |
| Space group | Pbcn |
| a [Å] | 63.585(4) |
| b [ A ] | 18.1926(12) |
| c [ $\AA$ ] | 26.6998(12) |
| $\alpha\left[{ }^{\circ}\right]$ | 90 |
| $\beta\left[^{\circ}\right]$ | 90 |
| $\gamma\left[{ }^{\circ}\right]$ | 90 |
| Volume [ ${ }^{\text {® }}$ ] | 30886(3) |
| Z | 12 |
| $\rho_{\text {calc }}\left[\mathrm{cm}^{3}\right]$ | 1.595 |
| $\mu\left[\mathrm{mm}^{-1}\right]$ | 7.456 |
| $\mathrm{F}(000)$ | 15312 |
| Crystal size [mm ${ }^{3}$ ] | $0.52 \times 0.47 \times 0.42$ |
| Radiation | $\mathrm{CuK} \alpha(\lambda=1.54186)$ |
| $2 \Theta$ range for data collection [ ${ }^{\circ}$ ] | 6.402 to 125.266 |
| Index ranges | $\begin{aligned} & -72 \leq \mathrm{h} \leq 51,-20 \leq \mathrm{k} \leq 20,-28 \leq 1 \leq \\ & 30 \end{aligned}$ |
| Reflections collected | 68817 |
| Independent reflections | $\begin{aligned} & 23944\left[\mathrm{R}_{\text {int }}=0.0307, \mathrm{R}_{\text {sigma }}=\right. \\ & 0.0233] \end{aligned}$ |
| Data/restraints/parameters | 23944/102/1678 |
| Goodness-of-fit on $\mathrm{F}^{2}$ | 1.049 |
| Final R indexes [I> = 2 $\sigma$ ( I ] | $\mathrm{R}_{1}=0.0436, \mathrm{wR}_{2}=0.1299$ |
| Final R indexes [all data] | $\mathrm{R}_{1}=0.0549, \mathrm{wR}_{2}=0.1367$ |
| Largest diff. peak/hole [e $\AA^{-3}$ ] | 1.02/-0.86 |

Table 8.6: Crystal data of compound (9).

| Compound | (9) |
| :---: | :---: |
| Empirical formula | $\mathrm{C}_{70} \mathrm{H}_{137} \mathrm{MnMo}_{6} \mathrm{~N}_{6} \mathrm{O}_{25}$ |
| Formula weight [ $\mathrm{g} / \mathrm{mol}$ ] | 2093.43 |
| Temperature [K] | 180.15 |
| Crystal system | triclinic |
| Space group | $P-1$ |
| a [Å] | 13.9550(10) |
| b [ A ] | 17.1438(14) |
| c [ $\AA$ ] | 19.1438(16) |
| $\alpha\left[{ }^{\circ}\right]$ | 81.478(7) |
| $\beta\left[^{\circ}\right]$ | 78.320(6) |
| $\gamma\left[{ }^{\circ}\right]$ | 83.957(6) |
| Volume [ ${ }^{\text {® }}$ ] | 4422.2(6) |
| Z | 2 |
| $\rho_{\text {calc }}\left[\mathrm{cm}^{3}\right]$ | 1.572 |
| $\mu\left[\mathrm{mm}^{-1}\right]$ | 1.033 |
| $\mathrm{F}(000)$ | 2152 |
| Crystal size [mm ${ }^{3}$ ] | $0.52 \times 0.46 \times 0.39$ |
| Radiation | $\mathrm{MoK} \alpha(\lambda=0.71073)$ |
| $2 \Theta$ range for data collection [ ${ }^{\circ}$ ] | 2.99 to 50.696 |
| Index ranges | $\begin{aligned} & -16 \leq \mathrm{h} \leq 16,-20 \leq \mathrm{k} \leq 20,-23 \leq 1 \leq \\ & 23 \end{aligned}$ |
| Reflections collected | 25690 |
| Independent reflections | $\begin{aligned} & 15123\left[\mathrm{R}_{\text {int }}=0.0500, \mathrm{R}_{\text {sigma }}=\right. \\ & 0.0922] \end{aligned}$ |
| Data/restraints/parameters | 15123/2/1001 |
| Goodness-of-fit on $\mathrm{F}^{2}$ | 0.846 |
| Final R indexes [I> = 2 $\sigma$ ( I ] | $\mathrm{R}_{1}=0.0370, \mathrm{wR}_{2}=0.0634$ |
| Final R indexes [all data] | $\mathrm{R}_{1}=0.0824, \mathrm{wR}_{2}=0.0724$ |
| Largest diff. peak/hole [e $\AA^{-3}$ ] | 0.62/-0.56 |

Table 8.7: Crystal data of compound (10).

| Compound | (10) |
| :---: | :---: |
| Empirical formula | $\mathrm{C}_{44} \mathrm{H}_{98} \mathrm{Mn}_{2} \mathrm{Mo}_{4} \mathrm{~N}_{4} \mathrm{O}_{20}$ |
| Formula weight [ $\mathrm{g} / \mathrm{mol}$ ] | 1496.9 |
| Temperature [K] | 180.15 |
| Crystal system | monoclinic |
| Space group | $P 2{ }_{1} / n$ |
| a [A] | 9.9770(11) |
| b [ $\AA$ ] | 16.1440(18) |
| c [Å] | 18.730(2) |
| $\alpha\left[{ }^{\circ}\right]$ | 90 |
| $\beta\left[{ }^{\circ}\right]$ | 95.186(9) |
| $\gamma\left[{ }^{\circ}\right]$ | 90 |
| Volume [ $\AA^{3}$ ] | 3004.5(6) |
| Z | 2 |
| $\rho_{\text {calcg }}\left[\mathrm{cm}^{3}\right]$ | 1.655 |
| $\mu\left[\mathrm{mm}^{-1}\right]$ | 1.287 |
| $\mathrm{F}(000)$ | 1536 |
| Crystal size $\left[\mathrm{mm}^{3}\right]$ | $0.76 \times 0.21 \times 0.19$ |
| Radiation | $\operatorname{MoK} \alpha(\lambda=0.71073)$ |
| $2 \Theta$ range for data collection [ $\left.{ }^{\circ}\right]$ | 3.336 to 54.936 |
| Index ranges | $\begin{aligned} & -12 \leq \mathrm{h} \leq 12,-20 \leq \mathrm{k} \leq 20,-24 \leq 1 \leq \\ & 24 \end{aligned}$ |
| Reflections collected | 25730 |
| Independent reflections | $6788\left[\mathrm{R}_{\text {int }}=0.0699, \mathrm{R}_{\text {sigma }}=0.0487\right]$ |
| Data/restraints/parameters | 6788/12/344 |
| Goodness-of-fit on $\mathrm{F}^{2}$ | 0.985 |
| Final R indexes [I> = 2 $\sigma$ ( I ] | $\mathrm{R}_{1}=0.0334, \mathrm{wR}_{2}=0.0794$ |
| Final R indexes [all data] | $\mathrm{R}_{1}=0.0498, \mathrm{wR}_{2}=0.0848$ |
| Largest diff. peak/hole [e $\AA^{-3}$ ] | 1.02/-0.95 |

Table 8.8: Crystal data of compound (11)-Ce

| Compound | (11)-Ce |
| :---: | :---: |
| Empirical formula | $\mathrm{C}_{174} \mathrm{H}_{316} \mathrm{Ce}_{5} \mathrm{Mn}_{3} \mathrm{Mo}_{18} \mathrm{~N}_{42} \mathrm{O}_{118}$ |
| Formula weight [ $\mathrm{g} / \mathrm{mol}$ ] | 7477.01 |
| Temperature [K] | 180.15 |
| Crystal system | monoclinic |
| Space group | $P 2_{1}$ |
| $\mathrm{a}[\AA]$ | 19.2936(2) |
| b [ $\AA$ ] | 25.6462(2) |
| c [ $\AA$ ] | 26.1388(3) |
| $\left.\alpha{ }^{[ }\right]$ | 90 |
| $\beta\left[^{\circ}\right]$ | 90.1440(10) |
| $\gamma\left[{ }^{\circ}\right]$ | 90 |
| Volume [ $\AA^{3}$ ] | 12933.6(2) |
| Z | 2 |
| $\rho_{\text {calc }}\left[\mathrm{cm}^{3}\right]$ | 1.92 |
| $\mu\left[\mathrm{mm}^{-1}\right]$ | 10.266 |
| F (000) | 7438 |
| Crystal size [mm ${ }^{3}$ ] | $0.22 \times 0.11 \times 0.06$ |
| Radiation | $\operatorname{GaK} \alpha(\lambda=1.34143)$ |
| $2 \Theta$ range for data collection [ ${ }^{\circ}$ ] | 4.2 to 123.246 |
| Index ranges | $\begin{aligned} & -21 \leq \mathrm{h} \leq 25,-26 \leq \mathrm{k} \leq 33,-29 \leq 1 \leq \\ & 34 \end{aligned}$ |
| Reflections collected | 181817 |
| Independent reflections | $51909\left[\mathrm{R}_{\text {int }}=0.0416, \mathrm{R}_{\text {sigma }}=0.0399\right]$ |
| Data/restraints/parameters | 51909/940/2355 |
| Goodness-of-fit on $\mathrm{F}^{2}$ | 1.031 |
| Final R indexes [I> $=2 \sigma(\mathrm{I})$ ] | $\mathrm{R}_{1}=0.0568, \mathrm{wR}_{2}=0.1595$ |
| Final R indexes [all data] | $\mathrm{R}_{1}=0.0677, \mathrm{wR}_{2}=0.1646$ |
| Largest diff. peak/hole [e $\AA^{-3}$ ] | 1.95/-1.42 |
| Flack $\chi$ parameter | 0.126(4) |

Table 8.9: Crystal data of compound (12)-Dy

| Compound | (12)-Dy |
| :---: | :---: |
| Empirical formula | $\mathrm{C}_{127} \mathrm{H}_{207} \mathrm{Dy}_{5} \mathrm{Mn}_{3} \mathrm{Mo}_{18} \mathrm{~N}_{24} \mathrm{O}_{104}$ |
| Formula weight [g/mol] | 6438.39 |
| Temperature [K] | 150.15 |
| Crystal system | monoclinic |
| Space group | $P 2{ }_{1} / \mathrm{c}$ |
| a [A] | 19.5819(7) |
| b [ $\AA$ ] | 25.2560(10) |
| c [ A ] | 25.3233(9) |
| $\alpha{ }^{[ }{ }^{\circ}$ | 90 |
| $\beta\left[^{\circ}\right]$ | 90.306(3) |
| $\gamma\left[{ }^{\circ}\right]$ | 90 |
| Volume [ ${ }^{\text { }}$ ] | 12523.7(8) |
| Z | 2 |
| $\rho_{\text {calcg }}\left[\mathrm{cm}^{3}\right]$ | 1.707 |
| $\mu\left[\mathrm{mm}^{-1}\right]$ | 13.69 |
| $\mathrm{F}(000)$ | 6260 |
| Crystal size [ $\mathrm{mm}^{3}$ ] | $0.25 \times 0.21 \times 0.16$ |
| Radiation | $\mathrm{GaK} \alpha(\lambda=1.34143)$ |
| $2 \Theta$ range for data collection [ ${ }^{\circ}$ ] | 4.3 to 120.076 |
| Index ranges | $\begin{aligned} & -25 \leq \mathrm{h} \leq 25,-23 \leq \mathrm{k} \leq 32,-32 \leq 1 \leq \\ & 30 \end{aligned}$ |
| Reflections collected | 87057 |
| Independent reflections | $26547\left[\mathrm{R}_{\text {int }}=0.0512, \mathrm{R}_{\text {sigma }}=0.0442\right]$ |
| Data/restraints/parameters | 26547/331/1073 |
| Goodness-of-fit on $\mathrm{F}^{2}$ | 0.98 |
| Final R indexes [I> $=2 \sigma$ ( I ] | $\mathrm{R}_{1}=0.0789, \mathrm{wR}_{2}=0.2304$ |
| Final R indexes [all data] | $\mathrm{R}_{1}=0.1165, \mathrm{wR}_{2}=0.2605$ |
| Largest diff. peak/hole [e $\AA^{-3}$ ] | 2.74/-1.34 |

Table 8.10: Crystal data of compound (13).

| Compound | (13) |
| :---: | :---: |
| Empirical formula | $\mathrm{C}_{132} \mathrm{H}_{233} \mathrm{ClCuMn}_{2} \mathrm{Mo}_{12} \mathrm{~N}_{17} \mathrm{O}_{52}$ |
| Formula weight [g/mol] | 4250.49 |
| Temperature [K] | 180(2) |
| Crystal system | monoclinic |
| Space group | I2/a |
| a [A] | 27.9207(12) |
| b [ $\AA$ ] | 27.5317(11) |
| c [ A ] | 27.9543(13) |
| $\alpha{ }^{[ }{ }^{\circ}$ | 90 |
| $\beta\left[^{\circ}\right]$ | 99.258(4) |
| $\gamma\left[{ }^{\circ}\right]$ | 90 |
| Volume [ ${ }^{\text { }}$ ] | 21208.7(16) |
| Z | 4 |
| $\rho_{\text {calcg }}\left[\mathrm{cm}^{3}\right]$ | 1.331 |
| $\mu\left[\mathrm{mm}^{-1}\right]$ | 0.973 |
| $\mathrm{F}(000)$ | 8640 |
| Crystal size [ $\mathrm{mm}^{3}$ ] | $0.45 \times 0.39 \times 0.23$ |
| Radiation | $\operatorname{MoK} \alpha(\lambda=0.71073)$ |
| $2 \Theta$ range for data collection [ ${ }^{\circ}$ ] | 3.418 to 55.056 |
| Index ranges | $\begin{aligned} & -36 \leq \mathrm{h} \leq 32,-35 \leq \mathrm{k} \leq 35,-36 \leq 1 \leq \\ & 36 \end{aligned}$ |
| Reflections collected | 91425 |
| Independent reflections | $23884\left[\mathrm{R}_{\text {int }}=0.1141, \mathrm{R}_{\text {sigma }}=0.0718\right]$ |
| Data/restraints/parameters | 23884/272/808 |
| Goodness-of-fit on $\mathrm{F}^{2}$ | 1.475 |
| Final R indexes [I> $=2 \sigma$ ( I ] | $\mathrm{R}_{1}=0.1223, \mathrm{wR}_{2}=0.3448$ |
| Final R indexes [all data] | $\mathrm{R}_{1}=0.1403, \mathrm{wR}_{2}=0.3786$ |
| Largest diff. peak/hole [e $\AA^{-3}$ ] | 0.94/-3.34 |

Table 8.11: Crystal data of compound (14A).

| Compound | (14A) |
| :---: | :---: |
| Empirical formula | $\mathrm{C}_{94} \mathrm{H}_{168} \mathrm{Mn}_{2} \mathrm{Mo}_{12} \mathrm{~N}_{26} \mathrm{O}_{66} \mathrm{Zn}_{3}$ |
| Formula weight [ $\mathrm{g} / \mathrm{mol}$ ] | 4175.8 |
| Temperature [K] | 180.15 |
| Crystal system | cubic |
| Space group | 1432 |
| a [ $\AA$ ] | 36.7518(7) |
| b [ $\AA$ ] | 36.7518(7) |
| c [ $\AA$ ] | 36.7518(7) |
| $\alpha\left[{ }^{\circ}\right]$ | 90 |
| $\left.\beta{ }^{[ }{ }^{\circ}\right]$ | 90 |
| $\gamma\left[{ }^{\circ}\right]$ | 90 |
| Volume [ $\AA^{3}$ ] | 49640(3) |
| Z | 12 |
| $\rho_{\text {calc }}\left[\mathrm{cm}^{3}\right]$ | 1.676 |
| $\mu\left[\mathrm{mm}^{-1}\right]$ | 1.534 |
| F (000) | 25032 |
| Crystal size [mm ${ }^{3}$ ] | $0.13 \times 0.11 \times 0.07$ |
| Radiation | $\operatorname{MoK} \alpha(\lambda=0.71073)$ |
| $2 \Theta$ range for data collection [ ${ }^{\circ}$ ] | 2.216 to 51.354 |
| Index ranges | $\begin{aligned} & -44 \leq \mathrm{h} \leq 43,-44 \leq \mathrm{k} \leq 43,-44 \leq 1 \leq \\ & 44 \end{aligned}$ |
| Reflections collected | 135893 |
| Independent reflections | $7899\left[\mathrm{R}_{\text {int }}=0.0501, \mathrm{R}_{\text {sigma }}=0.0179\right]$ |
| Data/restraints/parameters | 7899/81/340 |
| Goodness-of-fit on $\mathrm{F}^{2}$ | 0.943 |
| Final R indexes [I> $=2 \sigma(\mathrm{I})$ ] | $\mathrm{R}_{1}=0.0458, \mathrm{wR}_{2}=0.1329$ |
| Final R indexes [all data] | $\mathrm{R}_{1}=0.0551, \mathrm{wR}_{2}=0.1402$ |
| Largest diff. peak/hole [e $\AA^{-3}$ ] | 0.51/-0.45 |
| Flack $\chi$ parameter | 0.11(3) |

Table 8.12: Crystal data of compound (14B).

| Compound | (14B) |
| :---: | :---: |
| Empirical formula | $\mathrm{C}_{97} \mathrm{H}_{175} \mathrm{Mn}_{2} \mathrm{Mo}_{12} \mathrm{~N}_{27} \mathrm{O}_{67} \mathrm{Zn}_{3}$ |
| Formula weight [g/mol] | 4248.9 |
| Temperature [K] | 100.15 |
| Crystal system | monoclinic |
| Space group | C2/c |
| a [A] | 44.0133(6) |
| b [ $\AA$ ] | 12.9451(2) |
| c [ A ] | 28.3784(4) |
| $\alpha{ }^{[ }{ }^{\circ}$ | 90 |
| $\beta{ }^{\circ}{ }^{\circ}$ | 102.002(1) |
| $\gamma\left[{ }^{\circ}\right]$ | 90 |
| Volume [ ${ }^{\text { }}$ ] | 15815.3(4) |
| Z | 4 |
| $\rho_{\text {calcg }}\left[\mathrm{cm}^{3}\right]$ | 1.784 |
| $\mu\left[\mathrm{mm}^{-1}\right]$ | 1.607 |
| $\mathrm{F}(000)$ | 8504 |
| Crystal size [ $\mathrm{mm}^{3}$ ] | $0.48 \times 0.28 \times 0.12$ |
| Radiation | $\operatorname{MoK} \alpha(\lambda=0.71073)$ |
| $2 \Theta$ range for data collection [ ${ }^{\circ}$ ] | 3.516 to 62.244 |
| Index ranges | $\begin{aligned} & -61 \leq \mathrm{h} \leq 61,-18 \leq \mathrm{k} \leq 16,-39 \leq 1 \leq \\ & 40 \end{aligned}$ |
| Reflections collected | 178407 |
| Independent reflections | $22059\left[\mathrm{R}_{\text {int }}=0.0616, \mathrm{R}_{\text {sigma }}=0.0363\right]$ |
| Data/restraints/parameters | 22059/43/825 |
| Goodness-of-fit on $\mathrm{F}^{2}$ | 1.054 |
| Final R indexes [I> $=2 \sigma$ ( I ] | 22059/43/825 |
| Final R indexes [all data] | 1.054 |
| Largest diff. peak/hole [e $\AA^{-3}$ ] | $\mathrm{R}_{1}=0.0445, \mathrm{wR}_{2}=0.1105$ |
| Flack $\chi$ parameter | $\mathrm{R}_{1}=0.0593, \mathrm{wR}_{2}=0.1164$ |

Table 8.13: Crystal data of compound (15).

| Compound | (15) |
| :---: | :---: |
| Empirical formula | $\mathrm{C}_{42} \mathrm{H}_{72} \mathrm{CdMnMo}_{6} \mathrm{~N}_{7} \mathrm{O}_{26}$ |
| Formula weight [g/mol] | 1834.04 |
| Temperature [K] | 180(2) |
| Crystal system | triclinic |
| Space group | $P-1$ |
| a [ A ] | 11.9141(5) |
| b [ $\AA$ ] | 13.4714(6) |
| c [ A ] | 22.9561(9) |
| $\left.\alpha{ }^{\circ}{ }^{\circ}\right]$ | 96.999(3) |
| $\left.\beta{ }^{\circ}\right]$ | 101.332(3) |
| $\gamma\left[{ }^{\circ}\right]$ | 113.688(3) |
| Volume [ ${ }^{\text {® }}$ ] | 3224.5(2) |
| Z | 2 |
| $\rho_{\text {calc }}\left[\mathrm{cm}^{3}\right]$ | 1.889 |
| $\mu\left[\mathrm{mm}^{-1}\right]$ | 9.348 |
| F (000) | 1812 |
| Crystal size [mm ${ }^{3}$ ] | $0.34 \times 0.21 \times 0.19$ |
| Radiation | $\mathrm{GaK} \alpha(\lambda=1.34143)$ |
| $2 \Theta$ range for data collection [ ${ }^{\circ}$ ] | 6.396 to 123.89 |
| Index ranges | $\begin{aligned} & -15 \leq \mathrm{h} \leq 9,-13 \leq \mathrm{k} \leq 17,-30 \leq 1 \leq \\ & 30 \end{aligned}$ |
| Reflections collected | 39959 |
| Independent reflections | $\begin{aligned} & 14922\left[\mathrm{R}_{\text {int }}=0.0699, \mathrm{R}_{\text {sigma }}=\right. \\ & 0.0469] \end{aligned}$ |
| Data/restraints/parameters | 14922/26/760 |
| Goodness-of-fit on $\mathrm{F}^{2}$ | 1.767 |
| Final R indexes [ $\mathrm{I}>=2 \sigma(\mathrm{I})$ ] | $\mathrm{R}_{1}=0.1049, \mathrm{wR}_{2}=0.2581$ |
| Final R indexes [all data] | $\mathrm{R}_{1}=0.1178, \mathrm{wR}_{2}=0.2633$ |
| Largest diff. peak/hole [e $\AA^{-3}$ ] | 5.59/-1.74 |

### 8.2 SHAPE analysis results for coordination polyhedra

### 8.2.1 SHAPE analysis for compound (10)

Table 8.14: Continuous shape measurements (CShM's) of compound (10).

| \{MoOs) |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ideal | structures | ML5 |  |  |  |  |
| PP-5 | 1 | $\mathrm{D}_{\text {5h }}$ | Pentagon |  |  |  |
| OC-5 | 2 | $\mathrm{C}_{4 \mathrm{v}}$ | Vacant | octahedron |  |  |
| TBPY-5 | 3 | $\mathrm{D}_{3 \mathrm{~h}}$ | Trigonal | bipyramid |  |  |
| SPY-5 | 4 | $\mathrm{C}_{4 \mathrm{v}}$ | Spherical | square | pyramid |  |
| JTBPY-5 | 5 | $\mathrm{D}_{3 \mathrm{~h}}$ | Johnson | trigonal | bipyramid | J12 |
|  |  |  |  |  |  |  |
| Structure | 1 | [Mo] |  |  |  |  |
|  | Mo | 2.744 | 11.7564 | 9.272 |  |  |
|  | O | 1.5853 | 10.6499 | 10.1803 |  |  |
|  | O | 3.8998 | 10.9484 | 8.1014 |  |  |
|  | O | 3.5336 | 12.864 | 10.3112 |  |  |
|  | O | 1.703 | 12.6965 | 8.2995 |  |  |
|  | O | 4.0644 | 10.0557 | 10.5742 |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  | PP-5 | Ideal | structure | CShM | $=$ | 33.61759 |
|  | Mo | M | 2.9217 | 11.4951 | 9.4564 |  |
|  | O | L1 | 1.6629 | 10.7566 | 9.982 |  |
|  | O | L3 | 4.446 | 11.3546 | 9.206 |  |
|  | O | L4 | 3.434 | 12.8307 | 8.8565 |  |
|  | O | L5 | 1.714 | 12.4611 | 9.336 |  |
|  | O | L2 | 3.3514 | 10.0727 | 9.9016 |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  | vOC-5 | Ideal | structure | CShM | $=$ | 6.27707 |
|  | Mo | M | 2.8083 | 11.2517 | 9.2967 |  |
|  | O | L2 | 1.4198 | 11.0798 | 10.5444 |  |
|  | O | L4 | 4.1968 | 11.4236 | 8.049 |  |
|  | O | L1 | 3.4885 | 12.7123 | 10.2549 |  |
|  | O | L3 | 1.7483 | 12.4142 | 8.2772 |  |


|  | O | L5 | 3.8683 | 10.0892 | 10.3162 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  | TBPY-5 | Ideal | structure | CShM | $=$ | 2.2299 |
|  | Mo | M | 2.9217 | 11.4951 | 9.4564 |  |
|  | O | L2 | 1.3854 | 10.596 | 10.069 |  |
|  | O | L3 | 3.8036 | 10.9007 | 7.9031 |  |
|  | O | L4 | 3.576 | 12.9887 | 10.3971 |  |
|  | O | L1 | 1.8417 | 12.6275 | 8.4099 |  |
|  | O | L5 | 4.0017 | 10.3628 | 10.5029 |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  | SPY-5 | Ideal | structure | CShM | $=$ | 5.14319 |
|  | Mo | M | 2.9217 | 11.4951 | 9.4564 |  |
|  | O | L2 | 1.4283 | 10.9664 | 10.42 |  |
|  | O | L4 | 4.0863 | 11.2921 | 8.0279 |  |
|  | O | L1 | 3.5791 | 12.9585 | 10.3862 |  |
|  | O | L3 | 1.7317 | 12.2197 | 8.2328 |  |
|  | O | L5 | 3.7829 | 10.0388 | 10.2151 |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  | JTBPY-5 | Ideal | structure | CShM | $=$ | 1.90296 |
|  | Mo | M | 2.9217 | 11.4951 | 9.4564 |  |
|  | O | L1 | 1.6178 | 10.7375 | 9.9718 |  |
|  | 0 | L2 | 3.6654 | 10.9949 | 8.1387 |  |
|  | 0 | L3 | 3.4818 | 12.753 | 10.2588 |  |
|  | O | L4 | 1.6345 | 12.8629 | 8.2107 |  |
|  | O | L5 | 4.2089 | 10.1274 | 10.7022 |  |
|  |  |  |  |  |  |  |
| $\left\{\mathrm{MoO}_{6}\right\}$ |  |  |  |  |  |  |
| Ideal | structures | ML6 |  |  |  |  |
| HP-6 | 1 | D6h | Hexagon |  |  |  |
| PPY-6 | 2 | C5v | Pentagonal | pyramid |  |  |
| OC-6 | 3 | Oh | Octahedron |  |  |  |
| TPR-6 | 4 | D3h | Trigonal | prism |  |  |
| JPPY-6 | 5 | C5v | Johnson | pentagonal | pyramid | J2 |
|  |  |  |  |  |  |  |
| Structure | 1 | [Mo] |  |  |  |  |
|  | O | 1.5853 | 10.6499 | 10.1803 |  |  |





|  | Mn | M | 3.595 | 6.9152 | 9.5407 |  |
| :--- | :--- | :--- | ---: | ---: | ---: | ---: |
|  | O | L6 | 3.6622 | 6.0027 | 10.2442 |  |
|  | O | L1 | 3.8782 | 8.0552 | 10.9925 |  |
|  | N | L3 | 2.2827 | 6.0447 | 8.5369 |  |
|  | O | L4 | 4.4489 | 5.9411 | 8.1956 |  |
|  | O | L2 | 1.93 | 7.3513 | 10.2655 |  |
|  | O | L5 | 5.435 | 7.1837 | 9.7132 |  |

### 8.2.2 SHAPE analysis for compound (11)-Ce

Table 8.15: Continuous shape measurements (CShM's) of compound (11)-Ce.

| $\left\{\mathrm{Ce}(\mathrm{DMF})_{5}\left(\mathrm{O}_{\mathrm{t}}\right)_{3}\right\}$ (Ce2) |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ideal | structures | ML8 |  |  |  |  |  |
| OP-8 | 1 | D8h | Octagon |  |  |  |  |
| HPY-8 | 2 | C7v | Heptagon al | pyramid |  |  |  |
| HBPY-8 | 3 | D6h | Hexagon <br> al | bipyrami <br> d |  |  |  |
| CU-8 | 4 | Oh | Cube |  |  |  |  |
| SAPR-8 | 5 | D4d | Square | antipris <br> m |  |  |  |
| TDD-8 | 6 | D2d | Triangula <br> r | dodecahe dron |  |  |  |
| JGBF-8 | 7 | D2d | Johnson | gyrobifas tigium | J26 |  |  |
| JETBPY-8 | 8 | D3h | Johnson | elongated | triangular | bipyrami <br> d | J14 |
| JBTPR-8 | 9 | C 2 v | Biaugme nted | trigonal | prism | J50 |  |
|  |  |  |  |  |  |  |  |
| Structure | 1 | [Ce] |  |  |  |  |  |
|  | Ce | 15.2367 | 14.8435 | 21.1209 |  |  |  |
|  | O | 13.2844 | 16.1981 | 21.9748 |  |  |  |
|  | O | 14.017 | 15.7493 | 19.11 |  |  |  |
|  | O | 16.767 | 12.9872 | 21.9095 |  |  |  |
|  | O | 17.1394 | 14.7748 | 19.604 |  |  |  |
|  | O | 15.9513 | 17.1727 | 20.9842 |  |  |  |
|  | O | 13.8082 | 13.3463 | 22.3564 |  |  |  |
|  | O | 14.6952 | 13.0001 | 19.4943 |  |  |  |
|  | O | 16.0533 | 15.5262 | 23.3968 |  |  |  |


|  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |
|  | OP-8 | Ideal | structure | CShM | $=$ | 29.54764 |  |
|  | Ce | M | 15.2169 | 14.8443 | 21.1057 |  |  |
|  | O | L1 | 14.5405 | 16.469 | 22.2278 |  |  |
|  | O | L3 | 15.3287 | 16.06 | 19.4127 |  |  |
|  | O | L6 | 15.6162 | 12.8357 | 21.5093 |  |  |
|  | O | L4 | 15.7743 | 14.5551 | 19.1151 |  |  |
|  | O | L2 | 14.8176 | 16.8528 | 20.702 |  |  |
|  | O | L7 | 15.1052 | 13.6285 | 22.7986 |  |  |
|  | O | L5 | 15.8934 | 13.2195 | 19.9835 |  |  |
|  | O | L8 | 14.6595 | 15.1334 | 23.0962 |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  | HPY-8 | Ideal | structure | CShM | $=$ | 22.3995 |  |
|  | Ce | M | 15.3626 | 14.9938 | 20.9772 |  |  |
|  | O | L2 | 13.7834 | 16.534 | 20.9791 |  |  |
|  | O | L3 | 13.746 | 15.308 | 19.5095 |  |  |
|  | O | L6 | 17.1362 | 13.9646 | 21.7906 |  |  |
|  | O | L5 | 16.4347 | 13.2475 | 20.1603 |  |  |
|  | O | L8 | 15.01 | 16.6002 | 22.4473 |  |  |
|  | O | L1 | 14.0515 | 13.648 | 22.1332 |  |  |
|  | O | L4 | 14.926 | 13.8453 | 19.1451 |  |  |
|  | O | L7 | 16.5021 | 15.4567 | 22.8085 |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  | HBPY-8 | Ideal | structure | CShM | $=$ | 16.0159 |  |
|  | Ce | M | 15.2169 | 14.8443 | 21.1057 |  |  |
|  | O | L1 | 13.3524 | 15.4599 | 22.2623 |  |  |
|  | O | L2 | 14.4596 | 15.9794 | 19.2805 |  |  |
|  | O | L5 | 15.9743 | 13.7091 | 22.9308 |  |  |
|  | O | L8 | 17.0815 | 14.2286 | 19.949 |  |  |
|  | O | L3 | 15.7642 | 17.038 | 20.8202 |  |  |
|  | O | L6 | 14.6697 | 12.6505 | 21.3911 |  |  |
|  | O | L7 | 13.9123 | 13.7857 | 19.5659 |  |  |
|  | O | L4 | 16.5216 | 15.9028 | 22.6454 |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  | CU-8 | Ideal | structure | CShM | $=$ | 9.02514 |  |




| JTCTPR-9 | 9 | D3h | Tricapped | trigonal | prism | J51 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Structure | 1 | [Ce] |  |  |  |  |
|  | Ce | 3.5762 | 17.6656 | 17.8512 |  |  |
|  | O | 2.0312 | 19.4783 | 17.0372 |  |  |
|  | O | 5.7743 | 16.6085 | 16.9928 |  |  |
|  | O | 5.169 | 17.2163 | 19.8524 |  |  |
|  | O | 1.2509 | 16.7726 | 17.3822 |  |  |
|  | O | 3.3416 | 17.1547 | 15.3905 |  |  |
|  | O | 3.4594 | 15.2774 | 18.3834 |  |  |
|  | O | 2.1878 | 17.6754 | 19.9883 |  |  |
|  | O | 4.0652 | 19.7681 | 19.178 |  |  |
|  | O | 5.0653 | 19.3552 | 16.6111 |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  | EP-9 | Ideal | structure | CShM | $=$ | 37.34954 |
|  | Ce | M | 3.5921 | 17.6972 | 17.8667 |  |
|  | O | L1 | 2.2698 | 17.5635 | 16.3581 |  |
|  | O | L4 | 5.3778 | 18.57 | 17.5639 |  |
|  | O | L6 | 4.3906 | 17.5046 | 19.7018 |  |
|  | O | L9 | 1.7445 | 16.9966 | 17.4957 |  |
|  | O | L2 | 3.4138 | 18.1929 | 15.9264 |  |
|  | O | L8 | 2.0837 | 16.7575 | 18.8069 |  |
|  | O | L7 | 3.1287 | 16.9582 | 19.6782 |  |
|  | O | L5 | 5.2788 | 18.1412 | 18.8668 |  |
|  | O | L3 | 4.6413 | 18.5905 | 16.4026 |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  | OPY-9 | Ideal | structure | CShM | $=$ | 22.23111 |
|  | Ce | M | 3.5646 | 17.508 | 17.7477 |  |
|  | O | L2 | 1.9252 | 18.494 | 16.5584 |  |
|  | O | L5 | 5.7988 | 17.3209 | 17.5296 |  |
|  | O | L6 | 5.2041 | 16.522 | 18.9369 |  |
|  | O | L9 | 1.3304 | 17.695 | 17.9657 |  |
|  | O | L3 | 3.4803 | 18.7153 | 15.8478 |  |
|  | O | L7 | 3.6489 | 16.3006 | 19.6475 |  |
|  | O | L8 | 2.0444 | 16.7865 | 19.2452 |  |
|  | O | L1 | 3.8392 | 19.4005 | 18.9381 |  |
|  | O | L4 | 5.0849 | 18.2294 | 16.2501 |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |





| O | L5 | 8.0082 | 15.0226 | 1.4604 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| O | L4 | 9.1449 | 15.8693 | 2.2179 |  |  |
| O | L6 | 6.4643 | 14.6813 | 1.7478 |  |  |
| O | L8 | 5.4812 | 15.9015 | 4.2702 |  |  |
| O | L7 | 5.4176 | 15.0454 | 2.9116 |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
| HPY-8 | Ideal | structure | CShM | $=$ | 22.97104 |  |
| Ce | M | 7.1859 | 15.7654 | 3.4131 |  |  |
| O | L2 | 8.4308 | 16.6533 | 4.9789 |  |  |
| O | L3 | 6.8754 | 17.6355 | 4.5068 |  |  |
| O | L8 | 9.0487 | 15.0025 | 4.272 |  |  |
| O | L7 | 8.264 | 13.9262 | 2.9183 |  |  |
| O | L1 | 8.3298 | 16.8453 | 1.8915 |  |  |
| O | L5 | 5.4613 | 15.6961 | 2.0674 |  |  |
| O | L4 | 5.5539 | 17.2095 | 3.211 |  |  |
| O | L6 | 6.6675 | 14.2349 | 1.9371 |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
| HBPY-8 | Ideal | structure | CShM | $=$ | 17.06649 |  |
| Ce | M | 7.313 | 15.8854 | 3.244 |  |  |
| O | L1 | 7.8373 | 15.8156 | 5.4362 |  |  |
| O | L2 | 6.8563 | 18.0865 | 3.4233 |  |  |
| O | L4 | 9.3992 | 15.2055 | 2.7235 |  |  |
| O | L5 | 7.7697 | 13.6844 | 3.0647 |  |  |
| O | L3 | 8.9425 | 17.4065 | 2.9028 |  |  |
| O | L8 | 6.7888 | 15.9552 | 1.0519 |  |  |
| O | L7 | 5.2269 | 16.5654 | 3.7646 |  |  |
| O | L6 | 5.6836 | 14.3643 | 3.5853 |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
| CU-8 | Ideal | structure | CShM | $=$ | 11.77258 |  |
| Ce | M | 7.313 | 15.8854 | 3.244 |  |  |
| O | L1 | 7.8523 | 15.7917 | 5.5046 |  |  |
| O | L2 | 7.0535 | 17.9939 | 4.1911 |  |  |
| O | L4 | 9.5202 | 15.193 | 3.4865 |  |  |
| O | L8 | 7.5726 | 13.777 | 2.297 |  |  |
| O | L3 | 8.7214 | 17.3952 | 2.1729 |  |  |
| O | L7 | 6.7737 | 15.9792 | 0.9834 |  |  |
| O | L6 | 5.1059 | 16.5779 | 3.0016 |  |  |
| O | L5 | 5.9047 | 14.3757 | 4.3151 |  |  |


|  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |
|  | SAPR-8 | Ideal | structure | CShM | $=$ | 1.5379 |  |
|  | Ce | M | 7.313 | 15.8854 | 3.244 |  |  |
|  | 0 | L1 | 7.0056 | 15.6706 | 5.6724 |  |  |
|  | 0 | L5 | 7.7967 | 18.1168 | 4.152 |  |  |
|  | 0 | L4 | 9.5846 | 15.7244 | 4.1668 |  |  |
|  | 0 | L3 | 8.3704 | 14.0315 | 2.0265 |  |  |
|  | 0 | L8 | 8.7617 | 16.9578 | 1.574 |  |  |
|  | 0 | L7 | 6.0795 | 15.7228 | 1.1252 |  |  |
|  | 0 | L6 | 5.1144 | 16.8818 | 3.7033 |  |  |
|  | O | L2 | 5.7914 | 13.9778 | 3.5321 |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  | TDD-8 | Ideal | structure | CShM | $=$ | 3.84316 |  |
|  | Ce | M | 7.313 | 15.8854 | 3.244 |  |  |
|  | O | L2 | 7.3793 | 15.3636 | 5.6145 |  |  |
|  | O | L1 | 7.7231 | 17.9849 | 4.3931 |  |  |
|  | O | L3 | 9.6582 | 15.8711 | 3.8737 |  |  |
|  | O | L7 | 8.2197 | 13.778 | 2.4486 |  |  |
|  | O | L4 | 8.4548 | 17.3215 | 1.6534 |  |  |
|  | O | L8 | 6.2799 | 15.4699 | 1.0862 |  |  |
|  | O | L5 | 5.1983 | 17.0786 | 3.2596 |  |  |
|  | O | L6 | 5.591 | 14.2159 | 3.6231 |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  | JGBF-8 | Ideal | structure | CShM | = | 15.44464 |  |
|  | Ce | M | 7.313 | 15.8854 | 3.244 |  |  |
|  | O | L3 | 7.6929 | 15.9287 | 5.0635 |  |  |
|  | O | L4 | 6.9283 | 17.704 | 3.2811 |  |  |
|  | O | L7 | 9.8739 | 15.4681 | 3.6692 |  |  |
|  | O | L6 | 7.6977 | 14.0669 | 3.2069 |  |  |
|  | O | L8 | 9.1094 | 17.2435 | 1.8869 |  |  |
|  | O | L5 | 6.9332 | 15.8422 | 1.4246 |  |  |
|  | O | L1 | 5.132 | 16.3459 | 4.6383 |  |  |
|  | O | L2 | 5.1369 | 14.4842 | 2.7817 |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  | $\begin{array}{\|l\|} \hline \text { JETBPY } \\ -8 \\ \hline \end{array}$ | Ideal | structure | CShM | = | 25.40841 |  |
|  | Ce | M | 7.313 | 15.8854 | 3.244 |  |  |
|  | O | L1 | 7.0376 | 15.8416 | 4.9721 |  |  |



|  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |
| Structure | 1 | [Ce] |  |  |  |  |
|  | Ce | 9.8491 | 15.6637 | 6.3522 |  |  |
|  | O | 7.1226 | 15.6314 | 5.5937 |  |  |
|  | O | 8.0962 | 14.0028 | 6.6863 |  |  |
|  | O | 8.3937 | 16.647 | 8.0638 |  |  |
|  | O | 10.6807 | 14.9107 | 8.5343 |  |  |
|  | O | 9.4536 | 17.8087 | 5.497 |  |  |
|  | O | 11.8607 | 17.2625 | 7.3084 |  |  |
|  | O | 12.0987 | 16.1007 | 5.5074 |  |  |
|  | O | 9.5501 | 15.321 | 3.9234 |  |  |
|  | O | 10.9863 | 13.4899 | 5.9335 |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  | EP-9 | Ideal | structure | CShM | $=$ | 35.17421 |
|  | Ce | M | 9.8092 | 15.6838 | 6.34 |  |
|  | O | L1 | 7.7955 | 15.8227 | 6.1192 |  |
|  | O | L2 | 8.2699 | 14.6991 | 5.4548 |  |
|  | O | L9 | 8.2634 | 16.8813 | 6.887 |  |
|  | O | L6 | 11.6996 | 16.1339 | 6.9285 |  |
|  | O | L8 | 9.4545 | 17.3796 | 7.3989 |  |
|  | O | L7 | 10.8116 | 17.0844 | 7.4152 |  |
|  | O | L5 | 11.7031 | 14.9727 | 6.1664 |  |
|  | O | L3 | 9.4645 | 14.0363 | 5.2045 |  |
|  | O | L4 | 10.8203 | 14.1443 | 5.4855 |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  | OPY-9 | Ideal | structure | CShM | $=$ | 20.19585 |
|  | Ce | M | 9.7149 | 15.885 | 6.3844 |  |
|  | O | L2 | 7.8159 | 15.226 | 5.3395 |  |
|  | O | L3 | 7.8074 | 14.8484 | 7.0317 |  |
|  | O | L4 | 8.9162 | 15.078 | 8.3448 |  |
|  | O | L5 | 10.493 | 15.7803 | 8.5095 |  |
|  | O | L8 | 10.5136 | 16.692 | 4.424 |  |
|  | O | L6 | 11.6139 | 16.5439 | 7.4293 |  |
|  | O | L7 | 11.6225 | 16.9216 | 5.7371 |  |
|  | O | L9 | 8.9369 | 15.9897 | 4.2593 |  |
|  | O | L1 | 10.6574 | 13.8733 | 5.9402 |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |


|  | HBPY-9 | Ideal | structure | CShM | $=$ | 15.64955 |
| :--- | :--- | :--- | ---: | ---: | ---: | ---: |
|  | Ce | M | 9.8092 | 15.6838 | 6.34 |  |
|  | O | L2 | 7.581 | 15.1216 | 6.6294 |  |
|  | O | L3 | 8.8159 | 13.5965 | 6.195 |  |
|  | O | L8 | 8.024 | 17.07 | 6.8458 |  |
|  | O | L1 | 10.1878 | 15.3467 | 8.6 |  |
|  | O | L7 | 9.8112 | 17.9746 | 6.6814 |  |
|  | O | L6 | 11.5969 | 17.1542 | 6.2599 |  |
|  | O | L5 | 12.0364 | 15.2266 | 5.8987 |  |
|  | O | L9 | 9.4306 | 16.021 | 4.08 |  |
|  | O | L4 | 10.7987 | 13.6432 | 5.8698 |  |
|  |  |  |  |  |  |  |
|  |  | JTC-9 | Ideal | structure | CShM | $=$ |
|  | Ce | M | 9.7896 | 15.1509 | 6.1054 |  |
|  | O | L1 | 7.6657 | 15.6469 | 5.1562 |  |
|  | O | L6 | 7.8028 | 14.6858 | 7.3276 |  |
|  | O | L9 | 9.8289 |  | 15.68 | 6.3465 |



|  | O | L5 | 8.5949 | 16.6401 | 7.9484 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | O | L2 | 10.8973 | 14.8496 | 8.0994 |  |
|  | O | L6 | 9.5863 | 17.701 | 5.4143 |  |
|  | O | L8 | 11.3015 | 17.7241 | 7.778 |  |
|  | O | L4 | 11.8886 | 15.9105 | 5.5654 |  |
|  | O | L3 | 9.4396 | 15.0313 | 4.2392 |  |
|  | O | L9 | 11.0485 | 13.1196 | 5.7512 |  |
| $\left\{\mathrm{Ce}(\mathrm{DMF})\left(\mathrm{O}_{2, \mathrm{Coo}}\right)\left(\mathrm{O}_{\text {coo }}\right)_{6}\right\}$ (Ce5) |  |  |  |  |  |  |
| Ideal | structures | ML9 |  |  |  |  |
| EP-9 | 1 | D9h | Enneagon |  |  |  |
| OPY-9 | 2 | C8v | Octagonal | pyramid |  |  |
| HBPY-9 | 3 | D7h | Heptagonal | bipyramid |  |  |
| JTC-9 | 4 | C3v | Johnson | triangular | cupola | J3 |
| JCCU-9 | 5 | C4v | Capped | cube | J8 |  |
| CCU-9 | 6 | C4v | Sphericalrelaxed | capped | cube |  |
| JCSAPR-9 | 7 | C4v | Capped | square | antipris <br> m | J10 |
| CSAPR-9 | 8 | C4v | Spherical | capped | square | antiprism |
| JTCTPR-9 | 9 | D3h | Tricapped | trigonal | prism | J51 |
|  |  |  |  |  |  |  |
| Structure | 1 | [Ce] |  |  |  |  |
|  | Ce | 11.8851 | 16.9857 | 9.8232 |  |  |
|  | O | 9.6771 | 17.7626 | 9.4308 |  |  |
|  | O | 12.5609 | 14.544 | 9.6635 |  |  |
|  | O | 10.6807 | 14.9107 | 8.5343 |  |  |
|  | O | 11.8607 | 17.2625 | 7.3084 |  |  |
|  | O | 10.4516 | 15.698 | 11.4069 |  |  |
|  | O | 13.3969 | 16.588 | 11.7284 |  |  |
|  | O | 14.1946 | 17.1317 | 9.0858 |  |  |
|  | O | 10.9388 | 18.555 | 11.7807 |  |  |
|  | O | 12.7289 | 19.3834 | 9.6217 |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  | EP-9 | Ideal | structure | CShM | $=$ | 34.75233 |
|  | Ce | M | 11.8375 | 16.8821 | 9.8384 |  |
|  | O | L1 | 10.0523 | 15.9382 | 10.1566 |  |
|  | O | L3 | 11.7474 | 15.718 | 8.1602 |  |
|  | O | L2 | 10.6134 | 15.5062 | 8.9508 |  |
|  | O | L4 | 12.9235 | 16.4746 | 8.1549 |  |
|  | O | L9 | 10.3265 | 16.8119 | 11.2136 |  |
|  | O | L7 | 12.5368 | 18.2337 | 11.2036 |  |


|  | O | L5 | 13.5915 | 17.4218 | 8.9373 |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | O | L8 | 11.3077 | 17.7184 | 11.6271 |  |
|  | O | L6 | 13.4388 | 18.1165 | 10.1413 |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  | OPY-9 | Ideal | structure | CShM | $=$ | 23.25619 |
|  | Ce | M | 11.8481 | 16.8129 | 10.0501 |  |
|  | O | L2 | 9.7671 | 17.5369 | 10.3907 |  |
|  | O | L5 | 12.7588 | 14.8925 | 9.3765 |  |
|  | O | L4 | 11.0549 | 14.821 | 9.4382 |  |
|  | O | L1 | 11.7424 | 17.5052 | 7.9333 |  |
|  | O | L3 | 9.8157 | 15.9164 | 9.8583 |  |
|  | O | L7 | 13.8805 | 17.7094 | 10.2418 |  |
|  | O | L6 | 13.9292 | 16.0889 | 9.7094 |  |
|  | O | L9 | 10.9374 | 18.7334 | 10.7236 |  |
|  | O | L8 | 12.6413 | 18.8048 | 10.6619 |  |
|  |  | O |  |  |  |  |
|  | O | L4 |  |  |  |  |
|  | O | L2 | 14.0263 | 17.645 | 8.9101 |  |
|  | O | LBPY-9 | Ideal | 10.6541 | 18.5821 | 11.2325 |



|  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | CSAPR-9 | Ideal | structure | CShM | $=$ | $\mathbf{1 . 2 8 9 3 1}$ |
|  | Ce | $\mathbf{M}$ | $\mathbf{1 1 . 8 3 8 4}$ | $\mathbf{1 6 . 8 8 0 8}$ | $\mathbf{9 . 8 3 6 6}$ |  |
|  | O | L2 | $\mathbf{9 . 6 1 9 5}$ | $\mathbf{1 7 . 9 1 8 3}$ | $\mathbf{9 . 2 6 8 1}$ |  |
|  | O | L7 | $\mathbf{1 2 . 8 4 4}$ | $\mathbf{1 4 . 5 8 0 5}$ | $\mathbf{9 . 9 7 8 7}$ |  |
|  | O | L6 | $\mathbf{1 0 . 5 4 6 3}$ | $\mathbf{1 5 . 2 1 0 5}$ | $\mathbf{8 . 4 7 1 4}$ |  |
|  | O | L9 | $\mathbf{1 1 . 8 7 1 4}$ | $\mathbf{1 7 . 4 5 0 6}$ | $\mathbf{7 . 3 8 7 7}$ |  |
|  | O | L3 | $\mathbf{1 0 . 4 2 8 2}$ | $\mathbf{1 5 . 5 3 2}$ | $\mathbf{1 1 . 4 2 2 5}$ |  |
|  | O | L4 | $\mathbf{1 3 . 4 4 0 4}$ | $\mathbf{1 6 . 8 7 0 7}$ | $\mathbf{1 1 . 7 7 4 6}$ |  |
|  | O | L8 | $\mathbf{1 4 . 1 6 9 2}$ | $\mathbf{1 6 . 8 2 0 6}$ | $\mathbf{8 . 8 9 4 9}$ |  |
|  | O | L1 | $\mathbf{1 0 . 9 8 6 2}$ | $\mathbf{1 8 . 3 0 0 4}$ | $\mathbf{1 1 . 7 2 9}$ |  |
|  | O | L5 | $\mathbf{1 2 . 6 3 1 8}$ | $\mathbf{1 9 . 2 5 7 1}$ | $\mathbf{9 . 6 2 0 3}$ |  |
|  |  |  |  |  |  |  |
|  | JTCTPR-9 | Ideal | structure | CShM | $=$ | 2.59962 |
|  | Ce | M | 11.8375 | 16.8822 | 9.8384 |  |
|  | O | L1 | 9.8417 | 17.8045 | 9.3642 |  |
|  | O | L4 | 12.7938 | 14.8711 | 9.522 |  |
|  | O | L9 | 10.0446 | 15.0045 | 8.475 |  |
|  | O | L2 | 12.0502 | 16.9758 | 7.6012 |  |
|  | O | L3 | 10.5853 | 15.6998 | 11.285 |  |
|  | O | L6 | 13.2489 | 16.9185 | 11.5893 |  |
|  | O | L8 | 14.6385 | 17.1063 | 8.9997 |  |
|  | O | L7 | 10.8295 | 18.5357 | 12.0404 |  |
|  | O | L5 | 12.5053 | 19.0232 | 9.6685 |  |
|  |  |  |  |  |  |  |

### 8.2.3 SHAPE analysis for compound (12)-Dy

Table 8.16: Continuous shape measurements (CShM's) of compound (12)-Dy.

| \{Dy(DMF) $\mathbf{4}_{\left.\mathbf{( H} \mathbf{2} \mathbf{O})\left(\mathbf{O}_{\mathbf{t}}\right)_{3}\right\}}$ |  |  |  |  |  |  |  |
| :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- |
| Ideal | structures | ML8 |  |  |  |  |  |
| OP-8 | 1 | D8h | Octagon |  |  |  |  |
| HPY-8 | 2 | C7v | Heptagonal | pyramid |  |  |  |
| HBPY-8 | 3 | D6h | Hexagonal | bipyramid |  |  |  |
| CU-8 | 4 | Oh | Cube |  |  |  |  |
| SAPR-8 | $\mathbf{5}$ | D4d | Square | antiprism |  |  |  |
| TDD-8 | 6 | D2d | Triangular | dodecahedron |  |  |  |


| JGBF-8 | 7 | D2d | Johnson | gyrobifastigiu m | J26 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| JETBPY-8 | 8 | D3h | Johnson | elongated | triangula $\mathrm{r}$ | bipyrami <br> d | $\begin{array}{\|l\|} \hline \mathrm{J} 1 \\ 4 \\ \hline \end{array}$ |
| JBTPR-8 | 9 | C 2 v | Biaugmente d | trigonal | prism | J50 |  |
| Structure | 1 | [Dy] |  |  |  |  |  |
|  | Dy | $\begin{array}{r} 15.521 \\ 8 \\ \hline \end{array}$ | 13.741 | 14.0089 |  |  |  |
|  | O | $\begin{array}{r} 17.235 \\ 9 \\ \hline \end{array}$ | 15.3001 | 14.6605 |  |  |  |
|  | O | $\begin{array}{r} 14.182 \\ 4 \end{array}$ | 13.0171 | 12.1613 |  |  |  |
|  | O | 13.548 | 12.7874 | 15.0253 |  |  |  |
|  | O | 15.326 | 15.5128 | 12.4287 |  |  |  |
|  | O | $\begin{array}{r} 17.278 \\ 2 \\ \hline \end{array}$ | 13.2853 | 12.5662 |  |  |  |
|  | O | $\begin{array}{r} 16.243 \\ 2 \end{array}$ | 13.199 | 16.1412 |  |  |  |
|  | O | 15.841 | 11.3831 | 14.0067 |  |  |  |
|  | O | $\begin{array}{r} 14.319 \\ 9 \\ \hline \end{array}$ | 15.4881 | 15.0701 |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  | OP-8 | Ideal | structure | CShM | = | 29.78418 |  |
|  | Dy | M | 15.4996 | 13.746 | 14.0077 |  |  |
|  | O | L1 | 16.1663 | 15.6044 | 14.2443 |  |  |
|  | O | L4 | 15.4187 | 12.4638 | 12.4899 |  |  |
|  | O | L6 | 14.6376 | 12.4 | 15.1907 |  |  |
|  | O | L2 | 16.3616 | 15.092 | 12.8246 |  |  |
|  | O | L3 | 16.0519 | 13.7911 | 12.0979 |  |  |
|  | O | L7 | 14.9473 | 13.7009 | 15.9174 |  |  |
|  | O | L5 | 14.8329 | 11.8876 | 13.771 |  |  |
|  | O | L8 | 15.5805 | 15.0282 | 15.5254 |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  | HPY-8 | Ideal | structure | CShM | $=$ | 23.74608 |  |
|  | Dy | M | 15.6976 | 13.8303 | 13.9214 |  |  |
|  | O | L2 | 16.0347 | 14.8624 | 15.7035 |  |  |
|  | O | L5 | 14.9462 | 13.6153 | 11.9865 |  |  |
|  | O | L1 | 13.9155 | 13.0716 | 14.6979 |  |  |
|  | O | L4 | 14.6165 | 15.2068 | 12.785 |  |  |
|  | O | L6 | 15.8417 | 12.1857 | 12.645 |  |  |




|  | Dy | M | 15.2147 | 13.8586 | 13.9264 |  |  |
| :--- | :--- | :--- | ---: | ---: | ---: | :--- | :--- |
|  | O | L7 | 17.3238 | 15.6604 | 14.5909 |  |  |
|  | O | L5 | 14.3964 | 12.8469 | 12.1676 |  |  |
|  | O | L6 | 13.5873 | 12.781 | 14.9147 |  |  |
|  | O | L3 | 15.3554 | 15.5238 | 12.5144 |  |  |
|  | O | L1 | 17.106 | 13.3041 | 12.9767 |  |  |
|  | O | L2 | 16.2969 | 13.2381 | 15.7238 |  |  |
|  | O | L8 | 15.6698 | 11.0435 | 13.9929 |  |  |
|  | O | L4 | 14.5463 | 15.4578 | 15.2614 |  |  |

### 8.2.4 SHAPE analysis for compound (13)

Table 8.17: Continuous shape measurements (CShM's) of compound (13).

| \{ $\left.\mathrm{CuCl}(\mathrm{DMF})\left(\mathrm{N}_{\mathrm{py}}\right)_{4}\right\}$ |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ideal | structures | ML6 |  |  |  |  |
| HP-6 | 1 | D6h | Hexagon |  |  |  |
| PPY-6 | 2 | C5v | Pentagonal | pyramid |  |  |
| OC-6 | 3 | Oh | Octahedron |  |  |  |
| TPR-6 | 4 | D3h | Trigonal | prism |  |  |
| JPPY-6 | 5 | C5v | Johnson | pentagonal | pyramid | J2 |
| Structure | 1 | [Cu] |  |  |  |  |
|  | Cu | 18.6919 | 13.3661 | 13.7951 |  |  |
|  | Cl | 20.9558 | 13.7025 | 12.3935 |  |  |
|  | O | 16.5611 | 12.783 | 15.4422 |  |  |
|  | N | 17.8911 | 11.9488 | 12.5756 |  |  |
|  | N | 19.4927 | 11.9488 | 15.0146 |  |  |
|  | N | 19.3324 | 14.7295 | 15.1415 |  |  |
|  | N | 18.0514 | 14.7295 | 12.4487 |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  | HP-6 | Ideal | structure | CShM | $=$ | 28.22389 |
|  | Cu | M | 18.7109 | 13.3154 | 13.8302 |  |
|  | Cl | L1 | 20.0516 | 14.417 | 12.9804 |  |
|  | O | L4 | 17.3702 | 12.2139 | 14.6799 |  |
|  | N | L3 | 17.1696 | 12.723 | 12.827 |  |
|  | N | L5 | 18.9115 | 12.8063 | 15.6831 |  |



|  | N | L 5 | 18.699 | 14.2687 | 11.9852 |  |
| :--- | :--- | :--- | ---: | ---: | ---: | :--- |

### 8.2.5 SHAPE analysis for compound (14A)

Table 8.18: Continuous shape measurements (CShM's) of compound (14A).

| $\left\{\mathbf{Z n}(\mathbf{D M F})_{2}(\mathbf{O t})_{2}(\mathbf{N p y})_{2}\right\}$ |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ideal | structures | ML6 |  |  |  |  |
| HP-6 | 1 | D6h | Hexagon |  |  |  |
| PPY-6 | 2 | C5v | Pentagonal | pyramid |  |  |
| OC-6 | 3 | Oh | Octahedro <br> n |  |  |  |
| TPR-6 | 4 | D3h | Trigonal | prism |  |  |
| JPPY-6 | 5 | C5v | Johnson | $\begin{aligned} & \text { pentagona } \\ & 1 \end{aligned}$ | pyramid | J2 |
|  |  |  |  |  |  |  |
| Structure | 1 | [Zn] |  |  |  |  |
|  | Zn | 32.4195 | 14.0436 | 27.5638 |  |  |
|  | O | 33.991 | 12.5419 | 27.7138 |  |  |
|  | O | 30.9178 | 15.6151 | 27.4139 |  |  |
|  | O | 33.4074 | 15.1932 | 28.9898 |  |  |
|  | O | 33.5691 | 15.0315 | 26.1379 |  |  |
|  | N | 31.3566 | 13.0506 | 29.1184 |  |  |
|  | N | 31.4265 | 12.9807 | 26.0093 |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  | HP-6 | Ideal | structure | CShM | $=$ | 33.10628 |
|  | Zn | M | 32.4411 | 14.0652 | 27.5639 |  |
|  | O | L1 | 33.4105 | 13.0959 | 28.6385 |  |
|  | O | L4 | 31.4718 | 15.0346 | 26.4892 |  |
|  | O | L2 | 33.9925 | 14.6472 | 28.1012 |  |
|  | O | L3 | 33.0231 | 15.6166 | 27.0265 |  |
|  | N | L6 | 31.8591 | 12.5139 | 28.1012 |  |
|  | N | L5 | 30.8898 | 13.4832 | 27.0265 |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  | PPY-6 | Ideal | structure | CShM | $=$ | 29.22293 |
|  | Zn | M | 32.4958 | 14.1883 | 27.3426 |  |



### 8.2.6 SHAPE analysis for compound (14B)

Table 8.19: Continuous shape measurements (CShM's) of compound (14B).

| Zn1 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ideal | structures | ML6 |  |  |  |  |
| HP-6 | 1 | D6h | Hexagon |  |  |  |
| PPY-6 | 2 | C5v | Pentagonal | pyramid |  |  |
| OC-6 | 3 | Oh | Octahedro <br> n |  |  |  |
| TPR-6 | 4 | D3h | Trigonal | prism |  |  |
| JPPY-6 | 5 | C5v | Johnson | pentagonal | pyramid | J2 |
| Structure | 1 | [Zn] |  |  |  |  |
|  | Zn | 34.5966 | 2.5906 | 24.0923 |  |  |
|  | O | 34.0802 | 1.9634 | 22.1075 |  |  |
|  | O | 35.0398 | 4.5786 | 23.5577 |  |  |
|  | O | 34.9767 | 2.9463 | 26.0787 |  |  |
|  | O | 34.3132 | 0.5862 | 24.6251 |  |  |
|  | N | 36.5769 | 2.0131 | 23.6187 |  |  |
|  | N | 32.5607 | 3.1635 | 24.1625 |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  | HP-6 | Ideal | structure | CShM | $=$ | 31.43096 |
|  | Zn | M | 34.592 | 2.5488 | 24.0346 |  |
|  | O | L1 | 33.4864 | 1.7339 | 22.9631 |  |
|  | O | L3 | 34.3355 | 4.223 | 24.4422 |  |
|  | O | L4 | 35.6976 | 3.3637 | 25.1062 |  |
|  | O | L6 | 34.8485 | 0.8746 | 23.6271 |  |
|  | N | L5 | 35.9541 | 1.6895 | 24.6987 |  |
|  | N | L2 | 33.2299 | 3.4081 | 23.3706 |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  | PPY-6 | Ideal | structure | CShM | $=$ | 25.63649 |
|  | Zn | M | 34.3602 | 2.5605 | 24.1568 |  |
|  | O | L2 | 33.6427 | 1.4252 | 22.9047 |  |
|  | O | L4 | 34.6626 | 4.3258 | 24.5613 |  |
|  | O | L5 | 35.2187 | 2.6321 | 25.7784 |  |
|  | O | L6 | 34.5883 | 0.8394 | 24.7545 |  |


|  | N | L1 | 35.9828 | 2.4785 | 23.3014 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | N | L3 | 33.6886 | 3.58 | 22.7853 |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  | OC-6 | Ideal | structure | CShM | $=$ | 0.47665 |
|  | $\mathbf{Z n}$ | M | 34.592 | 2.5488 | 24.0346 |  |
|  | 0 | L1 | 34.1648 | 2.0708 | 22.0362 |  |
|  | 0 | L2 | 35.014 | 4.5261 | 23.4715 |  |
|  | 0 | L6 | 35.0191 | 3.0268 | 26.0331 |  |
|  | 0 | L4 | 34.17 | 0.5716 | 24.5977 |  |
|  | N | L3 | 36.603 | 2.0324 | 23.7283 |  |
|  | N | L5 | 32.581 | 3.0652 | 24.341 |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  | TPR-6 | Ideal | structure | CShM | $=$ | 12.70222 |
|  | Zn | M | 34.592 | 2.5488 | 24.0346 |  |
|  | O | L1 | 33.7842 | 1.4966 | 22.5841 |  |
|  | O | L5 | 35.3843 | 4.3404 | 24.1964 |  |
|  | O | L6 | 34.1904 | 2.8631 | 25.9329 |  |
|  | O | L3 | 35.0247 | 0.7557 | 24.7138 |  |
|  | N | L2 | 36.2186 | 2.233 | 22.9773 |  |
|  | N | L4 | 32.9498 | 3.604 | 23.8033 |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  | JPPY-6 | Ideal | structure | CShM | $=$ | 29.19342 |
|  | Zn | M | 34.4485 | 2.551 | 24.1178 |  |
|  | O | L1 | 33.6948 | 1.39 | 22.8476 |  |
|  | O | L3 | 34.7258 | 4.3582 | 24.5493 |  |
|  | O | L4 | 35.3907 | 2.6222 | 25.7416 |  |
|  | O | L5 | 34.7535 | 0.7877 | 24.6898 |  |
|  | N | L6 | 35.453 | 2.5358 | 23.5356 |  |
|  | N | L2 | 33.6777 | 3.5967 | 22.7607 |  |
|  |  |  | Zn2 |  |  |  |
| Ideal | structures | ML6 |  |  |  |  |
| HP-6 | 1 | D6h | Hexagon |  |  |  |
| PPY-6 | 2 | C5v | Pentagonal | pyramid |  |  |
| OC-6 | 3 | Oh | Octahedron |  |  |  |
| TPR-6 | 4 | D3h | Trigonal | prism |  |  |
| JPPY-6 | 5 | C5v | Johnson | pentagonal | pyramid | J2 |


|  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Structure | 1 | [Zn] |  |  |  |  |
|  | Zn | 30.0594 | 3.2363 | 13.879 |  |  |
|  | O | 28.7152 | 3.8329 | 12.338 |  |  |
|  | O | 31.4015 | 2.6399 | 15.4215 |  |  |
|  | O | 31.1843 | 4.9035 | 13.5494 |  |  |
|  | O | 28.9324 | 1.5693 | 14.2102 |  |  |
|  | O | 28.8349 | 4.2588 | 15.1487 |  |  |
|  | O | 31.2818 | 2.214 | 12.6108 |  |  |
|  |  |  |  |  |  |  |
|  | HP-6 | Ideal | structure | CShM | $=$ | 31.40875 |
|  | Zn | M | 30.0585 | 3.2364 | 13.8797 |  |
|  | O | L1 | 29.1739 | 4.5151 | 13.159 |  |
|  | O | L4 | 30.943 | 1.9577 | 14.6004 |  |
|  | O | L2 | 30.7974 | 4.2266 | 12.692 |  |
|  | O | L5 | 29.3196 | 2.2462 | 15.0673 |  |
|  | O | L6 | 28.435 | 3.5249 | 14.3466 |  |
|  | O | L3 | 31.682 | 2.9478 | 13.4127 |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  | PPY-6 | Ideal | structure | CShM | $=$ | 29.2775 |
|  | Zn | M | 30.1193 | 3.0828 | 13.6899 |  |
|  | O | L2 | 28.6887 | 3.6072 | 12.8066 |  |
|  | O | L4 | 30.7272 | 1.8988 | 14.8435 |  |
|  | O | L6 | 30.5664 | 4.474 | 12.7068 |  |
|  | O | L3 | 28.7881 | 2.0156 | 14.1271 |  |
|  | O | L1 | 29.6934 | 4.1582 | 15.0181 |  |
|  | O | L5 | 31.8262 | 3.4182 | 13.9657 |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  | OC-6 | Ideal | structure | CShM | $=$ | 0.13033 |
|  | Zn | M | 30.0585 | 3.2364 | 13.8797 |  |
|  | 0 | L1 | 28.7943 | 3.7824 | 12.337 |  |
|  | 0 | L6 | 31.3227 | 2.6903 | 15.4224 |  |
|  | 0 | L2 | 31.1865 | 4.9395 | 13.5582 |  |
|  | 0 | L4 | 28.9305 | 1.5333 | 14.2012 |  |
|  | 0 | L3 | 28.8729 | 4.2744 | 15.2187 |  |
|  | 0 | L5 | 31.2441 | 2.1983 | 12.5407 |  |
|  |  |  |  |  |  |  |


|  |  |  |  |  |  |  |
| :--- | :--- | :--- | ---: | ---: | ---: | ---: |
|  | TPR-6 | Ideal | structure | CShM | $=$ | 16.22145 |
|  | Zn | M | 30.0585 | 3.2364 | 13.8797 |  |
|  | O | L1 | 28.7846 | 2.9588 | 12.5058 |  |
|  | O | L5 | 31.3574 | 2.1719 | 14.7555 |  |
|  | O | L6 | 31.2723 | 4.6153 | 14.3406 |  |
|  | O | L2 | 28.8798 | 2.0982 | 14.8296 |  |
|  | O | L3 | 28.7946 | 4.5416 | 14.4148 |  |
|  | O | L4 | 31.2622 | 3.0325 | 12.4317 |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  | JPPY-6 | Ideal | structure | CShM | $=$ | 32.55151 |
|  | O | M | L1 | 20.0877 | 3.1377 | 13.7582 |

### 8.2.7 SHAPE analysis for compound (15)

Table 8.20: Continuous shape measurements (CShM's) of compound (15).

| \{Cd(DMF)2 $\left.\left.\mathbf{( O}_{\text {t }}\right)_{2}(\mathrm{Npy})_{2}\right\}$ (Cd1) |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ideal | structures | ML6 |  |  |  |  |
| HP-6 | 1 | D6h | Hexagon |  |  |  |
| PPY-6 | 2 | C5v | Pentagonal | pyramid |  |  |
| OC-6 | 3 | Oh | Octahedro <br> n |  |  |  |
| TPR-6 | 4 | D3h | Trigonal | prism |  |  |
| JPPY-6 | 5 | C5v | Johnson | pentagona 1 | pyramid | J2 |
| Structure | 1 | [Cd] |  |  |  |  |
|  | Cd | 0.4507 | -8.685 | 10.9693 |  |  |
|  | O | -1.2182 | -7.1235 | 11.1855 |  |  |
|  | O | 2.1203 | -10.2466 | 10.7517 |  |  |





### 8.3 Publications

- Schmidt, S. F. M., Merkel, M. P., Kostakis, G. E., Buth, G., Anson, C. E. and Powell, A. K., SMM Behaviour and Magnetocaloric Effect in Heterometallic $3 d-4 f$ Coordination Clusters with High Azide:Metal Ratios. Dalt. Trans. 2017, 46, 15661-15665.
- Peewasan, K.; Merkel, M. P.; Zarschler, K.; Stephan, H.; Anson, C. E.; Powell, A. K., Tetranuclear $\mathrm{Cu}(\mathrm{II})$-chiral complexes: synthesis, characterization and biological activity. RSC Adv. 2019, 9, 24087.
- Peewasan, K.; Merkel, M. P.; Fuhr, O., Powell, A. K., A designed and potentially decadentate ligand for use in lanthanide(iii) catalysed biomass transformations: targeting diastereoselective trans-4,5diaminocyclopentenone derivatives. Dalt. Trans. 2020, DOI: 10.1039/D0DT00183J.


### 8.4 Conferences

| $\mathbf{2 0 1 6}$ | FMOCS IV @ PoCheMoN, Newcastle upon Tyne, UK, poster |
| :--- | :--- |
| presentation. |  |

### 8.5 Work shops

- "Olex2 für Könner" from 7. to 8. March 2018
- Sommerschule Kristallographie", Hardehausen 17. - 21. September 2018 „Grundlagen der Einkristallstrukturbestimmung"


### 8.6 Stay Abroad

- Short-term stay at the University of Sussex (Dr. George E. Kostakis) from January 14. To February 24, 2019


### 8.7 Collaborations

- Prof. Dr. Pedro De Oliveira and Dr. Mbomekalle Israël (electrocatalytic studies) (Laboratoire de Chimie Physique, UMR8000 - Université ParisSudBâtiment 349 - Campus d'Orsay 15, avenue Jean Perrin 91405 Orsay, FRANCE)
- Dr. George E. Kostakis (Topology) (University of Sussex, Chichester 3 3R 3R507, Brighton, BN1 9RH, United Kingdom)
- Dr. Ying-Chu (photocatalytic studies) (Prof. Dr. Claus Feldmann) from the Institut für Anorganische Chemie, Karlsruher Institut für Technologie (KIT), Engesserstr, 15 Geb, 30.45.


### 8.8 Teaching assistant

WS2015/16 Anorganisch-chemisches Praktikum für Fortgeschrittene
SS2016 Anorganisch-chemisches Praktikum für Fortgeschrittene
Anorganisch-chemisches Praktikum für studierende der Physik

WS2016/17 Anorganisch-chemisches Praktikum für Fortgeschrittene Betreuung der Bachelorarbeit von Johannes Wenz

Betreuung der Bachelorarbeit von Jonas Morgenstern
SS2017
Anorganisch-chemisches Praktikum für Fortgeschrittene
WS2017/18 Anorganisch-chemisches Praktikum für Fortgeschrittene

SS2018
WS2018/19 Anorganisch-chemisches Praktikum für Fortgeschrittene Betreuung der Bachelorarbeit von Fatih Ulusoy

## 9 Eidesstattliche Erklärung

Ich versichere hiermit wahrheitsgemäß, die Arbeit bis auf die dem Aufgabensteller bereits bekannten Hilfsmittel selbständig angefertigt, alle benutzten Hilfsmittel vollständig und genau angegeben und alles kenntlich gemacht zu haben, was aus Arbeiten anderer unverändert oder mit Abänderungen übernommen wurde.

Karlsruhe, den

Datum und Unterschrift

