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Abstract

Computing three-dimensional reconstructions of dynamic scenes is one of the
fundamental problems in computer vision. For many applications this task
can be reduced to the determination of three-dimensional object motion tra-
jectories w.r.t. mainly static environment structures. This approach simplifies
the reconstruction problem by constraining projective ambiguities of different
scene components.
Image-based reconstruction approaches such as Multibody Structure from Mo-
tion (MSfM) represent an appealing choice to reconstruct dynamic scenes gi-
ven suitable conditions like sufficiently textured surfaces and non-degenerated
camera trajectories. The underlying assumption of MSfM is that the scene may
be represented by a multibody system, i.e., that the scene consists of multiple
non-deformable components, which may undergo independent translational
and rotational displacements.
Existing MSfM approaches use epipolar constraints or motion segmentation
to determine component specific feature correspondences to reconstruct inde-
pendently moving components. Such methods are agnostic to semantics and
fail in certain scenarios like stationary or parallel moving objects. It is difficult
to identify capabilities and limitations of existing approaches, because of the
lack of image-based dynamic object reconstruction baseline algorithms and
benchmark datasets.
We propose a novel MSfM algorithm for moving object reconstruction that
incorporates (instance-aware) semantic segmentation and multiple view geo-
metry methods. The proposed MSfM pipeline includes a Multiple Object
Tracking (MOT) algorithm that tracks two-dimensional object shapes on pixel
level to determine object specific feature correspondences. We consider non-
object structures for the environment reconstruction.
The proposed MSfM method allows the reconstruction of three-dimensional
object shapes and object motion trajectories. We leverage camera poses w.r.t.
object reconstructions and corresponding instance-aware semantic segmen-
tations to determine object points consistent with image observations. The
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Abstract

generated point clouds are suitable for object mesh computations. In order
to compute a three-dimensional object trajectory we combine corresponding
camera poses in the object and in the background reconstruction. We present
different algorithms to reconstruct object motion trajectories in monocular and
stereo image sequences. In the monocular case, three-dimensional object tra-
jectories are defined up to scale. In order to resolve this ambiguity, we propose
two different constraints to estimate the scale ratio between object and envi-
ronment reconstructions.
To facilitate the benchmarking of new and existing approaches, we additio-
nally created two publicly available datasets for moving object reconstruction.
The first dataset comprises real-world image sequences of a moving vehicle
and a corresponding vehicle laser scan suitable for evaluation of object shape
reconstructions. The second dataset contains synthetic sequences of different
vehicles in an urban environment. The ground truth includes vehicle shapes as
well as vehicle and camera poses per frame. This dataset allows to quantita-
tively evaluate shape and trajectory reconstructions of moving objects.
Using the created datasets, we evaluate our algorithms on outdoor scenarios of
driving vehicles with challenging properties such as small object sizes, reflec-
ting surfaces as well as illumination and view dependent appearance changes.
We show that the proposed semantic constraint for object shape reconstruction
produces meshes that are robust w.r.t. reflections and appearance changes. The
quantitative evaluation of the trajectory reconstruction algorithms shows that
the scale ambiguity of (monocular) image-based reconstructions poses a chal-
lenging problem. The usage of stereo image sequences resolves this ambiguity
and results in more accurate and robust reconstructions. By quantitatively eva-
luating the proposed algorithms on our datasets we provide a reference for
future research in the area of moving object reconstruction.
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Zusammenfassung

Das Berechnen von dreidimensionalen Rekonstruktionen dynamischer Szenen
ist eines der grundlegenden Probleme im Bereich des Maschinellen Sehens.
Für viele Anwendungen kann diese Aufgabe auf eine Bestimmung der drei-
dimensionalen Bewegungsbahnen von Objekten bzgl. einer primär statischen
Umgebung reduziert werden. Dieser Ansatz vereinfacht das Rekonstrukti-
onsproblem durch eine Einschränkung der projektiven Mehrdeutigkeiten der
verschiedenen Szenenkomponenten.
Multibody Structure from Motion (MSfM) Ansätze erlauben, unter geeigne-
ten Bedingungen wie beispielsweise nicht-degenerierten Kamerabewegungen
und ausreichend strukturierten Oberflächen, dynamische Szenen zu rekonstru-
ieren. Die zugrundeliegende Annahme von MSfM ist, dass eine Szene durch
ein Mehrkörpersystem dargestellt werden kann, d.h. die Szene besteht aus
mehreren nicht-deformierbaren Komponenten, welche unabhängige Transla-
tionen bzw. Rotationen aufweisen können.
Existierende MSfM Ansätze nutzen beispielsweise Bewegungssegmentierun-
gen oder Zwangsbedingungen der Epipolargeometrie, um komponentenspe-
zifische Merkmalskorrespondenzen zu bestimmen und damit unabhängig be-
wegende Komponenten zu rekonstruieren. Diese Methoden erfassen keine
Semantik und scheitern in bestimmten Szenarien wie beispielsweise statio-
näre oder parallel bewegende Objekte. Aufgrund von fehlenden bildbasierten
Referenzalgorithmen für die Rekonstruktion dynamischer Objekte und ent-
sprechenden Datensätzen ist es schwierig Fähigkeiten und Einschränkungen
existierender Verfahren zu identifizieren.
Wir präsentieren einen neuartigen MSfM Algorithmus zur Rekonstruktion dy-
namischer Objekte, welcher (instanzbewusste) semantische Segmentierungen
and Multiple View Geometry Methoden einbindet. Die vorgeschlagene MSfM
Pipeline schließt eine Komponente zur Verfolgung von mehreren Objekten
ein, welche es erlaubt, zweidimensionale Objektformen auf Pixelebene zu ver-
folgen und damit objektspezifische Merkmalskorrespondenzen zu bestimmen.
Um die Umgebung zu rekonstruieren, werden Merkmale verwendet, die nicht
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einem Objekt zugeordnet sind. Die vorgeschlagene MSfM Methode erlaubt
dreidimensionale Objektformen und Objekttrajektorien zu rekonstruieren.
Wir nutzen Kameraposen der Objektrekonstruktion und zugehörige instanz-
bewusste semantische Segmentierungen, um Objektpunkte zu bestimmen, die
konsistent zu Bildbeobachtungen sind. Die so generierte Punktwolke ist ge-
eignet, um ein Dreiecksnetz des Objektes zu berechnen.
Um dreidimensionale Objekttrajektorien zu berechnen, kombinieren wir zu-
sammengehörige Kameraposen in den Objekt- und Hintergrundrekonstruk-
tionen. Wir präsentieren verschiedene Algorithmen, um Objekttrajektorien in
monokularen und binokularen Bildsequenzen zu rekonstruieren. Im monoku-
laren Fall sind die dreidimensionalen Objekttrajektorien bis auf die Skalierung
eindeutig definiert. Um diese Mehrdeutigkeit aufzulösen schlagen wir zwei
verschiedene Nebenbedingungen vor, welche es erlauben, das Skalenverhält-
nis zwischen Objekt- und Umgebungsrekonstruktionen zu bestimmen.
Im Rahmen dieser Arbeit wurden zwei öffentlich verfügbare Datensätze ge-
schaffen, welche es ermöglichen, neue und existierende Algorithmen zur
Rekonstruktion bewegter Objekte zu evaluieren. Der erste Datensatz um-
fasst Bildsequenzen eines sich bewegenden Fahrzeugs und eines Laserscans
des Fahrzeugs, welcher sich dazu eignet, die Rekonstruktionen der Objekt-
form zu evaluieren. Der zweite Datensatz enthält synthetische Sequenzen von
verschiedenen Fahrzeugen in einer urbanen Umgebung. Die Grundwahrheit
schließt die Fahrzeugformen als auch die Fahrzeug- und Kamerapose für je-
den Zeitpunkt mit ein. Der Datensatz ermöglicht die quantitative Auswertung
von rekonstruierten Formen und Trajektorien bewegter Objekte.
Mit Hilfe dieser Datensätze werten wir die entwickelten Algorithmen auf
Szenarien von fahrenden Fahrzeugen aus. Die Bildsequenzen weisen heraus-
fordernde Eigenschaften wie kleine Objektgrößen, reflektierende Oberflächen
als auch beleuchtungs- und blickwinkelabhängige Erscheinungsänderungen
auf. Wir demonstrieren, dass das vorgeschlagene Verfahren zur Rekonstruk-
tion von Objektformen es ermöglicht, Dreiecksnetze zu bestimmen, welche
robust bzgl. Reflexionen und Erscheinungsänderungen sind. Die quantitative
Auswertung der Algorithmen der Trajektorienrekonstruktion zeigt, dass die
Skalenmehrdeutigkeit von (monokularen) bildbasierten Rekonstruktionen ein
anspruchsvolles Problem darstellt. Die Verwendung von binokularen Bildse-
quenzen löst diese Mehrdeutigkeit auf und resultiert in genaueren und robus-
teren Rekonstruktionen. Durch die quantitative Evaluierung der vorgestellten
Algorithmen auf den präsentieren Datensätzen stellen wir eine Referenz für
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zukünftige Arbeiten in dem Gebiet der Rekonstruktion bewegter Objekte zur
Verfügung.
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1 Introduction

This chapter gives a brief introduction to dynamic scene reconstruction using
Multibody Structure from Motion based algorithms.

1.1 Motivation

Many elementary human everyday activities such as orientation or interaction
with objects rely on information about the three-dimensional structure of our
environment. Similarly, various computer-based applications benefit from 3D
world models. Image reconstruction algorithms leverage image or video data
to compute three-dimensional scene models. This task is one of the funda-
mental challenges in computer vision, because metric scene properties are lost
during image acquisition.
Recent progress in image-based modeling shows that such algorithms are able
to reconstruct entire city districts. Large-scale 3D reconstructions require an
efficient and accurate three-dimensional representation of scene structures.
For example, Structure from Motion (SfM) or Visual Simultaneous Location
and Mapping (Visual SLAM) allows to reconstruct geometric properties of the
scene given suitable conditions like sufficiently textured surfaces and non-
degenerated camera motions.
However, many available methods neither reconstruct semantic information
nor dynamic components. Such knowledge is essential to leverage these mod-
els in different application scenarios like autonomous transportation systems,
robotics, augmented reality, visualization or visual editing. For example, au-
tonomous systems rely in particular in uncontrolled scenarios on a spatial and
a semantic interpretation of dynamic environments to avoid collisions or to
perform path planning. Other domains like augmented reality also require
three-dimensional object shape and motion information to present adequate
user information or to determine interaction between reality and the virtual
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1 Introduction

world. Cinematic visual effect pipelines leverage three-dimensional object
tracking for different tasks including color correction, object replacement or
texturing. We present a method that computes dynamic reconstructions, which
are inherently annotated with semantic instance and category information to
cover such application scenarios.
Generally, there is a variety of sensor types to capture the required three-
dimensional information of dynamic environments. Sensors can be catego-
rized in passive sensors (e.g., RGB cameras), active sensors (e.g., Lidar or
Radar) and hybrid devices (e.g., RGB-D sensors). The methods in this work
only use cameras, i.e., passive sensors, to compute three-dimensional mod-
els of dynamic environments. Cameras show several advantages over other
sensing modalities. Compared to active sensors, cameras require less energy
and lower production costs. Because of their small weight and size, cameras
are even suitable to be integrated in body-worn and drone-mounted systems.
Another advantage of cameras (or passive sensors in general) is the absence
of cross talk effects, i.e., there is no interference of signals of simultaneously
operating sensors. Finally, in the context of creating semantically annotated
reconstructions, image-based methods are especially useful due to the huge
amount of publicly available (annotated) image data, which allows a reliable
semantic segmentation of scene structures.
Since images contain only two-dimensional projections of the captured scene,
the three-dimensional reconstruction with a single monocular sensor is in gen-
eral an underconstrained problem. Additional assumptions are required to re-
cover the 3D properties of a scene, which may be categorized depending on
underlying scene dynamics as follows:

• Structure from Motion (SfM)
– Assumes that the images show a static scene, i.e., a single component.
– Decomposes the reconstruction process into more controllable sub-

problems. Detects salient features in each image and determines inter-
image feature correspondences. Corresponding features in different
images are considered as projections of the same three-dimensional
point and allow to estimate corresponding camera parameters such as
focal length or camera pose. Combining the reconstructed camera pa-
rameters enables the triangulation of scene structures, i.e., to compute
the three-dimensional coordinates of the scene points.

– Allows to reconstruct large scenes - see Fig. 1.1a.
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1.1 Motivation

(a) SfM result of a city district in rome, from Schönberger and Frahm (2016).

(b) MSfM result of two vehicles trajectories (blue
and red) near Versailles, from Kundu et al.
(2011).

(c) NRSfM result of a person
(Russell et al., 2014). Con-
sistently moving points
show the same color.

Figure 1.1: Reconstruction results of using SfM, MSfM and NRSfM. The camera poses estimated
by SfM and MSfM are shown in red. In the case of NRSfM, relative camera poses
can not be determined, since the reference system, i.e., the scene points, are allowed
to undergo arbitrary motions.

• Multibody Structure from Motion (MSfM)
– Is a generalization of SfM and assumes that the scene may be de-

scribed by a multibody system, i.e., the scene consists of multiple
rigidly structured components, which may undergo independent trans-
lational as well as rotational displacements.

– Determines component specific features, which allows to leverage
SfM techniques to reconstruct the individual components.

– See Fig. 1.1b for an example.
• Non-Rigid Structure from Motion (NRSfM)

– Allows to reconstruct deformable objects in contrast to SfM and
MSfM, but is underconstrained for each pixel.
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– Domain specific shape priors are required to compensate for under-
constrained properties. These properties restrict NRSfM to a limited
set of application scenarios, e.g., face or body pose reconstruction.

– Reconstruction of arbitrary huge environments with NRSfM is infea-
sible, because of the corresponding scene variety - see Fig. 1.1c for an
example.

This work focuses on MSfM, since it provides a suitable trade-off between
scene dynamics and scalability.

1.2 Challenges and Problem Statement

Image-based reconstruction of dynamic scenes is a challenging problem, since
the three-dimensional information is lost during image acquisition, i.e., only
the two-dimensional projection of scene structures is captured. Structure from
Motion is suitable to compute three-dimensional models of static scenes. As
we will see in Chapter 2 and Chapter 3, the reconstruction of multiple inde-
pendently moving scene components with SfM requires the determination of
consistently moving groups of visual features, i.e., sets of key points corre-
sponding to specific objects or to static environment structures.
Because of the requirements mentioned above, a SfM based pipeline for dy-
namic scene reconstruction (i.e., a MSfM pipeline) must comprise the follow-
ing steps:

• Determination of consistently moving groups of visual features, e.g., object
detection and tracking.
• Reconstruction of independent components, e.g., object and environment.

Intrinsic camera parameters may be shared during reconstruction.
• Estimation of the scale ratios between components, e.g., scale ratio between

objects and environment reconstruction.

Most existing MSfM approaches use motion segmentation or epipolar con-
straints to identify consistently moving groups of visual features. As such
methods are agnostic to semantics, they fail in certain scenarios like station-
ary or parallel moving objects. Recent advances in instance-aware semantic
segmentation detect and describe the two-dimensional shape of objects in a
given image on pixel level. This work proposes a MSfM approach that uses
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instance-aware semantic segmentations to compute component specific fea-
tures. It allows us to reconstruct situations where traditional methods fail.
One important application domain of MSfM is the reconstruction of dynamic
objects in a mainly static environment. Many of the previously mentioned sce-
narios like autonomous transportation systems, robotics, augmented reality,
visualization and visual editing potentially fall into this category. Throughout
this thesis we consider the reconstruction of dynamic vehicles as the predom-
inant use case.
We tackle the problem of object shape as well as object trajectory reconstruc-
tion. Specific object properties such as small object sizes, reflecting surfaces,
illumination and view dependent appearance changes hamper the reconstruc-
tion of accurate object shapes. The computation of three-dimensional object
motion trajectories is particularly difficult, because of the scale ambiguity of
image-based reconstructions. Even observations of subsequent images are not
sufficient to determine consistent trajectories. We propose several novel mo-
tion and geometric constraints to tackle this problem.
The following research question summarizes the main aspects of this thesis:
Does semantic segmentation based Multibody Structure from Motion allow to
accurately reconstruct real-world scenarios of moving objects?

1.3 Research Context

One of the first works in the context of computer vision addressing the ques-
tion how the three-dimensional structure and motion of objects may be in-
ferred from two-dimensional image projections was examined in Ullman
(1979). In addition, Ullman (1979) proposes the Structure from Motion
Theorem, which states that three (distinct) orthographic views of four non-
coplanar points allow to compute the structure of a non-deformable object.
Two years later, Longuet-Higgins (1981) proposed an algorithm to recon-
struct static scene structures using only two projections. Motivated by these
ideas, Adiv (1985) presents a fully automated pipeline to reconstruct the three-
dimensional motion and structure of several moving objects, which may be
considered as the first Multibody Structure from Motion pipeline. In con-
trast to Ullman (1979) and Longuet-Higgins (1981), Adiv (1985) determines
pixel correspondences automatically by assuming that scene components are
roughly planar surfaces. In the next decades, many others (Debrunner and
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Ahuja, 1992; Debrunner and Ahuja, 1998; Fitzgibbon and Zisserman, 2000;
Gear, 1998; Kundu et al., 2011; Ozden et al., 2004, 2010) proposed alterna-
tive algorithms to improve reconstruction quality and efficiency. However, the
question how to achieve a predefined robustness, accuracy, completeness and
scalability in complex scenarios is still unanswered. One limitation of pre-
vious methods is the usage of motion segmentation or epipolar constraints to
group scene components. There are many situations where both methods show
a fragile behavior. We show that recent advances in instance-aware semantic
segmentation (Dai et al., 2016; He et al., 2017; Li et al., 2017) as well as opti-
cal flow computation (Hu et al., 2016; Ilg et al., 2017; Sun et al., 2018) offer an
appealing alternative to determine object specific points on pixel level. This
allows us to leverage mature state-of-the-art Structure from Motion pipelines
such as OpenMVG (Moulon et al., 2012) or Colmap (Schönberger and Frahm,
2016) to compute MSfM reconstructions of complex real world scenarios.

1.4 System Overview

Fig. 1.2 shows an overview of the proposed approach for dynamic scene re-
construction. The pipeline takes a monocular or stereo image sequence as
input. In contrast to previous works, our approach exploits recent advances
in instance-aware semantic segmentations to cluster visual features. To com-
pute video object segmentations we perform Multiple Object Tracking using
similarity scores based on optical flow and object segmentations of adjacent
frames (Bullinger et al., 2017, 2019b). The proposed similarity scores reflect
locality and visual similarity.
Determining object specific features with semantic segmentation allows us to
leverage publicly available state-of-the-art Structure from Motion pipelines to
tackle the problem of image-based three-dimensional scene modeling. We
apply SfM to video object segmentations and images of background struc-
tures to compute separate object and background reconstructions (Bullinger
et al., 2018b). The reconstruction results contain a set of three-dimensional
points representing object or background structures and camera poses of dif-
ferent time steps with respect to the corresponding point cloud. The computed
MSfM reconstructions are inherently connected with corresponding semantic
information, which eases the usage of these models for many application sce-
narios.
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Input Frames
Instance

segmentations

Background
Segmentations

Object Video
Segmentations

Background
SfM Result

Object
SfM Result

Object
Trajectory

Reconstruction

Object Shape
Reconstruction

Figure 1.2: Overview of the dynamic object reconstruction pipeline. We track objects on pixel
level with instance-aware semantic segmentations and optical flow features. Corre-
sponding three-dimensional object and environment models as well as camera poses
are computed with Structure from Motion. We exploit semantic projection constraints
to compute three-dimensional watertight object meshes. Combining object and en-
vironment reconstructions allow us to compute three-dimensional object trajectories.
The reconstructed camera trajectories are shown in red - the object trajectory in blue.

Integrating the object reconstructions into the static environment SfM result
allows us to compute three-dimensional object trajectories (Bullinger et al.,
2018a,b, 2019b). Due to the scale ambiguity of image-based reconstructions,
the three-dimensional object motion trajectory is only defined up to an un-
known scale factor. We require additional constraints like assumptions about
the type of object motion to determine consistent three-dimensional object
trajectories (Bullinger et al., 2018a,b). Capturing the scene with stereo video
data allows us to solve the scale ambiguity using the stereo camera baseline
(Bullinger et al., 2019b).
In addition, the pipeline allows to use semantic projection constraints (given
appropriate camera-object-poses) to determine object point clouds convenient
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for mesh computations (Bullinger et al., 2016). That is, the points are uni-
formly distributed and corresponding normal vectors are consistent, which is
particularly difficult to achieve for dynamic objects with reflecting surfaces
using Multi-View stereo algorithms.

1.5 Datasets

Prior to this work, there was a lack of publicly available benchmark datasets
for image-based reconstruction of dynamic objects, i.e., existing datasets did
not provide essential ground truth data. However, such datasets are crucial for
validation to establish efficient research and development cycles.
In order to evaluate algorithms for dynamic object reconstruction, accurate ob-
ject and environment models as well as synchronized object and camera poses
of different time steps are required. Capturing the corresponding ground truth
is difficult due to synchronization and registration errors of object and camera
poses. This is presumably the main reason why current real world datasets
do not provide this kind of ground truth information. In Chapter 4 this thesis
presents two datasets for shape and trajectory reconstruction of moving ob-
jects.
In order to evaluate object shape reconstruction approaches, it is sufficient
to create three-dimensional object shapes as ground truth data. We present a
dataset of driving vehicle sequences. Multiple registered laser scans, which
capture the object from different views serve as shape ground truth. Regis-
tering the image-based object shape reconstructions to the set of laser scans
allows us to determine metric reconstruction errors.
Evaluation of object trajectory reconstructions requires different types of
ground truth data such as object and environment models as well as synchro-
nized object and camera poses of different time steps. To circumvent problems
of ground truth data acquisition, we create a virtual world that allows to ren-
der sequences of driving vehicles in urban environments. We apply skeletal
animation to automatically determine steering, wheel rotation and consistent
vehicle placement on uneven ground surfaces. The ground truth geometry
as well as the camera and object poses are free of noise and show no spatial
registration or temporal synchronization inaccuracies. We exploit procedural
generation of textures to avoid artificial repetitions. This makes our dataset
suitable for evaluation of image-based reconstruction algorithms.
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Previous works do not show quantitative comparisons because of the lack
of publicly available implementations and benchmark datasets with suitable
ground truth data. This makes it difficult to perform a quantitative evaluation
of corresponding algorithms. We address this issue with the datasets described
above.

1.6 Contribution

This thesis presents a framework for Multibody Structure from Motion to
compute three-dimensional shapes and motion trajectories of dynamic ob-
jects. The core contributions of this work are as follows.
1) An instance-aware semantic segmentation based online Multiple Object
Tracking approach (Bullinger et al., 2017, 2019b). The method combines
object segmentations and optical flow information to track two-dimensional
object shapes on pixel level in monocular as well as stereo image sequences.
Converting the segmentation masks to bounding boxes allows us to compare
the tracking with publicly available bounding box based tracking approaches.
2) A Multibody Structure from Motion algorithm based on the proposed
Multiple Object Tracking approach. The method allows to leverage state-
of-the-art standard Structure from Motion for multibody reconstruction. We
provide a detailed description of the tracking as well as the reconstruction
components.
3) An algorithm to compute three-dimensional object shapes consistent
to constraints derived from semantic segmentations (Bullinger et al., 2016).
The resulting point clouds show a high point density making them suitable for
computation of watertight meshes.
4) Creation of a publicly available multi-view benchmark dataset to eval-
uate image-based algorithms for moving object shape reconstruction
(Bullinger et al., 2016). The dataset consists of videos capturing a vehicle
performing several maneuvers and provides registered object laser scans as
three-dimensional shape ground truth.
5) A new framework to reconstruct the three-dimensional trajectory of
vehicles/objects in monocular and stereo image sequences using the pro-
posed instance-aware semantic segmentation based Multibody Structure from
Motion approach. We propose several novel methods to tackle the scale am-
biguity of Structure from Motion reconstructions. This allows us to compute
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vehicle/object motion trajectories consistent to image observations and envi-
ronment structures (Bullinger et al., 2018a,b, 2019b).
6) A new stereo-matching based algorithm for the three-dimensional ob-
ject trajectory reconstruction in stereo image sequences (Bullinger et al.,
2019a). In contrast to previous works, the method avoids the triangulation of
environment points during object reconstruction.
7) Creation of a publicly available synthetic vehicle trajectory benchmark
dataset due to the lack of publicly available video data of vehicles with suit-
able ground truth data (Bullinger et al., 2018b, 2019b). The dataset consists of
photo-realistic rendered videos of animated vehicles in urban environments.
3D vehicle and environmental models used for rendering serve as ground
truth. The dataset and evaluation scripts are publicly available to foster future
object motion reconstruction related research. The dataset allows for the first
time to evaluate reconstructions of the three-dimensional motion of the vehi-
cles visible in the image sequences.
8) Previous works do not show quantitative comparisons because of the lack
of publicly available benchmark datasets for dynamic object reconstruction.
We adress this issue with the dataset described in 4) and 7) and provide a
thorough qualitative and quantitative evaluation of the proposed shape
and trajectory reconstruction methods.

In the context of this thesis the following peer-reviewed papers have been
published. Where appropriate the corresponding parts of this work reference
these publications.

C. Bodensteiner, S. Bullinger, S. Lemaire, and M. Arens. Single frame based
video geo-localisation using structure projection. In 2015 IEEE Interna-
tional Conference on Computer Vision Workshop (ICCVW), 2015.

C. Bodensteiner, S. Bullinger, and M. Arens. Multispectral matching using
conditional generative appearance modeling. In IEEE International Con-
ference on Advanced Video and Signal Based Surveillance (AVSS), 2018.

S. Bullinger, C. Bodensteiner, S. Wuttke, and M. Arens. Moving object re-
construction in monocular video data using boundary generation. In IEEE
International Conference on Pattern Recognition (ICPR), 2016.

S. Bullinger, C. Bodensteiner, and M. Arens. Instance flow based online multi-
ple object tracking. In IEEE International Conference on Image Processing
(ICIP), 2017.

10



1.7 Thesis Outline

S. Bullinger, C. Bodensteiner, and M. Arens. Monocular 3D vehicle trajec-
tory reconstruction using terrain shape constraints. In IEEE International
Conference on Intelligent Transportation Systems (ITSC), 2018a.

S. Bullinger, C. Bodensteiner, M. Arens, and R. Stiefelhagen. 3D vehicle tra-
jectory reconstruction in monocular video data using environment structure
constraints. In European Conference on Computer Vision (ECCV), 2018b.

S. Bullinger, C. Bodensteiner, and M. Arens. 3D object trajectory reconstruc-
tion using stereo matching and instance flow based multiple object tracking.
In IAPR International Conference on Machine Vision Applications (MVA),
2019a.

S. Bullinger, C. Bodensteiner, M. Arens, and R. Stiefelhagen. 3D object trajec-
tory reconstruction using instance-aware multibody structure from motion
and stereo sequence constraints. In IEEE Intelligent Vehicles Symposium
(IV), 2019b.

1.7 Thesis Outline

In Chapter 1 we give an introduction into image based reconstruction of dy-
namic objects. The chapter motivates the usage of Multibody Structure from
Motion and discusses important properties. Chapter 2 presents well known
methods relevant for static environment reconstruction such as local image de-
scription, Multiple View Geometry, Structure from Motion and factor graphs.
Many of the presented concepts are used by the instance-aware Multibody
Structure from Motion approach proposed in Chapter 3. The algorithm in
Chapter 3 is an essential component of the methods for shape and trajectory re-
construction of dynamic objects presented in Chapter 5 and Chapter 6. Chap-
ter 4 presents two novel benchmark datasets for shape and trajectory recon-
struction of dynamic objects. We use the corresponding ground truth to quan-
titatively evaluate the algorithms in Chapter 5 and Chapter 6. The method in
Chapter 5 focuses on the reconstruction of three-dimensional object shapes us-
ing semantic volumetric constraints. Chapter 6 uses the instance-aware Multi-
body Structure from Motion approach to reconstruct three-dimensional vehi-
cle/object trajectories using monocular and stereo image sequences of a single
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device. Finally, Chapter 7 concludes the thesis by providing a summary and a
future work section.
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2 Fundamentals of Image-Based
Reconstruction Techniques

This chapter describes well known image-based methods to reconstruct static
environments. The underlying principles are important for the instance-aware
Multibody Structure from Motion approach proposed in Chapter 3. In the first
Section 2.1, we describe the process of determining salient and distinct local
features. Section 2.2 summarizes the key aspects of multi-view geometry and
shows how image observations allow to reconstruct three-dimensional scene
structures with a single pair of images. Section 2.3 presents the structure of
a typical SfM pipeline building on top of the basics described in Section 2.2.
Further, Section 2.3 highlights the requirements of Multibody Structure from
Motion. Section 2.4 gives an introduction to factor graphs allowing to refine
Structure from Motion results by modeling additional constraints.

2.1 Local Image Description

Local image description methods determine local image structures, so called
local features or keypoints, which are salient, distinct and identifiable across a
set of images.

2.1.1 Problem Statement

In order to identify local features across different images, they must show
suitable properties such as invariance w.r.t. translation, rotation and scaling as
well as robustness w.r.t. changing illumination and affine projections.
Most previously published (hand-crafted) feature methods tackle this task us-
ing the following steps: 1) detection of salient features such as corners or
edges, 2) determination of a predominant orientation and 3) description of a
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Figure 2.1: Detected features using SIFT (Lowe, 1999).

local area around the feature. Salient features may be determined as maxima
in scale-space to achieve invariance w.r.t. translation and scaling. Orientation
assignment aims to ensure rotation invariant features. The appearance descrip-
tors typically reflect normalized gradient information instead of absolute color
values to achieve robustness w.r.t. illumination changes.
The feature descriptors as well as the feature geometry like their position,
orientation and scale allow to determine correspondences in different im-
ages. This information is useful to re-identify scene components and allows
to compute geometry relations between these images as shown in Section 2.2.
Fig. 2.1 shows a visualization of detected local features.

2.1.2 Related work and State-of-the-Art

Local image description methods may be categorized in hand-crafted local
features and learned local features. Hand-crafted features such as Scale In-
variant Feature Transform (SIFT) (Lowe, 1999, 2004), Speeded Up Robust
Features (SURF) (Bay et al., 2006, 2008) or AKAZE (Alcantarilla et al., 2012)
follow the standard pipeline described above. Other detectors like GFTT
(Jianbo Shi and Tomasi, 1994) and FAST (Rosten and Drummond, 2006) do
not consider scale while determining salient points to speed up processing.
Binary descriptors like ORB (Rublee et al., 2011) and BRISK (Leuteneg-
ger et al., 2011) provide a trade-off between lower computational costs and
reduced robustness. Recently, different works (Simo-Serra et al., 2015; Si-
monyan et al., 2014; Vassileios Balntas and Mikolajczyk, 2016; Yi et al.,
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Figure 2.2: Model of a pinhole camera depicting the projection of scene structures. The properties
of a pinhole camera are described by the camera center c, the principal point p and
the focal length f . The principal axis is orthogonal w.r.t. the image plane. The focal
length f denotes the corresponding distance. A three-dimensional point x given by
(xX , xY , xZ )T is projected onto the image point ( f xX

xZ
,
f xY
xZ

)T.

2016) proposed automatically learned local features. Schönberger et al. (2017)
show that advanced hand-crafted features achieve comparable results to re-
cent learned features in the domain of image-based reconstruction. Further,
the evaluation emphasizes that learned features show higher variances across
different datasets than traditional hand crafted features.

2.2 Multiple View Geometry

This section describes elementary components of current Structure from Mo-
tion pipelines such as camera models, camera calibration, epipolar geometry
and triangulation. These concepts allow to reconstruct scene structures and
camera poses simultaneously without prior knowledge about the camera mo-
tion or scene geometry. The theory of epipolar geometry is crucial to under-
stand the limitations of standard Structure from Motion w.r.t. dynamic scenes.
The subject is discussed in more detail in Hartley and Zisserman (2004).

2.2.1 Pinhole Camera Model

The pinhole camera model describes the central projection of a point in space
onto an image plane. The geometry of the image capturing process is shown
in Fig. 2.2. The center of the projection is called the camera center c. The line
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Figure 2.3: Left: The geometric relation of two cameras (defined by their camera centers c and
c′) and a three-dimensional point x including the corresponding projections m and m′
is described by the epipolar plane. Right: The back-projection of m is imaged in the
other view as the epipolar line l′. All epipolar lines l′ intersect the epipole e′.

from the camera center perpendicular to the image plane is called the principal
axis.
Let m = (m1,m2,m3)T denote the homogenous vector corresponding to the
image point ( m1

m3
, m2
m3

). The pinhole camera model allows us to project homo-
geneous 3-space point x = (x, y, z,1)T with the projection matrix P to a point
on the image plane according to equation (2.1)

m = Px = K[R|t]x = KR[I|−c]x. (2.1)

R ∈ SO(3) and c denote the rotation and the center of the camera. The cal-
ibration matrix K defined in (2.2) describes intrinsic camera parameters such
as focal length f , principal point (pu ,pv ) and shearing factor s.

K =



f s pu
0 f pv
0 0 1



. (2.2)
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2.2.2 Epipolar Geometry

This section provides an overview of the epipolar geometry, which describes
the geometric relation between two different views without explicitly recon-
structing the structure of the scene. The epipolar geometry is represented by a
3x3 matrix - the fundamental matrix (Hartley, 1992).
Let m ↔ m′ denote corresponding pixel observations of the same 3-space
point x in the first and the second view. Given m the epipolar geometry allows
to constrain the position of m′ in the second image. Furthermore, the camera
matrices P and P′ may be computed from the fundamental matrix F.
Let us consider in the following two views with associated camera matrices
P and P′. According to Section 2.2.1 a 3-space point x is imaged as image
point m = Px and m′ = P′x in the first and second view, respectively. The
back-projection of an image point m is imaged as a line l′ in the second view
- the epipolar line of m. Thus, the point m′ corresponding to m must lie on
l′. All epipolar lines intersect at the epipole, which is the intersection of the
camera baseline and the corresponding image plane, i.e., e = Pc′ and e′ = P′c.
Fig. 2.3 illustrates the relations described above.
In the following, we present the algebraic derivation of the fundamental ma-
trix proposed by Xu and Zhang (1996). Let P+ be the pseudo-inverse of P.
This allows us to define two 3-space points on the back-projection of m: the
camera center c and P+m. Both points are imaged in the second view with P′c
and P′P+m. The corresponding epipolar line is defined by

l′ = (P′c) × (P′P+m) = e′ × (P′P+m) = [e′]×(P′P+)m = Fm, (2.3)

where [x]× defines the skew-symmetric matrix of a vector x according to equa-
tion (2.4).

[e]× =



0 −e3 e2

e3 0 −e1

−e2 e1 0



(2.4)

In (2.3) the line in the image plane is defined by a vector l = (a,b,c) corre-
sponding to the equation ax + by + c = 0. Two vectors l and kl represent the
same line for any constant k , 0. A line going through two points m1 and m2
may be represented with the cross product l = m1 ×m2.
Let P and P′ be decomposed according to P = K[R|t] and P′ = K′[R′|t′].
Further, let R? = R′RT and t? = t′−R?t denote the relative pose between the
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first and the second view. According to equation (2.3) the fundamental matrix
F describes the mapping of a point m onto the corresponding epipolar line l′
and shows the following relation to the cameras P and P′.

F = [e′]×P′P+ = K′−T[t?]×R?K−1 (2.5)

For two corresponding points m ↔ m′ the fundamental matrix shows the
following property

m′TFm = m′Tl′ = 0. (2.6)

Note that a point m lies on a line l if and only if mTl = 0.
Equation (2.6) shows that F can be purely computed from image correspon-
dences m ↔ m′, i.e., there is no knowledge about the corresponding camera
matrices necessary. However, the formulation in (2.5) breaks down, when both
views share the same camera centers, i.e. it is only valid for non-coincident
camera centers. Thus, pure rotations are degenerated reconstruction cases.
In contrast to the camera matrices P and P′ the fundamental matrix F is in-
dependent of the chosen world coordinate frame. Multiple pairs P and P′
correspond to the same fundamental matrix. Thus, the fundamental matrix F
determines a camera pair P and P′ up to a projective transformation.
The essential matrix (Longuet-Higgins, 1981) is a specialization of the funda-
mental matrix, which can be applied in cases where the camera calibration is
known. The essential matrix is the correspondence of the fundamental matrix
for normalized image coordinates m̂ and m̂′ as shown in equation (2.7),

m̂′TEm̂ = 0 (2.7)

with m̂ = K−1m and m̂′ = K′−1m′. By combining equation (2.5), (2.6) and
(2.7) we obtain the following relation of the essential and the fundamental
matrix (2.8).

E = K′TFK = [t?]×R? (2.8)

The possible camera matrices defined by the essential matrix are ambiguous
w.r.t. a scale and a four-fold ambiguity. Only one of the four possible solu-
tions is geometrically consistent and leads to triangulated points in front of
both cameras P and P′.
Let be SVD(E) = UΣVT = U diag(1,1,0)VT the singular value decomposi-
tion of the essential matrix. Note, that a 3x3 matrix is an essential matrix if
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and only if the first two singular values are equal and the last is zero. The
possible factorizations of E = [t?]×R? are shown in (2.9) and (2.10).

[t?]× = UZUT with Z =



0 1 0
−1 0 0
0 0 0



(2.9)

The factorization of [t?]× determines the translation t? up to scale. Because
0 = [t?]×t? it follows that UZUTt? = 0 and t? = U(0,0,1)T = u3.

R? = UWVT or R? = UWTVT with W =



0 −1 0
1 0 0
0 0 1



(2.10)

2.2.3 Computation of the Fundamental Matrix

As shown in Section 2.2.2 the fundamental and essential matrix can be com-
puted from image correspondences alone. In the following, we present well
known techniques to estimate the fundamental matrix. The described concepts
apply for the computation of the essential matrix as well. Because the essential
matrix has a lower degree of freedom, the estimation of the essential matrix
requires less matching point pairs. For more information we refer the reader
to Hartley and Zisserman (2004).

Computation of the Fundamental Matrix

As shown in Section 2.2.2, observations and the fundamental matrix share the
following relation miFmi = 0 with matching keypoints mi ↔ m′i . With
m = (x, y,1)T and m′ = (x ′, y′,1)T this is equivalent to (2.11).

x ′x f1,1 + x ′y f1,2 + x ′ f1,3 + y′x f2,1 + y′y f2,2 + y′ f2,3 + x f3,1 + y f3,2 + f3,3 = 0
(2.11)
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2 Fundamentals of Image-Based Reconstruction Techniques

With f denoting the 9-vector of the entries of F in row row-major order (2.11)
can be simplified to (2.12)

(x ′x, x ′y, x ′, y′x, y′y, y′, x, y,1) f = 0. (2.12)

For n different matches this translates to (2.13).

Af =



x ′1x1 x ′1y1 x ′1 y′1x1 y′1y1 y′1 x1 y1 1
...

...
...

...
...

...
...

...
...

x ′n xn x ′n yn x ′n y′n xn y′n yn y′n xn yn 1

︸                                                                    ︷︷                                                                    ︸
A

f = 0 (2.13)

If the matrix A has a rank of eight, the solution for f is unique. Because of
noisy point measurements, the rank of A is usually nine. In this case we deter-
mine a solution for f by applying a linear least-squares optimization to (2.13).
The resulting estimation for F that corresponds to f will in general be of rank
three. However, true fundamental matrices F have a rank of two. The nor-
malized 8-point algorithm (q.v. Algorithm 1) is designed to tackle this issue
by enforcing a singularity constraint. While the normalized 8-point algorithm
performs well in many cases, a more robust estimation of the fundamental
matrix F can be achieved by iteratively minimizing the algebraic error or by
iteratively minimizing a geometric image distance like the reprojection error
(2.14). ∑

i

d(mi ,m̂i )2 + d(m′i ,m̂
′
i )

2 (2.14)

In both cases, the 8-point algorithm may be used to compute the initial solu-
tion.

Automatic Computation of the Fundamental Matrix

In the beginning of this section, we assumed that the matches mi ↔ m′i
are given. Correspondences based on keypoint detectors and descriptors usu-
ally contain mismatches (e.g., because of ambiguous keypoint descriptors) and
correspond potentially to inconsistently moving scene structures. Using such
correspondences directly, results in degenerated fundamental matrix estima-
tions. Algorithm 2 shows a scheme to compute the fundamental matrix given
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2.2 Multiple View Geometry

Algorithm 1: Normalized 8-point algorithm.

Normalization
Compute normalized image coordinates m̂i = Tmi and m̂′i = T′m′i ,
where T and T′ denote transformations consisting of translation and
scaling

Linear Solution
Let Â and f̂ denote the counterpart of A and f corresponding to
m̂i ↔ m̂′i

Determine F̂ from the singular vector f̂ corresponding to the smallest
singular value of Â

Constraint enforcement
Let F̂ = UDVT be the SVD of F̂ with D = diag(r, s, t) and r ≥ s ≥ t
F̂′ = Udiag(r,s,0)VT

Replace F̂ with F̂′, the closest singular matrix to F̂ under a Frobenius
norm

Denormalization
Compute F = T′F̂′T corresponding to mi ↔ m′i

a pair of images. The detected correspondences are considered as putative
matches, i.e., correspondences with noisy feature point positions and incor-
rect feature matches.

2.2.4 Point Triangulation

In the previous section we have seen how camera parameters can be deter-
mined from image observations alone. In this section we combine camera
parameters and image observations to infer three-dimensional scene struc-
tures using a linear triangulation method. Image-based measurements are
potentially noisy. The back-projections of corresponding viewing rays are not
intersecting, i.e., the projections m = Px and m′ = P′x as well as the epipolar
constraint m′TFm = 0 of two measurements m and m′ are not exactly satis-
fied.
Following the direct linear transformation (DLT) algorithm (Sutherland, 1974),
we rewrite m = Px as m × Px = 0. This allows us to eliminate the homo-
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2 Fundamentals of Image-Based Reconstruction Techniques

Algorithm 2: Automatic computation of the fundamental matrix.

Compute Interest Points
Compute putative correspondences pi ↔ p′i
RANSAC robust estimation (Repeat for N samples)

Select 8 random correspondences
Compute the fundamental matrix piFp′i = 0 using the 8-point
algorithm

Calculate the reprojection error for all pi ↔ p′i
Compute the number of inliers consistent to F

Re-estimate F from all correspondences classified as inliers by
minimizing the cost function (2.14) using the Levenberg-Marquardt
algorithm

Determine further interest point correspondences along the epipolar lines.

geneous scale factor λ. With m = (u?,v?, λ) ' (u,v,1), the cross product is
explicitly defined according to (2.15).

m × Px = m ×



pT
1

pT
2

pT
3



x =



v?pT
3x − λpT

2x
λpT

1x − u?pT
3x

u?pT
2x − v?pT

1x



= 0⇔



vpT
3x − pT

2x
pT

1x − upT
3x

upT
2x − vpT

1x

︸            ︷︷            ︸
M

= 0 (2.15)

Let M′ denote the counter part of M corresponding to m′. Because only two
components of M and M′ are linear independent, we use the first two rows of
M and M′ to create (2.16).



vpT
3x − pT

2x
pT

1x − upT
3x

v′pT
3x − pT

2x
pT

1x − u′pT
3x



= 0⇔



vpT
3x − pT

2x
upT

3x − pT
1x

v′pT
3x − pT

2x
u′pT

3x − pT
1x

︸            ︷︷            ︸
A

= 0 (2.16)

This equation system is overdetermined, since the position of the point x cor-
responding to m and m′ is a 3-space vector. The solution of (2.16) is given by
the unit singular vector of the smallest singular value of A.
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2.3 Structure from Motion

In contrast to the method described above, different algorithms for point tri-
angulation have been proposed, which leverage the redundancy in multiple
views (Aholt et al., 2012; Hartley and Sturm, 1995; Kang et al., 2014; Lu and
Hartley, 2007; Schönberger and Frahm, 2016).

2.2.5 Bundle Adjustment

Bundle adjustment (BA) (Triggs et al., 2000) is a non-linear method com-
monly used to refine image-based reconstructions. Given a set of 3D points
x j and camera matrices Pi as well as noisy image observations m j, i that are
approximately described by m j, i = Pix j . Bundle adjustment attempts to de-
termine the Maximum Likelihood estimate of x j and Pi (i.e., x̂ j and P̂i) as-
suming Gaussian measurement noise. Concretely, BA computes x̂ j and P̂i that
minimize the reprojection error of all points for each view according to (2.17).

argmin
Pi,x j

∑
i, j

d(Pix j ,m j, i )2 (2.17)

Here, d(u,v) represents the geometric image distance between two points u
and v. Minimizing the reprojection error corresponds to the adjustment of the
bundle of rays between the camera center and visible scene points.
A common method to minimize (2.17) is the Levenberg-Marquardt algorithm
(Levenberg, 1944). BA requires a good initialization to converge to the actual
optimum, which is why it is used as a refinement. Hartley and Zisserman
(2004) recommend to use BA as final step of any image-based reconstruction.

2.3 Structure from Motion

There are two categories of SfM approaches: incremental and global SfM.
Incremental SfM is currently the prevalent state-of-the-art method (Schön-
berger and Frahm, 2016) and used throughout this thesis. This section pro-
vides an overview of typical components of incremental Structure from Mo-
tion pipelines.
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Input
Images

Feature
Matching

Feature
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Geometric
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Correspondence Search

Image
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Bundle
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Sparse Reconstruction

Multi-View Fusion

Multi-View Stereo

Surface
Reconstruction

Dense Reconstruction
Model

Figure 2.4: Building blocks of a state-of-the-art incremental SfM pipeline. The input images are
part of the Sceaux Castle dataset (Moulon, 2012).

2.3.1 Problem Statement and Algorithm Outline

Creating three-dimensional reconstructions using a single camera is an under-
constrained problem, since images are only two-dimensional projections of
the corresponding environment. Structure from Motion tackles this ambiguity
by combining information from different time steps.
In order to manage the complexity of the problem, SfM decomposes the re-
construction process into more controllable subproblems. Fig. 2.4 illustrates
the dependencies of typical building blocks of a state-of-the-art incremental
SfM pipeline.
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2.3 Structure from Motion

Correspondence Search

The pipeline takes a set of images as input to perform feature correspondence
search. The correspondences are considered as projections of the same three-
dimensional point and allow to implicitly determine input images with over-
lapping field of views.
First, local features (Alcantarilla et al., 2012; Bay et al., 2006; Lowe, 1999;
Simo-Serra et al., 2015; Simonyan et al., 2014; Vassileios Balntas and Miko-
lajczyk, 2016; Yi et al., 2016) are detected - q.v. Section 2.1.
Next, corresponding descriptors of features detected in different images are
matched. The output of this building block are potentially overlapping image
pairs defined by so called putative feature matches. The computational effort
of a naive method determining all potential feature correspondences increases
quadratically with the number of images NI and the number of corresponding
features NFi , i.e., O(NI

2NFi
2), making it unsuitable for large image sets. A

common approach is to use a vocabulary tree to hierarchical index features
and/or to compute a global image description (Nister and Stewenius, 2006).
This allows to determine visual similar images in linear time w.r.t. number of
images. For each pair of visual similar images, the vocabulary tree allows to
determine matching local features in linear time w.r.t. to the number of fea-
tures. This results in an amortized computational effort of O(NI NFi ).
In the next step, SfM attempts to compute a mapping between putative feature
correspondences to determine geometrically verified matches. The fundamen-
tal or the essential matrix (q.v. Section 2.2.2) describe such transformations
between two images for a moving camera. Pure sensor rotations and planar
scenes may be described by homographies (Hartley and Zisserman, 2004).
If the transformation is supported by a sufficient number of inliers the corre-
sponding images are considered geometrically verified. The output of this step
is a data structure called scene graph (Raguram et al., 2011). The nodes in the
graph represent images and scene points.

Sparse Reconstruction

The incremental sparse reconstruction step, works solely on the scene graph
- no other image information is required. SfM initializes the model with the
result of a two-view reconstruction and incrementally performs image registra-
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2 Fundamentals of Image-Based Reconstruction Techniques

tion, triangulation (q.v. Section 2.2.4), bundle adjustment (q.v. Section 2.2.5)
and outlier filtering.
Initialization of the incremental reconstruction is crucial (Beder and Steffen,
2006), since it affects all subsequent reconstruction steps. A bad initialization
may lead to degenerated reconstructions or incomplete results.
Gao et al. (2003) and Lepetit et al. (2008) provide efficient solutions for the
Perspective-n-Point (Fischler and Bolles, 1981) problem using 2D-3D cor-
respondences to register new images to the set of three-dimensional scene
points. The triangulation step leverages feature correspondences of the last
registered camera to compute additional three-dimensional scene points. Ex-
tending the set of scene points with triangulation allows to potentially register
new cameras to the model.
Deviations in the camera pose result in incorrectly triangulated points and vice
versa. BA allows to leverage observation redundancies (e.g., scene points that
are observed by more than two views) to jointly optimize scene points and
camera matrices (q.v. Section 2.2.5). The application of BA reduces the ac-
cumulation of errors during the reconstruction process. Without refinement of
the intermediate reconstruction results, iterative SfM usually drifts into a non-
recoverable state. Because of the computational costs of BA, it is not applied
in each iteration.

Multi-View Stereo

The SfM pipeline may be extended optionally by an additional Multi-View
Stereo building block, which computes a dense reconstruction representing
the scene with a dense point cloud or a textured mesh.
Multi-View Stereo (MVS) estimates multi-view depth maps potentially in-
cluding surface normals for registered images. Using the camera parameters
computed in the previous sparse reconstruction step allows to leverage the
(known) epipolar geometry to determine pixel correspondences, i.e., for each
pixel potential matches in other views are constrained by the corresponding
epipolar line (q.v. Section 2.2.2). The dense reconstruction allows to recover
surfaces that have no correspondence in the sparse point cloud, e.g., areas
without salient features.
Multiple pixels along the epipolar line may appear similar because of repeti-
tive elements. Occlusions and reflections result potentially in no similar values
at all. To tackle these issues, MVS determines dense correspondences with
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2.3 Structure from Motion

similar appearance by simultaneously evaluating the epipolar lines of multiple
views.
During Multi-View Fusion the previously computed depth maps (and corre-
sponding normal vectors) of each camera are fused into a single dense point
cloud leveraging the redundancy of overlapping views. Redundant points and
normal vectors allow to filter remaining outliers.
The surface reconstruction step, leverages the dense point cloud and corre-
sponding normals of the previous step to compute a watertight textured mesh,
which shows beneficial properties for many application scenarios.

2.3.2 Ambiguity of Reconstruction Results

Without information about calibration or the pose of the cameras, the recon-
struction shows a projective transformation ambiguity. In the calibrated case
the reconstruction can be determined up to a similarity transformation. For
example, scaling the reconstructed scene by a factor k and the camera matri-
ces by a factor 1/k according to (2.18) does not change the projections of the
scene points. This shows that SfM reconstructions are scale ambiguous.

m = Px = (
1
k

P)(kx) (2.18)

Similarly, applying a transformation to the scene and the corresponding in-
verse transformation to the camera projection matrices from the right side (see
(2.19)), preserves the measurements.

m = Px = (PT−1)(Tx) (2.19)

2.3.3 Related Work and State-of-the-Art

Longuet-Higgins (1981) proposed one of the first algorithms (using two im-
ages) to reconstruct scene structures. Subsequent works leverage the redun-
dancy of multiple images (Hartley, 1994; Shashua and Werman, 1995; Szeliski
and Kang, 1994; Tomasi and Kanade, 1992). Modern SfM pipelines are able
to reconstruct more than hundred thousand (Agarwal et al., 2009), millions
(Frahm et al., 2010; Schönberger et al., 2015b), and even several tens of mil-
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lions of images unstructured images (Heinly et al., 2015). These methods may
be divided into iterative and global approaches. Iterative or sequential SfM
methods (Moulon et al., 2012; Schönberger and Frahm, 2016; Snavely et al.,
2006; Wu, 2011) are more likely to find reasonable solutions than global SfM
approaches (Moulon et al., 2013; Sweeney et al., 2015; Wilson and Snavely,
2014). However, the latter are less prone to drift.
Incremental and global SfM pipelines rely on an efficient feature matching
(Agarwal et al., 2009; Frahm et al., 2010; Havlena and Schindler, 2014; Heinly
et al., 2015; Lou et al., 2012; Schönberger et al., 2015a) to handle large scale
reconstruction problems. For incremental SfM methods the selection of the
intitial image pair is especially important (Beder and Steffen, 2006), since all
subsequent computation steps depend on it. Bao and Savarese (2011) propose
to leverage semantic information of static objects, i.e., object detections, as an
additional constraint to estimate the scene structure and the camera motion.
The advances in image-based modeling led to a number of open source SfM
and MVS tools and libraries: Bundler (Snavely et al., 2006), OpenMVG
(Moulon et al., 2012), TheiaSfM (Sweeney et al., 2015), MVE (Fuhrmann
et al., 2015), Colmap (Schönberger and Frahm, 2016; Schönberger et al.,
2016) and Meshroom (Jancosek and Pajdla, 2011; Moulon et al., 2012). But
also commercial products such as Pix4D (Pix4D, 2019), Metashape (Agisoft,
2019) and RealityCapture (Capturing Reality, 2019) are available. Li et al.
(2010), Crandall et al. (2011) and Wilson and Snavely (2014) present differ-
ent datasets with unordered image collections to evaluate large scale Structure
from Motion algorithms.

2.4 Factor Graphs

Factor graphs (Kschischang et al., 2001) are a family of probabilistic graphi-
cal models representing factorizations of functions and are applicable when a
(difficult) problem can be expressed as a product of (simple) local functions,
which depend only on a subset of the problem variables. The factorization of
a probability distribution function with factor graphs and the so called sum-
product algorithm (Kschischang et al., 2001) allows to compute marginal dis-
tributions making it suitable for modeling and solving inference problems. In
computer vision, factor graphs have a widespread use to determine camera
poses and to estimate landmark positions. Similar to bundle adjustment (q.v.

28



2.4 Factor Graphs

Section 2.2.5) factor graphs may be used to minimize the reprojection error
of existing reconstructions. However, the flexibility of the framework allows
to model more complex constraints such as stereo or odometry constraints.
We leverage these capabilities in Section 6.5.3 to compute consistent object
trajectories in stereo image sequences.

2.4.1 Function Factorization

We use (2.20) to define the factorization of a function f .

f (Θ) =
∏
k

fk (Θk ) (2.20)

The local functions fk (·) only depend on a subset of variables Θk . Using a
Gaussian measurement model allows to compute the factors fk (Θk ) according
to (2.21).

fk (Θk ) ∝ exp
(
−

1
2
‖hk (Θk ) − zk ‖2Σk

)
(2.21)

Here, ‖e‖2
Σk

= eTΣk
−1e denotes the squared Mahalanobis distance with co-

variance matrix Σk . hk (Θk ) and zk denote the measurement function and
measurement corresponding to the factor fk . For more details see Dellaert
and Kaess (2017).
Let be Θ∗ the optimal variable assignment that maximizes (2.20), i.e.,

Θ
∗ = argmax

Θ

f (Θ) = argmax
Θ

log f (Θ). (2.22)

Plugging (2.20) and (2.21) in (2.22) results in an optimization problem of
nonlinear least-squares as shown in (2.23). We drop the factor 1

2 , since it
does not affect the solution. In the case of probability distributions all variable
values fk are between zero and one. Using the logarithm avoids numerical
effects, e.g., instabilities, when computing (2.23) for large k.

Θ
∗ = argmin

Θ

(− log f (Θ)) = argmin
Θ

∑
k

‖hk (Θk ) − zk ‖2Σk (2.23)

We minimize the nonlinear least-squares problem shown in (2.23) to find the
optimal variable assignment Θ∗. To determine the maximum a posteriori
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(MAP) estimate, one may apply the Levenberg-Marquardt algorithm (Lev-
enberg, 1944) to (2.23), which solves the nonlinear least-squares problem iter-
atively. In each iteration, the measurement functions hk (·) are linearized using
a Taylor expansion according to (2.24).

hk (Θk ) = hk (Θ0
k + ∆k )

' hk (Θ0
k ) +

∂hk (Θk )
∂Θk

����Θ0
k

∆k

B hk (Θ0
k ) + Hk∆k

(2.24)

Here, ∆k = Θk − Θ
0
k

denotes the state update vector. To find a solution ∆∗ for
the locally linearized problem, we plug (2.24) into (2.23) according to (2.25),
which is a linear least-squares problem.

∆
∗ = argmin

∆

∑
k

‖hk (Θ0
k ) + Hk∆k − zk ‖2Σk

= argmin
∆

∑
k

‖Hk∆k − (zk − hk (Θ0
k ))‖2

Σk

= argmin
∆

∑
k

‖Σ
−1/2
k

Hk∆k − Σ
−1/2
k

(zk − hk (Θ0
k ))‖22

B argmin
Θ

∑
k

‖Ak∆k − bk ‖22 B argmin
Θ

‖A∆ − b‖22

(2.25)

Note that A in (2.25) is a sparse block matrix.

2.4.2 Factor Graphs, Function Factorization and
Image-Based Reconstructions

A factor graph (Kschischang et al., 2001) is a bipartite graph G = (F ,Θ,E)
with two node types: factor nodes fk ∈ F and variable nodes θl ∈ Θ. The
edges ek,l ∈ E connect factor and variable nodes. In the context of factor
graphs, Θk in (2.20) represents the set of variables θl adjacent to fk , i.e., each
θl ∈ Θk is connected with an edge to fk . Variable nodes represent quanti-
ties we want to estimate. In contrast, factor nodes define constraints on vari-
able nodes and represent prior knowledge or information of measurements.
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X1 X2 X3

L1

L2
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L4

Figure 2.5: Example of a factor graph representing a Structure from Motion problem. The gray
and white circles denote landmarks and camera poses, respectively. The image obser-
vations (i.e., the keypoint measurements) impose constraints on possible camera poses
and landmark positions. The black squares represent such constraints.

Examples for variable and factor nodes are camera poses and keypoint corre-
spondences, respectively. Fig. 2.5 shows a factor graph representing a typical
Structure from Motion problem.
Dellaert and Kaess (2006) analyse the connection of Visual SLAM problems
to factorization and factor graphs. The paper shows that the block-structure
of A in (2.25) corresponds to the adjacency matrix of a Gaussian factor graph
representing the same problem. Additionally, they point out that factoriza-
tion and variable elimination are equivalent. Kaess et al. (2008) propose an
approach to tackle SLAM problems with incremental matrix factorizations.
SLAM algorithms add new observations incrementally, A and (2.25) must be
recomputed for each time step. Since A is a potentially huge (sparse) matrix,
the repetitive computation of (2.25) becomes computationally expensive with
increasing problem sizes. Kaess et al. (2011) propose a graph-based counter-
part to Kaess et al. (2008). This algorithm benefits from the compact repre-
sentation and the spatial structure of factor graphs, i.e., only a local part of the
factor graph must be updated when new data is inserted. Recently, Dellaert
and Kaess (2017) present a detailed summary of Dellaert and Kaess (2006)
and Kaess et al. (2011).
In Section 6.5.3 we define stereo constraints leveraging the GTSAM library
(Daellert, 2012), which provides implementations of the algorithms presented
in Kaess et al. (2011).
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2.5 Summary

In this chapter we have seen how three-dimensional models of rigid scenes
may be reconstructed from image observations. We emphasized important
properties of local image description methods to determine salient and dis-
tinct features suitable for matching across different images. One of the central
insights in image-based modeling is that plain point correspondences are suf-
ficient to compute camera parameters and scene structures. The fundamental
matrix (uncalibrated case) or essential matrix (calibrated case) represent the
corresponding geometric constraints for feature observations in two views.
We present important building blocks of current state-of-the-art incremental
Structure from Motion approaches. In addition, we give a brief introduction
into factor graphs - a general frame work allowing to model image-based re-
construction constraints, which are not part of most SfM pipelines. A combi-
nation of factor graphs with different image-based modeling methods is rec-
ommended, since factor graphs require a reasonable initialization and are not
suitable to perform data association of many real-world problems.
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3 Instance-Aware Multibody
Structure from Motion

This chapter presents a novel Multibody Structure from Motion approach that
allows to reconstruct multiple dynamic objects in mainly static environments
using image sequences. Parts of this chapter have been published in Bullinger
et al. (2017), Bullinger et al. (2018b) and Bullinger et al. (2019b). The pro-
posed concepts are the foundation of the object shape and object trajectory
reconstruction algorithms presented in Chapter 5 and Chapter 6.
Multibody Structure from Motion is an extension of standard Structure from
Motion (q.v. Section 2.3) that allows to reconstruct independently moving
non-deformable objects. As we have seen in Algorithm 2 in Section 2.2.3,
Standard SfM is usually limited to static scenes, since the determination of the
fundamental matrix between two cameras depends only on the largest inlier
set of putative matches. Other correspondences are treated as outliers and are
not reconstructed.
In contrast to existing Multibody Structure from Motion approaches, we use a
combination of instance-aware semantic segmentation and optical flow meth-
ods to determine object specific keypoints in image sequences. The approach
is robust to occlusion and handles stationary as well as parallel moving objects,
which represent challenging cases for many previously proposed algorithms.
The remaining part of this chapter is organized as follows. We give a short
description of the problem statement in Section 3.1 and discuss related work
of Multibody Structure from Motion methods in Section 3.2. In Section 3.3
we give a brief overview of the proposed pipeline. Section 3.4 presents the
association of object detections in monocular (Section 3.4.4) and binocular
(Section 3.4.5) image sequences, which is used in Section 3.5 to determine
object and backround specific point clouds as well as corresponding camera
poses. Section 3.6 highlights important implementation details. In Section 3.7
we quantitatively evaluate the proposed tracking algorithm using the MOT
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Input Images

Reconstruction 1 Reconstruction 2

. . .

Reconstruction n

Figure 3.1: Visualization of the MSfM problem. Independently moving scene components are
reconstructed separately. Each reconstruction is represented by a point cloud and a
corresponding set of camera poses (red).

dataset (Leal-Taixé et al., 2015). Section 3.8 discusses important properties of
our Multibody Structure from Motion approach.

3.1 Problem Statement

The reconstruction of dynamic scenes with visual information is an under-
constrained task because of possible object deformations. To mitigate this
issue, Multibody Structure from Motion (MSfM) assumes that the scene can
be modeled as a multibody system, i.e., the scene consists of non-deformable
components moving independently. This allows to leverage Multiple View
Geometry techniques (q.v. Section 2.2) to reconstruct independent scene com-
ponents simultaneously.
As shown in Algorithm 2 in Section 2.2.3, standard Structure from Motion
methods sample putative matches, e.g., feature correspondences, randomly
to determine the fundamental matrix of two images with the largest inlier
set. This elementary step of current state-of-the-art SfM pipelines limits their
application to static environments. In scenes with multiple independently
moving components, random sampling of putative matches leads (for non-
degenerated cases) to fundamental or essential matrices with inlier matches of
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one element - features corresponding to other scene components are consid-
ered as outliers. The resulting reconstruction contains only three-dimensional
scene structures of a single scene element. To reconstruct individually mov-
ing scene components we need to determine object specific image correspon-
dences.
We consider monocular and stereo image sequences of dynamic objects in
mainly static environments captured by a single camera. Fig. 3.1 shows a vi-
sualization of the problem statement.
SfM based reconstructions define restrictions on the poses of the reconstructed
scene elements. In the scenario of moving objects in a mainly static environ-
ment, it is suitable to express the relative object poses w.r.t. the coordinate
frame system of the environment. Such pose constraints are essential to re-
construct object trajectories as demonstrated in Chapter 6.

3.2 Related Work

Many Multibody Structure from Motion methods use epipolar constraints
(with motion segmentation) to determine corresponding feature matches to
reconstruct multiple objects simultaneously.
Epipolar constraint based approaches (Fitzgibbon and Zisserman, 2000; Kundu
et al., 2009; Kundu et al., 2011; Lebeda et al., 2014; Ozden et al., 2010; Sabze-
vari and Scaramuzza, 2016) determine, if there exists a valid fundamental or
essential matrix for each potential object pair in a pair of images. This task
is highly non-trivial, since the random selection of putative matches in scenes
with many independently moving components has a high probability to result
in inconsistent inlier sets, i.e., the selected matches correspond to different
components. Let w describe the probability that an arbitrary feature match is
an inlier w.r.t. to an specific object. Further, let p denote the probability that
out of n different samples at least one sample consisting of s different feature
matches contains only inliers. Then, w, p, n and s show the relation in (3.1).

(1 − ws )n = 1 − p⇔ n =
log(1 − p)

log(1 − ws )
(3.1)

A common choice for p is p = 0.99 (Hartley and Zisserman, 2004). As we
have seen in Section 2.2.3 the fundamental matrix may be computed with the
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3 Instance-Aware Multibody Structure from Motion

normalized 8-point algorithm from s = 8 feature observations. Let us consider
a pair of images showing 2, 5 and 10 different components with an equal num-
ber of object specific feature observations, i.e., w2 = 0.5, w5 = 0.2, w10 = 0.1.
To achieve a probability of p = 0.99 we need n2 ≈ 1177, n5 ≈ 1.8 · 106

and n10 ≈ 4.6 · 108 sampling steps, respectively. In addition, it is difficult
to identify adequate thresholds to correctly determine object specific observa-
tions without semantic contextual information. For instance, it is unclear how
to define the minimum size of valid inlier sets.
Different attempts have been made to determine object specific feature corre-
spondences with a reduced computational effort. For example, Rubino et al.
(2015) present an approach that uses higher semantics, i.e., the output of an ob-
ject detector, to determine consistently moving feature matches with a reduced
number of samples n. Unfortunately, Rubino et al. (2015) do not provide any
reconstruction results, which show the efficiency of the proposed algorithm.
Another approach to reduce the computational effort is the exploitation of in-
herent characteristics of the image data. For example, motion segmentation
and keypoint tracking based methods (Kundu et al., 2009; Kundu et al., 2011;
Lebeda et al., 2014; Yuan and Medioni, 2006) allow to find feature correspon-
dences in image sequences. These methods use visual information of subse-
quent images to determine corresponding object specific feature observations.
This simplifies the problem of associating corresponding matches and reduces
the computational complexity. However, motion segmentation shows limita-
tions in certain situations such as consistently moving and partly stationary
objects. Furthermore, these methods are vulnerable to occlusion. Specific ap-
proaches such as Kundu et al. (2011) or Grinberg (2018) are required to merge
different feature sets, which are separated by occlusions.
MSfM reconstructions are inherently scale ambiguous. Additional constraints
are required to solve the scale ambiguity. Song and Chandraker (2015), Lee
et al. (2015) and Chhaya et al. (2016) assume that the camera is mounted
on a driving vehicle, i.e., the camera has specific height and a known pose.
Ozden et al. (2004) propose the non-accidental motion principle, which al-
lows to solve the scale ambiguity by making assumptions about object and
camera motion trajectories. Yuan and Medioni (2006), Namdev et al. (2013)
and Park et al. (2015) follow this principle introducing complementary motion
constraints. Özden (2007) provides an extended analysis of the non-accidental
motion principle.
Other works tackling the problem of NRSfM such as Russell et al. (2014) and
Kumar et al. (2016) are beyond the scope of this work.
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3.3 Pipeline Overview

3.3 Pipeline Overview

The proposed Multibody Structure from Motion method uses instance-aware
semantic segmentations and optical flow correspondences to compute video
object segmentations on pixel level. This allows us to determine object spe-
cific feature observations throughout video sequences. In contrast to epipolar
constraint and motion segmentation based methods, our approach handles sta-
tionary and parallel moving objects naturally.
Fig. 3.2 shows the pipeline of the proposed approach allowing us to process
monocular as well as stereo image sequences. The algorithm tracks multi-
ple two-dimensional object shapes on pixel level throughout video sequences.
Details of the multiple object tracking (MOT) approach are described in Sec-
tion 3.4. The method uses instance-aware semantic segmentations (Li et al.,
2017) to identify object shapes and optical flow features (Ilg et al., 2017) to
associate extracted object shapes in subsequent frames. The tracking of ob-
ject shapes on pixel level allows us to compute for each object a set of images
containing only color information corresponding to this object instance - q.v.
Fig. 3.2. We use the complement of all detected objects to create a set of envi-
ronment images. The sets of object and background images allow us to deter-
mine object and background specific feature points. We apply SfM (Moulon
et al., 2012; Schönberger and Frahm, 2016) as shown in Fig. 3.2 to compute
object and background specific camera poses as well as corresponding point
clouds. In scenarios with dynamic objects in mainly static environments, it
is suitable to express object poses w.r.t. to the background coordinate frame
system. We describe details about the reconstruction and relative object poses
in Section 3.5.

3.4 Multiple Object Tracking for Multibody
Structure from Motion

Most current Multiple Object Tracking (MOT) methods use two-dimensional
bounding boxes to represent object detections. Bounding boxes contain not
only detected objects but also background structures, which makes them un-
suitable to determine object specific feature points. This section describes an
online MOT approach that allows to track objects on pixel level in monocular
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Figure 3.2: Overview of the MSfM pipeline. Boxes with corners denote computation results and
boxes with rounded corners denote computation steps. We use instance-aware seman-
tic segmentations as well as optical flow features to compute object and environment
specific images. Corresponding three-dimensional models and camera poses (red rect-
angles) are computed with well known SfM techniques.
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3.4 Multiple Object Tracking for Multibody Structure from Motion

and stereo image sequences using instance-aware semantic segmentation (see
Section 3.4.1) and optical flow (see Section 3.4.1).

3.4.1 Fundamentals and Terminology

This section describes briefly the fundamentals of the proposed Multiple Ob-
ject Tracking approach, i.e., instance-aware semantic segmentation as well as
optical flow. The section presents corresponding formal definitions and im-
portant related work. We use the presented notation throughout the following
sections.

Instance-Aware Semantic Segmentation

Semantic segmentation or scene parsing is the task of determining a class
or a category label for each pixel of a given color image. Note that class
labels are agnostic to instance information. There is typically an additional
class to label unknown image areas. In addition to class labels, Instance-
aware semantic segmentation assigns unique object identifiers for a subset of
pixels. Not all pixels represent objects, but background categories like street
or sand. Instance-aware semantic segmentation allows to determine the two
dimensional shape on pixel level for each object.

Formal Definition Let Ii denote the i-th image of an ordered sequence with
height h and width w. Furthermore, let Ii (x, y) denote the color of pixel posi-
tion (x, y) in Ii with (x, y) ∈ {1, · · · ,w} × {1, · · · ,h}.
Instance-aware segmentation systems like Dai et al. (2016), Li et al. (2017) or
He et al. (2017), predict for each pixel position of an input image Ii a semantic
category label c and a corresponding instance index u according to (3.2),

Si (x, y) = (c,u) (3.2)

where Si denotes the instance-aware semantic segmentation of image Ii .
Fig. 3.3 and Fig. 3.4 show an example for semantic segmentation and instance-
aware semantic segmentation, respectively.
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3 Instance-Aware Multibody Structure from Motion

Figure 3.3: Semantic segmentation examples with images of the Pascal VOC dataset (Everingham
et al., 2010) using Long et al. (2015). Each pixel is labeled with a semantic category.
The colors highlight different classes. Semantic labels are agnostic to instance infor-
mation.

Related Work and State-of-the-Art Semantic segmentation or scene pars-
ing is the task of providing semantic information at pixel level. Early works,
like Rother et al. (2004), require rough human annotated fore- and background
information to compute an exact fore- and background segmentation. In con-
trast, semantic segmentation approaches using pre-trained ConvNets do not
require any supervision at run time. Early semantic segmentation approaches
using ConvNets, e.g., Farabet et al. (2013), exploit patchwise training.
Long et al. (2015) propose a new architectural style of ConvNets, so called
Fully Convolutional Networks (FCNs), which allow for end-to-end training.
The training of FCNs from scratch is not feasible, because the annotation of
training data for semantic segmentation is quite expensive (e.g., 60 minutes per
image for the CamVid dataset (Brostow et al., 2009) or 90 minutes per image
for the Cityscapes dataset (Cordts et al., 2016)). Instead, a common approach
is to modify a ConvNet trained on another domain with simpler ground truth
annotations. Usually a ConvNet trained for classification like Simonyan and
Zisserman (2015) or He et al. (2016) serves as backbone, i.e., the last layers
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Figure 3.4: Instance-aware semantic segmentation examples with images of the Pascal VOC
dataset (Everingham et al., 2010) using Mask-RCNN He et al. (2017). Note that
different instances of the same category, e.g., car and person, show individual colors
indicating different object identifiers.

in the original network are replaced with layers designed specific for semantic
segmentation. During fine-tuning, i.e., (re-)training of the new ConvNet for
semantic segmentation, mainly the new layers defining the purpose of the net-
work are updated.
Complementary, several synthetic datasets for semantic segmentation have
been proposed (Richter et al., 2016; Ros et al., 2016) to mitigate the lack of
real-world training data.
The concepts proposed in Long et al. (2015) inspired many state-of-the-art se-
mantic segmentation approaches. Different works (Chen et al., 2014; Lin et al.,
2016; Zheng et al., 2015) combine Convolutional Networks with Conditional
Random Fields to refine the segmentation at boundaries of scene components
with different category labels.
Dai et al. (2016) propose a novel approach called Multi-task Network Cas-
cades (MNC), which tackles the task of instance-aware semantic segmenta-
tion. In contrast to semantic segmentation, instance-aware semantic segmen-
tation label only pixels corresponding to object-like classes, e.g., persons or
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3 Instance-Aware Multibody Structure from Motion

(a) Overlay of two subsequent images. (b) Visualization of the optical flow.

Figure 3.5: Optical flow (Sun et al., 2018) examples with two images of the Cityscapes dataset
(Cordts et al., 2016) using the color coding defined in Fig. 3.6.

cars. Dai et al. (2016) rely on Region Proposal Networks presented in Ren
et al. (2015). This concept has been improved in Li et al. (2017) and He et al.
(2017).
Kirillov et al. (2018) propose the task of panoptic segmentation, i.e., the joint
consideration of semantic segmentation and instance-aware semantic segmen-
tation (i.e., countable and non-countable classes). Kirillov et al. (2019) present
a generalization of the Mask R-CNN (He et al., 2017) for panoptic segmenta-
tion.
During this thesis, several networks, have been evaluated for semantic seg-
mentation (Shelhamer et al., 2017) as well as instance-aware semantic seg-
mentation (Dai et al., 2016; He et al., 2017; Li et al., 2017). Common datasets
to train and to evaluate ConvNets are PASCAL VOC (Everingham et al.,
2010), Microsoft COCO (Lin et al., 2014), Cityscapes (Cordts et al., 2016)
and ADE20K (Zhou et al., 2017).

Optical Flow

The concept of Optical Flow was proposed by Gibson (1950) and describes
the apparent motion of structures caused by the relative motion between ob-
server and scene. Optical flow estimation techniques allow to determine pixel
correspondences in ordered image sequences. Usually, it is not possible to
determine a correspondence for each pixel due to occlusions and field of view
limitations.
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u

v

Figure 3.6: Optical flow color coding scheme proposed in Baker et al. (2011). Each optical flow
vector Fi→i′ (x, y) = (u, v) is represented with a color according to the direction and
the length of (u, v).

Formal Definition Optical Flow or quasi-dense matching methods like Re-
vaud et al. (2016), Hu et al. (2016) or Ilg et al. (2017) compute for a pair of
images denoted as Ii and Ii′ a two-dimensional pixel offset field. The optical
flow Fi→i′ (x, y) of a pair of images Ii and Ii′ at a non-occluded pixel position
(x, y) shows the relation in (3.3).

Ii (x, y) ' Ii′ (x + Fh, i→i′ (x, y), y + Fv, i→i′ (x, y)) (3.3)

Here, Fh, i→i′ and Fv, i→i′ denote the horizontal and the vertical component of
Fi→i′ . Fig. 3.5 shows two example results of Ilg et al. (2017) on the KITTI
dataset (Geiger et al., 2013) - the corresponding optical flow color coding
scheme is explained in Fig. 3.6.
Some optical flow algorithms estimate the optical flow only for a subset of pix-
els. In this case, there are pixel positions where no optical flow information is
available. We will denote the set of pixel positions with valid flow information
at time i withVi .

Related Work and State-of-the-Art The field of optical flow may be subdi-
vided in sparse, quasi-dense and dense estimation approaches. The computa-
tion of optical flow information depends on scene structure and surface tex-
tures. For example, homogeneous areas hamper the estimation of consistent
vectors. Sparse methods determine optical flow information only for (small)
pixel sets with suitable local neighborhoods. This allows to compute robust
optical flow vectors, which may be used to to track keypoints. A common ap-
proach is for example the combination of Good Features to Track (Jianbo Shi
and Tomasi, 1994) and the Lucas-Kanade optical flow estimation approach
(Lucas and Kanade, 1981).
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In contrast to sparse methods, (quasi-)dense approaches aim to estimate opti-
cal flow vectors for all image regions. We observed that early dense optical
flow methods like Farnebäck (2003) fail to compute correct optical flow vec-
tors of videos captured by moving cameras. Already small camera motions
result in inconsistent optical flow fields. Epic Flow (Revaud et al., 2015) com-
putes considerably more robust dense optical flow vectors leveraging quasi-
dense matches (Weinzaepfel et al., 2013). Revaud et al. (2015) use the Sintel
(Butler et al., 2012), the KITTI (Geiger et al., 2013) and the Middlebury (Baker
et al., 2011) dataset for evaluation.
Dosovitskiy et al. (2015) introduced a paradigm shift by proposing the first
end-to-end trained ConvNet estimating optical flow vectors directly from raw
image data. The authors trained the network on the Flying Chair dataset.
Leveraging the FlyingThings3D dataset (Mayer et al., 2016) led to state-of-
the-art optical flow methods using this paradigm (cf . FlowNet2 (Ilg et al.,
2017)). However, FlowNet2 must be trained sequentially to avoid over-fitting.
Integrating pyramidal processing, warping, and the use of a cost volume into
a ConvNet architecture, PWC-Net (Sun et al., 2018) offers a end-to-end train-
able pipeline outperforming previously published methods.
Other works like Sevilla-Lara et al. (2016) and Bai et al. (2016) propose meth-
ods that leverage semantic information for optical flow computations. Such
information is presumably beneficial for the computation of consistent opti-
cal flow vectors close to object boundaries. However, there overall results are
outperformed by current state-of-art approaches such as PWC-Net (Sun et al.,
2018).
In our experiments, we observed that Coarse to fine patch match (CPM) (Hu
et al., 2016) outperforms Sun et al. (2018) in the case of large object displace-
ments. This is an important property of optical flow methods used for multiple
object tracking (q.v. Section 3.7).

3.4.2 Prediction of Segmentation Instances

We use the ConvNet presented in He et al. (2017) to compute the instance-
aware semantic segmentation Si for image Ii . For an instance with index u of
the target category c we use Si to extract the corresponding set of occupied
pixel positions Si,u . More formally, we compute Si,u according to (3.4).

Si,u = {(x, y) |(x, y) ∈ {1, · · · ,w} × {1, · · · ,h} ∧ Si (x, y) = (c,u)} (3.4)
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(a) Instance-aware segmen-
tations at time i.

(b) Predicted instance-
aware segmentations
from frame i to i + 1.

(c) Instance-aware segmen-
tations at time i + 1.

Figure 3.7: Instance prediction using optical flow. Different colors indicate different object seg-
mentations.

For a pair pair of images Ii and Ii′ we compute the optical flow Fi→i′ . This
allows us to predict the pixel positions (x, y) contained inSi,u to image Ii′ . We
denote the set of predicted pixel positions as Pi→i′,u and compute it according
to (3.5),

Pi→i′,u = {(x, y) + Fi→i′ (x, y) |(x, y) ∈ Vi,u } (3.5)

whereVi,u = Si,u ∩Vi is the set of valid optical flow positions of instance u.
Fig. 3.7 shows the prediction of several instance segmentations using He et al.
(2017) and Hu et al. (2016).
If the optical flow algorithm does not provide flow information for each pixel,
we interpolate the optical flow at positions where no flow information is avail-
able. This allows us to compute dense predictions of instance segmentations.
We interpolate the optical flow for each instance separately to avoid the in-
fluence of optical flow vectors corresponding to other objects and background
structures, i.e., we consider only vectors at pixel positions Vi,u . We use a
linear interpolation of points inside the convex hull of Vi,u . The optical flow
of points lying outside the convex hull is interpolated using the corresponding
nearest neighbor.
The interpolation of optical flow vectors pointing in opposite directions gen-
erates holes and overlaps in the predicted segmentation instance. Consider
the following one-dimensional example with four adjacent pixel positions and
two optical flow values at the first and fourth position: [−3,_,_,3]. The linear
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interpolation of the missing optical flow values yields [−3,−1,1,3]. Shifting
the second and the third point according to the corresponding optical flow val-
ues, i.e., −1 and 1, moves the second pixel to the left as well as the third pixel
to the right and leaves a hole in the corresponding segmentation mask. We
close these holes by performing a morphological closing operation.

3.4.3 Affinity of Objects in Pairs of Images

To associate objects in image Ii with objects in frame Ii′ we compute an
affinity score between corresponding instance segmentations. We define the
similarity of an object with index u in frame Ii and an object with index
v in frame Ii′ as the overlap of the intersection of the predicted pixel set
Pi→i′,u and the pixel set of instance segmentation Si′,v . Note that the num-
ber of objects and the order of the corresponding indices may differ. This
formulation of the affinity measure reflects locality and visual similarity. Let
ou,v denote the overlap of the prediction Pi→i′,u and segmentation Si′,v , i.e.,
ou,v = #(Pi→i′,u ∩ Si′,v ). Furthermore, let nu and nv denote the number of
segmentation instances in image Ii and Ii′ , respectively. We build an affinity
matrix A using the pairwise overlaps ou,v according to (3.6)

Ai→i′ =



o1,1 · · · o1,v · · · o1,nv

...
. . .

...
. . .

...

ou,1 · · · ou,v · · · ou,nv

...
. . .

...
. . .

...

onu,1 · · · onu,v · · · onu,nv



(3.6)

The rows and columns may contain multiple non-zero entries because of in-
correct instance segmentations and optical flow computations. The Hungarian
method (Kuhn, 1955) is a common algorithm to resolve such ambiguities in
affinity matrices.
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Ii Ii+1

Fi→i+1 Fi+1→i+2

Di Di+1

Pi→i+1 Pi+1→i+2

Ti Ti+1

Figure 3.8: Monocular object tracking scheme. The variables have the following meaning. I:
image, F: optical flow, D: detection, P: Prediction, T : Tracker State, i: image
index. Arrows show the relation of computation steps. A computation step depends
on the results connected with incoming arrows. The tracked objects Ti at time i are
predicted to the next image using the optical flow Fi→i+1 of image Ii and Ii+1. The
predictions Pi→i+1 are associated with the detections Di+1 to update the tracker state.
The used optical flow color coding is defined in Baker et al. (2011) (q.v. Fig. 3.6).

3.4.4 Online Monocular Multiple Object Tracking on Pixel
Level

This section presents an approach that allows to track multiple objects on pixel
level in monocular image sequences. The main ideas have been already pre-
sented in Bullinger et al. (2017). Fig. 3.8 shows an overview of the tracking
scheme. Let Ii denote the previous image and Ii+1 the current image. The state
of the proposed object tracker Ti at time i consists of a set of segmentation in-
stances Si,k with unique identifiers idi,k and a counter for the number of con-
secutive missing detections mi,k , i.e., Ti = {(Si,k , idi,k ,mi,k ) |k ∈ {1, · · · ,ni }},
where ni is the number of tracks at time i. We initialize this state with the seg-
mentation instances in the first frame (if any). The tracker state segmentations
Si,k are predicted to subsequent frames using (3.5). Let Pi→i+1,k denote the
corresponding predictions. In order to solve the association of predicted seg-
mentation instances in the tracker state Pi→i+1,k and segmentations instances
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Algorithm 3: Object tracking in monocular video data.

Initialize tracker state with segmentation instances detected in frame 0.
for Subsequent Frames do

Compute optical flow Fi→i+1 between the previous and the current
image.

Compute predictions Pi→i+1 using tracker state Ti .
Compute instance-aware semantic segmentations Di+1.
Build affinity matrix corresponding to Pi→i+1,k and Di+1,v .
Solve associations using the hungarian method.
Update matching Si,k with corresponding Di+1,v .
Update non-matching Si,k with corresponding predictions Pi→i+1,k .
Remove dead tracks using mi,k .
Create new tracks for all unmatched segmentations Di+1,v .

end

Di+1,v found in current image we compute the affinity matrix Ai→i+1. We
apply the Hungarian Method (Kuhn, 1955) on Ai→i+1, which results in a set
of matching index pairs Mi→i+1. We ensure the validity of each index pair
(k,v) ∈ Mi→i+1 by verifying that Ai→i+1(k,v) > 0.
For all valid index pairs (k,v) ∈ Mi→i+1 we update the segmentation in-
stances maintained by the tracker, i.e., we set Si,k = Di+1,v , but keep the
unique tracklet identifier idi,k . We add all non-matching segmentation in-
stances found in image Ii+1 with a new unique identifier to the set of segmen-
tation instances maintained by the tracker. In addition, we remove all non-
matching segmentation instances contained in the tracker state, if mi,k > md,
where md is the number of allowed missing detections. Otherwise, we replace
the instance segmentation with a dense prediction of the corresponding pixel
positions. Algorithm 3 summarizes the steps of the proposed online Multiple
Object Tracking algorithm.

3.4.5 Online Stereo Multiple Object Tracking on Pixel Level

We extend the monocular Multiple Object Tracking approach described in the
previous section to stereo image sequences following the algorithm proposed
in Bullinger et al. (2019b).
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(a) Detailed visualization of the two-
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as 2-partite graph.
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(b) Simplified visualization of the two-
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Figure 3.9: Comparison of the two-dimensional, the three-dimensional and the four-dimensional
assignment problem (AP). The rectangles and the dashed lines in Fig. 3.9a denote the
nodes and the corresponding weights of the graph. The circles represent the partition
of the (multipartite) graph. There exist no edges between nodes of the same partition.
The edge between two partitions denote that the corresponding nodes are also con-
nected with edges - q.v. Fig. 3.9b. Fig. 3.9c and 3.9d show that the four-dimensional
AP comprises the three-dimensional AP, i.e., the edges in the graph representing the
three-dimensional AP are a true subset of the edges in the graph representing the
three-dimensional AP.

Stereo Multiple Object Tracking Complexity

Bullinger et al. (2017) use the Kuhn-Munkres algorithm (Kuhn, 1955) to as-
sign corresponding objects in a pair of images. This task is an instance of the
two-dimensional assignment problem (AP). The two-dimensional AP consists
of finding a maximum weight matching in a weighted bipartite (or 2-partite)
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graph - q.v. Fig. 3.9a. In the context of object tracking, each partition of the
graph represents the objects of one image. An improved version of the Kuhn-
Munkres algorithm (Wong, 1979) solves the two-dimensional AP in O(n3),
where n is the number of elements to be assigned. Higher dimensional ex-
tensions of the two-dimensional AP, i.e., higher multidimensional assignment
problems (Pierskalla, 1969) like the three-dimensional or the four-dimensional
AP, are NP-hard (Frieze, 1983; Gilbert and Hofstra, 1988). Fig. 3.9 shows
a comparison of the two-dimensional, the three-dimensional and the four-
dimensional AP. In the stereo MOT case, object instances in the left image
Ii,l and the right image Ii,r at time i as well as the object instances in the
left image Ii+1,l and the right image Ii+1,r at time i + 1 must be associated.
Therefore, the stereo MOT AP is an instance of the four-dimensional AP and
is NP-hard as well.

Online Stereo Multiple Object Tracking Algorithm

The proposed stereo Multiple Object Tracking method extends the monocu-
lar tracking algorithm presented in Bullinger et al. (2017). Fig. 3.10 shows
a scheme of the tracking aproach. The prediction and association of object
detections described in Section 3.4.4 allows to associate objects not only in
subsequent frames, but also in the left and right image of a stereo camera.
We do not solve the associations of Ii,l , Ii+1,l , Ii,r and Ii+1,r simultaneously,
since (a) the brute force search for a solution of the stereo MOT AP is in cer-
tain scenarios infeasible and (b) the simultaneous determination of two subse-
quent stereo image pairs requires the computation of three optical flow fields
in addition to Fi,l→i,r and Fi,l→i+1,l . Here, Fi,l→i,r and Fi,l→i+1,l denote the
optical flow between image Ii,l and Ii,r as well as Ii,l and Ii+1,l . Instead, we
apply the following greedy approximation of the stereo MOT AP by solving
two different two-dimensional assignment problems. This allows us to deter-
mine object correspondences in Ii,l and Ii,r as well as Ii,l and Ii+1,l in O(n3).
We associate object instances in the left images Ii,l and Ii+1,l using the ob-
ject affinity matrix presented in Bullinger et al. (2017) as input for the Kuhn-
Munkres algorithm to compute the tracker state Ti+1,l . In this case the affinity
matrix is defined according to (3.7). Here, op,d denotes the overlap of the
prediction with index p in Pi,l→i+1,l and the detection with index d in Di+1,l .
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Ii,l Ii+1,l

Ii,r Ii+1,r

Fi,l→i+1,l Fi+1,l→i+2,l

Fi,l→i,r Fi+1,l→i+1,r

Di,l Di+1,l

Di,r Di+1,r

Pi,l→i+1,l Pi+1,l→i+2,l

Pi,l→i,r Pi+1,l→i+1,r

Ti,l Ti+1,l

Ti,r Ti+1,r

ti ti+1

Figure 3.10: Scheme of the stereo object tracking algorithm. The variables have the following
meaning. I: image, F: optical flow, D: detection, P: prediction, T : tracker state,
i: image index, l : left, r : right. Arrows show the relation of computation steps.
A computation step depends on the results connected with incoming arrows. The
tracked objects Ti,l at time i in the left image are predicted to the next image using
the optical flow Fi,l→i+1,l of image Ii,l and Ii+1,l . The predictions Pi,l→i+1,l are
associated with the detections Di+1,l to update the left tracker state. Simultaneously,
the tracked object objects Ti,l are predicted to the corresponding right image of the
same time step using the optical flow Fi,l→i,r .
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Figure 3.10 (cont.): The predictions Pi,l→i,r are associated with the detections Di,r to compute
the tracker state Ti,r of the objects in right image at time step i. Correspond-
ing objects in the left and the right tracker state Ti,l and Ti,r share the same
identifier, which is not necessarily the case for detections in Di,l and Di,r .
The used optical flow color coding is defined in Baker et al. (2011).

Let np and nd denote the number of predictions in Pi,l→i+1,l and the number
of detections in Di+1,l .

Ai =



o1,1 · · · o1,d · · · o1,nd

...
. . .

...
. . .

...

op,1 · · · op,d · · · op,nd

...
. . .

...
. . .

...

onp,1 · · · onp,d · · · onp,nd



(3.7)

Fig. 3.10 shows examples of Pi,l→i+1,l and Di+1,l . The tracker state Ti+1,l
contains only tracks of object instances in images corresponding to the left
camera. We use the optical flow between left and right images Fi+1,l→i+1,r
to associate the tracker state of left images Ti+1,l with objects visible in the
corresponding right image. The association between predictions Pi+1,l→i+1,r
and detections Di+1,r in the right images are also computed using an affinity
matrix and the Kuhn-Munkres algorithm. In this case op,d denotes the overlap
of prediction p in Pi+1,l→i+1,r and detection d in Di+1,r . np denotes the
number of predictions in Pi+1,l→i+1,r and nd denotes the number of detections
in Di+1,r . The overlap op,d is an affinity measure that reflects locality and
visual similarity.

3.5 Instance-Aware Multibody Structure from
Motion for Dynamic Object Reconstruction

As shown in Fig. 3.2 we track objects on pixel level and apply SfM simul-
taneously to object and background images. Without loss of generality, we
describe the reconstruction of a single object in a static background. We de-
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note the corresponding SfM results with s f m(o) and s f m(b) . Let o(o)
j ∈ P (o)

and b(b)
k
∈ P (b) denote the 3D points contained in s f m(o) or s f m(b) , respec-

tively. The superscripts o and b in o(o)
j ∈ R3 and b(b)

k
∈ R3 describe the

corresponding coordinate frame system (CFS). The variables j and k are the
indices of points in the object or the background point cloud, respectively. We
denote the reconstructed intrinsic and extrinsic parameters of each registered
input image as virtual camera. Each virtual camera in s f m(o) and s f m(b)

corresponds to a certain frame from which object and background images are
extracted. In the following, we consider only virtual cameras in s f m(o) with
a corresponding virtual camera in s f m(b) . Because of missing image registra-
tions this may not be the case for all virtual cameras.
We determine the object pose relative to the reconstructed environment by
combining information of corresponding virtual cameras. For any virtual cam-
era pair of an image with index i, the object SfM result s f m(o) contains infor-
mation of object point positions o(o)

j relative to virtual cameras with camera

centers c(o)
i ∈ R3 and rotations R(o)

i ∈ SO(3).
Two coordinate frames are related via a rotation and a translation. To trans-
form object points o(o)

j in camera coordinates o(i)
j of camera i we use (3.8).

o(i)
j = R(o)

i · (o(o)
j − c(o)

i ) = R(o)
i · o(o)

j − R(o)
i · c(o)

i (3.8)

Rewriting (3.8) with homogeneous coordinates allows us to express this oper-
ation with a single transformation matrix T(o2c)

i ∈ SE(3).



o(i)
j

1


=



R(o)
i −R(o)

i · c(o)
i

0 1

︸                     ︷︷                     ︸
BT(o2c )

i



o(o)
j

1


(3.9)

In contrast to (3.8), T(o2c)
i allows us to transform position vectors and arbitrary

transformation matrices alike. Inverting T(o2c)
i results in T(c2o)

i (3.10), which
transforms the CFS of the camera with index i in s f m(o) to the CFS of s f m(o) .

T(c2o)
i =


R(o)

i

T
c(o)
i

0 1


(3.10)
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i

Object
Reconstruction

T(o2c)
i (r)

i

CFS of Camera i

T(c2b)
i

i

Background
Reconstruction

Figure 3.11: Relation between object reconstruction, camera coordinate frame system of camera
i and background reconstruction.

Similarly to the object reconstruction, the background SfM result s f m(b) con-
tains the camera centers c(b)

i ∈ R3 and the corresponding rotations R(b)
i ∈

SO(3), which provide pose information of the cameras with respect to the
reconstructed background. The counterpart of (3.10) is shown in (3.11).

T(c2b)
i =


R(b)

i

T
c(b)
i

0 1


(3.11)

Combining T(o2c)
i and T(c2b)

i allows to compute a transformation T(o2b)
i from

object to world coordinates. Fig. 3.11 visualizes the relation between object
and background reconstruction. Note that the camera CFS of virtual cameras
in s f m(o) and s f m(b) are equivalent up to scale, since in general the scale
ratio of object and background reconstruction does not match due to the scale
ambiguity of SfM reconstructions (Hartley and Zisserman, 2004). We tackle
this problem by treating the scale of the background as reference scale and by
introducing a scale ratio factor r to adjust the scale of the object CFS. This
approach leads to a matrix T(o2c)

i (r) that performs a transformation according
to T(o2c)

i as well as the scale adjustment using the scale ratio r . T(o2c)
i (r) is

given in (3.12).

T(o2c)
i (r) =



rR(o)
i −rR(o)

i · c(o)
i

0 1


(3.12)
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Object CFS

World CFS Camera CFS
at time i



rR(o)
i

−rR(o)
i

c(o)
i

0 1

︸                       ︷︷                       ︸
T(o2c )
i (r )



R(o2b)
i

(r) t(o2b)
i

(r)
0 1

︸                          ︷︷                          ︸
T(o2b)
i (r )

T(c2b)
i

=


R(b)
i

T
c(b)
i

0 1



Figure 3.12: Transformations between object, camera and background coordinate frame systems.
We use the world scale as reference. Here, R(o2b)

i (r ) and t(o2b)
i (r ) denote the

correctly scaled matrix components.

The transformation between object and background CFS is defined according
to (3.13).

T(o2b)
i (r) = T(c2b)

i · T(o2c)
i (r) =


R(b)

i

T
c(b)
i

0 1


·



rR(o)
i −rR(o)

i · c(o)
i

0 1



=


rR(b)

i

T
R(o)

i −rR(b)
i

T
R(o)

i c(o)
i + c(b)

i

0 1


(3.13)

The relation between the different coordinate frame systems (camera, object
and world) is depicted in Fig. 3.12. We will use these pose constraints in
Chapter 6 to determine three-dimensional trajectories of dynamic objects. Us-
ing stereo image data to reconstruct a scene allows to infer r from the baseline
of the virtual stereo cameras in s f m(o) and s f m(b) .
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3.6 Implementation Details

The proposed Multibody Structure from Motion approach builds upon differ-
ent methods including instance-aware semantic segmentation, optical flow and
standard Structure from Motion. Our current implementation uses He et al.
(2017) to perform instance-aware semantic segmentation. This ConvNet com-
putes stable object detections requiring a reasonable amount of computation
time. He et al. (2017) defined the state-of-the-art in instance-aware semantic
segmentation at the time of its publication. The network uses Xie et al. (2017)
and Lin et al. (2017) as backbone and has been trained on the Microsoft COCO
dataset (Lin et al., 2014).
We use Hu et al. (2016) to determine optical flow between pairs of images.
The architecture of Hu et al. (2016) is designed to compute optical flow for
large displacements. This property is important to leverage optical flow corre-
spondences for object tracking. With regard to large displacements, Hu et al.
(2016) outperform state-of-the-art method like Ilg et al. (2017) or Sun et al.
(2018). At the time of publication, Hu et al. (2016) reported state-of-the-art
results on the KITTI (Geiger et al., 2013) and the MPI-Sintel (Butler et al.,
2012) datasets.
We observe that the reconstruction quality of current state-of-the-art Struc-
ture from Motion approaches depends strongly on viewing angles and object
sizes. For example, the algorithm in Schönberger and Frahm (2016) computes
reasonable reconstructions of small objects. Other methods reconstruct the
same objects only partially. On the downside, the algorithm in Schönberger
and Frahm (2016) computes frequently degenerated environment reconstruc-
tions for straight camera motions. Moulon et al. (2012) reconstruct such cases
successfully. Since current state-of-the-art SfM pipelines depend on many
different parameters, it is difficult to identify a parameter configuration that
produces reliably results for objects as well as environment structures. We
use Schönberger and Frahm (2016) for object and Moulon et al. (2012) for
environment reconstruction to achieve robust results.
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3.7 Online Multiple Object Tracking Evaluation

In this section, we evaluate the proposed MOT tracking algorithm on monoc-
ular image sequences.

3.7.1 Multiple Object Tracking Measures

There are different measures to evaluate the quality of multiple object track-
ing algorithms. Simple tracker properties are defined by true positives (TP),
false positives (FP), i.e., false alarms of the tracker, true negatives (TN), false
negatives (FN), i.e., missing detections and id switches (IDsw), i.e., tracker ID
mismatch errors.
Bernardin and Stiefelhagen (2008) propose the Multiple Object Tracking Ac-
curacy (MOTA) and Multiple Object Tracking Precision (MOTP) measures,
which allow to evaluate MOT trackers in various domains and for different
modalities.
The Multiple Object Tracking Accuracy (Bernardin and Stiefelhagen, 2008)
is defined according to (3.14) and reflects the total overall error of the tracking
algorithm.

MOT A = 1 −
∑

i ( f ni + f pi + IDswi )∑
i gi

(3.14)

Let f ni , f pi and IDswi denote the false negative, the false positives and the
ID switches in frame Ii . Further, let gi represent the number of ground truth
objects in the corresponding image.
In contrast, the Multiple Object Tracking Precision (Bernardin and Stiefelha-
gen, 2008) is defined according to (3.15) and represents the average (location)
dissimilarity between the true positives and their corresponding ground truth
position.

MOT P =

∑
i,u di,u∑

i ci
(3.15)

Here, di,u represents the distance of the object hypothesis with index u to
the true object position in image Ii and ci the number of object-hypothesis-
correspondences in frame Ii .
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A common measure for di,u is given by the Intersection over Union (IoU)
(3.16) distance.

IoU =
|A ∩ B|

|A ∪ B|
(3.16)

Here, A and B denote two sets representing the object hypothesis as well
as the object ground truth. The Generalized Intersection over Union (GIoU)
(Rezatofighi et al., 2019) is an extension of the standard IoU, designed to
handle cases with non-overlapping bounding boxes. Equation (3.17) shows
the corresponding definition, where C represents the smallest convex hull that
encloses both A and B.

GIoU = IoU −
|C \ (A ∩ B) |
|A ∪ B|

(3.17)

In addition to MOTA and MOTP, the MOT challenge (Leal-Taixé et al., 2015)
introduces the following measures: mostly tracked (MT), partially tracked
(PT) and mostly lost (ML). These values reflect how much of the trajecto-
ries are recovered by the tracking algorithm.
Precision and Recall reflect specific properties of a MOT algorithm. The cor-
responding definitions are given in (3.18) and (3.19).

Precision =
T P

T P + FP
(3.18)

Recall is also referred to as the true positive rate.

Recall =
T P

T P + FN
(3.19)

3.7.2 Multiple Object Tracking Challenge

We evaluate the proposed monocular Multiple Object Tracking approach on
a popular MOT dataset (Leal-Taixé et al., 2015). We use instance-aware se-
mantic segmentations computed by Dai et al. (2016) and optical flow / match-
ing algorithms presented in Farnebäck (2003), Revaud et al. (2016) and Hu
et al. (2016). Let <DetectionMethod>+<TrackingMethod> denote a specific
MOT algorithm that uses the <DetectionMethod> for object detection and the
<TrackingMethod> to track object detections in a given image sequence.
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We compare the proposed MOT approach with FasterRNN+SORT. The open
source online MOT algorithm SORT (Bewley et al., 2016) shows competi-
tive results using FasterRNN (Ren et al., 2015) detections. SORT follows
the Tracking-by-Detection pipeline, i.e., it uses Bounding Box detections, a
Kalman filter for motion prediction and the Hungarian method for object as-
sociation.
The performance of Tracking-By-Detection approaches strongly depends on
the quality of corresponding detections. Applying SORT on detections de-
rived from instance-aware semantic segmentations computed with Multi-task
Network Cascades (MNC) (Dai et al., 2016) allows us to compare the MOT al-
gorithms without the influence of different detector performances. Concretely,
we consider MNC+SORT in our evaluation, which uses Bounding Box detec-
tions extracted from MNC instance segmentations.
To demonstrate the effectiveness of the proposed MOT algorithm we lever-
age different approaches to compute correspondences in subsequent images:
Coarse-To-Fine PatchMatch (CPM) (Hu et al., 2016), DeepMatching (Deep-
Match) (Revaud et al., 2016) and Polynomial Expansion (PolyExp) (Farnebäck,
2003). This results in the following instances of the proposed MOT pipeline:
MNC+CPM, MNC+DeepMatch and MNC+PolyExp.
We also analyze the effect of varying the maximum number of allowed missing
detections md - q.v. Section 3.4.4. The parameter md defines how the MOT al-
gorithm handles tracklets without corresponding segmentation instances in the
current frame. If md > 0, the MOT algorithms performs a dense prediction of
non-matching tracklets using the corresponding optical flow information. This
allows to compensate missing detections of the instance-aware segmentation
method. md defines the maximum number of subsequent dense prediction
steps. If md = 0, non-matching tracklets are immediately removed from the
tracker state.
MNC+CPM, MNC+DeepMatch and MNC+PolyExp achieve similar results on
the MOT 2015 training set. A reason for this is the slow motion of camera and
pedestrians in most MOT 2015 sequences. In such cases, the quality of object
associations is mainly dependent on the segmentation quality. The results of
MNC+CPM for the test set is shown in Table 3.1 and Table 3.2.
The biggest difference of the evaluated algorithms in the train dataset is ob-
served in the KITTI-13 sequence, which is the only video captured from a
driving platform. In this case, the positions of the objects in image coordi-
nates are strongly affected by the motion of the vehicle, i.e., object positions
show remarkable shifts between subsequent images. The corresponding re-
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Method md MOTA MOTP MT ML FP FN

FasterRNN+SORT - 33.4 72.1 11.7% 30.9% 7,318 32,615

MNC+SORT - 27.5 70.5 7.5% 50.9% 2,972 40,924

MNC+CPM (ours) 0 30.6 71.3 10.5% 34.0% 4,863 35,325

MNC+CPM (ours) 1 32.1 70.9 13.2% 30.1% 6,551 33,473

Table 3.1: MOT 2D 2015 benchmark test set evaluation - part I. The variable md represents the
number of missing detections. The evaluation measures are defined as follows: MOTA:
Multiple Object Tracking Accuracy, MOTP: Multiple Object Tracking Precision, MT:
mostly tracked, ML: mostly lost, FP: False Positive and FN: False Negative. A target is
mostly tracked if it is successfully tracked for at least 80% of the corresponding frames.
If a track is only recovered for less than 20%, it is considered to be mostly lost (ML).

Method md FAF IDsw Frag

FasterRNN+SORT - 1.3 1,001 1,764

MNC+SORT - 0.5 661 1,292

MNC+CPM (ours) 0 0.8 2,459 2,953

MNC+CPM (ours) 1 1.1 1,687 2,471

Table 3.2: MOT 2D 2015 benchmark test set evaluation - part II. The evaluation measures are
defined as follows: FAF: false alarms per frame, IDsw: ID switches, Frag: number
fragmentations.

sults are shown in Table 3.3 and Table 3.4. In terms of MOTA, MNC+CPM
(with md = 1) outperforms MNC+DeepMatch as well as MNC+PolyExp.
This shows the importance of the quality, e.g., density and reliability, of the
selected optical flow / matching algorithm. With the default parameter con-
figuration MNC+DeepMatch computes sparse results and MNC+PolyExp can
not handle big object shifts as shown in Fig. 3.13.
In the KITTI-13 sequence MNC+CPM and MNC+DeepMatch show a higher
MOTA score than MNC+SORT. This demonstrates the strength of optical
flow based approaches in videos with high relative motions of objects. It also
shows the difficulty to describe a superposition of motions with a single mo-
tion model. We observe, that the number of id switches (IDs) of MNC+SORT
is significantly lower than the ones of the evaluated optical flow based ap-
proaches. This confirms our impression that the used semantic instance seg-
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Method md MOTA MOTP MOTAL GT MT PT ML

MNC+SORT - 12.9 65.2 13.2 42 0 14 28

MNC+CPM (ours) 0 18.6 67.2 21.7 42 0 32 10

MNC+CPM (ours) 1 19.2 66.7 20.8 42 4 32 6

MNC+DeepMatch (ours) 0 18.6 67.2 21.7 42 0 32 10

MNC+DeepMatch (ours) 1 16.9 66.8 18.6 42 3 31 8

MNC+PolyExp (ours) 0 16.8 67.3 21.7 42 0 32 10

MNC+PolyExp (ours) 1 11.7 66.8 15.4 42 3 31 8

Table 3.3: MOT 2015 benchmark KITTI-13 evaluation - part I. The variable md represents the
number of missing detections. The evaluation measures are defined as follows: MOTA:
Multiple Object Tracking Accuracy, MOTP: Multiple Object Tracking Precision, MO-
TAL: Multiple Object Tracking Accuracy with logarithmic ID switches, GT: number
ground truth tracks, MT: mostly tracked tracks, PT: partially tracked tracks, ML: mostly
lost tracks.

Method md Rcll Prcn FAR FP FN IDsw FM

MNC+SORT - 18.8 77.3 0.12 42 619 3 6

MNC+CPM (ours) 0 38.7 69.7 0.38 128 467 25 38

MNC+CPM (ours) 1 43.8 65.7 0.51 174 428 14 30

MNC+DeepMatch (ours) 0 38.7 69.7 0.38 128 467 25 38

MNC+DeepMatch (ours) 1 43.8 63.8 0.55 188 431 14 29

MNC+PolyExp (ours) 0 38.7 69.7 0.38 128 467 39 40

MNC+PolyExp (ours) 1 42.7 61.2 0.61 206 437 30 33

Table 3.4: MOT 2015 benchmark KITTI-13 evaluation - part II. The evaluation measures are de-
fined as follows: Rcll: Recall, Prcn: Precision, FAR: false alarm rate (i.e., false alarm
per frame), FP: false positives, FN: false negatives, IDsw: number ID switches, FM:
number of track fragmentations

mentation (Dai et al., 2016) is unstable. However, we are able to decrease the
number of id switches by using dense predictions as instance segmentations
in the subsequent frame (e.g., md = 1).
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(a) Prediction using CPM (Hu
et al., 2016).

(b) Prediction using PolyExp
(Farnebäck, 2003).

Figure 3.13: Importance of the quality of the optical flow algorithm. The prediction using Poly-
Exp is not correctly shifted.

3.8 Discussion

We proposed a novel Multibody Structure from Motion approach, which lever-
ages instance-aware semantic segmentations to identify two-dimensional ob-
ject shapes. We present an online Multiple Object Tracking algorithm that
tracks objects on pixel level allowing us to determine object specific fea-
tures correspondences throughout monocular and stereo image sequences.
The usage of semantic information enables our algorithm to compute three-
dimensional reconstructions of dynamic environments in which many exist-
ing motion segmentation or epipolar geometry based methods fail - such as
scenes with partly stationary or parallel moving objects. The presented MOT
approach leverages inherent properties of sequential image data and proposes
an affinity measure reflecting locality and visual similarity. As we will see
in Chapter 5 and Chapter 6, the presented Multibody Structure from Motion
approach is suitable to reconstruct three-dimensional shapes and motion tra-
jectories of moving objects. We demonstrated the effectiveness of the MOT
algorithm using the dataset of the MOT challenge. Extending the proposed
MOT algorithm with a Kalman Filter or a Particle Filter could improve the
robustness of the method in situations with fully occluded objects. Chapter 6
presents quantitative and qualitative three-dimensional reconstruction results
of the full MSfM pipeline.
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4 Datasets for Imaged-Based
Moving Object Reconstruction

This chapter describes two datasets, which allow to evaluate moving object
reconstruction algorithms. We use the corresponding ground truth to quantita-
tively evaluate the methods proposed in Chapter 5 and Chapter 6. The datasets
have been first presented in Bullinger et al. (2016) and Bullinger et al. (2018b).
Other datasets in the vehicle domain such as CityScapes (Cordts et al., 2016)
or KITTI (Geiger et al., 2013) do not provide the required ground truth.
The first dataset1 presented in Section 4.1 comprises real-world image se-
quences of a moving vehicle and a corresponding vehicle laser scan suitable
for evaluation of three-dimensional object shape reconstructions. The second
dataset2 described in Section 4.2 contains synthetic sequences of different ve-
hicles in an urban environment. The ground truth includes vehicle shapes as
well as vehicle and camera poses for each frame. This dataset allows to quanti-
tatively evaluate shape and trajectory reconstructions of moving objects. Both
datasets and corresponding evaluation scripts are publicly available to foster
future analysis of moving object reconstruction.

4.1 Object Shape Dataset

The dataset consists of 25 video sequences capturing a car moving on eight
different trajectories. Fig. 4.1 depicts the shapes of the trajectory types. The
lines denote the motion trajectory and the dots represent the position of the
camera. As illustrated the video sequences cover a high variety of object-
specific viewing angles. Fig. 4.2 shows an example of a corresponding image

1 Project page: http://s.fhg.de/boundarygeneration
2 Project page: http://s.fhg.de/trajectory
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(a) Vehicle trajectory types 1-4.

(b) Vehicle trajectory types 5-8.

Figure 4.1: Vehicle trajectory types of the dataset contained in the shape reconstruction dataset.
The blue dot denotes the position of the camera capturing the vehicle.

Figure 4.2: Example video sequence for trajectory type 6.

sequence. A laser scan (q.v. Fig. 4.3) of the vehicle serves as ground truth.
We acquire the laser scan using a Zoller+Fröhlich scanner, which estimates
the distance to the reflecting object on the phase shift between received and
emitted signal. We created the vehicle laser scan indoors to reduce measure-
ment noise. The scanning head was operated on a rigid tripod which results in
ranging accuracies of a few millimeters. The laser scans from different views
are automatically registered using a set of salient and distinct markers. Noise
artifacts in the measurement and points corresponding to the environment are
manually removed.
The usage of the Iterative Closest Point (Chen and Medioni, 1991) allows to
register reconstructed object point clouds to the laser scan ground truth and
to perform corresponding scale adjustments. We use the following steps to
find reasonable correspondences between laser scan and reconstructed object
points. First, we compute for each object point the nearest neighbor in the
laser scan. We determine the distance between each reconstruction-laser-scan-
point-pair. If multiple reconstructed points share the same nearest neighbor we
keep only the reconstructed point with the smallest distance. For evaluation
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(a) Laser scan (front view). (b) Laser scan (side view).

Figure 4.3: Laser scan of the object shape reconstruction dataset.

we define the average distance and the standard deviation of the remaining
reconstruction-laser-scan-point-pairs as evaluation measure.

4.2 Virtual Object Trajectory Dataset

To quantitatively evaluate the quality of reconstructed object motion trajecto-
ries we require accurate object and environment models as well as object and
camera poses for each time step. The simultaneous capturing of corresponding
ground truth data with sufficient quality is difficult to achieve. For example,
one could capture the environment geometry with Lidar sensors and the cam-
era as well as object pose with an additional system. However, the registration
and synchronization of all these different modalities is a complex and cumber-
some process. The result will contain noise and other artifacts like drift. This
is probably the main reason why publicly available real-world datasets such
as Geiger et al. (2013), Cordts et al. (2016) and Huang et al. (2018) do not
provide the corresponding ground truth information.
To tackle these issues we exploit virtual models. Previously published virtu-
ally generated and virtually augmented datasets (Gaidon et al., 2016; Richter
et al., 2016; Ros et al., 2016; Tsirikoglou et al., 2017) provide data for dif-
ferent application domains and do not include three-dimensional ground truth
information. Other planned datasets such as Ruf (2018) are not yet publicly
available. We build a virtual world specifically for SfM applications including
an urban environment, animated vehicles as well as predefined vehicle and
camera motion trajectories. This allows us to compute spatial and temporal

65



4 Datasets for Imaged-Based Moving Object Reconstruction

(a) Environment model without textures in
Blender.

(b) Rendered environment model with
Cycles.

Figure 4.4: Virtual Environment in Blender.

(a) Environment model with repetitive
textures. A few examples are empha-
sized with green and blue.

(b) Environment model with procedurally
textures.

Figure 4.5: Comparison of repetitive and procedurally generated textures.

error free ground truth data. Our dataset is suitable for evaluating SfM algo-
rithms, since we exploit procedural generation of textures to avoid artificial
repetitions.
While creating this virtual world two novel platforms Airsim (Shah et al.,
2017) and Carla (Dosovitskiy et al., 2017) have been made publicly available,
which could potentially provide the same type of ground truth.

4.2.1 Virtual World

We use Blender (Blender Foundation, 2019) to create a virtual world (q.v.
Fig. 4.4) consisting of an urban environment surrounded by a countryside and
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(a) Vehicle Rig in stationary pose with and without attached vehicle meshes.

(b) Vehicle rig adjusted to the motion trajectory. The rig controls the correct place-
ment (rear left wheel) and the correct steering (front left wheel).

Figure 4.6: Skeletal animation (rigging) of vehicle models. The rig consists of a set of bones and is
shown in green. The pose of each bone is defined by the position of the corresponding
head and tail. We define a set of bone-specific constraints, which determine the motion
of each bone.

a set of camera-object-trajectory pairs used to render sequences with moving
cameras and driving vehicles. The camera and vehicle trajectories are defined
as curves in 3D space. The virtual world includes different assets like trees,
traffic lights, streetlights, phone booths, bus stops and benches.
Texture mapping is a common method in computer graphics to define surface
textures of 3D models and allows to reduce the number of polygons and light-
ing computations needed to render realistic scenes. Texture repetition is a
common technique to handle cases where the model size exceeds the spatial
extent of the texture. This is typically the case for large objects like streets.
Feature matching applied to 3D models with repeated textures results in many
incorrect correspondences between distinct surfaces points due to their visual
similarity. We exploit procedural generation to compute textures of large sur-
faces, like streets and sidewalks, to avoid degenerated Structure from Motion
results caused by artificial texture repetitions (q.v. Fig. 4.5).
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Figure 4.7: Frames from sequences contained in the presented virtual vehicle trajectory dataset.

We collected a set of publicly available vehicle assets to populate the scenes.
We used emphSkeletal Animation, also referred to as rigging, to animate the
vehicle motion, which allows us to define the vehicle trajectories as simple
curves in 3D space. A rig consists of a set of bones, which follow specific user
defined constraints such as relative translations and rotations, deformations
or tail constraints. In our case the rig controls wheel rotation and steering
w.r.t. the motion trajectory as well as consistent vehicle placement on uneven
ground surfaces. The animation of wheels is important to avoid unrealistic
wheel point triangulations. Overall, we defined more than 300 rig constraints
to animate all vehicles. Fig. 4.6 shows an example of a rigged vehicle model.
To control the camera pose we use Blenders built-in Follow-Path and Track-To
constraints.
We adjusted the scale of vehicles and virtual environment using Blender’s unit
system. This allows us to set the virtual space in relation to the real world.
The extent of the generated virtual world corresponds to one square kilometer.
We combined environment mapping with raytracing to achieve a realistic
scene illumination. With Blender’s built-in tools, we defined a set of cam-
era and object motion trajectories. This allows us to determine the exact 3D
pose of cameras and vehicles for each time step.
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4.2 Virtual Object Trajectory Dataset

Figure 4.8: Anaglyph images representing stereo information of the sequences contained in the
presented virtual vehicle trajectory dataset. Information of left and right images are
highlighted with green and red, respectively.

0 20 40 60 80
10

15

20

25

Frame Index

C
am

er
a-

V
eh

ic
le

-D
is

ta
nc

e
in

m
et

er

Right Curves
Left Curves
Crossing
Overtaking
Bridge
Steep Street
Bumpy Road

Figure 4.9: Distance between camera and vehicle per frame in meter for each trajectory type in
the dataset.

4.2.2 Trajectory Dataset

We use the previously created virtual world to build a new vehicle trajectory
dataset. The dataset consists of 35 sequences capturing five vehicles in differ-
ent urban scenes.
For each sequence we rendered monocular (see Fig. 4.7) and binocular (see
Fig. 4.8) image sequences with a resolution of 1920 px × 1080 px. We use
a focal length of 35 mm, which corresponds to 2100 px and a stereo camera
baseline of 0.3 m, which lies between the stereo baselines used in common
real word datasets like CityScapes (Cordts et al., 2016) and KITTI (Geiger
et al., 2013). The anaglyph images in Fig. 4.8 reflect the properties of the
corresponding stereo camera. Fig. 4.9 shows the distance between the camera
and the vehicle per sequence per frame for each trajectory type.
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4 Datasets for Imaged-Based Moving Object Reconstruction

The virtual video sequences cover a high variety of vehicle and camera poses.
The vehicle trajectories reflect common vehicle motions and include vehicle
acceleration, different curve types and motion on changing slopes. The cam-
era trajectory mimics the motion of a drone and captures the scene from a
bird’s-eye perspective. We use the path-tracing render engine Cycles (Blender
Foundation, 2019) to achieve photo realistic rendering results. We observed
that the removal of artificial path-tracing artifacts using denoising improves
feature matching.
In addition to the rendered imagery, the dataset contains depth maps as well
as vehicles, ground and background segmentations allowing to separate the
reconstruction task from specific semantic segmentation and tracking ap-
proaches. This aims to simplify future trajectory reconstruction evaluations.
The dataset includes 6D vehicle and (stereo) camera poses for each frame as
well as ground truth meshes of corresponding vehicle models. The provided
virtual ground truth is free of noise and shows no spatial registration or tem-
poral synchronization inaccuracies. In addition to the virtual data, the dataset
includes scripts for automatic registration and evaluation of trajectory recon-
structions.
The combination of scene illumination leveraging environment mapping and
path-tracing using a state-of-the art render engine like Cycles (Blender Foun-
dation, 2019) results in naturally reflecting surfaces and realistic shadow com-
putations. This makes the dataset challenging for visual reconstruction prob-
lems.
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5 Shape Reconstruction of Dynamic
Objects using Semantic
Volumetric Constraints

This chapter is partly published in Bullinger et al. (2016) and tackles the prob-
lem of computing three-dimensional appearance models of moving objects.
Dense reconstructions (q.v. Section 2.3.1) of dynamic objects obtained with
keypoint based methods are affected by shadows, reflecting surfaces and illu-
mination changes, which lead to point clouds with high outlier ratios and vary-
ing point densities. Meshes built on top of these point clouds show irregular
surface properties. To mitigate the aforementioned effects, we present an algo-
rithm that combines semantic segmentations and object specific camera poses
to compute three-dimensional object boundaries consistent to image observa-
tions. The resulting point cloud consists of uniformly distributed points with
consistent normal vectors. Given suitable camera poses we compute clean ob-
ject representations superior to Structure from Motion and Multi-View Stereo
based meshes. We determine appropriate object textures by projecting visual
information of corresponding object images onto the computed 3D model.
This chapter is structured as follows. We define the problem statement in Sec-
tion 5.1. Section 5.2 highlights relevant related work, which present Multi-
View Stereo and model based approaches for three-dimensional shape recon-
struction. Section 5.3 gives a short overview of the proposed pipeline. Our
approach includes filtering of virtual cameras (Section 5.4), outlier removal of
3D object points using an objectness score (Section 5.5) and computation of
the final object shape using the algorithm in Section 5.6. Our approach is mo-
tivated by limitations of previously presented algorithms. Section 5.7 presents
qualitative and quantitative results using drone footage and sequences from
the moving object reconstruction dataset described in Chapter 4.
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5 Shape Reconstruction of Dynamic Objects

5.1 Problem Statement

Given a set of images showing a moving object, we want to compute a three-
dimensional model consistent to the object appearance including not only
shape, but also color information. More formally, we want to minimize the
visual error of the model projection w.r.t. the set of input images - see equa-
tion (5.1).
We represent our model with a set of vertex positions and corresponding color
information m ∈ M. Let mp and mc denote the corresponding position and
color vector. Ki , R(o)

i and c(o)
i denote the calibration, the object specific cam-

era rotation matrix as well as the center of camera i. Let Vi denote the set of
visible model vertices in image i. Pi represents the set of pixels occupied by
the object in image i.

argmin
M

∑
i

∑
m∈Vi

‖Ii (KiR(o)
i (mp − c(o)

i )) −mc ‖

such that ∀p ∈ Pi : ∃m ∈ Vi with p ' p′ = KiR(o)
i (mp − c(o)

i )
(5.1)

Ii (p′) represents the image color of pixel position p corresponding to the ho-
mogeneous vector p′.
Compared to (dense) point clouds, meshes require less memory to achieve a
consistent object model appearance and represent surface normals naturally,
which are important to render suitable object model images with reasonable
computational effort. Thus, we use meshes to represent the three-dimensional
appearance of objects. Fig. 5.1 shows a visualization of the problem statement.

5.2 Related Work

Many state-of-the-art image-based methods designed to compute accurate
dense scene models consist of the following algorithm scheme. First, de-
termination of sparse scene points and camera poses with Structure from Mo-
tion (Moulon et al., 2012; Schönberger and Frahm, 2016; Wu, 2011). Sec-
ond, Multi-View Stereo (Fuhrmann et al., 2015; Furukawa and Ponce, 2010;
Schönberger et al., 2016) to compute dense point clouds including normal
vectors. Third, mesh-triangulation methods (Fuhrmann et al., 2015; Jancosek
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5.2 Related Work

Input Images Plain Object Mesh Textured Object Mesh

Figure 5.1: Visualization of the shape reconstruction problem statement.

and Pajdla, 2011; Kazhdan and Hoppe, 2013; Kazhdan et al., 2006) to derive
watertight meshes. For more details see Section 2.3.
In contrast, previously published approaches focussing on the reconstruction
of moving objects provide only sparse object representations (Chhaya et al.,
2016; Feng et al., 2012; Kundu et al., 2011; Yuan and Medioni, 2006) or com-
puted a dense object models leveraging specific object priors (Lebeda et al.,
2014). One reason is that the shape reconstruction is more challenging be-
cause of stronger visual appearance changes.
Previous moving object reconstruction approaches using video data usually
exploit color or motion detection. Feng et al. (2012) present a color-based
segmentation to achieve 3D monocular tracking. Yuan and Medioni (2006)
and Kundu et al. (2011) use motion segmentation to distinguish objects and
background. Yuan and Medioni (2006) use this information to apply SfM to
single objects, where as Kundu et al. (2011) perform Multibody Visual SLAM.
In contrast to previous methods, Lebeda et al. (2014) use feature tracking in
order to extract moving objects in unstructured video data. The object shape
is visualized using watertight meshes.
In contrast to previously mentioned reconstruction methods, a new type of
model based approaches have been proposed. Such methods like Kundu et al.
(2018) rely on an initially provided database of three-dimensional object mod-
els to infer the object shape using a single image.
Our method builds on top of recent 3D reconstruction as well as semantic seg-
mentation techniques. See Section 3.4.1 and Section 2.3 for the corresponding
related work.
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5 Shape Reconstruction of Dynamic Objects

Input images
Object

segmentations Camera poses relative to object

Object boundary points Object mesh Textured object mesh

Figure 5.2: Overview of the shape reconstruction pipeline. In the first step, only object specific ar-
eas are considered to compute a sparse SfM reconstruction as explained in Chapter 3.
The camera poses are shown in red.

5.3 Pipeline Overview

Fig. 5.2 shows an overview of the proposed shape reconstruction pipeline. As
described in Section 3.5 we apply SfM to all object images, which allows us
to leverage the full available information to compute camera pose w.r.t. the
object model. We use the two-dimensional object boundaries in combination
with the previously computed camera parameters to generate a set of three-
dimensional object boundary points. We iteratively refine this point cloud by
creating points in the space spanned by boundary points. The uniform distri-
bution of the point cloud allows us to compute consistent normal vectors. By
combining the boundary points and corresponding surface normals we com-
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5.4 3D Object Reconstruction and Virtual Camera Filtering

pute a watertight object mesh. We determine an object texture by project-
ing visual information of corresponding object images onto the computed 3D
model.

5.4 3D Object Reconstruction and Virtual
Camera Filtering

In order to reconstruct objects in video sequences with varying (unknown)
focal lengths, we follow the approach in Wu (2011) and initialize the focal
length according to (5.2).

f =
1.2 ·max(wI [px],hI [px])

wS[mm]
· fS[mm] (5.2)

Here, f and fS represent the focal length in pixel and the focal length of the
sensor in millimeter. wI and hI denote the width and the height of the input
image in pixel. The factor 1.2 is empirically determined by Wu (2011) and
corresponds to a medium field of view. wS describes the width of the sensor
in millimeter.
In contrast to the original frames, object images contain only camera pose in-
formation relative to the object. The scene is equivalent to one, where the
virtual camera is moving and the object is stationary. The SfM computation
produces a point cloud representing the object and parameters of correspond-
ing virtual cameras. Let n be the number of virtual cameras. n may be smaller
than the number of input frames due to failed image registrations.
SfM reconstructions contain sometimes outliers, i.e., single isolated virtual
cameras. However, valid virtual camera positions extracted from a single
video sequence show usually similar distances to their respective closest vir-
tual camera, since the camera as well as the object move and rotate gradually
from frame to frame. In order to detect isolated cameras, we compute for each
camera i the distance di to the respective nearest neighbor. We assume that
there are less than 25 % isolated cameras. If there are more than 25 % iso-
lated cameras it is likely that the reconstruction is degenerated and not useful
at all. Thus, we consider the 75th percentile p75 of all nearest neighbor dis-
tances {di |i = 1, . . . ,n} as a valid nearest neighbor distance. In video data the
distance of valid virtual cameras to their nearest neighbor is limited due to the
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5 Shape Reconstruction of Dynamic Objects

Figure 5.3: Projection of 3D points onto the image plane for each virtual camera in order to com-
pute the objectness for each object point.

gradual movement of object and capturing device. Thus, we define a validity
threshold tval which describes the accepted exceeding of p75. tval should be
several orders of magnitude greater than p75. We compute the validity of a
given camera by testing if di < tval holds. The removal of isolated cameras
is important for the algorithms presented in Section 5.5 and Section 5.6.

5.5 Objectness and Outlier Removal

Misclassified pixels in the semantic segmentation potentially lead to noise in
the resulting three-dimensional reconstruction. We determine outliers in the
object point cloud by computing the objectness for each three-dimensional ob-
ject point o(o)

j . We use the camera calibrations Ki , rotations R(o)
i and centers

c(o)
i estimated during the Structure from Motion process to project the object

points o(o)
j onto the focal plane of each virtual camera cami . Let p j, i denote

the homogeneous image projection of a point o(o)
j given in object coordinates

w.r.t. to camera cami . The projection is defined according to (5.3). The map-
ping of (5.3) is visualized in Fig. 5.3.

p j, i = KiR(o)
i (o(o)

j − c(o)
i ) (5.3)

By analyzing the projections p j, i of o(o)
j we determine a measure for the ob-

jectness of o(o)
j . For each visible projection p j, i of o(o)

j we use the corre-
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5.5 Objectness and Outlier Removal

3D Object Point 3D Background Point

Visible Projected on O. (TP) Projected on B. (TN)
Occluded by O. Projected on O. (TP) Projected on O. (FP)
Occluded by B. Projected on B. (FN) Projected on B. (TN)

Projection possibilities of 3D points on object (O.) and background (B.) image areas.
In the context of point classification, the different possibilities correspond to True Pos-
itives (TP), True Negatives (TN), False Positives (FP) and False Negatives (FN).

Table 5.1: Projection possibilities.

sponding segmentation information in order to determine if the point belongs
to the object or background category. This allows us to count the number of
projections projected onto object category pixels. Concretely, we define the
object affinity oj of a three-dimensional point o(o)

j in the object point cloud
according to (5.4).

oj =
∑
i

θi (p j, i ) /
∑
i

σi (p j, i ) (5.4)

The pixel classification function θi (p) = 1, if p corresponds to the object in
image i and θi (p) = 0, otherwise. σi (p) takes the visibility into account,
i.e., σi (p) = 1, if p is visible in image i and σi (p) = 0, otherwise. Defin-
ing a threshold ratio ro allows us to filter the reconstructed object points, i.e.,
we keep only points for which oj > ro holds. By weighting each camera
equally and without any prior knowledge the optimal decision is achieved us-
ing ro = 0.5. However, it is reasonable to adjust ro according to the video
content. For instance, video data with low object occlusions allow us to use
higher ro values.
Let us assume for simplicity that our segmentation is perfect for a certain pic-
ture. Table 5.1 shows the corresponding projection cases of a 3D point. The
evaluation of 3D point projections can be understood as a 3D object point
classification task. A False Positive (FP) describes the case where a back-
ground point is being considered as part of the object and a False Negative
(FN) represents the complementary situation. The cases FP and FN may lead
to an incorrect filtering of 3D points. In order to handle FPs resulting from
3D points close to the object surface we give background projections more
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5 Shape Reconstruction of Dynamic Objects

(a) Unlabeled point cloud. (b) Assignment of object and non-object
labels.

(c) Removal of non-boundary points. (d) Creation of points inside the space
spanned by the boundary points.

(e) Assignment of point labels. (f) Removal of non-boundary points.

Figure 5.4: Two dimensional example of the boundary generation algorithm. The red line denotes
the true but unknown object shape. Blue and green represent object and non-object
labels.

emphasis. This can be achieved by selecting a high ro value. However, in-
creasing ro will also increase the influence of FNs. However, video data with
low object occlusion and stable object segmentations contain only few FNs.
We used ro = 0.98 in our experiments.
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5.6 3D Boundary Generation

5.6 3D Boundary Generation

Applying SfM to moving objects with reflecting and textureless surfaces, e.g.,
cars, usually reconstructs few stable points and produces outliers or points
with incorrect normals. Both properties potentially lead to meshes with incor-
rect shapes. We compute clean object meshes by replacing the original object
point cloud with virtually generated points. We exploit the object segmenta-
tions and the virtual camera poses computed during the SfM reconstruction
process to create 3D points consistent to the two-dimensional shapes of the
object in the corresponding images. The generated points are uniformly dis-
tributed and show consistent normal vectors.
First, we compute a three-dimensional bounding box corresponding to the
original sparse point cloud. Next, we divide the space of this bounding box
in O(k3) equal subspaces and represent each cell with one point at the center.
Here k is the number of subdivisions in each dimension.
By applying the method described in Section 5.5 we assign an object or a non-
object flag to each point in the grid - q.v. Fig. 5.4b. This divides the space
of the bounding box in an object and a background volume. We compute
the corresponding object boundary by removing all non-boundary points - see
Fig. 5.4c. A point is considered as a boundary point if and only if one of the
corresponding neighbors has a complementary flag.
Unfortunately, the computation of an accurate surface reconstruction using
this approach is not reasonable as it requires O(k3) (non-)object flag compu-
tations. Therefore, we iteratively apply this approach as follows. First, we use
a coarse subdivision of the bounding box space to compute an initial set of
boundary points, i.e., points lying on the boundary of the object or the back-
ground volume. Next, we create points on a more fine-grained level inside the
space spanned by the current boundary points, which are possibly closer to the
true object boundary - see Fig. 5.4d. Then, we assign (non-)object flags to the
newly generated points - see Fig. 5.4e. This allows us to update the set of real
boundary points and to adjust the shape of the object boundary represented by
these points - see Fig. 5.4f. We iteratively repeat these computations.
We initialize the set of boundary points (BPsi) in iteration 1 with boundary
points computed at a coarse division (e.g., 1000 cells) of the bounding box
space (BPsCoar se). In each iteration i we build a kd-tree containing all points
of BPsi to efficiently determine the nearest neighbors of each boundary point.
It is important to note that the neighbors of a boundary point differ in terms
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5 Shape Reconstruction of Dynamic Objects

(a) Neighbor types of a boundary point. (b) Creation of possible boundary points.

Figure 5.5: Neighbor types and creation of new boundary points. For reasons of clarity, this fig-
ures shows only one of eight grid cells that determine the neighbors of a boundary
point (black). A boundary point has maximal 26 neighbor points. Fig. 5.5a shows
that a boundary point has six neighbors with distance d (red), twelve neighbors with
distance

√
2d (blue), and eight neighbors with

√
3d (green), where d is the length

of the edges of the cells in the grid. Fig. 5.5b visualizes the creation of seven new
possible boundary points (blue) using three neighbors with distance d (red).

of their distance. The different neighbor types are illustrated in Fig. 5.5a. The
varying distances must be considered while using the kd-tree to determine the
nearest grid neighbors of a boundary point.
We iterate over the current boundary points (BPsi) and determine for each
BP the set of neighbors with distance d to create a set of possible boundary
points (PBPsi). We use the points (x + d, y, z), (x, y+ d, z) and (x, y, z + d) to
compute new points on a more fine-grained level according to Fig. 5.5b. Here,
(x, y, z) represents the three-dimensional coordinate of the current boundary
point. We generate only a subset of points or no new points at all, if there are
less or no points meeting the criteria above. The creation of new points on a
more fine-grained level is equivalent to a division of the cell into eight cuboids
as well as increasing the point density by a factor of two.
Next, we compute (non-)object flags for all newly generated PBPsi . By re-
moving all non-boundary points in PBPsi ∪ BPsi we adjust the boundary. To
determine if a point is a boundary point we analyze the corresponding 26 grid
neighbors. After several iterations we cover the space on a fine-grained level.
The essential steps of the proposed algorithm are depicted in Algorithm 4.
The number of required iterations depends on the granularity of the points
before the first iteration d0 as well as the desired point density di . In each
iteration the distance between points is halved. To reach a point density of dd

the algorithm requires dlog d0
di
e iterations.
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5.6 3D Boundary Generation

Algorithm 4: Outline of the boundary generation algorithm.

BPs1 = BPsCoar se // BP: Boundary Point
for i = 1...k do

PBPsi ← ∅ // PBP: Possible Boundary Point
// Create points inside the space spanned by BPsi
(Fig. 5.4d)

for p ∈ BPsi do
N N s ← getNearestNeighborsKDTree(6,p,BPsi)
// GN s correspond to the red points in Fig. 5.5a

GN s ← getGridNeighbors(p,N N s)
// PBPsi correspond to the blue points in
Fig. 5.5b

PBPsi ← PBPsi ∪ createPossibleBPs(p,GN s)
end
PBPsi = assignFlagsToPoints(PBPsi) // See Fig. 5.4e
PBPsi = PBPsi ∪ BPsi
BPsi+1 ← ∅

// Compute refined boundary points (Fig. 5.4f)
for p ∈ PBPsi do

N N s ← getNearestNeighborsKDTree(26,p,BPsi+1)
GN s ← getGridNeighbors(p,N N s)
// We must consider the flags of the
corresponding
// neighbors to decide if a point is a boundary
point

if isBoundaryPoint(p,GN s) then
BPsi+1 ← BPsi+1 ∪ {p}

end
end

end
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5 Shape Reconstruction of Dynamic Objects

The generated boundary point set is used to generate a mesh describing the
object contour.

5.7 Experimental Evaluation

This section shows qualitative and quantitative results using drone footage and
the dataset described in Section 4.1.

5.7.1 Qualitative Evaluation

All evaluations presented in the following use the semantic segmentation
ConvNet proposed by Zheng et al. (2015). We choose this one over Long
et al. (2015) since the latter creates a less accurate silhouette, produces some-
times false positives as well as disconnected components. In order to compute
the dilation and erosion we select an ellipse as structuring element and set its
radius to ten pixels, since our investigation of different segmentation samples
showed that the boundary inaccuracies of the ConvNet are usually smaller
than five pixels.

Comparison of Boundary Generation and Multi-View Stereo

We use a video sequence of 510 images viewing a vehicle from multiple sides
to emphasize the different reconstruction results obtained by Structure from
Motion, Multi-View Stereo and Boundary Generation. We use the approach
in Section 5.5 to remove outliers in the object point cloud. Fig. 5.6 shows an
example of a Structure from Motion reconstruction result before and after the
semantic outlier filtering step. The removal of outliers reduces the number of
incorrect polygons in the meshes computed during the dense reconstruction
step.
Fig. 5.7 compares the boundary generation results with sparse and dense re-
constructions as well as the corresponding polygon mehses. Fig. 5.7d shows
the sparse point cloud of the car using Wu (2011). The dense model rep-
resentation shown in Fig. 5.7e is computed applying the Multi-View Stereo
algorithm by Goesele et al. (2007). The stereo matching technique uses a
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5.7 Experimental Evaluation

(a) Original reconstruction. (b) Reconstruction after outlier removal.

Figure 5.6: SfM reconstruction (top view) before and after semantic outlier removal. The recon-
structed cameras are represented with red triangles. In the corresponding scene the
vehicle as well as the camera is moving.

previously computed SfM result to build a depth map for each virtual cam-
era. The dense model is created by projecting the depth values of each virtual
camera into the world coordinate system. For both, the sparse and the dense
point clouds, we remove outliers using the method described in Section 5.5.
The corresponding results are shown in Fig. 5.7g and Fig. 5.7h. Also the
boundary generation uses the virtual camera poses estimated during the SfM
computation. Fig. 5.7f and 5.7i show the results after the first and third itera-
tion, respectively. All meshes (see Fig. 5.7j, 5.7k and 5.7l) are computed with
the Poisson surface reconstruction algorithm by Kazhdan et al. (2006). We
leverage Waechter et al. (2014) to determine a texture for each mesh.

Comparison of Boundary Generation to Lebeda et al .

We compare our boundary generation method visually to the approach pre-
sented in Lebeda et al. (2015) on publicly available video data. The video
sequence consists of 76 input images showing a rally car. Fig. 5.8 contains
two example input pictures, the result computed by Lebeda et al. (2015) and
a mesh based on the output of our boundary generation algorithm. The shape
of our result is more accurate, i.e., closer to the real shape of the car. Due to
missing ground truth data a quantitative comparison is not possible.
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5 Shape Reconstruction of Dynamic Objects

(a) Input image. (b) Input image. (c) Input image.

(d) Sparse reconstruction
(Wu, 2011).

(e) Dense reconstruction
(Goesele et al., 2007).

(f) Boundary generation:
iteration 0.

(g) Sparse reconstruction
(Wu, 2011) of (d) after
outlier removal.

(h) Dense reconstruction
(Goesele et al., 2007)
of (e) after outlier re-
moval.

(i) Boundary generation:
iteration 2.

(j) Textured mesh (Kazh-
dan et al., 2006;
Waechter et al., 2014)
using the points of (g).

(k) Textured mesh
(Fuhrmann and Goe-
sele, 2014; Waechter
et al., 2014) using the
points of (h).

(l) Textured mesh (Kazh-
dan et al., 2006;
Waechter et al., 2014)
using the points of (i).

Figure 5.7: Object shape reconstruction results using a single sequence of 510 images.
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(a) Example input image. (b) Textured object mesh
using Lebeda et al.
(2014).

(c) Textured mesh using
the proposed bound-
ary generation method
(ours).

Figure 5.8: Comparison of our boundary generation method using the video sequence presented
in Lebeda et al. (2014).

5.7.2 Quantitative Evaluation

In this section we evaluate the accuracy of the proposed boundary generation
algorithm quantitatively using the dataset described in Section 4.1. We applied
our pipeline to all 25 sequences contained in the dataset.
In nine sequences the reconstruction fails, i.e., the SfM process performs in-
correct image registrations or produces (multiple) partial models. Incorrect
image registrations are caused by ambiguous feature matches due to object
symmetries and repetitive elements (e.g., feature matches between opposite
wheels). The lack of consistent feature matches results in (multiple) partial
models (e.g., only the front or the back side are reconstructed). The main
reasons for this is that a) only few salient features on the vehicle surface are
detected and b) the corresponding descriptors are corrupted by reflections and
illumination changes.
In seven of the eight trajectory-types the car is captured from at least three
sides. We select for each of these seven trajectories one sequence and compute
the distance between the boundary and the laser scan point cloud. We auto-
matically scale and register the boundary point cloud to the ground truth us-
ing the Iterative Closest Point implementation of CloudCompare (Girardeau-
Montaut, 2016). It is important to note that in contrast to the generated ob-
ject boundaries the laser scan data contains no points at windows and at the
bottom side of the vehicle. Since there is no correspondence information be-
tween laser scan and boundary generation points, we use the following steps to
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5 Shape Reconstruction of Dynamic Objects

(a) Overlay of boundary (green) and laser
scan (blue) points - side view.

(b) Overlay of boundary (green) and
laser scan (blue) points - top view.

Figure 5.9: Overlay of a generated boundary point cloud and the vehicle laser scan ground truth.

Trajectory Type

Average Distance (cm) 4.4 3.0 2.6 3.1 3.2 3.3 3.4

Standard Deviation (cm) 5.8 3.0 2.6 2.9 3.1 3.3 3.4

Table 5.2: Evaluation boundary accuracy.

find reasonable correspondences. First, we compute for each boundary point
the nearest neighbor in the laser scan. We determine the distance between
each boundary-laser-scan-point-pair. If multiple boundary points share the
same nearest neighbor we keep only the boundary point with the smallest dis-
tance. We use the average distance and the standard deviation of the remain-
ing boundary-laser-scan-point-pairs as evaluation measure. Since the videos
in the dataset contain no object occlusions we use an object ratio of ro = 0.98.
Fig. 5.9 shows the laser scan and an overlay of a generated boundary and the
ground truth.
Table 5.2 shows the evaluation of the seven trajectories using the output of the
4th iteration and roughly 1000 cells as initial subdivision. Fig. 5.10 shows an
overlay of the reconstructed 3D boundary mesh and the original input image
sequence.
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5.8 Discussion

(a) Input Frames.

(b) Input images overlayed with the object meshes rendered from the corresponding
camera poses.

Figure 5.10: Comparison of input images and object meshes computed by the proposed boundary
generation method allows to assess color and shape consistency of the result. The
images show frames of the 5th trajectory of the presented dataset.

5.8 Discussion

We presented a pipeline to reconstruct the three-dimensional structure of mov-
ing objects in video data. We observe that SfM based point clouds of moving
objects with reflecting surfaces often result in crumbled meshes due to out-
liers, irregular point densities and incorrect normal vectors. We tackled this
problem by introducing an algorithm combining the information contained in
virtual camera poses and semantic segmentations. The proposed approach
constrains surfaces of the object not directly seen by the camera. We applied
our algorithm on publicly available video data and on 25 sequences from our
dataset. The algorithm achieves an average point distance of 3.3 cm evaluating
seven trajectories contained in the dataset using a laser scan as ground truth.
At the moment, we initialize the focal length with (5.2). The estimation of
correct focal length values is especially difficult for moving objects because
of limited object sizes - objects usually cover only minor parts of the image.
In the case of a moving camera, one could use object and background images
to compute a joint estimation of the focal length values, since the correspond-
ing cameras in the object and the background reconstruction share the same
parameters.
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One limitation of the presented approach is that object occlusions may cause
incorrect object point classifications, i.e., actual object points are being con-
sidered as non-object structures. One way to tackle this issue may be the
detection of such cases in the input images. Also, the geometric information
of different scene components contained in the Multibody Structure from Mo-
tion reconstruction (q.v. Section 3.4 and Chapter 6) are presumably useful to
detect object occlusions.
Given suitable camera-object-trajectories we have demonstrated that semantic
segmentations provide useful cues to infer three-dimensional object shapes. A
tight coupling of semantic boundary information and SfM/MVS may allow to
reconstruct moving objects in more constrained scenarios. For example, by
leveraging semantic constraints during point triangulation. Such a combina-
tion could improve the accuracy and the consistency of the computed point
cloud.
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6 Object Trajectory Reconstruction
using Instance-Aware Multibody
Structure from Motion

This chapter presents several methods to reconstruct trajectories of dynamic
objects in monocular and stereo image sequences. Parts of this chapter have
been published in Bullinger et al. (2018a), Bullinger et al. (2018b), Bullinger
et al. (2019a) and Bullinger et al. (2019b). The described methods rely on
the Instance-aware Multibody Structure from Motion approach presented in
Chapter 3 to reconstruct moving objects and environment structures. Because
of the scale ambiguity of MSfM we will analyze motion as well as stereo con-
straints to determine consistent vehicle trajectories.
The remaining part of this chapter is organized as follows. We describe the
problem statement in Section 6.1. As shown in Section 3.5 the different com-
ponents of a multibody reconstruction are defined up to scale. We derive a
formal representation of an object trajectory in Section 6.2 that reflects the
scale ambiguities of MSfM reconstructions. Section 6.3 shows that any re-
constructed object trajectory may be considered a superposition of the cam-
era motion and the true object trajectory. Because of the scale ambiguity of
MSfM, we require additional constraints to compute consistent object trajec-
tories. In the monocular case, we apply object motion constraints to determine
the scale ratio of object and environment reconstruction (q.v. Section 6.4). In
Section 6.5 we leverage the basesline of the stereo camera to resolve the scale
ambiguity in stereo image sequences. In Section 6.6 and Section 6.7 we show
qualitative and quantitative results of the proposed trajectory reconstruction
methods. Section 6.8 concludes this chapter.
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6 Object Trajectory Reconstruction

(a) Consistent object trajectory. Object
and background reconstruction are
scaled accordingly.

(b) Inconsistent object trajectory. The
scale ratio between object and
background reconstruction is 0.5.

Figure 6.1: Visualization of the visual trajectory reconstruction problem statement. The camera
trajectory is shown in red, the object trajectory in blue and the ground in green.

6.1 Problem Statement

Reconstructing trajectories of dynamic objects consists of estimating the cor-
responding object pose (6 degrees of freedom) for each time step. As seen in
Section 3.5 Multibody Structure from Motion allows to determine object poses
up to scale, i.e., MSfM restricts the object trajectory to a one-parameter family
of possible solutions parameterized by the unknown scale ratio between object
and background reconstruction. Thus, the computation of consistent object
trajectories is equivalent to the determination of the corresponding scale ratio.
The computation of consistent scale ratios is important, since incorrect scale
ratios do not only change the extent of the reconstructed trajectories but also
the corresponding shape. Fig. 6.1 shows an example, which illustrates this ef-
fect. The reason for this is that the reconstructed trajectory is a superposition
of the true object trajectory as well as the camera trajectory. More details are
given in Section 6.3.
Because of the scale ambiguity of image based reconstructions, it is impos-
sible to compute the scale ratio directly. One way to tackle this problem is
the exploitation of object motion constraints, which are typically category-
specific. For example, vehicles move on the ground and specific subcategories
like cars additionally rotate around the center of the back axles. In the case of
stereo image sequences, the scale ratio between object and background recon-
struction may be determined using the baseline of the stereo cameras. High
attention must be paid to the accuracy of the reconstructed camera pose, since
small deviations typically have a strong impact on scale ratio.
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6.2 Scale Ambiguous Trajectory Representation

With the correct scale ratios we are able to compute consistent object trajecto-
ries.

6.2 Scale Ambiguous Trajectory Representation

Without loss of generality, we describe the motion trajectory reconstruction
of a single object. In Section 3.5 we have seen that the transformation be-
tween the object and the background CFS using a camera with index i may be
expressed according to (6.1),

T(o2b)
i (r) B


rR(b)

i

T
R(o)

i −rR(b)
i
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i c(o)
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where R(o)
i and c(o)

i denote the camera rotation and position corresponding
to frame i in the object reconstruction s f m(o) . In contrast, R(b)

i and c(b)
i

represent the camera pose in the background reconstruction s f m(b) .
Applying T(o2b)

i to a point o(o)
j in object coordinates according to (6.2) yields
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We compute the position of o(b)
j, i (r) according to (6.3).

o(b)
j, i (r) = c(b)

i + r · R(b)
i

T
· R(o)

i · (o(o)
j − c(o)

i ) B c(b)
i + r · v(b)

j, i (6.3)

with
v(b)
j, i = R(b)

i

T
· R(o)

i · (o(o)
j − c(o)

i ). (6.4)

Given the scale ratio r , we can determine the true object point positions for
each time step i using (6.3). We use o(b)

j, i (r) of all cameras and object points as
object motion trajectory representation, i.e., the trajectory is represented by a
one-parameter family of possible solutions. The scale ambiguity is expressed
by the unknown scale ratio r . Fig. 6.2 shows a visualization of (6.3).
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6 Object Trajectory Reconstruction

c(b)
i

v(b)
j, i

Figure 6.2: Concept of the trajectory computation. The vector c(b)
i is the vector from the origin

to the camera center. v(b)
j, i is the rotated vector pointing from the camera center c(b)

i

to object point o(b)
j .

6.3 Scale Effects and Object Trajectory Shape

As shown in Ozden et al. (2004) any incorrectly scaled trajectory is a linear
combination of the camera and the true object motion. According to Fig. 3.12
the transformations between the different coordinate frame systems (object,
camera and world) are subject to (6.5).
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R(o2b)
i (r) and t(o2b)

i (r) describe rotation and scaling as well as the translation
of a vector given in the object CFS at time i to the CFS of the background
reconstruction in dependence of the scale ratio r . Considering only the trans-
lation components in (6.5) yields (6.6).

t(o2b)
i (r) = c(b)

i − rR(b)
i

T
R(o)

i c(o)
i (6.6)
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6.3 Scale Effects and Object Trajectory Shape

Figure 6.3: Example of the influence of an inconsistent scale ratio on the shape of the recon-
structed object trajectory. The consistent object trajectory is shown in blue. The red
trajectory is the result of a direct combination of an object and a background recon-
struction without computing the corresponding scale ratio. The images show different
views of the same trajectory pair.

Multiplying R(b)
i from left to (6.6) yields (6.7).
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(6.7)

Let us assume that the object and background reconstructions are correctly
scaled. In this case the scale ratio r in (6.7) must be equal to one. Other scale
ratios (i.e., r , 1), will result in incorrect trajectories. In this case (6.7) can be
adjusted to (6.8).
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i c(o)
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i − R(b)
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i (1) (6.8)

Substituting (6.8) in (6.6) yields (6.9).
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(6.9)

Equation (6.9) shows that the scaled object motion is a linear combination
of the true object trajectory t(o2b)

i (1) and the camera trajectory c(b)
i . Further,

(6.9) describes how the scale ratio influences extent and shape of an object
trajectory. For r = 1 (6.9) shows that the scaled trajectory is equal to the true
trajectory. Fig. 6.3 shows an example how different scale ratios change the
extent as well as the shape of the object trajectory.
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6 Object Trajectory Reconstruction

6.4 Monocular Trajectory Reconstruction

The reconstruction of object motion trajectories in monocular video data cap-
tured by moving cameras is a challenging task, since in general it cannot be
solely solved leveraging image observations. Because observed object motion
trajectories are scale ambiguous, additional constraints such as motion priors
are required to identify motion trajectories consistent to environment struc-
tures. Presumably, there is no universal motion constraint providing satisfi-
able results for all types of object motion. Previous works (q.v. Section 6.4.1)
proposed category specific trajectory constraints. In this work we consider the
domain of vehicles, which is of a broad interest for many applications. We
define two types of object trajectory constraints that apply directly to the re-
constructed object points. Both methods leverage geometric information of
environment reconstructions to determine consistent object trajectories. Sec-
tion 6.4.2 presents an approach, which assumes that the object of interest
moves on a locally planar surface, i.e., each object point in the background
CFS shows for different time steps a constant distance to the corresponding
local approximation of the terrain surface. In contrast, Section 6.4.3 leverages
vehicle-environment-projections to solve the scale ambiguity.

6.4.1 Related Work

The determination of the correct three-dimensional object trajectory, i.e., the
computation of the correct scale ratio between object and background recon-
struction, requires additional priors or constraints.
Lee et al. (2015), Song and Chandraker (2015) and Chhaya et al. (2016) focus
on vehicle mounted cameras where the sensor pose shows specific properties,
e.g., a fixed height and angle. These approaches are not applicable to other
scenarios in which the camera undergoes less controlled motions such as cam-
eras mounted on drones or motorcycles.
Ozden et al. (2004) propose the non-accidentalness and the independence
principle to reconstruct 3D object trajectories. The first states that the mo-
tion of moving objects is not coincidental whereas the latter assumes that con-
sistent object motions and camera trajectories are linearly independent. In
contrast to Lee et al. (2015), Song and Chandraker (2015) and Chhaya et al.
(2016), these approaches are also applicable to non-driving scenarios.
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6.4 Monocular Trajectory Reconstruction

Several previously proposed methods (Kundu et al., 2011; Namdev et al.,
2013; Ozden et al., 2004; Park et al., 2015; Yuan and Medioni, 2006) lever-
age the non-accidentalness principle to determine consistent object motions.
Yuan and Medioni (2006) propose to reconstruct the 3D object trajectory by
assuming that the object motion is parallel to a single ground plane. Kundu
et al. (2011) exploit motion segmentation with multibody Visual SLAM to
reconstruct the trajectory of moving cars. Kundu et al. (2011) use an instan-
taneous constant velocity model in combination with a Bearing only Tracker
to estimate consistent object scales. Namdev et al. (2013) assume that the
vehicles show motions according to non-holonomic curves and straight lines.
Park et al. (2015) propose an approach to reconstruct the trajectory of a single
3D point tracked over time by approximating the motion using a linear com-
bination of trajectory basis vectors. This approach is suitable to reconstruct
independently moving point sets.
Ozden et al. (2010) propose an approach that leverages splitting and merging
of points of different scene components to determine the corresponding scale
ratios, which is conceptually different to the previously mentioned methods.
In contrast to previous work (Chhaya et al., 2016; Kundu et al., 2011; Lee
et al., 2015; Namdev et al., 2013; Ozden et al., 2004, 2010; Park et al., 2015;
Song and Chandraker, 2015; Yuan and Medioni, 2006), we show quantita-
tive results and use the environment geometry to determine consistent three-
dimensional object trajectories.

6.4.2 Vehicle Trajectory Reconstruction using Constant
Distance Constraints

This section bases on the monocular vehicle trajectory reconstruction ap-
proach proposed in Bullinger et al. (2018b). The core idea of the presented
motion constraint is that each object point in the CFS of the background re-
construction shows a constant distance to the ground for all time steps i. In
contrast to Yuan and Medioni (2006), our method uses information of tem-
poral distant time steps and assumes that the object of interest moves on a
locally planar surface, i.e., the terrain may contain slopes and different eleva-
tions. The reconstructed vehicle trajectory shows this property only for the
true scale ratio and a non-degenerated camera motion.
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Figure 6.4: Overview of the trajectory reconstruction pipeline. Boxes with corners denote compu-
tation results and boxes with rounded corners denote computation steps, respectively.
The steps in the gray area are performed for each object.

Pipeline Overview

Fig. 6.4 shows the elements of the proposed pipeline. We use the Multi-
body Structure from Motion approach presented in Chapter 3 to track two-
dimensional object shapes in monocular image sequences on pixel level and
to reconstruct corresponding three-dimensional object/environment points as
well as camera poses. Without loss of generality, we describe the reconstruc-
tion of single object motion trajectories. We apply SfM (Moulon et al., 2012;
Schönberger and Frahm, 2016) simultaneously to object and background im-
ages as shown in Fig. 6.4. Object images denote images containing only color
information of a single object instance. Similarly, background images show
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6.4 Monocular Trajectory Reconstruction

only background structures. We combine object and background reconstruc-
tions to compute a one-parameter-family of possible, visually identical, object
motion trajectories. We determine the correct scale ratio by exploiting con-
straints derived from the reconstructed terrain geometry.

Terrain Ground Approximation

We combine Structure from Motion results and semantic segmentations to es-
timate locally planar approximations of the ground surface. We apply the
ConvNet presented in Shelhamer et al. (2017) to determine ground categories
like street and grass for all input images on pixel level. We determine for each
3D point in the background reconstruction a ground or non-ground label by
accumulating the semantic labels of the corresponding keypoint measurement
pixel positions. This allows us to determine a subset of background points,
which represent the ground of the scene. Let µ( j) be the set of image indices
used to triangulate a background point j. Further, let ν j, i denote the pixel
position of the corresponding observation in image i. We define the ground
affinity according to (6.10).

gj =
1
|µ( j) |

∑
i∈µ( j )

φi (ν j, i ) (6.10)

The pixel classification function φi (ν) = 1, if ν corresponds to ground in im-
age i and θi (ν) = 0, otherwise. We use the points b(b)

j in the background
point cloud with gj > 0.5 to represent the ground. We consider only stable
background points, i.e., 3D points that are observed at least four times.
We approximate the ground surface locally using plane representations. For
each frame i we use the corresponding estimated camera parameters and object
point observations to determine a set of ground points Pi close to the object.
We build a kd-tree containing all ground measurement positions of the cur-
rent frame. For each object point observation, we determine the numb closest
background measurements. Let cardi be the cardinality of Pi . While cardi

is less than numb , we add the next background observation of each point mea-
surement. This results in an equal distribution of local ground points around
the vehicle. We apply RANSAC (Fischler and Bolles, 1981) to compute a lo-
cal approximation of the ground surface using Pi . Each plane is defined by a
corresponding normal vector ni and an arbitrary point pi lying on the plane.
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6 Object Trajectory Reconstruction

Scale Estimation using Constant Distance Constraints

This approach exploits priors of object motion to improve the robustness of the
reconstructed object trajectory. We assume that the object of interest moves on
a locally planar surface. In this case the distance of each object point o(b)

j, i (r)
to the ground is constant for all cameras i. The reconstructed trajectory shows
this property only for the true scale ratio and non-degenerated camera motion.

Scale Ratio Estimation using a Single View Pair We use the term view to
denote cameras and corresponding local ground planes. The signed distance
of an object point o(b)

j, i (r) to the ground plane can be computed according to

d j, i = ni · (o(b)
j, i (r) − pi ), where pi is an arbitrary point on the local ground

plane and ni is the corresponding normal vector. If the object moves on top of
the approximated terrain ground the distance d j, i is independent of a specific
camera i. Thus, for a specific point with index j and two different cameras
with index i and i′ the relation shown in (6.11) holds.

ni · (o(b)
j, i (r) − pi ) = ni′ · (o(b)

j, i′ (r) − pi′ ). (6.11)

Substituting (6.1) in (6.11) results in (6.12). Here, r j, i, i′ highlights that the
computed scale ratio depends on the object point with index j and the cameras
with index i and i′.

ni · (c(b)
i + r j, i, i′ · v(b)

j, i − pi ) = ni′ · (c(b)
i′ + r j, i, i′ · v(b)

j, i′ − pi′ ) (6.12)

Solving (6.12) for r j, i, i′ yields (6.13).

r j, i, i′ =
ni′ · (c(b)

i′ − pi′ ) − ni · (c(b)
i − pi )

(ni · v(b)
j, i − ni′ · v(b)

j, i′ )
(6.13)

Equation (6.13) allows us to determine the scale ratio r j, i, i′ between object
and background reconstruction using the extrinsic parameters of two cameras
and corresponding ground approximations.

Scale Ratio Estimation using View Pair Ranking The accuracy of the es-
timated scale ratio r j, i, i′ in (6.13) is subject to the condition of the parameters
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6.4 Monocular Trajectory Reconstruction

of the particular view pair. For instance, incorrectly estimated local plane po-
sition and normal vectors may disturb camera-plane distances. In addition,
if the numerator or denominator is close to zero, small errors in the camera
poses or ground approximations may result in negative scale ratios. Because
of the effects mentioned previously, not all view pairs are suitable to estimate
reasonable scale ratios. A least squares solution of all camera pairs and all
points is inadvisable, since the corresponding scale ratios r j, i, i′ do not nec-
essarily follow a Gaussian distribution. Instead, we tackle these problems by
combining two different view pair rankings. The first ranking uses for each
view pair the difference of the camera-plane distances (6.14).

δi, i′,cam = |ni′ · (c(b)
i′ − pi′ ) − ni · (c(b)

i − pi ) | (6.14)

The second ranking reflects the quality of the local ground approximation w.r.t.
the object reconstruction. A single view pair allows to determine ���P

(o) ��� dif-
ferent scale ratios, where P (o) represents the number of object points. For a
view pair with stable camera registrations and well reconstructed local planes
the variance of the corresponding scale ratios must be small. This allows us to
determine ill conditioned view pairs. The second ranking uses the scale ratio
difference to order the view pairs. We sort the view pairs by weighting both
ranks equally.
This ranking is crucial to deal with motion trajectories close to degenerated
cases. In contrast to other methods, this ranking allows to estimate consis-
tent vehicle motion trajectories, even if the majority of local ground planes
are incorrectly reconstructed. Concretely, this approach allows to determine a
consistent trajectory using a single suitable view pair.
Let v denote the view pair with the lowest overall rank. The final scale ratio is
determined by using a least squares method w.r.t. all equations of v according
to (6.15). Let i and i′ denote the image indices corresponding to v.



...

ni · v(b)
j, i − ni′ · v(b)

j, i′

...

ni · v(b)
j+1, i − ni′ · v(b)

j+1, i′

...

︸                           ︷︷                           ︸
A

·r =



...

ni′ (c(b)
i′ − pi′ ) − ni · (c(b)

i − pi )
...

ni′ (c(b)
i′ − pi′ ) − ni · (c(b)

i − pi )
...

︸                                       ︷︷                                       ︸
b

(6.15)
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6 Object Trajectory Reconstruction

Algorithm 5: View pair selection algorithm.

LetV denote the set of all possible view pairs.
Let vi, i′ ∈ V denote the view pair corresponding to the frame indices i
and i′.

for vi, i′ ∈ V do
rmin ← ∞

rmax ← −∞

for o(o)
j ∈ P (o) do

r j, i, i′ =
ni′ ·(c

(b)
i′
−pi′ )−ni ·(c(b)

i −pi )

(ni ·v(b)
j, i −ni′ ·v

(b)
j, i′

)
// q.v. (6.13)

rmin ← min(rmin ,r j, i, i′ )
rmax ← max(rmax ,r j, i, i′ )

end
δi, i′,var ← rmax − rmin

δi, i′,cam ← |ni′ · (c(b)
i′ − pi′ ) − ni · (c(b)

i − pi ) | // q.v. (6.14)
end
Compute ranking R1 of vi, i′ ∈ V using δi, i′,var .
Compute ranking R2 of vi, i′ ∈ V using δi, i′,cam .
Weight the ranks of R1 and R2 equally to determine a final ranking Rf .
Select the view pair with the lowest rank in Rf .

The equation system in (6.15) contains |P (o) | rows, i.e., one row for each
point o(o)

j in the object reconstruction. The solution may be computed using
the normal equation r = (ATA)−1ATb. Algorithm 5 summarizes the steps of
the proposed algorithm.

Degenerated Motion Case

The proposed method shows similar to previous published motion constraint
based scale ratio estimation methods a degenerated reconstruction case. Con-
cretely, it is impossible to reconstruct the vehicle trajectory, when the cam-
era shows a constant orthogonal distance to the local ground approximation
around the vehicle.
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6.4 Monocular Trajectory Reconstruction

Section 6.2 shows that object points in the background CFS are constrained
by (6.16).

o(b)
j, i (r) = c(b)

i + r · v(b)
j, i (6.16)

The orthogonal distance d j, i of an object point o(b)
j, i (r) in background coordi-

nates to the i-th plane is given by (6.17).

d j, i = ni · (o(b)
j, i (r) − pi ) (6.17)

Substituting o(b)
j, i (r) in (6.17) yields (6.18).

d j, i = ni · (c(b)
i + r · v(b)

j, i − pi ) = ni · (c(b)
i − pi ) + r · ni · v(b)

j, i (6.18)

If the camera shows for each time step i the same distance c to the correspond-
ing local ground plane (ni , pi) then (6.18) may be simplified to (6.19).

d j, i = c + r · ni · v(b)
j, i (6.19)

The approach proposed in Section 6.4.2 assumes that the distance of each
object point is constant for any time steps i and i′, i.e., d j, i = d j, i′ . Combining
both assumptions results in (6.20).

d j, i = d j, i′ ⇔ c + r ·ni · v(b)
j, i = c + r ·ni′ · v(b)

j, i′ ⇔ ni · v(b)
j, i = ni′ · v(b)

j, i′ (6.20)

Equation (6.20) shows that in this case, d j, i = d j, i′ is true for any selection of
r and therefore not suitable to determine r .
For a more general discussion of degenerated camera motions see Ozden et al.
(2004).

6.4.3 Vehicle Trajectory Reconstruction using Projection
Constraints

In Section 6.4.2 we determined consistent object trajectories using motion
constraints. As other previously published methods (Kundu et al., 2011;
Namdev et al., 2013; Ozden et al., 2004; Park et al., 2015; Yuan and Medioni,
2006), the algorithm in Section 6.4.2 shows a degenerated reconstruction case.
In this section we present a vehicle trajectory reconstruction approach with-
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Figure 6.5: Pipeline of the vehicle trajectory reconstruction approach. Computation results are
represented by boxes with corners and computation steps by boxes with rounded cor-
ners. Arrows show computational dependencies.

out ill-posed camera-object-trajectories. The proposed algorithm is originally
described in Bullinger et al. (2018a) and uses vehicle projection constraints to
determine the scale ratio between object and background reconstruction, i.e.,
the algorithm computes consistent object trajectories by projecting dense ve-
hicle reconstructions on the terrain surface. We present an efficient projection
implementation leveraging depth buffer values of mesh renderings.
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6.4 Monocular Trajectory Reconstruction

Pipeline Overview

Fig. 6.5 outlines the pipeline of our approach. The input is an ordered im-
age sequence. We track two-dimensional object shapes on pixel level across
video sequences following the scheme proposed in Chapter 3. As described in
Chapter 3 we apply SfM (Moulon et al., 2012; Schönberger and Frahm, 2016)
to reconstruct object and background images as shown in Fig. 6.5. In con-
trast to the pipeline described in Section 6.4.2, we represent the environment
with a watertight terrain mesh. We project dense vehicle point clouds onto the
reconstructed mesh to determine consistent vehicle environment scale ratios.

Scale Ratio Estimation using Projection Constraints

We tackle the problem of determining consistent object-background-scale-
ratios by exploiting geometric consistency constraints applicable to ground
restricted object categories, like vehicles. In contrast to previous works, our
approach does neither rely on restrictions of camera and object motions nor
specific camera poses. The proposed scale-ratio estimation approach shows
no degenerated cases, in which a consistent object trajectory computation is
impossible.
Our method exploits the fact that some vehicle points should touch the ter-
rain surface, like 3D points corresponding to the wheels of a car. To ensure
the presence of suitable 3D points we enhance the points in s f m(o) by lever-
aging the Multi-View Stereo (MVS) algorithm presented in Schönberger et al.
(2016). In contrast to sparse SfM algorithms, the MVS library by Schönberger
et al. (2016) reliably triangulates points at wheels of driving vehicles.
We exploit the previously computed instance-aware object segmentations to
determine outliers in the dense object point cloud by following the outlier re-
moval method in Section 5.5 - see (5.4). We classify an object point j as
outlier, if oj < 0.9. This threshold is empirically determined and takes the
robustness of the instance-aware segmentation computed with He et al. (2017)
into account.
We apply statistical outlier removal to the previously computed object points
using the standard deviation of the mean distance as outlier criterion. The
mean distance is computed considering the five next neighbors. Fig. 6.6b
shows a dense object reconstruction before and after outlier removal.
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6 Object Trajectory Reconstruction

(a) Example input frames.

(b) Dense object reconstruction before (left) and after (right) outlier removal.

(c) Dense point cloud representing background (left) and ground (right).

(d) Mesh representing background (left) and ground (right).

Figure 6.6: Intermediate results used for the scale ratio computation. Results are computed with
data from the Cityscape dataset (Cordts et al., 2016).
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6.4 Monocular Trajectory Reconstruction

We apply the MVS algorithm presented in Schönberger et al. (2016) to the
sparse background reconstruction s f m(b) to compute a dense background rep-
resentation. We exploit ground segmentations to classify 3D points in the
background point cloud as ground or non-ground points following the ap-
proach in Section 6.4.2 - see (6.10). We use the points b(b)

j in the dense
background point cloud with gj > 0.5 to compute a dense ground point cloud.
Fig. 6.6c compares the dense background reconstruction with the points clas-
sified as ground.
We use the algorithm described in Kazhdan and Hoppe (2013) to compute
watertight ground meshes. This allows us to inter- and extrapolate ground sur-
face areas occluded by moving objects. We determine connected components
in the ground mesh and remove isolated mesh parts. Fig. 6.6d shows an ex-
ample of a computed ground mesh. The removal of non-ground points before
computing the mesh speeds up the computation and leads to a more precise
representation of the ground geometry.
To determine a consistent object-background-reconstruction scale ratio we use
(6.3) to create for each camera i a set of vectors v(b)

j, i pointing from the camera

center c(b)
i to the position o(b)

j, i of point j. Let F denote the set of faces con-

tained in the ground mesh and h j, i the ray defined by c(b)
i and v(b)

j, i .
A naive approach to determine the closest ray-ground-mesh-intersection of a
ray h j, i requires the computation of the intersection of the ray with each face
f ∈ F and the corresponding intersection parameters. This includes intersec-
tion tests with occluded faces and faces not visible in the field of view of the
current background camera i. This makes the object-ground-ray intersection
computation for all rays h j, i computationally expensive.
Instead of computing object-ground-ray intersections, we use the visualiza-
tion toolkit (VTK) (Schroeder et al., 2006) to render the ground mesh from
the perspective of camera i. We exploit the information stored in the depth
buffer to determine 3D-3D object-ground-correspondences. We determine for
each point o(o)

j the corresponding point o(i)
j = R(o)

i (o(o)
j − c(o)

i ) in the camera
coordinate system of camera i as well as the corresponding image projection
xi, j = Kio(i)

j . For xi, j we use the corresponding depth buffer value to deter-

mine a point p(i)
j lying on the ground mesh surface with the same projection

than o(i)
j w.r.t. camera i. We apply bilinear interpolation while accessing depth

buffer values. Fig. 6.7 shows an example of a terrain mesh and corresponding
depth buffer values as well as object projections.
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6 Object Trajectory Reconstruction

(a) Rendered ground mesh. (b) Depth buffer.

(c) Object point cloud and corresponding
projected points.

(d) Object point cloud and corresponding
projected points.

Figure 6.7: Projection of the object point cloud (red) onto the ground mesh using the depth buffer.
The projected points are shown in green. The inconsistent initial scale ratio becomes
apparent by examining the distance between object points and corresponding projec-
tions. Results are computed using the Stuttgart01 sequence in the Cityscape dataset
(Cordts et al., 2016).

To determine a consistent scale ratio, we must find the smallest r , which satis-
fies ‖o(i)

j ‖ = r · ‖p(i)
j ‖ for an arbitrary point o(i)

j in the object point cloud. We
separately compute r according to equation (6.21) for each image i.

ri = min({‖p(i)
j ‖ · (‖o

(i)
j ‖)

−1 | j ∈ {1, . . . , |P (o) |}}) (6.21)

The scale ratio and intersection parameter ri corresponds to the point being
closest to the ground surface, i.e., a point at the bottom of the vehicle. Plug-
ging ri in (6.3) for camera i places the object point cloud on top of the ground
surface. Thus, the smallest ray-plane-intersection-parameter ri represents the
object-to-background-scale-ratio. We reconstruct the three-dimensional vehi-
cle trajectory as defined in equation (6.22).

r = med({ri |i ∈ {1, . . . ,nI }}) (6.22)
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6.5 Stereo Trajectory Reconstruction

x

z

cl crb

Figure 6.8: Coordinate frame system of the stereo camera. cl and cr denote the centers of the left
and right camera and b denotes the corresponding baseline. x and z are the coordinate
axis of the stereo camera system.

Here, med denotes the median and nI the number of images. Using the median
of the scale ratios ri improves the robustness of the proposed approach w.r.t. to
outlier scale ratios caused by incorrectly triangulated parts of the environment
mesh. For the median computation we do not consider invalid image scale
ratios ri , i.e., cameras which have no camera-object-point-rays intersecting
the ground representation.
To compute the final object trajectory we compute (6.3) for each point j at
all time steps i. The removal of outliers in the object reconstruction greatly
improves the object trajectory visualization, since a single outlier in the object
reconstruction results in multiple outliers in the final object trajectory.

6.5 Stereo Trajectory Reconstruction

In Section 6.4, we used monocular image sequences to reconstruct three-
dimensional vehicle trajectories. The scale ambiguity of image based recon-
structions represents one of the main challenges using monocular image data
for three-dimensional object trajectory reconstruction. In the case of stereo
image data, the baseline of the stereo camera induces an unambigous scale of
the corresponding reconstruction result.
The stereo camera set up used in the following sections is depicted in Fig. 6.8.
The coordinate axis of the left and right image plane are coplanar and shifted
along the x axis. The baseline b represents the distance between the camera
centers.
In the following, we propose two methods for three-dimensional object tra-
jectory reconstruction. The approach in Section 6.5.2 uses stereo matching to
triangulate object points and standard SfM of background images to compute
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6 Object Trajectory Reconstruction

the three-dimensional camera motion. The algorithm uses the tracking pre-
sented in Chapter 3 to determine object specific disparity values. Section 6.5.3
presents a method that leverages the full stereo MSfM described in Chapter 3
to compute object and environment reconstructions. The pipeline uses fac-
tor graphs to model stereo projection constraints, which allow to refine the
reconstructed stereo camera poses.

6.5.1 Related Work

The majority of previously published methods for three-dimensional object
trajectory reconstruction such as Ošep et al. (2017), Engelmann et al. (2017)
or Coenen et al. (2018) use stereo matching (Scharstein and Szeliski, 2002)
for object point triangulation. Such methods are limited by the stereo camera
baseline, since stereo matching uses pixel disparities of rectified stereo image
pairs to infer corresponding depth values.
Liang et al. (2018) and Chang and Chen (2018) presented two ConvNet based
stereo matching approaches outperforming the previous state-of-the-art on the
Stereo Robust Vision Challenge (Rob, 2018). The usage of Liang et al. (2018)
as well as Chang and Chen (2018) is limited because of the lack of pre-trained
models and the required fine-tuning in the target domain. Fine-tuning is neces-
sary to use these methods in arbitrary scenarios, since the corresponding Conv-
Net models are trained on image data with specific sensor properties. Thus,
we considered different widely used off-the-shelf stereo matching methods
(Geiger et al., 2010; Hirschmuller, 2008; Yamaguchi et al., 2014) to compute
disparity values. We observe that Geiger et al. (2010) compute more stable ob-
ject specific disparities than Hirschmuller (2008) and Yamaguchi et al. (2014).
Ladický et al. (2012) compute stereo matching and class segmentation jointly
using Conditional Random Fields. Bleyer et al. (2011) leverage Markov Ran-
dom Fields to perform joint optimization of stereo matching and class-agnostic
object segmentation. In contrast, our methods described in Section 6.5.2 and
Section 6.5.3 allow to compute stereo matching results associated with in-
stance information as well as class labels.
Recently, several works determined object models including object shape and
pose using stereo matching based point triangulations. Ošep et al. (2017)
present a combination of object proposals, stereo matching, visual odometry
and scene flow to compute three-dimensional vehicle tracks in traffic scenes.
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6.5 Stereo Trajectory Reconstruction

Ošep et al. (2017) combine 2D object bounding box detections and 3D stereo
depth measurements, which results in background structures being considered
as object points. The detections and measurements are tracked with a 2D-
3D Kalman filter to compute three-dimensional bounding box proposals for
each object. Coenen et al. (2018) leverage a deformable vehicle shape prior
to reconstruct 3D pose and shape. Engelmann et al. (2017) use off-the-shelf
ego-motion and stereo matching methods for vehicle trajectory reconstruc-
tion. Engelmann et al. (2017) track objects in 3D using Chen et al. (2015)
and impose a common shape and motion model by combining the information
acquired by multiple frames corresponding to the same track.

6.5.2 3D Object Trajectory Reconstruction using Stereo
Matching

This section bases on Bullinger et al. (2019a) and presents a method for ob-
ject trajectory reconstruction using stereo matching. Stereo matching does not
allow to differentiate between static and dynamic scene structures, since cor-
responding points are triangulated using a single stereo image pair. To tackle
this issue our pipeline uses the tracking approach described in Chapter 3 to
track two-dimensional objects and corresponding disparities on pixel level.
This allows us to triangulate object specific points using stereo matching.

Pipeline Overview

Fig. 6.9 shows an overview of the proposed object trajectory reconstruction
pipeline. The input images of the stereo camera are rectified to simplify sub-
sequent processing steps. We apply stereo matching to compute correspond-
ing pixel disparity values for each image pair of the stereo image sequence.
Following the Multiple Object Tracking (MOT) approach presented in Chap-
ter 3 we track objects on pixel level in the images captured by the left sensor
of the stereo camera. For each object we leverage corresponding segmenta-
tion masks to determine object specific disparity values, which allow us to
triangulate dense object points for each frame, i.e., the baseline of the stereo
camera is known. We use the background images as input for SfM to com-
pute a background model and associated stereo camera poses for each time
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Figure 6.9: Overview of the trajectory reconstruction pipeline. Boxes with corners denote com-
putation results and boxes with rounded corners denote computation steps.

step. We transform the stereo matching based triangulated object points in the
background CFS using the camera poses of the background reconstruction.
Transforming the object points into the environment reconstruction CFS step
allows us to determine the three-dimensional object motion trajectory. The
usage of the left and right camera images for SfM allows to compute metric
reconstructions, i.e., the results are not scale ambiguous.

Trajectory Reconstruction and Outlier Removal

Stereo matching (Scharstein and Szeliski, 2002) based point triangulation ex-
ploits the relative poses of the left and the right sensor of a stereo camera
to determine three-dimensional scene points. Corresponding matches are de-
termined along so called scan lines and allow to define pixelwise disparity
functions di (·) for each time step.
Without loss of generality, we describe the trajectory reconstruction for a sin-
gle object. In the following, (u,v) ∈ Pi denotes the set of pixels representing
the current object in image i. Fig. 6.8 shows the setup of the stereo cam-

110



6.5 Stereo Trajectory Reconstruction

era system and the corresponding coordinate frame systems, i.e., the x axis is
pointing to the right, the y axis downwards and the z axis forward. We use the
disparity-to-depth mapping matrix Q according to (6.23) to determine homo-
geneous points (xu , yv , z,wu,v, i ) corresponding to the pixel disparity triplets
(u,v,di (u,v)) of the left image.



xu
yv

z
wu,v, i



=



1 0 0 −cu
0 1 0 −cv
0 0 0 f
0 0 −1

b
cu−c

′
u

b

︸                     ︷︷                     ︸
Q

·



u
v

di (u,v)
1



(6.23)

Here, (cu ,cv ) and f denote the principal point and the focal length in pixels.
b is the extent of the stereo camera baseline in the background SfM coordinate
frame system. This ensures, that object points and camera poses are correctly
scaled. Normalizing (xu , yv , z,wu,v, i )T yields the actual three-dimensional
object point o(i)

u,v = ( xu
wu,v, i

,
yv

wu,v, i
, z
wu,v, i

)T in camera coordinates. We de-
crease computation time and memory consumption using only every second
object pixel for triangulation.
We observe that incorrectly estimated disparity values lead to distant, isolated
object points - usually close to the object boundary. We assume that each
object consists of a single connected component, i.e., each object point has
neighbor points with similar depth values. Equation (6.24) shows the depth
error δz of a stereo camera system with parallel optical axes depending on the
stereo camera baseline b, the focal length f and the disparity error δd. For
more details see Chang and Chatterjee (1992).

δz =
z2 · δd
b · f

(6.24)

Equation (6.24) shows a) the estimated depth error δz increases quadratic with
the distance z and b) the estimation of close points is more reliable than the
computation of distant points. Defining a threshold for disparity variation
between adjacent pixels allows us to compute dynamic depth intervals of valid
object points, which take the corresponding depth value into account.
For each object pixel (u,v) ∈ Pi , we consider a local l × l neighborhood of
object points N = {o(i)

u+m,v+n | m,n ∈ {−b l2 c, . . . , b
l
2 c} ∧ (u + m,v + n) ∈
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6 Object Trajectory Reconstruction

Pi } around (u,v). Let zu,v, i denote the depth value corresponding to o(i)
u,v .

We consider o(i)
u,v as outlier, if there is a point o(i)

u+m,v+n ∈ N with zu,v, i >
zu+m,v+n, i + δzu+m,v+n, i . In this case o(i)

u+m,v+n lies closer to the camera and
according to equation (6.23) the corresponding depth can be estimated more
reliably.
To compute the full object trajectory we transform the object point cloud for
each time step i into world coordinates with o(b)

u,v, i = ci + Ri
T · o(i)

u,v .

6.5.3 3D Object Trajectory Reconstruction Stereo
Sequence Constraints

Stereo matching is a common approach to determine three-dimensional scene
information from images taken by a stereo camera. The stereo camera baseline
limits corresponding point triangulations (Pinggera et al., 2014). In contrast,
this section describes an approach that leverages information of subsequent
frames for object point triangulation to reconstruct three-dimensional object
trajectories. Already small object rotations may result in big virtual camera
baseline changes. In contrast to stereo matching methods, the proposed ap-
proach builds object models reflecting the information of each frame. To build
a holistic object model with stereo matching requires additional steps to fuse
triangulated points of subsequent frames.
The proposed approach has been first published in Bullinger et al. (2019b)
and uses the stereo MSfM described in Chapter 3 to compute object and back-
ground reconstructions. The initial SfM results are refined with stereo pro-
jection constraints using factor graphs. We compute object trajectories using
stereo sequence constraints of object and background reconstructions.

Pipeline Overview

Fig. 6.10 shows the pipeline of the presented object trajectory reconstruction
approach. The input is an ordered sequence captured by a stereo camera. The
images of the stereo camera are rectified to simplify subsequent processing
steps. We compute object and background reconstructions with the stereo
MSfM described in Chapter 3. We represent the SfM reconstruction results
(camera poses, three-dimensional structure points, keypoint observations) as
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Figure 6.10: Overview of the trajectory reconstruction pipeline. Boxes with corners denote com-
putation results and boxes with rounded corners denote computation steps.

factor graphs (Kschischang et al., 2001). The integration of corresponding
stereo projection constraints allows us to refine the initial reconstructions. We
obtain SfM results with consistent camera baselines that allow us to use the
stereo camera baseline to a) resolve the scale ambiguity between object and
background reconstruction and b) compute consistent object trajectories.

Structure from Motion Refinement and Outlier Removal using Factor
Graphs

Reconstructions of dynamic objects using state-of-the-art SfM tools occasion-
ally contain incorrectly registered cameras as well as incorrectly triangulated
object points due to small object sizes, changing illumination and reflecting
surfaces. Fig. 6.11a shows a few examples. Incorrect camera baselines ham-
per the correct estimation of the scale ratio between object and background
reconstruction.
We model stereo projection constraints to refine the previously computed SfM
reconstructions by leveraging factor graphs (Kschischang et al., 2001). As de-
scribed in Section 2.4 a factor graph G = (F ,Θ,E) consists of factor nodes
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6 Object Trajectory Reconstruction

(a) Initial object SfM result. (b) Refined object SfM result.

Figure 6.11: Comparison of initial SfM object reconstructions and corresponding refinements us-
ing stereo constraints. The cameras are shown in red. The blue and green circle
emphasizes incorrectly registered cameras and triangulated points.

fk ∈ F and variable nodes θl ∈ Θ, which allow to model several recon-
struction constraints. The variable nodes represent quantities to be estimated,
i.e., entities that can not be directly measured, such as camera poses or three-
dimensional scene points. Factor nodes represent constraints on possible,
valid variable nodes. In the following, we describe the factor graph based
refinement for the object reconstruction. The refinement of the background
reconstruction is performed analogously.
In our case the variable nodes Θ represent stereo camera poses θs and triangu-
lated object points θp. We use a set of stereo factors fk to reflect the relation of
triangulated object points projected into specific stereo cameras and their cor-
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responding observations. For many real world problems including most SfM
reconstruction problems it is necessary to model data association, e.g., fea-
ture correspondences, explicitly to achieve reasonable reconstruction results.
In order to map the observation constraints in the SfM result onto the stereo
factors, we determine for each triangulated object point in the SfM reconstruc-
tion all pairs of corresponding feature observations m and m′ of the left and
the right image of the same time step. We add stereo projection factors of
the form fk (θp,θs; mh ,m′h ,m?

v ,K,b), where mh and m′h denote the horizon-
tal pixel positions of the measurements m and m′. m?

v denotes the averaged
vertical pixel position of corresponding left and right observations. K and
b represent the calibration matrix and the stereo camera baseline. Note that
in fk (θp,θs; mh ,m′h ,m?

v ,K,b) the parameters θp and θs are variable nodes,
whereas mh ,m′h ,m

?
v ,K and b are fixed (measured) values. Fig. 6.12 shows

an example of a mapping between a SfM reconstruction result and the corre-
sponding factor graph.
We use the GTSAM library (Daellert, 2012) to model the SfM problem with
corresponding stereo constraints as a factor graph. To determine the maximum
a posteriori estimate, we apply the Levenberg-Marquardt algorithm to (2.23),
which solves the nonlinear least-squares problem iteratively. We initialize the
stereo camera variable nodes θs with the pose of the left cameras [R(o)

i |t
(o)
i ]

with ti = −R(o)
i ci and the landmark variables nodes θp with the triangulated

points o(o)
j to start the optimization with reasonable values. In order to fix

the reference system we add an additional variable node representing the cor-
responding pose prior. The resulting reconstructions show consistent camera
stereo baselines. Fig. 6.11 shows a comparison of several MSfM results and
corresponding factor graph refinements.
Monocular projection factors and odometry factors (between each left and
right camera pose) provide an alternative to stereo projection factors. We do
not consider this approach, since an increase of variable and factor nodes re-
sults in a higher computation time.
We determine for all 3D object points in the stereo-refined reconstruction re-
sult an objectness score by projecting each point onto the tracked object seg-
mentation for all cameras. This allows us to remove outliers using the seman-
tic outlier filtering presented in Bullinger et al. (2018a).
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Figure 6.12: Example of a mapping of a SfM reconstruction result (left side) onto the correspond-
ing factor graph (right side). The variable nodes of the factor graph are represented
with the colors of the corresponding SfM elements. The constraint defined by the
factor node f (θp2, θs2; m2h, m

′
2h, m

?
2v, K, b) uses the variable node θp2 and θs2,

the measurement results m2h , m′2h and m?
2v =

m2v+m′2v
2 , the calibration matrix K

as well as the stereo baseline b. The factor nodes are represented with black squares.

6.6 Qualitative Evaluation

This section shows qualitative results (q.v. Fig. 6.13, Fig. 6.14, Fig. 6.15 and
Fig. 6.16) of the object trajectory reconstruction methods presented in Sec-
tion 6.4.2, Section 6.4.3, Section 6.5.2 and Section 6.5.3. The columns in
each figure show the (intermediate) results of the corresponding method of
a single input image sequence. The video data consists of custom drone
footage with a resolution of 1920 px × 1080 px and sequences contained in the
CityScapes dataset (Cordts et al., 2016) of 2048 px × 1024 px, in the KITTI
dataset (Geiger et al., 2013) of 1242 px × 375 px and in the virtual dataset de-
scribed in Section 4.2.2 of 1920 px × 1080 px. All input images are rectified.
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(a) Input frame.

(b) Object segmentation.

(c) Background segmentation.

(d) Object reconstruction with camera poses in red.

(e) Background reconstruction with camera poses in red.

(f) Trajectory reconstruction of different objects with camera poses in red (top view).

(g) Trajectory reconstruction of different objects with camera poses in red (side view).

Figure 6.13: Vehicle trajectory reconstruction using the method presented in Section 6.4.2. The
first two columns show sequences (stuttgart01 and stuttgart03) from the Cityscape
dataset (Cordts et al., 2016), the third column represents a video captured by a drone
and the sequence in the last column is part of our virtual dataset.
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(a) Input frame.

(b) Object segmentation.

(c) Background segmentation.

(d) Object reconstruction with camera poses in red.

(e) Background reconstruction with camera poses in red.

(f) Trajectory reconstruction of different objects with camera poses in red (top view).

(g) Trajectory reconstruction of different objects with camera poses in red (side view).

Figure 6.14: Vehicle trajectory reconstruction using the method presented in Section 6.4.3. The
first two columns show sequences (stuttgart01 and stuttgart03) from the Cityscape
dataset (Cordts et al., 2016), the third column represents a video captured by a drone
and the sequence in the last column is part of our virtual dataset.
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(a) Left input frame.

(b) Left object segmentation.

(c) Left background segmentation.

(d) Object point cloud (top view).

(e) Background reconstruction with camera poses in red.

(f) Trajectory reconstruction of different objects with camera poses in red (top view).

(g) Trajectory reconstruction of different objects with camera poses in red (side view).

Figure 6.15: Vehicle trajectory reconstruction using the method presented in Section 6.5.2. The
first three columns represent stereo sequences (stuttgart01-stuttgart03) included in
the Cityscapes dataset (Cordts et al., 2016). The last column is part of the KITTI
dataset (Geiger et al., 2013) - sequence (2011_09_26_drive_0013).
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(a) Left input frame.

(b) Left object segmentation.

(c) Left background segmentation.

(d) Object reconstruction with camera poses in red.

(e) Background reconstruction with camera poses in red.

(f) Trajectory reconstruction of different objects with camera poses in red (top view).

(g) Trajectory reconstruction of different objects with camera poses in red (side view).

Figure 6.16: Vehicle trajectory reconstruction using the method presented in Section 6.5.3. The
first three sequences (stuttgart01-stuttgart03) are contained in the Cityscape dataset
(Cordts et al., 2016). The last sequence (2011_09_26_drive_0013) is part of the
KITTI dataset (Geiger et al., 2013).
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For reconstruction we used a fixed (known) camera calibration including the
focal length, the principal point and potentially the stereo camera baseline.
Row (a) in Fig. 6.13, Fig. 6.14, Fig. 6.15 and Fig. 6.16 show example images
of the monocular / stereo input image sequence. Row (b) and (c) visualize ob-
ject and background segmentations, which are used to compute corresponding
object and background reconstructions (q.v. row (d) and (e)). Following the
pipeline presented in Chapter 3 we use the instance-aware semantic segmen-
tation by He et al. (2017) and the optical flow features by Hu et al. (2016) to
track the objects on pixel level throughout the sequences. We use Schönberger
and Frahm (2016) / Geiger et al. (2010) to compute object SfM / disparity val-
ues and Moulon et al. (2012) for background reconstruction. The last two
rows ((f) and (g)) show the reconstructed environment point cloud / mesh with
the object trajectory / trajectories in green, blue, pink and teal from different
perspectives to emphasize the three-dimensional motion in space. The recon-
structed cameras are shown in red.
Although row (b) and (d) show only segmentation and reconstruction results of
a single object, we perform tracking and reconstruction for multiple objects.
Row (f) and (g) show the trajectory reconstruction results corresponding to
multiple objects (if present).
Fig. 6.17 shows a comparison of the stereo matching based method (q.v. Sec-
tion 6.5.2) and the stereo MSfM approach (q.v. Section 6.5.3). According to
the Fresnel equations (Born et al., 1999) the reflection intensity depends on the
angle between camera and object surface. Since the method in Section 6.5.3
uses temporal adjacent views to triangulate object points it is less prone to
reflection based point correspondences. The red circle denote outliers of tri-
angulated object points.
Fig. A.1 and Fig. A.2 in the appendix show trajectory reconstructions for in-
dividual frames of a monocular image sequences using the method proposed
in Section 6.4.3.

6.7 Quantitative Evaluation

We use the virtual dataset described in Section 4.2.2 to quantitatively eval-
uate the proposed algorithms for object trajectory reconstruction (q.v. Sec-
tion 6.4.2, Section 6.4.3, Section 6.5.2 and Section 6.5.3). For evaluation we
must compute a registration of the reconstructed three-dimensional object tra-
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(a) Stereo matching based object trajectory reconstruction (q.v. Section 6.5.2).

(b) Stereo MSfM based object trajectory reconstruction (q.v. Section 6.5.3).

Figure 6.17: Trajectory reconstruction examples using sequences of the CityScapes dataset. The
red circles emphasize incorrectly triangulated trajectory points.

jectories w.r.t. the virtual environment (q.v. Section 6.7.1). In Section 6.7.2
we define a metric between a reconstructed trajectory (represented by multi-
ple point sets) and a ground truth trajectory (defined by multiple watertight
meshes). We perform a quantitative evaluation in Section 6.7.3 leveraging the
proposed metric as well as the presented registration approach. The evaluation
of the reconstructed object trajectories in the CFS of the virtual environment
allows us to express the reconstruction errors in meter.

6.7.1 Registration of Background Reconstruction and
Virtual Environment

Each reconstructed object trajectory consists of multiple point sets - one point
cloud per frame. The virtual dataset (q.v. Section 4.2.2) uses object meshes
to render the vehicle sequences, i.e., the ground truth object trajectories are
represented with a mesh per frame. We compute the distance between the
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Figure 6.18: Relation of the coordinate frame systems of the reconstructed object and the coor-
dinate frame system of the virtual corresponding virtual model. T(o2c)

i and T(c2b)
i

are the transformations between the object, camera and background CFS defined in
Section 3.5. Here, r (o2b) denotes the scale ratio between object and background re-
construction. Ignoring reconstruction errors the background reconstruction and the
virtual environment CFS are related by a similarity transformation T(b2v) . Thus, the
CFS of corresponding reconstruction and virtual cameras are (ideally) identical up to
the scale ratio r (b2v) between background reconstruction and virtual environment.
The object and the camera poses in the virtual environment are defined by T(o′2v)

i

and T(c′2v)
i , respectively.

point clouds and the meshes for each frame to quantitatively evaluate the re-
constructed trajectories. This requires a registration of the object point cloud
w.r.t. the virtual environment.
Fig. 6.18 shows the relation of the different CFSs. The transformations
T(o′2v)
i ∈ SE(3) between the object ground truth CFS and the virtual en-

vironment ground truth CFS of each time step are part of the virtual dataset.
The proposed object trajectory reconstruction methods (q.v. Section 6.4.2,
Section 6.4.3, Section 6.5.2 and Section 6.5.3) compute the transformations
T(c2b)
i T(o2c)

i (r (o2b)) ∈ SE(3) between the object and the background recon-
struction for each frame. In order to register the reconstructed trajectories
w.r.t. the virtual environment we must determine the similarity transformation
T(b2v) ∈ SE(3) between the background reconstruction and the virtual envi-
ronment.
A common approach to register different coordinate systems is to exploit
3D-3D correspondences. To determine points in the virtual environment cor-
responding to background reconstruction points one could create a set of rays
from each camera center to all visible reconstructed background points. The
corresponding environment points are defined by the intersection of these rays
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6 Object Trajectory Reconstruction

(a) Registered vehicle trajectory in the
ground truth CFS.

(b) Vehicle trajectory with ground truth
vehicle model at selected frames.

(c) Registered vehicle trajectory in the
ground truth CFS.

(d) Vehicle trajectory with ground truth
vehicle model at selected frames.

Figure 6.19: Object trajectory registration for quantitative evaluation.

with the mesh of the virtual environment. Due to the complexity of our en-
vironment model this computation is in terms of memory and computational
effort quite expensive. Instead, we use the algorithm presented in Umeyama
(1991) to estimate the similarity transformation T(b2v) between the cameras
contained in the background reconstruction and the virtual cameras used to
render the corresponding video sequence. This allows us to perform 3D-3D-
registrations of background reconstructions and the virtual environment as
well as to quantitatively evaluate the quality of the reconstructed object mo-
tion trajectory. We use the camera centers as input for Umeyama (1991) to
compute an initial reconstruction-to-virtual-environment transformation. De-
pending on the shape of the camera trajectory there may be multiple valid sim-
ilarity transformations using camera center positions. In order to find the se-
mantically correct solution we enhance the original point set with camera pose
information, i.e., we add points reflecting up vectors u(b)

i = R(b)
i

T
· (0,1,0)T

and forward vectors f (b)
i = R(b)

i

T
· (0,0,1)T . For the reconstructed cameras,

we adjust the magnitude of these vectors using the scale computed during the
initial similarity transformation. We add the corresponding end points of up
c(b)
i + m · u(b)

i as well as viewing vectors c(b)
i + m · f (b)

i to the camera center
point set. Here, m denotes the corresponding magnitude. Fig. 6.19 shows the
results of two trajectory registrations.
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6.7 Quantitative Evaluation

6.7.2 Trajectory Reconstruction Metrics

In this work, we use two different metrics to evaluate the quality of recon-
structed object trajectories.

Object Trajectory Error

The Absolute Trajectory Error proposed by Sturm et al. (2012) is a common
evaluation measure to compare an estimated trajectory with the corresponding
ground truth trajectory - both represented by a sequence of poses. In our case,
the reconstructed object trajectory consists not only of a pose per frame but
also of a point cloud describing the object shape. Similarly, the ground truth
trajectory consists of several vehicle meshes per sequence. We require an
object trajectory error that reflects these properties.
For each frame we transform the ground truth object mesh (using T(o′2v)

i ) and
the reconstructed object point cloud (using T(b2v)

i T(c2b)
i T(o2c)

i (r (o2b))) into
the virtual environment CFS. We compute the shortest distance of each vehicle
trajectory point to the vehicle mesh. For each sequence we define the mean /

median Object Trajectory Error (OTE) as the mean / median trajectory-point-
mesh distance of all frames. We use the mean absolute deviation (MAD) of
the median OTE to measure the distribution of the triangulated points.

Reference Scale Ratio Deviation

The proposed object trajectory error (OTE) of (monocular) reconstruction
methods is subject to four different error sources, i.e., deviations of camera
poses w.r.t. vehicle and background point clouds, incorrect triangulated vehi-
cle points as well as scale ratio discrepancies.
To independently evaluate the quality of the estimated scale ratios r (o2b) of
the methods in Section 6.4.2 and Section 6.4.3 we compute the deviation of
the estimated scale ratio w.r.t. a reference scale ratio. The scale ratios between
object reconstruction, background reconstruction and virtual environment are
linked via the relation shown in (6.25),

r (o2v) = r (o2b) · r (b2v) ⇔ r (o2b) = r (o2v) · r (b2v)−1
(6.25)
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6 Object Trajectory Reconstruction

where r (o2v) and r (b2v) are the scale ratios between object and background
reconstructions and virtual environment, respectively.
The similarity transformation T(b2v) (see Fig. 6.18 in Section 6.7.1) implicitly
contains a reference value r (b2v)

re f
for the scale ratio r (b2v) between background

reconstruction and virtual environment.
To compute a reference value r (o2v)

re f
for r (o2v) we use corresponding pairs of

object reconstruction and virtual cameras. We use the extrinsic parameters of
the object reconstruction camera to transform all 3D points in the object re-
construction into camera coordinates. Similarly, the object mesh with the pose
of the corresponding frame is transformed into the camera coordinates lever-
aging the extrinsic camera parameters of the corresponding virtual camera.
The ground truth pose and shape of the object mesh is part of the dataset. In
camera coordinates we generate rays from the camera center (i.e., the origin)
to each 3D point o(i)

j in the object reconstruction. We determine the shortest

intersection m(i)
j of each ray with the object mesh in camera coordinates. This

allows us to compute r (o2v)
re f

according to (6.26)

r (o2v)
re f

= med({med({‖m(i)
j ‖ · ‖o

(i)
j ‖
−1 | j ∈ {1, . . . ,nJ }}) |i ∈ {1, . . . ,nI }})

(6.26)
and the Reference Scale Ratio (RSR) r (o2b)

re f
according to (6.27).

r (o2b)
re f

= r (o2v)
re f

· r (b2v)
re f

−1
(6.27)

The Reference Scale Ratio r (o2b)
re f

depends on the quality of the estimated cam-

era poses in the background reconstruction, i.e., r (b2v)
re f

, and may slightly dif-
fer from the true scale ratio. We define the Reference Scale Ratio Deviation
(RSRD) as the deviation of the estimated scale ratios w.r.t. the corresponding
reference values r (o2b)

re f
.

6.7.3 Trajectory Evaluation

We use the dataset presented in Section 4.2 to quantitatively evaluate the pro-
posed object motion trajectory reconstruction approaches (q.v. Section 6.4.2,
Section 6.4.3, Section 6.5.2 and Section 6.5.3). The evaluation is based on ve-
hicle, background and ground segmentations included in the dataset. This al-
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(a) MAD of OTE median of the method introduced in Section 6.4.2.
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(b) MAD of OTE median of the method introduced in Section 6.4.3.

Figure 6.20: OTE of the monocular trajectory reconstruction methods presented in Section 6.4.2
and Section 6.4.3. The intervals show the corresponding standard deviations.

lows us to show results independent from the performance of specific instance
segmentation and tracking approaches. The dataset contains seven different
vehicle trajectories (Right Curves, Left Curves, Crossing, Overtaking, Bridge,
Steep Street and Bumpy Road) and five different vehicle models (Lancer, Lin-
coln, Smart, Golf and Van). We compare the introduced object trajectory
reconstruction algorithms using all 35 sequences contained in the dataset.
We use a fixed camera calibration model with known focal length, principal
point and radial distortion to compute the object and background reconstruc-
tions. We automatically register the reconstructed vehicle trajectories to the
ground truth using the method described in Section 6.7.1.
Fig. 6.20 shows the OTE (q.v. Section 6.7.2) in meter for the monocular tra-
jectory reconstruction algorithms presented in Section 6.4.2 and Section 6.4.3.
The results are itemized for each trajectory and vehicle type. Both methods
use the same object and background reconstructions to improve comparability.
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(a) RSRD of the method introduced in Section 6.4.2.
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(b) RSRD of the method introduced in Section 6.4.3.

Figure 6.21: RSRD of the monocular trajectory reconstruction methods presented in Section 6.4.2
and Section 6.4.3.

The mean (ground truth) distance of the camera to the vehicle in the dataset is
as follows: Right Curves: 17.37 m, Left Curves: 13.10 m, Crossing: 18.91 m,
Overtaking: 15.90 m, Bridge: 12.71 m, Steep Street: 17.30 m, Bumpy Road:
21.81 m.
We observe that in some cases (Right Curves: Golf ; Left Curves: Lancer,
Van and Golf ; Steep Street: Smart; Bumpy Road: Lancer, Lincoln, Smart and
Golf ) the object reconstructions are mirror-inverted. This is caused by nearly
affine object views, i.e., the observed object depth values show a small varia-
tion compared to the object-camera-distance. In this case, the projection of the
actual three-dimensional object shape is (almost) identical to an object shape
reflected at a plane parallel to the image plane (Ozden et al., 2010). Such sit-
uations can lead to two different reconstructions. The incorrect result usually
causes a high OTE.
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6.7 Quantitative Evaluation

Mean OTE in meter
Method Lancer Lincoln Smart Van Golf Overall

Section 6.4.2 (monocular) 0.16 0.28 0.32 0.24 0.47 0.29
Section 6.4.3 (monocular) 0.11 0.09 0.14 0.21 0.30 0.17

Section 6.5.2 (stereo) 0.06 0.06 0.07 0.10 0.27 0.11
Section 6.5.3 (stereo) 0.05 0.13 0.06 0.09 0.13 0.09

Table 6.1: Mean OTE per vehicle using the introduced vehicle trajectory benchmark dataset. The
best (stereo) approach achieves an average OTE of 0.09 m considering all sequences
and outperforms the monocular methods.

OTE values of the monocular trajectory reconstructions reflects four types
of computational inaccuracies: deviations of camera poses w.r.t. vehicle and
background point clouds, incorrect triangulated vehicle points as well as scale
ratio discrepancies. Therefore, Fig. 6.21 compares the estimated scale ratios
of both methods w.r.t. the RSR. The RSR computation is described in Sec-
tion 6.7.2. The provided RSRs are subject to the registration described in
Section 6.7.1. Incorrectly reconstructed background camera poses may influ-
ence the RSR. The RSR values allow to independently evaluate the scale ratio
estimation constraints.
The average OTE of both methods is shown per vehicle and per trajectory
in Table 6.1 and Table 6.2. The approach proposed in Section 6.4.3 com-
putes lower OTEs than the algorithm described in Section 6.4.2. Fig. A.3 and
Fig. A.4 in the appendix show trajectory reconstructions for individual frames
of a monocular image sequence using the method proposed in Section 6.4.2.
Fig. 6.22 shows OTE values for the stereo trajectory reconstruction methods
presented in Section 6.5.2 and Section 6.5.3. We observe that the stereo meth-
ods outperform the monocular approaches. In case of the algorithm presented
in Section 6.5.3 there are only four cases (Right Curves: Lincoln; Left Curves:
Van; Overtaking: Lincoln; Bumpy Road: Lincoln) with mirror-inverted vehi-
cle reconstructions. The average OTE per vehicle and per trajectory using the
full dataset is shown in Table 6.1 and Table 6.2.
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6 Object Trajectory Reconstruction

Mean OTE in meter

Method
Right

Curves
Left

Curves Crossing
Over-
taking Bridge

Steep
Street

Bumpy
Road Overall

Section 6.4.2 0.17 0.22 0.28 0.54 0.19 0.27 0.37 0.29
Section 6.4.3 0.15 0.25 0.09 0.34 0.08 0.12 0.16 0.17
Section 6.5.2 0.11 0.10 0.12 0.10 0.09 0.10 0.16 0.11
Section 6.5.3 0.13 0.11 0.08 0.09 0.05 0.09 0.09 0.09

Table 6.2: Mean OTE per trajectory using the introduced vehicle trajectory benchmark dataset.
The mean camera-vehicle-distance in the ground truth data is as follows: Right Curves:
17.37 m, Left Curves: 13.10 m, Crossing: 18.91 m, Overtaking: 15.90 m, Bridge:
12.71 m, Steep Street: 17.30 m, Bumpy Road: 21.81 m.

6.8 Discussion

This chapter focuses on image-based reconstructions of three-dimensional
object trajectories. We use transformations between object, camera and back-
ground CFSs of the MSfM reconstruction to derive a mathematical represen-
tation of an object trajectory that reflects the corresponding scale ambiguity.
The trajectory is represented by a one-parameter family of possible solutions.
We show that possible object trajectories are superpositions of the camera and
the true object trajectory. Object and background reconstructions with incor-
rect scale ratios lead to object trajectories with incorrect shapes.
We propose four methods for object trajectory reconstruction leveraging the
instance-aware MSfM approach introduced in Chapter 3.
The methods in Section 6.4.2 and Section 6.4.3 exploit geometric relations
of object points and environment structures to determine consistent three-
dimensional vehicle trajectories in monocular image sequences.
The algorithm described in Section 6.4.2 uses a distance constraint of object
and environment points to compute consistent three-dimensional object mo-
tions. As existing constraints, the approach shows a degenerated reconstruc-
tion case. Our constraint represents a generalization of Yuan and Medioni
(2006) and the degenerated reconstruction cases are disjoint from the ap-
proaches presented in Ozden et al. (2004), Kundu et al. (2011) and Namdev
et al. (2013).
The algorithm in Section 6.4.3 avoids degenerated reconstruction cases by
leveraging projection constraints of object points and the environment sur-
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(a) MAD of OTE median of the method presented in Section 6.5.2.
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Figure 6.22: OTE of the stereo trajectory reconstruction methods presented in Section 6.5.2 and
Section 6.5.3. The intervals show the corresponding standard deviations.

face. This approach is computational more expensive, since it triangulates a
dense object point cloud and computes a watertight mesh of the terrain.
Section 6.5.2 and 6.5.3 propose two algorithms for object trajectory recon-
struction using stereo image sequences. In the case of stereo image data, the
scale ambiguity of object and background reconstructions can be resolved
using the baseline of the stereo camera. The method in Section 6.5.2 uses
stereo matching to triangulate object points and is therefore not hampered by
incorrectly registered camera poses caused by small object sizes, reflecting
surfaces and changing illumination. At the same time stereo matching based
point triangulations are limited by the baseline of the stereo camera and do
not allow to reconstruct an object model, i.e., no relative object-camera poses.
The algorithm in Section 6.5.3 overcomes the baseline limitation leveraging
SfM for object reconstruction. The method uses stereo projection constraints
to determine stable camera poses w.r.t. the object reconstruction.
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We observe in our evaluation that the proposed stereo methods achieve lower
OTEs than the introduced monocular approaches (q.v. Table 6.1 and Ta-
ble 6.2). However, in some scenarios such as (monocular) Internet video
data it is only possible to apply monocular reconstructions methods. The
different trajectory reconstruction accuracies between monocular and stereo
based methods are partly caused by incorrect scale ratio estimations between
object and background reconstruction (q.v. Fig. 6.21). As discussed in Özden
(2007) motion constraints for the estimation of the scale ratio are category
and situation-specific and therefore limited to certain scenarios. Another ap-
proach to deal with the scale ambiguity of monocular reconstruction results
are category-specific scale priors. For instance, a database with geometric
properties of vehicle models and typical environment assets such as street
signs or traffic lights could allow to determine consistent scales. For future
work, we intend to integrate such constraints in our reconstruction pipeline to
increase the robustness of the scale ratio estimation.
In general, it is reasonable to use the stereo trajectory reconstruction algo-
rithms whenever possible. Both presented stereo based methods show differ-
ent advantages. The approach in Section 6.5.2 is not hampered by cameras in
the object reconstruction with incorrect baselines whereas the method in Sec-
tion 6.5.3 leverages information of temporal adjacent frames. For future work,
we intend to combine both approaches (i.e., the usage of (known) stereo cam-
era poses to determine feature correspondences) to improve the reconstruction
results.
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7 Conclusion

7.1 Summary

This work tackles the problem of reconstructing dynamic objects in real-world
environments by introducing a novel semantic segmentation based Multibody
Structure from Motion approach.
In Chapter 2 we extensively review previously published literature covering
image-based methods for three-dimensional scene reconstruction from mul-
tiple images. We describe the major building blocks of modern Structure
from Motion pipelines. The thesis emphasizes corresponding key concepts
that allow to reconstruct scene structures from feature correspondences alone.
By analyzing epipolar geometry properties we identify limitations of classical
Structure from Motion when applied to the reconstruction of dynamic envi-
ronments.
To reconstruct scenes with multiple components (i.e., several moving objects
in a static environment), we develop a novel Multibody Structure from Mo-
tion algorithm in Chapter 3. Our approach exploits instance-aware semantic
segmentation and optical flow methods to track objects on pixel level through-
out video sequences, which allows to determine consistently moving groups
of visual features. Our method is able to compute MSfM reconstructions from
monocular as well as stereo image sequences. An evaluation of the Multiple
Object Tracking algorithm on a publicly available benchmark dataset shows
competitive results.
In Chapter 4 we present two datasets to quantitatively evaluate moving object
reconstructions. The first dataset comprises real-world image sequences of a
moving vehicle and a corresponding vehicle laser scan suitable for evaluation
of three-dimensional object shape reconstructions. The second dataset con-
tains synthetic sequences of different vehicles in an urban environment. We
provide vehicle shapes as well as vehicle and camera poses for each frame
as ground truth. This dataset allows the quantitative evaluation of shape and
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trajectory reconstructions of moving objects. We made both datasets and cor-
responding evaluation scripts publicly available to foster future analysis of
moving object reconstructions.
In Chapter 5 we leverage the proposed MSfM approach to reconstruct textured
object models. We combine sparse object reconstructions (i.e., camera poses
and triangulated object points) with two-dimensional object segmentations to
derive three-dimensional object meshes consistent to image observations. We
show that our approach produces meshes that are robust w.r.t. to reflections
and appearance changes.
Chapter 6 focuses on the reconstruction of three-dimensional object trajec-
tories in monocular and stereo image sequences using the proposed MSfM
algorithm. We observe that the coordinate frame systems of object and back-
ground reconstructions are geometrically related by commonly registered im-
ages. The corresponding transformations allow to formulate a trajectory rep-
resentation that reflects the scale ambiguity of Structure from Motion results,
i.e., we define potential object trajectories as a one-parameter family of possi-
ble solutions. In this formulation we observe that each potential object trajec-
tory can be considered as a superposition of the camera and the corresponding
true object trajectory. Therefore, the scale ratio between object and back-
ground reconstruction does not only change the extent but also the shape of
the object trajectory.
For monocular image sequences we resolve this ambiguity by introducing two
different vehicle motion constraints to estimate the scale ratio between object
and environment reconstructions. Both constraints exploit geometric relations
of object points and environment structures to determine consistent vehicle
motion trajectories. For stereo image sequences we exploit the baseline of the
stereo camera to determine the true (unique) extent of the object and the envi-
ronment reconstruction. We leverage stereo projection constraints to compute
consistent stereo camera baselines. The quantitative evaluation of the trajec-
tory reconstruction algorithms shows that inconsistent scale ratio estimations
lead to significant trajectory errors. The usage of stereo image sequences re-
sults in more accurate and robust reconstructions.
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7.2 Discussion and Future Work

To the best of our knowledge, this work proposes the first instance-aware se-
mantic segmentation based MSfM approach. We are convinced that semantic
information offers a superior alternative to existing techniques that allow to
compute object specific feature correspondence such as epipolar constraints
or motion segmentation. The usage of semantic information improves the
robustness of object-specific feature correspondence computations and inher-
ently assigns category information to the obtained reconstructions. Robust-
ness of dynamic reconstructions and corresponding semantic annotations are
crucial properties for many applications such as environment perception for
autonomous driving.
We focus in this work on SfM instead of Visual SLAM, since it simplifies the
reconstruction problem, i.e., SfM is more robust (e.g., w.r.t. scale drift) and
requires less video specific parameter adjustments.
The proposed MSfM approach includes an online MOT algorithm that allows
to track objects on pixel level. The majority of existing MOT methods only
allow to reliably track objects on bounding box level. Thus, our approach
enables new applications such as the direct determination of object specific
disparity values.
This work considers two applications of the proposed MSfM approach, i.e.,
three-dimensional shape and trajectory reconstruction of dynamic objects. Re-
lated works do not show quantitative evaluations of their algorithms, because
of the lack of publicly available implementations and benchmark datasets for
moving object reconstruction. To improve the comparability of dynamic ob-
ject reconstruction methods we make our datasets and associated evaluation
scripts publicly available.
Given suitable camera-object-poses, the object shape reconstruction algorithm
shows that semantic projection constraints allow to determine textured meshes
consistent to image observation for driving vehicles in real-world scenarios.
Such results are difficult to achieve with modern Multi-View Stereo algo-
rithms, since shadows, reflecting surfaces and illumination changes cause fre-
quently object points with inconsistent normal vectors. Our results suggest to
integrate semantic projection constraints into existing Multi-View Stereo al-
gorithms.
The evaluation of the trajectory reconstruction algorithms confirms the expec-
tation that the proposed stereo approaches outperform the presented monocu-
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lar methods. In general, it is therefore reasonable to integrate one of the stereo
methods into applications that rely on the reconstruction of object motion tra-
jectories. However, in certain application domains such as (monocular) Inter-
net video data it is only possible to apply monocular reconstructions methods.
The different trajectory reconstruction accuracies observed in our experiments
are partly caused by the estimation of the scale ratio between object and back-
ground reconstruction. Object motion constraints are category specific and
only apply for certain situations. Therefore, it is reasonable to compare in
future work the proposed constraints with other non-motion methods such as
category specific scale priors. For example, the usage of a database with ge-
ometric properties of different vehicle models and typical environment assets
such as street signs or traffic lights could allow to tackle the scale ambiguity.
Recently, different algorithms have been proposed to learn class-specific shape
priors from single and multiple images. Such methods represent a reasonable
alternative to correspondence-based object reconstruction techniques. Learn-
ing unconstrained (dynamic) environment representations with methods based
on deep learning is currently infeasible, because the high complexity of real-
world scenes can not be represented with a reasonable number of model pa-
rameters. We consider the combination of MSfM and object reconstruction
approaches based on deep learning as an important step towards robust sys-
tems for the reconstruction of dynamic objects in challenging real world sce-
narios.
The topic of this thesis has been originally motivated by the following research
question: Does semantic segmentation based Multibody Structure from Mo-
tion allow to accurately reconstruct real-world scenarios of moving objects?
We have shown that the combination of semantic information and modern
image-based reconstruction techniques allows to compute consistent MSfM
models of real world scenes. The computation of accurate MSfM reconstruc-
tions must deal with several difficult problems such as the scale ambiguity of
monocular MSfM reconstructions. Additional investigations are required to
solve these issues - possibly based on the approaches mentioned above.
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A Appendix

(a) Frame 10, 25, 40, 55, 70
and 85 (from top to bot-
tom).

(b) Frame 100, 115, 130, 145,
160 and 175 (from top to
bottom).

Figure A.1: Trajectory reconstruction results per frame. The vehicle points are shown in green
and blue. The camera pose are represented by the red camera symbol.
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A Appendix

(a) Frame 0, 22, 44, 66, 88
and 110 (from top to bot-
tom).

(b) Frame 132, 154, 176, 198,
220 and 242 (from top to
bottom).

Figure A.2: Trajectory reconstruction results per frame. The vehicle points are shown in green.
The camera pose are represented by the red camera symbol.
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A Appendix

Figure A.3: Reconstruction results using the trajectory estimation method described in section
6.4.2. The small spheres represent triangulated object points and the white planes the
local ground approximations.
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A Appendix

Figure A.4: Reconstruction results using the trajectory estimation method described in section
6.4.2. The small spheres represent triangulated object points and the white planes the
local ground approximations.
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This work proposes a Multibody Structure from Motion (MSfM) algo-
rithm for moving object reconstruction that incorporates instance-aware 
semantic segmentation and multiple view geometry methods. The MSfM 
pipeline tracks two-dimensional object shapes on pixel level to determine 
object specifi c feature correspondences, which create a foundation to 
reconstruct 3D object shapes as well as 3D object motion trajectories. 
This work proposes several algorithms to reconstruct object motion tra-
jectories in stereo and monocular image sequences including constraints 
to estimate scale ratios between object and environment reconstructions, 
which allow resolving scale ambiguities in monocular image data. An 
evaluation on video data of driving vehicles shows that meshes computed 
with the proposed algorithm for object shape reconstruction are robust 
to refl ections and appearance changes. Additional experiments demon-
strate that trajectory reconstructions of monocular image sequences are 
less accurate and robust than reconstructions of stereo imagery, because 
of the corresponding scale ambiguities.
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