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SHARP CONSTANT IN THE CURL INEQUALITY AND GROUND
STATES FOR CURL-CURL PROBLEM WITH CRITICAL EXPONENT

JAROSŁAW MEDERSKI AND ANDRZEJ SZULKIN

Abstract. Let Ω ⊂ R3 be a Lipschitz domain and let Scurl(Ω) be the largest constant such
that ∫

R3

|∇ × u|2 dx ≥ Scurl(Ω) inf
w∈W 6

0 (curl;R
3)

∇×w=0

(∫
R3

|u+ w|6 dx
) 1

3

for any u in W 6
0 (curl; Ω) ⊂ W 6

0 (curl;R3) where W 6
0 (curl; Ω) is the closure of C∞0 (Ω,R3) in

{u ∈ L6(Ω,R3) : ∇× u ∈ L2(Ω,R3)} with respect to the norm (|u|26 + |∇ × u|22)1/2. We show
that Scurl(Ω) is strictly larger than the classical Sobolev constant S in R3. Moreover, Scurl(Ω)
is independent of Ω and is attained by a ground state solution to the curl-curl problem

∇× (∇× u) = |u|4u
if Ω = R3. With the aid of those results, we also investigate ground states of the Brezis-
Nirenberg-type problem for the curl-curl operator in a bounded domain Ω

∇× (∇× u) + λu = |u|4u in Ω

with the so-called metallic boundary condition ν×u = 0 on ∂Ω, where ν is the exterior normal
to ∂Ω.

1. Introduction

Sharp Sobolev-type inequalities have been widely studied by a large number of authors
and the best Sobolev constants play an important role e.g. in the theory of partial differential
equations, differential geometry, isoperimetric inequalities as well as in mathematical physics,
see e.g. [4,20,33]. In particular, if Ω is a domain in R3, then the best constant S in the Sobolev
inequality

(1.1)
∫

Ω

|∇u|2 dx ≥ S
(∫

Ω

|u|6 dx
) 1

3 for u ∈ D1,2(Ω)

has been computed explicitly by Talenti [33] and as is well-known, it is achieved (i.e., equality
holds) if and only if Ω = R3 and u is the Aubin-Talenti instanton Uε,y(x) := 31/4(ε2 + |x −
y|2)−1/2, see [4,33]. When ε = 1, this is the unique (up to translations in R3) positive solution
to the equation −∆u = |u|4u in D1,2(R3) and a ground state, i.e. a minimizer for the energy
functional among all nontrivial solutions.

The aim of this work is to perform a similar analysis for the curl operator ∇× (·). This
is challenging from the mathematical point of view and important in mathematical physics;
such operator appears e.g. in Maxwell equations as well as in Navier-Stokes problems [13,
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17, 26]. Finding a formulation in the spirit of (1.1), but involving the curl operator, is not
straightforward and there are several essential difficulties as we shall see later.

For instance, the kernel of ∇ × (·) is of infinite dimension since ∇ × (∇ϕ) = 0 for all
ϕ ∈ C2(Ω). Hence the inequality (1.1) with ∇u replaced by ∇ × u would hold for all u ∈
C∞0 (R3,R3) only if S = 0. This makes it necessary to introduce a Sobolev-like constant in a
different way which we now proceed to do.

Let Ω be a Lipschitz domain in R3 and for 2 ≤ p ≤ 6, let

W p(curl; Ω) := {u ∈ Lp(Ω,R3) : ∇× u ∈ L2(Ω,R3)}.
This is a Banach space if provided with the norm

‖u‖W p(curl;Ω) :=
(
|u|2p + |∇ × u|22

)1/2
.

Here and in the sequel | · |q denotes the Lq-norm for q ∈ [1,∞]. We also define

(1.2) W p
0 (curl; Ω) := closure of C∞0 (Ω,R3) in W p(curl; Ω).

If Ω = R3, these two spaces coincide, see Lemma 2.1. Although results of this kind are
well known, we provide a proof for the reader’s convenience. The spaces W 2(curl; Ω) and
W 2

0 (curl; Ω) are studied in detail in [13,18,26]. Extending u ∈ W p
0 (curl; Ω) by 0 outside Ω we

may assume W p
0 (curl; Ω) ⊂ W p

0 (curl;R3). Denote the kernel of ∇× (·) in W 6
0 (curl;R3) by

W := {w ∈ W 6
0 (curl;R3) : ∇× w = 0}.

Let Scurl(Ω) be the largest possible constant such that the inequality

(1.3)
∫
R3

|∇ × u|2 dx ≥ Scurl(Ω) inf
w∈W

(∫
R3

|u+ w|6 dx
) 1

3

holds for any u ∈ W 6
0 (curl; Ω). Note that here u but not necessarily w is supported in Ω. It is

not a priori clear that Scurl(Ω) is positive or that it is independent of Ω. That this is the case
follows from Theorems 1.1 and 1.2(a) below:

Theorem 1.1. Scurl(Ω) = Scurl where Scurl := Scurl(R3).

In the next result we show that Scurl is attained provided Ω = R3 and the optimal function
is (up to rescaling) a ground state solution to the curl-curl problem with critical exponent.
Existence of a ground state in this case has been an open question for some time. Let

(1.4) J(u) :=
1

2

∫
R3

|∇ × u|2 dx− 1

6

∫
R3

|u|6 dx

and introduce the following constraint:

(1.5) N :=
{
u ∈ W 6

0 (curl;R3) \W :

∫
R3

|∇ × u|2 =

∫
R3

|u|6 dx and div(|u|4u) = 0
}
.

As we shall see later, this set is a variant of a generalization of the Nehari manifold [27] which
may be found in [28] for a Schrödinger equation.

Theorem 1.2. (a) Scurl > S.
(b) infN J = 1

3
S

3/2
curl and is attained. Moreover, if u ∈ N and J(u) = infN J , then u is a ground

state solution to the equation

(1.6) ∇× (∇× u) = |u|4u in R3
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and equality holds in (1.3) for this u. If u satisfies equality in (1.3), then there are unique
t > 0 and w ∈ W such that t(u+ w) ∈ N and J(t(u+ w)) = infN J .

A natural question arises whether ground states must have some symmetry properties. It
follows from Theorem 1.1 in [5] that any O(3)-equivariant (weak) solution to (1.6) is trivial,
hence a ground state cannot be radially symmetric.

The curl-curl problem ∇ × (∇ × u) = f(x, u) in a bounded domain or in R3 has been
recently studied e.g. in [5–8,22,24] under different hypotheses on f but always assuming f is
subcritical, i.e. f(x, u)/|u|5 → 0 as |u| → ∞. However, the occurence of ground states to (1.6)
(i.e., in the critical exponent case) has been an open problem as we have already mentioned.
In view of the existence of Aubin-Talenti instantons, this is a very natural question. While
the instantons are given explicitly, we have no such explicit formula for ground states in the
curl-curl case. Since the instantons are radially symmetric up to translations, one can find
them by ODE methods. In view of the above remark concerning O(3)-equivariant solutions,
such methods do not seem available for the curl-curl problem and a different approach is
needed. Note further that there is no maximum principle for the curl-curl operator and, to
our knowledge, no unique continuation principle applicable to our case. An approach different
than for (1.1) is also required for the proof of Ω-independence of Scurl, see Section 5. Moreover
concentration-compactness analysis for the curl operator is considerably different from that
in [16,21,36] – see our approach in Section 3.

We would like to emphasize an important role of the analysis of nonlinear curl-curl prob-
lems from the physical point of view. Solutions u to nonlinear curl-curl equations describe
the profiles of time-harmonic solutions E(x, t) = u(x) cos(ωt) to the time-dependent non-
linear electromagnetic wave equation, which together with material constitutive laws and
Maxwell equations, describes the exact propagation of electromagnetic waves in a nonlinear
medium [1, 6, 31]. Since finding propagation exactly may be very difficult, there are several
simplifications in the literature which rely on approximations of the nonlinear electromagnetic
wave equation. The most prominent one is the scalar or vector nonlinear Schrödinger equa-
tion. For instance, one assumes that the term ∇(div(u)) in ∇ × (∇ × u) = ∇(div(u)) −∆u
is negligible and can be dropped, or one uses the so-called slowly varying envelope approxi-
mation. However, such simplifications may produce non-physical solutions; see [2,11] and the
references therein.

We also point out that the term |u|4u in (1.6) as well as in (1.7) below allows to consider
the so-called quintic effect in nonlinear optics modelled by Maxwell equations. See for instance
[1,6,14,15,23,25,31] and the references therein. We hope that our results will prompt further
analytical studies of physical phenomena involving the quintic nonlinearity, e.g. the well-known
cubic-quintic effect in nonlinear optics [14,25].

Using our concentration-compactness result we are also able to treat the Brezis-Nirenberg
problem [10] for the curl-curl operator

(1.7) ∇× (∇× u) + λu = |u|4u in Ω

together with the so-called metallic boundary condition

(1.8) ν × u = 0 on ∂Ω.

Here ν : ∂Ω → R3 is the exterior normal and Ω ⊂ R3 is a bounded domain. This boundary
condition is natural in the theory of Maxwell equations and it holds when Ω is surrounded
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by a perfect conductor. If the boundary of Ω is not of class C1, then we assume (1.8) is
satisfied in a generalized sense by which we mean u is in the space W 6

0 (curl; Ω) defined in
(1.2). Weak solutions to (1.7)–(1.8) correspond to critical points of the associated energy
functional Jλ : W 6

0 (curl; Ω)→ R given by

(1.9) Jλ(u) :=
1

2

∫
Ω

|∇ × u|2 dx+
λ

2

∫
Ω

|u|2 dx− 1

6

∫
Ω

|u|6 dx.

Recall from [7, 23] that the spectrum of the curl-curl operator in H0(curl; Ω) := W 2
0 (curl; Ω)

consists of the eigenvalue λ0 = 0 with infinite multiplicity and of a sequence of eigenvalues

0 < λ1 ≤ λ2 ≤ · · · ≤ λk →∞

with corresponding finite multiplicities m(λk) ∈ N. Let Nλ be the generalized Nehari manifold
for Jλ (see (6.1) for the definition), and for λ ≤ 0 let

cλ := inf
Nλ
Jλ.

Denote the Lebesque measure of Ω by |Ω|. We introduce the following condition:
(Ω) Ω is a bounded domain, either convex or with C1,1-boundary.

The reason for this assumption will be explained in the next section.
In domains Ω 6= R3 we also introduce another constant, Scurl(Ω), such that the inequality

(1.10)
∫

Ω

|∇ × u|2 dx ≥ Scurl(Ω) inf
w∈WΩ

(∫
Ω

|u+ w|6 dx
) 1

3

holds for any u ∈ W 6
0 (curl; Ω), where WΩ := {w ∈ W 6

0 (curl; Ω) : ∇× w = 0}, and Scurl(Ω) is
largest with this property. Although Scurl(Ω) seems to be more natural than Scurl(Ω), we do
not know whether it equals Scurl. We are only able to prove the following result:

Theorem 1.3. Let Ω be a Lipschitz domain in R3, possibly unbounded, Ω 6= R3. Then
Scurl ≥ Scurl(Ω). If Ω satisfies (Ω), then Scurl(Ω) ≥ S.

Finally, the main result concerning the Brezis-Nirenberg problem for the curl-curl operator
(1.7) reads as follows.

Theorem 1.4. Suppose Ω satisfies (Ω). Let λ ∈ (−λν ,−λν−1] for some ν ≥ 1. Then cλ > 0
and the following statements hold:
(a) If cλ < c0, then there is a ground state solution to (1.7)–(1.8), i.e. cλ is attained by
a critical point of Jλ. A sufficient condition for this inequality to hold is λ ∈ (−λν ,−λν +
Scurl(Ω)|Ω|−2/3).
(b) There exists εν ≥ Scurl(Ω)|Ω|−2/3 such that cλ is not attained for λ ∈ (−λν + εν ,−λν−1],
and cλ = c0 for λ ∈ [−λν + εν ,−λν−1]. We do not exclude that εν > λν − λν−1, so these
intervals may be empty.
(c) cλ → 0 as λ→ −λ−ν , and the function

(−λν ,−λν + εν ] ∩ (−λν ,−λν−1] 3 λ 7→ cλ ∈ (0,+∞)

is continuous and strictly increasing.
(d) There are at least #

{
k : −λk < λ < −λk + 1

3
Scurl(Ω)|Ω|− 2

3

}
pairs of solutions ±u to

(1.7)–(1.8).
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Note that if λ is as in (a), then the relation −λk < λ < −λk + 1
3
Scurl(Ω)|Ω|− 2

3 holds for
k = ν, . . . , ν + m − 1 where m is the multiplicity of λν but it may also hold for some k with
λk > λν .

The above result is known for cylindrically symmetric domains where it is possible to
reduce the curl-curl operator to a positive definite one, see [23]. However, the solution obtained
there is a ground state in a subspace of functions having cylindric symmetry and we do not
know whether it is a ground state in the full space.

Let us recall from earlier work that the main difficulties when treating J and Jλ, also in the
subcritical case, are that these functionals are strongly indefinite, i.e., they are unbounded from
above and from below, even on subspaces of finite codimension. Moreover, the quadratic part of
J has infinite-dimensional kernel and J ′, J ′λ are not (sequentially) weak-to-weak∗ continuous,
i.e. un ⇀ u does not imply that J ′λ(un)ϕ → J ′λ(u)ϕ for all ϕ ∈ C∞0 (Ω,R3). This lack of
continuity is caused by the fact that W p

0 (curl; Ω) is not (locally) compactly embedded in any
Lebesgue space and we do not know whether necessarily un → u a.e. in Ω. A consequence of
this is that for a Palais-Smale sequence un ⇀ u it is not clear whether u is a critical point.
In the subcritical case one can overcome these difficulties since either a variant of the Palais-
Smale condition is satisfied or some compactness can be recovered on a suitable topological
manifold, see e.g. [6, 22, 24]. In the critical case however, there are additional difficulties. In
Section 3 we introduce a general concentration-compactness analysis for this case. We show
that the topological manifold{

u ∈ W 6
0 (curl;R3) : div(|u|4u) = 0

}
is locally compactly embedded in Lp(R3,R3) for 1 ≤ p < 6 and that if a sequence (un) is
contained in this manifold and un ⇀ u, then un → u a.e. after passing to a subsequence. This
result will play a crucial role because it implies that if such (un) is a Palais-Smale sequence,
then u is a solution for our equation. If the condition div(|u|4u) = 0 is violated, the embedding
need not be locally compact.

The paper is organized as follows. In Section 2 we introduce the functional setting and
some notation. Section 3 concerns the concentration-compactness analysis as we have already
mentioned. In Section 4 we prove Theorem 1.2, and in Section 5 we show that Scurl(Ω) is
independent of Ω and we also prove Theorem 1.3. The proof of Theorem 1.4 is contained in
Section 6 whereas in Section 7 we state some open problems.

2. Functional setting and preliminaries

Throughout the paper we assume that Ω is a Lipschitz domain in R3 and 2 ≤ p ≤ 2∗ = 6.
The curl of u, ∇ × u, should be understood in the distributional sense. We shall look for
solutions to (1.6) and (1.7)–(1.8) in the space W 6

0 (curl;R3) and W 6
0 (curl; Ω) respectively. We

introduce the subspaces

VΩ :=

{
v ∈ W 6

0 (curl; Ω) :

∫
Ω

〈v, ϕ〉 dx = 0 for every ϕ ∈ C∞0 (Ω,R3) with ∇× ϕ = 0

}
,

WΩ :=

{
w ∈ W 6

0 (curl; Ω) :

∫
Ω

〈w,∇× ϕ〉 dx = 0 for all ϕ ∈ C∞0 (Ω,R3)

}
= {w ∈ W 6

0 (curl; Ω) : ∇× w = 0 in the sense of distributions}.



6 J. MEDERSKI AND A. SZULKIN

The second one has already been defined in Section 1. Here and below 〈. , .〉 denotes the inner
product in R3. If Ω = R3, we shall usually write V and W for VR3 and WR3 .

In the sequel Ω is always a Lipschitz domain and C denotes a generic positive constant
which may vary from one equation to another.

In the following subsections we consider two cases.

2.1. Ω = R3.

Lemma 2.1. W p(curl;R3) = W p
0 (curl;R3) for each p ∈ [2, 6].

Proof. We show C∞0 (R3,R3) is dense in W p(curl;R3). Let χR ∈ C∞0 (R3) be such that |∇χR| ≤
2/R, χR = 1 for |x| ≤ R and χR = 0 for |x| ≥ 2R. Take u = (u1, u2, u3) ∈ W p(curl;R3). Then
χRu→ u in Lp(R3,R3) as R→∞. We have

(2.1) ∂i(χRuj)− ∂j(χRui) = (∂iχR)uj − (∂jχR)ui + χR(∂iuj − ∂jui), i 6= j.

If p = 2, it is clear that (∂iχR)uj → 0 in L2(R3). If 2 < p ≤ 6, then∫
R3

(∂iχR)2u2
j dx ≤

(∫
R≤|x|≤2R

|∂iχR|q dx
)2/q (∫

R≤|x|≤2R

|uj|p dx
)2/p

where q = 2p/(p− 2) ≥ 3. Since∫
R≤|x|≤2R

|∂iχR|q dx ≤ CR3−q < +∞,

also here (∂iχR)uj → 0 in L2(R3). As ∂iuj−∂jui ∈ L2(R3), it follows that the left-hand side in
(2.1) tends to ∂iuj−∂jui in L2(R3) as R→∞. Hence χRu→ u in W p(curl;R3) and functions
of compact support are dense in W p(curl;R3).

Suppose now u ∈ W p(curl;R3) has a compact support. Clearly, jε ∗ u → u in Lp(R3,R3)
as ε→ 0 where jε is the standard mollifier. Since

(2.2) ∂i(jε ∗ uj)− ∂j(jε ∗ ui) = jε ∗ (∂iuj − ∂jui)

and ∂iuj − ∂jui ∈ L2(R3), the right-hand side above tends to ∂iuj − ∂jui in L2(R3) as ε→ 0.
This completes the proof. �

As usual, let D1,2(R3,R3) denote the completion of C∞0 (R3,R3) with respect to the norm
|∇ · |2. The following Helmholtz decomposition holds, see [22,24]:

Lemma 2.2. V and W are closed subspaces of W 6
0 (curl;R3) and

(2.3) W 6
0 (curl;R3) = V ⊕W .

Moreover, V ⊂ D1,2(R3,R3) and the norms |∇ · |2 and ‖ · ‖W 6(curl;R3) are equivalent in V.

We note that W is the closure of {∇ϕ : ϕ ∈ C∞0 (R3)}. Indeed, if w ∈ W , then ∇×w = 0,
hence we can find ϕn such that ∇ϕn → w and ∇ϕn ∈ C∞0 (R3,R3) [22, 24]. Since ∇ϕn = 0
outside of some ball, ϕn is constant there and we may assume this constant is 0.
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2.2. Ω bounded. Recall H0(curl; Ω) := W 2
0 (curl; Ω) and note that

VΩ ⊂
{
u ∈ H0(curl; Ω) : div(u) ∈ L2(Ω,R3)

}
.

Here we have used the fact that if ϕ in the definition of VΩ is supported in a ball, then ϕ = ∇ψ
for some ψ and hence u ∈ VΩ implies div(u) = 0. It follows from [3,12] that VΩ is continuously
embedded in Hs(Ω,R3) for some s ∈ [1/2, 1], hence compactly in L2(Ω,R3). If, in addition Ω
satisfies (Ω), then VΩ is continuously embedded in H1(Ω,R3), hence compactly in Lp(Ω,R3)
for 1 ≤ p < 6 and continuously in L6(Ω,R3). This implies in particular that

(2.4) VΩ =

{
v ∈ H0(curl; Ω) :

∫
Ω

〈v, ϕ〉 dx = 0 for every ϕ ∈ C∞0 (Ω,R3) with ∇× ϕ = 0

}
is a Hilbert space with inner product

(v, z) =

∫
Ω

〈∇ × v,∇× z〉 dx ≡
∫

Ω

〈∇v,∇z〉 dx.

Observe that the right-hand side of (2.4) is a closed linear subspace of W 6
0 (curl; Ω) as a

consequence of (Ω). Using this, it follows from the decomposition in [18, Theorem 4.21(c)]
that also here there is a Helmholtz type decomposition

W 6
0 (curl; Ω) = VΩ ⊕WΩ

and that ∫
Ω

〈v, w〉 dx = 0 if v ∈ VΩ, w ∈ WΩ

which means that VΩ andWΩ are orthogonal in L2(Ω,R3). In W 6
0 (curl; Ω) = VΩ⊕WΩ we can

use the norm
‖v + w‖ :=

(
(v, v) + |w|26

) 1
2 , v ∈ VΩ, w ∈ WΩ

which is equivalent to ‖ · ‖W 6
0 (curl;Ω) if (Ω) is satisfied.

According to [13, Theorem IX.2] or [26, Theorem 3.33], there is a continuous tangential
trace operator γt : H(curl; Ω) := W 2(curl; Ω)→ H−1/2(∂Ω) such that

γt(u) = ν × u|∂Ω for any u ∈ C∞(Ω,R3)

and
H0(curl; Ω) = {u ∈ H(curl; Ω) : γt(u) = 0}.

Hence any vector field u ∈ W 6
0 (curl; Ω) = VΩ ⊕ WΩ ⊂ H0(curl; Ω) satisfies the metallic

boundary condition (1.8).
Denote the subspace of all gradient vector fields in W 1,6

0 (Ω) by ∇W 1,6
0 (Ω). Clearly,

∇W 1,6
0 (Ω) ⊂ WΩ. However, for general domains {w ∈ WΩ : div(w) = 0} may be nontrivial

and hence ∇W 1,6
0 (Ω) (WΩ, see [7, pp. 4314 and 4315] and [26, Theorem 3.42].

Lemma 2.3. There holds WΩ = W 6
0 (curl; Ω) ∩ W = W 6

0 (curl; Ω) ∩ ∇W 1,6(Ω). If ∂Ω is
connected, then WΩ = ∇W 1,6

0 (Ω). If Ω is unbounded, WΩ = W 6
0 (curl; Ω) ∩W still holds.

Proof. Let w ∈ WΩ and take a sequence (ϕn) ⊂ C∞0 (Ω,R3) such that ϕn → w in W 6
0 (curl; Ω).

Extend ϕn by 0 in R3 \Ω and note that (ϕn) is a Cauchy sequence, so ϕn → w̃ in W 6
0 (R3,R3)

where w̃|Ω = w and w̃ = 0 in R3 \ Ω. As∫
R3

〈w̃,∇×ψ〉 dx = lim
n→∞

∫
R3

〈ϕn,∇×ψ〉 dx = lim
n→∞

∫
R3

〈∇×ϕn, ψ〉 dx ≤ lim
n→∞

|∇×ϕn|2|ψ|2 = 0
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for any ψ ∈ C∞0 (R3,R3), it follows that w̃ ∈ W . Moreover, since w̃ ∈ L6(R3,R3) and∇×w̃ = 0,
in view of [19, Lemma 1.1] we obtain w̃ = ∇ψ for some ψ ∈ W 1,6

loc (R3). Therefore w = ∇ψ|Ω ∈
∇W 1,6(Ω). Clearly, W 6

0 (curl; Ω) ∩W and W 6
0 (curl; Ω) ∩∇W 1,6(Ω) are contained in WΩ.

Suppose that ∂Ω is connected. Similarly as above, we obtain w = ∇ψ for some ψ ∈
W 1,6(Ω) and the surface gradient

∇Sψ = (ν ×∇ψ)× ν = 0.

Therefore we may assume that ψ ∈ W 1,6
0 (Ω), cf. [26, Theorem 4.3 and Remark 4.4]. �

3. General concentration-compactness analysis in RN

In this, self-contained, section we have N ≥ 3 and we work in subspaces of L2∗(RN ,RN)
where 2∗ := 2N/(N − 2).

Let Ω be a domain in RN , V a closed subspace of D1,2(RN ,RN) and

(3.1) W :=
{
w = (w1, ..., wN) ∈ L2∗(Ω,RN) : ∇× w = 0

}
where ∇ × w denotes the skew-symmetric, matrix-valued distribution having ∂kwl − ∂lwk ∈
D′(Ω) as matrix elements. So for N = 3, W corresponds to WΩ in Section 2 but V may be
a more general subspace. Note that ∇× is the usual curl operator if N = 3. Let Z be a
finite-dimensional subspace of L2∗(Ω,RN) such that Z ∩W = {0} and put

W̃ :=W ⊕ Z.

Assume
(F1) F : Ω × RN → R is differentiable with respect to the second variable u ∈ RN for a.e.

x ∈ Ω, F (x, 0) = 0 and f = ∂uF : Ω×RN → RN is a Carathéodory function (i.e., f is
measurable in x ∈ Ω for all u ∈ RN and continuous in u ∈ RN for a.e. x ∈ Ω);

(F2) F is uniformly strictly convex with respect to u ∈ RN , i.e. for any compact A ⊂
(RN × RN) \ {(u, u) : u ∈ RN}

inf
x∈Ω

(u1,u2)∈A

(
1

2

(
F (x, u1) + F (x, u2)

)
− F

(
x,
u1 + u2

2

))
> 0;

(F3) There are c1, c2 > 0 and a ∈ LN/2(Ω), a ≥ 0, such that

c1|u|2
∗ ≤ F (x, u) and |f(x, u)| ≤ a(x)|u|+ c2|u|2

∗−1

for every u ∈ RN and a.e. x ∈ Ω.

In view of (F2) and (F3), for any v ∈ V we find a unique w̃Ω(v) ∈ W̃ such that

(3.2)
∫

Ω

F (x, v + w̃Ω(v)) dx ≤
∫

Ω

F (x, v + w̃) dx for all w̃ ∈ W̃ .

This implies that

(3.3)
∫

Ω

〈f(x, v + w̃), ζ〉 dx = 0 for all ζ ∈ W̃ if and only if w̃ = w̃Ω(v).

Denote the space of finite measures in RN byM(RN).
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Theorem 3.1. Assume that (F1)–(F3) are satisfied. Suppose (vn) ⊂ V, vn ⇀ v0 in V,
vn → v0 a.e. in RN , |∇vn|2 ⇀ µ and |vn|2

∗
⇀ ρ in M(RN). Then there exists an at most

countable set I ⊂ RN and nonnegative weights {µx}x∈I , {ρx}x∈I such that

µ ≥ |∇v0|2 +
∑
x∈I

µxδx, ρ = |v0|2
∗

+
∑
x∈I

ρxδx,

and passing to a subsequence, w̃Ω(vn) ⇀ w̃Ω(v0) in W̃, w̃Ω(vn) → w̃Ω(v0) a.e. in Ω and in
Lploc(Ω) for any 1 ≤ p < 2∗.

Remark 3.2. We shall use this theorem in Sections 4 and 6. In Section 4 we have Ω = R3

and Z = {0}, so w̃ = w and we will write w(v) for wR3(v). In Section 6, where we treat a
Brezis-Nirenberg problem, Ω will be bounded and Z the subspace of VΩ on which the quadratic
part of Jλ (see (1.9)) is negative semidefinite.

Proof of Theorem 3.1. Step 1. Let ϕ ∈ C∞0 (RN). By the Sobolev inequality,(∫
RN
|ϕ|2∗|vn − v0|2

∗
dx
)1/2∗

≤ S−1/2
(∫

RN
|∇[ϕ(vn − v0)]|2 dx

)1/2

(3.4)

= S−1/2
(∫

RN
|ϕ|2|∇(vn − v0)|2 dx

)1/2

+ o(1).

Passing to the limit and using the Brezis-Lieb lemma [9, 36] on the left-hand side above we
obtain

(3.5)
(∫

RN
|ϕ|2∗dρ̄

)1/2∗

≤ S−1/2
(∫

RN
|ϕ|2 dµ̄

)1/2

where µ̄ := µ − |∇v0|2 and ρ̄ := ρ − |v0|2
∗ . Set I = {x ∈ RN : µx := µ({x}) > 0}. Since µ is

finite and µ, µ̄ have the same singular set, I is at most countable and µ ≥ |∇v0|2 +
∑

x∈I µxδx.
As in the proof of Theorem 1.9 in [16] it follows from (3.5) that ρ̄ =

∑
x∈I ρxδx, see also

Proposition 4.2 in [35]. So µ and ρ are as claimed.
Step 2. Using (F3) and (3.2) we infer that

c1|vn + w̃Ω(vn)|2∗2∗ ≤
∫

Ω

F (x, vn + w̃Ω(vn)) ≤
∫

Ω

F (x, vn) dx

≤ c2|vn|2
∗

2∗ + |a|N/2|vn|22∗ ,
and since the right-hand side above is bounded, so is (|w̃Ω(vn)|2∗). Hence, up to a subsequence,
w̃Ω(vn) ⇀ w̃0 for some w̃0. Write w̃Ω(vn) = wn + zn, w̃0 = w0 + z0 where wn, w0 ∈ W and
zn, z0 ∈ Z. We shall show that w̃Ω(vn)→ w̃0 a.e. in Ω after taking subsequences. Obviously,
we may assume zn → z0 in Z and a.e. in Ω.

We can find a sequence of open balls (Bl)
∞
l=1 such that Ω =

⋃∞
l=1Bl. Fix l ≥ 1. In view

of [19, Lemma 1.1] there exists ξn ∈ W 1,2∗(Bl) such that wn = ∇ξn and we may assume
without loss of generality that

∫
Bl
ξn dx = 0. Then by the Poincaré inequality,

‖ξn‖W 1,2∗ (Bl)
≤ C|wn|L2∗ (Bl,RN ) ≤ C|wn|2∗

and passing to a subsequence, ξn ⇀ ξ for some ξ ∈ W 1,2∗(Bl). So ξn → ξ in L2∗(Bl). Now
take any ϕ ∈ C∞0 (Bl). Since ∇(|ϕ|2∗(ξn − ξ)) ∈ W , in view of (3.3) we get∫

Ω

〈f(x, vn + w̃Ω(vn)),∇(|ϕ|2∗(ξn − ξ))〉 dx = 0,
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that is,∫
Ω

|ϕ|2∗〈f(x, vn + w̃Ω(vn)), wn −∇ξ〉 dx =

∫
Ω

〈f(x, vn + w̃Ω(vn)),∇(|ϕ|2∗)(ξ − ξn)〉 dx,

where the right-hand side tends to 0 as n→∞. Since wn ⇀ ∇ξ in L2∗(Bl),∫
Ω

|ϕ|2∗〈f(x, v0 +∇ξ + z0), wn −∇ξ〉 dx = o(1),

hence, recalling that w̃Ω(vn) = wn + zn and zn → z0, we obtain

(3.6)
∫

Ω

|ϕ|2∗〈f(x, vn + w̃Ω(vn))− f(x, v0 +∇ξ + z0), w̃Ω(vn)−∇ξ − z0〉 dx = o(1).

The convexity of F in u implies that

F
(
x,
u1 + u2

2

)
≥ F (x, u1) +

〈
f(x, u1),

u2 − u1

2

〉
and

F
(
x,
u1 + u2

2

)
≥ F (x, u2) +

〈
f(x, u2),

u1 − u2

2

〉
.

Adding these inequalities and using (F2), we obtain for any k ≥ 1 and |u1−u2| ≥ 1
k
, |u1|, |u2| ≤

k that

(3.7) mk ≤
1

2
(F (x, u1) + F (x, u2))− F

(
x,
u1 + u2

2

)
≤ 1

4
〈f(x, u1)− f(x, u2), u1 − u2〉

where

(3.8) mk := inf
x∈Ω,u1,u2∈RN

1
k
≤|u1−u2|,
|u1|,|u2|≤k

1

2
(F (x, u1) + F (x, u2))− F

(
x,
u1 + u2

2

)
> 0.

Let

Ωn,k :=
{
x ∈ Ω : |vn + w̃Ω(vn)− v0 −∇ξ − z0| ≥

1

k
and |vn + w̃Ω(vn)|, |v0 +∇ξ + z0| ≤ k

}
.

Taking into account (3.6) and using (F3), (3.7) and Hölder’s inequality, we get

4mk

∫
Ωn,k

|ϕ|2∗ dx

≤
∫

Ω

|ϕ|2∗〈f(x, vn + w̃Ω(vn))− f(x, v0 +∇ξ + z0), vn + w̃Ω(vn)− v0 −∇ξ − z0〉 dx

≤
∫

Ω

|ϕ|2∗〈f(x, vn + w̃Ω(vn))− f(x, v0 +∇ξ + z0), vn − v0〉 dx+ o(1)

≤ C
(∫

Ω

|ϕ|2∗|vn − v0|2
∗
dx
)1/2∗

+ o(1) = C
(∫

Ω

|ϕ|2∗ dρ̄
)1/2∗

+ o(1),

where k is fixed. Here we have used the fact that
∫

Ω
a(x)|vn − v0|2 dx → 0 if vn ⇀ v0 in

L2∗(Ω,RN). Since ϕ ∈ C∞0 (Bl) is arbitrary,

(3.9) 4mk|Ωn,k ∩ E| ≤
(
ρ̄(E)

)1/2∗
+ o(1)
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for any Borel set E ⊂ Bl. We find an open set Ek ⊃ I such that |Ek| < 1/2k+1. Then, taking
E = Bl \ Ek in (3.9), we have 4mk|Ωn,k ∩ (Bl \ Ek)| = o(1) as n → ∞ because supp(ρ̄) ⊂ I;
hence we can find a sufficiently large nk such that |Ωnk,k ∩Bl| < 1/2k and we obtain

|
∞⋂
j=1

∞⋃
k=j

Ωnk,k ∩Bl| ≤ lim
j→∞

∞∑
k=j

|Ωnk,k ∩Bl| ≤ lim
j→∞

1

2j−1
= 0.

If x /∈
⋂∞
j=1

⋃∞
k=j Ωnk,k and x ∈ Bl, then

|vnk(x) + w̃Ω(vnk)(x)− v0(x)−∇ξ(x)− z0(x)| < 1

k
, or |vnk(x) + w̃Ω(vnk)(x)| > k,

or |v0(x) +∇ξ(x) + z0(x)| > k

for all sufficiently large k. Since vnk + w̃Ω(vnk) is bounded in L2∗(Ω,RN), the second and the
third inequality above cannot hold on a set of positive measure for all large k. We infer that
vnk + w̃Ω(vnk) → v0 + ∇ξ + z0, hence w̃Ω(vnk) → ∇ξ + z0 a.e. in Bl. Since w̃Ω(vn) ⇀ w̃0,
w̃0 = ∇ξ + z0 a.e. in Bl. Now employing the diagonal procedure, we find a subsequence of
w̃Ω(vn) which converges to w̃0 a.e. in Ω =

⋃∞
l=1Bl.

Let p ∈ [1, 2∗). For Ω′ ⊂ Ω such that |Ω′| < +∞ we have∫
Ω′
|vn − v0 + w̃Ω(vn)− w̃0|p dx ≤ |Ω′|1−

p
2∗
(∫

Ω

|vn − v0 + w̃Ω(vn)− w̃0|2
∗
dx
) p

2∗
,

hence by the Vitali convergence theorem, vn − v0 + w̃Ω(vn)− w̃0 → 0 in Lploc(Ω) after passing
to a subsequence.

Step 3. We show that w̃Ω(v0) = w̃0. Take any w̃ ∈ W̃ and observe that by the Vitali
convergence theorem,

0 =

∫
Ω

〈f(x, vn + w̃Ω(vn)), w̃〉 dx→
∫

Ω

〈f(x, v0 + w̃0), w̃〉 dx

up to a subsequence. Now (3.3) implies that w0 = w̃Ω(v0) which completes the proof. 2

4. Problem in Ω = R3 and proof of Theorem 1.2

Let S be the best Sobolev constant for the embedding of D1,2(R3) into L6(R3), see (1.1).
It is clear that a minimizer w(u) in (3.2) exists uniquely for any u ∈ W 6

0 (curl; Ω), not only for
u ∈ V . Here we have F (x, u) = 1

6
|u|6 and Z = {0}. So by Lemma 2.3, u+w(u) = v +w(v) ∈

V ⊕W for some v ∈ V and therefore

(4.1) inf
w∈W

∫
R3

|u+ w|6 dx =

∫
R3

|u+ w(u)|6 dx =

∫
R3

|v + w(v)|6 dx.

Since div(v) = 0,

(4.2) Scurl = inf
u∈W 6

0 (curl;R3)
∇×u6=0

|∇ × u|22
|u+ w(u)|26

= inf
v∈V\{0}

|∇v|22
|v + w(v)|26

.

Lemma 4.1. Scurl ≥ S.

Proof. Given ε > 0, by (4.2) we can find v 6= 0 such that

(4.3)
∫
R3

|∇v|2 dx ≤ (Scurl + ε)
(∫

R3

|v + w(v)|6 dx
) 1

3
.
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Let v = (v1, v2, v3). By the Hölder inequality,

(4.4)
∫
R3

v2
1v

2
2v

2
3 dx ≤

(∫
R3

v6
1 dx

∫
R3

v6
2 dx

∫
R3

v6
2 dx

) 1
3

and

(4.5)
∫
R3

v4
i v

2
j dx ≤

(∫
R3

v6
i

) 2
3
(∫

R3

v6
j dx

) 1
3
, i 6= j.

Using this and the Sobolev inequality gives

(4.6)
∫
R3

|∇v|2 dx ≥ S
3∑
i=1

(∫
R3

|vi|6 dx
)1/3

≥ S
(∫

R3

|v|6 dx
)1/3

,

and since w(v) is a minimizer, we obtain using (4.3) and (4.6)∫
R3

|∇v|2 dx ≤ (Scurl + ε)
(∫

R3

|v + w(v)|6 dx
) 1

3 ≤ (Scurl + ε)
(∫

R3

|v|6 dx
) 1

3(4.7)

≤ (Scurl + ε)/S

∫
R3

|∇v|2 dx.

Hence Scurl + ε ≥ S for all ε > 0 and the conclusion follows. �

Next we look for ground states for the curl-curl problem (1.6), i.e. nontrivial solutions
with least possible associated energy J given by (1.4). Throughout the rest of the paper we
shall make repeated use of the following fact:

Lemma 4.2. Let λ > 0. Then w(λu) = λw(u). Similarly, if Ω is a proper subset of R3, then
wΩ(λu) = λwΩ(u).

Proof. We prove this for wΩ. Using the minimizing property of wΩ(u) we obtain

λ6

∫
Ω

|u+ wΩ(u)|6 dx =

∫
Ω

|λu+ λwΩ(u)|6 dx ≥
∫

Ω

|λu+ wΩ(λu)|6 dx

= λ6

∫
Ω

|u+ wΩ(λu)/λ|6 dx ≥ λ6

∫
Ω

|u+ wΩ(u)|6 dx.

Since the minimizer is unique, wΩ(u) = wΩ(λu)/λ as claimed. �

Lemma 4.3. Let N be the set defined in (1.5). Then

(4.8) N = {u ∈ W 6
0 (curl;R3) \W : J ′(u)u = 0 and J ′(u)|W = 0}.

Proof. The first condition in (1.5) is equivalent to J ′(u)u = 0. The second condition is satisfied
because div(|u|4u) = 0 if and only if

∫
R3〈|u|4u,∇ϕ〉 dx = 0 for all ϕ ∈ C∞0 (R3) and each element

of W can be approximated by such ϕ, see the comment preceding Section 2.2. �

By Lemma 2.2, W 6
0 (curl;R3) = V ⊕W . It follows from (3.2) and (3.3) that if v ∈ V , then

J ′(v + w(v))|W = 0, and as

(4.9) J(t(v + w(v))) =
t2

2

∫
R3

|∇v|2 dx− t6

6

∫
R3

|v + w(v)|6 dx,

there is a unique t(v) > 0 such that

(4.10) m(v) := t(v)(v + w(v)) ∈ N for v ∈ V \ {0}.
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We note that

(4.11) J(m(v)) ≥ J(t(v + w)) for all t > 0 and w ∈ W .

Since J(m(v)) ≥ J(v) and there exist a, r > 0 such that J(v) ≥ a if ‖v‖ = r, N is bounded
away from W and hence closed.

Lemma 4.4. The mapping m : V \ {0} → N given by (4.10) is continuous.

Proof. Let vn → v0 6= 0 in V . Since

(4.12)
∫
R3

|vn + w(vn)|6 dx ≤
∫
R3

|vn|6 dx,

it follows that (w(vn)) is bounded and it is then clear from (4.9) that so is (t(vn)). Hence
we may assume t(vn) → t0 and w(vn) ⇀ w0 in L6(R3,R3). By the weak sequential lower
semicontinuity of the second integral in (4.9) and by (4.11),

J(t0(v0 + w0)) ≥ lim sup
n→∞

J(t(vn)(vn + w(vn))) ≥ lim sup
n→∞

J(t0(vn + w0)) = J(t0(v0 + w0)).

So w(vn)→ w0 and since N is closed, t0(v0 + w0) = t(v0)(v0 + w(v0)) = m(v0). �

Now it is easily seen that m|S : S := {v ∈ V : ‖v‖ = 1} → N is a homeomorphism
with the inverse u = v + w(v) 7→ v/‖v‖. Note that N is an infinite-dimensional topological
manifold of infinite codimension. Although J is of class C2, we do not know whether N is
of class C1. However, repeating the argument in [22, Proposition 4.4(b)] or [32, Proposition
2.9] we see that J ◦m|S : S → R is of class C1 and is bounded from below by the constant
a > 0 introduced above. By the Ekeland variational principle [36, Theorem 8.5], there is a
Palais-Smale sequence (vn) ⊂ S such that

(4.13) (J ◦m)(vn)→ inf
S
J ◦m = inf

N
J ≥ a > 0.

It follows from [22, Proposition 4.4(b)] again or from [32, Corollary 2.10] that (m(vn)) is a
Palais-Smale sequence for J on N , so in particular, J ′(m(vn)) → 0 as n → ∞. See also
an abstract critical point theory on the generalized Nehari manifold in [6, Section 4] and
in [7, Section 4].

For s > 0, y ∈ RN and u : R3 → R3 we denote Ts,y(u) := s1/2u(s · +y)). The following
lemma is a special case of [29, Theorem 1], see also [34, Lemma 5.3].

Lemma 4.5. Suppose that (vn) ⊂ D1,2(R3,R3) is bounded. Then vn → 0 in L6(R3,R3) if and
only if Tsn,yn(vn) ⇀ 0 in D1,2(R3,R3) for all (sn) ⊂ R+ and (yn) ⊂ R3.

Lemma 4.6. Ts,y is an isometric isomorphism of W 6
0 (curl;R3) which leaves the functional J

and the subspaces V ,W invariant. In particular, w(Ts,yu) = Ts,yw(u).

The proof is by an explicit (and simple) computation.

Lemma 4.7. Suppose u+ w(u) ∈ N . Then

|∇ × u|22
|u+ w(u)|26

= A if and only if J(u+ w(u)) =
1

3
A3/2.

In particular, infN J = 1
3
S

3/2
curl.
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Proof. Since u+ w(u) ∈ N , J ′(u)u = 0, i.e. |∇ × u|22 = |u+ w(u)|66. Hence

|∇ × u|22
|u+ w(u)|26

= |u+ w(u)|46 and J(u+ w(u)) =
1

3
|u+ w(u)|66.

�

Proof of Theorem 1.2. We prove part (b) first. Take a minimizing sequence (un) = (m(vn)) ⊂
N constructed above and write un = t(vn)(vn + w(vn)) = v′n + w(v′n) ∈ V ⊕W . As

(4.14) J(un) = J(un)− 1

6
J ′(un)un =

1

3
|∇ × un|22 =

1

3
|∇v′n|22

and |∇ · |2 is an equivalent norm in V , (v′n) is bounded. We also have

(4.15) J(un) = J(un)− 1

2
J ′(un)un =

1

3
|un|66.

Since J(un) is bounded away from 0, |un|6 6→ 0 and hence by (4.12), |v′n|6 6→ 0. Therefore,
passing to a subsequence and using Lemma 4.5, ṽn := Tsn,yn(v′n) ⇀ v0 for some v0 6= 0,
(sn) ⊂ R+ and (yn) ⊂ R3. Taking subsequences again we also have that ṽn → v0 a.e. in
R3 and in view of Theorem 3.1, w(ṽn) ⇀ w(v0) and w(ṽn) → w(v0) a.e. in R3. We set
u := v0 +w(v0) and by Lemma 4.6 we may assume without loss of generality that sn = 1 and
yn = 0. So if z ∈ W 6

0 (curl;R3), then using weak and a.e. convergence,

J ′(un)z =

∫
R3

〈∇ × un, z〉 dx−
∫
R3

〈|un|4un, z〉 dx→ J ′(u)z.

Here we have used that |un|4un ⇀ ζ in L6/5(R3,R3) for some ζ but since |un|4un → |u|4u a.e.,
ζ = |u|4u. So u is a solution to (1.6). To show it is a ground state, we note that using Fatou’s
lemma,

inf
N
J = J(un) + o(1) = J(un)− 1

2
J ′(un)un + o(1) =

1

3
|un|66 + o(1)

≥ 1

3
|u|66 + o(1) = J(u)− 1

2
J ′(u)u+ o(1) = J(u) + o(1).

Hence J(u) ≤ infN J and as a solution, u ∈ N . It follows using Lemma 4.7 that J(u) =

infN J = 1
3
S

3/2
curl.

If u satisfies equality in (1.3), then t(u)(u + w(u)) ∈ N and is a minimizer for J |N . But
then the corresponding point v in S is a minimizer for J ◦m|S , see (4.13). So v is a critical
point of J ◦m|S and m(v) = u is a critical point of J . This completes the proof of (b).

(a) By Lemma 4.1, Scurl ≥ S and by part (b), there exists u = v + w(v) for which Scurl

is attained. Suppose Scurl = S. Then all inequalities become equalities in (4.7) with ε = 0,
and therefore also in (4.6). But then

∫
R3 |∇vi|2 dx = S|vi|26 for i = 1, 2, 3 and hence all vi are

instantons, up to multiplicative constants. Since v 6= 0 and div(v) = 0, this is impossible. It
follows that Scurl > S. 2
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5. Proof of Theorems 1.1 and 1.3

Let Ω be a Lipschitz domain in R3. Recall from Section 2 that we have the Helmholtz
decompositions

(5.1) W 6
0 (curl;R3) = V ⊕W and W 6

0 (curl; Ω) = VΩ ⊕WΩ

where the second one holds if condition (Ω) from Introduction is satisfied. For u ∈ W 6
0 (curl; Ω),

denote the minimizer of ∫
Ω

|u+ w|6 dx, w ∈ WΩ

by wΩ(u) (cf. (4.1)) and, according to our notational convention, write w(u) for wR3(u). Recall
from (1.3) the definition of Scurl(Ω):∫

R3

|∇ × u|2 dx ≥ Scurl(Ω) inf
w∈W

(∫
R3

|u+ w|6 dx
)1/3

where u ∈ W 6
0 (curl; Ω) and Scurl(Ω) is the largest constant with this property. By (5.1) we

have u = v +w ∈ V ⊕W . We emphasize that although u = 0 in R3 \Ω, v and w need not be
0 there. Note that Scurl(Ω) can be characterized as

(5.2) Scurl(Ω) = inf
u∈W 6

0 (curl;Ω)
∇×u6=0

sup
w∈W

|∇ × u|22
|u+ w|26

= inf
u∈W 6

0 (curl;Ω)
∇×u6=0

|∇ × u|22
|u+ w(u)|26

(cf. (4.2)). In domains Ω 6= R3 there is also another constant, Scurl(Ω), introduced in (1.10).
Similarly as in (5.2), it can be characterized as

(5.3) Scurl(Ω) = inf
u∈W 6

0 (curl;Ω)
∇×u6=0

sup
w∈WΩ

|∇ × u|22
|u+ w|26

= inf
u∈W 6

0 (curl;Ω)
∇×u6=0

|∇ × u|22
|u+ wΩ(u)|26

.

As we have noticed in Introduction, although this constant seems more natural, we do not
know whether it equals Scurl.

Lemma 5.1. The mapping u 7→ wΩ(u) : L6(Ω,R3) → L6(Ω,R3) is continuous (Ω = R3 is
admitted).

Proof. Let un → u0. Since (wΩ(un)) is bounded, wΩ(un) ⇀ w0 after passing to a subsequence.
By the maximality and uniqueness of wΩ(·),∫

Ω

|u0 + wΩ(u0)|6 dx ≤
∫

Ω

|u0 + w0|6 dx ≤ lim inf
n→∞

∫
Ω

|un + wΩ(un)|6 dx

≤ lim inf
n→∞

∫
Ω

|un + wΩ(u0)|6 dx =

∫
Ω

|u0 + wΩ(u0)|6 dx.

Hence all inequalities above must be equalities and it follows that w0 = wΩ(u0) and wΩ(un)→
wΩ(u0). �

We shall need the following inequality:

Lemma 5.2. If u ∈ W 6
0 (curl; Ω) \ {0}, w ∈ WΩ and t ≥ 0, then

(5.4) J(u) ≥ J(tu+ w)− J ′(u)

[
t2 − 1

2
u+ tw

]
.
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Moreover, strict inequality holds unless t = 1 and w = 0. (Ω = R3 admitted.)

Proof. The proof follows a similar argument as in [22, Proposition 4.1] and [23, Lemma 4.1].
We include it for the reader’s convenience. We show that

(5.5) J(u)− J(tu+ w) + J ′(u)

[
t2 − 1

2
u+ tw

]
=

∫
R3

ϕ(t, x) dx ≥ 0,

where

ϕ(t, x) := −
〈
|u|4u, t

2 − 1

2
u+ tw

〉
− 1

6
|u|6 +

1

6
|tu+ w|6.

An explicit computation using ∇ × w = 0 shows that both sides of (5.5) are equal. Clearly,
ϕ(t, x) ≥ 0 if u(x) = 0. So let u(x) 6= 0. It is easy to check that ϕ(0, x) > 0 and ϕ(t, x)→∞
as t → ∞. Note that if ∂tϕ(t0, x) = 0 for some t0 > 0, then either 〈u, t0u + w〉 = 0
or |u| = |t0u + w|. In the first case, substituting −〈u,w〉 = t0|u|2, we obtain ϕ(t0, x) =( t20

2
+ 1

3

)
|u|6 + 1

6
|t0u+w|6 > 0. In the second case we have, using −t0〈u,w〉 =

t20−1

2
|u|2 + 1

2
|w|2,

that ϕ(t0, x) = 1
2
|u|4|w|2 ≥ 0. Hence ϕ(t, x) ≥ 0 for all t ≥ 0 and the inequality is strict if

w 6= 0. If w = 0, then ϕ(t, x) =
(
t6

6
− t2

2
+ 1

3

)
|u|6 > 0 provided t 6= 1. �

Similarly as in (4.8) we introduce the set

(5.6) NΩ :=
{
u ∈ W 6

0 (curl; Ω) \WΩ : J ′(u)u = 0 and J ′(u)|WΩ
= 0
}
.

Proof of Theorems 1.1 and 1.3. Since tu + w(tu) = t(u + w(u)) according to Lemma 4.2, we
may assume without loss of generality that u+w(u) ∈ N in (5.2) and similarly, u+wΩ(u) ∈ NΩ

in (5.3). According to Lemma 4.7,

inf
N
J |W 6

0 (curl;Ω) =
1

3
Scurl(Ω)

3
2 , inf

NΩ

J =
1

3
Scurl(Ω)

3
2 , inf

N
J =

1

3
S

3
2
curl.

In view of Lemma 2.3, WΩ ⊂ W , hence we easily infer from (5.2), (5.3) that Scurl(Ω) ≥
Scurl(Ω). As W 6

0 (curl; Ω) ⊂ W 6
0 (curl;R3), it follows that Scurl ≤ Scurl(Ω).

Next we show that Scurl(Ω) ≤ Scurl. Let u0 be a minimizer for J onN provided by Theorem
1.2(b) and find a sequence (un) ⊂ C∞0 (R3,R3) such that un → u0. We can decompose un as
un = vn + wn, vn ∈ V , wn ∈ W . Since u0 = v0 + w(v0) (recall u0 ∈ N ), un = vn + wn → u0 =
v0 +w(v0) and therefore vn → v0, wn → w(v0). So v0 6= 0 and vn are bounded away from 0 in
L6(R3,R3). Assume without loss of generality that 0 ∈ Ω. There exist λn such that ũn given
by ũn(x) := λ

1/2
n un(λnx) are supported in Ω. Set w̃n := w(ũn) ∈ W and choose tn so that

tn(ũn + w̃n) ∈ N . Then

(5.7) t2n =
|∇ × ũn|2
|ũn + w̃n|36

.

According to Lemma 4.6, ‖ũn‖ = ‖un‖ and |ũn + w̃n|6 = |un +w(un)|6 = |vn +w(vn)|6. As
(un) is bounded, so is (ũn) and as |vn + w(vn)|6 → |v0 + w(v0)|6, |ũn + w̃n|6 is bounded away
from 0. So (tn) is bounded. Moreover, |w̃n|6 = |w(un)|6 and therefore (w̃n) is bounded. Since
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J(ũn) = J(un)→ 1
3
S

3/2
curl and ‖J ′(ũn)‖ = ‖J ′(un)‖ → 0, it follows from Lemma 5.2 that

1

3
S

3/2
curl = lim

n→∞
J(ũn) ≥ lim

n→∞

(
J(tn(ũn + w̃n))− J ′(ũn)

[
t2n − 1

2
ũn + t2nw̃n

])
= lim

n→∞
J(tn(ũn + w̃n)) ≥ 1

3
Scurl(Ω)3/2.

The last inequality follows from Lemma 4.7 and the fact that ũn are as in (5.2), i.e. ũn ∈
W 6

0 (curl; Ω).
It remains to show that Scurl(Ω) ≥ S if (Ω) is satisfied. But this follows by repeating the

argument of Lemma 4.1 with obvious changes: Scurl should be replaced by Scurl(Ω), w(v) by
wΩ(v) and the domain of integration should be Ω. 2

Remark 5.3. Let Ω 6= R3 and suppose Scurl(Ω) is attained by some u. Extend u by 0 outside
Ω. As Scurl(Ω) = Scurl, u also solves (1.6) in R3, possibly after replacing u with αu for an
appropriate α > 0. In particular, if Scurl(Ω) were attained in a bounded Ω, this would imply
the existence of ground states in R3 which have compact support. To our knowledge, there is
no unique continuation principle which could rule out this possibility.

In view of this remark we expect that similarly as is the case for the Sobolev constant,
Scurl is attained if and only if Ω = R3. We leave this problem as a conjecture.

6. The Brezis-Nirenberg-type problem and proof of Theorem 1.4

Let λ ≤ 0. In this section Ω ⊂ R3 is a fixed bounded domain satisfying (Ω) but λ will be
varying. Therefore we drop the subscript Ω from notation and replace it by λ (Jλ, Nλ etc.).
We also write V ,W for VΩ,WΩ.

Recall from Introduction and Subsection 2.2 that the spectrum of the curl-curl operator
in H0(curl; Ω) consists of the eigenvalue λ0 = 0 whose eigenspace is W and of a sequence of
eigenvalues

0 < λ1 ≤ λ2 ≤ · · · ≤ λk →∞
with finite multiplicities m(λk) ∈ N. The eigenfunctions corresponding to different eigenvalues
are L2-orthogonal and those corresponding to λk > 0 are in V .

For λ ≤ 0 we find two closed and orthogonal subspaces V+ and Ṽ of V such that the
quadratic form Q : V → R given by

Q(v) :=

∫
Ω

(|∇ × v|2 + λ|v|2) dx ≡
∫

Ω

(|∇v|2 + λ|v|2) dx

is positive definite on V+ and negative semidefinite on Ṽ where dim Ṽ < ∞. Writing u =

v + w = v+ + ṽ + w ∈ V+ ⊕ Ṽ ⊕W , we have

Q(v) = Q(v+) +Q(ṽ)

and our functional Jλ (see (1.9)) can be expressed as

Jλ(u) =
1

2
Q(v+) +

1

2
Q(ṽ) +

λ

2

∫
Ω

|w|2 dx− 1

6
|u|6 dx.
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We shall use Theorem 3.1 with

F (x, u) =
1

6
|u|6 − λ

2
|u|2.

Here W̃ := Ṽ ⊕W (so Z = Ṽ in the notation of Section 3) and w̃ = ṽ +w. V , and hence V+,
may be considered, after a proper extension, as closed subspaces of D1,2(R3,R3). Indeed, let
U be a bounded domain in R3, U ⊃ Ω. Since V ⊂ H1(Ω,R3), each v ∈ V may be extended
to v′ ∈ H1

0 (U,R3) such that v′|Ω = v. This extension is bounded as a mapping from V to
H1

0 (U,R3). Since
V ′ :=

{
v′ ∈ H1

0 (U,R3) : v′|Ω ∈ V
}

is a closed subspace of H1
0 (U,R3), and hence of D1,2(R3,R3), we can apply Theorem 3.1 with

F as above and V+ replacing V . The generalized Nehari manifold is now given by

(6.1) Nλ := {u ∈ W 6
0 (curl; Ω) \ (Ṽ ⊕W) : J ′λ(u)|Ru⊕Ṽ⊕W = 0}.

As in Section 4, also here it is not clear whetherNλ is of class C1. Settingmλ(v
+) := v++w̃(v+)

where v+ ∈ V+ and w̃(v+) ≡ w̃Ω(v+) is the minimizer as in (3.2), we have

mλ(v
+) := t(v+)(v+ + w̃(v+)) ∈ Nλ, v+ ∈ V+ \ {0}

(cf. (4.10)) and Jλ ◦mλ is of class C1 on S+. Moreover, mλ|S+ is a homeomorphism between
S+ and Nλ. As in (4.13), we may also find a Palais-Smale sequence (v+

n ) ⊂ S+ such that

(6.2) (Jλ ◦mλ)(v
+
n )→ inf

S+
Jλ ◦mλ = cλ and J ′λ(mλ(v

+
n ))→ 0

where
cλ := inf

Nλ
Jλ.

Note that c0 = 1
3
Scurl(Ω)3/2 ≥ 1

3
S3/2.

Lemma 6.1. Let λ ∈ (−λν ,−λν−1] for some ν ≥ 1. There holds

cλ ≤
1

3
(λ+ λν)

3/2|Ω| and cλ < c0 if λ < −λν + Scurl(Ω)|Ω|−2/3.

Proof. The first inequality has been established in [23, Lemma 4.7]. However, for the reader’s
convenience we include the argument. Let eν be an eigenvector corresponding to λν . Then
eν ∈ V+. Choose t > 0, ṽ ∈ Ṽ and w ∈ W so that u = v + w = teν + ṽ + w ∈ Nλ. Since
λk ≤ λν for k < ν,

cλ ≤ Jλ(u) =
1

2

∫
Ω

|∇ × v|2 dx+
λ

2

∫
Ω

|u|2 dx− 1

6

∫
Ω

|u|6 dx

≤ λν
2

∫
Ω

|v|2 dx+
λ

2

∫
Ω

|u|2 dx− 1

6

∫
Ω

|u|6 dx ≤ λ+ λν
2

∫
Ω

|u|2 dx− 1

6

∫
Ω

|u|6 dx

≤ λ+ λν
2
|Ω|2/3

(∫
Ω

|u|6 dx
)1/3

− 1

6

∫
Ω

|u|6 dx ≤ 1

3
(λ+ λν)

3/2|Ω|.

In the last step we have used the elementary inequality A
2
t2 − 1

6
t6 ≤ 1

3
A3/2 (A > 0).

Since c0 = 1
3
Scurl(Ω)3/2, the second inequality follows immediately. �
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If cλ < c0, then in view of [23, Theorem 2.2 (a)] there is a Palais-Smale sequence (un) ⊂ Nλ
such that Jλ(un)→ cλ > 0 and un ⇀ u0 6= 0 inW 6

0 (curl; Ω). It has been unclear so far whether
u0 is a critical point of Jλ. Now we shall show using the concentration-compactness analysis
from Section 3 that u0 is not only a solution but even a ground state for (1.7). The following
lemma plays a crucial role.

Lemma 6.2. If (un) ⊂ Nλ is bounded, then, passing to a subsequence, un → u0 in L2(Ω,R3)
for some u0.

Proof. Let un = mλ(v
+
n ) = v+

n +w̃(v+
n ). Since V+ and W̃ are complementary subspaces, (v+

n ) is
bounded in V+. So passing to a subsequence, v+

n ⇀ v+
0 in V+, and v+

n → v+
0 in L2(Ω,R3) and

a.e. in Ω. Hence by Theorem 3.1, w̃(v+
n ) → w̃(v+

0 ) in L2(Ω,R3), and therefore also un → u0

there. �

Lemma 6.3. (cf. [23, Lemma 4.6]) Jλ is coercive on Nλ.

Proof. Let (un) be a sequence in Nλ such that Jλ(un) ≤ d. Then

d ≥ Jλ(un) = Jλ(un)− 1

2
J ′λ(un)un =

1

3

∫
Ω

|un|6 dx,

hence (un) is bounded in L6(Ω,R3), and therefore also in L2(Ω,R3). It follows that

d ≥ Jλ(un) =
1

2
Q(v+

n ) +
1

2
Q(ṽn) +

λ

2

∫
Ω

|wn|2 dx−
1

6

∫
Ω

|un|6 dx

where the last three terms are bounded (recall dim Ṽ <∞). Hence also (v+
n ) is bounded. �

Let
N(u) := |u|4u.

It is clear that N : L6(Ω,R3) → L6/5(Ω,R3). We shall need the following version of the
Brezis-Lieb lemma:

Lemma 6.4. Suppose (un) is bounded in L6(Ω,R3) and un → u a.e. in Ω. Then

N(un)−N(un − u)→ N(u) in L6/5(Ω,R3) as n→∞.

Proof. Since N(un) − N(un − u) → N(u) a.e. in Ω and N(un) − N(un − u) is bounded in
L6/5(Ω,R3), N(un)−N(un− u) ⇀ N(u). We claim that |N(un)−N(un− u)|6/5 → |N(u)|6/5.
Using Vitali’s convergence theorem we obtain∫

Ω

∣∣|un|4un − |un − u|4(un − u)
∣∣6/5 dx =

∫
Ω

∫ 1

0

d

dt

∣∣|un + (t− 1)u|4(un + (t− 1)u
∣∣6/5 dtdx

=

∫
Ω

∫ 1

0

d

dt
|un + (t− 1)u|6 dtdx = 6

∫ 1

0

∫
Ω

〈|un + (t− 1)u|4(un + (t− 1)u), u〉 dxdt

→ 6

∫ 1

0

∫
Ω

t5|u|6 dxdt =

∫
Ω

|u|6 dx.

Hence N(un)−N(un − u) converges strongly to N(u). �

Lemma 6.5. Let β < c0. Then Jλ satisfies the (PS)β-condition in Nλ, i.e. if (un) ⊂ Nλ,
Jλ(un)→ β and J ′λ(un)→ 0 as n→∞, then un → u0 6= 0 in W 6

0 (curl; Ω) along a subsequence.
In particular, u0 is a nontrivial solution for (1.7)–(1.8).
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Proof. Let (un) be a (PS)β-sequence such that (un) ⊂ Nλ. According to Lemma 6.3, (un) is
bounded and we may assume un ⇀ u0 in W 6

0 (curl; Ω). By Lemma 6.2, un → u0 in L2(Ω,R3)
and hence also a.e. in Ω after passing to a subsequence if necessary. As in the proof of Theorem
1.2 in Section 4 we see that J ′λ(u0) = 0, i.e. u0 is a solution for (1.7)–(1.8). According to the
Brezis-Lieb lemma [9],

lim
n→∞

(∫
Ω

|un|6 dx−
∫

Ω

|un − u0|6 dx
)

=

∫
Ω

|u0|6 dx,

hence

(6.3) lim
n→∞

(
Jλ(un)− Jλ(un − u0)

)
= Jλ(u0) ≥ 0,

and by Lemma 6.4,

(6.4) lim
n→∞

(
J ′λ(un)− J ′λ(un − u0)

)
= J ′λ(u0) = 0.

Since J ′λ(un)→ 0 and un → u0 in L2(Ω,R3),

(6.5) lim
n→∞

J ′0(un − u0) = 0.

Suppose lim infn→∞ ‖un − u0‖ > 0. Since limn→∞ J
′
0(un − u0)(un − u0) = 0, we infer that

lim inf
n→∞

|∇ × (un − u0)|2 > 0.

Let un − u0 = vn + w̃n ∈ V ⊕W according to the Helmholtz decomposition in W 6
0 (curl; Ω). If

vn → 0 in L6(Ω,R3), then by (6.5) we have J ′0(un − u0)vn → 0, thus

|∇ × (un − u0)|22 = |∇ × vn|22 = J ′0(un − u0)vn +

∫
Ω

〈|un − u0|4(un − u0), vn〉 dx→ 0

as n → ∞ which is a contradiction. Therefore |vn|6 is bounded away from 0. If wn :=
w(un − u0) ∈ W , then (wn) is bounded and since un − u0 + wn = vn + w(vn) ∈ V ⊕ W ,
|un − u0 + wn|6 is bounded away from 0. Choose tn so that tn(un − u0 + wn) ∈ N0 (N0 ≡ NΩ

in the notation of Section 5). As in (5.7) we have

t2n =
|∇ × (un − u0)|2
|un − u0 + wn|36

,

so (tn) is bounded. Using Lemma 5.2, as in the proof of Theorems 1.1 and 1.3 we get

J0(un − u0) ≥ J0(tn(un − u0 + wn))− J ′0(un − u0)
[t2n − 1

2
(un − u0) + t2nwn

]
,

so by (6.5) and since un → u0 in L2(Ω,R3),

β = lim
n→∞

Jλ(un − u0) = lim
n→∞

J0(un − u0) ≥ lim
n→∞

J0(tn(un − u0 + wn)) ≥ c0,

a contradiction. Therefore, passing to a subsequence, un → u0. Since u0 ∈ Nλ, u0 6= 0. �

Proof of Theorem 1.4. (a) It follows from (6.2) and Lemma 6.5 that if cλ < c0, then cλ is
attained and hence there exists a ground state solution. By Lemma 6.1, this inequality is
satisfied whenever λ ≤ λν−1 and λ ∈ (−λν ,−λν + Scurl(Ω)|Ω|−2/3).

In view of [23, Theorem 2.2(b)], the function (−λν ,−λν−1] 3 λ 7→ cλ ∈ (0,+∞) is non-
decreasing, continuous and cλ → 0 as λ → −λ−ν , and if cµ1 = cµ2 for some −λν < µ1 < µ2 ≤
−λν−1, then cλ is not attained for λ ∈ (µ1, µ2]. Hence (b) and (c) follow.
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(d) Since Jλ is even and, by Lemma 6.5, satisfies the Palais-Smale condition in Nλ at any
level below c0, then, in view of [23, Theorem 3.2(c)], Jλ has at least m(Nλ, c0) pairs of critical
points ±u such that u 6= 0 and cλ ≤ Jλ(u) < c0 where

(6.6) m(Nλ, c0) := sup{γ(J−1
λ ((0, β]) ∩Nλ) : β < c0}

and γ is the Krasnoselskii genus [30]. This is a consequence of the standard fact that if

βk := inf{β ∈ R : γ(J−1
λ ((0, β]) ∩Nλ) ≥ k},

then there are at least as many pairs of critical points as the number of k for which (PS)βk
holds, see e.g. [30].

In order to complete the proof we show that

m(Nλ, c0) ≥ m̃λ := #
{
k : −λk < λ < −λk +

1

3
Scurl(Ω)|Ω|−

2
3

}
.

Let

A(λ) :=
{
k ≥ 1 : −λk < λ < −λk +

1

3
Scurl(Ω)|Ω|−

2
3 and λk > λk−1}

and observe that
m̃λ =

∑
k∈A(λ)

m(λk),

where m(λk) stands for the multiplicity of λk. For k ∈ A(λ), let V(λk) denote the eigenspace
corresponding to λk. Then dimV(λk) = m(λk). Let S(λ) be the unit sphere in

⊕
k∈A(λ) V(λk) ⊂

V+. Recall that mλ|S+ is a homeomorphism from S+ to Nλ. Since Jλ is even, mλ is odd.
Similarly as in Lemma 6.1 we show that for u ∈ S(λ)

Jλ(mλ(u)) ≤ max
k∈A(λ)

1

3
(λ+ λk)

3
2 |Ω| =: β

and thus mλ(S(λ)) ⊂ J−1
λ ((0, β]) ∩Nλ. Hence

γ(J−1
λ (0, β]) ∩Nλ) ≥ γ(S(λ)) = m̃λ.

Since λ < −λk + 1
3
Scurl(Ω)|Ω|− 2

3 , we have β < c0 and it follows that m(Nλ, c0) ≥ m̃λ which
completes the proof. 2

7. Open problems

In this section we state some open problems. Some of them have already been mentioned
earlier.
(P1) Does there exist a ground state solution u whose support is a proper subset of R3? In

particular, can a ground state have compact support?
(P2) Can one find an explicit expression for a ground state? Or at least, what can be

said about the decaying properties of ground states? If they are the same as for the
Aubin-Talenti instantons, then one could hopefully retrieve the formulas in the middle
of p. 35 in [36] which could be useful when looking for ground states for (1.6) with the
right-hand side |u|4u+ g(x, u) where g is a monotone lower order term.

(P3) Do the solutions to (1.6) have any symmetry properties? How regular are they?
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(P4) If Ω is a bounded domain which is neither convex nor has C1,1 boundary, then V ⊂
Hs(Ω,R3) where s ∈ [1/2, 1] and s may be strictly less than 1, see Subsection 2.2
and [12]. Note that the critical exponent for Hs is 6/(3 − 2s) < 6 if s < 1. Do
the results of Theorem 1.4 remain valid (with the same right-hand side)? Here the
boundary condition (1.8) should be understood in the generalized sense, i.e. u should
be in W 6

0 (curl; Ω).
(P5) Can the inequality Scurl ≥ Scurl(Ω) ≥ S be sharpened? Do there exist domains as in

(P4) for which Scurl(Ω) < S?
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