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Abstract

Decoherence and parameter fluctuations are two of the mayor obstacles for solid-
state quantum computing. In this work, decoherence in superconducting qubits of the
transmon type is investigated. For this purpose, a time-multiplexed measurement protocol
was developed and applied in long-term measurements. The resulting simultaneous
measurement of the qubit’s relaxation and dephasing rate, as well as its resonance
frequency enables analysis of correlations between these parameters. A spectral noise
analysis complements these measurements. Together, the results agree well with the
interacting defect model of two-level-systems [1] and yield information about the
microscopic origin of the intrinsic decoherence mechanisms in Josephson qubits.

Our measurements show inherent correlations between dephasing and fluctuations in qubit
frequency on the timescale of seconds to days, which is attributed to the influence of
individual defects, located close to conductor edges. Cross-correlation and spectral noise
analysis confirm this interpretation and ascribe the source of fluctuation to interactions
between thermal fluctuators and surface defects. Single defects reducing the coherence of
qubits by up to one order of magnitude are a major challenge for future quantum computers.

Non-tunable qubits are intrinsically insensitive to some decoherence channels and thus
ideal for this fundamental analysis. However, to widen the focus and contrast the results
of different material systems, we pursue the fabrication of voltage controlled gatemon
qubits. In the course of this work, the theoretical foundation and technical implementation
of transmon qubits based on regular Josephson weak links, and semiconducting nanowires
is given. The experimental design and measurement setup are explained in detail.

Our findings make continuous re-calibration a necessity in today’s solid-state qubits,
although new materials or processing techniques might mitigate the problem. However, the
results of this work imply that fundamental improvements of qubit parameter stability are
necessary in order to realize scalable and coherent qubit circuits.
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1 Introduction

Few inventions in the history of mankind had an impact on our everyday lives, as large
as the computer. Its basic building blocks, that realize Alan Turing’s idea of an abstract
computational machine [2], are simple electrical switches. The creators of the first transistor
and its field-effect counterpart [3] did presumably never imagine, that billions of their
inventions are carried around in the form of smartphones today.

At first, the possibility to control a current with a smaller one or a gate voltage may seem
inconspicuous. However, the ensuing digital revolution led to the evolution of production
and business techniques, harnessing an exponential growth of information storage and
transmission. It opened the field of computational simulation, which is now an integral part
of the scientific method and an active field of research. Today, mathematical modeling and
simulation of more and more realistic and thus complex aspects of nature are possible:

Today’s supercomputers are capable of approximating molecular dynamics of ribosomes [4]
or the behavior of black holes [5]. However, accurate predictions on the dynamics of
even smaller molecules’ dynamics are currently intractable on classical computers. The
reason lies in the quantum mechanical nature of the problem, the computational cost grows
exponentially with the dimension of the related Hilbert space [6]. A potential solution
to this fundamental problem was formulated by Richard Feynman. He proposed to use
a ’universal quantum simulator’, which itself behaves quantum mechanically [7]. Such
a machine may theoretically satisfy the Church–Turing–Deutsch principle, stating that
every physical process can be simulated by a universal computing device [8]. The benefit
of a universal quantum computer would be tremendous. Its applications include quantum
chemistry [9], for instance in the design of drugs or the development of enhanced chemical
processes in fertilizer production. Further, Shor’s factoring algorithm is exponentially
faster than any known classical procedure at factorization into prime numbers [10], which
underlies much of modern cryptography, such as RSA encryption. Quantum systems have
the intriguing ability to exist in a superposition of several states, which has no classical
analog. For quantum memory, this results in so-called quantum parallelism, the possibility
to perform operations on several states at once. Grover’s search method uses this feature
and provides a speed-up to the ubiquitous procedure of searching an unsorted database [11].
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1 Introduction

In regard of these traits it is not surprising that large computing companies put great
efforts into building a quantum processor, to unlock new computational territory. Despite
extensive investments, in both cost and time, the innovative concept of a universal quantum
processor still remains fictional. The problem lies in the conflicting demands of a highly
isolated quantum system on one side, and fast manipulation and readout on the other.
Industrial and academic research strive to find a hardware platform that renders fault
tolerant quantum computation possible [12, 13]. Currently, the most promising candidates
are, trapped ions [14], nitrogen-vacancy center in diamond [15], and superconducting
solid-state qubits [16]. Today’s state of the art quantum circuits may be considered ’noisy
intermediate-scale quantum’ devices [17]. These systems can already be used to study
fundamental quantum mechanics such as the quantum zeno effect [18]. In a recently
published work, Google demonstrated the quantum supremacy of a 53 qubit processor
over a classical supercomputer in a cross-entropy benchmark - however, only at a task
tailored to the strengths of their device [19]. Ultimately, the fidelity of two-qubit gates,
on-chip crosstalk, and parameter fluctuations [20–22] are still problems, that are limiting
present-day quantum circuits. Just like the transistor, the fabrication of a quantum bit,
suitable as basic building block for a scalable quantum computer, would be game-changing.

In this work, we focus on superconducting qubits and the factors limiting their implemen-
tation in the form of a quantum computer. An intuitive metric in this regard is the ratio
between coherence time and the operation, or gate time of a qubit. Today’s multi qubit
chips, based on the so-called ’transmon’ [23] architecture are already capable of finding
the electronic ground state of small molecules [24]. However, the error probability due to
random parameter fluctuations scales exponentially with the number of qubits, rendering
the calibration of many-qubit systems difficult. The demand on stability and coherence of
scaled-up quantum systems widens the focus of current research towards new decoherence
mechanisms and qubit parameter stability on the time scale of seconds to days.

In this work we investigate the time-stability of a highly coherent fixed-frequency transmon
qubit. These devices belongs to the least sensitive of today’s superconducting qubits,
regarding external noise. For this purpose we devise a time-multiplexed measurement
protocol, which allows us to acquire all qubit parameters simultaneously. Further, we
present our recent progress toward building voltage controlled transmon qubits, based
on semiconducting nanowires. Their strongly localized gate effect could mitigate scaling
challenges, by reducing inter-qubit crosstalk.

Here, we discuss our observation of strong fluctuations in the qubit’s relaxation and
dephasing rate, as well as its resonance frequency. Correlation analysis reveals a connection
between noise at mHz frequencies and qubit dephasing. We attribute our findings to
spurious two-level-systems and locate them close to edges of the superconducting films.
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1 Introduction

These defects constitute an intrinsic noise source in many microscopic circuits and call the
feasibility of coherent many-qubit systems into question.

In this thesis, I first introduce the general concept of qubits and their dynamics. In the
following, the principles of superconductivity and the physical implementation of our
qubits are discussed. Further, microwave circuits, and the basics of manipulation and
readout of transmon qubits are presented. The subsequent chapter briefly introduces the
physics of semiconducting nanowires and explains our fabrication method. In the next
chapter, the experimental setup, including the cryostat, the microwave electronics, the
sample design, and the measurement procedure are presented. Thereafter, the experimental
results and derived noise model are discussed. Finally, I summarize the results and conclude
with possible future experiments, and suggestions to mitigate or exploit the observed
effects.
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2 Superconducting Quantum Devices

In this chapter, the main building blocks for superconducting quantum circuits are
introduced, providing the basis for the following discussion of decoherence and parameter
fluctuation in superconducting quantum bits. Analogous to the transistor in classical
microprocessors, the fundamental active element of quantum circuits is the qubit. In
the following, the quantum mechanical description of qubits, and their dynamics are
discussed. Two-level-systems, which play an important part in the qubits decoherence,
are introduced. The manipulation of a qubit state, necessary for quantum information
processing is discussed and visualized. Further, the basic concepts of superconductivity
and the related Josephson effect, which provides the basis for most quantum circuits, are
described. Finally, two physical qubit implementations, the "transmon" and the "gatemon"
are discussed.

2.1 Bits and Quantum Bits

The bit, short for "binary digit" is the commonly used unit of information in computing
and digital communication. One bit carries the information of a single fair coin toss, or the
answer to a "yes" or "no" question. The maximum amount of information a system with N
possible states can contain is proportional to logb N. For bits, b is 2, but it is possible to use
different bases to encode and measure information, e.g. b = 3 is called a "trit". The most
dense information medium known to mankind is our own DNA [25], which uses a base
b = 4.

The reason for the predominant use of bits as computational basis in today’s computers
is its physical implementation. A bit can be represented by any system that exhibits
two distinct states. Over time, many different realizations emerged, e.g. holes in the
paper of punch cards, the direction of magnetization in hard discs or magnetic tape,
the two stable states of a latching circuit or simply the state of an electric switch.
Today, complementary metal–oxide–semiconductor (CMOS) technology is used in most
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2 Superconducting Quantum Devices

microprocessors, intrinsically providing two stable states with about 171 million transistors
per square millimeter as of 2019.

These classical Turing machines provide the basis for virtually all computing today. The
demand for efficient simulation of quantum mechanical systems, however, drives the
development of a quantum mechanical analog to the Turing machine [26]. As stated in
the introduction, a universal quantum computer may be able to solve important problems
intractable for its classical counterpart [9].

2.2 Qubits and the Bloch Sphere Representation

As with classical bits, any quantum mechanical two-level system may be used as a
quantum bit or "qubit". And likewise, the physical implementation can vary greatly.
Natural examples are the spin of a spin-1/2 particle like the electron, or the polarization
of a single photon. It is common, to use two distinct states of a more complex quantum
system featuring many states, if the states in question are isolated enough to approximate a
two-level system. Possible physical realizations are discussed in section 2.8.

When measured, both bit and qubit give one of two values, usually called "0" and "1". The
crucial difference is, that the state |ψ〉 of a qubit prior to measurement is described by a
coherent superposition of its energy eigenstates |0〉 and |1〉1 as

|ψ〉= α |0〉+β |1〉 . (2.1)

The complex coefficients α and β satisfy |α|2 + |β |2 = 1 for normalization, the equation of
a circle. If we also consider the relative phase degree of freedom, it is intuitive to represent
all possible pure states as the surface of a sphere, the so-called Bloch-sphere [27]. Qubit
states are now accurately described by the two Euler angles [28] θ and φ (see Fig.2.1)

|ψ〉= eiξ cos
(

θ

2

)
|0〉+ ei(ξ+φ ) sin

(
θ

2

)
|1〉 . (2.2)

The last degree of freedom, the global phase factor eiξ of the qubit state, has no physical
meaning and can thus be chosen to be ξ = 0. We can understand the computational basis
|0〉 and |1〉 as eigenvectors to the Pauli matrix σz,

|0〉=

(
0
1

)
, |1〉=

(
1
0

)
(2.3)

1 The notation |0〉, |1〉 is synonymous with |g〉, |e〉 or |↓〉 and |↑〉 and may change to avoid confusion with
excitation numbers |n〉
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2.2 Qubits and the Bloch Sphere Representation

 

Figure 2.1: Bloch sphere representation of a qubit state. North and south pole denote ground and excited state
of the qubit, while any other point on the sphere describes a superposition of these states. An arbitrary state
|ψ〉 can be described by the polar angle θ and azimuthal angle φ . Mean values of ensembles of qubits or mixed
states in general are visualized as Bloch vectors inside the sphere.

In contrast to the classical bit, measuring the state of a qubit collapses the coherent
superposition onto one of its eigenstates σz |0〉 = −1 |0〉 or σz |1〉 = +1 |1〉 and thus
generally changes the state. The probability to collapse into the |0〉 (|1〉) state is given by
|α|2 (|β |2), respectively. In experiments it is often necessary to repeat a measurement many
times in order to extract a meaningful result. This is deeply rooted in the probabilistic
nature of projective measurements but also used to increase the signal-to-noise ratio. This
statistical ensemble of measurements, referred to as a mixed state can also be represented by
the Bloch-sphere. Mixed states are non-unitary vectors inside the sphere, with coordinates
describing the corresponding ensemble averages. They can be expressed by the density
operator ρ̂ also called density matrix

ρ̂ = ∑
j

p j |ψ j〉〈ψ j| , (2.4)

with the probability p j to find the ensemble in the respective pure state |ψ j〉 [29]. The
probability distribution may either represent an ensemble of similar two-level systems, or
an ensemble of identically prepared measurements of a single qubit. The corresponding
expectation value along the axis k is given by 〈σk〉= tr(ρ̂σk).
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2 Superconducting Quantum Devices

2.3 Qubit Dynamics and Decoherence

The time evolution of an isolated pure qubit state as stated in Eq. (2.2) is given by

|ψ(t)〉= exp
(
−iĤ(t− t0)

h̄

)
|ψ(t0)〉 (2.5)

with the time-independent Hamiltonian of the system

Ĥ = h̄
ωq

2
σz (2.6)

it follows

|ψ(t)〉= cos
(

θ

2

)
|0〉+ ei(φ−ωqt) sin

(
θ

2

)
|1〉 , (2.7)

describing a rotation of the Bloch vector around the z-axis at the angular frequency ωq. In
the representation of the qubit state, this precession is often neglected, implicitly referring
to a rotating frame of the same angular velocity ωq. In this frame, the Bloch vector is
resting.

In any physical implementation there will be some form of interaction with the environment
and thus decoherence. It is therefore important, to describe the time evolution of a mixed
state in order to predict the dynamics of any real qubit, which is subject to decoherence. In
general this is done by the von Neumann equation

∂

∂ t
ρ̂ =− i

h̄

[
Ĥ, ρ̂

]
. (2.8)

To incorporate the dissipative environment, one would need to know the Hamiltonian and
density operator of the complete system consisting of qubit and environment. This approach
is not feasible due to the (usually infinite) size of the related Hilbert space. However, this
problem can be mitigated by explicitly adding a dissipation term for incoherent interactions
with the environment. The resulting equation for the time evolution of the density operator
ρ̂ is the so-called Lindblad master equation [30, 31] (in diagonal form)

d
dt

ρ̂ =− i
h̄

[
Ĥ, ρ̂

]
+ ∑

k=1
Γk

(
L̂†

k ρ̂L̂k−
1
2

{
L̂†

k L̂k, ρ̂
})

. (2.9)

With the anticommutator {a,b} = ab+ba, the orthonormal Lindblad or jump operators
L̂k describing the exchange of single quanta with the environment, and the respective
interaction rate Γk for decoherence channel "k" [32].

For our case, the possible decoherence channels are energy relaxation, namely loosing the
qubit excitation to the environment, and dephasing resulting from changes in the splitting
energy ωq. Energy relaxation is encoded in the operator L̂1 = 1/2(σ̂x− iσ̂y) = σ̂−, with
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2.3 Qubit Dynamics and Decoherence

the Pauli operators σ̂x and σ̂y and the corresponding transition rate Γ1. The dephasing is
represented by L̂2 = σ̂z/

√
2, with the rate Γ2 called pure dephasing rate or Γφ .

The third part of the sum k = 3 contains the excitation of the qubit by the environment,
which is thermally suppressed by the Boltzmann factor exp(−h̄ωq/kBT ). Thus the thermal
excitation is on the order of 10−7 for our experiments2 and can theoretically be neglected.
However, measurements usually show a residual excited-state population on the order of
few percent. Therefore we sometimes refer to swaps between |0〉 and |1〉 as state inversion.

Since the definition of the density operator ensures trρ̂ = 1, the density matrix of our
system can be written as

ρ̂ =

(
ρ00 ρ01

ρ∗10 1−ρ00

)
. (2.10)

Inserting into the Lindblad equation (2.9) yields

d
dt

(
ρ00 ρ01

ρ∗10 1−ρ00

)
=− i

h̄

[
Ĥ, ρ̂

]
+

(
−Γ1ρ00 −(Γ1/2+Γφ )ρ01

−(Γ1/2+Γφ )ρ
∗
10 Γ1ρ11

)
,

(2.11)
the off-diagonal rates are also abbreviated as −Γ2 with

Γ2 =
1
T2

=
Γ1

2
+Γφ . (2.12)

This already indicates that without pure dephasing (Γφ = 0), the dephasing rate is limited
by relaxation

T ∗2 =
1

Γ2
=

2
Γ1

= 2T1. (2.13)

We can now incorporate the energy relaxation and dephasing into the qubit time evolution.
As the Bloch vector is constantly evolving around the z-axis, it is useful to transform the
Hamiltonian (2.6) into the precessing frame with angular velocity ωf.

Ĥrot = h̄
ωq−ωf

2
σz = h̄

∆ω

2
σz (2.14)

the time evolution of the density matrix can be derived from Eq. (2.11) as

ρ̂(t) =

(
a0e−Γ1t a1e−Γ2te−i∆ωt

a∗1e−Γ2tei∆ωt 1−a0e−Γ1t

)
(2.15)

with the frequency shift ∆ω between the rotating frame and the qubit frequency and the
integration constants a0,1. We can directly see that the qubit state for large times Γt� 1,

2 The usual sample temperature is below 20mK and typical qubit frequencies are 5–10GHz
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2 Superconducting Quantum Devices

the system will be in the ground state |0〉 with ρ11 = 1. If the initial state is |1〉 (ρ00 = 1),
it decays at the rate Γ1 to the ground state. In addition, for a state on the equator, the
phase oscillates at the frequency ∆ω while decaying at the rate Γ2, these oscillations are
called Ramsey fringes. For a rotating frame in sync with the qubit frequency ∆ω = 0, the
phase angle φ of the Bloch vector should be stationary. For a real qubit however, the qubit
frequency constantly changes and thus the phase evolution φ (t) = ωq(t) t changes over
time. If we average over an ensemble of Bloch vectors, some of which rotate faster, others
slower, the length of the averaged Bloch vector decreases. This is called pure dephasing,
see Fig. 2.3(f) in Sec. 2.6 for an illustration of the different single states (blue) and the
ensemble average (red).

In a projective measurement we can only access the state with respect to the quantization
axis. In order to measure the dephasing and energy relaxation rates of the qubit in question,
we need to be able to change its state in a predictable manner, as shown in Fig. 2.3. This is
done by an external electromagnetic drive using defined pulses. The dynamics of a qubit in
the presence of an external drive is subject of section 2.5. Commonly used techniques of
decoherence measurements are discussed in section 5.2.3.

2.4 Two-Level-Systems (TLS)

Besides extrinsic effects leading to dephasing and relaxation, like coupling to electro-
magnetic fields or variation in temperature, also local decoherence channels exist. One of
these loss channels are microscopic defects in the amorphous parts of the quantum circuit,
manifesting as two-levels-systems.

TLS are believed to be responsible for the almost universal anomalous low temperature
behavior of glasses, displaying a linear, temperature-dependent term in the specific heat
below about 1K [33]. This observation can be explained in terms of the so-called standard
tunneling model (STM) [33–35], which assumes TLS to have two distinct energy states
modeled by a double-well potential when limited to low energies. Illustrations of the
related potential and common TLS configurations are shown in Fig. 2.2, based on the
extensive review of Müller et al. [1].

Qubits which are well protected from the surrounding electromagnetic spectrum, and other
external influences, as for example in 3D cavities, show a great reduction in radiative
decay and dephasing induced by external fields [36]. For such highly coherent qubits,
the influence of microscopic TLS in the circuit materials may become the dominant
decoherence mechanism, as is discussed in chapter 6. There are several candidates for
these elusive defects, such as tunneling atoms, hydrogen rotors or dangling bonds.
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en
er

gy

position

collective 
motiontunneling 

atoms

Hydrogen 
rotors

dangling
bonds

(a) (b)

Figure 2.2: (a) Illustration of different candidates for microscopic two-level-systems in an amorphous material,
like the insulating layer in a Josephson junction. Those are atoms tunneling between different sites, collective
motion of atomic groups, dangling bonds and hydrogen defects. (b) Generic double-well potential modeling the
eigenstates |ψ±〉 of TLSk in real space. The difference between the energy eigenstates is Ek the tunneling rate
between the wells is ∆k and the asymmetry energy is εk . Both illustrations are based on [1].

While the nature of TLS is still a matter of debate, they can be described by a model
Hamiltonian for a particle of effective mass m in an asymmetric double well potential
of two identical wells, shifted in space and energy. For a single TLS with index k, its
Hamiltonian is

ĤTLS,k =
h̄
2

(
εk ∆k

∆k −εk

)
=

h̄
2
(εkσz +∆kσx), (2.16)

with the energy difference between the lower and the higher state h̄εk and the coupling
energy h̄∆k. The coupling energy can be approximated to arise from the overlap of two
harmonic potential wells, even if the exact shape of the potential is uncertain in amorphous
materials. The coupling energy depends exponentially on the barrier height Vk and the
distance d, see Fig. 2.2(b)

∆k = ω0,ke−λk , (2.17)

with the tunneling parameter

λk =

√
2mVk

h̄2 d. (2.18)

Here, ω0,k is approximately the mean oscillation frequency of both wells [35]. Further the
STM assumes that TLS couple to electric or strain fields such that transitions between
the states can be driven. The asymmetry energy and barrier heights are assumed to be
independent and uniformly distributed, causing the related tunneling rate to follow a log
uniform distribution. This assumption can be intuitively motivated by the broad distribution
of asymmetry energies up to the glass transition temperature on the order of 1000K. Thus,
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2 Superconducting Quantum Devices

we can expect the distribution P(εk,λk)dεdλ = P0dεdλ , where P0 is a constant. Thus, the
distribution of TLS can be expressed as

P(E,∆)d∆dE = P0
E

∆
√

E2−∆2
d∆dE. (2.19)

Integration over ∆k yields the density of states (DOS)

D(E) =
∫ E

∆min

P(E,∆)d∆ = P0 ln
(

2E
∆min

)
≈ D0, (2.20)

which is usually approximated as constant over the relevant energy range. Here, ∆min

is the low energy cutoff, where the tunneling probability becomes negligible on the
relevant experimental timescale. An ensemble of TLS with homogeneous distributed
tunneling parameters produces noise of the spectral form 1/ f α with α ≈ 1, which is
almost omnipresent in physical systems [37]. For high frequencies h f � kBT however,
Johnson-Nyquist noise is usually proportional to f α . Shnirman et al. [38] showed that a
distribution of the form

P(εk,∆k) ∝ (ε/∆k)
s (2.21)

with −1≤ s≤ 1 leads to a noise spectral density satisfying both limits S ∝ 1/ f , and S ∝ f
for energies below, and above kBT , respectively.

In the position basis, the lowest eigenstates corresponding to the left (|L〉) and right (|R〉)
well hybridize. The resulting eigenstates are analogous to the Euler angle description of a
qubit (Eq. 2.2)

|ψ+〉= sin
(

θ

2

)
|L〉+ cos

(
θ

2

)
|R〉 , (2.22)

|ψ−〉= cos
(

θ

2

)
|L〉− sin

(
θ

2

)
|R〉 , (2.23)

with the mixing angle
θk = arctan(∆k/εk). (2.24)

The energy difference between the states |ψ±〉 is

Ek = E−−E+ =
√

∆2
k + ε2

k . (2.25)

TLS may couple by their electric dipole moment to a qubit’s oscillating electric fields
which periodically vary the TLS asymmetry εk, while the intrinsic tunneling energy
remains constant. Naturally, the dipole moment can be expressed as eigenvalue of the
position basis {|L〉 , |R〉}. Thus, the interaction with an electric field can be written as

Ĥint = σz
∂εk

2∂ |~E|
~E = σz~dk~E, (2.26)
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with the electric field ~E and the dipole moment ~dk. In the eigenbasis of the TLS
{|ψ+〉 , |ψ−〉}, the interaction between a qubit and a TLS is

Ĥ ′int = gk(cos(θk)σz− sin(θk)σx) (2.27)

with the mixing angle θk, Eq. (2.24) and the coupling constant gk. The cosine and sine terms
in Eq. (2.27) stand for variation in the energy levels, and energy exchange, respectively.
These diagonal and off-diagonal entries in the coupling operator are generally referred
to as longitudinal and transversal. In the language of qubit coherence, the transversal
component induces state transitions and accounts for relaxation, while the longitudinal
term produces dephasing.

Following ref. [38], the relevant spectral components of TLS are separated into three terms

Sk(ω) = cos2
θk(1−〈σz〉2)

2γ1,k

γ2
1,k +ω2

+ sin2
θk

(
1+ 〈σz〉2

2

)
2γ2,k

γ2
2,k +(ω−Ek)2

+ sin2
θk

(
1−〈σz〉2

2

)
2γ2,k

γ2
2,k +(ω +Ek)2 ,

(2.28)

with the thermal equilibrium population of 〈σz〉= tanh(Ek/2kBT ), and the TLS’ intrinsic
relaxation and dephasing rates γ1,k and γ2,k. The three terms in Eq. (2.28) represent
Lorentzian distributions around zero and±Ek. The latter two can be interpreted as emission
and absorption, swapping the TLS state. For typical qubit experiments these energies
are high compared to the thermal level. In this case, the excitation by high frequency
TLS (ω =−Ek) is suppressed by the Boltzmann factor and can usually be neglected. The
absorption by TLS close to the qubit frequency (ωq ≈ Ek) can be a relevant photon loss
channel, as discussed in Sec. 6.1.

The longitudinal term centered around zero frequency describes random switching of a
thermally excited TLS with Ek . kBT , also called two-level fluctuators (TLF). TLS may
also interact with each other via their dipole moments, or their response to mechanical
strain [39, 40]. Coherent TLS-TLS interaction was first observed in our group by Lisenfeld
et al. [40]. We assume fluctuations by TLF, mediated by their coupling to other TLS, to be
the indirect source of spectral diffusion in qubit frequencies observed during this work (see
Ch.6 for details).
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2.5 Driven Qubit

If a two-level system exchanges energy with an external oscillation field, it has to change
its projection onto the quantization axis. Under a resonant drive it will oscillate between
|0〉 and|1〉. These coherent oscillations are called Rabi oscillations. This behavior differs
from harmonic oscillators and is therefore a useful test, to distinguish qubits from other
microwave modes in the system. Further, we use the measured period of Rabi oscillations
to calibrate the amplitude of the used microwave drives and gauge our qubit gates, see
Sec. 2.6. The Hamiltonian of a qubit transversally coupled to an oscillating electromagnetic
field is given by

Ĥ = h̄
ωq

2
σz + h̄Ω0σx cos(ωdt) (2.29)

with the drive of frequency ωd and amplitude Ω0, given as a rate of incoming photons,
which is also the Rabi frequency for the assumed coupling σx. In the rotating frame of the
drive, the Hamiltonian transforms to

Ĥrot = h̄
ωq−ωd

2
σz + h̄

Ω0

2
σx, (2.30)

which can be diagonalized to obtain the eigenenergies

E± =±1
2

√
Ω2

0 +∆ω2 =±1
2

Ω. (2.31)

Here ∆ω is the detuning between drive and qubit frequency and Ω is the generalized

Rabi frequency in the presence of detuning ∆ω 6= 0, defined as Ω =
√

Ω2
0 +∆ω2. With

increasing detuning, the corresponding rotation axis moves out of the xy-plane, resulting in
a coherent oscillation between |0〉 and (1−α) |0〉+α |1〉 with

α =

 ∆ω√
Ω2

0 +∆ω2

2

. (2.32)

For example, if the drive is detuned by the Rabi frequency Ω0, the rotation axis is tilted
θ = 45◦ and the largest probability to measure the excited state is p(|1〉)max = 0.5.
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2.6 Qubit Control

2.6 Qubit Control

In the previous section, Rabi oscillations in the presence of a drive field are discussed. It is
possible to stop the drive in midst of the Rabi cycle to obtain a probability distribution
according to the last orientation of the Bloch vector. This technique is used for all
deliberate rotations of the qubit state changing θ . In conjunction with phase rotations, for
example by changing the drive frequency ωq, full control of the qubit state is obtained.
The microwave tones used for qubit manipulation are referred to as "gates" or "pulses". To
extract the current state of the qubit means to perform a projective measurement on the
quantization axis. Information about the probability distribution along other directions is
obtained by fast rotations of the axis in question onto the quantization axis and subsequent
measurement. Fast, in this context, means that the pulse length is short compared to the
respective decoherence times T ∗2 and T1.

In general, the smallest possible error per gate (EPG) is given by the ratio between gate
time and coherence time. Thus, short gate pulses are desirable to reduce the EPG, which is
crucial to enable successful quantum computing. However, as shorter pulses have larger
bandwidth and many physical qubit implementations have more than the two levels used
as computational basis, shorter pulses may lead to the excitation of higher states outside
the computational subspace. This effect is also called state leakage [41]. It is therefore
important to limit the bandwidth of gate pulses. The simplest form, a square wave envelope,
as e.g. provided by a simple microwave switch, contains odd harmonics of frequencies
only limited by the systems bandwidth and is obviously not ideal.
One solution to this problem is to create a pulse that has a narrow bandwidth but the same
effect on the qubit, by changing its envelope. This technique is called "pulse shaping". By
using derivative reduction by adiabatic gate (DRAG) pulses [42], over 99.9% of single
qubit gate fidelity have been achieved on superconducting devices [13]. Detuning the pulse
to counteract the AC-Stark shift caused by large drive amplitudes can further increase the
gate fidelity for short pulses [43].

When creating optimized gate pulses, it is important to account for experimental
imperfections e.g. the non-uniform transfer function of the microwave line. This can be
done, by means of optimal control theory [44], optimizing pulse shapes with various
methods [45, 46] until a threshold gate fidelity is reached. Another possibility is using
the qubit’s Rabi oscillation as reference, effectively measuring the transfer function in the
accessible frequency range [47]. Unless noted otherwise, we used Gaussian envelopes,
which provide a sufficient protection against state leakage for the gate times used in this
work, which are usually on the order of 100 ns.
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Figure 2.3: Visualization of the qubit state evolution in the rotating frame for different microwave pulses
and free evolution. The upper row (a-c) illustrates a Ramsey sequence, consisting of two (π/2)x pulses (a,c),
separated by the free evolution (b). The pulses are usually slightly detuned, to cause a beating in the signal
called Ramsey fringes, which enable the extraction of the qubit frequency. Insertion of a ±πx (or ±πy) pulse (d)
in the middle of the free evolution, creates a spin-echo sequence (a,b,d,e). Spin-echo can re-align phase drifts
with correlation times longer than 1/∆t. In (f), the effective shrinking of the Bloch vector due to averaging
over an ensemble of states with different phase is illustrated. For simplicity, we choose the |1〉 state to point in
the positive z-direction.

In order to measure the coherence of a qubit, or manipulate its state, we need to define
the necessary gate pulses. This is done by means of a Rabi measurement: A microwave
tone at the qubit frequency is synthesized to create pulses of increasing length that cause
Rabi oscillations. For every pulse length, the resulting qubit state is measured (see section
5.2.2 for details on the pulse generation and measurement). Finally, the resulting data
relates different pulse lengths to the resulting probability distribution or in other words, the
rotation angle θ . The pulses calibrated this way are denoted by their rotation angle θ , as
well as the rotation axis. For example, the pulse causing a rotation of ∆θ = π around x is
called a π or πx pulse.

The qubit may loose its excitation by spontaneous emission into the resonator, its substrate,
or the environment. In order to measure the energy relaxation time T1, a π-pulse is applied
to the qubit, preparing it in the |1〉 state. In consecutive measurements, the free evolution
or delay time before readout is increased, revealing an exponential decay of the excited
state p(|1〉) = a0e−t/T1 as predicted by Eq. (2.15).
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Dephasing of the qubit is caused by variation of its transition energy. Depending on the
physical implementation, many different sources for dephasing can be present. In general
we can describe the incoherent environment by a noise spectral density S(ω). Note that
different measurement sequences act as a filter and thus are sensitive to different parts of the
noise spectrum. Among the pulse sequences used in this work are the Ramsey method and
the Hahn or spin echo sequence [48]. For a Ramsey measurement, the sequence starts with
a (π/2)x pulse, preparing the qubit in a superposition state on the equator, see Fig. 2.3(a).
Next, the qubit state is left unchanged for the variable free evolution time ∆t, depending on
fluctuations in ωq some additional phase ∆φ = ∆ωq ·∆t is acquired, depicted by the green
arrows in Fig. 2.3(b). Finally, another (π/2)x gate is applied and the state is measured, see
Fig. 2.3(c). Without dephasing, the resulting state is |1〉. If the accumulated phase during
free evolution is π , the final state is |0〉. As the accumulated phase differs across different
measurements, the final state of the ensemble slowly decays towards the center of the
Bloch sphere, on the time scale of T2 [see Fig. 2.3(f)]. For an optimal measurement of T2,
intentionally detuning the (π/2)x pulses by ∆ωq is beneficial. The additional phase leads
to rotations around the z-axis during the free evolution, and consequently to oscillations
in the final projection. The measurement result is a decaying sine function, oscillating at
the detuning frequency ∆ωq with a decay rate of T2. This enables an accurate measure
of variations in the qubits frequency, by extracting the detuning frequency. Further, the
extracted T2 time is more reliable, because the boundary value of P(|1〉) = 0.5 is well
defined.

The spin echo is closely related to Ramsey measurements, however, an additional ±πx (or
±πy) rotation is added halfway through the free evolution. This so-called "refocusing"
pulse inverts any phase drift that is constant on the timescale ∆t of the pulse sequence.
Applying more than one refocusing pulse further increases the cutoff frequency of
reversible noise components. A widely used example is the Carr-Purcell-Meiboom-Gill
(CPMG) sequence [49], consisting of a train of evenly spaced π pulses during the free
evolution time.
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2.7 Superconductivity

For any physical system suitable as a qubit, dissipation has to be minimized as it
corresponds to the loss of quantum information. For qubits based on macroscopic circuits,
one way to avoid inherent dissipation is to avoid any resistive parts. Superconductors
satisfy this requirement when cooled below their respective critical temperature Tc. In the
following, a short summary of the relevant properties of superconductors and the related
theoretical description is given.

2.7.1 Physical Properties

In 1908, the Dutch physicist Heike Kamerlingh Onnes accomplished the liquefaction of
Helium by using the Hampson–Linde cycle. This enabled his groundbreaking discovery of
"practically zero" resistance below 4.2K for mercury, as Onnes wrote in his notebook [50].
Interestingly, during the same experiment the transition from liquid to superfluid helium
was observed, but not immediately recognized.

Shortly after the discovery, measurements of persistent currents in superconducting rings
and methods of different paths confirmed the assumption of zero resistance [51, 52]. Besides
being a perfect conductor, superconductors are also ideal diamagnets. This manifests in the
Meissner–Ochsenfeld effect [53], the expulsion of any magnetic field from superconductors
when transitioning to the superconducting state. At a certain magnetic field strength, the
so-called "Meissner state" without field lines penetrating the superconductor, breaks down.
Superconductors can be divided into two groups, according to the functional dependence
of the breakdown on the magnetic field. In type-I superconductors, superconductivity stops
abruptly at a certain critical field Hc(T ). Pure metal superconductors, with the exception of
Niobium, usually display this property.

Type-II superconductors exhibit two critical fields. Below the lower critical field Hc1(T ),
the sample is in the Meissner state. Between Hc1(T ) and the higher critical field Hc2(T ),
quanta of the magnetic field can penetrate the material, confined by vortices of supercurrent
called Abrikosov vortices [54]. This state is also called mixed, Shubnikov, or vortex state.
The amount of vortexes increases with the external field, until Hc2(T ) is reached and the
superconducting state is destroyed [55].
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A phenomenological description of superconductivity, capturing both the Meissner effect,
and perfect conductance, was given in 1935 by Fritz and Heinz London [56]. The two
London equations read

1.
∂~js
∂ t

=
nse2

s

ms
~E and 2. ∇×~js =−

nse2
s

ms
~B, (2.33)

with the superconducting current density ~js, the electric and magnetic fields ~E and ~B inside
the material. The constants ns, ms, and es are associated with charge carrier density, their
mass, and charge, respectively. The London equations Eq. (2.33) state the lossless flow of
current (1.) and that any magnetic field ~B implies a current density ~js, to cancel the field
(2.). Thus, the second London equation captures the Meissner effect.

If we apply Ampere’s law ∇×~B = µ0~j to the second London equation, the resulting
differential equation is given by

∇
2~B =

1
λ 2

L

~B, with λL(T )≡
√

ms

µ0ns(T )e2
s
. (2.34)

The so called "London penetration depth" λL defines the characteristic length scale over
which an external magnetic field ~B is exponentially suppressed.

2.7.2 Ginzburg-Landau Theory

The London equations capture the properties of type-I superconductors with constant
charge carrier density ns. However, they do not describe type-II superconductors. The
Ginzburg-Landau theory describes the transfer into the superconducting state as a phase
transition. It was initially postulated as a phenomenological theory, but could later be
derived from the microscopic description by Bardeen, Cooper and Schrieffer [57, 58],
which is discussed in the next section. The Ginzburg-Landau theory expresses the free
energy F in terms of a complex order parameter ψ(~r), which is nonzero below the phase
transition into the superconducting state. We can interpret the square of the absolute value
|ψ(~r)|2 = ns as the carrier density of the superconducting state. It is this quantity we try to
influence by using a gated semiconducting weak link, as is explained in section 2.8.2.

For a homogeneous superconductor of volume V , the free energy Fs of the superconductor
can be expanded for small values of |ψ(~r)|2 as

Fs = Fn +
∫

V
d3r
(

α|ψ(~r)|2 + β

2
|ψ(~r)|4 + ...

)
. (2.35)

With the free energy of the normal state Fn and the phenomenological parameters α and β .
In a homogeneous superconductor without supercurrent it follows that |ψ|2 =−α/β , with
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α < 0 below Tc. For an added magnetic field ~B and under the condition of small |ψ(~r)|
and its gradients, as can be assumed close to the phase transition, the free energy has the
form [59]

Fs = Fn +
∫

V
d3r

[
α|ψ(~r)|2 + β

2
|ψ(~r)|4 + 1

2ms

∣∣∣(−ih̄∇− es~A
)

ψ

∣∣∣2 + |~B|2
2µ0

]
. (2.36)

Choosing the magnetic vector potential ~A such that ~B = ∇×~A, a variation of ψ and ~A
yields the equilibrium condition

δFs =
∂Fs

∂~A
δ~A+

∂Fs

∂ψ?
δψ

? = 0, (2.37)

which can only be true, if both parts vanish individually. Minimizing the free energy leads
to the "Ginzburg-Landau equations"

∂Fs

∂~A
= 0 =−∆~A+µ0

esh̄
2msi

(ψ?
∇ψ−ψ∇ψ

?)+
e2

s

ms
ψ

?
ψ~A, (2.38)

∂Fs

∂ψ?
= 0 = αψ +β (ψ?

ψ)ψ +
1

2ms

∣∣∣−ih̄∇+ es~A
∣∣∣2 ψ, (2.39)

with the boundary condition ∫
d2r(−ih̄∇+ es~A)ψ = 0 (2.40)

setting the supercurrent through the surface of the material to zero, corresponding to the
Coulomb gauge ∇~A = 0. By choosing a spatially constant order parameter ∇ψ = 0 we can
obtain the second London equation,

∇×~A = µ0
e2

s ns

ms
~A =

~A
λ 2

L
=−µ0~js with ψ

?
ψ = ns. (2.41)

An important length scale of the superconducting phase is the so-called "Ginzburg-
Landau coherence length" ξGL of the order parameter. It defines the scale of possible
variations of the order parameter ψ within the superconducting phase. It is also known as
"leakage-length" and defined as

ξGL(T ) =

√
h̄2

2ms|α(T )|
. (2.42)

We can now discriminate between type-I and type-II superconductors by the relation
of London penetration depth and Ginzburg-Landau coherence length. Both scale as
(1−T/Tc)

−1/2 with temperature, so their ratio is temperature independent. Type-I are
materials with λL/ξGL < 1/

√
2, type-II with λL/ξGL > 1/

√
2 [60]. These relations have
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a very intuitive interpretation. Type-I superconductors have a positive free energy of the
superconductor-normal metal boundary, while it is negative for type-II materials. Negative
surface energy indicates that the system will likely evolve towards a geometry where this
surface is larger, allowing vortices to form.

The finite coherence length in superconductors is also responsible for the finite probability
of Cooper pairs existing in adjacent insulators or normal conductors. This constitutes the
basis for the Josephson effect, which is discussed in section 2.7.5.

2.7.3 Bardeen-Cooper-Schrieffer Theory

So far, no explanation for the appearance of superconductivity has been given. The
microscopic theory by Bardeen, Cooper and Schrieffer, the so-called "BCS" theory,
provides an explanation based on the pairing of electrons into a boson-like state [57].
Several experiments such as ultrasonic absorption [61], far-infrared spectroscopy [62] and
the existence of a critical temperature reveal the existence of a band gap in the density of
states (DOS) of the superconducting state. Further experiments show a dependence of Tc

on the isotopic mass of the lattice atoms [63], the so-called "isotope effect".

A condensation into a single ground state, as seen in Bose-Einstein condensates, is as
such impossible for electrons, because of the Pauli exclusion principle. In 1956, Cooper
found that any net attractive force between electrons may lead to a bound state reducing
the overall energy at low enough temperatures. This bound state, a so-called "Cooper pair",
is of boson-like nature and provides the possibility of condensation into a common ground
state. Spin-singlet Cooper pairs with S = 0,L = 0 are characterized by the state |~ki ↓,−~ki ↑〉
with equal end opposite momentum and spin. The BCS theory postulates phonons to
mediate the attractive interaction, as is justified by the isotope effect. In this case, the new
two-electron energy at the Fermi level is approximately [59]

E ≈ 2EF−2h̄ωDe
−2

N(EF)V0 . (2.43)

With the Fermi energy EF, the Debye Frequency ωD, the scattering potential V0 and the
DOS at the Fermi level N(EF). This shows a reduction with respect to the Fermi energy 2EF

close to the Fermi level, and thus produces an instability, resulting in the phase transition.
For frequencies larger than ωD, no phonons exist in the medium, limiting the attractive
interaction to a small range of h̄ωD around the Fermi level. Compared with the Fermi level,
the energy of phonons at the Debye frequency is small h̄ωD� EF. The low temperatures
needed to induce superconductivity suppress thermally induced pair breaking. The size of
the emerging energy gap ∆ is

∆ =
h̄ωD

sinh(1/N(EF)V0)
≈ 2h̄ωDe

−2
N(EF)V0 . (2.44)
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Close to the critical temperature, the material independent BCS prediction of the gap is

∆(T → Tc)≈ 3.06kBTc
√

1− (T/Tc), (2.45)

vanishing for T = Tc. Any excitations in the superconducting state have to bridge this
energy gap and are called Bogoliubov quasiparticles. They can be understood as a
superposition of electron and hole, their excitation energy is

Ek =
√

ξ 2
k + |∆k|2, (2.46)

with the kinetic energy term

ξk =

√
h̄~k2

2m?
k
−µ, (2.47)

containing the effective mass m?
k and the chemical potential µ . The energy needed to break

a Cooper pair is at least 2∆ for ξk = 0. This finite energy gap is responsible for the lossless
flow of current because scattering events that transfer less than the equivalent energy of 2∆

have no free states to scatter into and thus cannot occur.

2.7.4 Fluxoid Quantization

Several experiments demonstrated that the sum of magnetic flux Φ penetrating a
superconducting loop of area S, and the flux Φ j generated by its persistent current ~js, is
quantized. The quantity

Φ
′ ≡

∫∫
S
~Hd~S︸ ︷︷ ︸

Φ

+
4π

c
λ

2
L

∮
~jsd~r︸ ︷︷ ︸

Φ j

= nΦ0 n = 0,±1,±2, ... (2.48)

was defined as the "fluxoid" by Fritz London. He predicted the quantization in multiples of
the magnetic flux quantum Φ0 = h/q = h/2e, albeit mistakenly with the charge of a single
electron q = e. One can argue, that if the condensate follows a wave function

ψ(~r, t) =
√

nseiφ (~r,t) (2.49)

assuming macroscopic phase coherence, it has to be single valued if we integrate along a
closed path ∮

∇φd~r = 2πn. n = 0,±1,±2, ... (2.50)

Experimentally the quantization was shown by e.g. the Little-Parks effect, oscillations in
Tc of a thin-walled superconducting cylinder exposed to a parallel magnetic field [64].
The experiments of Doll and Näbauer [65], as well as those of Deaver and Fairbank [66]
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used small cylinders, oscillating orthogonal to their axis. Using different strategies, both
concluded the value of Φ0 = h/2e independently. This is seen as experimental proof for
the macroscopic phase coherence and the existence of Cooper pairs.

The fluxoid quantization and the associated screening currents are essential in many
modern superconducting devices such as SQUIDS3 or flux-tunable qubits.

2.7.5 The Josephson Effect

A second crucial effect used in superconducting qubits arises if two superconductors are
separated by a weak link [67]. This weak link can consist e.g. of a thin insulating barrier, a
thin normal conductor, or a small constriction locally weakening the superconductivity,
see Fig. 2.4(a). These structures are named "Josephson junctions" (JJ) after Brian David
Josephson who predicted the effect in 1962. In addition to quasiparticle tunneling,
Josephson considered the lossless tunneling of Cooper pairs. We can model the time
dependent Schrödinger equation of two coupled superconductors as

ih̄
∂ψ1,2

∂ t
= E1,2ψ1,2 +Kψ2,1. (2.51)

K represents the coupling due to the exchange of Cooper pairs. Using the semi-classical
wave function of Eq. (2.49), while separating imaginary and real part yields

dn12

dt
=

2K
h̄
√

n1n2 sin(φ1,2−φ2,1) with
dn1

dt
=−dn2

dt
(2.52)

and
dφ1,2

dt
=

K
h̄

√
n1,2

n2,1
cos(φ2,1−φ1,2)−

E1,2

h̄
. (2.53)

We can define the phase difference between the two superconductors ∆φ = φ2−φ1 and for
two similar materials, the supercurrent is defined by the first Josephson equation

I = Ic sin(∆φ ). (2.54)

With the critical current

Ic =
2eh̄κ

m?
s

√
n1n2

sinh(2κd)
' 2eh̄κ

ms

√
n1n2 · e−2κd , (2.55)

similar to normal tunneling with the characteristic decay constant κ =
√

2ms(∆V0)/h̄2

where ∆V0 is the tunneling barrier. Eq. (2.54) shows, that no voltage drops across a

3 SQUID is the abbreviation for "superconducting quantum interference device"

23



2 Superconducting Quantum Devices
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Figure 2.4: Schematic and circuit diagram of a single Josephson junction. (a) Two Superconductors (SC)
are separated by an insulating (I) weak link. Their close proximity causes the phases φ1 and φ2 to be related
following the Josephson equations. In (b), the equivalent circuit diagram for a Josephson junction (JJ) and its
decomposition into the resistively and capacitively shunted (ideal) junction (RCSJ) model is shown.

Josephson junction while the current is below its critical value I < Ic. Eq. (2.53) defines
the time evolution of the phase difference and can be summed up to

d
dt

∆φ =
1
h̄
(E1−E2). (2.56)

If both superconductors have the same chemical potential E1 = E2, then the phase difference
is constant ∆φ = const. According to Eq. (2.54) this results in a DC current. If any voltage
U is applied, a finite phase difference follows

d
dt

∆φ =
2e
h̄

U(t) =
Φ0

2π
U(t). (2.57)

This is the second Josephson equation: for a constant voltage it predicts a constant phase
change. In conjunction with the first Josephson equation Eq. (2.54), this results in an
oscillating current with a frequency of ν = 2eU/h̄, called "AC Josephson effect". This
frequency is, apart from natural constants, only dependent on the voltage and is used as the
international voltage standard [68]. The phase difference across the junction ∆φ is often
referred to as the Josephson phase φ of the junction.

We can define a characteristic potential energy for JJs that is linked to the current. In an
ideal inductor, flowing current creates a magnetic field storing the energy Eind = 1/2 LI2.
For JJs, we can calculate the energy related to current across the junction as

E(φ ) =
∫ t

0
IsUdt =

Φ0

2π

∫ t

0
Is

dφ

dt
dt =

Φ0

2π

∫
φ

0
Ic sin(φ )dφ =

Φ0Ic

2π
(1− cosφ ), (2.58)

with the so-called "Josephson energy" EJ = Φ0Ic/2π . This energy is not associated with a
magnetic field, but only dependent on the phase across the junction, and thus a potential
energy. In the same manner we can assign a Josephson inductance to the junction.
Comparing the voltage across a JJ, Eq. (2.57) to the voltage across an inductor Uind = L · İ,
we find

U =
h̄

2eIc cos(φ )
∂ I
∂ t

. (2.59)
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2.7 Superconductivity

This corresponds to a phase dependent Josephson inductance

LJ(φ ) =
Φ0

2πIc cos(φ )
, (2.60)

which may become negative or even infinite. This nonlinear relation arising from the
Josephson equations is the reason why superconducting circuits can have anharmonic energy
levels serving as qubits. The dynamics of real Josephson junctions are often described by
the resistively and capacitively shunted junction (RCSJ) model, see Fig. 2.4(b). In this
equivalent circuit, the junction is replaced by three ideal elements in parallel: a Josephson
junction, a resistor, and a capacitor. This is reasonable because any real junction includes
a finite capacitance between the two electrodes. The resistance includes any dissipation,
primarily to include the finite voltage regime. It is highly nonlinear, depending on voltage
and temperature R = RN for |U | ≥ 2∆(T )/e. With the resistance in the normal state RN.

If we consider the RCSJ model, the total junction current is given by [60, 69]

I = Ic sin(φ )+
U
R
+C

dU
dt

. (2.61)

Plugging in the second Josephson equation and using the normalized time τ = ωpt, we
obtain a differential equation describing the motion of a "phase particle" with mass C in a
tilted sinusodial or "washboard" potential experiencing drag proportional to 1/R

I
Ic

=
d2φ

dτ2 +
1

ωpRC
dφ

dτ
+ sin(φ ). (2.62)

With τ = ωpt and the so-called "plasma frequency"

ωp =
1√
LJC

=

√
2eIc

h̄C
. (2.63)

ωp can be understood as frequency of a small oscillation in any of the potential wells. For
small phase differences (φmod2π � 1), the junction itself resembles a parallel LC-circuit.
A second characteristic frequency of Josephson junctions is defined as

ωc =
RN

LJ
=

2e
h̄

Vc =
2π

Φ0
Vc, (2.64)

with the characteristic voltage Vc = IcRN, usually called IcRN-product. Together, ωc and ωp

define the Stewart-McCumber parameter βC ≡ ω2
c /ω2

p . It can be understood as the square
of the quality factor Q2 = βC for the LRC-cirquit depicted in Fig. 2.4(b). Junctions with
βC < 1/4 are overdamped, corresponding to large drag in the mechanical analog. For larger
values of βC > 1/4, the junction is underdamped and plasma oscillations are possible.
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2 Superconducting Quantum Devices

2.8 Physical Implementation

As stated in section 2.2, any quantum mechanical two-state system may be considered
a qubit. However, to be of practical use in a real quantum computer, physical qubit
implementations have to meet several criteria. These are directly connected to the so-called
"DiVincenzo criteria" [70] outlining the minimal requirements for a quantum computer:

• A scalable physical system with well-characterized qubits

• The ability to initialize the state of the qubits to a reference state, such as to |000...〉

• A universal set of quantum gates

• Long relevant decoherence times, much longer than the gate-operation time

• A qubit-specific measurement capability

Several physical qubit implementations exist with different strengths and weaknesses
regarding the DiVincenzo criteria. One possibility is to harness natural two-level systems
like the spins of nuclei [71], the polarization of light [72] or the electronic configuration of
single atoms [73]. Isolated systems like ions in a quadrupole trap [74] exhibit coherence
times up to minutes [75] but face difficulties in scaling and fast initialization of many
qubits. Other possible implementations are nuclear or electronic spins in semiconductor
quantum dots or in impurity systems like color centers in diamonds, donors in silicon or
rare-earth ions in solids[76, 77]. These can usually be realized at room temperature with
coherence times on the order of milliseconds [78].

Superconducting solid-state qubits are among the largest physical qubits with dimensions
on the order of 100µm. This enables precise manipulation of their energy spectra via
local control fields. Larger size also increases interactions with the environment or each
other, reducing the coherence and gate times compared to other qubit implementations.
Overall we believe superconducting qubits to be among the most promising candidates
to realize a quantum computer. In fact, a recent demonstration of ’quantum supremacy’
used a processor consisting of 53 superconducting qubits [19]. In this work we focus on
so-called "transmon" qubits, which are discussed in the next section.

2.8.1 The Transmon

The transmon, which is an abbreviation for "transmission line shunted plasma oscillation"
qubit, is a modification of a charge qubit or Cooper-pair box (CPB) [79]. Proposed by
Jens Koch et al. [23] in 2007, the transmon aims for reduced sensitivity to charge noise
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Figure 2.5: Eigenenergies of the first three levels of the transmon Hamiltonian, Eq. (2.65) plotted against the
offset charge ng for different ratios of Josephson to charging energy, as shown in Ref. [23]. The energy scale is
normalized to the transition energy E01 at ng = 0.5. In (a), for EJ/EC = 0.5 the energy dispersion still resembles
parabola, as expected for the charge regime. The Josephson coupling lifts the degeneracy and generates the
computational basis with large anharmonicity at half integer ng. In (b), the ratio of EJ/EC increases and the
dispersion flattens, until it is visibly flat in the transmon regime (c). With increasing EJ/EC, the relative
anharmonicity follows a weak power law, while the sensitivity to charge noise is reduced exponentially.

by capacitively shunting the two superconductors parallel to the junction, see Fig. 2.6(a).
This increases the ratio of Josephson- to charge-energy EJ/EC compared to charge qubits
and exponentially flattens the charge dispersion with respect to (EJ/EC)

1/2, as shown in
Fig. 2.5.

The charging energy EC is associated with the amount of energy stored in the electric
field of the circuit per charge carrier and it can be written as EC = e2/2C. The effective
Hamiltonian of a transmon is identical to that of a CPB [23]

ĤC = 4EC(N̂−ng)
2−EJ cos φ̂ . (2.65)

With the number operator N̂ corresponding to the number of Cooper pairs transferred
across the junction, the offset charge on the island ng, and the Josephson phase operator φ̂ .
The number operator is defined as

N̂ = ∑
N

N |N〉〈N| . (2.66)

We define the commutation relation between number and phase operators after Dirac [80]
as [

φ̂ , N̂
]
=−i. (2.67)

With the phase as the conjugate variable with respect to the number of charge carriers. It is
energetically unfavorable to change the amount of Cooper pairs on the island, if the charging
energy is larger than the thermal energy kB < e2/2C. For a typical Josephson junction
with a junction capacitance on the order of 1 fF/µm2 at a temperature of T = 20mK, the
energy required to add one electron to the island is much larger than the thermal energy
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(a) (b)

Figure 2.6: Circuit diagram of a transmon qubit. (a) as derived from the Cooper pair box, the superconducting
island is depicted in blue. The shunting capacitance is labeled CB, the offset charge can be adjusted by the
voltage gate Vg. (b) Implementation in the presented experiments, capacitively coupled to a readout resonator
of frequency ωr via the coupling capacitance Cc2. A microwave feedline is coupled to the system capacitively
by Cc1.

EC ≈ 80µeV� kBT ≈ 1.7µeV. This so-called "Coulomb blockade" [81] is the reason why
the charge on the island of a CPB (blue part in Fig. 2.6) is well defined. Hence the CPB
is said to operate in the charge regime. Its dispersion relation is composed of parabola
centered at every integer number of Cooper pairs with avoided crossings proportional to
the Josephson energy, see Fig. 2.5(a). The computational basis used in charge qubits is the
coherent superposition of different charge eigenstates, created by the Josephson coupling.

For the transmon however, the charging energy is much smaller than the Josephson energy,
typically their ratio is EJ/EC & 50. Its dispersion relation is almost flat with regard to the
charge degree of freedom, as can be seen in Fig. 2.5(c). The transmon is usually described
in the phase basis, the exact solution to the Hamiltonian Eq. (2.65) can be obtained in
terms of Mathieu functions [82] as

Em(ng) = ECa2[ng+k(m,ng)]

(
− EJ

2EC

)
, (2.68)

with the Mathieu characteristic values a f (n,k) and the integer function k(m,ng) sorting the
correct eigenvalues with respect to the energy level m, and the offset charge. Due to the flat
charge dispersion, the transmon is insensitive to charge fluctuations across the junction.
For small fluctuations in charge with the noise amplitude A, the dephasing time can be
estimated as

T2 ∼
h̄
A

∣∣∣∣∂E01

∂ng

∣∣∣∣−1

. (2.69)

The highest possible change in the charge dispersion is the tunneling of a single electron,
shifting ng by one half. Starting from an extremum, the frequency shift caused by this
even-odd transition can be calculated by evaluation of Eq. (2.68) for two different values
of k. In a transmon of EJ/EC ≈ 80, as e.g. used in this thesis, the maximum frequency shift
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caused by tunneling of a single electron is ∆ωq ≈ 2Hz and thus negligible in the presented
experiments. The transmons peak-to-peak charge dispersion can be approximated by [23]

Epp
m = (−1)mEC

24m+5

m!

√
2
π

(
EJ

2EC

)m
2 +

3
4

e−
√

8EJ/EC . (2.70)

The last term reveals an exponential suppression in peak-to-peak amplitude of the energy
levels with respect to EJ/EC. As can be seen in Fig. 2.5, the lower charge sensitivity
is accompanied by decreased anharmonicity. To avoid excitation of higher levels, the
anharmonicity needs to stay sufficiently large compared to the bandwidth of the used
gate pulses. For EJ/EC� 1, the cosine in Eq. (2.65) can be expanded around φ = 0 to
approximate the level spacing

Em ≈−EJ +
√

8EJEC

(
m+

1
2

)
− EC

12
(6m2 +6m+3). (2.71)

The resulting anharmonicity α ≡ E12−E01 and relative anharmonicity αr = α/E01 are

α ≈−EC and αr ≈−(8EJ/EC)
−1/2. (2.72)

This scaling of anharmonicity leaves a parameter range of 20 . EJ/EC � 5 · 104 for
transmon architectures [23], assuming a pulse duration of 10ns.

The transmon Hamiltonian can also be formulated using the bosonic creation and
annihilation operators â† and â, which satisfy the commutation relation

[
â, â†

]
= 1. This

notation is needed in the framework of the Jaynes-Cummings model (Sec. 3.2.1) and the
dispersive readout (Sec. 3.2.2). We can write the basic Hamiltonian of a transmon qubit
coupled to a resonator of frequency ωr as [23]

Ĥq = 4EC(N̂−ng)
2−EJ cos φ̂ + h̄ωq â†â+ h̄g(â† + â). (2.73)

Expanding the cosine in Eq. (2.73) in analogy to Eq. (2.71), the transmon system can be
well approximated as [1]

Hq = h̄ωq a†a− h̄α(a†)2(a)2, (2.74)

with the anharmonicity α . This approximation follows from considering only number-
conserving terms and applying normal ordering to the terms up to fourth order in φ̂ . It is
valid for large EJ/EC in the dispersive limit, which is discussed in Sec. 3.2.2
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Figure 2.7: (a) Circuit diagram of a gatemon qubit as used in the presented experiments. (b) Scanning electron
microscope image of a gatemon junction with side-gate. The superconducting contacts appear transparent, a
detailed description of the related fabrication is given in Sec. 4.2.

2.8.2 The Gatemon

To achieve a tunable transition frequency in transmon qubits, the single JJ is usually
replaced by two parallel junctions forming a loop also called split-junction. The effective EJ

of this dc-SQUID can now be tuned by an external flux. Typically a bias coil is fabricated
next to the split-junction to provide local flux. A precisely controlled current through the
bias coil is then used to tune the qubit to its desired frequency.

The "gatemon" is a variation of the transmon qubit, that achieves tunabiliy by employing
a semiconducting weak link instead of an SIS junction. As shown in Eq. (2.55) the
critical current depends on the charge carrier density of the respective material. In a
semiconductor, this carrier density can be varied by an electrostatic gate. The equivalent
circuit diagram is shown in Fig. 2.7(a). Due to the finite coherence length outside the
superconductor, superconductivity can be induced into the junction material. This so-called
"proximity effect" [83–85] also affects the superconductor close to the junction and is
highly sensitive to the transmission coefficient of the interfaces. For highly transparent
material combinations it is possible to create semiconducting Josephson junctions usable
in qubits. With this technique, the critical current and thus the transition frequency of
gatemons can be tuned in a wide range. Depending on the junction and gate geometry, the
supercurrent may be suppressed completely by the gate [86].

Contingent on the architecture, crucial operations in quantum processors rely on fast and
reliable tuning of qubit frequencies. Prime examples are swap-gates [87], manipulating
inter-qubit coupling and setting the qubit frequencies with respect to readout resonators or
parametric amplifiers. Gatemon qubits simplify gate architectures by only needing one
tunable junction in contrast to split-junctions. Further, voltage gates can be fabricated
very close to the junction and have very small cross talk compared to flux tuning. In our
fabrication, the gate-junction distance is defined by the layer of dielectric of ≈ 15nm (see
Sec. 4.2). The resulting higher possible qubit density and simplified calibration may help
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to mitigate scaling challenges. In comparison to traditional transmon qubits, gatemons are
still not widely adopted despite the above-named advantages. One reason is the tendency
for metal-semiconductor junctions to form Schottky barriers [88] and thus constitute a
parasitic resistance, rendering a persistent qubit excitation impossible. One solution is the
use of semiconductors that intrinsically form ohmic contacts with the superconductor in
question, as further discussed in section 5.3.

As of today, nanowires [89] or layered stacks forming two-dimensional electron gases
(2DEG) [90] are used to incorporate semiconductors as junction material. This technology
is still in development and new geometries and techniques are to be expected. A scanning
electron microscope (SEM) image of a tunable junction based on an indium arsenide
(InAs) nanowire is shown in Fig. 2.7(b). The depicted sample was fabricated in the course
of this project by Patrick Zellekens.
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A quantum processor can only work, if its qubits evolve undisturbed for a sufficiently
long time on average. "Long" here means until the computation is finished or longer
than the threshold for quantum error correction [91]. It is thus necessary, to isolate the
qubit from the environment to prevent decay and dephasing. However, in order to perform
computations, gates need to change the quantum state and at some point this state needs
to be observed to extract the result. A totally isolated system is thus not a useful qubit
according to the DiVincenzo criteria (see sec 2.8).

For superconducting qubits, the dilemma of introducing a loss channel together with the
needed coupling to the qubit is usually met by using a readout resonator to couple the qubit
to the feedline. This resonator is detuned from the qubit frequency and acts as a band-pass
filter. Further, the noise level, temperature, and local material loss need to be minimized
to ensure sufficiently long coherence times, as shown in section 5.2.1. To further reduce
radiative decay, additional resonators called "Purcell filters" may be added [92]. In the
following, the theoretical aspects and the practical approach to build a quantum circuit are
presented.

3.1 Microwave circuits

All presented experiments are implemented in the microwave regime, with frequencies
on the order of 10GHz. As measured in the year 1887 in Karlsruhe by Heinrich Hertz,
electrical circuits behave distinctly different from their low-frequency counterparts [93]. If
the wavelength is comparable to the size of the circuit, electromagnetic (EM) radiation
becomes important, interference and polarization effects have to be considered. In the
following, a short summary of transmission lines, scattering parameters and resonators in
microwave circuits are given.
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Figure 3.1: Schematic of the lumped-element equivalent circuit for an infinitesimal piece of transmission line
(black). The lumped circuit elements for line length element dz, series inductance L′, series resistance R′, shunt
capacitance C′, and shunt conductance G′ are given per unit length. Together these form the transmission lines
characteristic impedance Z0. The input impedance Zin depends on the length z and the load impedance ZL

terminating the line. If the load impedance equals Z0, it is considered a matched load and no signal is reflected.
This is usually the desired case, to avoid standing waves and frequency dependent amplitudes at the sample.

3.1.1 Transmission Lines

The task of a transmission line is to conduct a signal across a distance z ideally without
altering it. For low frequencies, one usually views signal wires as instantaneously equalizing
the potential, acting like a small resistor. However, if the signals wavelength becomes
comparable to z, the variation of current and voltage across the wire, its inductance,
capacitance and the radiation of electromagnetic waves can no longer be ignored. The
transmission line is a circuit element and a distributed parameter network [94].

In microwave engineering, a transmission line is modeled as an assembly of infinitely
many two-port elementary components. The line properties are then specified per unit
length and can be integrated to yield the effect on the signal. The related lumped-element
model, as shown in Fig. 3.1 is applicable, since the infinitesimal line segments are again
short compared to the wavelength. Application of Kirchhoff’s rules to the lumped element
model yield the telegrapher equations

dV (z)
dz

=−(R′+ iωL′)I(z) and
dI(z)

dz
=−(G′+ iωC′)V (z), (3.1)

describing the signal propagation along a transmission line. The series resistance R′, series
inductance L′, shunt capacitance C′, and shunt conductance G′ are the properties per unit
length. A plane wave ansatz solves equations (3.1) and yields

V (z) =−V+
0 e−γz +V−0 eγz and I(z) =−I+0 e−γz + I−0 eγz, (3.2)

for the voltage and current, respectively. Here, the complex propagation constant is

γ = α + iβ =
√

(R′+ iωL′)(G′+ iωC′) (3.3)
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(a) (b)

GNDGND

Figure 3.2: Equivalent geometries of stripline (a) and coplanar waveguide (b), commonly used in planar
microwave circuits. Here, the conductors are thin sheets of metal (orange), with thickness on the order of
hcond ∼ 100nm on the superconducting samples. The substrate used in this work is intrinsic silicon with
h∼ 400µm and a dielectric constant of εr = 11.68. The characteristic line impedance can be adjusted by the
ratio of s and w for the coplanar (CPW) and by the width w for the stripline. Depending on the substrate εr and
height h, the ground layer is not always necessary for CPW. For a stripline however, it is the single ground
reference. For both geometries, the ground layer and dielectric may be mirrored to sandwich the transmission
line in multilayer assemblies.

and the terms with positive (negative) γ represent waves propagation in the positive
(negative) z direction. The real part of the propagation constant contains the dissipation
due to the series and parallel resistances R′ and 1/G′, including dielectric loss. While
the imaginary part includes the reactive components and thus the phase. The relation
between voltage and current for any given point along a transmission line are defined by its
characteristic impedance Z0, defined as

Z0 =
V+

0

I+0
=

V−0
I−0

=

√
R′+ iωL′

G′+ iωC′
. (3.4)

Any load ZL that deviates from Z0 creates a boundary where the traveling wave is scattered.
The amplitude of the reflected signal in relation to the incident wave is given by the
"voltage reflection coefficient" Γ

Γ =
V−0
V+

0
=

ZL−Z0

ZL +Z0
. (3.5)

No reflection occurs, if the load equals the line impedance ZL = Z0. Such a load is called
"matched" to the line. Avoiding reflections is of particular importance for quantum circuits,
as the signals are usually in the single photon regime. So reducing the signal by unwanted
reflections may drastically reduce the signal-to-noise ratio (SNR). The effective impedance
Zin seen from the port of the transmission line depends on the load impedance and the
distance to the load d as

Z(l) = Z0 ·
ZL +Z0 tanh(γl)
Z0 +ZL tanh(γl)

. (3.6)

The transmission lines used in the presented experiments are mainly commercial coaxial
cables with a standardized line impedance of 50Ω (for details on the microwave wiring,
see section 5.2.2). To minimize reflections, the thin film feedline on the sample chip needs
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to be matched to the 50Ω line impedance. For 2D-structures, two of the most popular
designs are the coplanar and the stripline geometries, as shown in Fig. 3.2.

A single slit in a conducting plane also constitutes a transmission line, called slot line. The
coplanar waveguide (CPW) can be understood as two coupled slot lines. Its characteristic
impedance can then be approximated in the relevant parameter range 1.5 ≤ εr ≤ 120,
as calculated by Simons [95]. For the chip and circuit design, the initial parameters are
calculated using

s = w ·
[

1
4

exp
(

30π2

Z0ε0.5
eff

)
+ exp

(
− 30π2

Z0ε0.5
eff

)
−1
]
, (3.7)

with the effective dielectric constant εeff, including the mode volume in vacuum.

For the feedline on intrinsic silicon (εr = 11.68) with a thickness of h = 380µm, the
chosen values are w = 12µm and s = 7µm. For a signal of 10GHz, these parameters result
in Z0 = 50Ω and an effective electrical length of 30◦/mm. For the chip carrier, milled
TMM101 substrate [96] was used. In order do contact the feedline and connect it to the
coaxial signal lines, its width needs to be increased until a bond wire can be attached. To
reduce mismatch loss, taper on both sides of the carrier and the feedline smoothly increase
the conductor width while maintaining the characteristic impedance of 50Ω. Examples of
such a taper are depicted in Figs. 5.6 and A.1.

3.1.2 S-Parameters

Microwave networks with matched load terminations, like the presented experimental
setup (see also section 5.2.1) can be described using the elements of a scattering matrix.
These are called "S-parameters" and characterize the amplitude and phase characteristics
of single- or multi-port networks between all possible port combinations. Every matrix
element Si, j represents the factor relating the voltage V+

j of an incident signal from port i,
with the resulting output voltage V−i on port j, such that [94]

Si, j =
V−i
V+

j

∣∣∣∣∣
V+

k =0 for k 6= j

. (3.8)

This definition requires all ports except i and j to be set to zero. S-parameters are the
measured variable of network analyzers, which are the standard tool for spectroscopic
measurements. It is possible to calculate the impedance (Z) and admittance (Y) matrices
from the S matrix and vice versa.

1 The used substrate is coated with 35µm copper on both sides and has a thickness of 640µm.

36



3.1 Microwave circuits

BW

BW

(a) (b)

Figure 3.3: Schematics of equivalent circuits for electrical resonators also called "RLC circuits" in series (a)
and parallel (b) topology. The respective magnitude of the input impedance |Zin(ω)| as seen from the source V
is depicted below each circuit. On resonance, this impedance is purely real and only depends on the dissipative
part Zin(ω0) = R.

Passive networks that only contain isotropic materials are reciprocal. In this case, the S
matrix is symmetrical Si, j = S j,i and Si,i = S j, j. For the presented experiments, active and
non-isotropic elements as e.g. amplifiers and circulators are in the signal chain, rendering
them non-reciprocal. In networks where all ports are matched to the line impedance, the
reflection vanishes and diagonal entries in the S matrix are zero. This can be seen by
setting ZL = Z0 in Eq. (3.5). Thus, the reflection coefficient is a benchmark for the quality
of impedance matching in connections like the bond wires.

3.1.3 Resonators

Electrical circuits comprising inductive and capacitive elements have a resonance frequency
due to the opposing phases of their impedance. This also holds if the circuit does not include
the dedicated components inductor or capacitor, because small amounts of inductance
and capacitance are unavoidable due to the finite size of any conductor. Resonators in
superconducting circuits are usually realized by a short piece of conductor with shorted or
open ends, creating the boundary condition for a standing wave.

Close to resonance, even these distributed resonators can be modeled by lumped-element
equivalent circuits [94]. The most general model here is an RLC circuit, named after its
components: resistor (R), inductor (L), and capacitor (C). These can be arranged in series
or parallel, as can be seen in Fig. 3.3 (a) and (b) respectively. The effective input impedance
Zin for the series configuration is

Zin = R+ iωL− i
1

ωC
(3.9)
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and for the parallel configuration

Zin =

(
1
R
− i

1
ωL

+ iωC
)−1

. (3.10)

As can be seen in equations (3.9) and (3.10), the imaginary parts due to inductive and
capacitive elements have opposite signs and mutually inverse dependence on frequency. The
frequency, where these so-called "reactive" parts cancel out and the effective impedance
Zin becomes purely real, is the resonance frequency ω0. For both topologies it is defined by

ω0 =
1√
LC

. (3.11)

The bandwidth (BW) of the resonance dip or peak is an important parameter of every
resonator. It depends on the amount of dissipation per oscillation measured by the so-called
"quality factor" Q, which is defined as

Q = ω0
Wm +We

Pd
. (3.12)

Here, Wm and We are the averaged magnetic and electric energy stored in the inductor and
capacitor respectively and Pd is the averaged dissipated power. On resonance, electric and
magnetic energy are equivalent We =Wm. The quality factor of the bare resonator circuit,
also called "unloaded" quality factor is

Qi =
ω0L

R
=

1
ω0RC

and Qi =
R

ω0L
= ω0RC (3.13)

for the series and parallel RLC circuits, respectively. It can be understood as a measure
of the systems damping, associated with the exponential decay of energy in a dissipative
harmonic oscillator. The Fourier transform of an exponential function is Lorentzian. Thus,
the Lorentzian line shape of the squared amplitude of the resonators S-matrix element can
be used to link its bandwidth Γ, the characteristic decay time of the oscillation τ , and the
quality factor as (see Appendix A for the calculation)

Γ =
ω0

2QL
τ =

2QL

ω0
. (3.14)

In this case, the "loaded" quality factor QL is used because the resonant circuit is connected
to a feedline leading to additional dissipation due to the load resistance RL (see Fig. 3.3).
Loss due to the coupling is characterized by the "external" or coupled quality factor Qc.
The equivalent circuit suggests the loss factors to be connected by

1
QL

=
1
Qi

+
1

Qc
. (3.15)

How strongly the resonator is affected by the feedline can be expressed by the coupling
factor κr. It is defined by the ratio of Qi and Qc, it follows Qi = κrQc = (κr + 1)QL. The
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coupling is called undercoupled (κr < 1) or overcoupled (κr > 1) if the dissipation is
dominated by the internal or external quality factor, respectively. If the loss in the resonator
equals the coupling losses (κr = 1), it is critically coupled. In the series RLC circuit, Qc

and κr are

Qc =
ω0L
RL

and κr =
RL

R
. (3.16)

In the parallel configuration, the expressions are inverted

Qc =
RL

ω0L
and κr =

R
RL

. (3.17)

For the design of readout resonators, the coupling factor is critical. The resonator needs to
be coupled strong enough to the transmission line, to provide sufficient signal. However, its
bandwidth should remain low enough not to compromise the dispersive readout, explained
in section 3.2.2. The maximum measurement rate is naturally limited by the coupling. Here
usually the coupling rate κ is used, which denotes the photon leakage rate out of the cavity.

3.2 Cavity Quantum Electrodynamics

The interaction of light and atoms in a system, where the electromagnetic spectrum is
determined and quantized by a cavity, is called cavity quantum electrodynamics (cavity
QED). Besides optical cavities [97], superconducting circuits offer the possibility to
study fundamental quantum mechanical interactions of open systems or measurement
induced decoherence [98]. Conditions that facilitate coherent oscillations of a single
excitation between atom and cavity are of particular interest. These so-called vacuum
Rabi oscillations between atom and cavity occur if the exchange rate exceeds the rates of
relaxation and dephasing in both systems. This regime can be realized with superconducting
circuits, rendering them a versatile platform for cavity QED experiments [99]. The system
consisting of qubit and readout resonator usually belongs in this category. However, if
we restrict the system to an ideal two-level system coupled to a resonator, it holds only
qualitatively for the transmon, because its higher levels are ignored.

3.2.1 Jaynes-Cummings Model

The basic interaction of a two-level system with the quantized mode of a cavity is described
by the Jaynes-Cummings model of quantum optics. A famous example is the experiment
of Haroche and Raimond, using Rydberg atoms to probe microwave photons [100, 101].
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3 Quantum Circuits

The coupling between the electric dipole moment ~d ∝ ~d0σ̂x of the atom and the quantized
electric field ~E ∝ (b̂† + b̂) of the cavity mode is proportional to ~̂E · ~̂d. It can be expressed as

Ĥc = h̄gσ̂x
(
b̂† + b̂

)
, (3.18)

with the coupling strength g and the harmonic creation and annihilation operators b̂† and b̂
for the cavity photons, satisfying

[
b̂, b̂†

]
= 1. For the full system consisting of cavity and

atom (qubit), the Hamiltonian reads

Ĥ = h̄
ωq

2
σ̂z + h̄ωr

(
b̂†b̂+

1
2

)
+ h̄gσ̂x

(
b̂† + b̂

)
+ Ĥκ + Ĥγ . (3.19)

With the qubit energy h̄ωq and the number of photons b̂†b̂ with the frequency ωr of the
relevant cavity mode [102]. Ĥκ describes the coupling of the cavity to the environment,
resulting in decay at the rate

κ = ωr/QL. (3.20)

In Eq. (3.19), Ĥγ represents the qubits relaxation and dephasing [98]. For simplicity, we
neglect potential higher levels of the qubit and treat it as a perfect two-level system.

If the coupling energy of the cavity QED system in question is much smaller than the ener-
gies of the cavity and qubit excitations (g� ωq,ωr), a rotating wave approximation (RWA)
can be applied, transforming Eq.(3.19) into the Jaynes-Cummings Hamiltonian [103]

ĤJC = h̄
ωq

2
σ̂z + h̄ωr

(
b̂†b̂+

1
2

)
+ h̄g

(
σ̂+b̂+σ−b̂†) . (3.21)

Here, the loss terms are omitted and the transversal coupling is re-written using the identity
σx = σ++σ−. In the rotating wave approximation, the so-called "counter-rotating" terms
σ+b̂† and σ−b̂ are neglected, because they oscillate rapidly compared to the timescale of
relevant system dynamics.

3.2.2 Dispersive Readout

Diagonalization of the Jaynes-Cummings Hamiltonian Eq. (3.21) yields the ground state
|g,0〉 and the dressed excited eigenstates [98]

|+,n〉= cosθn |e,n〉+ sinθn |g,n+1〉 ,
|−,n〉=−sinθn |e,n〉+ cosθn |g,n+1〉 ,

(3.22)

with the mixing angle

θn =
1
2

arctan
(

2g
√

n
∆

)
, (3.23)
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(a) (b)

E

Figure 3.4: Visualization of the energy level structure for the coupled system of qubit and resonator. The
uncoupled energy spectra are depicted in black, with the cavity photon number n rising from bottom to top and
the ground (excited) state of the qubit on the left (right). (a) shows the dressed states in the resonant case in
green. Cavity and qubit form a superposition state with an energy splitting proportional to 2g

√
n+1. (b) In

the dispersive regime, the level spacing depends on the state of the qubit, enabling the so-called "dispersive
readout".

dependent on the detuning ∆ = ωq−ωr. It is important to note, that these states are no
longer eigenstates of either qubit or resonator, but a collective excitation of the two. Except
for the ground state |g,0〉, the relevant number of excitations in the system is the total
photon number N = n+1, not the number of photons in the cavity. This also means, that
part of the qubit excitation is now in the cavity and vice versa, enabling readout (and
decay) of the qubit state through the cavity possible. For the resonant case ∆ = 0 (∆� g)
the eigenstates of the system are an equal superposition of |g,n+1〉 and |e,n〉

|±,n〉= 1√
2
(|g,n+1〉± |e,n〉) . (3.24)

Here, resonator and qubit coherently exchange energy at the vacuum Rabi frequency
Ω/2π = g

√
n+1. Fig. 3.4(a) depicts the energy spectrum in the resonant case in green.

Excluding the ground state |g,0〉, the corresponding eigenenergies of the Jaynes-Cummings
Hamiltonian Eq. (3.21) are

E|±,n〉(∆) = h̄ωr (n+1)± h̄
2

√
4g2(n+1)+∆2 (3.25)

for the dressed state.

In the so-called "dispersive limit", resonator and qubit are far detuned compared to their
coupling strength g� ∆. In this case, the new basis states |±,n〉 are similar to the pure
qubit and resonator states with a small correction. For g/∆� 1, the Hamiltonian Eq. (3.21)
can be diagonalized approximately [98], which yields

Ĥeff ≈ h̄
(
ω
′
r + χeffσ̂z

)
b̂†b̂+

h̄
2
(
ω
′
q + χeff

)
σ̂z, (3.26)
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with the shifted resonator and qubit frequencies ω ′r = ωr−χ01−χ02 and ω ′q = ωq + χ01.
This way, the uncoupled Hamiltonian is restored, except for a small correction given by the
effective dispersive shift, which also depends on the next higher level [104]

χeff = χ01−
χ12

2
+

χ02

2
with χi j =

g2
i j

ωi j−ωr
. (3.27)

Higher levels have to be included, because the coupling may be similar to the charging
energy g∼ EC. Here, we consider transitions between the lowest three levels. The effective
dispersive shift can be written as

χeff '
g2

∆

−h̄ωp

4(h̄∆−EC)
. (3.28)

In this case the one excitation eigenstates are

|+,0〉 ∼ |e,0〉+
( g

∆

)
|g,1〉 ,

|−,0〉 ∼ −
( g

∆

)
|e,0〉+ |g,1〉 .

(3.29)

The corresponding energy spectrum is shown in Fig. 3.4(b). Blue and red depict the
respective energy levels of the coupled system for the qubit in the ground and excited state.
The coupling between qubit and cavity scales with the electric field and therefore with the
number of photons in the cavity n. Above a critical photon number [98]

ncrit =
∆2

4g2 , (3.30)

the dispersive limit g/∆� 1 breaks down and the state of the coupled system can no
longer be approximated by qubit and cavity eigenstates. The state separation and thus the
resonator’s eigenfrequency is now dependent on the qubit state. This can also be seen
in Eq. (3.26), where the bare resonator frequency is replaced by ω ′r + χeffσ̂z. Thus, by
populating the resonator and measuring ωr via the reflected or transmitted signal, the qubit
state can be deduced. As we described in the previous chapter, the linewidth of the readout
resonator is given by the total loss rate

κL = ωr/QL (3.31)

determined by the loaded quality factor, see Eq. (3.15). Thus, the resulting resonance peaks
for the two qubit states are separated, if κL < χeff. However, this is not a requirement
for successful readout because of the finite slope of the phase signal (∝ tanh(ω)) at
ω = ωr. So the measurement can either be performed, by applying a pulse of frequency
ω ′r + χeff and observing the transmission amplitude, or by choosing a drive at the bare
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(a) (b)

Figure 3.5: Sketch of the response of an ideal readout resonator coupled to a qubit in transmission (a) and
reflection (b). The bare resonator frequency is ωr and the average response to a varying drive frequency is
shown by the dashed circle. Its diameter is given by the linewidth and thus defined by κr [105]. Coupling to
the qubit shifts the response at ω = ωr by ±χeff to the blue dots, depending on the state of the qubit. The
separation of |g〉 and |e〉 and thus the SNR is identical in both configurations. In the transmission however,
information about the qubit state is encoded in amplitude and phase, while in reflection the amplitude is
constant, and the information is only encoded in the phase. The faint red blob represents a possible higher
level, as can be measured in real transmon qubits with low anharmonicity for high drive power or increased
sample temperature. The size of the Gaussian blobs is fundamentally limited by the number-phase uncertainty.
For clarity the blobs are drawn unrealistically small, compared to our measurements.

resonator frequency and measure the phase signal, while the latter is usually applied for
comparatively small dispersive shifts, compared to the linewidth.

The time for a successful readout is inversely proportional to the coupling rate ∆tR ∝ 1/κ .
Its fidelity can be measured by the probability of falsely assigned states

F = 1−P(e|g)−P(g|e) . (3.32)

Here, P(e|g) is the "false positive" probability to measure the qubit to be in state |e〉,
while it was prepared in state |g〉. Any real qubit will be subject to decay, so the readout
is a tradeoff. Longer data acquisition leads to a more accurate state extraction. However,
shorter readout reduces the decay probability during readout, and the induced decay by
the coupling, which is subject of the next section. The possible SNR depends on several
factors, including the signal chain as is further discussed in Sec. 5.2.1. The coupling
generating maximal phase space separation for readout at the bare resonator frequency is
given by [106, 107]

κL = 2χeff. (3.33)

In Fig. 3.5, this corresponds to the largest possible phase separation of the blobs at
2θt = 90◦ and 2θr = 180◦, respectively. The readout projects the qubit onto one of its
eigenstates and the corresponding observable σ̂z commutes with the system Hamiltonian
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Eq. (3.26). Therefore, repetitive readout gives the same result 2, which renders dispersive
readout a so-called "quantum non-demolition" (QND) measurement [108, 109]. The phase
information of the qubit however, is lost during measurement. This can be intuitively
understood, as a projection onto the z-axis of the Bloch sphere, where no phase can be
defined.

Under the influence of dissipation, the probability of a quantum transition from |e〉 to |g〉 is
proportional to t2 for short periods of time t. Thus, fast repetitive measurements can be
used to reduce the decay probability. This is called the quantum Zeno effect [110] and has
been observed in several systems, including flux qubits [18, 106]. A complete disruption
of decay processes can not be achieved in this fashion, as this would require infinitely
fast (and strong) measurements. For fast, repetitive measurements, quantum jumps can be
observed [111, 112].

3.2.3 Purcell loss

Edward Mills Purcell discovered enhanced spontaneous emission for radiative transitions in
atoms when inside a resonant cavity, compared to free space [113]. This can be intuitively
understood as a manifestation of Fermi’s golden rule, relating the transition rate to the
density of possible final states. Following this argument, the radiation of a quantum system
inside a cavity may also be suppressed, if the respective mode is not supported by the
cavity [114]. Enhanced coherence times of qubits in 3D cavities can be attributed to the
reduction of Purcell loss.

In the dispersive limit, the qubit state acquires a small photonic component, which may
radiate out of the cavity. Assuming only the fundamental mode of the cavity to be close to
the qubits frequency so higher modes can be neglected, the Purcell rate is given by [23]

Γκ =
g2

∆2 κL, (3.34)

with the total resonator loss rate κL, see Eq. (3.31). This can directly be seen in equation
(3.29), as the qubits superposition has the probability (g/∆)2 to be a cavity photon, which
decays at the rate κL. In the resonant case the system is in an equal superposition state
|±,n〉 (see Eq. (3.24)). Half of the time it is photon-like, thus the Purcell rate is

Γ̃κ = κL/2, (3.35)

2 Assuming the readout is fast compared to the qubits lifetime
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in this case. In conjuncture with the previous chapter, it becomes clear that there is a
tradeoff between maximizing the quality of the readout signal and reducing Purcell loss of
the qubit.
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4 Semiconducting Nanowires

To discuss the processes leading to charge transfer across a superconductor-semiconductor
junction, we first need to have a look at the key properties of the materials involved.
Further, the geometry and effective size of the junction compared to the characteristic
length scales, like the coherence length ξ , play a crucial role for the leading physical
effects. In this chapter, the relevant properties of superconductor-semiconductor interfaces
are discussed, setting the basis for further discussion.

4.1 Superconductor-Semiconductor Junctions

The electronic properties of semiconductors are defined by the density of states (DOS)
of their charge carriers close to the Fermi energy EF. Electrical conductivity results from
delocalized charge carriers that can freely transition between different states. This requires
a partially filled band close to EF in order to provide empty states to transition into.
Semiconductors exhibit a band gap around EF of ∼ 0.1–4eV, which is small enough that a
significant amount of the states in the last filled (valence) band are thermally excited to the
next higher (conduction) band at room temperature. An example of the corresponding band
profile can be seen on the right sides of Figs. 4.1(a,b).

Most semiconductors form a depletion zone also called Schottky barrier, when in contact
with a metal. The reason is the alignment of the respective Fermi levels. This can be
understood intuitively, as the metals DOS is much higher at the Fermi energy. The resulting
reduction of potential energy facilitates the valence electrons to migrate into the metal and
metal electrons to fill empty states in the valence band. The resulting electric field created
by the now ionized donors opposes the diffusion, it stops when an equilibrium is reached.
The resulting change in carrier density can be included in the band model, by bending
conduction and valence band up, locally changing their relation to EF, see Fig. 4.1(a). The
resulting theoretical barrier height ΦB in the absence of surface states can be calculated by
the Schottky-Mott rule [115] as

ΦB = Φmetal−χsemi, (4.1)
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Metal Semiconductor

(a) (b)Schottky barrier

accumulation layer

Metal Semiconductor

Ohmic contact

Figure 4.1: Schematic band profile of two semiconductor-metal interfaces forming a Schottky barrier (a), and
an Ohmic contact (b). A Schottky barrier is common for most metal-semiconductor combinations and has
diode characteristics. Due to its potential barrier, this type of contact is not suited as interface to a weak link
for gatemon qubits. (b) shows an Ohmic contact as e.g. formed by InAs due to its high density of surface
states. The blue region depicts a region of high charge carrier density. Close to the interface a so called
two-dimensional electron gas (2DEG) can form.

with the metals work function Φmetal and the ionization energy χsemi of the semiconductor.
Equation (4.1) ignores surface states and is therefore usually insufficient to describe real
metal-semiconductor junctions.

Any surface interrupts the periodic potential of the bulk semiconductor. Thus, the DOS
can differ strongly from the bulk band structure, which is defined by its periodicity.
States which are inside the band gap and forbidden inside the material can exist on the
surface [116]. This can be understood from a chemical point of view, where the surface
atoms have free (dangling) bonds, that have different energy levels compared to the bulk.
Dangling bonds are usually saturated by adsorption of external atoms or molecules, or by
surface reconstruction. A second explanation considers the lattice potential, with a sudden
boundary to vacuum. Bloch waves with an imaginary wave vector

ψ(~r) = ei(i~k·~r)u(~r) = e−~k·~ru(~r), (4.2)

which decay exponentially into the material and the vacuum, are relevant solutions at
the surface. u(~r) has the periodicity of the crystal lattice. The amount and energy of
these so-called surface states is strongly dependent on the semiconductor in question.
Surface states can change the Fermi level near the surface. A high density of surface
states causes so-called Fermi-level pinning and can even result in an inversion layer,
creating an accumulation layer or a two-dimensional electron gas (2DEG), see Fig. 4.1(b).
Surface states can be divided into intrinsic, originating from a well ordered clean surface,
and extrinsic, which include the influence of defects, adsorbates or, interfaces with other
materials [117].
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Figure 4.2: Schematic of normal and Andreev reflection on N-I and N-S interfaces in normal space (a,b) and
in an energy band diagram (c). In this conversion process, which is treated as scattering, a normal current is
converted into a current of Cooper pairs. The incident electron is retro-reflected (anti-parallel to its incoming
vector) as a hole. The electron and hole depicted here have the same spin, because the spin of a hole actually
denotes the absence of this spin.

Indium arsenide (InAs) is a III–V semiconductor, which exhibits a surface accumulation
layer [118], increasing the tendency to form Ohmic (linear current-voltage characteristic)
contacts with metals [86, 119, 120]. The schematic band profile of such a contact is shown
in Fig. 4.1(b), it is a precondition for transparent contacts with possible application in
gatemon qubits (see Sec. 2.8.2). Surface properties are especially important for nanowires
(NWs), due to the high surface to volume ratio.
Besides forming an Ohmic contact with aluminum and niobium, InAs is chemically stable,
and nanowires can be grown defect free by molecular beam epitaxy (MBE). Further, it was
shown by Krogstrup et al. [121], that a domain-matched aluminum layer can be grown in
situ on InAs nanowires, strongly increasing transparency and proximity effect (explained
in the following). These properties render InAs the material of choice for weak links in
gatemon qubits.

The proximity effect was first observed by R. Holm and W. Meissner [83, 122] in 1932. It
describes the effect at junctions between a superconductor (S) and a normal (N) conductor,
where the normal conductor inherits superconducting properties across small distances (on
the order of the coherence length ξ ). The critical temperature Tc of the superconductor is
usually reduced close to the contact. The proximity effect (as well as the Josephson effect)
can be understood in terms of Andreev reflections (AR) [123, 124].

In a normal conductor, charge transport is performed by individual electrons with energies
in close proximity to the Fermi energy. These electrons can not enter a superconductor if
their energy is within ∆ of the Fermi energy. If we consider charge transport across a S-N
boundary, it can be described as a scattering process. To satisfy charge conservation when
creating a Cooper pair, a hole needs to be created as well, moving in the opposite direction
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N SS

ABS

(a) (b)

Figure 4.3: Energy spectrum and schematic of current flow by Andreev bound states (ABS). The phase
dependent energy spectrum for different values of transmission probability τN is shown in (a). The two branches
|+〉 and |−〉 (red and green), correspond to an effective current in different directions related to the phase
difference. (b) depicts a sketch of coherent current flow through an S-N-S configuration by successive Andreev
reflection, representing an ABS.

as the incoming electron [125]. This way, an effective charge of 2e is transferred for every
AR, see Fig. 4.2(b,c). This type of reflection reverses all components of the incident vector
and is called retro-reflection.
This reflection is phase-conserving, a reflected hole possesses information about the
phase of the incident electron, the phase φ of the superconductor, and obtains an energy
dependent phase shift of arccos(E/∆). If a weak link between two superconductors is
shorter than the coherence length, a so-called Andreev bound state (ABS), restricted by
the energy gap on both sides can emerge, see Fig. 4.3(b). A Josephson junction can be
considered as two superconductors connected by a weak link with a single conduction
channel of transmission probability τN. In this case, its coupling can be explained by a
single pair of ABS [123, 124] with energy

EN±(φ ,τN) =±∆

√
1− τN sin2 φ

2
. (4.3)

φ is the phase difference between the two superconductors, see Fig. 4.3(a) for a plot of the
functional dependence for different transmission probabilities. For energies deep inside the
superconducting gap, ABS are localized in the weak link, as indicated by Fig. 4.3(b).

Charge and phase are conjugate variables, hence the current across the nanowire for every
occupied ABS can be calculated, using the canonical relation [126]

IABS =
2e
h̄

dF
dφ

=
2e
h̄

dE±
dφ

, (4.4)
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with the free energy F . Plugging in the energy for a discrete bound state (|+〉 and |−〉),
Eq. (4.3), we get the currents

I|+〉ABS =
e∆

2h̄
τ sinφ√

1− τ sin2
φ/2

I|−〉ABS =−e∆

2h̄
τ sinφ√

1− τ sin2
φ/2

.

(4.5)

Apparently, these currents flow in opposite directions, as is indicated in Fig. 4.3(a). At
zero temperature, only the lower state |−〉 is occupied, but for any finite temperature,
the current flow consists of contributions from both levels. For longer junctions, the
amount of states increases even further. If we consider the Fermi-Dirac distribution
f (E) = [1+ exp(E/kBT )]−1 between the states, the total current is changed by a factor of
[ f (E−)− f (E+)] to

IABS =
e∆

2h̄
τ sinφ√

1− τ sin2
φ/2

tanh
(

∆

2kBT

√
1− τ sin2

φ/2
)
. (4.6)

Considering the normal state conductance of the contact GN, which can be described by the
Landauer formula as a sum over all transmission channels with transmission coefficient τi

GN =
2e2

h

N

∑
i=1

τi. (4.7)

If we describe the normal region of the weak link as a quantum point contact, with τi = 1
for all channels up to N, the total current is

I(φ ) = GN
π∆

e
tanh

(
∆

2kBT
cos(φ/2)

)
. (4.8)

However, for a tunnel junction with τi � 1, the current transferred by ABS, given in
Eq. (4.6) can be approximated to

I(φ ) =
e∆

2h̄

N

∑
i=1

τi sin(φ ) tanh
(

∆

2kBT

)
. (4.9)

This can also be expressed as the Ambegaokar-Baratoff formula [127]

IcRN =
π∆

2e
tanh

(
∆

2kBT

)
, (4.10)

with the normal state resistance RN, and the critical current Ic, defined as the maximum
supercurrent across the junction (sin(φ ) = 1). Considering Eq. (4.10), we can interpret
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the voltage-gate tuning of the critical current as the effect of changing the normal state
resistance RN of the semiconductor weak link.

In a short junction (L < ξ ), the supercurrent is transmitted by discrete ABS. With a
junction length of approximately 100nm, we may approach the short junction regime,
depending on the purity of our samples [87]. The effective junction length also depends
on the path of the charge carriers. In our case, the accumulation layer is on the surface of
the NW and produces a cylindrical volume with a high DOS. Helical paths may have a
significantly increased length, so the effective junction length is not well defined. Further,
different sub-bands inside the accumulation layer may have different ABS, so the measured
properties can differ significantly from our basic theoretical model.

For our gatemon design we use InAs nanowires, which are coated with aluminum on one
side, we call this half shell. For sufficiently transparent contacts, an applied gate voltage Vg

changes the Josephson energy EJ in two ways. A gate voltage changes the Fermi energy,
directly modifying the number of transmission channels [128]. Further, the transmission
probability τN of existing channels is changed [89, 129]. This variation in the spectrum of
ABS is directly connected to the induced change in coherence length.

4.2 Sample Fabrication

Most of the fabrication for the gatemon samples was realized in the cleanroom facilities of
our collaborators at Jülich Research Centre by Patrick Zellekens. In the following, a short
description of the fabrication process is given.

In a first step, the InAs nanowires with a diameter of approximately 90nm are grown. This
can be achieved by vapor-liquid-solid growth [130], using a gold droplet as catalyst, or
self-catalyzed by selective-area MBE. We use the latter method, where the NWs grow out
of holes in a pre-patterned silicon oxide (SiO2) mask on a Si(111) substrate. Figure 4.4 (a)
shows a square of InAs NWs, grown in this manner. While still on the substrate, a half shell
of aluminum (Al) is deposited onto the nanowires, to increase the contact transparency.
This is done via MBE to ensure epitaxial growth and reduce stress-induced surface defects.
The junction is later defined by etching away a small part of the Al shell.

Prior to positioning of the NWs, all CPW structures (see Sec. 3.1.1), including the
transmission line, resonators, gates and ground plane are structured. We use intrinsic
silicon(100) with a bulk resistivity of ρ > 80kΩ cm at room temperature. In this electron-
beam lithography (EBL) process, transmission line and resonators are structured by a
lift-off process from 90nm TiN. The bottom gate electrodes are made of a stack of 10nm
titanium (Ti) and platinum (Pt), respectively, while the longer gate lines and bond pads are
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(a) (b)

Gate

Qubit capacitance

Figure 4.4: (a) Scanning electron micrograph of InAs NWs grown in a square pattern. The picture (b) was
generated by an atomic force microscope (AFM) and shows the area where the nanowire is placed in a gatemon
qubit. AFM microscopy was used to calibrate the exact height of the deposited films and the etch rate of the
aluminum half shell around the NWs. The height of the metal film representing the qubit capacitance was
25nm in this test.

30nm Ti and 130nm Pt. The Ti layers are needed as adhesion enhancement. The complete
process parameters can be found in appendix C.

In the next step, the NWs have to be transferred onto the chip. This is achieved by a
variation of the micro manipulation procedure, developed by MØlhaven et al. [131]. To
position the NWs, an etched tungsten (W) tip is used and coated with a sheet of indium (In)
to optimize its adhesion properties. The positioning is supported by a scanning electron
microscope (SEM), for visual feedback, and guided by markers deposited during gate
deposition. An example of this positioning process is shown in Fig. 4.5(f), showing a
false-colored picture from the perspective of the guiding SEM. After positioning, the NW
are held in place by van der Waals forces. These are strong enough, to fix the NW during
spin coating and argon plasma cleaning. For side gates, the absolute position of the NW
with respect to the gate electrode may vary from sample to sample on the order of several
hundred nanometers. This changes the field strength at the NW for a given gate voltage Vg

and thus, the effectiveness of the gate varies between samples. In the newer bottom gate
design, the spacing between gate and NW is defined by the dielectric (HfO2) layer, as
depicted in Fig. 4.5(a-d). The necessary gate voltages could be lowered roughly by a factor
of 10, using bottom gates (see Sec. 6.2).
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Figure 4.5: Simplified sketch of the fabrication procedure. (a) The gate electrode (Ti/Pt) is produced by EBL.
(b) 15nm of HfO2 dielectric is deposited onto the sample, while the indium coated tungsten tip is used to
handle the NW. (c) The NW is positioned across the gate, thereafter strong adhesive forces ensure its position
to stay fixed. (d) In a next EBL step, the superconducting leads are structured. An SEM picture of a contacted
NW to visualize this step is shown in (f), the leads are aluminum in this case and appear transparent. (e) shows
the view of the guiding SEM while positioning a NW. The picture is false-colored for visibility. The tip with an
attached NW, the gate structure, and positioning markers can be seen in this test.

The following steps are used to contact the NW by the qubit capacitance and to define the
weak link:

1. Spin coat with a single layer of PMMA 950K at 5000rpm for 50 s

2. Bake for 7 minutes at 150 ◦C

3. Ebeam lithography of the qubit design

4. Development with IPA:MIBK 2:1

5. Cleaning with Ar for 80 s

6. Deposition of 80 nm of NbTi

7. Liftoff with heated NMP for 2 h at 50 ◦C

8. Cleaning in ACE and IPA
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9. Repeat steps 1 and 2

10. Ebeam lithography of the junction section

11. Development with IPA:MIBK 2:1

12. Etch of the Al shell in Transene-D1 for 15 s (15 nm thickness) at 60 ◦C, stop etch in
warm DI water for 30 s, clean in DI water for 30 s at room temperature

13. Liftoff with heated NMP for 2 h at 50 ◦C

The junctions fabricated in this fashion are approximately 110 nm long, mainly limited by
the lateral etching of Transene-D. In a new technique, which is under development, we use
one NW as a mask for a second one during aluminum deposition. This removes the etching
process and ensures well defined and reproducible junction width. This way, junctions of
40 nm can be fabricated, limited by the diameter of the mask NW. A thorough description
of the fabrication process can be found in the PhD thesis of P. Zellekens [132].

1 https://transene.com/aluminum/
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Due to their very nature, qubits need to be shielded from the noisy laboratory environment.
More precisely this means that no unwanted interactions of the quantum system in question
with the environment may change the quantum state prior to measurement. For solid-state
qubits with transition frequencies on the order of 1− 20GHz, the temperature of the
sample needs to be low enough to render thermally induced state transitions unlikely
on the timescale of single experiments. Hence the need for millikelvin temperatures. In
chapter 3, the interaction between resonator and qubit is presented. Here, we adapt these
considerations to built a circuit containing gatemon qubits, which are coupled to readout
resonators and a transmission line. Further, the sample has to be electromagnetically
shielded and the measurement electronics have to provide a noise level low enough not
to affect the quantum state to be measured. In the following the sample design, and
the measurement setup, namely the microwave electronics and the working principle of
dilution refrigerators, are described.

5.1 Cryogenic Setup

To operate a dilution refrigerator manually, a thorough understanding of the working
principle is necessary. The presented measurements are mostly carried out in two kinds of
3He/4He dilution refrigerators, so-called ’wet’ or ’dry’. Here ’wet’ means that cryogenic
liquids, namely nitrogen and helium provide the primary cooling by evaporation. Thus,
these liquids have to be refilled repeatedly from the outside. In ’dry’ or cryogen-free
cryostats, the working gas is precooled by a compressor-powered pulse-tube refrigerator
and a Joule-Thomson cooler. The advantage of wet systems are no moving parts near
the low-temperature section and therefore less vibrations during operation. For fast test
measurements at 4.2 K, so-called dip-sticks are used, which are sample holders that can be
directly inserted into a dewar of liquid helium.

The basic working principle of the 3He/4He mixture is the same for both types, based on
the heat of mixing of the two Helium isotopes, as depicted in Figure 5.1. The cryostat
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reaches its base temperature of about 10− 20mK in several steps from top to bottom.
The working gas is a mixture of the two helium isotopes 3He and 4He. It undergoes a
spontaneous phase transition into a 3He-rich, and a 3He-poor phase, called concentrated
and dilute phase respectively when cooled below approximately 870mK. The circulated
part is almost pure 3He, because of its higher partial pressure. The helium mixture follows
a closed cycle depicted in Figure 5.1.

After purification by passing through cold traps filled with liquid Nitrogen at 77K and
liquid Helium at 4.2K (not shown in Fig. 5.1), the 3He enters the cryostat at a pressure of
about 500mbar. In contact with the 1K bath, the gas is precooled and liquefied at about
1.5K, removing the heat of condensation. Subsequently, it enters the main impedance and
a heat exchanger in thermal contact with the still, cooling it to about 600mK. Thereafter
it passes through the secondary impedance and a counterflow heat exchanger, cooling it
further by the upward flow of 3He from the base plate.

Entering the mixing chamber, the pure 3He is added above the phase boundary separating
the concentrated phase of almost pure 3He and the dilute phase (93.4% 4He and 6.6% 3He).
Due to its much higher partial pressure at 600mK, the gas evaporated in the still is almost
pure 3He. This shifts the ratio of isotopes in the diluted phase away from equilibrium,
creating an osmotic pressure. The resulting endothermic dilution of 3He passing through
the phase boundary causes the desired cooling of the mixing chamber.

The rate of 3He evaporation in the still depends on its temperature. Therefore it is possible
to increase the cooling power by heating the still and thus increase the flow of 3He through
the phase boundary. After the still, the gas exits the cryostat and enters the 3He-Pump, after
which the cycle starts again. To reduce heat exchange by thermal radiation, aluminized
polyester foil interleaved with polyester, so-called "superinsulation foil" is wrapped around
all internal stages, except the base. Our cryostat was thermally stable within ∆T ≤ 1mK at
base temperatures of 15 to 30mK.

Faster cooldown-cycle times can be achieved by adiabatic demagnetization refrigerators
(ADR) or dipstick-style refrigerators. The latter have been used for quick test measurements.
ADR cryostats usually work in cycles and make use of the magnetocaloric effect as
secondary cooling. Magnetization of a magnetocaloric substance reduces its entropy and
heat capacity by aligning its magnetic dipoles. Energy conservation causes the substance
to heat up. This heat is removed by contact with the primary coolant, e.g. a pulse tube
cryocooler. Subsequent demagnetization in contact with the sample increases the entropy
of the magnetic dipoles and reduces the temperature, effectively cooling the sample. The
alternating thermal contact is realized by heat switches. Once the temperatures of sample
and coolant equalize, the cycle is repeated.
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DUT

StillHeat exchanger
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Figure 5.1: Schematic diagram of a 3He/4He dilution refrigerator, as used in the presented experiments (except
the outer vacuum jacket). Temperatures well below thermal excitation of the examined qubit are a precondition
for qubit measurements. The base temperature below 20 mK is ensured by endothermic dilution of 3He passing
through a phase boundary in the mixing chamber. Samples (DUT) are in thermal contact with the mixing
chamber. 3He is continuously cycled through the cryostat. A description of the complete cooling cycle can be
found in the text.
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5.2 Microwave Setup and Measurement Technique

The time resolution necessary to characterize energy relaxation and dephasing are set by
the qubits’ parameters and are usually in the microsecond range. However, the possible
gate times for the discussed samples are tens of nanoseconds. Thus, the used electronics
need a time resolution according to the correct sampling of the shortest pulses. In the
following, the electronics used for spectroscopic and time resolved analysis of the samples
are discussed.
In the previous section, the considerable efforts to ensure a sufficiently cold environment
for solid-state qubits are depicted. Besides the thermal radiation, the electromagnetic
environment of the microwave signal chain constitutes a large part of the dissipative bath
discussed in 2.3. The noise level at the sample needs to be low enough to perform qubit
measurements and the conditions for dispersive readout have to be met (see Sec. 3.2.2).

5.2.1 Cryogenic Signal Chain

Considering the bandwidth of a typical readout resonator to be on the order of 10MHz, the
noise power of room-temperature electronics in this band is about Pn = 4 ·10−14 W. For
comparison, the signal of a typical readout resonator is on the order of

Psig = h̄ωrκ ≈ 1 ·10−20 W, (5.1)

in the single photon regime. Without attenuation, the noise power of the room temperature
impedance is more than five orders of magnitude larger than the signal of a typical
measurement. Our microwave setup needs to reduce the effect of room-temperature
electronics on the sample in order to observe coherent quantum states.

Throughout all experiments, 50Ω impedance, coaxial microwave cables are used. Their
material is selected according to the particular position, and is generally a trade-off between
loss, thermal conductivity and mechanical properties like bending radius or thermal
expansion. Between different temperature-stages, stainless steel wires are implemented,
which have a low thermal conductivity but also increased loss. This is not a problem,
as the thermal noise inherent to any conductor at room temperature needs to be heavily
attenuated in order to enable single photon experiments. The power spectral density of
Johnson–Nyquist noise for a resistor R at temperature T is [133]〈

v2
T
〉
= 4kBT R (5.2)

with the mean squared noise voltage per hertz
〈
v2

T
〉
/
√

Hz. The related noise power in the
frequency bandwidth ∆ f is

Pn = kBT ∆ f . (5.3)
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Figure 5.2: Schematic of the signal wiring inside the dilution refrigerator. To the right, a photograph of the
opened cryostat is shown, dotted lines connect the thermal stages in the sketch with its real counterparts.
Following the signal path from the input port "In", the microwave signal is repeatedly attenuated to reduce
thermal noise, the overall cable loss is about 10dB. Each sample has its individual input line, for clarity only
one is drawn completely. After passing through the respective sample "DUT", a microwave switch "SW"
enables different samples to be measured using the same amplifier line. Two circulators are used to isolate the
sample from backwards radiation of the HEMT amplifier "H". A band-pass filter "BP" is used to suppress
noise outside the amplifier bandwidth, usually between 4 and 16GHz.

To account for thermal noise, the signal to the sample is repeatedly attenuated with resistors
at ever lower temperatures as is shown in Fig. 5.2. Every attenuator of 20dB dissipates
99% of the incoming signal. Thus, the first attenuator dissipates the largest amount of heat.
It is installed at 4.2K, because this stage is cooled by liquid helium and can dissipate high
thermal loads. It is important to keep the load on every stage well below the respective
cooling power.

The attenuation is also beneficial to the signal-to-noise (SNR) ratio of the incoming
signal, as the room temperature electronics can not easily reduce its own thermal noise,
but an increase in signal strength is feasible. This stronger signal is damped by the cold
attenuators, equally reducing the signal and the thermal noise, while adding thermal noise
of its own temperature. For ideal components the resulting noise temperature Tn seen by
the sample is only slightly higher than the base temperature TBase = 15mK

Tn = 15mK+50mK ·A1 +4.2K ·A1G2 +300K ·A1A2A3 = 16.2mK (5.4)

with the attenuation factors A1,2,3 =−20dB = 1/100. For real attenuators, the thermaliza-
tion of the electronic bath is difficult at millikelvin temperatures, since the electron-phonon
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scattering scales with T 5 for small temperatures well below the Debeye temperature
T � ΘD [134]. The number of thermal noise photons per signal photon at the sample is
still below 0.002 for our setup [135].

For an amplifier chain, the equivalent noise temperature is given by Friis’ formula [136]

TSig = T1 +
T2

G1
+

T3

G1 ·G2
+ ... (5.5)

if the gain of the first stage G1 is sufficiently high, the first amplifier dominates the noise
temperature. This is the reason why the first amplifier usually has the strongest impact
on the signal, and quantum limited amplifiers [137] like Josephson parametric amplifiers
should always be the first amplifier in the chain. In our case, the first amplifiers are
high-electron-mobility transistor (HEMT) amplifiers1 with gains of G1 ≈ 40dB and an
equivalent noise temperature of 2–6K, denoted "H" in figure 5.2. Due to the large gain, the
equivalent noise temperature of the signal chain is approximately the noise temperature of
the respective HEMT. For a typical noise temperature on the order of 10K, the SNR in the
single photon regime is on the order of 0.1, ten noise photons for any signal photon. A
band-pass filter "BP" protects the HEMT from DC-voltage and noise outside its usable
bandwidth, usually between 4 and 16GHz. As any attenuation of the signal emitted from
the sample erases information, superconducting coaxial wires are implemented between
base and HEMT. These provide low loss and low thermal conductivity. A microwave
switch2 "SW" enables different samples to be measured, by connecting them to the same
amplifier line.

5.2.2 Spectroscopy and Time-Domain Setup

Generally, we distinguish spectroscopic and time-domain measurements, because of the
specific demands on the electronics. The spectroscopic setup enables to extract the
steady-state response of the sample with respect to microwave frequency, microwave
power, gate voltage, or the parameters of a second microwave tone. The time-domain setup
allows time-resolved measurement of the qubit state.

The room temperature setup used in this work is depicted in Fig. 5.3. Two possible
arrangements for either spectroscopy (red box) or time-resolved measurements (gray
boxes) are possible. Components framed by the green box are common to both setups.

1 Mainly two models of amplifiers by the brand "Low Noise Factory" are used: "LNF-LNC4_16A s/n 013B"
and "LNF-LNC4_8C s/n 200A", see www.lownoisefactory.com

2 We use two microwave switches, one 4-port (Radiall r591-762-400) and one 2-port (Radiall r572-432-000),
see www.radiall.com
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Figure 5.3: Schematic of the microwave setups at room temperature. Two possible signal paths for either
spectroscopy (red box) or time domain (gray boxes) experiments are depicted. The components used in both
setups are drawn in the green box on the right. For spectroscopy, the amplitude and phase of the signal passing
through the sample is directly measured by a vector network analyzer (VNA). In this setup, the steady-state
response of the sample with respect to microwave frequency, microwave power, gate voltage, or the parameters
of a second microwave tone can be measured. For time-resolved measurements, readout and manipulation
tones are modulated in IQ mixers via frequency conversion. The local oscillators (LO1 and LO2) are in the
GHz-range, close to the resonator or qubit frequency, respectively. Digital-to-analog converters (DAC) provide
the appropriate quadrature components in the MHz-range, also called baseband, to produce the desired pulse
shape. All phase-sensitive components are phase-locked by a common 10MHz Rubidium clock. The cryostat is
galvanically isolated from the microwave equipment by DC-blocks, while the DC gate is battery-powered and
connected by an optical fiber.
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Spectroscopic measurements are performed using a conventional vector network analyzer
(VNA), which can derive the complex scattering matrix. A microwave source3 provides
a secondary tone. Both signals are combined by a directional coupler, which selectively
attenuates the VNA signal. This reduction of the readout signal compared to manipulation
is needed, because the signal to the qubit is filtered by the resonator. Therefore the
manipulation tone, which is off-resonant, needs to have a larger amplitude. Due to its higher
measurement speed and dynamic range, the spectroscopy setup is typically used for sample
characterization except for time-resolved measurements. The cryostat is galvanically
isolated by DC-blocks from all microwave parts powered by mains supply. The voltage
source "VS" for the DC gate and the power supply for the 26dB room temperature
amplifiers are isolated and grounded to the cryostat.

Time domain measurements are realized using a heterodyning technique. This means the
signal is generated by a mixer, modulating a base band signal (LO), close to the desired
frequency (ωq or ωr), with an envelope at lower frequency. The envelope is generated
by fast digital-to-analog converters4 (DAC), which generate the in-phase "I" and the
quadrature "Q" component of the manipulation or readout pulses in the respective baseband
of 30−50MHz. IQ mixers are driven as single-sideband modulators and mix these signals
with the constant high frequency output of microwave sources called local oscillator "LO1"
and "LO2". The frequencies are such, that the signal gets up-converted to the resonator or
qubit frequencies

ωDAC +ωLO1 = ωr and ωDAC +ωLO2 = ωq. (5.6)

The state of the qubit is encoded in the frequency shift of the readout resonator and thus
in the amplitude and phase of the signal at ωr. To extract this information, the returning
signal gets down-converted with the same local oscillator used for the up-conversion ωLO2,
yielding the demodulated baseband signal. After low pass filtering to suppress leakage of
the carrier frequency and further amplification, the signal is digitized by an analog-to-digital
(ADC) converter card with a sampling rate of 500MHz in the measurement PC. A Fourier
transformation of the incoming signal for both quadratures gives the complex scattering
parameter and in the case of dispersive readout, the state of the qubit. Phase stability
in time and between components is maintained by a common 10MHz reference clock5.
Due to the poor signal-to-noise ratio (SNR), averaging of usually between 200 to 1000
single traces directly on the ADC-card is necessary to yield a sufficient signal after Fourier
transformation. To extract coherence parameters for instance, traces containing several

3 MWSRC
4 For qubit manipulation we use a 10bit, 6GS/s Tektronix AWG7062B AWG, for readout a 14bit 1.25GS/s

Tarbor WX1284C AWG
5 The frequency standard used is a FS725 from Stanford Research Systems, see https://www.thinksrs.com
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points are averaged during post-processing to ensure confident fits. The exact procedure is
explained in section 5.2.3.

Heterodyne readout combines several advantages compared to for instance fast switching
of the microwave sources at qubit and resonator frequency. Due to the mixing, the leakage
of microwave power into the system in times of free evolution is extremely low, as the
microwaves are detuned from the qubit or resonator frequency. Further, for multiple readout
resonators, a single microwave source is sufficient, as all frequencies within the bandwidth
of the DAC can be generated in a single pulse. For readout, pulses between 200ns and
400ns are used.

5.2.3 Interleaved Measurements

The majority of literature on qubits treats their coherence parameters as constants varying
between devices and cooldowns, dependent on variable external parameters like probe
power or temperature. During the course of this work however, it became evident,
that intrinsic temporal fluctuations of qubit parameters are omnipresent. In low-SNR
experiments, fast fluctuations may be masked due to the needed averaging described in the
previous section. When qubit parameters are measured consecutively, inconsistencies as
for instance T R

2 > 2T1 are possible due to fluctuations during the measurement sequence.
In this work, a time-multiplexed pulse sequence pattern has been developed and employed,
which allowed us to acquire all qubit parameters simultaneously. One large benefit of this
technique is that the averaging can be defined during analysis (down to the threshold set by
the repetition rate), to match the intended time resolution and SNR.

In Fig. 5.4, a sketch of the pulse sequence pattern (a) and the corresponding signal (b) are
depicted. Here the sequence is as follows: single points for energy relaxation T1, Ramsey
dephasing T R

2 , and spin echo T E
2 coherence times are taken for every value of the free

evolution time ∆t, starting with ∆t = 0. In this way, all three curves in (b) are formed
simultaneously from left to right. After sorting the points T1, T R

2 , T E
2 coherence times, as

well as the Ramsey detuning frequency ∆ωq can be extracted from fits to the respective
functions. The expected state evolution is

P |1〉(t) ∝ A0 e−∆t/T1 +B, (5.7)

P |1〉(t) ∝ 0.5A0

(
1− e−∆t/T E

2

)
+B, (5.8)

P |1〉(t) ∝ 0.5A0 cos
(
2π∆ωq∆t

) (
1− e−∆t/T2

)
+B, (5.9)

for energy relaxation, spin echo, and Ramsey measurements, respectively. Here, A0 is the
initial envelope amplitude, and B is the final population, including thermal population.
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Figure 5.4: (a) Measurement pattern: Single pulse sequences of different measurements, here T1, T R
2 and T E

2 ,
are interleaved, resulting in a simultaneous data acquisition. The time ∆t is the free evolution. The red line
depicts the readout labeled "R". The ratio between the number of pulses is usually not 1:1:1, as exponential
functions require less points for accurate fitting, than a sinusoidal. On the right, (b) shows the corresponding
ideal traces with fits for the functions given in equations (5.7) - (5.9). The fit parameters allow extraction of T1

(red), T R
2 and the Ramsey detuning ∆ωq (green) and T E

2 (cyan).

In this scheme the averaging is done per trace rather than per point, such that the pulse
sequence shown in Fig. 5.4(a) is repeated until the intended minimal SNR is reached.
Here we use that the our dephasing noise is short-correlated (e.g. white). This is well
supported by almost perfect exponential decay in Ramsey measurements, see Fig. 5.5
for an exemplary trace. This is interesting, because we show in Sec. 6.1.2, that the low
frequency part of our frequency noise spectrum resembles 1/ f . The mean-squared phase
noise

〈
δφ 2(t)

〉
depends on the spectral noise density Sλ (ω) for the noise source λ as

〈
δφ

2(t)
〉
=

(
dωq

dλ

)2 ∫ ∞

0
dωSλ (ω)W (ω, t). (5.10)

Here W (ω, t) is a weight function, to include the sensitivity of the related experiment to
different parts of the frequency spectrum. dωq/dλ describes the qubits sensitivity to the
noise source λ . In the case of a Ramsey sequence, the weight function is

WR(ω, t) =
sin2(1/2ω t)
(1/2ω)2 . (5.11)

This renders a Ramsey measurement sensitive, to the full noise spectrum. For large noise
amplitude at low frequencies (ω ≈ 0), a non-exponential decay is expected. This kind
of noise corresponds to a slow drift in ωq, leading to averaging over several different
frequencies in a Ramsey measurement. For long-term measurements on the order of
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Figure 5.5: Exemplary Ramsey measurement, fitted with Eq. 5.9. A single exponential fits the envelope
accurately. This indicates short correlated phase noise as dominant noise source for dephasing.

days, we see only small drifts in qubit frequency, see e.g. appendix Fig. A.5(a). These
observations indicate that the relative amplitude of low frequency fluctuations seems to be
negligible for the qubit dephasing in our case.

From the fit results, the derived values of the exact qubit frequency ωq and the pure
dephasing Tφ can be calculated. Theoretically it would be possible, to continue the
sequence for the complete measurement duration and divide the resulting data as needed in
post-processing. However, this approach is very demanding on the speed, stability and data
handling of the measurement back-end and thus, not practical for our hardware. A newer
version of the presented time-domain setup (see Sec. 5.2.2), based on a field-programmable
gate array (FPGA) could be used in such a way.

Results of an exemplary measurement using the presented sequence, can be seen in chapter
6 (Fig. 6.1). It becomes apparent that single coherence times are an incomplete metric for
the qubit’s performance. The variance and Allan variance [21, 138] could for example be
used, to describe the spread in relaxation and dephasing rates, as well as the frequency
stability of a specific qubit.
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5.3 Sample Design

This work discusses the coherence and parameter fluctuations in superconducting qubits, a
detailed discussion follows in chapter 6. The majority of measurements have been executed
using a non-tunable transmon qubit. The related sample was fabricated in the group of
David P. Pappas at the NIST institute in Boulder, Colorado. The comparison of different
qubit types or fabrication techniques regarding parameter stability could yield new insights
on the factors limiting many-qubit processors. Hence, one part of my work was dedicated
to build a qubit based on a semiconducting nanowire junction also called "gatemon" (see
section 2.8.2). This project was a collaboration with the Forschungszentrum Jülich (FZJ),
where the surface structuring, positioning, and contacting of the nanowire was carried
out by Patrick Zellekens. Further details about these processes can be found in his PhD
thesis [132]. The chip and sample box design for the gatemon qubit is part of my work and
is discussed in the following.

5.3.1 Circuit Design

As discussed in chapter 3, the circuit design needs to meet the following criteria:

• A feedline matched to the characteristic line impedance Z0 to avoid reflections

• Resonator frequencies that enable dispersive readout

• No parasitic modes close to the resonator or qubit frequencies to minimize Purcell
loss

• Sufficient isolation of different qubits to avoid crosstalk

• Coupling capacitances between feedline, resonator, and qubit that allow dispersive
readout of the qubit state without dominating its radiative loss

• The possibility to apply an electrostatic gate to the junction, without limiting the
qubit lifetime by Purcell loss

• A shunt capacitance resulting in the desired qubit frequency and EJ/EC ratio for the
given range of critical currents Ic

As shown in Sec. 3.2, the dispersive shift is given by χ = g2/∆, while the Purcell loss
rate in the dispersive limit is given by Γκ = κL g2/∆2. Good starting points for the design
are the intended frequencies of qubit and resonator pairs. In this case, we had to account
for chip size restrictions of approximately 6×6mm and the bandwidth of our microwave
setup from 4− 8GHz and 8− 12GHz. The chosen frequency range of the resonators is
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Figure 5.6: False-colored micrographs of a sample chip (silicon substrate), containing four resonators and
gatemon qubits. A laser scanning microscope picture of the whole chip (6×6mm) can be seen on top, with the
qubit capacitances not yet fabricated. To clarify the orientation and size, the layout of one qubit was artificially
added in blue. On the bottom, a zoomed in view of a finished chip taken with a scanning electron microscope
is shown. The inset depicts a further zoom-in, where the InAs nanowire junction and the side-gate can be
seen. So-called "bottom gates", extending below the nanowire have also been used. For this chip, three of the
qubits have electric gates (green), one was left without gate structure, to investigate the amount of Purcell loss
caused by the gate. The distances denoted "a, b, c" are used to tune the qubit-resonator coupling, the qubit’s
capacitance, and the critical current, respectively.
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Figure 5.7: Simulated response |S21| of a single readout resonator coupled to the qubit capacitance. The
different curves correspond to a parameter sweep of the ideal junction inductance Lsim, rendering the system
harmonic. The bare resonator frequency is shown as gray dashed line. For clarity, only four exemplary curves
have distinct colors, the extracted splitting is approximately 130MHz. The quality factors and hence the depth
of the curves is not simulated with high accuracy, and is subject to numerical variation. In this simulation,
however only the resonances’ frequencies are relevant.

between 8GHz and 11GHz. In this way, we could fit four qubits on one chip while still
maintaining 0.5mm of ground plane between resonator strips, to reduce crosstalk.

The design is composed of a feedline across the length of the chip, with two launcher
pads on each end. The four readout resonators are capacitively coupled by their ends
in close proximity to the feedline and the qubit, respectively. A picture of the complete
chip is shown in Fig. 5.6. The coupling constant g is defined by the capacitance between
the qubit conductor and the readout resonator, which can be defined by the gap between
the structures ("a" in Fig. 5.6). To find the optimal geometry and distance, microwave
simulations with the software package Sonnet [139] were performed.

By reproducing the layout of a single resonator coupled to feedline and qubit, the coupling
can be realistically simulated, including an ideal inductance instead of the junction. If
the value of this inductance Lsim is varied, an avoided crossing in the resonator response
can be produced. The response curves for several values of inductance ranging from
Lsim = 4.3-4.9nH can be seen in Fig. 5.7. The smallest distance between the split response
corresponds to twice the coupling rate. A distance of 15µm corresponds to the intended
coupling rate of g = 65MHz.

To limit the Purcell effect but still ensure a strong dispersive shift, the coupling factor was
designed to be g = 65MHz. For a detuning of 1GHz, and a strongly coupled resonator of
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Qc ≈ QL = 1000, this results in a Purcell loss rate of Γκ ≈ (24µs)−1. For a slightly lower
coupling rate (QL = 5000), the Purcell loss is Γκ ≈ (118µs)−1. The detuning is controlled
via the gate voltage and can be used to vary the Purcell loss or the dispersive shift, if
needed.

The coupling strength κ of the resonators to the feedline can be deduced directly from the
width of the simulated resonance dips. Feedline and resonator are CPW structures, so their
coupling is sensitive to the amount of ground plane in between. In addition, the coupling
depends linearly on the length where the resonator is parallel to the feedline. Variation in
both parameters was used to experimentally spread the coupling rate around κ ≈ 10 ·103.
In our case, the robustness of the TiN layer during liftoff set a lower limit of approximately
2µm for the thickness of the 500µm long strips of ground plane separating resonator and
feedline.

The CPW dimensions for the feedline (w = 12µm and s = 7µm) were calculated as
discussed in section 3.1.1. For the launchers, dimensions of 250×250µm are sufficient for
approximately three bond wire connections, as can be seen in Fig. B(appendix). Constant
thickness of the substrate causes the ratio between gap and center conductor to vary with
the size of the line. For the launchers the gap is w = 190µm. As a starting value, the length
lres of the readout resonators was calculated by

lres =
c
√

εeff

1
2
, (5.12)

with the effective dielectric constant εeff = 6. The kinetic inductance Lkin of the super-
conducting ∼ 90nm TiN film was evaluated after the first resonator measurements. To
that end, we reproduce the measured frequencies in a Sonnet simulation, by varying Lkin.
This resulted in a value of Lkin ≈ 1pH/�, which was used in all further simulations. The
resonators were spaced roughly 400MHz apart, corresponding to ∼ 200µm variation in
length.

A common problem in CPW structures are so-called slotline modes, where the electrical
potential on opposing parts of the ground plane are equal and opposite. In the presented
design, these modes couple inductively to the central feedline and can have larger absolute
amplitudes than the intended (quasi transverse electromagnetic) resonator modes. This
can be suppressed by connecting the ground plane across the resonators or feedline by air
bridges or bondwires. All samples have been equipped with bond wires distributed with
the simulated density to suppress slotline modes. An exemplary picture can be found in the
appendix (Fig. B).

The calculation of the shunt capacitance for the qubit was based on the estimated critical
current range of the nanowire, and the limitation to stay in the transmon regime (see
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(a) (b)

(c) (d)

(e)

Figure 5.8: Simulated response |S21| of a single readout resonator coupled to the feedline. Without connections
across the resonator, parasitic slotline modes appear. (a) shows the response with (blue) and without (red)
connections across the resonator, respectively. The slotline mode at ∼ 8.9GHz is more pronounced and causes
a shift to the intended mode at ∼ 9.3GHz. The corresponding current distribution at ∼ 8.9GHz is plotted
in (b), large currents along the ground plane indicate a slotline mode. (d) shows the same simulation with
added connections (vias) shown in (c) for clarity. The slotline mode is completely suppressed, which is
confirmed by the corresponding frequency response (a) in blue. (e) Micrograph of a four-qubit chip, glued
onto a copper-plated TMM10 sample-holder. The bond wires are used to contact the chip, and to prevent
parasitic resonances by connecting the ground plane across resonators and feedline as shown in (c). The
tapered connections on the chip-carrier are coplanar and matched to 50Ω. A zoomed out version of this image
including the sample box can be found in appendix A.1.
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Sec. 2.8.1). For a critical current tunable up to Ic = 130nA, a capacitance of C = 60fF
results in α & 3% anharmonicity and a qubit frequency tunable up to ωq/2π = 12.6GHz.
For the intended critical currents of approximately 80–100nA, these parameters correspond
to a ratio of EJ/EC = 120–150, deep in the transmon regime.
The actual qubit frequency is still dependent on the gate voltage. The chosen capacitance
enables dispersive readout and the possibility to tune the qubits in resonance with the
resonators. Designing the capacitance to the intended value was achieved analogous to
the simulation of the coupling g. Again the junction was replaced by an ideal inductor,
the simulated resonance frequency is directly dependent on the capacitance. A parameter
sweep of the distance between the inner and outer conductor of the qubit capacitance was
used to determine the distance "b" in Fig. 5.6 corresponding to C = 60fF to be 42µm.

5.3.2 Sample Box Design

The purpose of the sample housing is to allow connections to the microwave and gate
lines inside the cryostat, and to provide a clean microwave background without parasitic
resonant modes in the relevant spectral range. Several multi-purpose box designs already
existed prior to this work, but measurements and 3D simulations using the software
CST Studio [140] showed resonant modes close to 11GHz, close to the intended qubit
transitions. These resonant box-modes had to be suppressed to prevent excessive Purcell
loss. To this end, a new, smaller box was designed, see Fig. 5.9(b) for a rendering of the
CAD design.

In the older version of the sample box, one objective was to minimize the internal volume,
with the aim of increasing the frequency of the lowest supported mode. However, this
approach requires the enclosed volume to be surrounded by a continuous conductor. In
the older design, the square lid was flush with the top surface of the box and a cylinder
slightly smaller than the round cutout in the box protruded inside to minimize the volume.
This design has an undefined path for the current of the lowest (TM010) mode, due to the
stable oxide layer formed on an aluminum surface. In this case, the conductivity between
box and lid is highly dependent on the cleanliness and flatness of the surfaces, and also
on the pressure exerted by the screws, rendering the spectrum ill-defined. Contrary to its
purpose, the structure can be described as a klystron cavity [141], where an increased
capacitance between lid and box can significantly decrease the frequencies of the mode
spectrum (compared to a simple cylindrical cavity).

To create a more reproducible and defined electromagnetic environment for the sample, a
groove was added to the circular cutout, highlighted in white (arrow) in Fig. 5.9(b). The
resulting cylindrical cutout below the groove is 0.45mm smaller than the corresponding
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(a) (b)

Edge

Figure 5.9: 3D models of the sample box. (a) Microwave simulation of the ground mode, including the silicon
chip and SMA connectors on ports 1 and 2. The third connector is used for the gate and is therefore included
in the simulation with a high port impedance. The arrows depict the electric field with the amplitude encoded
in the color. The ground mode frequency is 18.5GHz and well above the relevant frequency range of roughly
8−12GHz. (b) Rendered CAD drawing of the same box, in the same orientation. A part of the lid has been
cut away so the cylindrical protrusion contacting the groove on the box (white) can be seen. When closed, the
two edges become slightly deformed and produce a galvanic contact, breaching the oxide layer formed on
aluminum parts in the atmosphere.

cylindrical protrusion of the lid. This causes the touching surface of both parts to be
deformed as the screws are tightened, breaching the surface oxide layer and producing
a reproducible conducting geometry. A simulation of the mode spectrum for the new
geometry shows the lowest mode at 18.5GHz [see Fig. 5.9(a)], which was confirmed by
spectroscopic measurements.

The second qualitative difference to the older sample boxes is a drilled hole of 1mm
diameter in the bottom of the box. It serves as a precise guide for the orientation while
gluing the chip carrier. Later, it serves as a vent for the now otherwise almost vacuum-tight
box, preventing slow leakage into the vacuum shield or condensation of air on the chip.
Electromagnetic shielding is not affected, because the hole is much smaller than the
wavelength in the relevant frequency range. The CAD model was designed using the
software Solid Edge [142] and rendered by Keyshot [143]. All sample boxes were
machined from 5754 aluminum alloy in the workshop of our institute.
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In this chapter the experimental results derived form long-term measurements of a transmon
qubit and spectroscopic analysis of gatemon samples is presented. Further, measurements
optimized for accuracy in the qubit transition frequency ωq are used to extract the
spectral density of observed frequency fluctuations. Implementing the interleaved pulse
method discussed in section 5.2.3, simultaneous measurement of the qubit’s relaxation and
dephasing rate as well as its resonance frequency is possible. This enables us to analyze the
correlations between these parameters on a time scale of the qubit’s coherence time, and
yields information about the microscopic origin of the intrinsic decoherence mechanisms
in the sample. The results are consistent with a small number of microscopic two-level
systems located at the edges of the superconducting film. Our data uniformly supports the
interacting defect model [1, 40, 144, 145], as is discussed in the following.

6.1 Parameter fluctuations in qubits

The output of every projective qubit measurement is one of two values with added noise.
To extract the probability distribution P |n〉 after a certain pulse sequence, the measurement
has to be repeated and the output needs to be averaged. This necessary repetition for
a theoretical perfect quantum system needs to be increased according to the SNR of a
real experiment. For the presented measurements with a SNR of approximately 0.1, the
minimum averaging for reliable fits was between 200 and 1000 per point. Under the
assumption of stable qubit parameters, longer averaging leads to more accurate evaluation
of its characteristic values.
However, during calibration measurements with a consecutive measurement technique,
inconsistencies between subsequent measurements were observed. In this case, T1 and
T R

2 measurements had been alternated with several minutes of averaging for every single
value. Some of the consecutive pairs violated the relaxation limitation for the dephasing
time T ∗2 ≤ 2T1, see Eq. (2.13).This observation supported the notion of fast fluctuation
qubit parameters, and motivated the development of the interleaved measurement scheme,
which was used in all following measurements.
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Figure 6.1: Exemplary long-term measurement, using the interleaved pulse method. The data taken over a
course of 19 hours displays fluctuations in T1 and T R

2 (red squares and green stars, left axis), and telegraph-like
switching of the Ramsey detuning ∆ωq (blue dots, right axis), which is a direct measure for the shift in qubit
frequency. The time resolution corresponds to 10s of averaging using the interleaved pattern presented in
section 5.2.3. For clarity, dephasing times are divided by two. Telegraphic switching in the qubit frequency as
well as sudden variations in the fluctuation dynamics (e.g. at 11.5h) can be seen. With this type of measurement
and the subsequent correlation analysis, we reveal a connection between noise at mHz frequencies and qubit
dephasing. This figure can also be found in the related publication [22].

Figure 6.1 shows the fit results of a typical long-term measurement. The Ramsey detuning
∆ωq depicted in blue dots is a direct measure for the shift in qubit frequency. The energy
relaxation time T1 is shown in red squares and the Ramsey dephasing time T R

2 in green
stars. For clarity, dephasing times are divided by two. All values are extracted from
least-squares fits to the respective functions, discussed in section 5.2.3. T1 and T R

2 show
fluctuations and a clear correlation with ∆ωq, which we evaluate in the following. The
qubit transition frequency displays telegraphic noise with multiple stationary points, which
prompts our interpretation of the data in terms of an ensemble of environmental two-level
systems (TLS) interacting with the qubit.

We interpret the presented data according to the interacting defect model, which is further
motivated by recent experiments by Meißner et al. [146], where the thermal switching
of individual TLS in AlOx Josephson junctions was measured directly. Further, spectral
diffusion of TLS was recently observed by monitoring the T1 time of a tunable transmon
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qubit by Klimov et al. [20]. Our results confirm the findings that single TLS strongly
affect qubit coherence, independent of flux noise. In the interacting TLS model, defects
may mutually interact electrically or via their response to mechanical strain [39, 40]. If
the transition energy of a particular TLS is below or close to the thermal level kB T , it
undergoes random, thermally activated state-switching. We call these two-level fluctuators
(TLF) to distinguish them from the more coherent TLS [1] with higher transition energies.
Longitudinal coupling between TLS and TLF causes telegraphic fluctuation or spectral
diffusion [147] of the TLS’ resonance frequencies. This coupling can be mediated by
mechanical strain, even for large detunings between TLS and TLF energy. The resulting
time-dependent frequency fluctuation of near-resonant TLS give rise to phase noise
of superconducting resonators [148] and may also cause the parameter fluctuations of
qubits [145], investigated here. Figure 6.3(b) illustrates the physical picture.

First evidence that TLS are a dominating decoherence mechanism for superconducting
qubits was reported by Martinis et al. [36], leading to improved qubit designs where the
number of TLS in the oxide layer is reduced by smaller tunnel junctions [149]. Moreover,
capacitive circuit components were optimized to reduce electric fields [150] and hence the
coupling to TLS. We assume the standard dipole form of qubit-TLS coupling [38, 151]

Hint,k = h̄gk σz(a+a†), (6.1)

with the the coupling strength gk between qubit and TLS number k. To express the
dynamics of the coupled system, we use the generic TLS Hamiltonian Eq. (2.16), and the
approximated transmon Hamiltonian Eq. (2.74). Transformation into the dispersive frame
yields

Hq +HTLS,k +Hint,k ≈ h̄(ωq + χkσz)a†a+

h̄
2
(ωTLS,k + χk)σz− h̄α(a†)2(a)2,

(6.2)

where χk = g2
k/∆ is the dispersive shift and the detuning between TLS k and qubit is given

by ∆ = ωTLS,k−ωq. The coupling strength gk between qubit and TLS can be estimated
from the observed fluctuation amplitude ∆ωq, assuming resonant TLS with a typical dipole
moment on the order of 1eÅ [152–154]. The related analysis is presented in detail in
section 6.1.1. In short, we find the frequency variation ranging from 5–140kHz, which
is inconsistent with the expected coupling strength of approximately 48MHz for TLS
inside the junction. By simulating the electric field distribution, we find the coupling
strength to TLS at sites closer than 20nm to capacitor edges is gk & 100kHz. Which is in
good agreement with our observations. Thus we conclude that the dominant TLS in our
experiment reside close to film edges.

To fathom the microscopic origin of the fluctuations, we analyze correlations between
all extracted parameters. The envelope of a Ramsey measurement consists of relaxation
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(d)(b)

(a)

(c)

Figure 6.2: Data gathered during a successive cooldown (identical setup) with respect to Fig. 6.1. (a) Fit
results of a long-term interleaved measurement with pronounced changes in qubit frequency of about 100kHz
(right axis) and Ramsey dephasing times consistently below 15µs (green stars, left axis) even during times
without relatively strong fluctuation (first 10h). The blue and red shaded areas of four hours respectively,
indicate timeframes with different signs for the cross-correlation between ∆ωq and Γ1, plotted in (c). (b)
shows cross-correlations of the absolute fluctuation strength |d/dt ∆ωq| and the relaxation or dephasing rates
Γ1, Γφ , and ΓE

2 of the dataset shown in (a). All curves show significant correlation at zero time delay τ ,
relating fluctuations in qubit frequency on the order of seconds to relaxation and dephasing down to the order
of microseconds. A scatterplot of Tφ versus Ramsey detuning is shown in (d), the point color indicates the
measurement time. Point clouds of different slopes can be seen, indicating positive, negative, and no correlation
within the measurement period. Figures (c) and (d) can also be found in the related publication [22].
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6.1 Parameter fluctuations in qubits

and pure dephasing Tφ , connected by Eq. (2.12). By measuring T1 and T R
2 , we can extract

the pure dephasing or the corresponding rate Γφ = 1/Tφ . The data shown in Fig. 6.2 was
taken in a later cooldown compared to Fig. 6.1 and exhibited generally larger fluctuations
and lower dephasing times without changes to the experimental setup. Scatterplots are an
intuitive way to visualize correlation in data. In Fig. 6.2(d), the corresponding scatterplot
to the raw data (a) relates the pure dephasing Tφ and the change in qubit frequency ∆ωq.
Interestingly, different types of correlation could be observed in the course of a single
measurement of 19 hours. A time interval of about 10h without obvious correlation
between Tφ and ∆ωq is followed by alternating positive and negative correlation during
times of strong frequency fluctuation1. We interpret these observations as coupling to
a single spectrally diffusing TLS, crossing the qubit frequency several times. To our
knowledge, no other interpretation is in agreement with our observations, as is discussed
in section 6.1.3. The polarity and strength of the correlations depend on the sign of the
detuning between TLS and qubit and their mutual coupling strength.

In the interpretation of the presented data, the relevant noise spectra have to be taken into
account. For Ramsey measurements, variations down to the total averaging time contribute
to the extracted dephasing. A slow drift in frequency for example, causes several sine
functions of different frequency to produce a reduced envelope when averaged. Only
the relaxation rate Γ1 and the spin-echo dephasing rate ΓE

2 have a low-frequency cutoff.
Relaxation processes become irrelevant if the rate is significantly slower than the repetition
rate or the inverse qubit relaxation time. Spin-echo is specifically designed to counteract
low frequency noise (see Sec. 2.6), the cutoff is 25kHz in our case. Consequently,
correlations of Γ1 and ΓE

2 with the fluctuation strength measured at a rate on the order of
(10s)−1 allow the conclusion of fluctuations on the order of microseconds to be correlated
to slow variations in qubit frequency.

The second mathematical tool used to analyze the connection between the observed
parameters is the cross-correlation. For two signals f (t) and g(t) it is defined as

( f ?g)(τ) =
∫

∞

−∞

f ∗(t)g(t + τ)dt, (6.3)

where f ∗(t) denotes the complex conjugate of f (t). The cross-correlation can be
understood as a measure of the similarity between the two signals f and g, dependent on
their respective temporal offset τ . The cross-correlation of two identical signals is maximal
if they completely overlap and the time-delay τ is zero. The normalized cross-correlation
between different parameters of the data shown in Fig. 6.2(a) is plotted below in (b). The

1 Please note, that the positive and negative correlated branch in Fig. 6.2(d) contain points of the respective
opposite color. The hopping between these can also be seen in the last third of the raw data.
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highest value for all of the shown pairs is at zero delay. This proofs similar behavior with
respect to the mean value, which suggests the same source of fluctuation. In this case,
it relates the absolute fluctuation strength |d/dt ∆ωq| to higher dephasing and relaxation
rates, linking slow fluctuations on the order of seconds, namely the measurement repetition
rate, to dephasing or relaxation up to the order of microseconds. The absolute fluctuation
strength |d/dt ∆ωq| is calculated as the absolute value of the frequency difference of every
data point to the previous.

The coherence time of individual high frequency TLS in AlOx was found to range from
nanoseconds to microseconds [154, 155]. Thus, for qubits with several microsecond
relaxation times like our sample, these TLS represent a relevant photon loss channel if
coupled to the qubit and close to resonance. Assuming that a single dominant TLS is
responsible for dephasing and photon loss implies that the cross-correlations ∆ωq ?Γφ

and ∆ωq ?Γ1 have the largest value and the same sign at zero delay. While this was our
typical observation, also opposing signs were encountered. To probe for possible temporary
variations in the cross-correlations, smaller windows instead of the whole data set have
been examined. Figure 6.2(c) shows the cross-correlation between qubit frequency and
relaxation rate in dashed lines corresponding to the shaded areas of the same color in (a).
The change in sign at zero delay between two timeframes of 4h points towards different
sources for dephasing and relaxation in this case. The observation can be explained by the
presence of a stable TLS ’A’ close to resonance with the qubit, increasing its relaxation,
and a second more weakly coupled TLS ’B’ which fluctuates and is mainly responsible
for dephasing. Correlations of opposite sign emerge if both TLS are above or below the
qubit frequency. In that case, diffusion of B towards the qubit frequency results in level
repulsion, detuning the qubit further from A, resulting in increased dephasing, but reduced
energy relaxation. In Fig. 6.3(b), TLS ’A’ would be located between the dark red TLS and
the blue qubit resonance.

During periods of high coherence, we observe no cross-correlation between Γ1 and | d
dt ∆ωq|

(see appendix Fig. A.5). We interpret this, as due to a bath of weakly coupled TLS limiting
Γ1, rather than a single strongly coupled TLS [156–158]. In the same measurement we still
observed some correlation of the absolute fluctuation strength with Γφ . Our explanation is
the different scaling of relaxation Γ1 ∝ g2/∆2 and dispersive shift χk ∝ g2/∆ regarding the
detuning. Thus, a TLS can be detuned far enough to still cause dephasing, but not dominate
the relaxation. This also explains the stronger fluctuations in Γφ compared to Γ1, observed
throughout our measurements.

To perform a quantitative analysis of the connection between the fluctuations in qubit
frequency and the pure dephasing time, we examine the variance in qubit frequency
associated with multiple ranges of dephasing times while the qubit frequency is relatively
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Figure 6.3: (a) Quantitative relation between slow fluctuation in qubit frequency and pure dephasing. The
scatterplot was taken while the qubit frequency was relatively stable. Under this condition the standard deviation
of the qubit frequency σ(∆ωq) can be extracted. Bins of pure dephasing times are colored in the vertical
histogram, corresponding fits to normal distributions (top panel) are colored accordingly. Lower dephasing
times correspond to larger variances in qubit frequency. The standard deviation of the violet curve is indicated
exemplarily. On the right, the extracted variances σ 2 are plotted against the corresponding mean values of pure
dephasing. A fit to the expected function Tφ ∝ 1/σ 2 is in agreement with the data. (b) Illustration how the
frequency of a single TLS near resonance with the qubit fluctuates due to its longitudinal coupling to thermally
activated TLS (so-called TLF) at energies at or below kB T (orange shaded area). Depending on the detuning
between qubit and TLS, this can cause positive or negative correlations between qubit coherence times and its
resonance frequency. This figure can also be found in the related publication [22].

stable, see Fig. 6.3(a)2. We bin the frequency shift data according to their associated pure
dephasing times, and fit the data in each bin to a Gaussian distribution. Assuming the
qubit frequency shifts to be due to random sampling of a linear function (as is the case
for small frequency shifts of a dispersively coupled TLS), the standard deviation σ of
the distributions will be proportional to the slope of this linear function. Conversely, the
pure dephasing rate Γφ in such a situation is proportional to the square of the slope of the
frequency change with the random parameter [159]. If the origin of the measured large
frequency fluctuations is the same as the one for the pure dephasing, we expect the two
slopes to be the same. In this case, for each bin in pure dephasing time we have Γφ ∝ σ 2,
which is in good agreement with our data. Relating to our physical picture (Fig. 6.3), the
same noise channel for high and low frequency noise corresponds to the effect of one
dominant TLS, coupled to a bath of TLF.

2 The absence of large jumps in frequency is necessary in order to define the variance of the distribution as a
small perturbation. The related dataset is shown in appendix Fig. A.5.
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Figure 6.4: Scatterplot of the pure dephasing time TΦ versus fluctuation strength of the data shown in Fig. 6.1.
The point color indicates the measurement time. The triangular shape in the scatterplot indicates that stronger
fluctuations in ∆ωq on the order of seconds are related to lower pure dephasing times, and was consistently
measured in all cooldowns, regardless of fluctuation strength or coherence. Fits to normal distributions for
different ranges of pure dephasing in the top panel show the increased variance in fluctuation strength at lower
pure dephasing times. The functional dependence is roughly TΦ ∝ 1/σ 2. For visibility, the outliers due to
switching which are symmetrically distributed around zero on the x-axis near ±20kHz/s are not shown.

Figure 6.4 shows the results of the same analysis for the fluctuation strength | d
dt ∆ωq|,

and data with larger fluctuations (the raw data is shown in Fig. 6.1). In order to compare
different data sets and varying frequency stability, we focus on the contribution of small
fluctuations. This is equivalent to discarding the larger jumps between metastable states,
see appendix Fig. A.5(b) for the corresponding scatterplot of qubit frequencies. In the
scatterplot of Fig. 6.4, larger jumps produce small point clouds at ±20kHz/s. By focusing
on small fluctuations, we can interpret the variation in ωq as dispersive shift. The resulting
distribution follows approximately TΦ ∝ 1/σ 2. The fit error is too large, to rule out a
different exponent. The trend towards low pure dephasing times for large variance in the
fluctuation strength however, is clearly evident.

In repeated measurements and different cooldowns, we find the qubit coherence times
to be anti-correlated with the maximum amplitude of frequency fluctuations. In our
model, this corresponds to different dispersive shifts χk due to the respective dominant
TLS. During cooldowns with persistently long relaxation and dephasing times (see
e.g./appendix Fig. A.5), this shift is low and qubit frequency fluctuations are small. If
increased interaction with a TLS leads to shorter relaxation and dephasing times, even for
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intermediate times without resolvable frequency fluctuations of the qubit, dephasing tends
to stay low. This is expected because of the higher frequency noise we can not resolve
by our sub-Hz repetition rate. Possible explanations for abrupt changes in decoherence
dynamics are slow thermalization processes in the amorphous parts, logarithmically slow
TLS relaxation [160], or background radiation.

Throughout our measurements, reduced coherence manifests itself most strongly in the
dephasing times Tφ and T R

2 rather than in T1 and spin echo T E
2 . The observed effective

reduction of dephasing by spin echo pulses suggests most of the relevant noise spectrum
to lie below the spin-echo cutoff frequency of 25kHz, in our case. This observation is in
agreement with the typical maximum fluctuation rate of thermal TLS due to phonons of
γmax

1 (T = 20mK)≈ 1.9kHz [154] in our case. Further cross-correlation analysis confirms
the relationship between the observed frequency fluctuations and dephasing in all datasets.
We conclude that the same mechanism is responsible for the qubits dephasing and slow
fluctuations of its parameters.

6.1.1 Coupling Strength and Density Estimation

Inside the qubit’s Josephson junction, the coupling rate due to interaction of the TLS’
dipole moment to the root mean square electric field of the qubits vacuum fluctuation
follows from [36]

h ·gmax = |~E||~d|=
Ū
a
|~d|, (6.4)

with the TLS’ dipole moment |~d| on the order of 1eÅ [152–154], and the RMS voltage
between the qubit electrodes Ū , which is given by

Ū =

√
h̄ωq

2Cq
≈ 3.7µV. (6.5)

The coupling strength is given by

gmax =
|~d|
a

√
h̄ωq

2Cq
≈ 50MHz, (6.6)

with the total qubit capacitance of Cq = 120fF, ωq/2π = 4.75GHz and the width of the
tunnel barrier thickness of the JJ a, corresponding to an estimated height of the oxide
barrier of 1.8nm [161]. In our experiment, the largest observed frequency fluctuations are
140kHz. As the dispersive shift scales as χ = g2/∆, this implies a detuning between qubit
and possible junction-TLS of the order of many GHz. Alternating positive and negative
correlations in Fig. 6.2(d) imply frequency diffusion across the qubit frequency, see also
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Figure 6.5: Micrograph of the used qubit (a) and simulation of the electric field distribution between the
concentric parts of the qubit capacitance, created by the vacuum state (b). In the microscopic image, the qubit
capacitance, and a small part of the readout resonator can be seen. A Josephson junction connects the outer and
inner part of the octagon-shaped capacitance. The simulated field distribution along the black line between the
conducting films is shown on the right (b). The inset shows a contour plot of the field distribution in close
proximity of the superconducting film edge, the simulation model was developed by A. Bilmes [162]. The field
distribution is slightly asymmetric between the two parts of the capacitance, because of their different size. The
minimum of the electric field is 55mV/m and very close to the film, it increases drastically. The Substrate
here is intrinsic silicon, the films are treated as perfect conductors.

the raw data in Fig. 6.2(a). Thermal switching of several GHz detuned TLS between below
and above the qubit is suppressed by the Boltzmann factor exp

(
−h̄ωq/kBT

)
≈ 10−7 and

thus extremely unlikely. Therefore we assume the detuning between qubit and the most
relevant (we call dominant) TLS to be close to zero for times of relatively large frequency
shifts. If we assume the TLS to reside in the junction, the observed coupling implies
their dipole moments to deviate less than 0.1◦ from perpendicular to the qubits electric
field, which is unlikely for several observed TLS. We reason it unlikely that the observed
frequency shifts are due to TLS which are located in the qubit’s Josephson junction.

Significant changes in quality factors of superconducting resonators due to surface
treatment observed e.g. in Ref [158] imply considerable coupling to surface TLS. The
electric field at edges of metal films scales approximately as 1/

√
x [163]. In our case,

the resulting field strengths are larger than 4V/m at any position closer than 20nm to
the superconducting film edges, see Fig. 6.5. For the typical TLS dipole moments of
d ≈ 1eÅ, this corresponds to a coupling rate to the qubit of g & 100kHz in agreement
with our observed qubit frequency shifts. The TLS mostly responsible for decoherence
and frequency shifts are therefore presumably at the surface, near edges which create
field enhancement. From simulations of the field distribution of our circuit, we know
that the field drops to about 55mV/m in the middle between the conductors, resulting in
a maximum coupling rate of about g = 1.3kHz there. This result matches well with the
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smallest observed fluctuations of about 1kHz. We conclude that while our experiment is
most sensitive to TLS residing on surfaces of the shunt capacitor, we can also measure the
effect of other TLS positioned anywhere in the shunt capacitance. Figure 6.5(b) illustrates
the electric field created by the qubits vacuum state. The field simulations have been
calculated using the finite element software . The field simulations have been performed
with ANSYS Maxwell [164], using the simulation model elaborated in the PhD work of
A. Bilmes [162]. There, it has been experimentally shown that resonantly detectable TLS
reside within 100nm from the metal-substrate-vacuum edge. These findings support our
notion that the here-observed fluctuations are dominated by surface-TLS.

A recent preprint of Lisenfeld et al. [165] uses electrical field spectroscopy to distinguish
between defects in Josephson junctions and at circuit interfaces. Their results suggest
approximately 60% of the observed TLS to reside at circuit interfaces. In addition, they
place about 40% in the large-area parasitic Josephson junctions that are produced as a
byproduct during shadow evaporation. Considering these results, it is possible that parts of
the observed fluctuations in our sample also originate in TLS inside the parasitic junction.

Although our fixed frequency qubit limits the accessible information on TLS density, we
can deduce a rough estimate for the surface density of the dominant TLS based on the
statistics of several measurements. We observed TLS with coupling rates on the order
of gmax ≈ 100kHz, and the observed frequency fluctuations for times of relatively high
coherence and frequency stability are on the order of ∆ωq,min/2π ≈ 1kHz. Thus, assuming
TLS of the coupling strength gmax are also present in times of high coherence, the detuning
to such a TLS is approximately 2π g2

max/∆ωq,min = 10MHz. At this frequency spacing of
20MHz, the frequency density of dominant TLS is 50/GHz. The area of the qubit surface
which is exposed to qubit fields stronger than 4V/m is about 164µm2. This results in an
estimated dominant-TLS surface density of 0.3/GHzµm2.
For comparison, the TLS densities reported by other groups are e.g. 0.5/GHzµm2 for
large (≈ 1µm2) Al/AlOx junctions [36] or 2.4/GHzµm2 for significantly less coherent
qubits [166]. The low loss material Si3N4 showed only 0.03/GHzµm2 in measurements
on lumped-element resonators [167]. Compared to these values, our estimated TLS density
is plausible and as expected smaller than for larger Al/AlOx junction qubits.

6.1.2 Spectral Noise Analysis

To further elucidate the origin of the observed qubit frequency fluctuations, we performed
a long term measurement in which we optimized the measurement pulse sequence to
gain maximum frequency resolution. This was done by only using Ramsey pulses with a
relatively large number of 80 points, leading to a precise sine-fit for frequency extraction.
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Figure 6.6: Power spectral density of frequency fluctuations ∆ωq (cyan dots) in a long-term measurement of
47h, revealing significant deviation from 1/ f α noise (dash-dotted line). A fit (red solid line) is in agreement
with the effect of a single thermal TLF (black dashed line) plus 1/ f α . The inset shows a short section of raw
data, showing telegraphic noise that is presumably due to frequency switching of a near-resonant TLS coupled
to a single thermal fluctuator. The frequency uncertainty is approximately the size of the dots. This figure can
also be found in the related publication [22].

The mean frequency error in the related fits is 0.7kHz. If the observed fluctuations are
due to individual TLS, we expect the power spectral density to follow the functional form
given by the longitudinal part of Eq. (2.28)

S(ω) ∝ (1−〈σz〉2)
2γ1,k

γ2
1,k +ω2 , (6.7)

a Lorentz distribution centered at zero frequency [38]. Here, γ1,k is the TLS relaxation
rate, 〈σz〉 = tanh(Ek/2kBT ) is the thermal equilibrium population of TLS ’k’ and

Ek =
√

ε2
k +∆2

k is its transition energy as presented in Sec. 2.4. Under the assumption of a
uniform distribution of TLS barrier heights, the superposition of many such Lorentzian
spectra are responsible for the typically observed low-frequency noise of the form ∼ 1/ f α ,
which is usually observed in all solid-state qubits [168]. This kind of noise is also called
"pink", if the exponent α is close to 1.
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6.1 Parameter fluctuations in qubits

The PSD of our measurements, shown in Fig. 6.6, deviates strongly from the ensemble 1/ f α

noise limit, but is fit well by a single Lorentzian added to a 1/ f α -type background. From
these measurements, we extract a background parameter of α ≈ 1.1 and the switching rate
of the individual TLS of γ1 ≈ 1mHz. For the distribution of switching rates, we estimate a
TLF energy of Ek/kBT = ln

(
Γ↓/Γ↑

)
= 1.1 in good agreement with the assumption that

the switching TLF are located spectrally close to the experimental temperature. The
presented fits are performed using the python library SciPy. Orthogonal distance regression
(scipy.odr) proved to be robust and reliable. Handling errors in x and y is beneficial,
considering the the large range of the noise spectrum S(∆ωq) and possible errors introduced
by the masking procedure.

For the PSD analysis we use Welch’s method [169]. It achieves a reduction of noise by
segmenting the data into smaller sets and sampling these with an overlapping window
function in the time domain. The average squared magnitude of the discrete Fourier
transforms of these samples, gives the power spectrum. This method reduces the frequency
resolution but enhances the SNR of noise power measurements. Some details of the
extracted PSD will, however depend on the window function and its size. In Fig. 6.6 a
’Kaiser’ (α = 4) window [170], with a segment size of 2844 points, corresponding to
dividing the data into 10 samples, with 50% overlap was used. Overall this set of data
contained 14222 Ramsey measurements. All data processing has also been verified with
random data, to exclude analysis artifacts from being identified as signal. The effective
frequency limit and SNR of this measurement could be improved significantly, using a
quantum-limited amplifier.

6.1.3 Other Decoherence Mechanisms

Our interpretation in terms of the interacting defect model attributes the observed parameter
fluctuations to TLS. This is possible, because our sample is insensitive to other possible
sources for discrete fluctuations. Those are: non-equilibrium quasiparticles (qp), the
movement of Abriskosov vortices and temperature fluctuations. As shown in section 2.8.1,
the transmon qubit’s transition energy is exponentially insensitive to charge fluctuations
with respect to

√
EJ/EC [23]. In our sample, the change in qubit frequency due to a single

qp, switching the charge parity of the capacitance [171, 172], is about 2Hz and thus not
observable. This can be calculated, using Eq. (2.68) with different values for the offset
charge.

A large number of non-equilibrium qp may contribute to relaxation [173] but can not
account for discrete fluctuations in ωq or abrupt changes in dynamics. A small amount
of trapped qp, could explain discrete jumps in coherence related to the number of qp. In
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this scenario however, relaxation and dephasing rates would be recurrent, which is not
observed. Variations in qubit frequency remain unexplained by quasiparticles, for our√

EJ/EC ratio.

High magnetic fields may induce field dependent loss in a single junction qubit, as shown
by Schneider et al. [174]. To verify the intrinsic insensitivity of this experiment to flux
noise, we measured the sample with roughly in-plane magnetic fields up to ±1mT, and
observed no changes in either coherence or frequency stability. Possible residual fields e.g.
due to adsorbates [175] are many orders of magnitude smaller and can be excluded.

Significant correlation of the absolute fluctuation strength and the relaxation rate
[Fig. 6.2(b)]

[| d
dt

∆ωq|? Γ1](τ = 0)≈ 1, (6.8)

during periods of low dephasing times require transversal coupling. This renders direct
influence of far detuned (thermal) TLF and critical current fluctuations unlikely. For
high detuning, the matrix element for energy exchange is negligible. Critical current
fluctuations only affect the qubit frequency and can not account for correlation of Γ1 with
the fluctuation strength.

Temperature fluctuations are known to induce low-frequency critical current noise [176].
This effect is exponentially temperature dependent and found to be relevant at T & Tc/3 in
Al-AlOx-Al junctions. At our experimental temperature of T = 20mK its effect is several
orders of magnitude below the observed noise level and can be excluded. A summary of
the results presented in this chapter can also be found in our related publication [22].
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6.2 Voltage Tuning of Nanowire Junctions

The design and fabrication of gatemon circuits in CPW geometry has been discussed in
sections 5.3 and 4.2. After the last metallization step, the samples are packaged in the
specifically built combination of sample box and PCB (see Sec 5.3.2). Wire bonding is
used to connect the feedline and gate contacts on the chip, and to suppress slotline modes.

To evaluate the samples, the resonance frequencies of the four resonators are determined
by a spectroscopic measurement. At this point, the dependence of the critical current
on the gate voltage Ic(Vg) is not yet known. Thus in a first test, the gate voltage Vg is
varied while the resonance frequency of the resonators is monitored. For this spectroscopic
measurement, the microwave drive power needs to be close to the single photon limit. The
drive power is estimated using the known attenuation (see section 5.2.2). The gate current
was monitored and limited to 1µA, to prevent changing Vg due to parasitic resistance. For
high gate voltages, avalanche breakdown of the silicon substrate is possible. The critical
voltage was highly dependent on the sample. We observed drastically increased current for
voltages above ∼ 3–8V for bottom gate samples. Thus, limiting the current is crucial to
avoid excessive heating and damaging the sample or the measurement electronics. For side
gate samples, increased current was observed above ≈ 30V.

The result of two typical spectroscopic measurements, monitoring the transmission close
to the center frequency of a single resonator during voltage sweeps, are shown in Fig. 6.7.
The upper color-plot (a) shows the sweep from low to high gate voltage, and the lower one
(b) vice versa. In (a), a distinct shift in resonator frequency occurs between approximately
2.5V and 4V. For higher voltages the resonance frequency stays constant and lowered
about 2MHz compared to the value at Vg = 0V. Subsequent lowering of the gate voltage,
depicted in Fig. 6.7(b), also shows a shift of ∼ 5MHz at Vg = 4V. The initial resonance
frequency is slowly recovered towards a voltage of Vg =−8V. This hysteretic behavior is
reproducible and indicates charging effects that bias the nanowire analogous to a floating
gate. A possible microscopic explanation is the charging of surface states, as discussed
in chapter 4. The data shown in Fig. 6.7 corresponds to a sample with bottom gates, side
gate samples also showed similar hysteretic behavior at consistently higher voltages, see
appendix Fig. A.3.

For bottom gates, the distance between gate electrode and nanowire is defined by the
dielectric buffer layer, of 15nm HfO2 in this case. For side gates, the corresponding
distance depends on the exact positioning of the nanowire, as shown in Ch. 4. Here the
distance is approximately 500nm. As expected, qualitatively similar behavior corresponds
to lower voltages for bottom gates.
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Gate voltage sweep direction 

Gate voltage sweep direction 

(a)

(b)

Figure 6.7: Color plots of the transmitted signal |S21|2 in the vicinity of a single resonator, coupled to a
gatemon qubit. The amplitude is color coded and plotted depending on the frequency (y-axis) and gate voltage
(x-axis). For the sweep in the positive voltage direction (a), a clear variation in resonance frequency between
approximately 2.5V and 4V can be seen. For the subsequent downward sweep (b), the shift around 4V is
also present, however the initial resonance minimum of approximately 11.005GHz is reached at −8V. This
hysteretic behavior can be explained by charging effects in close vicinity to the nanowire. Similar results
with slightly different voltages were obtained for all of the working nanowire junctions and their respective
resonators.
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Interleaved time domain measurements were hindered by the comparatively high losses
of the gatemon samples. The time-resolved results of driving the gatemon samples at
high power, can be found in appendix A.4. Short Rabi-like oscillations at a frequency of
35 MHz and a decay time of approximately 60 ns can be seen. However, attempts to reduce
the drive power to a level where the frequency broadening allows distinct qubit transitions
to be addressed, resulted in unusable, noisy signals. In spectroscopy, no avoided crossing
with the resonator could be observed in the accessible voltage range. Therefore, a clear
extrapolation of the critical current was not possible. For the bottom gate samples, the
qubit capacitance is approximately 60 fF, which results in an estimated qubit transition
frequency of 11 GHz for a critical current of 100 nA. Continuous current measurements
by Patrick Zellekens at Jülich Research Centre showed critical currents of approximately
130 nA at a gate voltage of 7 V. So the critical current range is expected to be large enough
to cause an avoided crossing in the range of applied gate voltages.
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In order to investigate decoherence in transmon qubits, we developed a time-multiplexed
measurement protocol. This enabled us to extract temporally correlated relaxation and
dephasing rates, as well as the related qubit frequencies. We applied this technique in
long-term measurements of a highly coherent non-tunable transmon qubit based on an
Al/AlOx/Al junction, and exposed telegraphic noise in the qubits transition frequency
correlated with strong variations in its dephasing and relaxation rates. Telegraphic noise
with multiple stationary points prompts our interpretation of the data in terms of an
ensemble of two-level systems (TLS) interacting with the qubit. Noise originating in
defects is highly dependent on the used materials, their interfaces and the used fabrication
techniques. Therefore we investigated a second type of transmon qubit, based in a
semiconducting weak link. This so called gatemon is described by the same fundamental
Hamiltonian, but represents a different material system.

We designed and fabricated gatemon structures, based on semiconducting InAs nanowire
junctions. We observed gate dependent shifts in the coupled readout resonators and
increased the gate effect by using bottom gates. The pronounced hysteresis in gate voltage
observed in gatemon samples indicates significant charging effects. In the presented
experiments, these are a interfering with gate control. However, this effect also shows
the possibility to locally maintain the gate potential by trapped charge. Different kinds of
Josephson field-effect transistors (JoFETs) have already been demonstrated [177, 178]. A
similar device, including a floating gate, might be utilized to build a floating gate tunable
qubit or a latching type of JoFET switch.

Despite careful design and fabrication, we did not observe a clear qubit signature in the
gatemon samples. We attribute this to strong dielectric losses, which are presumably
caused by the dielectric layer separating gate and nanowire. A design that is independent
of a dielectric buffer layer could solve this problem. In this regard, side gate structures
are inherently superior, but require a relatively large distance between electrodes to be
effective.

The analysis of correlated long-term measurements of our conventional transmon qubit,
showed positive and negative correlation between dephasing and fluctuations in qubit
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frequency on the timescale of seconds to days. We attribute these to the influence
of individual dominant TLS, which may couple to the qubit by their electric dipole
moments. Longitudinal coupling between TLS and thermal fluctuators causes telegraphic
fluctuation or spectral diffusion of the TLS’ resonance frequencies. We infer that the
observed parameter fluctuations of superconducting qubits is caused by the time-dependent
frequency fluctuation of near-resonant TLS. Cross-correlation and PSD analysis confirm
this interpretation and ascribe the source of fluctuation to interactions between thermal
fluctuators and TLS near resonance with the qubit.

By comparing the fluctuation amplitude with electric field simulations, we locate the
dominant defects close to conductor edges. We hope that our findings motivate the search
of structures or fabrication techniques overcoming the limitations caused by TLS. For this
process, our estimation of their location on film edges provides an important first step.

Our data evidences a small number of TLS, which dominate dephasing if near-resonant.
The 1/ f noise background we observed, may emerge from a bath of more weakly coupled
TLS. We attribute switching of a single TLS to the strong changes in dephasing and
relaxation times in our data. We conclude that even single TLS on the edges of the
superconducting films can dominate decoherence and cause random parameter fluctuations
in superconducting qubits. We find that other sources of fluctuation, like temperature
variations, critical current fluctuations, quasiparticle tunneling, or flux vortices play
secondary roles in the presented experiment.

Finding specific materials or fabrication steps that result in a reduction or even avoidance of
TLS in the relevant spectral range is challenging. We propose to use the presented analysis
as a tool, to find variations due to fabrication or materials in larger batches of qubits.
Because the interaction is assumed to be local, samples with frequency multiplexed qubits
may be used, where possible, to reduce fabrication costs and time. In addition, the premise
of local noise can be tested with the developed methods, by correlating simultaneously
acquired parameters of several qubits from a multi-qubit chip.

Finally, we conclude that the influence of surface TLS constitutes an up to now unavoidable
source of random fluctuation for any microscopic device operating in the low-power
microwave regime. Critical reduction of relaxation and dephasing times by single material
defects constitutes a major challenge for future quantum computers, especially for
scaled-up devices, as the probability for parameter fluctuations in a given time scales
exponentially with the number of qubits. Our findings underline the necessity of continuous
re-calibration in today’s solid-state qubits. Implementing new materials or fabrication
methods may mitigate this problem. However, the random nature of TLS fluctuations
imply that fundamental improvements to qubit parameter stability are necessary in order to
realize useful many-qubit systems.
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A potential solution could lie in continuous monitoring of qubit parameters and conditional
reconfiguration of qubit couplings. Analogous techniques are already used in solid-state
flash memory (bad block management). The counterpart in a quantum processor could
rely on sorting out qubits with temporary low coherence. A type of qubit devoid of defects
would of course be preferable. I am convinced, that quantum computing will become a
useful tool in the future. Possibly not in the way we expect today. I hope that this work
constitutes a small step in that direction.
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Appendix

A Quality Factor Calculation

The squared amplitude of the resonators complex S-matrix element has a Lorentzian line
shape in the frequency domain. This is a direct result of the exponential decay of energy in
a dissipative harmonic oscillator, as the Fourier transform of an exponential is Lorentzian.
The line shape also known as Cauchy distribution is defined as

L(ω ;ω0,Γ) =
1

πΓ

(
Γ2

(ω−ω0)2 +Γ2

)
, (A.1)

the resonance frequency ω0 and the half-width at half-maximum (HWHM) Γ. We can
define the loaded quality factor QL of a resonator coupled to a transmission line, by the
characteristic decay time of its resonance. The corresponding characteristic function or
Fourier transform of Eq. A.1 is

F [L(ω ;ω0,Γ)] =
∫

∞

−∞

L(ω ;ω0,Γ)e−iωtdω = eiω0t · e−Γt (A.2)

decaying with the rate Γ. If we consider the full-width at half-maximum, as usually
measured in spectroscopy experiments, we have to include a factor of 1/2, such that
Γ→ Γ/2. The squared amplitude of the S-parameter of a resonator also resembles a
Lorentzian

|S21|2 =
( 1

1+κ

)2

1+4Q2
L

(
ω−ω0

ω0

)2 . (A.3)

If we compare the terms in Eq. A.3 to Eq. A.1, we can extract

Γ =
ω0

2QL
. (A.4)

The decay time τ is defined by the time it takes the energy of the damped oscillation to
drop to 1/e of the initial value, thus, the decay time is

e−1 = e−Γτ → τ =
1
Γ
. (A.5)
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Together with Eq. A.4 we can express the decay time by the quality factor

τ =
2QL

ω0
=

1
α
, (A.6)

associating the quality factor to the damped oscillation of a resonator. Sometimes, the
attenuation rate α or the damping ratio ζ = α/ω0 are used to define the damping of a
resonator.
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B Details on Chip Mounting

Figure A.1: Micrograph of a four-qubit chip, glued onto a copper-plated TMM10 sample-holder inside an
aluminum sample box. Conductive silver varnish is used to ensure electrical contact between the box and the
copper sample holder. The soldered connections contact the inner conductors of the SMA plugs. The feedline
is contacted on the left and right, the gate on top. The bond wires on the chip are used to prevent parasitic
resonances by connecting the ground plane across resonators and feedline (explained in detail in Sec. 5.3.1).
The tapered connections on the chip-carrier are coplanar and matched to 50Ω, with an outer diameter matching
the cutout in the box. The hole in the lower left is used to define the orientation of the chip carrier and to vent
the enclosed space inside the sample box, rendering it suitable for high vacuum.
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C Fabrication Details

Fabrication parameters for gatemon samples, prior to nanowire positioning. Substrate:
intrinsic silicon(100) with a bulk resistivity of ρ > 80kΩ cm

1. Clean

Dip in acetone (ACE) (5 min) and isopropanol (IPA) (5 min) at RT

Dry with nitrogen gas (N2)

Heat to 100 ◦C for H2O evaporation

Dip in hexamethyldisilazane (HMDS) at 130 ◦C

2. Spin coat with UV6.06 950K at 4000rpm for 60 s

3. Bake for 30/60/30 seconds at 80/130/80◦C

4. Ebeam lithography of etch markers
beam current 0.5 nA, dose 28 µC/cm2, step size 5 nm

5. RIE etching flow rates 55/5 s cm3 of CHF3/O2

RF power 25 W, ICP power 100 W, for 13 min

6. Resist solving in ACE 16 h, dip in ACE (5 min), IPA (5 min), N2 dry

7. Spin coat with PMMA 950K at 4000rpm for 60 s

8. Bake for 60/600 seconds at 80/180◦C

9. Ebeam lithography of bottom gates, gate lines
beam current 1 nA, dose 2350 µC/cm2, step size 2.5 nm

10. Development with IPA for 2 min, bake for 5 min at 100 ◦C

11. Deposition of 10/10nm of Ti/Pt

12. Lift-off, ACE 16 h, dip in ACE (5 min), IPA (5 min), N2 dry

13. Spin coat with UV 6.06:AR-P 600-09, 2:1 at 4000rpm for 60 s

14. Bake for 30/60/30 seconds at 80/130/80◦C

15. Ebeam lithography of bond pads, NW positioning markers, large markers
fine – beam current 1 nA, dose 28 µC/cm2, step size 2.5 nm
coarse – beam current 150 nA, dose 28 µC/cm2, step size 25 nm
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16. Post bake for 5 min at 140 ◦C, dip in DI water for 10 min

17. Pre-metalization treatment, O2 plasma 200 s cm3, 100 W, 20 s

18. Deposition of 30/130nm of Ti/Pt

19. Lift-off in dimethyl sulfoxide (DSMO) for 16 h, dip in ACE (5 min), IPA (5 min), N2

dry

20. Dielectric deposition (Nanocluster ALD) 3 nm Al2O3, 15 nm HfO2

21. Spin coat with UV 6.06:AR-P 600-09, 2:1 at 4000rpm for 60 s

22. Bake for 30/60/30 seconds at 80/130/80◦C

23. Ebeam lithography of feedline, resonators, ground plane
fine – beam current 1 nA, dose 28 µC/cm2, step size 2.5 nm
coarse – beam current 150 nA, dose 28 µC/cm2, step size 25 nm

24. Post bake for 5 min at 140 ◦C, dip in DI water for 10 min

25. Pre-metalization treatment, O2 plasma 200 s cm3, 100 W, 20 s

26. Deposition of 90 nm of TiN

27. Lift-off in DSMO for 16 h, dip in ACE (5 min), IPA (5 min), N2 dry
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D Voltage Tuning of Nanowire Junctions

Gate voltage sweep direction 

Gate voltage sweep direction 

(a)

(b)

Figure A.2: Color plots of the transmitted signal |S21|2 in the vicinity of a single resonator, coupled to a
gatemon qubit. This measurement was performed analogous to Fig. 6.7, but at 25dB higher input signal power.
The amplitude is color coded and plotted depending on the frequency (y-axis) and gate voltage (x-axis). The
same voltage dependence and hysteretic behavior as for the low-power measurement can be seen, ruling out the
dispersive shift due to a single excitation in the qubit.

Additional spectroscopic measurements with higher readout power are depicted in Fig. A.2.
A typical measurement of a gatemon sample with side gate can be seen in Fig. A.3.
Hysteretic shift in resonator frequency for approximately ±20V can be seen.
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Gate voltage sweep direction 

Gate voltage sweep direction 

(a)

(b)

+10.68 GHz

+10.68 GHz

Figure A.3: Spectroscopic gate-sweep measurement analogous to Figs. 6.7 and A.2, but instead of a bottom
gate, this sample uses a side gate with larger spacing between the gate electrode and the nanowire junction.
The response to variation in the gate voltage is qualitatively similar to the samples with bottom-gate, but at
approximately 10 times larger voltages and 10 times smaller frequency variations.
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E Additional Data and Analysis

To minimize the effect of fit inaccuracy on our statistical analysis, e.g. due to fluctuations
occurring during data acquisition for a single trace, or strong noise, unreliable fits with
uncertainties larger than ten times the average are masked in the data sets. In the presented
measurements, between 2 and 10% of the single slices had inaccurate fitting and are
not shown, the presented results are insensitive to the masking. We have verified that
the detuning of pulses due to the measured shifts in qubit frequency does not lead to
a systematic bias in the extracted parameters. For the observed fluctuation strength
in frequency, the maximum change in signal amplitude of the decay curves is 0.8%.
The extraction of pure dephasing time TΦ associated with the rate ΓΦ implies a simple
exponential decay in Ramsey measurements. While this is not necessarily the case [179],
the corresponding deviation compared to e.g. Gaussian decay is smaller than the fitting
error.

The maximum data acquisition rate is limited by the smallest number of points which still
yield confident fits. The number of points required to characterize Ramsey oscillations
depends on their frequency and decay time. A higher Ramsey frequency leads to improved
SNR for the frequency shift but requires a higher sampling rate. For a given number
of points this implies a shorter interval of free evolution times, reducing the SNR of
T R

2 , leading to a tradeoff between good fits to the frequency shift and Ramsey decay
time for a given number of measurements. A high SNR is crucial for a conclusive PSD
analysis, as statistical noise due to fit uncertainty raises the noise floor. We balance
the distribution and number of points to achieve a tradeoff for the signal in different
parameters. For example, the measurement depicted in Fig. 6.6 was optimized for accurate
frequency fitting and achieves a mean error of 0.7kHz, but the mean dephasing-time error
is ±10µs. For comparison, the mean errors in Fig. 6.1 are ±2.7µs (T1),±5.4µs (T R

2 ), and
±0.9kHz (∆ωq).
Potential fluctuations of the readout resonator frequency fr only affect the SNR of our
measurements but have no influence on the extracted parameters.
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For comparatively strong microwave drive power far above the single photon regime,
Rabi-like oscillations could be observed in a gatemon sample. It was however not possible
to observe Rabi oscillations for lower powers, necessary to address a single qubit transition.
We ascribe this observation to a very high decay rate Γ1. Further, no avoided crossing with
the resonator could be achieved by gate-tuning, and the qubit frequency could not clearly
be identified. Therefore we can not deduce the critical current of the Nanowire. Abrupt
changes in contrast may result from variable surface charge on the NW.

Figure A.4: For a high power drive, fast decaying Rabi-like oscillations could be observed in a gatemon
sample at a gate voltage of 30 V. The expected chevron pattern is too broad in frequency, to be caused by a
single qubit transition. Broadening and strong overlap of higher qubit transitions is expected for strong drive
power [180]. The decay time is approximately 60 ns, and the oscillation frequency is 35 MHz.
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(a)

(b) (c)

Figure A.5: (a) Subsequent cooldown with respect to Fig. 6.2 (no changes to the setup). The qubit frequency
is relatively stable (mean frequency noise of 2kHz) and shows consistently high relaxation and dephasing
times. A slow drift in frequency can be seen. (b) shows a scatterplot of the pure dephasing against the shift
in qubit frequency of the data shown in fig. 6.1. Several metastable points in frequency and larger variation
towards lower pure dephasing times can be seen. (c) At zero time delay τ , only ΓΦ shows a small correlation
(compared to the noise-level) with the absolute fluctuation strength (gray) and the qubit frequency (light blue).
No correlation with the relaxation rate was observed.
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