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Abstract  

The Monsoons form an immense and dynamic system that encompasses the entire globe that 

has profound impacts on almost half of the Earth’s population with regard to water 
consumption, agriculture, energy and transportation as well as natural disasters such as 

floodings and land slides. They also represent integral components of the Global Climate 

System transporting moisture across great distances to drive the most powerful precipitating 

systems on Earth. In spite of their importance the Monsoons are not yet fully understood, in 

particular with respect to global warming and climate models need to be improved to solve this 

issue. To help improve climate models and to deepen the understanding of Monsoon dynamics 

in Southeast Asia, Part I of this thesis focuses on generating high-quality palaeo-data from two 

stalagmites from two caves in Northern Vietnam, within the transiton zone between the Indian 

Summer Monsoon (ISM) and the East Asian Summer Monsoon (EASM) from which palaeo-

data are still sparse. For reconstructing past local and regional climatic conditions during the last 

8,000 years of the Holocene and the transition from Heinrich Stadial 1 to the Bølling-Allerød 

warm period (16.2 – 13.4 ka BP), this thesis applies a multi-proxy approach combining 

speleothem stable oxygen and carbon isotopes, trace elements as well as fabric types in 

conjunction with a multi-parameter monitoring of the present-day cave environment. The results 

reflect the variability of the Asian Summer Monsoon (ASM) in the ISM/EASM transition zone 

on sub-orbital to centennial time-scales and are in line with published proxy records from 

stalagmites, other environmental archives and modelling results. The multi-proxy results are 

mainly interpreted in terms of local to supra-regional water availability and atmospheric 

circulation and highlight the importance of the ISM in driving the infamous and controversially 

discussed δ18O signal in Chinese stalagmites. Considering the new multi-proxy palaeo-data, the 

upstream rainout mechanism appears to be the most important process in generating the supra-

regional pattern of stalagmite δ18O records that has emerged over the last decade. Furthermore, 

based on these new data, the hypothesis is formulated that precipitation feeding the Chinese 

stalagmites has a significant contribution of isotopically heavy rain, probably originating from a 

more local source such as the South China Sea. The new carbon isotope and trace element data 

reflect local variations in water availability as well as events of high infiltration and/or cave 

flooding that are reconstructed in this region for the first time.  
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The interpretation of speleothem proxy signals as conducted in Part I of this thesis can be both 

facilitated and improved by investigating the present-day environmental framework of 

speleothem formation at each specific study site in multi-year monitoring studies. Of particular 

interest is the isotopic and geochemical composition of the dripwater forming the speleothem 

utilised for generating geochemical time series from palaeo-data. In order to establish the 

fundamental linkage between changes in these proxy signals in the dripwater and the 

corresponding fluctuations in their natural drivers such as rainfall and cave ventilation, 

dripwaters need to be sampled repeatedly over the course of months to years. But, repeated 

manual collection of dripwater samples is not only time-consuming but also expensive and 

logistically challenging, particularly in remote areas with poor or no infrastructure - where most 

karst caves are located. As this problem can only be solved by automation, two dripwater 

autosamplers were developed within the framework of this thesis, both are presented and 

discussed in Part II. A first successful case study applying the second prototype autosampler 

demonstrates the technical value of the device itself as well as the scientific benefit of the data 

the autosampler makes accessible. For the first time, the relationship between high-frequency 

fluctuations in cave air CO2 concentrations on a sub-daily time-scale and the resulting high-

frequency variations in dripwater δ13CDIC (DIC = dissolved inorganic carbon) was established 

and quantified. This relationship has important implications for speleothem science in general 

and the interpretation of speleothem δ13C records in particular.  
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Kurzfassung  

Die Monsune bilden ein immenses und dynamisches System, das den gesamten Globus umgibt 

und welches fast die Hälfte der Weltbevölkerung fundamental beeinflusst, sowohl in Bezug auf 

Wasserverbrauch, Landwirtschaft, Energie und Verkehr, als auch in Bezug auf 

Naturkatastrophen wie Überschwemmungen und Erdrutsche. Sie stellen gleichzeitig integrale 

Komponenten des Globalen Klimasystems dar, indem sie feuchte Luftmassen über große 

Entfernungen hinweg transportieren und die mächtigsten Niederschlagssysteme der Erde 

speisen. Trotz ihrer Bedeutung sind die Monsune noch nicht vollständig verstanden, 

insbesondere hinsichtlich globaler Erwärmung, und Klimamodelle müssen verbessert werden, 

um dieses Problem zu lösen. Um die Verbesserung von Klimamodellen zu unterstützen und das 

Verständnis der Monsundynamik in Südostasien zu vertiefen, fokussiert Teil 1 dieser Thesis auf 

die Generierung hochqualitativer Paläodaten aus zwei Stalagmiten aus zwei Höhlen in 

Nordvietnam, innerhalb der Übergangszone zwischen dem Indischen Sommermonsun (ISM) 

und dem Ostasiatischen Sommermonsun (EASM), aus welcher Paläodaten immer noch kaum 

vorhanden sind. Für die Rekonstruktion der lokalen und regionalen Klimabedingungen während 

der letzten 8.000 Jahre des Holozäns und während des Übergangs von dem Heinrich Stadial 1 

zu der Bølling-Allerød Warmphase (16.2 – 13.4 ka BP) wird in dieser Thesis ein 

Multiproxyansatz angewendet, welcher die stabilen Isotope von Sauerstoff und Kohlenstoff, 

Spurenelemente sowie Kristallmorphologie-Typen kombiniert, in Verbindung mit einem 

Multiparameter-Monitoring der heutigen Höhlenumgebung. Die Ergebnisse spiegeln die 

Variabilität des Asiatischen Sommermonsuns (ASM) innerhalb der Übergangszone zwischen 

ISM und EASM auf sub-orbitaler Zeitskala bis zur Zeitskala von Jahrhunderten wider, in 

Übereinstimmung mit veröffentlichten Proxyaufzeichnungen aus Stalagmiten, anderen 

Umweltarchiven sowie Ergebnissen von Modellsimulationen. Die Multiproxyergebnisse werden 

vorrangig im Sinne von lokaler bis supra-regionaler Wasserverfügbarkeit und atmosphärischer 

Zirkulation interpretiert und unterstreichen die Bedeutung des ISM als Initiator des berühmten 

und kontrovers diskutierten δ18O-Signals in chinesischen Stalagmiten. Unter Berücksichtigung 

der neuen Multiproxy-Paläodaten scheint der Mechanismus des luvseitigen Ausregnens 

(upstream rainout mechanism) der wichtigste Prozess zu sein, welcher das supra-regionale 

Muster von Stalagmit-basierten δ18O-Aufzeichnungen erschafft, welches in den letzten zehn 

Jahren zutage getreten ist. Zudem wird basierend auf diesen neuen Daten die Hypothese 

aufgestellt, dass der Niederschlag, der die chinesischen Stalagmiten gebildet hat, einen 

signifikanten Anteil an isotopisch schwerem Regen hat, welcher sich wahrscheinlich aus einer 

nähergelegenen Quelle speist, etwa aus dem Chinesischen Meer. Die neuen Daten zu 

Kohlenstoffisotopen und Spurenelementen spiegeln lokale Schwankungen in der 

Wasserverfügbarkeit wider, sowie Ereignisse besonders hoher Infiltration und/oder 

Höhlenüberflutungen, welche damit in dieser Region zum ersten Mal rekonstruiert werden.  
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Die Interpretation von Proxysignalen aus Speläothemen, wie in Teil 1 dieser Thesis 

durchgeführt, kann vereinfacht und verbessert werden, indem die heutigen Umwelt- 

Rahmenbedingungen in Bezug auf die Speläothembildung an dem jeweiligen Untersuchungsort 

in mehrjährigen Monitoring-Studien untersucht werden. Von besonderem Interesse ist hierbei 

die isotopische und geochemische Zusammensetzung des Tropfwassers, welches die 

Speläotheme bildet, die für die Generierung der geochemischen Zeitreihen aus Paläodaten 

verwendet werden. Um die fundamentale Verknüpfung zwischen Veränderungen dieser 

Proxysignale im Tropfwasser und den entsprechenden Schwankungen in deren natürlichen 

Auslösern wie etwa Niederschlag und Höhlenbelüftung herzustellen, müssen Tropfwässer über 

mehrere Monate bis Jahre wiederholt beprobt werden. Die wiederholte händische 

Tropfwasserbeprobung ist jedoch nicht nur zeitaufwänding, sondern auch teuer und logistisch 

anspruchsvoll, vor allem in weit entlegenen Gebieten mit schlechter oder ohne Infrastruktur – in 

denen sich die meisten Karsthöhlen befinden. Da dieses Problem nur durch Automatisierung 

gelöst werden kann, wurden im Rahmen dieser Thesis zwei automatische Tropfwasser-

Probenehmer entwickelt, sie werden in Teil II dargestellt und diskutiert. Eine erste erfolgreiche 

Fallstudie unter Einsatz des zweiten Probenehmer-Prototypen zeigt den technischen Wert des 

Geräts selbst auf sowie den wissenschaftlichen Nutzen der Daten, die der automatische 

Probenehmer zugänglich macht. Zum ersten Mal wurde die Beziehung zwischen hoch-

frequenten Schwankungen der CO2-Konzentration in der Höhlenluft auf Zeitskalen von unter 

einem Tag und den daraus resultierenden hoch-frequenten Änderungen in den δ13CDIC-Werten 

(DIC = gelöster anorganischer Kohlenstoff) im Tropfwasser hergestellt und quantifiziert. Diese 

Beziehung hat wichtige Implikationen für die Speläothemforschung im Allgemeinen und die 

Interpretation von δ13C-Aufzeichnungen in Speläothemen im Besonderen.  
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“Look deep into nature and you will understand everything better.” 

- Albert Einstein - 
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1 Introduction 

To many, the Monsoon is merely an abstract and distant phenomenon sporadically reported on 

in the weather report. However, in reality, the American, the African, the Australian and the 

Asian Monsoons together form an immense and dynamic system that encompasses the entire 

globe (Figure 2.19; Schönwiese, 2013) that has profound impacts on almost half of the Earth’s 
population, in a direct or an indirect sense. The regions directly influenced by the Monsoons are 

among the most populated ones on Earth so that “the occurrence of extreme events, such as 

heavy precipitation or droughts, can have significant impacts on millions of people who live in 

monsoon regions and rely on water for human consumption, agriculture, energy, and 

transportation” (Carvalho & Jones, 2016). Not only do billions of people depend on the fresh 

water supplied by the Monsoons, Monsoons can also have devastating effects on human lives 

through their capacity to cause natural disasters such as floodings and land slides that kill people 

every year.  

However, Monsoons not only supply water and endanger human lives, they also represent 

integral components of the Global Climate System. In contrast to the much narrower historical 

definition of Monsoons, today they are defined as “planetary manifestations of pronounced 

thermal contrasts between large land masses and ocean basins enhanced by the existence of high 

elevations and plateaus, such as the Tibetan Plateau” (Carvalho & Jones, 2016). As Carvalho 

and Jones (2016) put it, within the Global Climate System the Monsoons constitute “efficient 

engines [that] pump moisture from large ocean basins across great distances in meandering 

flows that reach tropical lands during summer to drive the most powerful precipitating systems 

on Earth”.  

In spite of the importance of the Monsoons for the world’s population as well as for global 
climate and despite the scientific progress of the last decades in understanding the Monsoons, in 

general, “there are many unresolved questions of how the continual warming of the planet will 

affect the monsoons” (Carvalho & Jones, 2016). To answer theses questions, the climate models 

simulating the Monsoons need to be improved. This is especially true for Southeast Asia where 

the Monsoon dynamics are currently not well understood. While current climate models are 

capable of capturing the large-scale features in atmospheric circulation, they fail to reproduce 

modern-day meteorlogical observations of the timing of maximum rainfall over Indochina and 

of interannual rainfall variability in Southeast Asia (Prof. Gideon Henderson; www.earth. 

ox.ac.uk/research-groups/isotopes-and-climate/asian-monsoon/; accessed: March 15th, 2019).  

However, improving climate models requires information on past climatic conditions (palaeo-

data) that act as a reference the model simulations can be tested against. Palaeo-data gained 

from natural archives such as ice cores or speleothems are also fundamental to improving the 
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understanding of Monsoon dynamics which, in turn, is crucial for both disaster and resource 

management with regard to the Monsoons.  

To achieve this goal, the first part of this PhD thesis (Part I) focuses on generating high-quality 

palaeo-data from two speleothems (stalagmites) from two caves in Northern Vietnam, Southeast 

Asia. This region is particularly well-suited for helping close the gaps in the geographical 

coverage with palaeo-data as palaeo-data from speleothems are still sparse in the tropics 

(McDermott, 2004).  

Speleothems can be defined as “dense and crystalline secondary precipitates in caves that are 

primarily made up of the mineral calcite” (Ford & Williams, 2007). As environmental archives, 

they have the capacity to effectively record information about climatic and environmental 

conditions that have prevailed during their formation, in the form of geochemical parameters 

that are “proxies” for the actual climatic and environmental parameters (Fairchild et al., 2006). 

Therefore, speleothems can be used to reconstruct past climates and environments and they are 

remarkably well suited for it for several reasons (Section 2.1.4), including their capacity to 

record a number of different geochemical proxy signals, such as stable isotope ratios and trace 

element concentrations. To achieve a more reliable and more comprehensive reconstruction of 

the past, the first part of this PhD thesis applies a multi-proxy approach, combining speleothem 

stable oxygen and carbon isotopes, trace elements as well as fabric types.  

However, these speleothem proxy signals can be challenging to interpret. To enable the 

interpretation of these geochemical time series or to increase their interpretability investigating 

the present-day environmental framework of speleothem formation at each specific study site is 

also crucial. Such investigations offer the opportunity to understand the way each drip site 

feeding the studied speleothems reacts to changes in meterological and environmental 

conditions such as rainfall, temperature or atmospheric circulation. By establishing the linkage 

between changes in the proxy signals in the dripwater and the corresponding fluctuations in 

their driving factors, this knowledge can be extrapolated to the past in order to achieve a more 

comprehensive and reliable reconstruction of past climates and environments.  

Because a specific drip site may be governed in its behaviour by a certain suite of forcing 

mechanisms that differs from that of other drip sites, even within the same cave, extensive 

present-day monitoring studies of each drip site are strongly recommended to identify the 

respective main controlling factors (Fairchild & Baker, 2012). For optimal results, such 

monitoring studies should be conducted over several seasons (years) and include measurements 

of meteorological parameters, the chemical and isotopic composition of dripwaters, drip rate 

and the fundamental properties of the cave atmosphere such as temperature, relative humidity 

and pCO2 (Lachniet, 2009).  

But, repeated manual collection of dripwater samples is not only time-consuming but also 

expensive and logistically challenging, particularly in remote areas with poor or no 

infrastructure - where most karst caves are located. As this problem can only be solved by 
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automation, two dripwater autosamplers were developed within the framework of this PhD 

thesis. Both are presented and discussed in the second part of this thesis (Part II).  
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Figure 2.1: Major carbonate rock outcrops of the world. Dark-blue shading illustrates pure and continuous carbonate 
rock, light-blue shading indicates impure or discontinuous carbonate rock. Map from Ford & Williams (2007), 
produced using GIS on Eckert IV equal-area projection from regional maps; updated by Paul Williams & Yin Ting 
Fong, available on http://web.env.auckland.ac.nz/our_research/karst/, accessed: 26th July 2016.  

2 State of the Art 

2.1 Karst and Speleothem Formation 

As already mentioned in the Introduction speleothems grow in areas dominated by carbonate 
rock. The global distribution of these areas is shown in Figure 2.1.  

 

Compared to other types of rock, carbonate bedrock is generally relatively soluble (Bahlburg & 

Breitkreuz, 2012) if brought into contact with meteoric water. In those cases where the 

carbonate bedrock is also dense, massive and pure, it features a low primary (matrix) porosity. 

Both factors – high solubility and low primary porosity – make carbonate bedrock highly 

susceptible to the process of karstification, the formation of karst (Ford & Williams, 2007).  

http://web.env.auckland.ac.nz/our_research/karst/
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Figure 2.2: Distribution between the different inorganic carbon species in aqueous solution depending on pH value, 
computed for 25°C and 1 bar. Modified from Appelo & Postma (2005). 

2.1.1 Karst and Karstification 

Karst can therefore be defined as a “terrain with distinctive hydrology and landforms that arise 
from a combination of high rock solubility and well developed secondary (fracture) porosity 

[…] characterised by sinking streams, caves, enclosed depressions, fluted rock outcrops, and 
large springs” (Ford &Williams, 2007). 

Karst landscapes develop over time under the influence of meteoric water in contact with carbon 

dioxide (CO2) with which it forms carbonic acid (H2CO3) that dissolves the carbonate bedrock. 

This process leads to the high secondary porosity typical of karst landscapes and is illustrated in 

the following based on the concept of the Carbonate / Carbonic Acid System: 

This system describes the interactions and transformations of the different inorganic species of 

carbon (C) in aqueous natural systems, which include CO2, the bicarbonate ion HCO3
- and the 

carbonate ion, CO3
2- which are summarised by the term of dissolved inorganic carbon (DIC). 

Depending on pH value, DIC is distributed between these inorganic species as illustrated in 

Figure 2.2. 

 

 

 

 

 

 

 

 

 

The first step of carbonate bedrock dissolution is the physical dissolution of gaseous CO2 in 

water according to Henry’s Law partitioning, i.e. Csolution = KH  x  pCO2, where KH is the 

Henry’s Law constant and pCO2 is the partial pressure of CO2 above the solution (Darling et al., 

2006):  

 2.1 

 



2  State of the Art  

 

38 

Figure 2.3: Environmental setting and vertical structure of carbonate karst landscapes. Insets show the primary 
chemical processes leading to speleothem formation, and different types of porosity and flow regime. From Fairchild 
et al. (2007). 

Part of the dissolved CO2 reacts with water to form H2CO3, that subsequently deprotonates:  

 2.2 

 
2.3 

While the chemical exchange between the different DIC species occurs relatively fast, the step 

of CO2 dissolution in water is rate-determining (Darling et al., 2006). As will be illustrated in 

Section 2.4, this has implications on speleothem carbon isotopy.  

The entire process of carbonic acid dissolving solid carbonate phases is fundamental to 

karstification and can be summarised as follows: 

 
2.4 

Given sufficient time, this process continues until a thermodynamic equilibrium is reached 

between carbonate (here: calcite) dissolution and precipitation (Darling et al., 2006) at which 

point the solution is saturated with calcite. The backward reaction of Equation 2.4 describes the 

precipitation of calcite from solution:  

 
2.5 

Combined, the above described reactions lead to the formation of the typical vertical structure 

of carbonate bedrock at an advanced stage of karstification (Figure 2.3) as the natural context of 

speleothems.  
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Meteoric water infiltrates into the biologically active soil zone. As a result of both microbial 

decay of organic matter (OM) and plant (root) and animal respiration, the soil zone is strongly 

enriched in CO2, with CO2 concentrations of up to 1-3 weight-% (Blume et al., 2016) compared 

to the atmosphere, where present-day CO2 partial pressures (pCO2) are about 400 ppmV (Le 

Quéré et al., 2015). Infiltrating water and CO2 react to carbonic acid which, together with 

biogenic acids, leads to chemical dissolution of the carbonate bedrock, leaving the carbonate 

rock underneath the soil zone strongly fissured. As water tends to be undersaturated with respect 

to carbonate within this fissured zone (the upper epikarst) and the overlying soil zone, they are 

referred to as dissolution zone where calcite dissolution predominates.  

As carbonate dissolution proceeds during downward percolation of water (Equation 2.4), the 

Carbonate / Carbonic Acid System approaches thermodynamic equilibrium and eventually 

percolating waters become saturated with respect to carbonate. Below this point, within the 

lower epikarst and the karst caves underneath (precipitation zone), percolating waters become 

oversaturated with carbonate and the resulting carbonate precipitation (Equation 2.5) leads to 

the formation of speleothems inside caves, as described in the following section. 

2.1.2 Speleothem Formation 

Le Châtelier’s principle states that a chemical system in thermodynamic equilibrium will react 

to any disturbance that disequilibrates the system by re-establishing equilibrium via an 

increased forward or backward reaction (Mortimer et al., 2015). For instance, the removal of 

reaction products will cause an increased forward reaction, the removal of reactants will 

enhance the backward reaction. 

For net carbonate precipitation from carbonate-saturated percolating waters (Equation 2.5) to 

happen, CO2 and/or water would have to be removed from the system, as both reactants 

(aqueous HCO3
- and CO3

2-) cannot be supplied by any other means than by dripwater flow 

itself. So, in theory, speleothems could be formed by removal of CO2 or water. 

As early as 1960, Bögli had already explained the enhanced carbonate dissolution and 

speleothem formation observed in tropical regions with the higher amounts of organically 

derived CO2 available in the tropics compared to higher latitudes. The view that speleothem 

formation is indeed mainly caused by CO2-degassing rather than evaporation was confirmed 

four years later, by a dripwater study of Holland et al. (1964) who observed that, during CaCO3 

precipitation, dripwater Mg concentrations remained virtually constant. This finding indicates 

that evaporation does not significantly drive speleothem formation, except for a special type of 

speleothem (helictites; Hill & Forti, 1997).  
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Figure 2.4: The karst cave – The formation of speleothem fabrics (black) depends on various processes (blue) and 
conditions (grey) that can vary over both time and space. Also illustrated are hydrological routing (top) and features 
of stalagmite growth (bottom) including both growth stops (hiatuses) and changes in main growth direction. Modified 
from Fairchild et al. (2006). 

According to Henry’s Law, CO2-degassing from a solution occurs when the pCO2 in the 

solution exceeds the pCO2 in the gas phase in contact with the solution. Such a chemical 

gradient can typically be found at the cave ceiling (Figure 2.3) as the cave atmosphere features 

pCO2 values that can be as low as surface atmospheric pCO2 values as a consequence of air 

mass exchange between the cave and outside (Spötl et al., 2005). Consequently, CO2 degasses 

from the dripwater at the cave ceiling where it forms stalactites. When drops at the active tip of 

stalactites fall to the cave floor, the impact causes further CO2-degassing and CaCO3 

precipitation, leading to the formation of stalagmites (Figure 2.4; Fairchild et al., 2007).  

2.1.3 The Karst Cave 

The Karst Cave is the primary locus of speleothem formation (Figure 2.4). Here, the 

palaeoenvironmental proxy signals are recorded within the speleothem fabrics. Both the 

recording and the potential modifications of the orignal proxy signals depend on the conditions 

and the processes that prevail within (and above) the cave (Fairchild et al., 2006).  

This section only covers the conditions/processes inside the cave themselves. The way by which 

these conditions/processes influence the proxy signals is described in detail in the following 

sections . 
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2.1.3.1 Cave Processes 

Figure 2.4 illustrates the complexity of cave systems regarding the growth of speleothems, 

hence the process by which palaeo-proxy variables are recorded within speleothem fabrics. 

Several different processes impact on speleothem growth (proxy recording), such as degassing 

of CO2 from dripwater, evaporation and cave ventilation, but also changes in the regional or 

local water table, among others (Fairchild & Baker, 2012). The cave-internal processes again 

relate to various cave-external processes acting within the different communicating spheres, i.e. 

lithosphere, hydrosphere, pedosphere, biosphere and atmosphere.  

For example, changes in rainfall amount may significantly impact on infiltration, percolation 

and therefore dripwater flow, which would cause responses in speleothem growth rate, but on 

stable isotope ratios and incorporation of trace elements as well.  

2.1.3.2 Cave Atmosphere 

These processes again depend on a number of environmental conditions, in particular on cave 

air temperature as an important control on isotope fractionation (Section 2.2), on relative 

humidity governing evaporation processes, on partial pressure of cave air pCO2 as a major 

control on speleothem growth rate as well as on air pressure differences between the inside of 

the cave and outside as the drivers for cave ventilation. Cave ventilation again has implications 

for evaporation and rapid CO2-degassing from cave dripwaters and thus impacts on both 

speleothem growth rate and kinetic fractionation (Fairchild et al., 2006), as outlined in detail in 

the following sections.  

2.1.4 Speleothems – Archives of the Past 

There are a number of reasons why speleothems are remarkably well suited for reconstructing 

past climates and environments (Fairchild et al. 2006; Fairchild & Baker, 2012). These are 

summarised in the following: 

1. Absolute and highly accurate dating: Last generation analytical instruments utilising 

the Uranium/Thorium (U/Th) decay chain yield very precise and accurate ages within 

its range of application that spans the last 600,000 years. Consequently, U/Th dating is 

considered to be the most robust geochronometer currently available for the late 

Quaternary (Hellstrom, 2006). This allows for the various geochemical time series 

extracted from speleothems to be compared to and matched with other records of 

palaeoenvironmental change. Precise chronologies are also crucial for identifying leads 

and lags between different components of the climate system which are necessary to 

determine which component is the driver and which is the responding component 

(McDermott, 2004). 
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2. Good spatial and temporal coverage: Speleothems can grow (quasi-)continuously and 

over very large time spans (103-105 years), while offering good temporal resolution (up 

to sub-annual). Thanks to that, even palaeoenvironmental conditions lying in the very 

far past can be reconstructed and processes that operate on large timescales can be 

identified and documented, for example glacial/interglacial cycles. Additionally, 

speleothems can be found in all major carbonate rock outcrop areas which are 

distributed over a wide spectrum of longitudes and latitudes (Figure 2.1, Section 2.1). 

The combination of spatial and temporal coverage of speleothems have contributed 

significantly to the investigation of global teleconnections between widely separated 

regions on Earth over the last years (Wong & Breecker, 2015). One of the most 

prominent examples for such a teleconnection is the linkage between Northern 

Hemisphere glaciation and Asian Monsoon dynamics (e.g. Cheng et al., 2016). 

3. Protection from alteration: Speleothems are relatively well-protected from erosion 

and other secondary alteration processes due to the highly stable conditions in terms of 

speleothem growth in most caves (e.g. low likelihood of evaporative corrosion). 

4. Multiple proxies: Speleothems record numerous physical and geochemical proxy 

signals, such as stable isotope ratios and trace element concentrations. If these different 

proxy indicators are combined in a multi-proxy approach, past events and conditions 

can be reconstructed a lot more reliably and in more detail. 
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Figure 2.5: Isotope fractionation – Heavy isotopes exhibit lower potential energy minima within a molecule and 
therefore higher dissociation energies than do light isotopes. Light isotopes will thus react more readily during 
physicochemical reactions. From Clark & Fritz (1997).  

2.2 Stable Isotope Fractionation 

Isotope fractionation can be defined as a “process by which one isotope [of an isotope pair] is 
favoured over the other during a phase change” (Lachniet, 2009), for exampe, during 

evaporation from liquid to vapour or during CO2 degassing from speleothem dripwaters. In his 

pioneering work dating from 1961, Craig established that the partitioning of “water isotopes”, 
i.e. isotopes of oxygen and hydrogen in their respective combinations in the water molecule, by 

meteorological processes followed a systematic pattern (Lachniet, 2009). Isotope fractionation 

happens during any thermodynamic reaction as a consequence of differences in reaction rate of 

the various molecular species involved (Clark & Fritz, 1997).  

Reactions resulting in isotope fractionation may be simple physical changes of state (e.g. 

evaporation of water to vapour) or chemical transformations (e.g. formation of H2CO3 from 

water-CO2 interaction) that may occur in aqueous, mineral-solution and gas-solution phase 

systems. Fractionations caused by multi-step reactions can be expressed as the sum of all single-

step fractionations (Clark & Fritz, 1997). Fractionation can take place under equilibrium 

conditions (“equilibrium fractionation”; Section 2.2.1), with forward and backward reactions 

proceeding at identical rates, or under non-equilibrium conditions (“kinetic fractionation”; 
Section 2.2.2). But the underlying principle remains the same, which is the difference in bond 

strength between the heavier and the lighter isotope of an isotope pair of a given element, for 

example 18O vs. 16O in case of oxygen.  

Each molecular bond an atom forms within a molecule reaches maximum strength which 

corresponds to minimum potential energy, referred to as “zero-point energy” at a specific 

interatomic distance (Figure 2.5).  
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The heavy isotope forms stronger bonds within the molecule (lower energy minimum), which 

can be mainly ascribed to its low rotational frequency (the decisive of the three molecular 

movements) compared to the light isotope (Clark & Fritz, 1997). For the atom to participate in 

any thermodynamic reaction, these molecular bonds must be broken. As the light isotope forms 

weaker bonds, these are more easily broken (at given thermodynamic conditions such as 

temperature and pressure), which causes the light isotopes to react more readily.  

2.2.1 Equilibrium Fractionation 

The just mentioned fundamental circumstance favours the preferential partitioning of heavy 

isotopes into the more condensed phase, i.e. the solid phase in mineral-solution reactions and 

the aqueous phase in vapour-liquid reactions. Thus in the case of oxygen, under equilibrium 

conditions, 18O isotopes tend to become concentrated in the ocean, whereas the vapour phase in 

equilibrium gets enriched in 16O isotopes.  

In the case of stable carbon isotopes, 13C as the heavy isotope is preferentially partitioned into 

the more condensed phase compared to 12C as the light isotope. For example, in a system 

comprising aqueous bicarbonate and solid carbonate minerals, 13C becomes enriched in the 

mineral phase by equilibrium fractionation (McDermott, 2004). However, the largest 

fractionation “step” that also dominates C-isotopy in speleothems within the Carbonate-

Carbonic Acid System is the isotopic partitioning between bicarbonate ions and molecular CO2, 

as outlined in detail in Section 2.4. This step is fundamental to the process of speleothem 

precipitation by CO2-degassing from dripwater (McDermott, 2004).  

Isotopic composition can be expressed using the δ notion, which is defined as follows (Darling 
et al., 2006):  

δ = (Rsample/Rstandard – 1) x 1000 2.6 

with R representing the ratio of the heavier isotope to the lighter isotope of the specific element. 

As differences in isotope ratios are intrinsically small, the value of 1 is subtracted and δ values 
are expressed in units of per mille (‰).  

Rstandard is the isotope ratio of an internationally recognised standard material. In the case of O- 

and C-isotopes measured in carbonates such as speleothems, this standard material is Vienna 

Pee Dee Belemnite (V-PDB), where PDB refers to the Cretaceous belemnite formation at 

Peedee in South Carolina, USA.  
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Concordantly, δ18O and δ13C are both given by: 

 
2.7 

 
2.8 

The δ value of the reference material (V-PDB) is 0 ‰ per definition. Therefore, material 

exhibiting positive δ values are referred to as “isotopically enriched”, containing higher portions 

of the heavier isotope compared to the reference material, whereas negative δ values denote that 
the material is “isotopically depleted”, containing higher portions of the lighter isotope 

compared to the reference material. The reference material for water is Vienna Standard Mean 

Ocean Water (V-SMOW), with its δ also being 0 ‰ per definition. While some processes 

relevant to speleothem-based palaeostudies are pure equilibrium fractionation processes, such as 

condensation, others may represent kinetic fractionation processes or a mixture of both.  

2.2.2 Kinetic Fractionation 

Kinetic fractionation happens under conditions far from isotopic equilibrium. Disequilibrium is 

caused by sudden disturbances of an existing equilibrium state, such as sudden changes in 

temperature, pressure or addition/removal of a reactant (Clark & Fritz, 1997). Kinetic 

fractionation can either enhance or diminish mass-discrimination during fractionation, 

depending on the reaction pathway (Clark & Fritz, 1997). For example, calcite precipitation 

under equilibrium conditions causes calcite to be isotopically enriched (in 18O) over the aqueous 

bicarbonate. With increasing rate of calcite precipitation, the system moves away from isotopic 

equilibrium, and the isotopic difference decreases towards nil (Clark & Fritz, 1997).  

A typical process potentially causing significant kinetic fractionation is evaporation. This 

process may occur in karst caves where it exerts a strong influence on the isotopic fraction of 

oxygen and carbon species. As kinetic fractionation can have strong effects and can be hard to 

quantify in its effect on speleothem time series, it is advantageous if speleothem deposition at or 

close to isotopic equilibrium can be demonstrated (Lachniet, 2009). 

Furthermore, many biologically mediated reactions, such as redox reactions and photosynthesis, 

lead to isotopic fractionation, discriminating against the heavy isotope in the course of 

metabolic pathways. As biological processes often occur very rapidly and represent essentially 

irreversible reactions, they can often be regarded as kinetic fractionation. For instance, 

photosynthesis in the case of C3-type vegetation, causes fractionation between the carbon in 

fixated atmospheric CO2 and the carbon in the carbohydrates plants produce of about -17 ‰ 
(Clark & Fritz, 1997). Consequently, carbon of plant material is isotopically depleted relative to 

its source CO2.  
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Figure 2.6: Temperature dependency of oxygen isotope fractionation between water and CaCO3 (solid line = calcite; 
dashed line = aragonite). Isotopic fractionation expressed as δ18O/temperature gradient is stronger at lower 
temperatures. Aragonite exhibits an isotopic offset to calcite of ~0.7 to 0.8‰. From Lachniet (2009).  

The third fractionation process is diffusive fractionation, which arises from differences in 

diffusive velocities between two isotopes of an isotope pair (Clark & Fritz, 1997). All 

fractionation processes (equilibrium, kinetic and diffusive) depend on temperature, with 

increasing temperature leading to decreasing fractionation (Figure 2.6).  

 

 

 

 

 

2.3 Oxygen Isotopes in Speleothems – Indicators of the 

Hydrological Cycle 

The main reservoirs influencing the O-isotopy of speleothems are atmospheric moisture, 

precipitation and surface/groundwater (Lachniet, 2009). The two processes that predominantly 

control O-isotopy in these reservoirs are evaporation and condensation, and both are primarily 

related to temperature and relative humidity (Lachniet, 2009). As a consequence, the O-isotopic 

composition of speleothems can be mainly regarded as a climate signal which is generated 

within the hydrological cycle. Figure 2.7 schematically summarises the isotopic composition 

within the various reservoirs and the factors by which these are controlled.  
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Figure 2.7: The δ18O Climate Signal - The predominant controlling mechanisms are primarily related to temperature 
and relative humidity that determine δ18O values through the various processes and phase changes in the different 
reservoirs, from ocean via atmosphere, hydrosphere, soil and epikarst zones to speleothem CaCO3. From Lachniet 
(2009).  

 

2.3.1 Generation and Transmission of the Oxygen Isotope Climate 

Proxy Signal 

This δ18O climate signal is generated within the atmosphere, starting with evaporation from the 

ocean as the main global moisture source. This moisture is then transported away from the 

source region and is subject to the fundamental process of Rayleigh distillation (Section 2.3.1.1) 

along the advection path. Eventually, condensation transfers atmospheric moisture to clouds that 

produce precipitation once sufficient droplet size is reached. Precipitation that falls on the 

catchment area of karst caves may then infiltrate into the ground surface, percolate downward 

through soil zone and epikarst to finally reach the cave, where the O-isotope signal is recorded 

by speleothem precipitation. On the way from the surface to the stalagmite tip, the δ18O climate 

signal may be modified, by the process of evaporation and mixing. Signal generation and 

modification are discussed in the following.  

2.3.1.1 Evaporation - From Ocean Water to Atmospheric Moisture 

Initiation of the δ18O climate signal occurs over the ocean. Its isotopic composition is mainly 

governed by processes that strongly relate to ocean salinity, at least in regional terms. A 

tendency towards heavy water isotope enrichment (high δ18O values) is caused by evaporation 

which represents a crucial process (Lachniet, 2009).  
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Light isotope enrichment (low δ18O) is favoured by precipitation over the ocean, sea ice melt 

and freshwater runoff, as these inputs are commonly isotopically light with regard to oxygen. 

As a consequence, ocean δ18O values are sensitive to the proximity to river discharge (e.g. the 

Mississippi River) and zones of high evaporation (e.g. the Mediterranean Ocean). Furthermore, 

ocean O-isotopy is impacted on by both ocean and atmospheric circulation. In combination, 

these factors lead to a consistent pattern of δ18O values in the Earth’s oceans (Figure 2.8).  

Equilibrium fractionation 

Equilibrium fractionation causes O-isotopic depletion of the resulting vapour, i.e. atmospheric 

moisture, so that it exhibits lower δ18O values than its ocean counterpart. This fractionation step 

depends on temperature, which can be mathematically expressed as follows (Clark & Fritz, 

1997), where T represents the temperature of the phase change [K]: 

 
2.9 

For example, at 25°C (298.15K), the equilibrium fractionation from ocean water to vapour 

accounts for 9.34 ‰, which will consequently feature a δ18O value of -9.34 ‰ (V-SMOW).  

Kinetic fractionation 

Additionally, kinetic fractionation takes place if evaporation happens under relative humidity of 

less than 100%, where evaporation and condensation are in disequilibrium. This may be 

estimated as follows (Clark & Fritz, 1997):  

 2.10 

 represents the kinetic fractionation between liquid and vapour, whereas h 

denotes relative humidity. For example, kinetic fractionation associated with evaporation at a 

relative humidity of 85% is 2.13 ‰. Equilibrium and kinetic fractionation steps combined, the 
“first charge” of vapour formed from V-SMOW has a δ18O value of -11.47 ‰.  

Rayleigh Distillation 

In contrast to evaporation, condensation of vapour to liquid, as it occurs in clouds, for instance, 

is a pure equilibrium process. Because 18O is preferentially incorporated into the more 

condensed phase, δ18O values of rain will be higher than that of the vapour remaining 

uncondensed. The latter will itself decrease slightly due to the preferential removal of 18O 

(Lachniet, 2009). 

For further condensation of atmospheric moisture to take place, the cloud temperature must 

decrease. Cooling of air masses may arise from several processes, such as advection into regions 

of lower temperature, orographic or frontal lifting, convection or convergence (Lachniet, 2009).  
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Figure 2.8: Global distribution of δ18O in the ocean – Highest values are found in subtropical zones characterised by 
intense evaporation (also Mediterranean Sea); Lowest values are associated with input of isotopically light surface 
water. The δ18O values of regional precipitation and cave drips therefore depend on moisture source and the 
environmental controls on ocean evaporation. Derived data by LeGrande & Schmidt (2006), from Lachniet (2009).  

The four last mentioned processes lead to temperature decreases by the Joule Thompson effect, 

i.e. cooling due to expansion, while air parcel expansion results from lifting to greater heights 

where atmospheric pressure is lower. Thus, the quantity of moisture condensed (degree of 

condensation) – and consequently the remaining cloud vapour’s δ18O value - is therefore 

primarily controlled by the total drop in temperature and the initially available mass of moisture 

in the cloud (Dansgaard, 1954). This process of progressive condensation and lowering of 

precipitation δ18O value is called Rayleigh distillation (Figure 2.9). The δ18O value of the 

remaining vapour can be approximated by (Dansgaard, 1954):  

 2.11 

 denotes the initial vapour δ18O value, f represents the fraction of moisture 

remaining in the cloud, and  is the equilibrium fractionation between vapour 

and liquid (nearly identical to the notion of 1000lnα). At a given temperature T, the δ18O value 

of precipitation at fraction remaining (f) is given by: 

 

Consequently, for instance, the first rain (“first distillation process”) to fall (at f = 95% and RH 

= 85%) at 25 °C features a δ18O value of -2.61 ‰ (V-SMOW).  
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Figure 2.9: Rayleigh Distillation – With increasing degree of rainout, both condensate (rain) and vapour (atmospheric 
moisture) become increasingly isotopically lighter. This relationship is fundamental for most of the known “isotopic 
effects”. From Hoefs (2015).  

 

 

 

 

 

 

 

 

 

 

 

 

Progressive steps of cooling and rainout are a result of altitude, latitude and orographic effects, 

all of which cause rainfall δ18O values to decrease with continuing rainout. In combination, all 

these effects (Section 2.3.2) result in a specific pattern in global rainfall δ18O values (Figure 

2.10). Data depicted in the figure are interpolations of annual mean values of δ18O as they have 

been recorded by the Global Network for Isotopes in Precipitation (GNIP) of the IAEA 

(International Atomic Energy Agency) and the WMO (World Meteorological Organisation).  

Rainfall δ18O also depends on moisture source and atmospheric circulation that mediates 

between moisture source and moisture sink regions. Additionally, because of the multiplicity of 

controlling factors, two different air masses originating from the same source region may have 

unique rainout histories and different final precipitation δ18O values (Bowen & Wilkinson, 

2002). The above mentioned “isotopic effects” are summarised in the following section. 
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Figure 2.10: Global distribution of δ18O in rainfall (as interpolated from annual means recorded by GNIP stations). 
Rainfall δ18O values decrease from low to high latitudes and altitudes as a consequence of Rayleigh distillation due to 
decreasing temperatures along the advection path of air masses. Moisture source is also crucial. Data from Bowen & 
Wilkinson, 2002, from Lachniet (2009).  

 

 

 

 

 

 

 

2.3.2 The Isotopic Effects 

2.3.2.1 Temperature Effect 

The temperature effect is the positive correlation between mean annual temperature (MAT) at-a-

site, e.g. above a karst cave, and the mean δ18O value of precipitation (dδ18Op/dT; Dansgaard, 

1964; Fricke & O'Neil, 1999). Both observations (Fricke & O'Neil, 1999) and modelling (e.g. 

Schmidt et al, 2007) indicate that the slope of the dδ18Op/dT relationship is non-linear and may 

vary substantially over time and space for many regions on Earth, ranging from +0.17 ‰/°C to 
+0.9 ‰/°C. Temporal variation of the dδ18Op/dT slope may result from changes in the 

seasonality of precipitation, as rainfall O-isotopy varies with season (Denton et al., 2005) and/or 

changes in moisture source.  

It appears, however, that condensation temperature of individual rainfall events is a more 

important control on precipitation δ18O values than some statistical surface temperature mean 

such as the MAT, which implies that proxy records such as speleothems are biased towards the 

climatic conditions associated with precipitation events. Another bias is exerted by the 

difference in isotopic effectiveness of single rainfall events: If rainfall is not intense enough to 

produce significant infiltration and subsequent percolation to the speleothem, its water input to 

the cave system will be lost due to evaporation and water retention within soil zone and 

epikarst. Therefore, only precipitation events sufficiently intense to produce percolation water 

have an influence on speleothem isotopy, and are then referred to as isotopically effective 

(Section 2.3.2.4). 
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The temperature effect is also manifested on a seasonal basis, with seasonal variations 

accounting for a few ‰ in the low latitudes and up to 15 ‰ in high-latitude regions, with lower 

δ18O values typically related to winter (Rozanski et al., 1993) although variations in δ18Op may 

also relate to seasonal changes in moisture source.  

2.3.2.2 Altitude Effect 

The altitude effect denotes the decrease in δ18O values with increasing altitude, relating to the 

decrease in MAT with elevation (Clark & Fritz, 1997) along the local atmospheric lapse rate of 

typically -5 to -6 °C/km altitude difference. It is associated with both decreasing condensation 

temperatures and progressive Rayleigh distillation extent as the air mass is lifted over an 

orographic barrier which causes progressive rainout of air moisture. Typical gradients range 

from -2 to -3 ‰ δ18O/km altitude difference (e.g. Fleitmann et al., 2004). The lee-side of 

mountain ranges may display pronounced “isotopic rain shadows”.  

2.3.2.3 Continental Effect 

The continental effect describes the decrease in δ18O with increasing distance from the ocean as 

the primary moisture source (Dansgaard, 1964; Rozanski et al., 1993; Clark & Fritz, 1997) and 

is due to progressive cooling and rainout of an air mass as it traverses a continent. It should be 

noted that the continental effect may be partly counteracted by contribution of continental 

moisture recycled back to the atmosphere by evaporation of soil water, lakes and rivers 

(Lachniet, 2009; after Koster et al., 1993). Surface water bodies typically exhibit higher δ18O 

values than atmospheric moisture as their water is derived from isotopically heavier rain which 

represents condensed moisture. Thus, moisture recycling leads to a decrease in δ18O/distance-to-

sea gradients along an advection path. Plant respiration also recycles moisture back to the 

atmosphere but is non-fractionating (Gat, 1996).  

2.3.2.4 Amount Effect 

The amount effect is the observed decrease in rainfall δ18O values with increased rainfall 

amount (dδ18Op/dP) (Dansgaard, 1964; Rozanski et al., 1993; Risi et al., 2008) and is dominant 

in tropical regions where deep convection is common, which is promoted where sea surface 

temperatures (SST) are >27.5 °C (Lachniet, 2009). Convection and subsequent lifting of an air 

parcel results from both atmospheric heating and in the equatorial zone additionally from trade 

wind convergence within the intertropical convergence zone (ITCZ; Section 0).  

The at-a-site amount effect varies in magnitude, depending on numerous factors, comprising the 

initial mass of water vapour in the air parcel, SST, degree of cooling related to convection depth 

and even cloud microclimate dynamics (Risi et al., 2008), as well as evaporation of raindrops 

during periods of sparse rains (Dansgaard, 1964; Risi et al., 2008) when RH is low and thus the 

influence of evaporation becomes more prominent. For example, Lachniet & Patterson (2006) 

observed magnitudes ranging from -1.6 to -2.85 ‰ per 100mm monthly precipitation difference 
at a strong inverse correlation between rainfall amount and rainfall δ18O (r = 0.89) in Panama, a 

humid tropical region within the heart of the ITCZ.  
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Weighted averages of annual δ18O values exhibit a similar inverse relationship (r = -0.66). From 

Barbados, Jones et al. (2000) documented gradients of -2.2 to -2.75 ‰/100mm of monthly rain. 
Fleitmann et al. (2004) measured variations in rainfall δ18O values by ~2‰ as a function of 
rainfall amount in southern Oman. In contrast to the well-established temporal relationship, the 

amount effect is difficult to establish in a spatial sense, between different sites or stations. This 

between site δ18O variability is probably best explained by controls of regional atmospheric 

circulation which integrates rainout amount along the moisture trajectory (Sturm et al., 2007).  

2.3.2.5 Source Effect 

The source effect describes the circumstance that air masses derived from different moisture 

sources have distinct δ18O values (Rozanski et al., 1993; Clark & Fritz, 1997), and arises from 

varying air mass histories and moisture source temperature, additional to regional differences in 

ocean δ18O values (LeGrande & Schmidt, 2006). Far-travelled moisture may exhibit lower δ18O 

values than moisture that has been transported only over short distances as has been 

documented, for instance, for southern Brazil by Cruz et al. (2005) and Sturm et al. (2007).  

On the basis of stable isotopes, it may be possible to constrain mixing of separate moisture 

sources (source apportionment), as has been successfully performed for the region of northern 

India that receives its moisture from the Bay of Bengal or the Arabian Sea (Sengupta & Sarkar, 

2006). Changes in moisture source may be related to variations in seasonality, where moisture 

contribution from multiple dominant source regions differs with season, typically wet vs. dry 

season in low latitudes and winter vs. summer in high latitudes. These changes in seasonality 

may result in abrupt variations in δ18O values on palaeoclimate timescales (Wang et al., 2001; 

Denton et al., 2005).  

2.3.3 Potential Proxy Signal Modification during Downward Transfer 

to the Speleothem 

Contributions of O-atoms derived from dissolution of the carbonate bedrock are negligible in 

their influence on dripwater O-isotopy, as water contains about 104 as many O-atoms as CaCO3 

(Lachniet, 2009). Although the δ18O signal is thus independent of the carbonate system in a 

direct sense, it may still become modified by various processes that are effective during 

downward signal transfer to the cave where it is finally recorded.These processes have the 

potential of modifying the original climate signal, and comprise mixing, evaporative enrichment 

and kinetic fractionation.  

2.3.3.1 Mixing 

After infiltration, water originated from different rainfall events is likely to become mixed 

within the soil and epikarst zone as a result of slow underground water flow (e.g. by seepage) 

and/or high underground water storage (Figure 2.11).  
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Figure 2.11: Left: Storage and flow of percolating waters in karstic settings yielding different degrees of karst aquifer 
sensitivity to geochemical influences from the surface. From Ford & Williams (2007); Right: Combination of 
relevant types of flow paths that leads to a site-specific suite of flow regimes that is reflected in speleothem 
dripwater. From Fairchild et al. (2007).  

By the mechanism of mixing, single δ18O signals relating to the conditions that prevailed during 

single rainfall events (synoptic weather conditions), get combined to a bulk δ18O signal. The 

extent of integration over multiple rainfall events depends on the above mentioned 

hydro(geo)logical properties of the site-specific system. Deep caves at tens to hundreds of 

metres below the surface are particularly prone to this mixing integration. They are therefore 

poorly suited for reconstruction of high-frequency variations (e.g. sub-annual to annual) in past 

environmental conditions, but are well suited for the identification and tracking of lower-

frequency variations (e.g. multidecadal to orbital), as high-frequency variations are effectively 

averaged out by mixing. Other important aspects influencing the temporal resolution of 

speleothem time series are speleothem growth rate and sampling spatial resolution (Section 4.4).  

 

2.3.3.2 Evaporative Enrichment 

Under conditions of low relative humidity that can be typically encountered in arid climates, for 

instance the regions of the subtropical lows, the δ18O climate signal is potentially subject to 

evaporative enrichment of percolating waters and even of raindrops before they hit the ground. 

This may lead to more or less erratic shifts in speleothem δ18O towards higher values. Although 

tropical climates are rather characterised by the predominance of high RH, evaporative 

enrichment may still influence speleothem δ18O in tropical monsoon-type climates, most likely 

during the respective dry season (Lachniet, 2009). Evaporation is strongest at the surface 

compared to soil and epikarst. Thus, its extent will also depend on near-surface water storage 

and downward flow velocity. 
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2.3.3.3 Kinetic Fractionation 

Along the pathway of downward percolating dripwaters and especially within cave systems, the 

δ18O signal is potentially modified by kinetic fractionation via the process of evaporation. 

Conditions favouring evaporation are low RH, long dripwater residence time on a stalactite or 

stalagmite tip and intense cave ventilation which typically increases with decreasing distance to 

openings or cave entrances. Although kinetic fractionation caused by evaporation has often been 

described as confounding the δ18O climate signal, it may itself be considered as a 

palaeoenvironmental indicator. In tropical regions where the amount effect dominates, dripwater 

evaporation during periods of reduced rainfall and lower infiltration rates would increase 

dripwater δ18O in the same sense as the amount effect (Fleitmann et al., 2004). The effects of 

increased aridity may therefore get recorded in multiple ways (severalfold) which could amplify 

the climatic aridity signal. Kinetic fractionation within caves may also be triggered by rapid 

CO2-degassing from dripwaters and the subsequent rapid calcite depositions, as time may not 

suffice for isotopic equilibrium to get established.  

2.4 Carbon Isotopes in Speleothems – Indicators of the 

Local Carbon Cycle 

Although speleothem C-isotopy has not yet been studied as thoroughly as speleothem O-isotopy 

(McDermott, 2004) it has rapidly evolved into a fundamental component of 

palaeoenvironmental reconstructions based on speleothem geochemistry. Unlike δ18O that can 

mostly be considered as a climate signal characterising the hydrological cycle, δ13C is rather 

regarded as an environmental signal in the stricter sense. This is because the δ13C signal is 

initiated predominantly in the terrestrial environment, i.e. the ecosystem overlying the 

speleothem-forming caves (Fairchild, et al., 2006). 

Obviously, the ecosystem as the locus of primary signal initiation also depends on climatic 

conditions, particularly on temperature and humidity, in multiple ways and on various 

timescales, but these factors may often be less important than other environmental conditions, 

which are often highly local in their nature. Strictly spoken, the speleothem δ13C signal depends 

directly only on processes and conditions that prevail within the catchment area of a given karst 

cave, as cave waters including speleothem-feeding dripwaters are derived from this limited area.  

Consequently, information on past environmental conditions that can be derived from 

speleothem C-isotopy primarily refer to the cave’s catchment area, which is why C-isotopy (and 

trace element patterns, Section 2.5) can be expected to vary substantially from one cave to 

another. In extreme cases, even single drip sites within the same cave may differ in their 

“physiology”, being governed by a different suite of processes (Fairchild, et al., 2006). This 

illustrates the significance of detailed monitoring in order to establish the physiological 

behaviour of each drip site. 
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Figure 2.12: Left: C-isotopy of the Carbonate/Carbonic Acid System – Isotopic partitioning between CO2 and HCO3
- 

clearly dominates speleothem-related fractionation steps. Modified from Darling et al. (2006); Right: Fractionation steps 
from gaseous soil CO2 to solid CaCO3. From Clark & Fritz (1997).  

However, if several speleothems from the same cave exhibit very similar geochemical archives, 

their time series consolidate each other and proxy data interpretation can be conducted with 

much higher fidelity. Such replication of speleothem time series using multiple speleothems 

from the same cave is also of benefit in the case of trace elements and O-isotopy, for example 

for demonstrating speleothem growth in isotopic equilibrium (Lachniet, 2009).  

In contrast to dripwater O-isotopic composition, C-isotopy is determined by the isotopic 

compositions of the dominant terrestrial C-reservoirs. As atmospheric carbon input to 

percolating waters is often negligible, it can be stated that “C-isotope ratios in speleothems 

usually reflect the balance between isotopically light biogenic carbon derived from the soil CO2 

and heavier carbon dissolved from the limestone bedrock” (McDermott et al., 2006).  

The speleothem δ13C signal is initiated at the surface above the cave where soil CO2 dissolves in 

rainwater percolating through the soil and the epikarst to form carbonic acid and to chemically 

dissolve the carbonate host rock on its way downward to the cave where CaCO3 again 

precipitates in the form of stalactites and stalagmites (Section 2.1). In the course of these 

chemical transformations, C-isotopes become partitioned between the different C-species and 

phases due to isotopic fractionation that causes 13C to concentrate in the more condensed phase.  

Figure 2.12 depicts the various fractionation steps that relate δ13C values of the main C-

reservoirs, i.e. host rock DIC and soil CO2, to δ13C values of speleothem calcite. Additionally, 

the figure shows that soil CO2 that is derived from predominant C3-type vegetation (Section 

2.4.2.2) with typical δ13C values of around -23 ‰ converts into speleothem CaCO3 displaying 

δ13C values of around -14 ‰.  
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Figure 2.13: Left: The evolution of pH and DIC as percolating waters dissolve calcite under open and closed system 
conditions for different initial values of pCO2 - Open system dissolution yields higher DIC concentrations at saturation, 
as calcite aggressivity is higher due to CO2 replenishment from the soil zone. From Clark & Fritz (1997); Right: Under 
open system conditions, enrichment of DIC (solid line) in 13C reflects continual exchange with soil CO2 of the 
respectively dominating C-species at increasing pH (CO2 at low pH, HCO3

- at intermediate pH, CO3
2- at high pH). From 

Clark & Fritz (1997).  

This implies a predominant control on δ13C values by soil CO2, which is not given under all 

conditions. The actual conditions within soil zone and epikarst under which calcite saturation is 

reached can be described with a concept of two end-member systems (Hendy, 1971), referred to 

as “open system” and “closed system”.  

2.4.1 Open System Dissolution vs. Closed System Dissolution 

Under open system conditions, chemical equilibration between the downward percolating water 

and a hypothetical infinite reservoir of soil CO2 is maintained at all times (McDermott et al., 

2006). Consequently, carbon derived from isotopically light organic matter predominates over 

carbon from inorganic sources (Fairchild, et al., 2006). These conditions represent the common 

case, as demonstrated by the finding that 80-95 % of the 14C activity of modern carbon in waters 

and speleothems is caused by organic material (Genty, et al., 2001). In general terms, open 

system dissolution leads to a progressive increase in HCO3
- content of percolating water as it 

dissolves more limestone in the unsaturated zone, and to isotopically lighter cave waters, hence 

calcite precipitates (Fairchild, et al., 2006).  

Under closed system conditions, downward percolating water loses contact with the (finite) soil 

CO2 reservoir as soon as carbonate dissolution commences (Hendy, 1971). As a result, C-

isotopy of the host rock exerts a strong influence on that of the DIC, and, in turn, on speleothem 

δ13C. Closed system dissolution is important in soils that are (quasi-)free of carbonates and if no 

CO2 sources exist within the epikarst. Generally, contents of Ca2+ and DIC are much lower 

compared to open system dissolution and speleothem δ13C values tend to be much higher 

(Fairchild, et al., 2006). Figure 2.13 is an illustration of both closed and open system dissolution 

until CaCO3 saturation is reached.  
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In reality, most natural systems are likely to be partially open with both dripwater DIC 

concentration and δ13C values lying between those expected from pure open and closed end-

member system conditions. The balance between open and closed system dissolution can be 

constrained by calculating the mass fraction of 14C-dead using radiocarbon data on 

independently dated stalagmites, although other effects such as ageing of organic matter in the 

overlying soil reservoir have to be considered at some sites (e.g. Genty et al., 2001).  

Not only the contribution from the two main C-reservoirs to speleothem δ13C values may vary, 

but also their specific C-isotopy can change depending on various factors: The carbonate 

bedrock in which karst caves form displays both fairly homogeneous and high δ13C values. 

Marine carbonates that are globally the most abundant exhibit δ13C values of ~0 ‰, with a 
range from -2 to +3 ‰ depending on age, depositional environment and mineral phase (Darling 

et al., 2006). In contrast to the host rock, δ13C values of soil CO2 can vary substantially both 

spatially and temporally, responding to a number of different conditions and processes, as 

described in the following section.  

2.4.2 Controls on Soil CO2 Carbon Isotopic Composition 

2.4.2.1 Soil Microbial Activity 

Enhanced soil CO2 contents are a result of both plant/animal respiration and particularly of the 

microbially mediated decomposition of organic matter. Therefore, soil pCO2 can be considered 

as an indicator of the activity of the soil microbial community. Under environmental conditions 

that are unfavourable for microbial activity, such as severe dryness, reduced microbial turn-over 

could lead to a reduced contribution of soil CO2 to dripwater C-isotopy, which would be 

reflected by increased δ13C in speleothems (Fairchild, et al., 2006).  

Variations in microbial organic matter decay may also be associated with changes in the 

composition of microbial communities. For instance, prolonged periods of soil flooding would 

favour anaerobic microbial strains that show lower metabolic rates than aerobic 

microorganisms. However, as karst landscapes normally lack significant surface runoff, 

anaerobic conditions within the soil zone above carbonate karst caves are rather unlikely to 

form. 

2.4.2.2 Vegetation Type 

Photosynthesis is conducted by plants using different metabolic pathways, which impacts on the 

C-isotopic composition of the plant material they produce, as is illustrated in Figure 2.14. In 

terrestrial ecosystems, the C3 pathway (“Calvin cycle”) dominates, especially in temperate and 
high-latitude regions and typically produces plant material with δ13C values around -27 ‰ 
(Darling et al., 2006). The two other photosynthetic pathways represent evolutionarily younger 

adaptations of higher plants to dry conditions:  
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Figure 2.14: C-isotopy of the different types of C-reservoirs (solid, liquid, gas) relevant to speleothem palaeostudies. 
Modified from Darling et al. (2006).  

The C4 pathway (“Hatch-Slack cycle”) is dominant in tropical and savannah grasses, and 
typically produced plant material exhibits δ13C values of -13 ‰ (Figure 2.14). C4-type 

vegetation is therefore isotopically heavier than C3-type vegetation. This relative isotopic 

enrichment during photosynthesis is due to physiological mechanisms that increase intercellular 

pCO2 values. This leads to reduced relative differences in kinetic energy between isotopically 

light and heavy CO2 and thus to decreased isotopic discrimination (Hoefs, 2015).  

The much less abundant CAM (Crassulacean acid metabolism) cycle occurs mostly in 

succulents in arid ecosystems and can essentially be described as diurnal switching between C3 

and C4 pathways, which leads to intermediate δ13C values (Figure 2.14).  

 

 

 

 

 

 

 

 

Under conditions of a C3-dominated plant assemblage, dripwaters in equilibrium with soil 

respired CO2 display δ13C values in the range -26 to -20 ‰, and corresponding speleothem δ13C 

values are within the range -14 to -6 ‰ (McDermott et al., 2006). If the plant assemblage is C4-

dominated, dripwater δ13C values cluster around -16 to -10 ‰, whereas corresponding 
speleothem δ13C values may vary from -6 to +2 ‰ (McDermott et al., 2006). This general trend 

may be superimposed by changes in the proportion of open vs. closed system conditions (Figure 

2.15).  

If the ecosystem above a given cave site is limited in its activity and/or density by climatic 

conditions such as dryness or low temperatures, periods of climatic amelioration would increase 

ecosystem productivity and thus promote the production of isotopically light soil biogenic CO2, 

which results in lowered δ13C values (Genty, et al., 2001).  
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Figure 2.15: Combined effect of dominating photosynthetic pathway and proportion of open vs. closed system 
conditions – Predominant C3-type vegetation yields far lower final δ13C values in DIC at saturation (calcite 
precipitate) relative to C4-type vegetation. The greater enrichments observed under closed system conditions (dashed 
lines) are due to mixing of the initial DIC with DIC derived from isotopically heavy marine carbonate. From Clark & 
Fritz (1997).  

2.4.2.3 Vegetation Density/Amount 

Vegetation amount is another crucial factor of the speleothem δ13C signal as reductions in 

vegetational cover, or more precisely, vegetational biomass, are a possible cause for shifts 

towards heavier C-isotopes, as the input of light C-isotopes diminishes. Variations in vegetation 

amount may relate to natural causes, either local, such as lahars that destroy vegetation within 

the limited area of their course, or regional to over-regional, as is the case with climatic 

controls. For instance, reductions in δ13C values have been well documented for periods of 

major global glaciation (Fairchild, et al., 2006). A widely documented anthropogenic cause for 

speleothem δ13C increases is deforestation (Fairchild, et al., 2006), and changes in vegetation 

cover influencing speleothem δ13C may also relate to past agricultural practices.  

2.4.2.4 Prior Calcite Precipitation (PCP) 

Another process influencing speleothem δ13C values is the precipitation of CaCO3 along the 

dripwater flowpath, prior to the cave. This process is referred to as prior calcite precipitation 

(PCP).  

As CaCO3 precipitation is mainly caused by CO2-degassing from dripwaters, for PCP to occur, 

a gas phase with relatively low pCO2 must be present within the pore volume (Fairchild, et al., 

2006). This is thought to be likely under relatively dry conditions when pore spaces are not 

entirely filled with percolating water. Thus, PCP may be considered as an indicator of dryness, 

or at least drying of the active flow path (hydrological routing). As PCP is associated with 

degassing of isotopically light CO2, the remaining dripwater becomes isotopically enriched 

during the process. Thus, subsequent speleothem δ13C values will be higher.  
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The process of PCP also impacts on dripwater trace element contents (Fairchild, et al., 2006). 

As most trace elements present in dripwater exhibit partition coefficients (that represent their 

relative abundance in solution and mineral phase) with respect to calcite significantly smaller 

than unity, trace elements become enriched in the remaining dripwater. PCP consequently 

causes the speleothem contents of these trace elements to rise. This circumstance illustrates the 

potential in combining different proxy signals, such as stable isotope ratios and trace element 

patterns for a more precise and confident interpretation of proxy data.  

If CO2-degassing occurs too quickly for isotopic equilibration to be reached, for example, due to 

intense cave ventilation with low pCO2 ambient air, δ13C values in the dripwater and 

consequently in the speleothem are increased even further due to kinetic carbon isotope 

fractionation.  

2.4.2.5 Lack of equilibration 

As described in Section 2.1.1, the dissolution of CO2 in water (Equation 2.1) is the rate-

determining step of bedrock carbonate dissolution. Therefore, dripwater percolation may be so 

rapid that isotopic equilibration with the otherwise often dominant soil CO2 reservoir is not 

achieved. In this case, speleothem δ13C would fail to reflect the δ13C prevalent within the soil 

zone and instead entrain isotopically heavier atmospheric CO2 (McDermott, 2004). Thus, this 

lack of equilibration constitutes a possible mechanism for shifts towards higher speleothem δ13C 

values that relates to low percolation water transit times which is indicative of high and 

therefore fast flow.  
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2.5 Trace Elements in Speleothems – Indicators of 

Climate and Environment 

As speleothem-based palaeostudies have until recently focused mainly on stable isotope ratios, 

especially of oxygen, the understanding of processes controlling trace element incorporation 

into speleothem fabrics is still very limited. This applies particularly to elements that tend to be 

transported in colloidal form, where lacking understanding is partly due to the difficulties 

related with colloid sampling from dripwaters (Fairchild & Treble, 2009).  

Trace elements therefore represent a still very active research front, and identification of new 

potential proxy indicators (e.g. Mg as an aridity index) happens on a year-to-year base. 

Therefore, discussion of trace elements in the present work will focus on the most principle 

processes relevant on the timescale observed.  

Trace elements incorporated in speleothem fabrics might originate from different sources, 

including the atmosphere, the pedosphere, the biosphere and the lithosphere (Fairchild & 

Treble, 2009). As is the general case with geochemical cycles, the importance of each source for 

the speleothem trace element signal depends on the size of each of the reservoirs, i.e. the 

abundance of each trace element within the respective source. For instance, a very thin soil layer 

overlying epikarst and cave will have only little or no influence on speleothem trace element 

geochemistry, even more so, if trace element contents within this soil layer are low. 

However, not only reservoir size, but also the flux from those source reservoirs to the sink 

reservoir is important. In the case of speleothems, this flux depends on the mobility of the trace 

elements from the surface to the stalagmite tip. Consequently, a trace element that is strongly 

fixated within one or more source reservoirs, will not significantly impact on the speleothem 

trace element signal, even if present at high concentrations. 

While the issue of element mobility and transport will be treated in Section 2.5.1.2, the different 

sources for trace elements in speleothems are discussed in the following section. 
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Figure 2.16: Schematic overview of trace element sources and of processes involved in their transport and cycling 
within the karstic system. From Fairchild & Treble (2009).  

2.5.1 Trace Element Sources, Transport and Incorporation 

2.5.1.1 Trace Element Sources 

The Carbonate Host Rock 

The mainpart of trace element cations originates from chemical CaCO3 dissolution in the soil 

zone and epikarst (Fairchild et al., 2007). This seems to apply particularly to those trace 

elements that would be expected to occur as trace constituents of the carbonate bedrock. In 

particular, Mg represents such a typical trace “contaminant” in calcitic carbonate.  

Furthermore, mineral phases other than calcite may be present within the carbonate host rock 

and function as sources for trace elements in speleothems. An example is the P-bearing mineral 

apatite that represents the most likely inorganic P source within the aquifer.  

In addition, both soil zone and surficial deposits (such as ash layers) overlying the epikarst are 

potential sources of trace elements in speleothems. In particular, P is often described as an 

indicator of biomass turnover and can therefore be regarded as reflecting the status of the 

overlying ecosystem (Fairchild & Treble, 2009). A schematic overview of the various sources 

for trace elements in speleothems including major processes of transport and element cycling is 

given in Figure 2.16.  
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The Soil Zone and Surface Deposits 

Soil layer constituents and other surface deposits represent another potential source for 

speleothem trace elements. For example, Verheyden et al. (2000) found a clear discrepancy in 

Sr isotopic signature between a stalagmite from the Père Noël Cave in Belgium and the 

overlying partly dolomitised Givetian limestone. Even the lowest 87Sr/86Sr value from the 16 

analysed speleothem sub-samples (0.70881) still obviously exceeds the Sr isotope values 

measured in the bedrock (0.70808 for calcite; 0.70818 for dolomite). As marine Sr inputs have 

been estimated to be only 2% at this site, the authors have posited a significant contribution of 

Sr from a detrital silicate end member featuring high proportions of radiogenic Sr such as clay 

particles from the soil zone or recent terrigenous sediment like loess, dust or tephra (Banner et 

al., 1996). Assuming a 87Sr/86Sr ratio of 0.72 for this detrital phase, the authors calculated a 

maximum contribution to the speleothem Sr signal of about 10%, which is a considerable 

contribution bearing in mind that the soil cover at the site is only about 40 cm thick (Verheyden 

et al., 2000).  

The Atmosphere 

Under favourable conditions, atmospheric particles such as aeolian dust can noticeably 

influence the trace element inventory of a speleothem (e.g. Goede et al. 1998; Ayalon et al. 

1999; Bar-Matthews et al. 1999; Verheyden et al. 2000; Frumkin & Stein 2004; Zhou et al., 

2009). For instance, Goede et al. (1998) found a bimodal distribution of Sr in a 84–57 ka 

stalagmite from Frankcombe Cave, Tasmania, hinting at Sr contributions from two sources. By 

analysing both Sr concentrations and Sr isotope ratios (87Sr/86Sr), the authors were able to detect 

Sr input from a non-limestone source, namely the high 87Sr/86Sr marine carbonates from the 

exposed continental shelf between Tasmania and Australia. This finding enabled the authors to 

reconstruct the regional atmospheric circulation with more northwesterly winds during 

interstadials and more westerly winds during stadials. This study is all the more astounding as it 

consistently relates a stadial with a reduced input of aeolian material, whereas, in more general 

terms, it is widely accepted that stadials have been cold and dry and are therefore rather related 

to generally increased aeolian transport due to reduced wash-out of atmospheric particles by 

rain (e.g. Rasmussen et al., 2008).  

In accordance with this general observation, Bar-Matthews et al. (1999) reconstructed enhanced 

inputs of sea spray and dust during the last glacial to the their study site above Soreq Cave, 

Israel, based on high Sr concentrations and 87Sr/86Sr ratios in a multi-speleothem stack covering 

the last 60 ka. Abruptly decreasing 87Sr/86Sr ratios in the early Holocene are interpreted as both 

a reduced aeolian input and an increased supply of Sr to the cave from the low 87Sr/86Sr 

dolomitic host rock as a consequence of intensified weathering in a warmer and wetter eastern 

Mediterranean climate (Ayalon et al., 1999). 
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In their study of stalagmite SJ3 from Sichuan province in Central China spanning the last 

deglaciation (10-20 ka), Zhou et al. (2009) followed the same reasoning to identify changes in 

the strength of the East Asian Winter Monsoon (EAWM). The authors determined a stronger 

winter monsoon, characterised by increased Sr concentrations and isotope ratios, during the 

cold-dry Heinrich Event 1 (H1) and LGM, and a weaker winter monsoon during the warm-wet 

mid-Holocene including the Bølling/Allerød (B/A) warm period.  

Not only aeolian dust particles, but also marine aerosol particles (marine spray) have been 

reported to contribute to speleothem geochemistry in some cases, especially at sites in proximity 

to the sea (e.g. Bar-Matthews et al., 1999; Baker et al., 2000; Fairchild et al. 2000; Tremaine et 

al., 2016). For example, Baker et al. (2000) calculated from ocean water composition that 23 - 

50% of dripwater Mg at five drip sites in the Villars Cave in SW France (some 180 km east of 

the Atlantic) was sourced from marine spray, assuming that 100% of dripwater Cl originates 

from the sea. For Sr, this proportion was only 2 - 5%. Applying the same approach, Fairchild et 

al. (2000) determined that 20% of dripwater Sr, but only 3% of Mg in Clamouse Cave in S 

France were of marine origin. For Ernesto Cave in NE Italy, they found only a negligible 

marine aerosol contribution to dripwater geochemistry. After a two-year automated dripwater 

sampling in Niue Cave in the tropical South Pacific, Tremaine et al. (2016) calculated seasalt 

contributions of 84% of Mg, 17% of Sr and even 19% of Ca.  

Although both atmospheric particles, such as aeolian dust (e.g. Ayalon et al., 1999; Zhou et al., 

2009; Goede et al., 1998) or particularly marine aerosol particles (e.g. Baker et al., 2000; 

Fairchild et al., 2000), and soil layer constituents (e.g. Verheyden et al., 2000) have been 

suggested as potential sources of speleothem Mg and Sr, both elements are mainly derived from 

dissolution of carbonate bedrock and secondary minerals along the flow path (Fairchild et al., 

2006; Fairchild & Treble, 2009). Consequently, the main processes driving dripwater 

concentrations of Mg and Sr, at constant external source strength and hydrological routing, are 

(1) differential dissolution of bedrock calcite and dolomite, (2) selective leaching of Mg and Sr 

with respect to Ca, (3) incongruent dolomite dissolution (IDD), and (4) PCP along dripwater 

flow paths, as summarised by Fairchild et al. (2000).  

2.5.1.2 Trace Element Transport 

Trace element response to environmental conditions within the karst system depends 

fundamentally on their preferential mode of transport (Figure 2.17). For example, high 

dripwater flow as is typical for large conduits would increase supply of particles (e.g. Fe, Mn) to 

the cave, but reduce supply of elements that depend on long contact times between percolating 

water and the carbonate host rock (e.g. Mg, Sr).  
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Figure 2.17: Transport modes of trace elements as particles, colloids and solutes – Tendency towards specific 
transport modes of some trace elements is illustrated by vertical lines (right). From Fairchild & Treble (2009).  

 

 

 

 

 

 

 

2.5.1.3 Trace Element Incorporation 

Trace elements can be distinguished according to their behaviour towards incorporation into 

speleothem fabrics (Fairchild et al., 2007): Trace elements may substitute for Ca2+ and CO3
2- in 

the regular CaCO3 crystal lattice (as Sr and Mg), occupy crystal lattice defect sites (such as P in 

the form of phosphate species), or may be predominantly incorporated in the form of solid 

and/or fluid inclusions. Some species, however, may exhibit multiple types of behaviour, such 

as Sr that may also occupy crystal lattice defect sites if Sr dripwater concentrations are 

sufficiently high (Fairchild et al. 2001).  

The tendendy of trace elements substitute for Ca2+ and CO3
2- in the regular CaCO3 crystal lattice 

can be described with element-specific partition coefficients (D) that represent the relative 

abundance in solution and mineral phase, with partition coefficient close to unity indicating a 

high affinity of the respective element to be incorporated in the mineral phase. The partition 

coefficient of Mg (DMg) depends on temperature (Oomori et al., 1987; Huang and Fairchild, 

2001; Day and Henderson, 2013), while DSr is affected by stalagmite growth rates or kinetics 

(Lorens, 1981; Baker et al., 1998; Banner et al., 2007).  

As the temperature sensitivity of Mg incorporation into carbonate is relatively low and as the 

growth kinetics sensitivity of Sr incorporation has proven difficult to constrain under natural 

cave conditions (Borsato et al., 2007; Gabitov & Watson, 2006; Huang & Fairchild, 2001), the 

most commonly suggested control on speleothem Mg/Ca and Sr/Ca ratios is dripwater 

composition. This composition varies as a function of changing source strength, hydrological 

re-routing, water-rock interaction and PCP, with the latter two relating to seepage water 

residence time (Fairchild & Treble, 2009).  
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However, both DMg and DSr can be additionally affected by changes in mineralogy and crystal 

structure (Holland et al., 1964; Riechelmann et al., 2016). As defect site density in speleothems 

generally increases with growth rate, high contents in trace elements preferentially occupying 

these defect sites (such as P) might function as proxy indicators of growth rate. However, it is 

not yet settled, what growth rate thresholds need to be exceeded for such effects to manifest 

themselves (Fairchild & Treble, 2009).  

2.5.2 Important Processes and their Implications for 

Palaeoreconstructions 

2.5.2.1 PCP 

PCP leads to rising Mg/Ca and Sr/Ca values in dripwater and finally in speleothem fabrics, as 

both Mg and Sr are distributed between solution and carbonate mineral corresponding to 

partition coefficients of much less than unity (Morse & Bender, 1990; Rimstidt et al., 1998), 

which leaves the remaining dripwater enriched in Mg and Sr. PCP also causes dripwater and 

speleothem δ13C values to rise (Section 2.4.2.4). The resulting effect of increasing and 

covarying values of Mg/Ca, Sr/Ca and δ13C has very often been demonstrated from dripwater 

(Fairchild et al., 2006; Karmann et al., 2007; McDonald et al., 2004; Tooth & Fairchild, 2003) 

and speleothem analysis (McDermott et al., 2004; Treble et al., 2005), successfully modelled 

(Fairchild & McMillan, 2007; Johnson et al., 2006) and interpreted as evidence for a dominating 

PCP control (e.g. Griffiths et al., 2010; Johnson et al., 2006).  

Therefore, increased Mg/Ca and Sr/Ca ratios (Sr/Ca decreased by IDD) have very often been 

interpreted as indicators of palaeoaridity on subannual to decadal scale (Baldini et al., 2002; 

Fairchild et al., 2001; Huang et al., 2001; Johnson et al., 2006; Treble et al., 2003) and on 

greater time scales (Li et al., 2005; Verheyden et al., 2000), an interpretation corroborated by 

evidence from instrumental rainfall data (e.g. Karmann et al., 2007; Tooth & Fairchild, 2003). 

This circumstance illustrates the potential in combining different proxy signals, such as stable 

isotope ratios and trace element patterns for a more precise and confident interpretation of proxy 

data.  

2.5.2.2 Dilution 

High dripwater flow rates are suggested to have a diluting effect on some trace elements. This 

line of thought is consistent with PCP, as PCP leads to increases in trace element content and is 

supposed to be associated with dry conditions along the flowpath of dripwaters. For instance, 

Mg/Ca and Sr/Ca ratios in dripwater have been documented to increase with persisting drought 

conditions (McDonald et al., 2004).  

However, other elements may exhibit higher concentrations under conditions of high flow. This 

is likely to be the case if downward transport of these elements to the cave is limited under low-

flow conditions, as can be expected to be true for elements that are predominantly transported in 

corpuscular form.  



2  State of the Art  

 

68 

2.5.2.3 Dissolution of Bedrock Carbonates 

Dissolution within the overlying aquifer represents a key process for trace element supply to the 

cave (Fairchild & Baker, 2012). Concordantly, increased trace element concentrations in 

dripwaters, and thus in speleothem fabrics, are suggested to relate to high dwell times of 

percolating waters within the aquifer, which is thought to enhance dissolution-derived trace 

element input due to longer contact times between percolating water and carbonate bedrock that 

potentially contains “foreign” mineral phases (Fairchild & Treble, 2009).  

This relationship seems particularly likely in the case of Mg, and increases in Mg concentrations 

have often been attributed to enhanced dolomite dissolution (Fairchild & Treble, 2009). A 

supporting argument of this line of thought is the fact that dolomite dissolution is slower than 

calcite dissolution. Thus, increased contact times would favour dolomite dissolution. In 

addition, low Mg contents have been found to coincide with high amounts of inclusions and P-

rich laminae in some cases (Fairchild et al. 2001), which might in turn mirror high-flow 

conditions and short contact times.  

Due to kinetic discrimination of dolomite versus calcite during dissolution, increased seepage 

water residence times (related to low flow) lead to increases in Mg/Ca ratios (e.g. Fairchild et 

al., 2000). Enhanced ratios of both Mg/Ca and Sr/Ca have been explained by drainage of low-

permeability soil and aquifer compartments dominated by seepage-flow (selective leaching) 

under conditions of dryness-related low flow (e.g. Baker et al., 2000; Musgrove & Banner, 

2004).  

Contrarily, during incongruent dolomite dissolution (IDD), dolomite dissolves as calcite 

precipitates, which causes dripwater Mg/Ca ratios to rise, but Sr/Ca ratios to decline (Roberts et 

al., 1998), as dolomite usually contains less Sr than calcite (Tucker & Wright, 1990). As IDD is 

enhanced at higher residence times, it also relates to low flow rates and drier conditions.  

2.5.2.4 Hydrological Routing 

Changes in hydrological routing are another possible mechanism that could explain trace 

element variations, and have often been suggested to relate to variations in Mg and Sr variations 

(Fairchild et al., 2000). As different flow paths exhibit different dominating flow regimes, 

alternative hydrological routing can be expected to change the characteristic behaviour of a 

specific drip site regarding the trace element concentrations of its dripwaters.  

For instance, a shift from seepage to conduit flow predominance (by overflow as illustrated in 

Figure 2.11, right) would reduce the concentrations of elements mainly derived from seepage 

flow, such as Sr and Mg, and enhance concentrations of elements that predominantly originate 

from conduit flow, such as particles bearing Fe and Mn.  
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2.6 Further Indicators of Past Climatic and 

Environmental Conditions in Speleothems 

2.6.1 Speleothem Growth 

2.6.1.1 Lamination and Growth Cessation - Hiatuses 

One marked component of speleothem growth is the potential display of lamination, which may 

be defined as “repeated stacking of the fabrics in an ordered succession” (Fairchild et al., 2007), 

and can be found in many speleothems, at least in parts. Lamination is caused by faint parallel 

growth layers (“laminae”), the smallest features of speleothem growth to be distinguished with 

the naked eye. Laminae are often a result of variations in the abundance and scale of fluid 

inclusions (Ford & Williams, 2007) and therefore can be considered as reflecting changes in 

deposition rates, with high lamina thickness representing fast growth (Fairchild, et al., 2006).  

Banding of larger scale is due to variations in crystal texture or incorporation of impurities, 

which reflect the history of the growth surface. Such optical properties may help the 

construction of geochemical time series (Fairchild, et al., 2006). For example, specific optical 

features may in cases be correlated with corresponding geochemical patterns, such as dark 

layers with high trace metal content.  

Hiatuses 

Even more marked layering may result from periods of growth intermittence, as speleothem 

growth may not only change in rate, but also cease completely, thereby forming hiatuses. 

Haituses can be associated with drying, re-solution under dominance of dissolution at the 

growth front or with other forms of erosion, e.g. condensation corrosion, or with deposition of 

foreign particles. In the proximity of hiatuses, structural integrity of the speleothem fabrics can 

be greatly reduced, so that stalagmites may well break at these fragile locations (Fairchild, et al., 

2006).  

2.6.1.2 Speleothem Growth Rate 

Growth rate is another important feature of speleothems that can help in reconstructing past 

conditions, particularly in those cases in which speleothem growth rate is limited by a low 

number of specific environmental parameters, such as supersaturation state or dripwater flow.  

Determination of growth rate can be conducted either by layer counting if lamination is 

sufficiently distinct or by interpolation between U-series dating points, whereas the latter does 

obviously not attain high temporal resolution, with the exception of very fast growing 

speleothems and very high-resolution dating protocols.  
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Growth Rate Spectrum 

Speleothem growth rate displays important high-frequency, seasonal variations, even at 

continuous deposition, depending on seasons of intense rainfall and the lag between 

precipitation at the surface and soil water emergence in the cave (Ford & Williams, 2007). 

Measurements from show caves have yielded growth rates between <0.005 and 7 mm/a, 

whereas the upper limit is likely to be overestimated. Growth rates calculated as means based on 

radiometric dating also show wide differences, by four orders of magnitude, are highly site-

specific, and can even vary within one cave. Estimated mean growth rates amount to about 100 

µm/a, and do usually not exceed 1,000 µm/a. Theoretically possible growth rates are often not 

reached in reality due to high cave pCO2 and/or low driprate(Fairchild et al., 2007).  

Factors of Speleothem Growth Rate 

Growth rate usually increases with rising temperatures and moisture (Fairchild, et al., 2001): 

Typical growth rates range from 10-100 µm/a in regions of cool temperate climate to 300-500 

µm/a in subtropical and tropical climates (Fairchild, et al., 2006). However this general rule of 

thumb does not apply to stalagmites growing under peat soils, as these grow fastest under warm 

and dry conditions (Fairchild, et al., 2001).  

This circumstance suggests that the growth rate of a given speleothem depends on a cave site-

specific or even drip site- specific suite of environmental factors. The identification of this 

speleothem-specific suite of growth-rate controlling factors is likely to yield additional 

constraints on the (potentially large) spectrum of possible conditions that prevailed in the past. 

Comprehensive present-day monitoring studies examining these parameters are required to 

establish the existing linkages.  

As dripwater supersaturation with respect to CaCO3 is mainly triggered by CO2-degassing, the 

pCO2 gradient between dripwater and cave air is a crucial factor of speleothem growth rate. 

Changes of this gradient may either originate from changed dripwater pCO2, which primarily 

depends on the proportion of open vs. closed system conditions, and/or from variations in cave 

pCO2.The latter is largely determined by the rate of CO2-degassing from dripwater (related to 

dripwater input rates) and by cave ventilation (Fairchild et al., 2007). High cave ventilation 

enhances speleothem growth rates by lowering cave air pCO2.  

The process of cave ventilation may exhibit strong links to high-frequency variations in the 

atmospheric pressure difference between the cave interior and the external atmosphere, which 

result from both synoptic weather systems and the constancy of cave temperatures. In more 

general terms, cave ventilation depends on both climate and geometry of the cave passages 

under investigation.  

However, cave ventilation can also be predominantly controlled by a cave stream. In this case, 

RH will be ~100 % at all times and cave air pCO2 will depend on that of the stream, which may 

show seasonality (Fairchild, et al., 2006).  
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Unfortunately, not much is known about how cave pCO2 in such a case varies on greater 

timescales (decades to centuries), and what mechanisms drive pCO2 in underground cave 

streams. On the seasonal timescale, cave ventilation has been demonstrated to strongly influence 

pCO2 of both dripwater and cave air, as well as carbon isotope ratios recorded in speleothems 

(Spötl et al., 2005).  

2.6.1.3 Speleothem Macroscopic Properties and Crystal Morphology 

Additionally to geochemical proxy signals that are only accessible by complex and expensive 

analytical instruments, many other characteristics of speleothems that are in parts visible to the 

naked eye potentially contain information valuable for palaeoenvironmental reconstruction. 

These include speleothem overall shape (with uniform shapes reflecting stable conditions in 

cave and dripwater), colour (which is a consequence of ionic and/or detrital contaminations of 

foreign material such as metals, organic molecules or of porosity variations) and diameter 

(which depends on flow rates, saturation state with respect to CaCO3 and fall height of the 

feeding dripwater; Ford & Williams, 2007). Another very important feature of speleothems are 

their respective fabrics (= texture: geometry and spatial arrangement of single crystals that 

compose a synchronous growth layer/lamina) and their variations within one single speleothem 

(Fairchild et al., 2007). Detailed analysis of fabrics however requires (e.g. electron) microscopic 

techniques. 

Crystal morphology 

Crystal morphology of speleothems is related to both flow and chemical composition of the 

feeding dripwater. Main factors are therefore drip rate and chemical composition, capillary or 

gravitational supply of ions to crystal growth sites, rate of CO2-degassing, and the variability in 

all the above factors (Fairchild et al., 2007). Single crystals in stalagmites actually represent 

composites of individual crystallites, between which small spaces are left during the 

crystallisation process. These are either removed by subsequent lateral crystallite coalescence 

(overgrowth) or preserved as fluid inclusions (Fairchild et al., 2007).  

The latter are thought to conserve dripwaters of past times, which provides the opportunity to 

“directly” measure chemical and isotopic composition of past precipitation – a crucial unknown 

in equations used for calculation of palaeotemperatures (Lachniet, 2009). Crystal morphology of 

speleothems reacts to environmental conditions during their formation, and can thus be utilised 

for their reconstruction. For example, flooding of speleothems during periods of cave 

submergence leads to the formation of distinctive competitive growth fabrics (Dickson, 1993).  

Crystal defects typically indicate either fast speleothem growth or (high) availability of foreign 

ions or particles (detritus) that may function as growth inhibitors, but may also be caused by 

fluctuations in flow rate, periodic exposure of the growing crystal faces to the cave air, rapid 

outgassing or chemical dissolution due to undersaturated dripwaters (Fairchild et al., 2007). 

Crystal defects are most abundant under conditions of intense evaporation (Ford & Williams, 

2007).  
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Figure 2.18: Stable and metastable (dashed lines) phase relationships in a calculated system of Ca-Mg-CO2-H2O. 
Dashed-lined arrow depicts a model evolutionary path for a hypothetical water. From Ford & Williams (2007).  

2.6.2 Speleothem Mineralogy and Fabric Types 

Although secondary precipitates in caves are mainly composed of calcite which is more 

abundant than all others combined, they may also be partly composed of aragonite (CaCO3, a 

modification of calcite) and gypsum (CaSO4 x 2 H2O). Other carbonates and hydrated 

carbonates are of much smaller significance (Ford & Williams, 2007). As different mineral 

phases behave differently to the same forcing mechanisms, mineralogical investigations should 

accompany palaeoenvironmental studies of speleothems. The second-most abundant mineral 

phase found in speleothems is aragonite.  

Aragonite 

In speleothems, aragonite principally forms radiating clusters of needles (so-called “whiskers”), 
but may also form massive or acicular specimen that can be laminated with calcite or display a 

patchy appearance after inversion to calcite (Ford & Williams, 2007). Several processes can 

lead to the substituting formation of aragonite instead of calcite: The principal factor is the 

depletion of Ca ions in solutions rich in Mg, which is normally caused by PCP (Section 2.4.2.4). 

Other possible factors are ion substitution, for instance by Sr, and unspecified effects of 

organics or other seed nuclei at growth initiation. In the domain of calcite and dolomite, 

aragonite is metastable, i.e. thermodynamically instable, but kinetically stable, and is therefore 

naturally prone to inversion to calcite, although not much is known about the typical rates of 

this process (Ford & Williams, 2007). If conversion between calcite and aragonite occurs, 

geochemical signals are likely to be modified, in practice however, this seems to be only a 

minor concern (Fairchild & Treble, 2009). Figure 2.18 illustrates the evolutionary path of a 

hypothetical karst groundwater and the respectively dominant mineral phases.  
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Fabric types 

Frisia et al. (2000) have developed a classification of different fabric types that can be used for 

palaeoenvironmental reconstruction through microscopic analysis (Section 4.7):  

The “columnar fabric” characteristically contains only few crystal defects, and stalagmites 
composed of this fabric type are typically translucent and potentially feature lamination that 

might be even annual. It commonly forms under conditions of comparably low dripwater 

supersaturation, low foreign ion content and relatively constant flow.  

The “microcrystalline fabric” is characterised by irregularly stacked crystallites and high crystal 
defect density, and has been documented in alpine stalagmites with annual lamination, in which 

it forms milky, opaque and porous layers. Crystallites of this type also typically feature 

dislocations and repetitive twinning, all signs of strong disturbances within the system related to 

flow variability and periodic input of growth inhibitors such as humic acids (Fairchild et al., 

2007).  

The “dendritic fabric” consists of crystallites arranged in branches similar to a dendrite crystal, 
and features a high density of crystal defects. This fabric type is highly porous, which again 

indicates highly variable growth conditions, i.e. varying discharge, strong outgassing events and 

periodic capillary flow – as opposed to gravitational flow.  

The “fan fabric” is typical for aragonite and is generated by acicular, needle-shaped or ray 

crystals that radiate from a central nucleus. Single aragonite crystals may be identified by their 

common display of microtwinning (Frisia et al., 2002).  
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2.7 Ideal Choice of Stalagmites 

In order to extract and use stalagmites actually suited for the reconstruction of palaeoclimatic 

and palaeoenvironmental conditions, an ideal choice of stalagmites would meet the following 

requirements:  

A stalagmite with an actively dripping stalactite is commonly better suited than an inactive 

stalagmite as the active drip site enables for drip water analyses that help understand the drip 

site-specific suite of factors controlling dripwater geochemistry. Furthermore, if the stalagmite 

is still growing at the time of extraction, the modern-day carbonate precipitates can be analysed 

to, for example, for demonstrating calcite precipitation in isotopic equilibrium or for identifying 

kinectic fractionation.  

Stalagmites with a sufficiently simple growth symmetry are favourable as it enables for precise 

and reliable sub-sampling due to the physical continuitiy of the growth laminae. If possible, 

stalagmite should not be extracted too close to the cave entrance or other connections to the 

outside as relative humidity at such sites may be significantly below 100% which can cause 

stable isotope time series, especially δ18O, to be influenced by kinetic effects due to evaporation. 

Additionally, caves or sites inside a specific cave should be chosen where cave ventilation is not 

too strong in order to avoid kinetic effects on speleothem δ13C signals due to rapid CO2-

degassing.  

Speleothem uranium contents should be sufficient to enable precise and accurate dating, while 

high detrital Th contents should be avoided. In general, stalagmites with undisturbed growth are 

favourable for palaeostudies, including the absence of detrital layers that prevent precise dating 

and that can complicate interpretation of speleothem geochemical time series. For instance, 

stalagmites regularly covered by fine cave sediments inside water-bearing caves due to periods 

of cave submergence should be avoided.  

Finally, as the geochemical behaviour of different drip sites and their corresponding stalagmites 

might vary between caves in a region and even between drip sites within the same cave, 

replication of palaeoenvironmental proxy signals by analysing multiple stalagmites from the 

same cave and stalagmites from multiple caves in a region that cover the same growth period is 

advantageous.  
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Figure 2.19: Area influenced by the different monsoon systems (light grey shading). The dark grey shading represents 
areas where ground level is above 3,000 m altitude that enhance monsoon dynamics and impact on atmospheric 
circulation. (Schönwiese, 2003, adapted from Hendl et al., 1988 and Heyer & Chmielewski, 1998).  

2.8 The Asian Monsoon 

The Asian Monsoon is part of the global system of monsoons that zonally encompasses the 

entire globe (Figure 2.19) and that comprises the American, the African, the Australian and the 

Asian Monsoon (Schönwiese, 2013). This PhD thesis focuses on the Asian Monsoon and its 

evolution over time. In order to provide a framework for the investigation of past changes in the 

Asian Monsoon, its present-day dynamics are shortly reviewed here. For this, the Asian 

Monsoon is divided into its three subsystems, the Indian Summer Monsoon (ISM), the East 

Asian Summer Monsoon (EASM) and the Winter Monsoon (WM). All three subsytems are 

relevant to this investigation as the study area is located right in the transition zone of these 

subsystems (An, 2014).  

 

 

 

 

 

 

This transition zone (TZ) is illustrated in Figure 2.21. On its northern border, the TZ is limited 

by the northern limit of the Summer Monsoon, its western boundary has been defined by Wang 

(2006), its eastern boundary by Ke (1999).  

2.8.1 The Indian Summer Monsoon 

In contrast to the subtropical monsoons, the ISM is a tropical monsoon and, by that, a monsoon 

in the narrower sense as it is mainly caused by the seasonal migrations of the Innertropical 

Convergence Zone (ITCZ; Schönwiese, 2013). The ITCZ is an equatorial band of low pressure 

systems with intense convection of warm and moist air that results from the strong insolation at 

and near the equator that causes evaporation and intense rainfall. At the top of troposphere these 

now colder and drier air masses are forced towards the respective pole on each hemisphere by 

the stratospheric temperature inversion. During their dynamically induced descent at the latitude 

of the persistent subtropical highs, the air masses become warmer and drier.  
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At the surface these warm and dry air masses then move back towards the ITCZ at the equator 

as trades, completing the Hadley cell on each hemisphere. As a result of the Coriolis force, the 

trade winds are deflected to the right relative to their direction of movement on the Northern 

Hemisphere (NH) and to the left on the Southern Hemisphere (SH). In conjunction with friction 

at the Earth’s surface that prevents a purely geostrophic wind (from eastery directions), the 
distinct circulation patterns of the northeast and southeast trade winds on the NH and SH, 

respectively, are created (Schönwiese, 2013; Häckel, 2016). Trade wind convergence in the 

ITCZ closes the circulation loop of the Hadley cell. If moving over the ocean, the air masses 

absorb high amounts of moisture on their path to rain out at the ITCZ which adds to 

precipitation amounts there.  

Therefore, the ITCZ is a zone of both ample and intense precipitation. The ITCZ is not 

stationary but rather moves along with the solar zenith that changes with season, to the north 

during NH summer, to the south during NH winter. This pattern would be symmetrical with 

respect to the equator if land and ocean surfaces were evenly distributed between the NH and 

SH. Due to the overbalance of land surfaces of India and Asia adjacent to the Indian Ocean, the 

ITCZ migrates further north during NH summer and reaches its northernmost position over the 

Tibetan Plateau in July (Figure 2.20, bottom), at the peak of summer (Vorlaufer, 2011). 

Consequently, on their way to the ITCZ, the southeast trades originating over the Indian Ocean 

between Australia and Africa become southwest trades after crossing the equator due to the 

Coriolis force and predominantly hit the Indian subcontinent and the Asian continent in a 

northeasterly direction as southwesterly winds (Figure 2.20, bottom). On landfall these now 

very moist and warm air masses lead to significant precipitation that is even intensified due to 

orographic lifting at the southern flanks of the Himalayan Mountains. Parts of these air masses 

have a more southerly trajectory and cross Southeast Asia in northeasterly directions that 

become northerly directions at the latitude of South China. These airmasses supply monsoon 

rainfall over the study area in Northern Vietnam after crossing the north-south oriented 

mountain ranges of Myanmar (e.g. the Arakan Mountains), Thailand and Laos where they 

already lose part of their moisture (Weischet & Endlicher, 2000). Summing up, it can be stated 

that the ISM carries moisture originating from the Indian Ocean and leads to ample rainfall over 

southern Asia, southeastern Asia and southwestern China (An et al., 2014).  

The intensity of the ISM is increased by the differential heating of the Southasian continent 

compared to the Indian Ocean, especially of the west-east oriented Tibetan Plateau (TP) due to 

its enormous size and mean altitude of 4,500 masl (Klose, 2016). Over the TP a latent heat 

anomaly forms within the mid-troposphere (Yanai et al., 1992) which results is a thermal 

ground level low with pressures typically below 1,000 mbar (Häckel, 2016) that stabilises the 

primarily ITCZ-driven monsoon regime. The TP also effectively shields large parts of South 

Asia from cold polar air masses (Klose, 2016), but not the study area in Northern Vietnam 

(Figure 2.21 left). With respect to the interior of Asia, the TP represents a geographic barrier 

that prevents high rainfall amounts east of it, both directly and due to divergence of the 

westerlies (dividing them into a southerly and a northerly branch) which causes enhanced 
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Figure 2.20: Top: Sea level pressure (blue contours; H = high; T = low) and prevalent wind directions (black arrows) 
in relation to the main frontal zones (PF = polar front; AF = arctic front; IAF = interarctic front; AAF = antarctic 
front) and the intertropical convergence zone (ITK) in January averaged over the period 1931-1960 (Schönwiese, 
2003 adapted from Liljequist & Cehak, 1994); Bottom: Same as above, but for July; The red dot indicates the 
location of the study area for this PhD thesis.  

subsidence east of the TP and thus decreased rainfall probability (Manabe & Broccoli, 1990). 

Therefore, the westerlies play an important role in generating/maintaining Asian deserts, but 

they also supply a climatic teleconnection between Asia and the North Atlantic (Porter & 

Zhisheng, 1995).  
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2.8.2 The East Asian Summer Monsoon 

The EASM is a subtropical monsoon and is mainly caused by differential heating between land 

and ocean surfaces in the mid-latitude West Pacific in NH summer, rather than by the ITCZ 

(Schönwiese, 2013). Air masses originating from the South China Sea and from the West 

Pacific north of it are drawn to the thermal lows over Southeast and East Asia resulting in 

southeasterly winds over Eastern China (Figure 2.21, right; Weischet & Endlicher (2000) from 

Flohn (1950)) where they induce precipitation on landfall and due to orographic lifting. Further 

north, these air masses converge with westerly winds of the westwind zone at the polar front 

(Figure 2.20) and thereby become deflected to the east to yield southerly and even 

southwesterly wind directions. This convergence forces the air masses to ascend and leads to 

rainfall in Eastern and Northern China. While it has been reported that most of the moisture 

fueling precipitation in northern China within the EASM region originates from the tropical 

Pacific (An et al., 2014), recent meteorological (Ding et al., 2004) and modelling studies 

(Clemens et al., 2010; Pausata et al., 2011) suggest that most of the moisture precipitating over 

China during the EASM primarily originates from the Indian Ocean (Johnson, 2011).  

Being a subtropical monsoon, the EASM is generally weaker than the ISM which is also evident 

from its relatively small vertical dimension. While ISM convection usually reaches altitudes of 

around 6,000 m, EASM convection normally does not exceed several hundred meters (Heyer & 

Chmielewski, 1998) and precipitation amounts are therefore generally smaller. Furthermore, the 

EASM can be distinguished from the ISM based on the differing orographic boundaries on the 

northern limit of the two sub-systems and on zonal differences in land-ocean configuration (An 

et al., 2014).  
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Figure 2.21: Left: Depiction of the Siberian High that causes the dry and cold Winter Monsoon with northerly and 
northeasterly wind direction in the study area in Northern Vietnam (black circle) in NH winter; Right: Schematic 
illustration of the main wind directions and air mass trajectories related to the EASM and the ISM together with the 
approximate northern limit of EASM influence in NH summer. Figure modified from Yi (2011), modified from 
Yancheva et al. (2007). The green shaded area represents the transition zone (TZ) between ISM and EASM.  

2.8.3 The Winter Monsoon 

The WM is caused by the thermal anticyclone referred to as Siberian High that forms over the 

snow-coverd part of Asia (roughly between 40°N and 60°N) during NH winter as a result of 

strong continental cooling of the land surface (Figure 2.21, left; Klose, 2016). This high 

pressure system with pressures typically exceeding 1,035 mbar (Häckel, 2016), which is one of 

the most stable on the globe, generates cold and dry air masses that move away from its center. 

The air masses on its eastern and northeastern flanks initially migrate southeast towards the 

polar front over the West Pacific (Figure 2.20). Due to the combination of the Coriolis force and 

friction at and near the land surface, these northerly winds are transformed into northeasterly 

winds (Klose, 2016) that cross the study area in Northern Vietnam and bring cold and dry air to 

it. Figure 2.21 (left) also shows that the study area in Northern Vietnam lies within the zone 

influenced by cold surges from Inner Asia in NH winter.  
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2.8.4 The Stalagmite δ18O Proxy in Monsoon Asia 

Since the publication of the first stalagmite δ18O record from the Asian Monsoon region in 2001 

(Wang et al., 2001), their interpretation has been controversial. By today, a large number of 

studies based on stalagmite δ18O values have been performed in the Asian Monsoon region, 

with most studies focussing on the EASM sub-region (Wang et al., 2001; Yuan et al., 2004; 

Dykoski et al., 2005; Wang et al., 2005; Hu et al., 2008; Wang et al., 2008; Zhang et al., 2008; 

Cai et al., 2010; Dong et al., 2010; Tan et al., 2010; Cheng et al., 2012; Jiang et al., 2012; Zhang 

et al. 2013; Cheng et al. 2016b; Cheng et al. 2016a). From the ISM sub-region, a growing 

number of publications are emerging (Neff et al., 2001; Fleitmann, 2003; Fleitmann et al., 2004; 

Sinha et al., 2005; Cai et al., 2006; Fleitmann et al., 2007; Sinha et al., 2007; Shakun et al., 

2007; Berkelhammer et al., 2010; Sinha et al. 2011; Cai et al., 2012; Cai et al., 2015). The 

locations of the proxy records discussed in the following are shown in Figure 2.22, together 

with the northern limit of the modern-day Asian Summer Monsoon and averaged moisture 

fluxes based on reanalysis data.  

With increasing number of publications the interpretation of stalagmite δ18O values in the 

EASM region evolved: In the absence of an obvious relationship between precipitation δ18O and 

temperature (temperature effect) or precipitation amount (amount effect) in modern-day rainfall 

data from the nearby Guilin area (Li et al.; 2000), Wang et al. (2001) related changes in δ18O 

values in stalagmites from Hulu cave (32°30’ N,119°10’ E) in eastern China to variations in the 

relative contribution of isotopically light summer precipitation (–9‰ to –13‰) and isotopically 
heavier winter precipitation (–3 to +2‰) to annual totals.  

Investigating a stalagmite from Dongge cave (25°17’ N, 108°5’ E) in southern China, about 
1,200 km westsouthwest (upwind / “upstream”) of Hulu cave, Yuan et al. (2004) found δ18O 

variations very similar to those previously observed in the Hulu stalagmites by Wang et al. 

(2001). They argued that the amplitude of the observed δ18O fluctuations in both records (4.7 

‰) is far too high to be explained by the change in the calcite/water fractionation of oxygen 

isotopes with temperature alone (only –0.23 ‰ / °C; Friedman & O'Neil, 1977) and therefore 

concluded that the stalagmite δ18O signals from Dongge/Hulu mainly reflected the δ18O of 

meteoric precipitation.  
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Figure 2.22: Locations of the precipitation and moisture proxy records discussed in the text (red crosses = stalagmite 
records; blue circles = lake sediment records; purple rectangles = Loess magnetic susceptibility records). The black 
arrows indicate water vapor flux vectors (kg·m−1·s−1) averaged over the summer months June, July and August as a 
vertical integration from the surface to the 300 hPa level for the period 1971–2000 based on NCEP/NCAR reanalysis 
data (Kalnay et al., 1996; scale in the right bottom corner). The green dashed line illustrates the northern limit of the 
modern-day Asian Summer Monsoon (Chen et al., 2010). The areas shaded in yellow and grey are the Chinese Loess 
Plateau and areas above 3000 masl, respectively. Reprinted with permission from Liu et al. (2015).  

 

Yuan et al. (2004) further argued that the predominant characteristic in the observed and 

modelled spatial distribution of precipitation δ18O is the trend towards lower δ18O values with 

increasing latitude (Rozanski et al., 1993; Araguás-Araguás et al., 1998; LeGrande & Schmidt, 

2006; LeGrande & Schmidt, 2009) and that this trend can be modelled on the basis of Rayleigh 

fractionation (Dansgaard, 1964). Rayleigh fractionation causes decreasing water vapour and 

precipitation δ18O values along the trajectory of moist air masses due to preferential removal of 
18O via condensation and rainout on the way from the respective moisture source to moisture 

sinks where precipitation occurs. Based on this process, often referred to as “upstream depletion 

mechanism”, Yuan et al. (2004) came to the conclusion that precipitation δ18O at the Hulu and 

Dongge sites primarily depends on the amount of water vapour removed from the moist air 

masses originating from the tropical Indo-Pacific. Importantly, this moisture loss reflects 

precipitation integrated over the entire trajectory of the moist air masses.  
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Using a slightly modified version of the Rayleigh equation (Criss, 1999) and estimations of 

absolute humidity in tropical moisture source regions, they calculated that “the amount of 

precipitation integrated between tropical sources and southeast China is today 87% of mid-

Holocene/Last Interglacial values and was 65% of mid-Holocene/Last Interglacial values at 

glacial times [here represented by the Heinrich event 1 (H1) at about 16 ka BP]” (Yuan et al., 

2004).  

Following the reasoning of Yuan et al. (2004) adopting the upstream depletion mechanism, Hu 

et al. (2008) investigated a stalagmite δ18O record from Heshang cave (30°27ƍ N, 110°25ƍ E) 

located about 600 km downwind of Dongge cave, between Dongge and Hulu caves. As 

Heshang cave lies in the same moisture transport pathway as Dongge cave (Figure 2.22; Kalnay 

et al., 1996), Hu et al. (2008) were able to eliminate any potential additional controls on 

precipitation (hence stalagmite) δ18O such as moisture source δ18O and location, upstream 

rainfall and temperature by subtracting the stalagmite δ18O values from Heshang cave from the 

corresponding ones from a new high-resolution stalagmite record from Dongge cave (Wang et 

al., 2005).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.23: Top: The stalagmite δ18O records from Heshang (light-grey) and Dongge caves (dark-grey; axes 
reversed). Bottom: The Δδ18O signal (dark-blue line) calculated by differencing both records. The bright-blue line 
represents the Δδ18O signal when the Dongge record is shifted by 50 years in both directions relative to the Heshang 
record to test the robustness of the Δδ18O signal to age uncertainty. The diamond on the left indicates analytical 
uncertainty (0.15 ‰), the one on the right also includes the uncertainty resulting from the scatter about the linear 
relationship between Δδ18O and instrumental rainfall data between the two sites. Figure from Hu et al. (2008).  
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They noted that, for this approach to be valid, it is required that both cave sites are sufficiently 

close to one another to exhibit a comparable temperature history, that differences in the altitude 

of cave recharge (precipitation formation) are corrected for and that moisture transport pathways 

have remained relatively constant over the reconstructed period. Hu et al. (2008) argued that the 

resulting Δδ18O signal is solely influenced by the precipitation amount between the two cave 

sites. Comparison of five decadal Δδ18O values with the corresponding precipitation amounts 

(spanning the last 54 years) averaged from six meteorological stations in the region 

corroborated this relationship and enabled Hu et al. (2008) to calibrate the Δδ18O signal to 

average annual rainfall (Figure 2.23, bottom).  

Based on this quantitative relationship, Hu et al. (2008) concluded that rainfall in southwest 
China was 8% higher than today during the Holocene climatic optimum (about 6 ka BP) so that 
today’s rainfall amounts to about 92% of mid Holocene rainfall. Compared to the 87% of mid 
Holocene rainfall estimated for the range between tropical sources and southeast China (Yuan et 
al., 2004), this indicates a slightly lower rainfall change in southwest China.  

Numerous additional studies in the EASM-dominated region of the last decade (Wang et al., 

2008; Zhang et al., 2008; Cai et al.; 2010; Dong et al.; 2010; Tan et al., 2010; Cheng et al., 

2012; Jiang et al., 2012; Zhang et al. 2013; Cheng et al. 2016a; Cheng et al. 2016b) have shown 

that the consistent temporal pattern of relative stalagmite δ18O variations initially observed at 

the sites of Hulu, Heshang and Dongge caves can indeed by found over a much larger area as 

previously thought, resulting in a coherent stalagmite δ18O signal spanning the latitudinal range 

from 17 °N to 42 °N (Liu et al., 2015).  

Even more strikingly, studies from the ISM-dominated region (Neff et al., 2001, Fleitmann, 

2003; Fleitmann et al., 2004; Sinha et al.; 2005; Cai et al., 2006; Fleitmann et al., 2007; Sinha et 

al., 2007; Shakun et al., 2007; Berkelhammer et al., 2010; Sinha et al. 2011; Cai et al., 2012; Cai 

et al., 2015) have also found this consistent stalagmite δ18O signal (on orbital to millennial time-

scales) confirming that it reflects large-scale (supra-regional) variations in atmospheric 

circulation (Cheng et al., 2016b) primarily related to the Indian Summer Monsoon. It is the ISM 

that generates the initial δ18O signal via the amount effect in dependence of the mean latitudinal 

summer position of the ITCZ over the Arabian Peninsula (Burns et al., 2001; Neff et al., 2001; 

Fleitmann, 2003). This upstream depletion mechanism leads to decreasing δ18O values in 

stalagmites and modern rainfall along the water vapor transport route (Yang et al., 2014; Liu et 

al., 2015) from the western Indian Ocean over southern Oman and India to Southeast Asia 

(Figure 2.22). The similar pattern in modern rainfall and stalagmite δ18O values suggests that 

this modern-day moisture transport route was similar during the entire Holocene (Yang et al., 

2014) and that the Indian Ocean represents the main moisture source in the ISM region as well 

as reaching into the EASM region to where it was modelled to contribute around 60% of total 

moisture input (Liu et al., 2014).  
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Summing up all the discussed findings, the stalagmite δ18O signal in the Asian Monsoon region 

is most likely initiated in the Indian Ocean where it reflects local precipiation amount via the 

amount effect. The signal is then transferred to both ISM and EASM regions where the 

consistent decrease in δ18O values along the main moisture transport pathway reflects 

progressive rainout due to Rayleigh fractionation, described as the upstream depletion 

mechanism. Therefore, the difference in stalagmite δ18O values from cave sites located in the 

same moisture transport pathway can be expected to represent the amount of precipitation 

integrated between the two sites. In order to evaluate the conistency of this large-scale 

explanatory pattern with the new stalagmite δ18O records from Ma Le 2 and Sang Ma Sao caves 

generated for this thesis, they are illustrated in its context in Section 6.1.  
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Figure 3.1: Overview map indicating the location of the study area in Northern Vietnam. The blue shading represents 
occurrences of carbonate rock from the world karst aquifer map (Chen et al., 2017). 

3 Study Area in Northern Vietnam 

The study area of this PhD thesis is located just west of Dong Van City, the capital of Dong Van 

District, Ha Giang Province, Northern Vietnam, a few kilometres south of the Chinese border 

(Figure 3.1). Large portions of the geology of this area (Section 3.2) and its surroundings are 

dominated by carbonate rocks (Figure 3.1). In conjunction with the subtropical monsoon-type 

climate (Section 3.1.1), the conditions are favourable for intense karstification which has led to 

the formation of a strongly karstified landscape, called turmkarst (Ford & Williams, 2007).  

 

 

 

 

 

 

 

 

 

 

 

Important hallmarks of turmkarst are an extreme topography with great differences in altitude 

between the karst hills and the valleys surrounding them, the lack of survace runoff and the 

formation of karst caves that often channel subsurface water flow in underground rivers (Ford & 

Williams, 2007). Surface runoff only happens where rock occurs at the topographic surface with 

low or no permeability to water (aquitards/aquicludes), where it is concentrated into rivers. In 

the study area, there are three main surface rivers: The Ma Le, the Seo Ho and the Nho Quế 

(Figure 3.2). The river Ma Le is of particular relevance to this study as it flows through the cave 

Ma Le 2 after entering the subsurface about 200 m upstream.  
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Figure 3.2: Top: Study area including location of the two studied caves Ma Le 2 (23°17'23.17"N, 105°18'45.67"E; 
altitude entrance 1,015 meters above sea level; masl) and Sang Ma Sao (23°17'11.54"N, 105°19'40.15"E; altitude 
entrance 1,138 masl) on a topographic map (1:50,000; NARENCA, 2002). The vertical distance between contours is 
20 m, the black squares represent 1 x 1 km2. The three most important rivers in the study area are highlighted in 
bright blue, underground sections (inside caves Ma Le 2 and Sang Ma Sao) are indicated by a dashed line. The black 
dashed line represents a hydraulic connection confirmed by artificial tracer tests (Ender, Goeppert & Goldscheider, 
2018) with yet unknown course; Bottom: Same section as above, but from satellite imagery (CNES/Airbus, map data 
from Google; accessed on September 14th, 2014). The red rectangle designates the area where the vegetation was 
mapped.  
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Figure 3.3: The Asian Monsoon System that generates ample precipitation in the study area in Northern Vietnam in 
NH Summer via both the Indian and East Asian Summer Monsoon subsystems, while only little rainfall occurs during 
NH winter as a consequence of cold and dry Winter Monsoon winds from the Siberian High in Inner Asia (adapted 
from Vorlaufer, 2011). The yellow lines are an approximate illustration of the ITCZ’s northernmost and southernmost 
position, respectively. Typhoons supplying additional moisture to the study area are represented by dashed black 
lines. 

3.1 Geographical Setting 

3.1.1 Climate 

The climate in the study area is dominated by the Asian Monsoon System with its three 

subystems, the ISM, the EASM and the WM (Section 2.8). Consequently, the largest portion 

(almost 80%) of annual rainfall occurs in the rainy season during the Northern Hemisphere 

(NH) summer from May to September (Figure 3.4) due to monsoon-driven rainfall events 

related to the ISM and EASM. During NH winter, the cold and dry winds from the Siberian 

High in the North caused by the WM lead to dry conditions in the study are and suppress 

rainfall.  

 

However, Northern Vietnam is not entirely without rain during winter as maritime air masses 

advecting from the South China Sea in the east still supply moisture. This advection has been 

related to low-pressure areas generated where WM airmasses from the North converge with 

northeast trades (Pedelarborde 1958, from Weischet & Endlicher, 2000) which leads to lifting 

and cooling of the air masses, condensation and consequently precipitation.  
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Figure 3.4: Monthly means of precipitation from a weather station in Dong Van District, averaged over the period 
1994 – 2013 (NCHMF, 2017).  

Figure 3.5: Left: Number of typhoon occurrences over the period 1884-1967 (adapted from Weischet & Endlicher, 
2000; from U.S. Dept. of Commerce, 1970) and main typhoon trajectory (dashed red line); underlying map is the 
same as Figure 3.1; Right: Typhoon frequency by month for the same period.  

Another mechanism that supplies moisture to and therefore causes rainfall in the study area, but 

that is unrelated to the large-scale monsoon circulation patterns, are typhoons. Typhoons 

typically move in westerly directions and make landfall in a band between 15° N and 20° N, but 

can also occur further south and north and transport moisture to the study area from the South 

China Sea (Weischet & Endlicher, 2000; Figure 3.5 left). They can happen between late NH 

summer and early NH winter, but their frequency clearly peaks in September closely followed 

by October (Figure 3.5 right).  
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Figure 3.6: Annual precipitation amounts from a weather station in Dong Van District for the period 1994 – 2013 
(NCHMF, 2017). El Niño and La Niña years (according to the ONI, region Niño 3.4; NOAA, 2017) are indicated by 
orange and blue bars, respectively with colour intensity illustrating the strength of the respective event.  

Over the instrumental record of roughly 20 years, rainfall amount in the study area does not 

seem to be clearly correlated to the ENSO phenomenon (Figure 3.6). In this case, El Niño and 

La Niña years are defined by the Oceanic Niño Index (ONI) in °C calculated for the Niño 3.4 

region (5°N – 5°S, 120°W - 170°W) as three-month running means of the ERSST.v5 sea 

surface temperature (SST) anomalies relative to 30-year reference periods that are updated 

every five years (NOAA, 2017). El Niño events are defined as positive SST anomalies 

exceeding 0.5 °C and La Niña events are negative SST anomalies exceeding 0.5 °C. In the 

instrumental record there is also no apparent positive or negative long-term trend in rainfall 

amount (Figure 3.6).  

 

 

 

 

 

 

 

 

Temperature data are not available for the weather station in Dong Van District, but for a station 

in Ha Giang City (22°49' N, 104°58' E), about 65 km southwest of the study area (Figure 3.7). 

The warmest three months are June to August with average temperatures above 25 °C. In Ha 

Giang City, even during the winter months, average temperatures do not fall below 15 °C, but 

absolute minima as low as 3.2 °C (December 1999) have been recorded. Due to the difference 

in altitude between Ha Giang (180 masl) and Dong Van (more than 1,000 masl), even lower 

temperatures can be expected for the study area.  

In contrast to other regions such as Northern Laos, Northern Vietnam is not shielded by 

mountain ranges from advection of cold air from Inner Asia during the Winter Monsoon months 

(Weischet & Endlicher, 2000). As a consequence, even at ground level, temperatures as low as 

2.2°C have been recorded in Lao-Kai City in the valley of the Red River in the province of the 

same name, just west of Ha Giang Province in Northern Vietnam. In Hanoi, the capital of 

Vietnam, although situated more than 400 km more southerly and almost 1,000 m lower than 

the study area, temperatures as low as 5.6°C have been measured (Weischet & Endlicher, 2000). 



3  Study Area in Northern Vietnam  

 

90 

Figure 3.7: Monthly means of temperature from a weather station in Ha Giang City, averaged over the period 1990 – 
2010 excluding 2006 (NCHMF, 2017). 

Temperatures at higher altitudes are commonly lower than at ground level (Schönwiese, 2013), 

which explains why winter precipitation in the study area can even fall as snow. With an 

average surface air temperature in Lao-Kai, Ha Giang and Hanoi of about 15°C (Weischet & 

Endlicher, 2000), Northern Vietnam features an abnormally cold winter for a subtropical region.  

 

 

 

 

 

 

 

 

 

3.1.2 Surface Overlying the Studied Caves 

At the surface above cave Ma Le 2 a rough mapping of the vegetation was conducted during the 

dry season on March 3rd, 2014, with the focus on investigating the imprint of the local 

vegetation on the carbon isotope signal recorded in the stalagmites growing inside cave Ma Le 

2, in particular in stalagmite VML22. Therefore, the main goal of the vegetation mapping was 

to describe vegetation density and collect plant samples for later carbon isotope analysis 

(Section 4.5) rather than describing the plant species composition as in common vegetation 

mapping. Within the mapped area (red rectangle in Figure 3.2 bottom) a total of 31 sub-areas 

were defined (Figure 4.7) that enclosed a relatively homogeneous vegetation cover. The 

descriptions of these areas are listed in the Appendix (Table A.1). 

Summarising the results of this vegetation mapping, it can be stated that almost no trees or 

shrubs are present at the surface over cave Ma Le 2 and that most of the occurring plant species 

are herbaceous plants. The overall vegetation density is intermediate with typically high 

densities in agriculturally used areas and low densities in areas that are not used as fields as 

these areas are often host rock outcrops with no or little soil cover.  
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On the whole, despite the hilly terrain with its many steep slopes, large portions of the surface 

are used for agriculture, and the cultivated crops grow particularly densely in more horizontal 

parts of the area. A high portion of the available plant biomass is made up of only a few 

different plant species which were therefore sampled for later carbon isotope analysis. A 

photographic documentation of these plants is given in the Appendix (Figure A.4 and Figure 

A.5). In addition to the occurrence of these crops, a typical feature of the agricultural land are 

piles of corn remains which are stored on the fields after the corn harvest and burned by the 

farmers at the beginning of the rainy season to fertilise the soils (Appendix, Figure A.4 and 

Figure A.5), according to local farmers interviewed in the area. Furthermore, the marked 

discrepancy between the rainfall amounts during the rainy and the dry season (Figure 3.4) lead 

to noticeable differences in vegetation cover between the seasons (Figure 3.8 and Figure 3.9) 

with decreased vegetation cover during the dry season.  

The soils in the area above cave Ma Le 2 are developed to great depths, at least to several 

meters (Figure 3.11) in accordance with very deep soils found in and around Dong Van City 

(Figure 3.10) that mirror the intense and long weathering typical for subtropical regions 

(Scheffer et al., 2010). The soil colour is mostly dominated by brown to strongly red tones 

indicating the presence of Fe-oxides such as goethite and hematite (Scheffer et al., 2010).  

Figure 3.8: Overview (facing west) of the terrain and the vegetation at the surface above cave Ma Le 2 at the end of 
the rainy season (August 4th, 2014) and a similar section at the end of the dry season (March 3rd, 2014). The pictures 
show the western half of the area mapped for its vegetational cover.  
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Figure 3.9: Entrance of cave Ma Le 2 (bottom center) and the steep terrain above the cave with its vegetation cover at 
the end of the rainy season (top; August 4th, 2014) and at the end of the dry season (bottom; April, 6th, 2016; David 
Lagrou, SPEKUL). Both pictures face northwest.  
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Figure 3.10: Picture illustrating the great depth to which the soils in the study area are developed and their intense 
red-brown colour. Picture taken at the southwest end of Dong Van City (April 4th, 2016).  

 

 

 

 

 

 

 

Figure 3.11: Soil profile (SP01) at the surface above cave Ma Le 2; left: Overview illustrating the great depth of the 
soils in the study area (Vietnamese colleague, Doan The Anh, VIGMR, as scale); right: Close-ups on the soil layers 1 
and 2 (top), layer 3 (middle) and layer 4 (bottom). Pictures taken at 23°17’32.1’’ N, 105°18’16.7’’ E, 1,299 masl, on 
April 11th, 2016.  
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Figure 3.12: Soil at the surface above cave Sang Ma Sao where the soil sample SMS Soil01 was taken representing 
the depth range 0 - 20 cm (March 28th, 2016). The scale reaches a depth of about 40 cm.  

The vegetation at the surface above cave Sang Ma Sao was not mapped as there is little or not 

vegetation in that area. The few plants that do grow there were sampled for later carbon isotope 

analysis. The lack of vegetation seems to be caused by the very steep slopes and the resulting 

very thin soils (< 50 cm depth; Figure 3.12) and regular mass movements downhill. Only the 

highest hills of the area are covered by trees, interestingly where soils are virtually absent (e.g. 

Figure 3.14). In an interview on March 28th, 2016, a local farmer stated that the vegetation cover 

in the area had stayed basically the same with the trees being restricted to the hill tops since his 

childhood some 70 years ago. This statement is consistent with information from representatives 

of the Water Resource University (Hanoi) that confirm that large areas in Northern Vietnam 

have been deforested decades or even centuries ago (oral comm.; project workshop with the Ha 

Giang People’s Committee; December 2nd, 2013) which prompted the Vietnamese government 

to initiate reforestation programs the effects of which can be seen in the study area today. 

Agriculture is restricted to flatter terrain inside the closed depression of Sang Ma Sao village 

(Figure 3.13).  

Without anthropogenic activity like deforestation and agriculture, Northern Vietnam comprising 

the study area would likely be covered with dense natural vegetation. A rough map of the 

natural vegetation type to be expected in that region as a consequence of the environmental 

conditions suggests that Northern Vietnam is located in a transition zone from evergreen 

rainforest in the south to warm-temperate humid forest in the north (e.g. southern parts of 

China; Walter & Breckle, 1999). This suggests a natural predominance of C3-vegetation in this 

area. The soils in the area above cave Sang Ma Sao are very thin (< 50 cm; Figure 3.12) and 

support only a very scarce vegetation cover. The soils are typically red-brown and contain high 

amounts of host rock fragments. Soil development seems to be disturbed regularly in this area 

due to mass movements downhill that result from the steep slopes. Therefore, the soils are of a 

Rendzina-like type, however with signs of Fe-oxide coatings that indicate the development of 

Cambisols.  
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Figure 3.14: Entrance of cave Sang Ma Sao (bottom center) and the steep terrain above the cave with its vegetation 
cover during the dry season (March, 28th, 2016; facing northwest).  

 

 

 

 

 

 

 

 

 

Figure 3.13: Overview (top) and detailed view (bottom; both facing northwest) of the terrain and the vegetation at the 
surface above cave Sang Ma Sao during the dry season (March 28th, 2016). The cave entrace is located at the 
northwestern edge of the closed depression (behind the central hill in the top image).  
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Figure 3.15: Evidence of intense erosion in the study area; Top: Gully erosion on the east slope of the Seo Ho valley 
(left: uphill; right: downhill; December 5th, 2013); Bottom left: High load of suspended particles in the Seo Ho river 
after a rainfall event during the rainy season (July 28th, 2015; direction upstream); Bottom right: Detritus deposited on 
the walls inside cave Ma Le 2 reaching a height of up to ten meters (March 31st, 2016).  

3.1.3 Erosion 

Within the study area, topographic surfaces vary widely in altitude which leads to a very hilly 

terrain with steep slopes. For instance, the Ma Le river system just upstream of cave Ma Le 2 

(Figure 3.2 top) features hills with altitudes around 1,500 masl, while the river itself runs at an 

altitude around 1,000 masl. In combination with the subtropical monsoon-type climate (Section 

3.1.1), this entails a great potential for erosion (Scheffer et al., 2010), especially at the onset of 

the rainy season each year (Section 3.1.1). At this time of the year the soils are very dry and 

their capacity to absorb rainwater is low. Therefore, the rainwater cannot infiltrate into the soils 

and generates strong surface runoff leading to erosion (Blume et al., 2016). Another factor that 

increases the potential for erosion is intense precipitation with high amounts of rainwater falling 

in short periods of time. Such events of extreme rainfall can also occur in connection with 

typhoons passing the study area coming from the South China Sea east of Vietnam (Section 

3.1.1). The eroded material is then transported from the surface to the underground and into 

caves via rivers and streams (Figure 3.15). Detrital material is not only deposited on the walls of 

caves, but also on stalagmites and is subsequently incorporated into the stalagmites as soon as 

stalagmite growth resumes.  
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3.2 Geological Setting 

The geology of Northern Vietnam is dominated by strongly karstified carbonate formations that 

form the southern edge of the South China Carbonate platform, the largest karst region of the 

world (Masschelein et al., 2007). The study area’s geology (Figure 3.16) comprises five 

geological formations from three different time periods: The Mía Lé, Ń Qủn and T́c T́t 
Formations have been deposited during the Devonian, the Bắc Sơn Formation during the 

Carboniferous and the Permian, while the Sông Hiến Formation is of Triassic age. The Mía Lé 

Formation (D1 ml) consists of clayish siltstone and marlaceous siltstone and can be subdivided 

into two Subformations. The Lower Subformation (D1 ml2) is made up of black-grey, greenish-

grey clay shale with a thickness of 230 m, the Upper Subformation (D1 ml1) contains sandstone, 

siltstone, clay shale and marlaceous shale with an overal thickness of 500 m. The Ń Qủn 

Formation (D1-2 nq) comprises marble, cherty shale, cherty limestone as well as dolomite 

limestone and is 500 – 520 m thick. According to the latest geological mapping (map scale 

1:50,000; mapping performed by staff of the VIGMR in 2015; unpublished) the Ń Qủn 

Formation is the only formation in the study area that contains dolomite. The T́c T́t Formation 

(D3 tt) consists of red-veined limestone and manganese-bearing cherty limestone with a 

thickness of 200 m. The Bắc Sơn Formation (C-P2 bs) comprises massive limestone, oolitic 

limestone as well as clayish limestone and is the thickest formation in the study area at 1,000 – 

1,200 m.  

Figure 3.16: Geological Formations in the study area (scale 1:50,000; mapping performed by staff of the VIGMR in 
2015; unpublished). Caves Ma Le 2 and Sang Ma Sao are indicated as green lines; the red lines indicate faults.  
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The topmost geological layer is the Sông Hiến Formation (T1 sh1) which consists of marlaceous 

shale, siltstone and calcareous sandstone with a thickness of 600 – 620 m. While the Bắc Sơn 

Formation is highly karstifyable and acts as an aquifer, the T́c T́t, Ń Qủn and Mía Lé 

Formation are less karstifyable due to contaminations with clays and silicates and can act as 

aquicludes.  

With respect to the geochemical properties of the studied stalagmites, the two most important 

geological formations are the Bắc Sơn Formation and the T́c T́t Formation as cave Ma Le 2 

has developed within the Bắc Sơn Formation while cave Sang Ma Sao has developed with both 

formations. With regard to detrital material from the surface flushed into the caves by their 

respective cave stream and deposited on the stalagmite, however, the other formations are 

important as well, as they constitute potential source regions for this detrital material. As the 

stream in cave Ma Le 2 is fed by the Ma Le river (upper left corner in Figure 3.16) the T́c T́t 
and Ń Qủn Formations represent potential source regions for detritus incorporated in 

stalagmite VML22. In case of stalagmite VSMS2, the Sông Hiến Formation is a possible source 

region because the stream in Sang Ma Sao cave is fed from the closed depression around Sang 

Ma Sao village (topographic map in Figure 3.2).  

From a tectonic standpoint, the study area is located at the far eastern edge of the region 

influenced by the formation of the Himalaya. The tectonic impact on the regional formations 

has caused them to deform and to break up into smaller units, especially during the middle 

Palaeocene (Tran et al., 2013). The study area contains two main fault systems, an earlier 

system in NW-SE directions that exhibits a major structural control and a later system in NE-

SW directions that caused relatively weak shifts along its faults (Van et al., 2004).  

3.3 Studied Caves 

In order to find stalagmites actually suited for the reconstruction of palaeoclimatic and 

palaeoenvironmental conditions (Section 2.7) a total of twelve karst caves in the study region in 

Northern Vietnam were scanned for suitable stalagmites (in chronological order): Dong Van 

Cave, Sang Tung, Ma Le 1, Ma Le 2, Ma Le 3, Pai Lung, Dong Nguyet, Tia Sang, Sang Ma 

Sao, New Cave 01, New Cave 02 and New Cave 03. The last four were discovered and entered 

for the first time in the course of this PhD project. Only four out of the twelve scanned caves 

contained potentially suitable stalagmites (Sang Tung, Ma Le 2, Tia Sang and Sang Ma Sao). 

As the one promising stalagmite in cave Sang Tung could not be collected for lack of 

permission by the responsible Vietnamese official, this cave is not further discussed.  

From the three remaining caves a total of twelve stalagmites were collected: Two from cave Ma 

Le 2 (VML21, VML22), five from cave Tia Sang (VTS1 to VTS5) and five from cave Sang Ma 

Sao (VSMS1 to VSMS5). Unfortunately, all five stalagmites from cave Tia Sang turned out to 

be unsuited for palaeostudies for two main reasons.  
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Figure 3.17: The top part of stalagmite VTS1 as an example for a stalagmite unsuited for palaeoreconstruction (about 
40 cm long and 10 cm across): Top view (left) and cross section (right) at the base.  

First, they contain too many detrital components as evident from their overall dark interiour, 

which effectively impedes reliable U/Th dating (Section 4.3). Second, their internal structure 

with often high porosity (Figure 3.17) and strongly and frequently shifting growth directions is 

too complex for sampling at high spatial resolution (Section 4.4). These issues also apply to 

stalagmites VSMS1 and VSMS3 from cave Sang Ma Sao. Stalagmite VML21 from cave Ma Le 

2 has a too complex internal structure and is too thin for high-resolution sampling.  

 

 

 

 

 

 

 

 

 

As a consequence, out of the twelve stalagmites that looked promising from the outside, only 

four proved indeed suitable for reconstructing palaeoclimatic and palaeoenvironmental 

conditions. As palaeostudies based on high-resolution multi-proxy data sets from speleothems 

are both expensive and time-consuming, this PhD project focuses on stalagmites VML22 and 

VSMS2 because these cover both the Last Deglaciation and the Holocene which had been 

defined as the time period of interest. Therefore, only caves Ma Le 2 and Sang Ma Sao are 

discussed in the following. The location of both caves is indicated in Figure 3.2.  

3.3.1 Cave Ma Le 2 

The map of cave Ma Le 2 is shown in Figure 3.18. The original mapping of the cave was 

conducted in a collaboration of staff from VIGMR, SPEKUL and BVKCA in 2004 

(Masschelein et al., 2007), in 2015 slight corrections were made based on new and highly 

precise distance data generated with a DistoX 310 laser measurement device (Leica) together 

with Doan The Anh (VIGMR).  
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Figure 3.18: Maps of cave Ma Le 2: Left: Top view and plan view. The locations of stalagmite VML22 and the 
logger for measurements of temperature (T), relative humidity (RH) and drip rate are indicated in red. The hatched 
area represents the cave stream. Right: 3D-view of the cave passages (facing north, at an angle of 30°) constructed 
with the Cave XO and the Compass software (Fountain Computer; versions 5.15.2.24.5 and 5.16.4.13.189, 
respectively).  

The entrance to cave Ma Le 2 is located at 23°17'23.17"N, 105°18'45.67"E at an altitude of 

1,015 masl. The cave is almost 900 m long and is inclined upstream by +52 m and connects two 

sumps at its upstream and downstream end, respectively (Figure 3.18, left). The thickness of the 

overlying carbonate rock is about 30 m at the entrance and about 165 m directly above the 

dripsite at which stalagmite VML22 has been growing. This site is located at some 600 m 

distance upstream of the entrance at an altitude of around 10 m above the level of the cave 

entrance.  

 

 

 

 

 

 

 

 

 

 

 

Cave Ma Le 2 features almost no branching, exclusively linear passages so that it can be 

classified as an “ideal pipe” (Ford & Williams, 2007), although the cave river has cut down 

deeply into the carbonate host rock during the vadose phase of the cave’s evolution, following 
the direction of two local faults in NE-SW and in N-S directions, respectively (Figure 3.16). 

This intense vadose entrenchment has produced an elliptical to canyon-like cross-section and a 

very high cave ceiling is, exceeding 50 m in some passages (Figure 3.18 right) although it is 

often masked from view by extensive sinter bodies that effectively form a secondary ceiling.  
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Figure 3.19: Aeroliths on the ceiling of cave Ma Le 2 indicating a prevalent downstream wind direction. These 
aeroliths are particularly frequent close to the upstream end of the cave (March 31st, 2016).  

Especially the N-S fault dips slightly to the east so that the actual height of the ceiling cannot be 

measured in all of the cave’s passages. Investigating the actual ceiling height in these passages 

would require very difficult and time-consuming cave climbing. With regard to further 

classifications cave Ma Le 2 can be described as a vadose limestone speleothem cave that is 

fault-guided and forms a fluvial system. By connecting the two rivers Ma Le and Seo Ho it is 

also an active subtropical short-cut cave (Ford & Williams, 2007) featuring a perennial cave 

stream with flows of some 1 - 1.5 m3/s during the rainy season and some 0.1 m3/s during the dry 

season (Ender, Goeppert & Goldscheider, 2018). Such perennial cave streams usually keep 

relative humidity at 100% so that kinetic oxygen isotope fractionation caused by evaporation 

(Section 2.2.2) can be excluded.  

Cave Ma Le 2 is richly ornate with speleothems although stalagmite formation is prohibited in 

most parts of the cave by the cave stream. Among the different types of speleothems present in 

the cave such as columns, draperies, stalagmites and stalactites are many aeroliths that are all 

directed downstream (Figure 3.19) indicating prevalent downstream winds. Such winds might 

be caused by the cave stream as flowing water tends to entrain the overlying air masses through 

friction. This process would generate a more or less steady air flow out of the cave just above 

the water. That such an air flow indeed exists in the cave system today was confirmed by air 

flow velocity measurements using a hot bead anemometer (Testo 445) the results of which are 

shown in Table 3.1. Measured air flow velocities almost reach 0.5 m/s just above the water 

surface and consistently decrease with increasing height, as does temperature. An air flow into 

the cave close to the ceiling to compensate for the river-induced outflow is presumed but could 

not be unambiguously confirmed due to the great height of the actual cave ceiling. Overall, cave 

Ma Le 2 is susceptible to intense ventilation as a result of its fast-flowing stream and its great 

entrance (Figure 3.9) that is 40 m high and 40 m across.  
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Table 3.1: Air flow velocities in cave Ma Le 2 measured with a Testo 445 hot bead anemometer on March 26th, 2016. 
The locations of the measurements are indicated in Figure 3.18 left.  

Location Height [cm] Velocity [m/s] Temperature [°C] 

  Stalagmite VML22 50 0.02 19.9 
Sinter plateau downstream of stalagmite VML22 5 0.05 18.8 
Stream next to sinter plateau 10 0.31 17.0 
 50 0.20 17.6 
 120 0.14 17.8 
 200 0.04 18.0 
1st waterfall downstream  10 0.45 16.7 
2nd waterfall downstream 10 0.32 16.6 
3rd waterfall downstream 10 0.31 16.6 
 50 0.24 16.8 
 100 0.19 17.0 
 150 0.17 17.1 
 200 0.07 17.5 
   

Intriguingly, the cave walls are covered in detrital material along the entire length of the cave at 

a height of up to 10 m (Figure 3.15 bottom right; Figure 3.20), easily visible against the white 

colour of the cave ceiling (that might be caused by moonmilk; Hill & Forti, 1997). This detritus 

cover is most likely evidence of at least one event with correspondingly high water levels during 

which the detrital material transported by the cave stream from the surface into the cave has 

been deposited on the walls. Detritus deposition is most likely under low velocity conditions 

that favor sedimentation whereas high flow velocities tend to wash the cave walls clean again 

(Figure 3.20 bottom right). For water flow to slow down the hydraulic head along the cave’s 
length needs to be diminished, which most probably happened as a result of backwater events. 

Such events can either be caused by a blocking of the cave stream by falling debris, or by the 

flow into the cave system exceeding the flow the cave system can effectively pipe through. As 

the passages of cave Ma Le 2 feature a large cross-section along the entire length of the cave, 

the first mechanism would be most effective at the cave’s outlet where the cave’s cross-section 

is smallest. Therefore, it is less likely that this mechanism causes regular backwater events as it 

requires debris to always fall into the stream at the cave’s outlet.  

The main phase of speleothem formation in cave Ma Le 2 seems to be terminated as most 

stalactites are dry year-round. The drip water of the few stalactites that are still active appears 

not to be oversatured with calcite as demonstrated by glass plates placed on multiple dripsites 

that show no precipitates after an exposure of more than two years. This also applies to the 

dripsite of stalagmite VML22 (Figure 3.22). In general, speleothem formation in cave Ma Le 2 

seems to be disturbed as all stalagmites present in the cave display a “cloddy” appearance with 
fabrics consisting of separate “nodules” that have grown on top of each other in a relatively 
disorderly fashion.  
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Figure 3.20: Top and bottom left: Detrital material deposited on the walls of cave Ma Le 2 at heights of up to ten 
metres indicating at least one event of high water levels within the cave (white parts are at the cave’s ceiling). Bottom 
right: Detritus-free area on the cave wall where the cave stream flows against the wall at high speeds (“cut bank”) 
eroding away the detritus cover (April 4th, 2016).  

Figure 3.21: Stalagmite VML22 over its entire length (about 50 cm) with disturbed growth in its lower section and 
more orderly growth in its upper section.  

This is also true for the lower parts of stalagmite VML22 (total length about 50 cm; Figure 

3.21). Interestingly, at some 15 cm from its top, fabrics become more regular so that conditions 

inside the cave must have changed to favour a more orderly growth of stalagmite VML22.  
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Figure 3.22: Location of stalagmite VML22 in cave Ma Le 2. The stalagmite grew at the position of the grey drip 
water collection container which also holds the drip rate logger, well below the water level of the backwater event 
indicated by the detritus covering  the cave walls. Pictures continuous from left to right (March 31th, 2016). One 
stalactite was feeding stalagmite VML22 (drip fall height about 1,2 m).  

Monitoring of the cave environment was performed at the location of stalagmite VML22 

(Figure 3.18 left): Drip rate at the dripsite of stalagmite VML22 was logged at 30-minute-

intervals with a Stalagmate Mark 3 drip rate logger (TGC-0011, Driptych) over a period of 

almost 2.5 years (Figure 3.23). Temperature (T) and relative humidity (RH) were logged five 

times per day (at intervals of 4 hours and 48 minutes) with a Tinytag TGP-4500 (Gemini 

Loggers; accuracy: ± 0.5°C at 8°C and ± 3.0% RH at 25°C) over a period of about one year. 

The data sets for T and RH are shorter than that for drip rate because T and RH (together with 

CO2 concentrations) were initially measured with another logger that failed however after only 

eleven days (Figure 3.25) due to condensation inside the logger’s casing that damaged the 
sensors although this should have been prevented by hydrophobic filters. Furthermore, the T 

and RH data since the last read-out on March 25th, 2016 have been lost due to a technical 

problem with the logger’s batteries and memory. 

Drip rate mostly varies between 6 and 10 drips in 30 minutes, with an average of 7.9 drips and a 

median of 8 drips (n = 11.562 single measurements). Although the variation is quite small, drip 

rate still clearly changes with season, being increased during the rainy season and decreased 

during the dry season in a pattern that closely resembles the distribution of rainfall amount over 

the year (Figure 3.4) without any significant lags compared to the rainfall signal.  
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Figure 3.23: Drip rate at the drip site of stalagmite VML22 in cave Ma Le 2, logged in intervals of 30 minutes (grey 
line). The black line is a 12-point running mean (weighted adjacent-averaging) representing 6-hour-intervals.  

In addition to this seasonal pattern, drip rate fluctuated on smaller sub-seasonal time scales. This 

variation is mostly on a weekly scale with an amplitude of 1 to 2 drips per 30 minutes, but even 

variations on a daily scale occur occasionally, for instance from May 3rd to May 4th, 2015. 

Overall, drip rate in 2016 was lower than in 2015 by about 1 drip / 30 min.  

These results indicate that the dripsite of stalagmite VML22 is supplied with drip water from a 

flow path network that comprises both slow and fast flow components. Parts of the overlying 

epikarst seem to have a certain water storage capacity in which the water from multiple rainfall 

events is mixed and released more gradually, while other parts of the flow path network appear 

to transmit rainwater more quickly to the dripsite so that even single rainfall events are 

discernible from drip rate monitoring. This suggests that mixing of rainwater from multiple 

rainfall events does take place, while particularly strong rainfall events can still stand out among 

the seasonal drip rate variation.  

Over the entire monitoring period of more than one year, relative humidity has constantly 

remained at 100 % (Figure 3.24), consistent with the existence of a perennial cave stream. At 

times when the logger did not record 100 % RH, it measured 0 % RH. Because this is most 

likely due to condensation on the humidity sensor according to the manufacturer’s manual, this 
reading indicates an oversaturation of the cave air with respect to water rather than a drop in 

RH. The logger’s recording of 100 % RH was confirmed by independent RH measurements 

using an Assmann aspiration psychrometer (November 5th, 2015) that yielded the same 

temperature for both the wet and the dry thermometer. Under these conditions kinetic oxygen 

isotope fractionation due to evaporation (Section 2.3.3.2) is highly unlikely.  
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Figure 3.24: Temperature and relative humidity in cave Ma Le 2 at the position of stalagmite VML22, logged five 
times per day (interval: 4h48min). Where RH is not 100%, the logger recorded 0% RH, likely due to condensation on 
the humidity sensor thus indicating an oversaturation of the cave air with respect to water.  

Measured temperature (Figure 3.24) ranges from 17.2 °C to 21.3 °C, with an average of 19.3 °C 

and a median of 19.6 °C (n = 1,951). As in the case of drip rate, temperature clearly varies with 

season, being increased during the rainy season in NH summer and decreased during the dry 

season in NH winter. Over the monitored period this leads to an inter-seasonal change of more 

than 4 °C. On smaller (weekly) time scales, temperature fluctuates by less than 1 °C, while daily 

variations are so weak that they are indiscernible from measurement noise.  

The temperature amplitude of more than 4 °C over about one year indicates that cave Ma Le 2 

reacts relatively quickly to changes in ambient air temperature outside the cave. Due to the high 

thermal inertia of the overlying carbonate host rock, these temperature fluctuations are unlikely 

to be the sole result of thermal conduction, but require the process of convection. They therefore 

indicate a certain air exchange between the cave and ambient air. Intriguingly, this air exchange 

seems insufficient to reduce RH to values below 100%.  

As already mentioned, T, RH and CO2 concentrations were initially measured with a CM-0018 

logger (CO2Meter). Although the device failed after only eleven days due to condensation 

inside the logger’s casing that should have been prevent by the equipped hydrophobic filters, the 

recorded data (Figure 3.25) still prove that ventilation events take place in cave Ma Le 2 as was 

previously hypothesised based on the large cave entrance, on the fast-flowing cave stream 

entraining the overlying air and on high-amplitude cave air temperature fluctuations. The data 

indicate an event from March 1st to March 3rd, 2014, during which outside air replaced parts of 

the cave air which resulted in the cave air being slightly warmer (up to 2°C higher than 17.4 °C 

before), drier (97 % RH rather than ≥ 100 % RH before) and depleted in CO2 (600 ppmV) 

compared to before and after the ventilation event (800 to 1200 ppmV).  
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Figure 3.26: Maps of cave Sang Ma Sao in profile view (top) and plan view (bottom). The locations of stalagmite 
VSMS2 and the loggers for measurements of temperature (T), relative humidity (RH) and drip rate are indicated in 
red. The hatched area represents the cave stream.  

Figure 3.25: Temperature, relative humidity and CO2 concentrations in cave Ma Le 2 at the location of stalagmite 
VMl22 logged five times per day (interval: 4h48min) with a CM-0018 (CO2Meter). The data gap is due to a data 
read-out before re-installing the logger. Axis designations and units are given in the legend.  

 

 

 

 

 

 

 

3.3.2 Cave Sang Ma Sao 

The map of cave Sang Ma Sao is shown in Figure 3.26. The mapping of the cave was conducted 

in 2015 within the framework of the joint project “KaWaTech Vietnam” (funded by the BMBF; 
02WCL1291A) in 2015 under the lead of Yves Dubois (the names of all collaborators are given 

in Figure 3.26).  
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The entrance to cave Sang Ma Sao is located at 23°17'11.54"N, 105°19'40.15"E at an altitude of 

1,138 masl. The cave is almost 1,300 m long is inclined downstream by -140 m and ends 

downstream in a sump. The thickness of the overlying carbonate rock is about 10 m at the 

entrance and about 165 m directly above the dripsite at which stalagmite VSMS2 has been 

growing. This site is located at some 250 m distance downstream of the entrance at an altitude 

of around 15 m below the level of the cave entrance.  

Similar to cave Ma Le 2, cave Sang Ma Sao features almost no branching and can also be 

classified as an “ideal pipe” (Ford & Williams, 2007), while the cave river has not cut down as 

deeply into the carbonate host rock during the vadose phase as in cave Ma Le 2. The vadose 

entrenchment seems to follow the direction of the local fault in N-S direction only in a small 

passage (Figure 3.16), while the cave is rather developed in a NW-SE direction parallel to a 

fault that is known south of Sang Ma Sao cave, between the Sông Hiến and the Bắc Sơn 

Formations. The cross-section is also elliptical to canyon-like as in cave Ma Le 2, but the cave 

ceiling is not as high (not exceeding 30 m), except for the location of a great waterfall (P 25 in 

Figure 3.26). Most of the passages of cave Sang Ma Sao are very narrow and many tend to dip 

slightly to the southwest (Figure 3.28 top). Overall the cave features many passages that are 

both narrow and low (Figure 3.28 bottom) which makes cave Sang Ma Sao highly susceptible to 

backwater events (and dangerous to enter) as even small increases in cave stream flow can lead 

to exceedances of the cave’s “carrying capacity”.  

With regard to other classifications cave Sang Ma Sao can be described as highly similar to cave 

Ma Le 2 (Section 3.3.1), but the cave stream, albeit perennial, features significantly lower flows 

with flow rates ranging from some 7 L/s during the dry season to some 20 - 30 L/s during the 

rainy season (Ender, Goeppert & Goldscheider, 2018). However, its effect on relative humidity 

and consequently kinetic oxygen isotope fractionation caused by evaporation appear to be 

similar.  

Cave Sang Ma Sao contains speleothems mainly in the form of impressive flowstones rather 

than stalagmites, but speleothem formation is prevented in the bed of the cave stream. In 

contrast to cave Me Le 2, aeroliths are very rare and often not obvious in cave Sang Ma Sao 

suggesting that downstream winds induced by the cave stream are much weaker. Air movement 

was confirmed by measurements (November 5th, 2015) that yielded an air flow velocity of 0.12 

m/s at the first low passage close to the cave entrance and of 0.07 m/s at the logger’s position at 
a height of 3 m. Overall, it can be stated the cave Sang Ma Sao is most likely far less susceptible 

to ventilation than cave Ma Le 2 due to the low flow of the cave stream, the much smaller cave 

entrance (about 10 m high and 10 m across) as well as to the many low and narrow cave 

passages.  
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Figure 3.28: Passages in cave Sang Ma Sao: Narrow but high passages (top) dipping soutwest and low passages 
(bottom) at the beginning of the cave (left) and just downstream of the location of stalagmite VSMS2 (right). All 
pictures face downstream (March 27th, 2016).  

Figure 3.27: Boulders in cave Sang Ma Sao indicating former high-flow conditions of the cave stream (picture facing 
downstream; March 27th, 2016).  
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Figure 3.30: Black crust on the walls of cave Sang Ma Sao (left picture taken by Lai Quan Tuan (VIGMR) on March 
12th, 2014; right: March 27th, 2016).  

Figure 3.29: Location of stalagmite VSMS2 in cave Sang Ma Sao. The stalagmite grew at the position of the grey 
drip water collection container (left; facing downstream; March 27th, 2016) which also holds the drip rate logger and 
was extracted using a metal saw (right; picture taken by Tran Diep Anh (VIGMR) on March 13th, 2015). Stalagmite 
VSMS2 was fed by drip water from a single stalactite with a drip fall height of 15 cm.  

Another remarkable difference to cave Ma Le 2 is the absence of detrital material on most of the 

walls of cave Sang Ma Sao. However, sediments are frequent inside the cave, including 

relatively large boulders with diameters of up to 30 cm (Figure 3.27) that indicate that cave 

stream flow must have been significantly higher during past periods. The high flow velocities 

during these high-flow events have probably enabled the river water to wash the cave walls 

clean of any detrital material deposited on them during past backwater events. An interesting 

feature of many parts of the cave walls is a black crust (Figure 3.30) the formation of which is 

still under investigation. The dripsite of stalagmite VSMS2 together with its extraction is shown 

in Figure 3.29.  
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Figure 3.31: Drip rate at the drip site of stalagmite VSMS2 in cave Sang Ma Sao, logged in intervals of 30 minutes 
(grey line). The black line is a 12-point running mean (weighted adjacent-averaging) representing 6-hour-intervals. 

Monitoring of the cave environment was performed at the location of stalagmite VSMS2 

(Figure 3.26, bottom) using the same equipment as for stalagmite VML22. Drip rate at the 

dripsite of stalagmite VSMS2 (Figure 3.31) was recorded over a period of about nine months, 

while the logger failed to record drip rate in the subsequent logging period indicating a drip rate 

of zero drips per 30 minute invertal (not shown) due to a yet unknown technical problem.  

Drip rate in cave Sang Ma Sao varies more strongly than in cave Ma Le 2, ranging from 16 to 

44 drips in 30 minutes, with an average of 24.6 drips and a median of 23 drips (n = 11,562) with 

a total amplitude of 28 drips / 30 min. Drip rate clearly changes with season, generally being 

increased during the rainy season and decreased during the dry season, but peak drip rate 

(September 7th, 2015) seems to lag behind the long-term peak rainfall amount (July; Figure 3.4) 

by about two months. In addition to this seasonal pattern, drip rate fluctuated on smaller sub-

seasonal time scales. As in cave Ma Le 2, this variation is mostly on a weekly scale with an 

amplitude of up to 5 drips per 30 minutes, but variations on a daily scale also occur 

occasionally, for instance on December 10th, 2015. Potential fluctuations in drip rate on longer 

time scales cannot be assessed on the basis of this data set.  

These results indicate that the dripsite of stalagmite VSMS2, similar to the on of stalagmite 

VML22, is supplied with drip water from a flow path network that comprises both slow and fast 

flow components. Analogously, this suggests that mixing of rainwater from multiple rainfall 

events does take place, while particularly strong rainfall events can still stand out among the 

seasonal drip rate variation. The overall larger amplitude of drip rate variation compared to the 

dripsite of stalagmite VML22 implies that the dripsite of stalagmite VSMS2 reacts more 

strongly to short- and medium-term (daily to weekly) changes of meteoric water supply due to a 

higher portion of fast-flow components in the overlying flow path network.  
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Figure 3.32: Temperature and relative humidity in cave Sang Ma Sao at the position of stalagmite VSMS2, logged at 
30-minutes-intervals. Where RH is not 100%, the logger recorded 0% RH, likely due to condensation on the humidity 
sensor thus indicating an oversaturation of the cave air with respect to water. 

As in cave Ma Le 2, relative humidity has constantly remained at 100 % (Figure 3.32) over the 

entire monitoring period of about two years, again consistent with the existence of a perennial 

cave stream. Condensation on the humidity sensor has again led to an erroneous reading of 0 % 

RH in spite of the related oversaturation of the cave air with respect to water. The logger’s 
recording of 100 % RH was confirmed by independent RH measurements using an Assmann 

aspiration psychrometer (November 6th, 2015) which renders kinetic oxygen isotope 

fractionation due to evaporation unlikely.  

Measured temperature (Figure 3.32) ranges from 19.1 °C to 21.4 °C, with an average of 20.1 °C 

and a median of 20.4 °C (n = 3,647). Consequently, this site in cave Sang Ma Sao seems about 

0.8 °C warmer than the site in cave Ma Le 2, mainly because temperatures do not decrease as 

much during winter. As the logging periods are not identical, but only partly overlap, they are 

not entirely comparable. Temperature in Sang Ma Sao cave also clearly varies with season, 

being increased in NH summer and decreased in NH winter, with no apparent lag behind the 

long-term ambient air temperature peak (August; Figure 3.7). Summer in the year 2016 was 

about 1.5 °C and 0.5 °C warmer than in 2015 and 2017, respectively.  

The inter-seasonal change of 2.3 °C between winter and summer 2016 is noticeably lower than 

the > 4 °C change measured in cave Ma Le 2. The shorter-term temperature fluctuations are also 

much lower than in cave Ma Le 2, with only one exception (September 7th, 2015). Both 

observations indicate that cave Sang Ma Sao reacts less strongly to changes in ambient air 

temperature outside the cave which is consistent with a relatively weak ventilation of cave Sang 

Ma Sao compared to cave Ma Le 2.  
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4 Materials and Methods 

4.1 Stalagmite Extraction and Preparation 

Stalagmites VML22 and VSMS2 were extracted from cave Ma Le 2 and cave Sang Ma Sao, 

respectively, using a metal saw instead of hammer and chisel in order to prevent any damage to 

the stalagmites during extraction. Stalagmite VML22 was collected on February 22nd, 2014 and 

stalagmite VSMS2 on March 13th, 2015.  

To meet the requirements of all subsequent analyses with regard to the form of the stalagmite 

samples the stalagmites needed to be prepared and formatted: After collection from the caves 

the stalagmites were cut in half along their central growth axis using a stationary saw (Conrad) 

with a 2 mm wide diamond-coated blade. To provide an exact reference for a second cut, the 

stalagmite halves were tightly wrapped in cling film and embedded in blocks of fine-grained 

modelling plaster with the original cut face facing down. Both halves were then cut again 

lengthwise parallel to the first cut to obtain stalagmite slabs of about 1.5 cm thickness for easier 

handling of the stalagmite samples.  

As both the subsequent sample extraction (using a Micromill; Section 4.4) and all of the 

analyses were conducted at high-resolution and at precise depths (here: Z-position) within the 

sample the two sides of the stalagmite slabs needed to be exactly parallel to each other. This was 

achieved by abrading the slabs using a MPS 2120 surface grinder (G&N; SiC with a P400 grit 

size) until the surface was plain and smooth. For high-quality microscope images and an exact 

positioning of the drill bit during micromilling and of the laser during LA-ICP-MS analyses the 

stalagmites’ growth laminae were made visible by manually pre-polishing the slabs’ top sides 
with a SiC sandpaper with a P800 grit size. The final lapping of the slabs was conducted with a 

PM2A lapping machine (Logitech) using a diamond polish with a 1 µm grit size (Struers).  

Because the measurement chamber of the LA-ICP-MS can only hold samples with the 

maximum dimensions of 10 cm x 5 cm, the stalagmite slabs needed to be halved. As cutting the 

slabs is impossible without the loss of stalagmite material to be analysed, the slabs were broken 

into two after pre-cutting them from the bottom side down to a thickness of 1-2 mm with a 

band-saw (1 mm diamond blade; Proxxon MICRO Bandsaw MBS/E). For UV-microscopic 

analysis (Section 4.7.2) slides with a thickness of 200 µm were produced using the Petro Thin 

thin sectioning system (Buehler), while their thickness were subsequently reduced to 50 µm for 

VIS-microscopic analysis (Section 4.7.1) to achieve the desired optical effects such as the 

differing transmission of light depending on the three-dimensional orientation of the crystals 

within the samples.  
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Micromilling and all of the analyses were conducted on one of the two slabs of each stalagmite, 

except for the sample extraction for U/Th dating which was done on the opposite slab. To obtain 

sufficient sample material for U/Th dating these slabs were first cut along their central growth 

axis perpendicular to the slab surface and then chunks were cut out along the cutting edge with 

the band-saw accounting for the inclination of the growth laminae (Figure 4.1). 

 

 

 

 

 

 

4.2 Macroscopic Characteristics of the Studied 

Stalagmites 

This section characterises the two studied stalagmites on a macroscopic level, for instance, with 

regard to their colour and porosity. All depth-related information in the following are given 

relative to the top of the respective stalagmite as “depth from top” (DFT).  

4.2.1 Stalagmite VML22 

The part of stalagmite VML22 suited for palaeoreconstruction, where growth geometry is not 

too complex and porosity not too high (from hereon referred to as “stalagmite VML22”), is 
about 10.4 cm long and 6 - 7 cm wide at its lower half, whereas the upper half gradually tapers 

off towards the stalagmite’s tip (Figure 4.2). While the lowest quarter or so also features 

brownish tones, the overall colour impression is greyish with brighter growth laminae 

alternating with greyish laminae. For instance, an area dominated by white tones ranges from 2 

to 6 mm DFT, while an area dominated by grey tones spans 6 - 20 mm DFT. A very distinct 

feature of stalagmite VML22 is a well-defined black layer around 88 mm DFT along the growth 

axis (which corresponds to 90 mm DFT along the track along which the analyses were 

conducted represented by the black line in Figure 4.2).  

Figure 4.1: Slab of stalagmite VML22 after extraction of samples for U/Th dating using a band-saw. To minimize 
the error due to subsample mixing the cuts follow the inclination of the growth laminae (left: top view; 
right: perpendicular view on the cutting edge). 
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The growth laminae also differ in translucence. For example, the range 52 to 65 mm DFT 

features alternations of white opaque laminae and more translucent laminae that are rather grey 

in their colour impression. The most prominent translucent sections along the central growth 

axis are located at 23, 32 - 36, 76 - 79 and 96 - 99 mm DFT, respectively.  

While the porosity in stalagmite VML22 is relatively low overall, growth direction appears to 

have changed quite frequently with noteable shifts in the position of the central growth axis. 

These shifts are so numerous and strong that a practical sampling and analysis protocol (with 

analyses along straight lines) likely cannot account for all of them. In the case of stalagmite 

VML22, the largest discrepancy between the actual locus of the central growth axis and the 

locus of the geochemical analyses (Figure 4.2) exists at 45 mm DFT.  

Figure 4.2: Slab of stalagmite VML22 (flatbed scan) including shifts of the central growth axis and changes in growth 
growth direction (bright green) and locations of the samples extracted for U/Th dating (red rectangles). The black line 
represents the axis along which micromilling and LA-ICP-MS analyses were performed. 
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4.2.2 Stalagmite VSMS2 

Stalagmite VSMS2 is 15 cm long and 4.5-5 cm wide over most of its length giving it a general 

cylindrical shape, only over the topmost 25 mm it tapers off towards the stalagmite’s tip (Figure 

4.3). In contrast to stalagmite VML22, VSMS2 features an overall brownish colour impression 

while grey, black and whitish tones are almost completely absent. The brightest colours are 

present within the topmost 4 mm.  

The most prominent macroscopic feature of stalagmite VSMS2 is a section between 4 and 18 

mm DFT that is highly translucent and seems to exclusively consist of pure carbonate 

minerals/crystallites, strongly contrasting with the rest of the stalagmite. This might indicate 

that this section is virtually free of any detrital components that cause brownish to blackish 

tones in stalagmites. Another translucent section is situated at 74 – 76 mm DFT but appears 

darker and more brownish than the translucent whitish section at 4- 18 mm DFT, probably as an 

effect of the darker laminae directly on top of it. The laminae between 65 and 74 mm DFT are 

also relatively translucent.  

Another important difference to stalagmite VML22 is the generally higher porosity of 

stalagmite VSMS2. This porosity is particularly noticeable in conjunction with darker brown 

layers, such as at 41, 63 – 65 and 100 – 104 mm DFT, but is not restricted to these depths, as 

shows, for instance, the section from 18 to 36 mm DFT. Furthermore, changes in growth 

direction and shifts in the position of the central growth axis are generally less pronounced than 

in stalagmite VML22 so that the lines along which sampling and analyses were conducted 

(Figure 4.3) are a good approximation of the central growth axis.  

Figure 4.3: Slab of stalagmite VSMS2 (flatbed scan) including shifts of the central growth axis (bright green) and 
locations of the samples extracted for U/Th dating (red rectangles). The black lines represent the axes along which 
micromilling and LA-ICP-MS analyses were performed. 
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4.3 Dating using the Uranium/Thorium decay chain 

and Age Model construction 

The suitability of speleothems for palaeoreconstruction greatly stems from the fact that they can 

be both accurately and absolutely dated using the U/Th decay chain, up to 650.000 years back in 

time (Richards & Dorale, 2003). U/Th dating is considered the “most robust geochronometer 
available over much of the Quaternary” (Hellstrom, 2006) which makes it a go-to dating method 

in speleothem research.  

Fundamentally, U/Th dating is based on the separation of U from its daughter isotopes as a 

consequence of differences in solubility and/or chemical behaviour of the involved chemical 

species (Schwarcz, 1989): Initially, U occurs together with its daughter isotopes bound in rather 

insoluble silicates and/or oxides. Through weathering, mother and daughters are set free, but U 

forms soluble and therefore mobile complexes (mainly as the uranyle ion UO2
2+), while its 

daugthers such as 230Th are insolube and thus less mobile (Mortimer et al., 2015). Consequently, 

only the mother isotope U is present in karst cave dripwaters and gets incorporated in 

stalagmites growing from them. With this incorporation the atomic clock is set to zero and starts 

ticking due to the radioactive decay of U within the stalagmite. The (diminishing) discrepancy 

in abundance between mother and daugther isotopes is a function of time and can thus be used 

as a chronometer. Eventually a secular radioactive equilibrium is reached where the activity of 

the U-daugthers is equal to the activity of the U-mother isotope and the atomic clock stops 

ticking after about 600,000 years (Schwarcz, 1989; Bourdon, 2003).  

Therefore, the applicability of U/Th dating relies on two basic assumptions: Firstly, at the time 

of stalagmite formation, Th as the daugther isotope is not present in the stalagmite or in known 

concentrations (230Th/234U either zero or determinable). Secondly, the sample has always 

behaved as a closed system without any gains or losses of any of the isotopes other than by 

radioactive decay (Ivanovich & Harmon, 1992). Using equations 4.1 and 4.2, the age (t) of a 

stalagmite sample can be calculated (Ivanovich & Harmon, 1992):  

 

 

4.1 

 

4.2 

 

where t is time, 234U/238U and 230Th/238U are the activity ratios (the index 0 indicates the initial 

activity ratio) and where λ is the decay constant of the respective nuclide. Figure 4.4 illustrates 

the evolution of the 230Th/234U activity ratio until it reaches secular equilibrium for two different 

initial 234U/238U ratios (1.0 and 4.0).  
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Figure 4.4: Evolution of the 230Th/234U activity ratio until it reaches secular  equilibrium for two different initial 
234U/238U ratios (1.0 and 4.0); adapted from Schwarcz (1989).  

 

 

 

 

 

 

 

The main source for uncertainty in U/Th dating are low initial U contents and the contamination 

of a sample with detrital 230Th incorporated in the stalagmite together with organic matter, 

colloids or fine sediments. If this initial 230Th is not corrected for, the resulting ages can be 

significantly overestimated. It can be calculated from its ratio with the stable isotope 232Th 

assuming that this ratio is constant (230Th/232Th = 0.8 ± 0.8). Further assumptions for such a 

correction are a bulk earth 232Th/238U weight ratio in the continental crust of 3.8 and that 230Th, 
234U and 238U are in secular equilibrium (Goldstein, 2003; Hellstrom & Pickering, 2015).  

For this PhD thesis, U/Th dating was performed using a Thermo Fisher Scientific iCap Q-ICP-

MS (inductively coupled plasma – mass spectrometer) and a Thermo Fisher Scientific Neptune 

Plus MC-ICP-MS (MC = multi-collector) at the Institute for Environmental Physics, at the 

Heidelberg Academy of Sciences. Sample preparation and mass spectrometric analysis with the 

iCap Q were performed following the procedure of Douville et al. (2010). For the Neptune Plus 

measurements, the applied measurement protocols, data treatment including corrections and 

chemical sample preparation are described in detail in Arps (2017). The ages were calculated 

using the half-lives of Cheng et al. (2000) and corrected for detrital Th assuming a bulk earth 
232Th/238U weight ratio of 3.8 ± 1.9 for the detritus and a secular equilibrium between 230Th, 234U 

and 238U. Analytical errors are given in Table 5.1 and Table 5.2 at the 2σ-level and do not 

include half-life uncertainties.  

The age model is the relationship between the depth within the stalagmite given as DFT and the 

age. For stalagmites VML22 and VSMS2 it was modelled with the algorithm StalAge based on 

the measured U/Th dates and their respective uncertainties (Scholz & Hoffmann, 2011). This 

algorithm applies Monte-Carlo simulations that fit ensembles of straight lines between three or 

more adjacent dating points (ages) to calculate the age model together with its 95%-confidence 

limits.  
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It also enables the iterative identifcation of major and minor outliers in the data prior to 

constructing the age model. After its construction the age model is screened for age inversions 

(Scholz & Hoffmann, 2011). Although several other algorithms for age model calculation are 

available, a comparison between these algorithms showed that they yield comparable results in 

relatively easy cases, but that StalAge together with the algorithm OxCal are more successful at 

calculating reliable age models from stratigraphically complex samples with a limited number 

of U-series ages (Scholz et al., 2012).  

Refining the calculated age models by counting annual laminae (e.g. Tan et al., 2006; Baker et 

al., 2008; Tan et al., 2014) discernible from differences in their transmissivity of visible or 

ultraviolet light or in their trace element concentrations was not possible in the case of 

stalagmites VML22 and VSMS2 due to their low growth rate and the lack of lamination over 

larger sections along their growth axes.  

4.4 Sample Extraction by Micromilling 

Sample extraction from stalagmites VML22 and VSMS was performed using a Micromill (New 

Wave Research) with a hardened-steel drill bit with a spherical tip (ø = 300 µm). The samples 

were extracted continuously in linear trenches along an approximation of the stalagmites’ 
central growth axis (black lines in Figure 4.2 and Figure 4.3). In order to achieve sample masses 

of at least 1 mg (sufficient for 2-3 repeated isotope measurements), these trenches were set to be 

4 mm across, 600 µm deep and 200 µm wide (= dimension in growth direction) using the 

Micromill software (New Wave Research) resulting in a nominal spatial resolution of the 

resulting isotope data (Section 5.2) of 200 µm. Due to minor deviations in the spatial calibration 

of the Micromill system, the actual spatial resolution is 189 µm for stalagmite VML22 and 199 

µm for stalagmite VSMS2.  

To take account of the varying curvature of the growth laminae, the trenches were not always 

exactly perpendicular to the growth axis but more or less inclined relative to the growth axis 

depending on curvature. The total depth of 600µm of each sample trench was achieved in three 

separate milling steps of 200 µm each to prevent damage to the sample and/or the drill bit due to 

excessive force. Vertical and horiztonal feed were set to 75 µm/s, drill bit rotation was set to 

50% to reduce the loss of sample material during milling. Between consecutive trenches, both 

the stalagmite surface and the drill bit were thoroughly cleaned with a brush. From stalagmite 

VML22 a total of 555 samples were micromilled, from stalagmite VSMS2 a total of 750 

samples.  



4  Materials and Methods  

 

120 

4.5 Stable Isotope Analysis by IR-MS 

The samples micromilled from the stalagmites were analysed for the stable isotope composition 

of oxygen (δ18O) and carbon (δ13C) by isotope-ratio mass spectrometry (IR-MS) using a Delta V 

Advantage mass spectrometer (Thermo Fisher Scientific) coupled to an on-line, automated 

carbonate preparation system (GasBench II; Thermo Fisher Scientific). In this system, the 

sample vials sealed by rubber septa are flushed with He so that the atmosphere inside the vials is 

free of CO2 and O2, and 103% orthophosphoric acid is added to release CO2 from the complete 

dissolution of the ~ 1 mg carbonate samples over 90 minutes at 72°C. Using He as carrier gas, 

the sample CO2 then passes a gas-phase chromatograph to separate it from other gases and is 

injected into the mass spectrometer for analysis (e.g. Clark & Fritz, 1997), in this case in ten 

pulses of 100 µL each. The results obtained from these ten injections are then averaged to yield 

the final results. 

Calibration was conducted using the NBS19 standard material. Precision is determined by the 

absolute standard deviation (ASD) of repeated measurements of the Carrara Marble standard 

material, with an average accuracy of 0.03 ‰ for δ13C and of 0.09 ‰ for δ18O, respectively (n = 

150) . For stalagmite VML22, precision was ≤ 0.08 ‰ for δ18O and ≤ 0.03 ‰ for δ13C (n = 

301). The average precision of the individual measurements (n = 605) was 0.06 ‰ and 0.04 ‰ 
for δ18O and δ13C, respectively. In case of stalagmite VSMS2, precision was ≤ 0.09 ‰ for δ18O 

and ≤ 0.04 ‰ for δ13C (n = 358). The average precision of the individual measurements (n = 

835) was 0.05 ‰ and 0.04 ‰ for δ18O and δ13C, respectively. All results are reported in the δ 
notation [‰] relative to the V-PDB standard.  

4.6 Trace Element Analysis by LA-ICP-MS 

Trace element concentrations were determined along the approximated growth axis of 

stalagmites VML22 and VSMS2 (black lines in Figure 4.2 and Figure 4.3) by LA-ICP-MS (LA 

= laser ablation) using an Agilent 7500ce mass spectrometer coupled to an ESI NWR 193 laser 

ablation system with an ArF excimer laser at the Institute of Geosciences at the University of 

Mainz. The measurements were conducted with a laser spot size of 110 µm, at a laser 

wavelength of 193 nm, a scan speed (lateral feed) of 15 µm/s, a pulse repetition rate of 10 Hz 

and an energy density of ~3 J/cm2. Prior to scanning a washout of 20 s was performed after a 

laser warmup of 15 s. The resulting data have a spatial resolution of 6.4 µm.  

Calibration was conducted using the NIST SRM 612 reference material, accuracy was verified 

with the USGS MACS-3 carbonate standard as this standard material is the most similar to the 

sample material. Precision was determined with the NIST SRM 610, the USGS GSD-1G and 

the USGS BHVO-2G reference materials. To prevent any potential contamination, the 

stalagmite surface was pre-ablated prior to the actual measurements as well as the surface of all 

standard materials except for the USGS MACS-3 standard due to its fragility.  
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Pre-ablation was conducted at a lateral feed of 50 µm/s after a 2-second laser warmup without a 

washout. As an additional quality control, some sections along the stalagmites’ growth axis 
were analysed twice with a lateral offset of about 2 mm in between.  

Blank quantification was performed by recording the measurement signal (produced by internal 

processes within the analytical instrument, e.g. by the carrier gas) without ablation of any 

sample material for about 15 seconds before and in between measurement runs. For reasons of 

practicality this is done by activating the laser with the shutter just in front of it closed, as the 

laser triggers the recording of the measurement signal automatically to circumvent the need for 

manual blank quantification.  

To transform the raw data (in counts/second) into the final concentration values in µg/g, they 

were processed according to standard procedure as follows: The raw data (count rates) of all 

measured elements are corrected for blanks by subtraction and then divided by the 

corresponding blank-corrected count rates of Ca in order to account for internal signal 

instabilities during analysis. As a first outlier control the results of standard materials (not of the 

samples) are then filtered to remove all measurement values that either exceed their respective 

median by more than 30% or that are below their respective median by more than 30%. In the 

case of the standard materials all data values generated during each ablation run before and 

between analyses of the stalagmite samples are averaged for later calibration and precision 

evaluation.  

The transformation of the now blank-corrected count rates into uncorrected concentration values 

(µg/g) is conducted using the following equation:  

 

4.3 

cuncorr:  uncorrected element concentration [µg/g] 
CRbc:   blank corrected count rate [-] 
IACa:   isotope abundance of 43Ca (= 0.00135) [-] 
IAE:   abundance of a specific isotope of the respective element, e.g. 25Mg (= 0.1003) [-] 
AW:  atomic weight of Ca and the respective element (E) [g/mol] 
c(Ca):  concentration of Ca [µg/g] in the calibration or reference standard from the literature  
  (e.g.: NIST SRM 612 with c(Ca) = 85050 µg/g) or in the stalagmite sample 

 

For this transformation of the stalagmite sample values a Ca concentration of 38 wt-% instead is 

assumed to account for potential impurities within the stalagmite. The calibration factor is 

calculated by dividing the uncorrected element concentrations of the NIST SRM 612 reference 

matieral by the published concentration value for each respective element. The element 

concentrations in the other standard materials and in the stalagmite samples are corrected by 

dividing the uncorrected concentrations by the calibration factor for each element.  
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All published values and reference values used for the calibration and verification of the 

measurement quality were taken from Jochum et al. (2005) and/or Jochum et al. (2012).  

Precision and accuracy of the trace element analyses with LA-ICP-MS are shown in Table 4.1 

for stalagmite VML22 and in Table 4.2 Table 4.1for stalagmite VSMS2. Precision is usually 

below 5 % except for the Cd measurements in the USGS BHVO-2G standard where the relative 

standard deviation (RSD) is 62 %. Accuracy is high for elements like Mg, Sr, Mn and Cu with 

deviations from the published reference concentration below or close to 5 %. The results for the 

remaining elements are less accurate, in particular for Si and P (Table 4.1 andTable 4.2) which 

can therefore only be interpreted qualitatively. These inaccuracies can partly be explained with 

mass interferences during analysis, for instance of single Si ions with two oxygen ions. The 

generally low precision of the measurements of the MACS-3 standard material is due to the 

inhomogeneity of the standard material (being a pressed powder pellet) rather than a low 

measurement quality. The elements Fe, Zn and Sr were quantified based on the analysis of 

multiple isotopes. In this thesis the isotope was chosen for which the results deviated less from 

the published reference concentration, in case of stalagmite VML22, 57Fe, 67Zn and 88Sr. For 

better comparability, the same isotopes for chosen for stalagmite VSMS2.  

 

 

 

 

Table 4.1: Quality of the trace element analyses with LA-ICP-MS for stalagmite VML22. Precision is determined by 
the relative standard deviation (RSD) of repeated measurements (n = 12) of the NIST SRM 610 and USGS GSD-1G 
standard materials. Accuracy is represented by the deviation (Dev.) from the reference concentration in the USGS 
MACS-3 standard material as published in the literature (n = 12).  

Isotope Na Mg Al Si P Mn Fe Cu Zn Rb Sr Cd Ba U 

 
               

NIST SRM 610 

Dev. [%] 5 24 1 5 12 3 -32 3 5 <0.5 -2 -2 -3 -1 

RSD [%]  3 1 1 1 3 1 1 1 2 2 1 3 2 3 

USGS GSD-1G 

Dev. [%] 1 13 14 2 24 <0.5 -40 -2 13 3 -1 47 4 3 

RSD [%] 3 1 1 2 3 1 1 3 6 2 <0.5 7 1 2 

USGS MACS-3 

Dev. [%] -11 <0.5 14 49 100 -3 -5 -6 -7 -21 5 -10 20 11 

RSD [%] 2 2 8 14 11 4 11 6 7 30 2 5 6 9 
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For post-analysis processing of the data, all negative values were removed and outliers were 

detected using the Grubbs test (Grubbs, 1969) and deleted. Furthermore, to adapt the spatial 

resolution of the element data to the spatial resolution of the stable isotope data, the element 

data were averaged accordingly using an algorithm written in the programming language R (R 

Core Team, 2013; source code in Appendix C.5). This algorithm groups the element data into 

the depth (DFT) increments the isotope data integrate over (multiples of 189 µm for stalagmite 

VML22 and of 199 µm for stalagmite VSMS2). Over each of these increments the algorithm 

averages the measured element concentrations to produce element concentration values that 

correspond to their respective stable isotope data point. 

4.7 Microscopic Analysis 

4.7.1 Optical Microscopy  

Optical microscopic analysis of stalagmites VML22 and VSMS2 was performed with a Leica 

DM750M microscope (Leica Microsystems Limited) at five times magnification. The 

microscope images shown in this work were taken with a Leica ICC50 HD camera using the 

LAS EZ 3.0.0 (Build: 629) software (both from Leica Microsystems Limited).  

Microscopic analysis using reflected light was conducted on the stalagmite slabs (thickness of 

1.5 cm; Section 4.1). For image acquisition the following settings were used for optimal image 

quality: The illumination level of the primary light source (four light-emitting diodes) was set to 

14 out of the 14 available levels, the aperture was 100% open and a white balance was 

conducted on a white area of the respective stalagmite sample.  

Table 4.2: Quality of the trace element analyses with LA-ICP-MS for stalagmite VSMS2. Precision is determined by 
the relative standard deviation (RSD) of repeated measurements (n = 24) of the NIST SRM 610 and USGS BHVO-
2G standard materials. Accuracy is represented by the deviation (Dev.) from the reference concentration in the USGS 
MACS-3 standard material as published in the literature (n = 24).  

Isotope Na Mg Al Si P Mn Fe Cu Zn Rb Sr Cd Ba U 

 
               

NIST SRM 610 

Dev. [%] 3 24 -1 4 7 5 -37 5 4 <0.5 1 <0.5 -3 -2 

RSD [%]  3 2 2 4 4 3 4 4 4 4 1 4 2 4 

USGS BHVO-2G 

Dev. [%] -21 5 10 -12 -15 -7 -52 -14 6 -11 -1 17 -4 -6 

RSD [%] 1 1 1 1 1 1 1 2 2 1 1 62 1 3 

USGS MACS-3 

Dev. [%] -7 1 14 96 88 -1 -19 3 13 35 8 <0.5 19 15 

RSD [%] 3 2 12 34 21 6 19 8 19 55 5 6 12 17 
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Exposure time was set manually to 77.0 ms, enhancement to 12x, gamma to 0.7 and saturation 

to 100. The images were taken with a format of 2,048 x 1,536 pixels, with a medium sharpening 

effect and with both polarisers inserted with the left polariser being set to 90°. For easier 

orientation the microscope image was tilted horizontally and vertically. The pictures were taken 

along a raster of 2 mm (in X-direction; left / right from the operator’s perspective) times 1.5 mm 

(in Y-direction) in order to achieve sufficient (but not excessive) overlap between consecutive 

images for later image stitching.  

To display the microscopic information contained in single images in their context of the 

stalagmite’s internal structure, the single images were then stitched using the Photostitch 
software (version 3.1.22.46; Canon Utilities). For stalagmite VML22 a total of 1,083 images 

were taken of which 224 were stitched, for stalagmite VSMS2 926 images were stitched out of 

the 2,450 images taken.  

Microscopic analysis using transmitted light was conducted on thin slides (thickness of 50 µm; 

Section 4.1) of the sample stalagmites. For optimal image acquisition, the following settings 

were chosen: The primary light source was set to maximum, the lower aperture was 100% open, 

the upper aperture (condenser) was opened to a minimum and positioned at an intermediate 

level (Z-position), and a white balance was conducted on a white area of the respective 

stalagmite sample. Exposure time was set automatically, the remaining settings were identical to 

the ones chosen for reflected light analysis. For stalagmite VML22 a total of 120 images were 

taken and stitched, for stalagmite VSMS2 a total of 300 images were taken and.  
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Figure 4.5: Erroneous results (colour distortions; bright purple and red colours) when stitching UV-microscope 
images with the Photostich software. The contours of the separate images in this 4 x 5 mosaic (about 3.5 x 2.5 mm) 
are still visible. 

4.7.2 UV-Microscopy  

UV-microscopic analysis of stalagmites VML22 and VSMS2 was performed with an Axio 

Imager Z1 epifluorescence microscope using the ZEN blue software (lite edition 2.3; both from 

Carl Zeiss Microscopy) at ten times magnification. Images were acquired with an AxioCAM 

HRm camera (Carl Zeiss Microscopy).  

Microscopic analysis was conducted on thick slides (thickness of 200 µm; Section 4.1) of the 

sample stalagmites using the Brightfield, DAPI, FITC, DsRed and Alexa Fluor 660 filters. 

Images were taken with exposure times manually set to 48.0, 333.4, 726.8, 648.8 and 1227.4 

ms, respectively, at a resolution of 2,776 x 2,080 pixels using the live speed acquisition mode 

without autofocus. Focus was achieved manually with the Brightfield filter active, the primary 

light source was set to four tick marks. The pictures were taken along a raster of about 0.7 mm 

(in X-direction; left / right from the operator’s perspective) times 0.5 mm (in Y-direction) in 

order to achieve sufficient (but not excessive) overlap between consecutive images for later 

image stitching. After acquisition the images were optimised using the automatic best fit 

correction of the histogram of all five channels offered by the Zen blue software. The images 

were then exported from the .czi file format to the .jpeg format for stitching.  

Stitching was again performed with the Photostitch software. However, as the stitching 

algorithm of this software caused erroneous modifications of the pictures’ original colour when 
stitching images in Y-direction (Figure 4.5), only the stitching in X-direction was possible 

without losing the original fluorescence signal contained within the images. For stalagmite 

VML22 a total of 564 images were taken of which 141 were stitched, for stalagmite VSMS2 91 

images were stitched out of the 1,254 images taken covering the depth range from 40 mm DFT 

to its base.  
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Figure 4.6: Locations of the samples extracted from stalagmite VML22 (left) and VSMS2 (right) for XRD analysis, 
numbered in black.  

 

 

 

4.8 Mineralogical Analysis by XRD 

Mineralogical analysis was executed on ~ 10 mg samples micromilled from each stalagmite 

using X-ray diffractometry (XRD). From stalagmite VML22 a total of 27 samples were 

micromilled using a spherical hardened steel drill bit (ø 300 µm) in curved trenches 600 µm 

deep, 300 µm wide and 10 mm across (Figure 4.6, left). From stalagmite VSMS2 a total of 25 

samples were micromilled using a cylindrical hardened steel drill bit (ø 1 mm) in curved 

trenches 200 µm deep, 2 mm wide and 10 mm across, VSMS2, except for sample 21 with the 

trench being 1 mm wide and 20 mm across (Figure 4.6, right). All other settings were as 

described in Section 4.4 

For complete homogenisation the micromilled samples were pestled with a corundum mortar 

and subsequently applied to monocrystalline Si-wafers using isopropanole as the sample size 

was too low for using the standard sample carrier. XRD analysis of the samples from stalagmite 

VML22 was performed with a D500 diffractometer (Siemens) over an angle range of 3° to 63°, 

with a step size of 0.01° and a step speed of 0.5°/min, at 25 mA and 45 kV. The samples from 

stalagmite VSMS2 were analysed using a D8 Discover diffracometer (Bruker). To determine 

suitable measurement settings a quick test scan was conducted first. The measurement duration 

(step speed) was then adapted so that the lowest peak in the diffractogram reaches an intensity 

of 1,000 counts.  
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Figure 4.7: Aerial view (Bing, © Digital Globe; accessed: March 7th, 2014) of the surface above cave Ma Le 2 
including the positions of the rock sample (green), soil samples (blue) and plant samples (red). The black numbers 
designate the areas (black contours) defined during the mapping of the vegetation (carried out on March 7 th, 2014). 
The location of this area relative to the entrance of cave Ma Le 2 is shown in Figure 3.2. All samples are listed in 
Table 4.3.  

The step size was adjusted so the the upper half of the highest peak is detected by at least seven 

data points. Both requirements were met at a step size of 0.02° and a measurement time of 38.4 

s per step, at 40 mA and 40 kV. Measurements were conducted over an angle range of 2° to 82°, 

with the air scatter screen active and the sample rotating at a speed of 30,000°/min. The 

background of all diffractograms was subtracted using the DIFFRAC.EVA software (Bruker 

AXS 2010-2015; release 2015; version 4.1.1) and the diffractograms were evaluated based on 

the X-ray diffractometry peaks from the PDF-2 2002 database (sets 1-52 plus 65 plus 70-89).  

4.9 Analyses of Host Rock, Soils and Plants 

In order to characterise the environment of the studied caves, a number of analyses were 

conducted on samples of host rock (Section 4.9.1), soils (Section 4.9.2) and plants (Section 

4.9.3) from the study area. These analyses comprise the mineralogical and geochemical 

composition of host rock and soils as well as the stable carbon isotope ratios of host rock, soils 

and plants. Figure 4.7 shows the sampling locations at the surface above cave Ma Le 2. All host 

rock, soil and plant samples are listed in Table 4.3.  
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Table 4.3: List of all host rock, soil and plant samples taken from inside or at the surface above caves Ma Le 2 
and Sang Ma Sao.  

Category Sample label Description 

         Host Rock:   
   
cave Ma Le 2: G_02-1 from just upstream of the position of stalagmite VML22 
 G_02-2 from just downstream of the position of stalagmite VML22 
 G_05 from the surface above the cave; 23°17’24.0’’ N; 

105°18’34.9’’ E; 1,115 masl 

cave Sang Ma Sao: G2-01 to -09 rocks from inside the cave  
 SMS BC black crust from the cave wall 
Soils:   
   
above Ma Le 2: BOD01 23°17’33.5’’ N; 105°18’25.6’’ E; 1,275 masl; depth range 30 - 

60cm; bright-brown23°17’30.4’’ N; 105°18’32.1’’ E;  
 BOD02 as BOD01, but representative for layer from 60 cm down-

wards; red-brown; very hard 

 BOD03 23°17’31.7’’ N; 105°18’31.3’’ E; 1,200 masl; depth range 15 - 
20 cm  

 SP01 L01 23°17’32.1’’ N; 105°18’16.7’’ E; 1,299 masl; representative of 
layer 1, ranging from 0 – 45 cm depth  SP01 L02 as SP01 L01, but representative of layer 2 (45 – 70 cm depth) 

 SP01 L03 as SP01 L01, but representative of layer 3 (70 – 100 cm depth) 

 SP01 L04 as SP01 L01, but representative of layer 4 (from 100 cm 
downwards) 

above Sang Ma Sao: SMS Soil01 0-10 cm 23°17’12.9’’ N; 105°19’37.8’’ E; 1,172 masl; depth range 0 - 
10 cm  SMS Soil01 20-15 cm as SMS Soil 01 0-10 cm, but depth range 20 - 15 cm 

 SMS Soil01 ~35 cm as SMS Soil 01 0-10 cm, but depth ~ 35 cm 
 SMS Soil02 23°17’12.1’’ N; 105°19’37.8’’ E; 1,172 masl; 0 – 20 cm 
 SMS Soil02 coarse  coarse fraction of SMS Soil02 (> 2 mm) 
Plants:   
   
above Ma Le 2: PFL02 23°17’34.4’’ N; 105°18’27.9’’ E; area ML2-02 
 PFL03 23°17’29.7’’ N; 105°18’24.1’’ E; area ML2-09 
 PFL04 23°17’33.4’’ N; 105°18’28.6’’ E; area ML2-06 
 PFL05 23°17’30.4’’ N; 105°18’32.1’’ E; area ML2-15 
 PFL06 23°17’33.3’’ N; 105°18’32.8’’ E; area ML2-25 
above Sang Ma Sao: SMS PL01 23°17’13.6’’ N; 105°19’37.8’’ E 
 SMS PL02 to PL04 close to SMS PL01; SMS PL02 is the same species as PFL04 
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4.9.1 Host Rock Analyses 

As a preparation for subsequent geochemical and mineralogical analyses, representative pieces 

of the host rock samples were transformed into fine powder with the use of a rock crimper, a 

type BB1 jaw crusher (Retsch) and a TS vibratory disc mill (Siebtechnik) with corundum discs 

with a milling duration of two minutes. In between samples the discs were cleaned by milling 

laboratory quartz sand for two minutes, brushing the discs, dusting them off with pressurised air 

and cleaning them with isopropanole.  

Stable isotope analysis of the carbonate host rock samples was performed by IR-MS as 

described for the stalagmite samples in Section 4.5. Calibration was conducted using the NBS19 

standard material. Precision is determined by the absolute standard deviation (ASD) of repeated 

measurements of the Carrara Marble standard material, with an average accuracy of 0.03 ‰ for 
δ13C and of 0.09 ‰ for δ18O, respectively (n = 150). Precision was ≤ 0.10 ‰ for δ18O and ≤ 
0.07 ‰ for δ13C (n = 13). The average precision of the individual measurements (n = 7) was 

0.04 ‰ and 0.03 ‰ for δ18O and δ13C, respectively. Mineralogical analysis was executed by 

XRD as described for the stalagmite samples in Section 4.8, using the D8 Discover 

diffracometer (Bruker), but applying standard XRD sample holders instead of Si-wafers.  

The geochemical composition of the host rock samples was analysed using an X-Series II ICP-

MS (Thermo-Fisher Scientific) subsequent to a full chemical digestion of about 100 mg of the 

sample powder using 40% hydrofluoric acid (suprapure) and 70% perchloric acid (normapure) 

in closed Teflon sample tubes at 120°C over 16 hours, after sample pre-oxidation with 65% 

nitric acid (subboiled). Temperature was controlled with a DigiPREP MS system (SCP 

Science). After evaporating the acids, nitric acid was added to re-dissolve the samples and 

evaporated three times to remove residues of the acids. For subsequent analysis the samples 

were dissolved in 50 mL ultrapure water. To test the quality of the chemical digestion and of the 

analytical measurement, the JDo-1 standard material was also analysed as well as two blanks for 

later blank correction.  

Calibration solutions were prepared with the CertiPUR® ICP Multi Element Standard VI 

(Merck) used as stock solution and with additional 1000 ppm CertiPUR® ICP standards 

(Merck) containing P, Mg, Mn and Ca. based on these stock solutions, multi element standard 

solutions of the following concentrations were prepared: 0.5, 1.0, 2.5, 5.0, 10, 25, 100, 250, 500 

and 1,000 ppb. For Na, Mg and K a 5 ppm standard solution was prepared. For calibration in 

higher concentration ranges of Al, Fe and Ca, two additional solutions were prepared, one 

containing 10 ppm of Al and Fe, and 50 ppm of Ca, one containing 25 ppm of Al and Fe, and 

100 ppm of Ca. For Th calibration, Th solutions were prepared containing 2.5, 5 and 10 ppb of 

Th.  
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In order to correct for potential fluctuations in the analytical signal, 50 µL of an internal 

standard containing scandium (45Sc), rhodium (103Rh), indium (115In) and thulium (169Tm) at a 

concentration of 1 mg/L were pipetted into all samples, including the blanks (1% HNO3). All 

samples were analysed after diluting them with 1% HNO3 by a factor of five, blanks and 

standards were analysed without dilution.  

For element quantification, the following isotopes were chosen: 23Na, 25Mg, 27Al, 31P, 39K, 43Ca, 
47Ti, 55Mn, 56Fe, 65Cu, 66Zn, 85Rb, 88Sr, 137Ba, 232Th and 238U. While P, Mn, Fe, and Zn were 

measured in CCT-ED measuring mode to avoid isotopic interferences (KED energy barrier of 2 

V), the remaining elements were analysed in standard measuring mode. For determining 

element concentrations, each sample was scanned three times in peak-jump mode, with each 

scan consisting of 40 sweeps with a dwell time of 25 ms each and an acquisition time of 15 

seconds per run. For all measurements the following Ar gas flows were chosen: Nebulizer gas 

flow of 0.87 L/min, auxiliary gas flow of 0.68 L/min, and cooling gas flow of 13 L/min.  

High blank values for Rb yielded a negative concentration in the JDo-1 standard after blank 

correction and a chemical yield of -33 %. Due to this erroneous result, the concentration of Rb 

was below 0.5 mg/kg in all host rock samples and is not illustrated or discussed further. 

Compared to the JDo-1 standard material, chemical yields (excluding Rb) were good with an 

average of 103.7 % (n = 15) and a median of 100.3 %. Concentrations of Cu (yield: 64.8 %) 

were too low, while concentrations for Ca (yield: 177.8 %) were too high. The precision (σ) of 
all sample measurements was 1.5 % on average, ranging from 0.5 % (Sr) to 3.2 % (Cu). The 

limits of detection based on seven measurements of ultrapure water was 0.001 mg/L for Na, 

Mg, Al, K and Fe and 0.005 mg/L for Ca. For all other elements, the limit of detection was 

below 0.1 µg/L, except for P (1.5 µg/L).  

4.9.2 Soil Analyses 

Stable Isotope Analysis by IR-MS 

The soil samples were prepared for analysis by drying in an oven at 40 °C for at least 48 hours, 

removing the coarse fraction (> 2 mm) by sieving and by transforming the samples into sample 

powder with a vibratory disc mill as described for the host rock samples (Section 4.9.1). 

Samples were stored in an exsiccator until they were analysed.  

Stable carbon isotope analysis of the organic matter contained within the soil samples was 

performed with a NA-1500 element analyser (Carlo-Erba) coupled to an Optima gas-ion mass 

spectrometer (Micromass UK Ltd.) using the continuous-flow mode. Prior to the measurement, 

the inorganic carbon in the samples was removed with hydrochloric acid by pressing the acid 

through the samples and through a filter. During analysis, the helium carrier gas flow was set to 

90 to 100 mL/min and temperatures in the oxidation reactor (Cr2O3) and the reduction reactor 

(Cu) were adjusted to 1,020 °C and 650 °C, respectively. Calibration was performed using the 

NBS-21 standard material.  



 4.9  Analyses of Host Rock, Soils and Plants 

 

  131 

Analytical quality was tested with repeated measurements of the NBS-21 (n = 11) and the 

USGS-24 (n = 29) standard materials. The δ13C results are accurate to less than 0.1 ‰ and 0.01 
‰, respectively and precision is 0.05 ‰ (absolute standard deviation) and 0.04 ‰, respectively.  

Mineralogical and Geochemical Analysis by XRD, ICP-MS and CSA 

Mineralogical analysis of the soil samples was executed by XRD as described for the stalagmite 

samples in Section 4.8, using the D8 Discover diffracometer (Bruker), but applying standard 

XRD sample holders instead of Si-wafers. 

The geochemical composition of the soil samples was performed as described for the host rock 

samples in Section 4.9.1, but using the GXR-2 standard material for reference. Compared to the 

GXR-2 standard material, overall chemical yields were slightly too low with an average of 88.2 

% (n = 15) and a median of 92.2 %. Especially the concentrations of Al (yield: 41.3 %) and of 

Sr (yield: 62.2 %) were too low, while concentrations for Cu (yield: 106.7 %) were slightly too 

high. The precision (σ) of all sample measurements was 0.8 % on average, ranging from 0.5 % 
(Sr) to 1.5 % (Na). The limits of detection are the same as for the host rock analyses (Section 

4.9.1).  

Carbon analysis of the soil samples (about 200 mg) was performed with a CS-2000 element 

analyser (Eltra) using the induction furnace at an O2-pressure of 1.5 bar , an infrared 

measurement cell flow of 10 L/h and temperatures of about 1,350 °C. Measurement time was 

typically 50 seconds. For calibration, the 92811-3020 and 92400-3050 standard materials (Eltra) 

were used for the low carbon concentrations channel, the 92400-3100 standard material (Eltra) 

for the high carbon concentrations channel. Analytical quality was monitored by repeated 

measurements of these standards. For the low concentration channel, accuracy defined as the 

relative deviation from the target value was 2.9 % on average (n = 11), for the high 

concentration channel, accuracy was 1.0 % on average (n = 7). Precision (σ) with regard to the 

absolute carbon content was 0.02 % and 0.06 %, respectively.  

Total carbon content was measured in the original soil powder samples. For the analysis of the 

organic carbon content, the inorganic carbon contained in the samples in the form of calcite was 

removed from a separate batch of samples with 19% hydrochloric acid added to the CSA cups 

at about 70 °C until the chemical reaction has completely ceased. After evaporating the acids, 

ultrapure water was added and evaporated at 100 °C three times to remove residues of the acid. 

The samples were stored in an exsiccator for at least 72 hours for equilibration and drying. The 

carbon analysis of this batch of samples yielded the organic carbon content. The inorganic 

carbon content was calculated by subtracting the organic from the total carbon content.  
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4.9.3 Plants - Carbon Isotope Analysis by IR-MS 

Stable isotope analysis of the carbon contained in the plant samples was performed as described 

for the soil samples (Section 4.9.2), however after a different pre-treatment. Prior to the 

measurement, the plant samples were cut and broken into small pieces and freeze-dried for at 

least 24 hours using an Alpha 1-4 freeze drier (Christ) and a 12 Two Stage vacuum pump 

(Edwards). The plant samples were also transformed into sample powder using a vibratory disc 

mill (Section 4.9.1), but with mill run times of 10 minutes. Measurement quality is the same as 

for the soil sample analyses (Section 4.9.2).  

4.10 Statistical Analyses 

To investigate the nature of the different stalagmite proxy signals and especially the 

relationships between them not only in a qualitative but also in a quantitative way, different 

statistical methods were applied.  

4.10.1 Spearman Rank Coefficients ȋρȌ 

To analyse the association of the proxy signals contained within the stalagmites, Spearman rank 

coefficient (ρ) were calculated using the software Origin to construct correlation matrices. 
Spearman’s ρ was favoured over Pearson’s correlation coefficient because it is independent of 

outliers. In case of stalagmite VML22, correlation coefficients were calculated for the overall 

dataset, in case of stalagmite VSMS2 both for the overall dataset, as well as for its three growth 

periods separately. Values of one indicate maximum positive correlation between two data sets, 

values of minus one indicate maximum negative correlation, while values close to zero indicate 

that the two data sets are not correlated to one another (Schönwiese, 2013).  

4.10.2 Autocorrelation Coefficients (ACC) 

A critical aspect of time series is their inherent signal to noise ratio, as many natural signals 

show both regular cyclic components and stochastic noise (Fairchild et al., 2006). For 

reconstructing past climatic and environmental conditions, the time series used should exhibit a 

high signal to noise ratio for them to represent interpretable signals of past conditions.  

Whether a palaeosignal is noisy or clear can be assessed with the help of autocorrelation 

coefficients (ACC) that indicate how consistent the variations within a give data set are. For this 

work, the lag-1 autocorrelation coefficients (Lag-1 ACC; Spearman’s ρ) were calculated for 
each geochemical record from the stalagmites by duplicating each record, shifting it by one data 

point relative to the original record and by calculating Spearman’s ρ for each pair of data sets 
consisting of the original and the shifted data set.  
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An inherently noisy signal yields ACC values close to zero, whereas a highly persistent signal 

yields ACC values near one (Lachniet, 2009). However, low ACC values can also indicate that 

a time series was sampled at an insufficient resolution (undersampling).  

4.10.3 Frequency Analysis with REDFIT 

The mechanisms that drive the variations observed in a given climatic or environmental signal 

may be determined by identifying cyclic behaviour within that signal. For instance, the diurnal 

cycle of near-surface air temperature can be attributed to the diurnal cycle of solar insolation at 

a specific site (especially in regions with a high temperature amplitude between day and night). 

Palaeoclimatic and palaeoenvironmental time series can be scanned for potential cyclic 

behaviour using frequency analysis which investigates at which frequency the variations 

observed in a given data set occur. Frequencies at which these variations occur often are visible 

as peaks in the resulting frequency spectrum. Based on those frequencies (or their inverse, the 

cycle curation, or periodicity), the underlying processes may be identified.  

For this thesis, the frequency analysis of the geochemical records from the two stalagmites was 

performed with the program REDFIT (Schulz & Mudelsee, 2002) that is executed via a 

Windows command window. For the frequency analysis of the stable isotope data, the following 

program settings were used: nsim = 1000, mctest = F, rhopre = -99.0, ofac = 4.0, hifac = 1.0, 

n50 = 1 and iwin = 0. For the frequency analysis of the trace element data, the program settings 

were changed to ofac = 2.0 (stalagmite VML22) and 5.0 (stalagmite VSMS2) and to n50 = 5 as 

computer memory would have been insufficient using the same settings used for the analysis of 

the stable isotope data sets.  



4  Materials and Methods  

 

134 

4.11 Site-specific Monitoring 

4.11.1 Oxygen Isotopes in Rainwater 

Rainwater samples for later analysis of oxgen isotopes were collected manually by members of 

the local communities of Ma Le and of Sang Ma Sao at the start of rainfall events occuring over 

approximately one entire year. Sample collection in Ma Le Commune was performed using a 

plastic funnel screwed to a plastic rainwater container (Figure 4.8). In this set-up, evaporation is 

reduced by the conical shape of the funnel and its small outlet (not shown). Sample collection in 

Sang Ma Sao Commune was conducted by a member of the local community using 5 mL brown 

glass bottle attached to a HOBO metal rainwater container (Figure 4.9) via a 3D-print-out.  

4.11.2 Cave Climate and Stalactite Drip Rate 

Inside of both Ma Le 2 and Sang Ma Sao Caves, cave climate parameters as well as drip rate at 

the stalactite corresponding to stalagmite VML22 and VSMS2, respectively, were analysed 

using the following instruments and loggers. Air flow velocities were measured using a hot bead 

anemometer (Testo 445). Temperature and relative humidity were logged five times per day, at 

intervals of 4 hours and 48 minutes, with Tinytag TGP-4500 (Gemini Loggers) loggers with an 

accuracy of ± 0.5°C at 8°C and ± 3.0% RH at 25°C. Additionally, relative humidity was 

measured with an Assmann aspiration psychrometer. Furthermore, over an eleven-day period, 

T, RH and cave air CO2 concentrations were measured with a CM-0018 logger (CO2Meter) 

inside Ma Le 2 Cave. Drip rate at the dripsites of stalagmites VML22 and VSMS2 was logged 

at 30-minute-intervals with a Stalagmate Mark 3 drip rate logger (TGC-0011, Driptych; Mattey 

& Collister, 2008).  
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Figure 4.9: HOBO rainwater container used for rainwater sampling in the community of Sang Ma Sao. Rainwater 
collection was performed by a member of the local community.  

Figure 4.8: Rainwater container (white) used for rainwater sampling in the community of Ma Le. Rainwater 
collection was performed in cooperation with the local community (mayor of Ma Le Commune on the right; co-
worker of Ma Le Commune on the left).  
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5 Results 

5.1 Radiometric Dating and Age Models 

5.1.1 Stalagmite VML22 

The age model for stalagmite VML22 as constructed with the algorithm StalAge based on the 

available U/Th dating points is shown in Figure 5.1. All U/Th dating results are summarised in 

Table 5.1.  

 

 

 

 

 

 

 

 

 

 

According to this age model, stalagmite VML22 has ceased growing about 430 years BP 

(before present; present = 2015 A.D.) with the 95% confidence interval of the model output 

ranging from 540 to 320 years BP. Although not used for the age model construction itself, the 

uppermost obtainable dating point at DFT 1.5 mm confirms that stalagmite growth has indeed 

not continued up to the present. For two samples (DFT 1 mm and 18 mm), age determination 

was not possible due to insufficient chemical yields (Table 5.1). For the base of stalagmite 

VML22 (DFT 107 mm), the age model yields an age of 7,830 years (95% confidence interval: 

8,100 to 7,610 years BP). Stalagmite VML22 does not feature any unambiguous indications of 

hiatuses, be it in the age model or in the fabrics (Section 5.4.1) and seem to were growing 

continuously.  

Overall, the age model of stalagmite VML22 is quite precise with errors ranging from 40 years 

to 610 years, with an average of 270 years and a median of 230 years (n = 14). With an average 

of 140 years (n = 8), especially the Neptune Plus ages are precise.  

Figure 5.1: The age model for stalagmite VML22. The uppermost dating point (red) was omitted from the age model 
construction due to its large error resulting from high concentrations of detrital 232Th.  
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Table 5.1: Analytical results from U/Th dating of stalagmite VML22. All errors are given as absolute values. Results with grey shading were obtained from the iCAP-Q 
ICP-MS measurements, all other samples were analysed with the Neptune Plus MC-ICP-MS. The date at DFT 1.5 mm (red) was omitted from the age model 
construction due to its high error resulting from high concentrations of detrital 232Th. 
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Figure 5.2: Growth rate of stalagmite VML22 plotted in the time domain. 

From the age model output, the growth rate of stalagmite VML22 has been determined by linear 

interpolation between adjacent values (Figure 5.2), calculating the quotient of the respective 

depth and time increments. Computed values range from 5.7 µm/a (µm/year) to 23 µm/a, with 

an average of 17 µm/a and a median of 18 µm/a. With the span of calculated growth rates 

amounting to only 17.3 µm/a, the growth rate of stalagmite VML22 can be described as 

relatively constant as a whole.  

Figure 5.2 shows the VML22 growth rate plotted in the time domain. During the first 4,000 

years, VML22 has been growing at a fairly constant rate of 19 µm/a on average (median also 19 

µm/a), ranging from 16 µm/a to 23 µm/a. At about 3.7 ka BP, however, the growth rate 

decreased noticeably for some 650 years to reach a new baseline state at growth rates averaging 

approximately 6.7 µm/a which lasted from 3.0 ka to 1.4 ka BP. Between 1.4 ka and 0.8 ka BP, 

VML22 growth rate features a local maximum centered at 1.0 ka BP with values of 13 µm/a. 

Until the end of the growth period at 0.43 ka BP, growth rates gradually declined to values of 11 

µm/a.  
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Figure 5.3: The age model for stalagmite VSMS2. The dating points at DFT 5 mm and 67 mm (red) were omitted 
from the age model construction as they are not in stratigraphic order and exhibit large errors. 

5.1.2 Stalagmite VSMS2 

The age model for stalagmite VSMS2 was constructed with the algorithm StalAge based on the 

available U/Th dating points is shown in Figure 5.3. All U/Th dating results are summarised in 

Table 5.2.  

 

 

 

 

 

 

 

According to this age model, stalagmite VSMS2 has ceased growing about 4,9 ka BP with the 

95% confidence interval of the model output ranging from 6.0 ka to 2.9 ka BP. Two dating 

points (DFT 5 mm and 67 mm) were omitted from the age model construction as they are not in 

stratigraphic order and feature great errors resulting from high concentrations of detrital 232Th. 

For the base of stalagmite VSMS2 (DFT 150 mm), the age model yields an age of 25.2 ka BP 

(95% confidence interval: 26.1 ka to 24.5 ka BP).  

However, stalagmite VSMS2 has not been growing continuously. The age model suggests two 

hiatuses, with the first hiatus being centered around DFT 104.4 mm ranging from 21.9 ka to 

16.0 ka BP (spanning about 5.9 ka) and the second hiatus being centered around DFT 41.3 mm 

ranging from 13.1 ka to 7.7 ka BP (spanning about 5.4 ka). The locations of both hiatuses are 

confirmed by the microscopic analysis of the stalagmite fabrics that yielded increased porosity 

and darker colour tones at these two depths (Figure 4.3 and Figure 5.31).  

Contrarily to stalagmite VML22, the age model of stalagmite VSMS2 is quite imprecise overall, 

as expected from the high contents of detrital material already evident from the macroscopic 

brownish colour impression. Dating errors range from 0.16 ka to 3.2 ka, with an average of 1.2 

ka and a median of 0.85 ka (n = 13). The date with the lowest error by far (160 years) 

corresponds to the sample from DFT 12.5 mm located within the section spanning DFT 4 mm to 

18 mm (Figure 4.3) that is virtually free of detrital contamination.  
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Table 5.2: Analytical results from U/Th dating of stalagmite VSMS2. All errors are given as absolute values. All samples  were analysed with the Neptune Plus  MC-
ICP-MS. The dates at DFT 5 mm and 67 mm (red) were omitted from the age model construction as they are not in stratigraphic order.  
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Figure 5.4: Growth rate of stalagmite VSMS2 plotted in the time domain. 

Based on the age model output, the growth rate of stalagmite VSMS2 (Figure 5.4) ranges from 

8.9 µm/a to 160 µm/a. Growth rates exceeding this maximum value represent artefacts of the 

StalAge algorithm where the age model output is a horizontal line with the calculated ages 

remaining constant despite of changing depth within the stalagmite. These values were therefore 

omitted from Figure 5.4. The overall average growth rate is 15.9 µm/a.  

During the first period of growth from 25.3 ka to 21.9 ka BP, VSMS2 has been growing at a 

fairly constant rate of 13.3 µm/a on average. During the second period of growth from 16.0 ka 

to 13.1 ka BP, growth rate was higher with an average of 20.6 µm/a and growth rate peaks at 

53.3 µm/a at 13.6 ka BP. During the the third period of growth from 7.7 ka to 4.9 ka BP, growth 

rate was lower again with an average of 14.2 µm/a. At 7.2 ka BP calculated growth rate peaks at 

160 µm/a. Growth rate features a weak negative trend during the third growth period of 

VSMS2. In general, as sudden and relatively short-term peaks in growth rate are likely to 

represent artefacts of the StalAge algorithm due to 1) an insufficient number of dating points 

and/or 2) insufficient dating precision, these peaks are to be interpreted with caution. More 

gradual variations in medium- to long-term averages of growth rate can be considered more 

reliable.  
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5.2 Stable Isotopes in Stalagmites 

5.2.1 Stalagmite VML22 

The results of the stable isotope analysis of stalagmite VML22 are shown in Figure 5.5, both in 

the depth and the time domain. According to the age model (Section 5.1), the spatial resolution 

of the isotope data of 194 µm (Section 4.4) translates into a nominal temporal resolution ranging 

from 8.5 a to 34.3 a, depending on growth rate, with an average of 13.3 a and a median of 10.6 

a. As multiple data points are needed to resolve any palaeoenvironmental signal of a given 

periodicity to avoid aliasing and smoothing (Fairchild et al., 2006), the actual temporal 

resolution of the VML22 stable isotope data can be classified as multi-decadal. Therefore any 

palaeoenvironmental signal with a less than multi-decadal periodicity will not be resolved by 

the stable isotope data of stalagmite VML22.  

Values of VML22 δ18O (n = 555) range from -10.91 ‰ to -8.20 ‰ (amplitude: 2.71 ‰), with 
the average being -9.31 ‰ and the median being -9.30 ‰, whereas δ13C values (n = 555) range 

from -8.48 ‰ to -1.29 ‰ (amplitude: 7.19 ‰), with an average of -3.72 ‰ and a median of -

3.62 ‰. Both data curves are highly similar to each another as a whole, as evident from high 
positive correlation coefficients (Section 5.6.2.1) and both feature a clear overall trend towards 

increased values with decreasing age. This overall trend is superimposed by higher frequency 

variations on multi-decadal to centennial timescales and seems to be reversed from about 1.0 ka 

BP onwards in the case of δ18O (Figure 5.5 bottom). The behaviour of both isotope signals is 

also highly similar on centennial timescales, as illustrated by the 20-point smoothed curves 

shown in Figure 5.6.  

Most of the positive and negative anomalies relative to the long-term increasing trend in both 

proxy signals are synchronous or quasi-synchronous: For δ18O, the most marked negative 

excursions occur at 7.5, 4.5, 3.1 and 2.7 ka BP, as well as from 1.0 ka BP onwards with local 

minima at 0.9, 0.8, 0.6 ka BP and at the point of growth stop at 0.43 ka BP. The two most 

important positive excursions are centered at 7.6 and 5.1 ka BP. Several other peaks can be 

found at 4.0, 3.8, 3.7, 3.4 and 2.5 ka BP. The three most pronounced negative excursions in δ13C 

values occur at 7.5, 3.3 and 0.8 ka BP, with the last trough being the broadest, spanning the 

period from 1.0 to 0.7 ka BP. The trough at 3.3 ka BP is quasi-synchronous with the trough in 

δ18O values at 3.1 ka BP. Further troughs are present at 7.5, 7.3, 6.4, 5.8, 5.5 and 3.7 ka BP. 

Positive excursions in δ13C values can be found at 7.7 and 5.2 ka BP as for δ18O. Further peaks 

occur at 6.8, 6.7, 4.0, and 2.5 ka BP, with lower peaks at 3.4, 2.1 and 1.3 ka BP.  
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Figure 5.5: Stable isotopes of oxygen (δ18O) and carbon (δ13C) of stalagmite VML22 plotted in the depth domain 
(top) and the time domain (bottom) in ‰ relative to the V-PDB standard.  
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Figure 5.6: Values of δ18O and δ13C of stalagmite VML22 plotted as 20-point smoothed curves (weighted Adjacent 
Averaging) illustrating the similar behaviour of both stable isotope signals on centennial timescales.  

On timescales of multiple decades and centuries, the plots of δ18O and δ13C slightly differ from 

one another. All in all, δ13C values vary more widely with amplitudes between local minima and 

maxima of up to 4 ‰ compared to δ18O values varying at maximum amplitudes closer to 1.5 ‰. 
Relative to their respective maximum amplitude of variation, however, the δ18O record of 

stalagmite VML22 appears to be somewhat more erratic and less conservative than the δ13C 

record, for example around 3.0 ka BP. This suggests either that the δ18O signal is more sensitive 

to short-term changes in its driving forces than the δ13C signal, or that the δ13C signal is slower 

to respond to such changes. 

One prominent example for these differences in behaviour is the steeper increase of δ13C values 

compared to δ18O from about 7.6 ka to 5.8 ka BP. After a period during which both signals 

match closely in behaviour from approximately 5.8 ka to 4.2 ka BP, both increases and 

decreases in δ13C values from 4.2 ka to 3.3 ka BP are more pronounced than those of δ18O 

values, albeit in good temporal agreement. From 3.3 ka to 1.0 ka BP, the two proxy signals 

again evolve very similarly, except for the period of high-frequency high-amplitude variability 

in the δ18O values around 3.0 ka BP already mentioned above.  
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The very pronounced trough in δ13C values (4 ‰ amplitude) spanning the period from 1.0 ka to 
0.7 ka BP, centered at 0.8 ka BP, corresponds to a synchronous trough in δ18O values, although 

the latter is much less prominent. This trough in δ18O values, however, is superimposed by a 

decreasing trend from 1.0 ka BP until stalagmite VML22 stopped growing, which is not evident 

from the δ13C data set.  

5.2.2 Stalagmite VSMS2 

The results of the stable isotope analysis of stalagmite VSMS2 are shown in Figure 5.7, both in 

the depth and the time domain. According to the age model (Section 5.1), the spatial resolution 

of the isotope data of 199 µm (Section 4.4) translates into a nominal temporal resolution ranging 

from 1.2 a during the peak growth rate of 160 µm/a to 22.5 a, depending on growth rate, with an 

average and a median of 12.5 a. Therefore, the actual temporal resolution of the VSMS2 stable 

isotope data can also be classified as multi-decadal,thus impeding the resolution of any 

palaeoenvironmental signal with a less than multi-decadal periodicity.  

Values of VSMS2 δ18O (n = 750) range from -12.28 ‰ to -8.46 ‰ (amplitude: 3.82 ‰), with 
the average being -8.89 ‰ and the median being -8.46 ‰, whereas δ13C values (n = 750) range 

from -12.08 ‰ to -9.80 ‰ (amplitude: 2.28 ‰), with an average of -10.09 ‰ and a median of -
9.80 ‰. As the behaviour of both stable isotope signals differs between the three growth periods 
separated by the two hiatuses, the isotope data corresponding to the three growth periods are 

illustrated in detail in Figure 5.8 and Figure 5.9 and described separately in the following.  

During the first growth period (Figure 5.8 top) of stalagmite VSMS2 from 25.2 ka to 21.7 ka 

BP, δ18O values (n = 225) range from -8.71 ‰ to -7.50 ‰ (amplitude: 1.21 ‰) with an average 
of -8.23 ‰ and a median of -8.28 ‰, while δ13C values range from -10.00 ‰ to -8.60 ‰ 
(amplitude: 1.40 ‰), with an average of -9.48 ‰ and a median of -9.54 ‰. Neither of the two 
stable isotope signals features a robust long-term trend. While the δ13C regression line has a 

slightly steeper slope (0.18 ‰), the low values of adjusted R2 show that the behaviour of the 

isotope signals cannot be well described by linear trends.  

Oxygen isotope values are relatively low (about -8.6 ‰) during the first 200 years of the record, 
but increase rapidly from -8.7 ‰ to the maximum value of the entire growth period (-7.5 ‰) 
within only 100 years. With an amplitude of 1.2 ‰, this is the largest change in this growth 
period. From this maximum value, δ18O values decline to -8.7 ‰ between 24.9 ka and 23.5 ka 
BP, but erratically with high-frequency variation with amplitudes between 0.1 and 0.5 ‰. 
Values then rise to a local maximum of -7.8 ‰ at 23.1 ka BP and fall to a local minimum of -
8.6 ‰ at 22.8 ka BP with further local maxima at 22.7, 22.3 and 21.9 ka BP separated by local 

minima at 22.6 and 22.0 ka BP.  

Carbon isotope values behave inversely to the δ18O values during parts of the first growth period 

with correlation coefficients (Section 5.6.1.2) indicating a weak negative correlation overall.  
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During the first 200 years of the record, δ13C values are relatively high (about -8.8 ‰) and then 
decrease rapidly to a first local minimum of -9.7 ‰ at 24.8 ka. Until a local minimum of -10 ‰ 
is reached at 23.7 ka BP (preceding the local minimum in δ18O by about 200 years), δ13C values 

feature several local maxima that are synchronous with δ18O maxima, e.g. at 24.7 and 24.3 ka 

BP, but also a local maximum at 24.0 ka BP that slightly lags behind the corresponding δ18O 

maximum by about 50 years. While the subsequent local maximum at 22.9 ka BP is 

synchronous with the corresponding δ18O minimum, the maximum at 23.3 ka BP precedes the 

δ18O maximum by about 200 years. Between 22.9 ka and 22.6 ka BP, δ13C values reach another 

maximum with -9.0 ‰ at 22.6 ka BP, contrasting the δ18O minimum at that time. Until the end 

of the record, δ13C values then decrease to -10 ‰ with local maxima/minima in synchronicity 
with δ18O maxima/minima.  

During the second growth period (Figure 5.8 bottom) of stalagmite VSMS2 from 16.0 ka to 

13.2 ka BP, δ18O values (n = 314) range from -10.37 ‰ to -6.13 ‰ (amplitude: 4.24 ‰) with an 
average of -7.81 ‰ and a median of -7.23 ‰, while δ13C values range from -10.25 ‰ to -8.81 

‰ (amplitude: 1.44 ‰), with an average of -9.71 ‰ and a median of -9.78 ‰. While δ13C 

values do exhibit only a weak long-term trend (regression slope: 0.12 ‰) towards lower values 
which does not well describe the signal’s behaviour (adjusted R2: 0.14), δ18O values strongly 

(slope: 1.13 ‰) and clearly (adjusted R2: 0.76) trend towards lower values. Despite this 

discrepancy in behaviour, both isotope signals are positively correlated to each other with an 

overalm Spearman’s ρ of 0.60.  

Oxygen isotope values start at an intermediate level at -8.4 ‰ and rapidly increase to values 
between -7.4 ‰ and -6.1 ‰ during the period from 16.0 to 14.4 ka BP. Until the end of this 
growth period at 13.2 ka BP, δ18O values decrease from -7.0 ‰ to a minimum value of -10.4 ‰ 
(by 3.4 ‰) after a local maximum at 13.6 ka BP. In addition to these long-term patterns of 

change, δ18O values exhibit high-frequency variability on multi-decadal and centennial 

timescales with amplitudes ranging from 0.1 ‰ to 1.0 ‰.  

Carbon isotope values behave very similarly to oxygen isotope values on multi-decadal and 

centennial timescales which causes the overall positive correlation (Spearman’s ρ of 0.60). 
However, on longer timescales, δ13C values behave differently, most prominently by remaining 

quasi-constant at about -10 ‰ over the entire growth period while δ18O values exhibit the 

marked long-term changes described above. The most noteable feature is a marked positive 

anomaly relative to its long-term baseline spanning a 600 year-period from 14.9 to 14.3 ka BP 

with a peak δ13C value of -8.8 ‰, centered at 14.7 ka BP. If this rise in δ13C values at the 

beginning of this period corresponds to the distinct increase in δ18O values at 16.0 ka BP, it lags 

the δ18O increase by 1,100 years. It should be noted, however, that δ13C values do exhibit a peak 

reaching -9.2 ‰ at 16.0 ka BP that is masked by the δ18O graph in Figure 5.8 (bottom). Both 

peaks are represented by a vertical line as the age model erroneously yields an infinite growth 

rate for this section of the stalagmite, as previously described (Section 5.1.2; Figure 5.3).  
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Figure 5.7: Stable isotopes of oxygen (δ18O) and carbon (δ13C) of stalagmite VSMS2 plotted in the depth domain 
(top) and the time domain (bottom) in ‰ relative to the V-PDB standard. 
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Figure 5.8: Values of δ18O and δ13C of stalagmite VSMS2 for the first (top) and second (bottom) growth period 
including linear regression (red lines). 
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Figure 5.9: Values of δ18O and δ13C of stalagmite VSMS2 for the last of its three growth periods including linear 
regression (red line). 

During the last growth period (Figure 5.9) of stalagmite VSMS2 from 7.7 ka to 4.9 ka BP, δ18O 

values (n = 207) range from -12.3 ‰ to -10.2 ‰ (amplitude: 2.0 ‰) with an average of -11.2 ‰ 
and a median of -11.3 ‰, while δ13C values range from -12.1 ‰ to -10.3 ‰ (amplitude: 2.0 ‰), 
with an average of -11.3 ‰ and a median of -11.5 ‰. Although both δ18O and δ13C values 

exhibit a weak long-term trend towards increased values, with regression slopes of -0.25 ‰ and 
-0.16 ‰, respectively, their behaviour cannot be well described with linear trend lines (adjusted 
R2: 0.27 and 0.1). As indicated by a Spearman’s rank coefficient ρ of 0.70 (Table 5.12 in 

Section 5.6.2.2), both stable isotope signals are strongly positively correlated.  

Oxygen isotope values are at their overall minimum of -12.3 ‰ at 7.6 ka BP and increase over 
the subsequent 1,200 years by almost 2 ‰ to a local maximum of -10.6 ‰ at 6.4 ka BP with 
additional high-frequency variability with amplitudes between 0.1 ‰ and 0.5 ‰ . From that 
maximum, δ18O values drop rapidly to a local minimum of -11.9 ‰ at 6.3 ka BP over only 100 
years. After reaching a local maximum at 6.1 ka BP, δ18O values increase from a local minimum 

of -11.8 ‰ at 5.9 ka BP to their overall maximum value of -10.2 ‰ at the end of this growth 
period at 4.9 ka BP after another local maximum of -10.5 ‰ at 5.4 ka BP.  
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Figure 5.10: Oxygen isotope values from stalagmites VML22 and VSMS2 during the last growth period of VSMS2. 

Carbon isotope values generally behave very similarly to oxygen isotope values on all 

timescales. While δ13C values vary between -11.7 ‰ and -11.2 ‰ during the first 800 years of 
the last growth period instead of exhibiting a marked minimum as in the δ18O values, they 

increase to their overall maximum of -10.3 ‰ at 6.4 ka BP. From that maximum, δ13C values 

also drop rapidly by almost 2 ‰ to their overall minimum of -12.1 ‰, but some 250 years later 

than the δ18O values, at 6.1 ka BP, which leads to the coincidence of a δ13C minimum with a 

local δ18O maximum at that time. From this overall minimum, δ13C values increase again to 

reach a secondary local maximum of -10,7 ‰ at 5.5 ka BP with an especially steep increase 

from 5.7 ka BP on. Until 5.0 ka BP, δ13C values vary between -11.1 ‰ and -10.7 ‰ to decrease 
to -11.4 ‰ at the end of the record at 4.9 ka BP.  

A comparison of the δ18O values from stalagmite VSMS2 with those of stalagmite VML22 

(Figure 5.10) for the period of overlap between the time series of the two stalagmites shows that 

both δ18O data sets are in broad agreement. However, not all patterns are found in both data sets. 

For instance, the two peaks in VML22 δ18O values centered around 5.9 and 5.7 ka BP do not 

have any equivalent in VSMS2 δ18O values. Furthermore, local minima and maxima of the two 

records are not always synchronous, for instance, in the case of the local VML22 δ18O minimum 

at 7.5 ka BP and the local VSMS2 δ18O minimum at 7.4 ka BP.  

 



 5.2  Stable Isotopes in Stalagmites 

 

  151 

Figure 5.11: Carbon isotope values from stalagmites VML22 and VSMS2 during the last growth period of VSMS2 

As the age model of stalagmite VML22 is more accurate than that of stalagmite VSMS2, these 

mismatches are likely to result from errors in the VSMS2 age model. Although the δ18O values 

from both stalagmites vary at similar frequencies and amplitudes, the δ18O values in VML22 are 

about 1.5 ‰ higher than the δ18O values in VSMS2.  

Comparing the δ13C values from stalagmite VSMS2 with those of stalagmite VML22 (Figure 

5.11) yields similar results as the comparison of δ18O values. It shows that also both δ13C data 

sets are in broad agreement, but also that not all patterns are present in both data sets. For 

instance, the period of increased δ13C values in stalagmite VML22 from 6.2 ka to 5.7 ka BP 

does not have an equivalent in VSMS2 δ13C values. Furthermore, the amplitude of change in 

δ13C values in VML22 (6 ‰) is about the 3-fold of that oberserved in VSMS2 (2 ‰) during the 
period of co-eval growth. In addition, VML22 δ13C values are about -4.2 ‰ on average and thus 
about 7.1 ‰ higher than VSMS2 δ13C values.  
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5.3 Trace Elements in Stalagmites 

5.3.1 Stalagmite VML22 

On the basis of the statistical analysis including the calculation of Spearman rank coefficients 

grouped in a correlation matrix (Table 5.8 in Section 5.6.2), three major groups of stable 

isotopes and chemical elements were identified, with the elements of each of these 

“geochemical groups” correlating positively with one another, henceforth referred to as Group I, 

II and III. Group I contains both stable isotope signals (δ18O and δ13C) as well as Mg, Sr and Ba. 

Group II comprises Si, Al, Fe, Mn, Na, Cu, Zn and Rb, while Group III is made up of P and U.  

As an overview of the elements analysed in stalagmite VML22 most relevant to this study, 

Figure 5.12 shows the concentrations of Mg, Sr, Ba, Fe, Mn and P plotted in the time domain. 

Because these elements represent all major “geochemical groups” that are made up of elements 
correlating positively with one another as evident from the statistical analysis (correlation 

matrix in Table 5.8 in Section 5.6.2) including Fe and P, they are illustrated here first, while the 

different geochemical groups will be discussed subsequently. According to the age model 

(Section 5.1), the spatial resolution of 6.4 µm translates into a nominal temporal resolution ot 

the trace element data ranging from 0.9 a to 3.6 a, depending on growth rate, with an average of 

2.6 a and a median of 2.9 a. The actual resolution of the VML22 trace element data can 

therefore be classified as decadal and processes with an annual periodicity will consequently not 

be resolved by the trace element data of stalagmite VML22. 

Descriptive statistics for all VML22 trace element data, including minimum, mean, median, 

maximum as well as the number of data points (n) remaining after removal of negative values 

and outliers, are summarised in Table 4.1. With an average concentration of almost 2,600 µg/g, 

Mg is by far the most abundant element in VML22 apart from Ca. The second most abundant 

element is P (335 µg/g), and both Si and Fe are present at concentrations around 100 µg/g. With 

an average of about 50 µg/g, Sr is the fifth most abundant element in VML22.  

Similarly to δ18O and δ13C, Mg, Sr and Ba exhibit a clear increasing trend (with decreasing age), 

considering the data sets in their entirety. While this is also true for Fe to a lesser extent, Mn 

concentrations do not follow any long-term trend, rather being dominated by distinct peaks of 

varying duration superimposed on a quasi-constant baseline. This peak-dominated behaviour 

can also be found in the case of Fe. In contrast to all elements mentioned above, P 

concentrations clearly trend towards decreased values on the long term. Superimposed on the 

described long-term increasing and decreasing trends are variations with frequencies ranging 

from decades to multiple centuries, as described in the following.  
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In the case of Mg, these shorter-term variations can be described as multi-decadal troughs that 

appear at 7.6, 7.3, 5.8, 5.5, 2.8, 1.6 and 1.3 ka BP, while the most prominent negative deviation 

from the long-term increasing trend is a multi-centennial trough spanning the period from 1.1 to 

0.48 ka BP, centered at 0.76 ka BP, during which Mg concentrations are about 800 µg/g lower 

compared to the positive long-term trend (indicated as a red line in Figure 5.13). All these 

troughs correspond to similar troughs in the δ13C record of stalagmite VML22, emphasising the 

similarity of both proxy signals. The most marked positive anomalies with respect to the 

positive long-term trend occur at around 4.0 ka BP and at 1.4 and 0.5 ka BP, with Mg 

concentrations 650 to 800 µg/g higher compared to the long-term trend. None of the Mg peaks 

coincides with any peak of any element from Group II.  

As the concentrations of Sr and Ba evolve in a quasi-identical fashion, both proxy records can 

be described as one. While most of the troughs in the Mg curve do not seem to have 

corresponding counterparts in the curves of Sr and Ba, the most prominent trough from 1.1 to 

0.48 ka BP corresponds to several multi-decadal troughs in Sr and Ba concentrations with 

minima at 0.96, 0.81 and 0.60 ka BP. The negative anomaly at 7.6 ka BP also appears in the Sr 

and Ba data sets. Other negative deviations from the positive long-term trend occur at 7.8, 7.1, 

4.9, 4.3 and 3.3 ka BP. The most important positive excursions occur at around 4.0 ka BP and at 

2.2 ka BP, in close resemblance to local maxima of the Mg curve, and at 6.9, 6.8 ka BP. Several 

Sr and Ba peaks coincide with peaks of the elements of Group II, here represented by Mn. 

These occur at 7.9, 6.9, 6.8 and 1.6 ka BP. 

 

Table 5.3: Descriptive statistics for all trace element data of stalagmite VML22. Concentrations are given in µg/g. 

 n Minimum Mean Median Maximum 

      
Mg 17240 608 2598 2567 4682 

Sr 17192 16.4 56.8 56.7 97.4 

Ba 16963 0.23 4.55 4.43 9.43 

Fe 16840 37.5 111 109 202 

Mn 15991 0.02 1.25 0.71 8.56 

P 17251 54.5 335 324 779 

Si 16589 9.19 127 119 360 

Al 16421 0.04 7.08 3.08 55.9 

Na 16599 0.01 12.7 8.77 70.0 

U 16994 0.002 0.07 0.06 0.24 

Cu 12909 0.03 0.68 0.47 3.92 

Zn 11957 0.21 3.71 2.77 20.7 

Rb 7538 0.02 0.07 0.04 0.34 

Cd 7809 0.09 0.27 0.15 1.33 
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Figure 5.12: Overview of the most important trace elements for this study from stalagmite VML22, plotted in the time domain. All concentrations are given in µg/g. Grey lines 
indicate the original concentrations after all corrections, black lines are 30-pt smoothed data (weighted Adjacent-Averaging), red lines are 300-pt smoothed data. Based on statistical 
analyses (Section 5.6.2.1), Mg, Sr and Ba are attributed to geochemical Group I, Fe and Mn are attributed to Group II and P is attributed to Group III.  
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Figure 5.13: Geochemical proxy records of stalagmite VML22 attributed to Group I: δ18O, δ13C, Mg, Sr and Ba. Both stable isotope ratios are expressed in ‰ as δ values relative to 
the V-PDB standard, all trace element concentrations are given in µg/g and are averaged to match the resolution of the isotope data sets (Section 4.6). Linear regression lines are 
indicated in red. 
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While Fe concentrations feature a positive long-term trend, the overall behaviour of the element 

in stalagmite VML22 is still dominated by separate and distinct peaks, in close resemblance to 

the behaviour of all Group II elements. The most important peaks are centered at 8.0, 7.9, 7.1, 

6.9, 6.8, 5.3, 4.7, 4.3, 2.7, 1.6 and 1.0 ka BP. Manganese concentrations also peak at all these 

times, but also at additional times, for example at 7.7, 7.3, 5.7 and 5.5 ka BP, among others. In 

general, Mn peaks appear to be somewhat broader than those of Fe.  

Consistent with intermediate values of Spearman’s  between P and the elements of Group II 

(Section 5.6.2.1) indicating some degree of positive correlation, some of the peaks in P 

concentration appear to be synchronous to peaks of the Group II elements, represented by Mn in 

Figure 5.12. Examples are peaks at 7.1, 4.9, 4.7, 4.3, 3.8 ka BP and, most noticeably, multiple 

peaks during the period from about 2.9 ka BP to the end of stalagmite growth at 0.43 ka BP. In 

general, peaks in P concentration mirror, albeit in a more muted way, the multi-peak clusters of 

the Group II elements described below. Again consistent with the respective negative 

correlation coefficients, Fe peaks tend to correspond to troughs in the concentration of Mg and 

especially of Sr, for instance at 7.6, 7.1, 4.9, 4.3 and 3.3 ka BP, and vice versa. However, the 

opposing behaviour of these elements is most evident regarding the longer-term (lower 

frequency) variations of these proxy signals, as indicated by the 300-point smoothed data sets in 

Figure 5.12.  

For better comparability between the elements of Group I, the trace elements Mg, Sr and Ba are 

illustrated together with the stable isotope signals in Figure 5.13. While not all peaks and 

troughs in the curves are synchronous, the general evolution of all these signals is strikingly 

similar. This suggests that these proxy signals from stalagmite VML22 are either governed by a 

similar suite of processes or by processes that in some way relate to one another. Similarities 

and differences in behaviour are investigated in further detail below, by means of frequency 

analysis (Section 5.6.5).  

The records of all remaining trace elements attributed to Group II are shown in Figure 5.14, 

except for Mn as it has already been presented above (Figure 5.12) and for better readability. 

The diagram illustrates the quasi-identical behaviour of all elements of Group II and the near-

perfect match of their respective peaks. As already discussed above, using the example of Mn, 

the concentrations of these elements do not follow any long-term trend and are rather dominated 

by numerous peaks that clearly exceed a quasi-constant baseline. Not only do the peaks of all 

these elements coincide, even the relative height of the peaks for each element appears to be 

quasi-identical. Silicon and Fe are by far the most abundant trace elements of Group II in 

stalagmite VML22 (Table 4.1), with concentrations that average 127 µg/g and 111 µg/g, 

respectively, an entire order of magnitude higher than those of the third-most abundant element 

Na (12.7 µg/g on average), and more than three orders of magnitude higher than those of the 

least abundant element Rb (0.07 µg/g on average).  
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Despite these wide differences in concentration, all trace element records of Group II feature 

peaks in concentration at the same times. The only exception to this is Zn that does not show all 

the peaks of the remaining elements, for example at 3.8 and at 2.0 ka BP. The Zn peaks around 

6.4 ka BP, however, seem slightly more pronounced compared to the remaining Group II 

elements.  

The peaks in element concentration are not distributed equally over time. While most of the 

variability happens on a multi-decadal timescale and one single peak rarely spans more than a 

hundred years, the periods of extraordinarily high element concentrations seem to cluster at 

different points in time. These clusters are centered approximately at 7.8, 6.9, 4.7, 2.7, 2.1, 1.7, 

1.0 and 0.7 ka BP, each spanning a period of about 100 to 300 years. A more isolated peak at 

4.3 ka BP coincides with one of the most pronounced troughs in Sr concentrations. From about 

3.5 ka BP on until the end of growth at 0.4 ka BP, the peaks appear to be broader than the peaks 

anteceding that period. However, this is likely to be an artefact of reduced temporal resolution 

resulting from decreased growth rates (Figure 5.15).  

The records of both elements comprised in Group III, P and U, are shown in Figure 5.15 as well 

as Sr in order to illustrate the opposing behaviour of P and Sr mentioned above.  

Cadmium concentrations are also included in the diagram as they also peak at 1.0 ka BP like all 

elements of Group II, but Cd will not be discussed in further detail due to the low number of 

data points remaining after removal of negative values and outliers (Table 4.1) and its low lag-1 

autocorrelation coefficient (Table 5.13), shown below.  

Despite a difference of three to four orders of magnitude between the average concentrations of 

P and U, both proxy signals evolve in a quasi-identical fashion, including the relative amplitude 

of the variations in concentration. This again indicates a close relation between the processes 

governing these two signals. However, U does not feature any long-term trend in concentration 

whereas P concentrations clearly follow a negative trend towards the present, as illustrated by 

the blue regression line in Figure 5.15. The positive covariation of P and therefore of U with the 

elements of Group II and the negative covariation with the elements of Group I, particularly 

with Sr, have already been described above.  

 

 

 



 

 

Figure 5.14: Geochemical proxy records of stalagmite VML22 attributed to Group II: Si, Al, Na, Cu, Zn and Rb. All concentrations are given in µg/g. Grey lines indicate the original 
concentrations after all corrections, black lines are 30-pt smoothed data (weighted Adjacent-Averaging), red lines are 300-pt smoothed data. 

 



 

 

Figure 5.15: Geochemical proxy records of stalagmite VML22 attributed to Group III (P and U) including Sr for comparison and Cd for the sake of completeness. All concentrations 
are given in µg/g. Grey lines indicate the original concentrations after all corrections, black lines are 30-pt smoothed data (weighted Adjacent-Averaging), red lines are 300-pt 
smoothed data; regression lines are indicated in blue. 
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5.3.2 Stalagmite VSMS2 

Analogously to stalagmite VML22, the geochemical signals generated from stalagmite VSMS2 

were attributed to three different “geochemical groups” on the basis of positive Spearman rank 
coefficients within each group (Table 5.9 in Section 5.6.2). As in stalagmite VML22, Group I 

contains both stable isotope signals (δ18O and δ13C) as well as Mg, Sr and Ba. Group II 

comprises Si, Al, Fe, Mn, Na, Ti, Th and Cd, while Group III is made up of P and U.  

As an overview of the elements analysed in stalagmite VSMS2 most relevant to this study, 

Figure 5.16 shows the concentrations of Mg, Sr, Ba, Fe, Mn and P plotted in the time domain. 

Because these elements represent all major geochemical groups as distinguished based on the 

correlation matrix (Section 5.6.2.2) including Fe and P, they are illustrated here first, while the 

different geochemical groups will be discussed subsequently.  

According to the age model (Section 5.1.2), the spatial resolution of 6.4 µm translates into a 

nominal temporal resolution of the trace element data ranging from 0.04 a to 0.7 a, depending 

on growth rate, with an average and a median of 0.4 a. The actual resolution of the VSMS2 

trace element data can therefore be classified as multi-annual to decadal and processes with an 

annual periodicity will consequently not be resolved by the trace element data of stalagmite 

VSMS2.  

Descriptive statistics for all VSMS2 trace element data, including minimum, mean, median, 

maximum as well as the number of data points (n) remaining after removal of negative values 

and outliers, are summarised in Table 5.4. With an average concentration of more than 1,315 

µg/g, Mg is by far the most abundant element in VSMS2 apart from Ca. The second most 

abundant element is P (average: 785 µg/g), followed by Si (average: 524 µg/g). Contrarily to 

stlagmite VML22, the fourth most abundant element ist not Fe (average: 174 µg/g), but Al with 

an average concentration of around 290 µg/g, while it was almost absent from VML22. Average 

Sr concentrations in VSMS2 are around 11 µg/g, noticeably less than in VML22. In the case of 

Si and Al, the discrepancy between the mean and the median of the concentrations (about 280 

µg/g and 130 µg/g, respectively) indicates that both elements feature a relatively high number of 

peak concentrations compared to a normal distribution, consistent with the corresponding 

histograms that are strongly skewed to the right (Section 5.6.1.2).  
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Table 5.4: Descriptive statistics for all trace element data of stalagmite VSMS2. Concentrations are given in µg/g. 

 n Minimum Mean Median Maximum 

      
Mg 23446 371 1315 1352 2912 

Sr 23199 2.64 11.0 11.0 24.2 

Ba 22819 0.22 3.87 3.63 10.4 

Fe 22512 90.1 174 160 437 

Mn 22070 0.01 2.09 1.36 19.8 

P 23453 32.5 785 739 2613 

Si 22727 20.7 524 240 3668 

Al 22591 0.12 229 103 1694 

Ti 20727 0.04 9.41 3.57 75.4 

Na 21570 0.01 26.1 12.3 190 

U 16884 0.01 0.11 0.10 0.38 

Cu 22563 0.01 2.07 1.43 11.0 

Zn 22316 0.08 21.1 10.2 436 

Rb 20004 0.002 0.41 0.18 3.03 

Cd 13036 0.06 0.39 0.29 2.07 
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Figure 5.16: Overview of the most important trace elements for this study from stalagmite VSMS2, plotted in the 
time domain. All concentrations are given in µg/g. Grey lines indicate the original concentrations after all corrections, 
black lines are 30-pt smoothed data (weighted Adjacent-Averaging), red lines are 300-pt smoothed data. 
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For better readability, the three growth periods of stalagmite VSMS2 are discussed separately in 

the following. All trace element data are plotted in the depth domain in the Appendix.  

 

5.3.2.1 First growth period 

The first growth period of stalagmite VSMS2 ranges from 25.3 ka to 21.9 ka BP. The 

descriptive statistics for this period are summarised in Table 5.5.  

 

Of all trace elements analysed in stalagmite VSMS2 for this study, Mg is the only one that also 

exhibits a negative long-term trend of its concentrations during the first growth period (Figure 

5.17 and Figure 5.18). In contrast to the stable isotope signals, the negative trend of Mg 

concentrations can be well described with a linear regression as indicated by the high adjusted 

R2 of 0.69. In accordance with the only significant positive Spearman’s ρ with any other of the 
proxy signals from stalagmite VSMS2 (ρ = 0.32), the behaviour of Mg concentrations is most 

similar to the one of δ13C values. In particular, the main local minima in δ13C values at 24.8, 

24.1, 23.7, 22.9 and 22.3 ka BP are well reproduced by corresponding minima in Mg 

concentrations. The main δ13C local maxima do not have as obvious counterparts in Mg 

concentrations, except for corresponding maxima at 24.6, 24.0, 23.5 and 23.2 ka BP. For 

instance, the local maxima in δ13C values at 23.3 ka and around 22.5 ka BP are not mirrored in 

Mg concentrations. The local maximum in Mg concentrations at 22.6 ka BP does not have a 

counterpart in any other of the proxy signals from VSMS2. 

Table 5.5: Descriptive statistics for all trace element data of stalagmite VSMS2 corresponding to its first growth 
period. Concentrations are given in µg/g. 

 n Minimum Mean Median Maximum 

      
Mg 7110 895 1537 1561 2824 

Sr 7056 3.04 10.8 10.7 24.2 

Ba 7047 0.75 3.65 3.46 10.3 

Fe 7037 90.1 149 138 436 

Mn 6983 0.02 1.50 1.08 19.0 

P 7112 129 722 634 2124 

Si 7051 39.5 369 165 3657 

Al 7037 1.88 159 65.3 1684 

Ti 6394 0.04 6.56 2.07 75.3 

Na 6764 0.01 14.2 5.41 190 

U 7078 0.01 0.10 0.09 0.38 

Cu 7020 0.01 1.30 1.03 10.9 

Zn 6986 0.27 6.42 5.12 291 

Rb 5439 0.02 0.28 0.12 3.01 

Cd 2866 0.08 0.25 0.12 1.87 
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Strontium and Ba show very similar behaviour (Figure 5.17 and Figure 5.18), consistent with 

the high Spearman’s ρ of 0.75. Their most distinctive common local maxima occur at 23.9 ka 

and especially at 23.4 ka BP, with secondary local maxima at 23.7, 23.0 and around 22.7 ka BP. 

Another peak in Ba concentrations at 24.8 ka BP is not apparent in Sr concentrations, but in all 

Group II elements (Figure 5.19). The most distinctive common local minima of Sr and Ba occur 

at 24.7, 23.8, 23.3 and 22.8 ka BP. The marked local maxima in Sr and Ba concentrations at 

23.4 ka BP correspond to a marked local minimum in δ18O values and the most prominent local 

maximum in P concentrations, while Sr and Ba behave inversely to P during the most of the 

first growth period.  
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Figure 5.17: Trace element concentrations (in µg/g) of Mg, Sr, Ba, Fe, Mn and P from stalagmite VSMS2 during its  
first growth period. Grey lines indicate the original concentrations after all corrections, black lines are 30-pt 
smoothed data (weighted Adjacent-Averaging), red lines are 300-pt smoothed data. 
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Figure 5.18: Geochemical proxy records during the first growth period of stalagmite VSMS2 attributed to Group I: 
δ18O, δ13C, Mg, Sr and Ba. Both stable isotope ratios are expressed in ‰ as δ values relative to the V-PDB standard, 
all trace element concentrations are given in µg/g and are averaged to match the resolution of the isotope data sets 
(Section 4.6). Linear regression lines are indicated in red. 
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In contrast to the elements attributed to Group I, Group II elements (Figure 5.19 and Figure 

D.21 in the Appendix) feature a quasi-constant baseline, on which distinct peaks in element 

concentration of varying duration are superimposed. In accordance with the generally high 

values of Spearman’s ρ (Section 5.6.2.2) calculated for the elements of Group II their behaviour 

is quasi-identical and the match of their respective peaks is near-perfect. The most important 

peaks are centered at 25.3, 24.8, 24.0 and 22.9 ka BP, with secondary peaks at 25.1, 24.3, 24.2, 

23.3 and 22.6 ka BP. Except for the concentration peaks at 23.3 ka BP, the period from 23.9 ka 

to 23.1 ka BP stands out by its unusually low trace element concentrations. While Mn 

concentrations do not exhibit this unusual low to the same extent as do the concentrations of the 

remaining Group II elements, this concentration low is not visible in Group I and Group III 

elements at all. After this concentration low from 23.9 to 23.1 ka BP, trace element 

concentrations are generally higher than before this period, especially the concentrations of Si.  

The records of both elements comprised in Group III, P and U, are shown in Figure 5.20 

including Mn for comparison. As in stalagmite VML22, P and U evolve in a quasi-identical 

fashion, even considering the relative amplitude of the variations in concentration, despite a 

difference of three to four orders of magnitude between the average concentrations of both 

proxy signals. This is consistent with the high Spearman’s ρ (0.88) and again indicates a close 
relation between the processes governing these two signals. Main peaks in P and U 

concentrations are centered at 25.3, 24.8, 23.9, 23.8, 23.5, 23.0, 22.8 and 22.6 ka BP, with 

multiple secondary peaks, for instance 25.2 ka BP and at 22.5, 22.4, 22.1 and 22.0 ka BP. The 

overall concentration minima occur at 24.7 ka BP. As indicated by intermediate values of 

Spearman’s ρ with Mn, several of the peaks in Mn concentration are mirrored by P and U 

concentration peaks, most notably at 25.3, 24.9, 23.3 and around 22.9 ka BP. However, other 

prominent Mn peaks are not reproduced by P and U, such as the most important Mn peak at 

24.0 ka BP.  
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Figure 5.19: Concentrations of trace elements during the first growth period of stalagmite VSMS2 attributed to Group 
II (Si, Mn, Fe, Ti and Na) in µg/g. Grey lines indicate the original concentrations after all corrections, black lines are 
30-pt smoothed data (weighted Adjacent-Averaging), red lines are 300-pt smoothed data. 
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Figure 5.20: Concentrations of trace elements during the first growth period of stalagmite VSMS2 attributed to Group 
III (P and U) in µg/g including Mn for comparison. Grey lines indicate the original concentrations after all 
corrections, black lines are 30-pt smoothed data (weighted Adjacent-Averaging), red lines are 300-pt smoothed data. 
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5.3.2.2 Second growth period 

The second growth period of stalagmite VSMS2 ranges from 16.0 ka to 13.1 ka BP. The 

descriptive statistics for this period are summarised in Table 5.6.  

 

During the first half of the second growth period of stalagmite VSMS2, from 16.0 ka to 14.4 ka 

BP, Mg concentrations behave similarly to δ13C values (Figure 5.21 and Figure 5.22) as 

suggested by a positive Spearman’s ρ (0.20) calculated for this time period. Whereas three 

narrow peaks in Mg concentration at 15.9, 15.7 and 15.5 ka BP are not mirrored by 

corresponding peaks in δ13C values, especially the broad positive excursion in δ13C values 

ranging from 14.9 ka to 14.3 ka BP clearly has a counterpart in Mg concentrations, even if Mg 

concentrations increase about 100 years later than δ13C values. Contrarily, during the second 

half of the second growth period of stalagmite VSMS2, Mg concentrations increase to reach 

their overall maximum values of 1,900 µg/g around 13.6 ka BP to remain at a high level around 

1,750 µg/g on average until the end of the second growth period. In contrast during this entire 

period, δ13C values remain relatively constant while δ18O values even strongly decrease, 

consistent with Spearman’s ρ values with Mg of -0.11 and -0.51, respectively. Considering the 

entire second growth period, Mg concentrations feature a relatively strong positive long-term 

trend.  

Table 5.6: Descriptive statistics for all trace element data of stalagmite VSMS2 corresponding to its second growth 
period. Concentrations are given in µg/g. 

 n Minimum Mean Median Maximum 

      
Mg 9872 885 1450 1419 2912 

Sr 9737 4.86 12.48 12.5 24.1 

Ba 9443 0.99 4.31 4.06 10.4 

Fe 9275 115 197 178 436 

Mn 9454 0.03 2.50 1.55 19.8 

P 9877 179 894 844 2613 

Si 9444 35.4 670 373 3660 

Al 9304 1.37 303 160 1694 

Ti 8940 0.04 11.8 5.42 75.4 

Na 9439 0.01 33.5 20.3 190 

U 9772 0.01 0.12 0.11 0.38 

Cu 9569 0.05 2.35 1.73 11.0 

Zn 9685 0.20 32.5 17.7 436 

Rb 9013 0.002 0.49 0.26 3.01 

Cd 5588 0.07 0.39 0.30 2.06 
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Strontium and Ba do not share the marked behaviour of Mg, but behave similarly to one another 

as suggested by a high Spearman’s ρ (0.59), with both signals exhibiting a slight positive long-

term trend. Prominent common maxima occur at 16.0, 14.3 and 13.6 ka BP, whereas local 

maxima an Ba concentrations lack corresponding Sr peaks, for instance at 15.7, 15.6, 15.5, 15.0 

and 14.8 ka BP. Some of these Ba peaks coincide with Mg peaks, especially in the first half of 

the second growth period of VSMS2, for example at 15.9, 15.7 and 15.5 ka BP. Strontium 

concentrations exhibit two marked local minima at 15.4 and 14.6 ka BP that are shared by Ba, 

albeit to a lesser extent.  
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Figure 5.21: Trace element concentrations (in µg/g) of Mg, Sr, Ba, Fe, Mn and P from stalagmite VSMS2 during its  
second growth period. Grey lines indicate the original concentrations after all corrections, black lines are 30-pt 
smoothed data (weighted Adjacent-Averaging), red lines are 300-pt smoothed data. 
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Figure 5.22: Geochemical proxy records during the second growth period of stalagmite VSMS2 attributed to Group I: 
δ18O, δ13C, Mg, Sr and Ba. Both stable isotope ratios are expressed in ‰ as δ values relative to the V-PDB standard, 
all trace element concentrations are given in µg/g and are averaged to match the resolution of the isotope data sets 
(Section 4.6). Linear regression lines are indicated in red. 
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As in stalagmite VML22 and during the first growth period, all Group II elements (Figure 5.23 

and Figure D.22 in the Appendix) feature a quasi-constant baseline, on which distinct peaks in 

element concentration of varying duration are superimposed, again in contrast to the elements 

attributed to Group I. In accordance with the generally high values of Spearman’s ρ (Section 

5.6.2.2) calculated for the elements of Group II their behaviour is quasi-identical and their 

respective peaks match very well. The most prominent peak is centered at 14.3 ka BP and 

features trace element concentrations that are so high that they were classified as outliers by the 

Grubb’s test and were removed. As the removal of these values as outliers does not alter the 
position of the element peaks it has no influence on the interpretation of the data. Further 

prominent element peaks occur at 16.1, 15.9, 15.8 and especially at 15.0 ka BP, with secondary 

peaks at 15.7, 15.6, 15.5, 15.4, 15.3, 15.1, 14.9 and 14.7 ka BP which suggests a fairly regular 

occurrence of these peaks at an interval of about 100 years. In particular Si exhibits further 

peaks at 14.6, 14.5 and 14.4 ka BP that are more muted in the other elements of Group II. After 

the most prominent peak at 14.3 ka BP, the peaks are less pronounced and lower than before the 

prominent peak, with the exception of Cu and Zn (Figure D.22) that feature several more peaks, 

for instance at 14.1, 13.4 and 13.3 ka BP. Zinc stands out among the Group II elements by its 

apparent high signal-to-noise ratio.  

 

 

 



 5.3  Trace Elements in Stalagmites 

 

  175 

Figure 5.23: Concentrations of trace elements during the second growth period of stalagmite VSMS2 attributed to 
Group II (Si, Mn, Fe, Ti and Na) in µg/g. Grey lines indicate the original concentrations after all corrections, black 
lines are 30-pt smoothed data (weighted Adjacent-Averaging), red lines are 300-pt smoothed data. 
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Figure 5.24: Concentrations of trace elements during the second growth period of stalagmite VSMS2 attributed to 
Group III (P and U) in µg/g including Mn for comparison. Grey lines indicate the original concentrations after all 
corrections, black lines are 30-pt smoothed data (weighted Adjacent-Averaging), red lines are 300-pt smoothed data. 

The records of both elements comprised in Group III, P and U, are shown in Figure 5.24 

including Mn for comparison. As in stalagmite VML22 and during the first growth period of 

VSMS2, P and U evolve in a quasi-identical fashion. This is again consistent with the high 

Spearman’s ρ (0.90) and again indicates a close relation between the processes governing these 
two signals. Although P and U do not feature a constant baseline concentration as do the Group 

II elements, the elements of both Groups still share a number of peaks, for instance at 16.1, 

15.9, 15.7, 15.3 and especially at 15.0 ka BP, among others. The most prominent peak in P 

concentrations is centered at 14.9 ka BP. At about 14.5 ka BP, P and U concentrations increase 

rapidly to reach local maxima at 14.4 ka BP. In contrast to the prior peak-dominated behaviour, 

from that point on P and U concentrations vary more gradually and exhibit a medium-term 

decreasing trend, superimposed by high-frequency (multi-decadal) variability, to reach a local 

minimum at 13.9 ka BP. Until 13.6 ka BP, P and U concentrations gradually increase again and 

then reach another local minimum at 13.5 ka BP. The last local maximum of the second growth 

phase occurs at 13.4 ka BP, the last local minimum at 13.3 ka BP.  
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5.3.2.3 Third growth period 

The third growth period of stalagmite VSMS2 ranges from 7.8 ka to 4.9 ka BP. The descriptive 

statistics for this period are summarised in Table 5.7.  

 

During the first half of the third growth period of stalagmite VSMS2, from 7.8 ka to 6.3 ka BP, 

Mg concentrations exhibit a slight negative trend (Figure 5.25 and Figure 5.26), varying 

between about 1,500 and 2,000 µg/g, with the high-frequency variability being of only very low 

amplitude. From 6.3 ka to 5.7 ka BP, the behaviour of Mg changes and the high-frequency 

variability features an increased amplitude, while the average Mg concentrations decrease to 

reach the overall minimum of about 450 µg/g at 5.7 ka BP. Magnesium concentrations then 

increase to a local maximum at 5.4 ka BP and another local maximum at 5.2 ka BP after a broad 

trough centered at 5.3 ka BP. From 5.2 ka BP on, Mg concentrations exhibit a negative trend 

until the end of the third growth period, with the exception of a distinct Mg peak at 5.0 ka BP. 

During the second half of the third growth period of VSMS2 (6.3 ka to 4.9 ka BP), Mg 

concentrations behave similarly to δ13C values (Figure 5.26), but not during the first half. 

Despite intermediate Spearman’s ρ with the elements attributed to Group II, Mg does not share 
any of their peaks.  

Strontium concentrations (Figure 5.25 and Figure 5.26) are relatively constant during the first 

half of the third growth period (7.8 ka to 6.3 ka BP), except for peaks at 7.8 and between 7.3 

and 7.2 ka BP and for low-amplitude minima at 7.7, 7.6, 6.9 and especially at 6.7 ka BP.  

Table 5.7: Descriptive statistics for all trace element data of stalagmite VSMS2 corresponding to its third growth 
period. Concentrations are given in µg/g. 

 n Minimum Mean Median Maximum 

      
Mg 6462 370.6 862.4 861.4 2861 

Sr 6404 2.642 9.005 8.528 23.64 

Ba 6327 0.224 3.452 3.071 10.38 

Fe 6198 90.57 169.6 150.8 436.9 

Mn 5631 0.010 2.125 1.604 15.15 

P 6462 32.49 688.1 673.7 2586 

Si 6230 20.69 480.5 174.4 3668 

Al 6248 0.118 198.1 71.90 1688 

Ti 5391 0.111 8.766 3.088 75.35 

Na 5365 0.008 28.14 11.88 190.0 

U 32 0.016 0.137 0.126 0.290 

Cu 5972 0.033 2.512 1.828 11.02 

Zn 5643 0.080 19.86 14.00 84.60 

Rb 5550 0.002 0.387 0.145 3.031 

Cd 4581 0.056 0.479 0.374 2.065 
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During this period, Ba concentrations feature most of the peaks in the concentrations of the 

Group II elements, for instance at 7.8, 7.3, 7.1, 6.9 ka BP. However, from 6.3 ka to 5.7 ka BP, 

Sr and Ba concentrations are both noteably increased, in contrast to the reduced Mg 

concentrations during that period. Until the end of the third growth period at 4.9 ka BP, Sr 

concentrations remain fairly constant except for a distinct local minimum at 5.3 ka BP. While 

Ba concentrations also feature this minimum, they increase afterwards to several peaks also 

evident from the Group II elements, at 5.2, 5.0 and 4.9 ka BP. Overall, the behaviour of Ba 

during the third growth period can be described as a mixture between the behaviour of Sr and 

the one of the elements attributed to Group II.  
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Figure 5.25: Trace element concentrations (in µg/g) of Mg, Sr, Ba, Fe, Mn and P from stalagmite VSMS2 during its  
third growth period. Grey lines indicate the original concentrations after all corrections, black lines are 30-pt 
smoothed data (weighted Adjacent-Averaging), red lines are 300-pt smoothed data. 
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Figure 5.26: Geochemical proxy records during the third growth period of stalagmite VSMS2 attributed to Group I: 
δ18O, δ13C, Mg, Sr and Ba. Both stable isotope ratios are expressed in ‰ as δ values relative to the V-PDB standard, 
all trace element concentrations are given in µg/g and are averaged to match the resolution of the isotope data sets 
(Section 4.6). Linear regression lines are indicated in red. 
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The elements attributed to Group II (Figure 5.27 and Figure E.7) exhibit high-frequency high-

amplitude variability in their concentrations during the first half of the third growth period, with 

the most prominent peak at 7.1 ka BP and numerous further important peaks, for instance at 7.8, 

7.7, 7.3, 7.1, 6.9, 6.8 and 6.7 ka BP, among other smaller peaks. Their virtually identical 

behaviour is consistent with generally high values of Spearman’s ρ (Section 5.6.2.2) calculated 

for these elements that are even higher than during the first and second growth periods, with Cd 

as the only exception (Figure E.7) that rather shows similar behaviour to Ba. Intriguingly, 

during most of the second half of the third growth period, from 6.3 ka to 5.3 ka BP, all elements 

attributed to Group II feature strongly reduced concentrations, in many cases close to zero. Only 

Na exhibits a peak at 5.3 ka, among several smaller peaks. From 5.3 ka BP until the end of the 

third growth period at 4.9 ka BP, Group II elements feature several distinct peaks at 5.2, 5.1, 5.0 

and 4.9 ka BP.  
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Figure 5.27: Concentrations of trace elements during the third growth period of stalagmite VSMS2 attributed to 
Group II (Si, Mn, Fe, Ti and Na) in µg/g. Grey lines indicate the original concentrations after all corrections, black 
lines are 30-pt smoothed data (weighted Adjacent-Averaging), red lines are 300-pt smoothed data. 

 



 5.3  Trace Elements in Stalagmites 

 

  183 

Figure 5.28: Concentrations of P in µg/g representing Group III during the third growth period of stalagmite VSMS2 
including Mn for comparison. Grey lines indicate the original concentrations after all corrections, black lines are 30-
pt smoothed data (weighted Adjacent-Averaging), red lines are 300-pt smoothed data. 

From the two records initially comprised in Group III, only P is shown in Figure 5.28 (including 

Mn for comparison), as U concentrations are not available for this time period due to high 

blanks values and low initial U concentrations that produced negative concentrations after blank 

subtraction. In accordance with high Spearman’s ρ values with Group II elements, P shares 
most of the peaks in concentrations of the Group II elements, for instance at 7.7, 7.4, 7.1, 6.7 

and 6.4 ka BP as well as the multiple peaks at the end of the third growth period between 5.3 

and 4.9 ka BP. Phosphorus also features strongly reduced concentrations from 6.3 ka to 5.3 ka 

BP, just as the Group II elements. However, P concentrations also peak at times when Group II 

elements do not or not as strongly, expecially at 7.0, 6.9 and 6.8 ka BP. In addition to the 

positive correlation with Group II elements, P is negatively correlated with Sr (Spearman’s ρ = -
0.59).  
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Figure 5.29: Reassembled microscope images (crossed polars) of stalagmite VML22 superimposed on flatbed scans 
(-15 brightness, +15 contrast) of the corresponding thin slides with a thickness of 200 µm (top) and 50 µm (bottom). 
The gap between the left and right stalagmite pieces is an inevitable result of thin slide production.  

5.4 Microscopic Analysis 

5.4.1 Stalagmite VML22 

The reassembled microscopic images (crossed polars) of stalagmite VML22 are illustrated in 

Figure 5.29, superimposed on flatbed scans of the corresponding thin slides with a thickness of 

200 µm (top) and 50 µm (bottom). Microstratigraphic logging according to Frisia (2015) was 

conducted on the line along which stable isotope and trace element analyses were performed, at 

the bottom edge of the images in Figure 5.29 (corresponding to the left edge of the images in 

Figure 5.30).  

In stalagmite VML22, five different fabric types were identified: Columnar elongated (Ce), 

Columnar elongated with lateral overgrowth (Celo), Columnar microcrystalline (Cm), Mosaic 

calcite (Mc) and Micrite (M). The microstratigraphic log for the two pieces of stalagmite 

VML22 is shown in Figure 5.30 (left two images).  
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The microstratigraphic log of the bottom stalagmite piece spans the depth range from 109 mm 

to 62.5 mm DFT. From the stalagmite base to DFT 78.4 mm, the fabric type Cm is clearly 

dominating, with only two limited depth intervals featuring the fabric type Mc, from DFT 102.9 

mm to 101.1 mm and from DFT 90.1 mm to 87.2 mm. Above DFT 75.4 mm, the fabric types 

are mainly Cm, from DFT 70.6 mm to 66.9 mm, and Ce in the depth range 78.3 mm to 70.7 mm 

DFT and 66.8 mm to 62.5 mm DFT. The two only exceptions are a potential minor hiatus (H) at 

69 mm DFT and the fabric Celo at 63 mm DFT.  

The microstratigraphic log of the top stalagmite piece spans the depth range from 61.3 mm to 0 

mm DFT and is noteably more varied than that of the bottom stalagmite piece. Up to DFT 19.7, 

the dominant fabric type is Ce that is often alternating with the fabric type Celo. Columnar 

microcrystalline fabrics are restricted to DFT 57.5 – 55.1 mm and DFT 45.9 – 43.3 mm, 

including fabrics of the Mc type at DFT 45.3 – 44.2 mm. There are also multiple small Micrite 

layers, at 36, 34.7, 29.6 20.3 and 19.6 mm DFT. The depth range DFT 20 mm to 0 mm mostly 

comprises more complicated fabric types such as Cm and Mc, while the types Ce and Celo are 

restricted to the depth ranges DFT 9.5 – 6.6 mm and DFT 6.5 – 5.3 mm, respectively.  
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Figure 5.30: Microstratigraphic logs for stalagmites VML22 (left two) and VSMS2 (right three) superimposed on the 
corresponding thin slides (reassembled microscopic images aquired with crossed polars). Fabric types according to 
Frisia (2015): C = Columnar; Co = Columnar open; Ce = Columnar elongated; Celo = Ce with lateral overgrowth; 
Cm = Columnar microcrystalline; D = Dendritic; M = Micrite; Mc = Mosaic calcite; H = Hiatus. The log refers to the 
left edge of each image. 
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Figure 5.31: Reassembled microscope images (crossed polars) of stalagmite VSMS2 superimposed on flatbed scans 
(-15 brightness, +15 contrast) of the corresponding thin slides with a thickness of 200 µm (top) and 50 µm (bottom). 
The gap between the stalagmite pieces in a row is an inevitable result of thin slide production.  

5.4.2 Stalagmite VSMS2 

The reassembled microscopic images (crossed polars) of stalagmite VSMS2 are illustrated in 

Figure 5.31, superimposed on flatbed scans of the corresponding thin slides with a thickness of 

200 µm (top) and 50 µm (bottom). For comparison with stable isotope and trace element data, 

microstratigraphic logging according to Frisia (2015) was conducted along the top edge of the 

microscope images in Figure 5.31 (corresponding to the left edge of the images in Figure 5.30).  

 

In stalagmite VSMS2, eight different fabric types were identified: Columnar (C), Columnar 

open (Co), Columnar elongated (Ce), Columnar elongated with lateral overgrowth (Celo), 

Columnar microcrystalline (Cm), Mosaic calcite (Mc), Dendtritic (D) and Micrite (M). The 

microstratigraphic log for the three pieces of stalagmite VSMS2 is shown in Figure 5.30 (right 

three images).  

The microstratigraphic log of the bottom stalagmite piece spans the depth range from 149.9 mm 

to 101.2 mm DFT. From the stalagmite base to DFT 123.3 mm, the fabric type Ce is clearly 

dominating, alternating multiple times with the Celo type at 149.5, 133.8, 130.2, 126.6 and 

124.5 mm DFT.  



5  Results 

 

188 

Micrite layers are present at 134.1 mm DFT and 126.9 9 mm DFT. From 123.3 mm and 104.1 

mm DFT, the dominating fabric type is Cm instead of Ce, with some sections featuring the Mc 

type, at 122.2, 115.1 and 108.9 mm DFT. At 122.9 mm DFT, the fabric is even dentritic, while 

further Micrite layers are present at 123.2, 118.1, 115.6, 113.3 and 101.2 mm DFT. This section 

is clearly separated from the next section by a distinct hiatus at 103.9 mm DFT. Above that 

hiatus, the fabric type Mc dominates with another dendritic section at DFT 101.1 -100.4 mm 

above a micrite layer at 101.2 mm DFT.  

The microstratigraphic log of the top stalagmite piece spans the depth range from 66.7 mm to 0 

mm DFT. Up to 9.3 mm DFT, the fabrics are mostly of the Cm and the Mc type. Dendritic 

layers are present at DFT 64.3 – 63.4 mm and DFT 34.7 – 33.6 mm, with thin layers of micrite 

type fabrics at 64.1, 19 and 18.3 mm DFT. At 42.5 mm DFT there is a distinct hiatus. In the 

depth range 28.1 - 25.5 mm DFT, the fabric could not be attributed ot any of the fabric types 

defined by Frisia (2015). I t can be described as erratic and disorderly with small crystal sizes 

around 100 µm diameter and diffuse crystal boundaries and likely increased contamination with 

foreign material. The depth range from 9.2 mm up to the stalagmite top is dominated by less 

complex fabrics comprising the C and the Co type, but still includes micrite layers at 7.4, 2.1 

and 1.5 mm DFT.  
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Figure 5.32: X-ray diffractograms for samples 01 to 10 from stalagmite VML22 including the peak positions of 
synthetic calcite, synthetic Mg-calcite and aragonite for reference (vertical bars); top: detail; bottom: overview. For 
better readability samples 02 to 10 are not included in the legend of the top sub-plot. 

5.5 XRD Results 

All XRD analyses confirm that calcite is the predominant mineral phase in both stalagmite 
VML22 and stalagmite VSMS2, while aragonite was not identified, as illustrated in Figure 5.32 
to Figure 5.38.  
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Figure 5.33: As Figure 5.32, but for samples 11 to 20. 

Figure 5.34: As Figure 5.32, but for samples 21 to 27.  



 5.5  XRD Results 

 

  191 

Figure 5.35: X-ray diffractograms for sample 01 from stalagmite VSMS2 (black line) including the 
peak positions of synthetic calcite, synthetic Mg-calcite and aragonite for reference (vertical bars); 
top: detail; bottom: overview.  

Figure 5.36: As All XRD analyses confirm that calcite is the predominant mineral phase in both 
stalagmite VML22 and stalagmite VSMS2, while aragonite was not identified, as illustrated in Figure 
5.32 to , but for samples 01 to 10. For better readability samples 02 to 10 are not included in the 
legend of the top sub-plot.  
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Figure 5.38: As All XRD analyses confirm that calcite is the predominant mineral phase in both 
stalagmite VML22 and stalagmite VSMS2, while aragonite was not identified, as illustrated in Figure 
5.32 to , but for samples 21 to 25. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.37: As All XRD analyses confirm that calcite is the predominant mineral phase in both 
stalagmite VML22 and stalagmite VSMS2, while aragonite was not identified, as illustrated in Figure 
5.32 to , but for samples 11 to 20. 
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5.6 Statistical Analyses 

5.6.1 Histograms 

5.6.1.1 Stalagmite VML22 

Figure 5.39 depicts the histograms of the geochemical records of stalagmite VML22 for δ18O, 

δ13C, Mg, Sr, Ba Fe, Mn and P. The histograms for Si, Al, Na, U, Cu, Zn, Rb and Cd are 

illustrated in Figure 5.40. Each plot also contains the absolute frequency density for a 

hypothetical normal distribution (indicated by a solid black line). Based on their histograms the 

geochemical signals of stalagmite VML22 can be divided into three groups:  

One group of elements clearly features a right-skewed distribution. This group includes Mn, Al, 

Na, Cu, Zn and Rb. These are the elements present in the stalagmite at only low concentrations 

or at concentrations close to the detection limit of the LA-ICP-MS. The second group only 

contains Cd that shows a bimodal distribution and also low concentrations in the stalagmite. The 

third and largest group comprises the remaining geochemical records analysed in VML22, 

namely δ18O, δ13C, Mg, Sr, Ba, Fe, P, Si as well as U. All these proxy signals seem to show a 

normal distribution and their absolute frequency density appears to be a close match to the 

respective hypothetical normal distribution curve.  
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Figure 5.39: Histograms of the geochemical records of stalagmite VML22 for δ18O, δ13C, Mg, Sr, Ba Fe, Mn and P. 
The solid black line illustrates the absolute frequency density for a hypothetical normal distribution of the data in 
each graph.  
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Figure 5.40: Histograms of the geochemical records of stalagmite VML22 for Si, Al, Na, U, Cu, Zn, Rb and Cd. The 
solid black line illustrates the absolute frequency density for a hypothetical normal distribution of the data in each 
graph. 
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5.6.1.2 Stalagmite VSMS2 

Figure 5.41 depicts the histograms of the geochemical records of stalagmite VSMS2 for δ18O, 

δ13C, Mg, Sr, Ba Fe, Mn and P. The histograms for Si, Al, Na, U, Cu, Zn, Rb and Cd are 

illustrated in Figure 5.42. Each plot also contains the absolute frequency density for a 

hypothetical normal distribution (indicated by a solid black line). Similarly to stalagmite 

VML22, based on their histograms the geochemical signals of stalagmite VSMS2 can be 

divided into three groups:  

One group of elements clearly features a right-skewed distribution. This group includes Fe, Mn, 

Si, Al, Na, Cu, Zn, Rb, Cd and Ti. Contrarily to stalagmite VML22, these elements are only 

partly present in the stalagmite at low concentrations or at concentrations close to the detection 

limit of the LA-ICP-MS (e.g. Rb), whereas some of the elements belonging to that group are 

present at high concentrations, such as Fe, Al and especially Si. The second group contains δ18O 

and δ13C that rather show a bimodal than a normal distribution, in consistence with the 

difference in values between the three growth periods of stalagmite VSMS2. The third group 

comprises the remaining geochemical records analysed in VSMS2, namely, Mg, Sr, Ba, P and 

U. All these signals seem to show a normal distribution and their absolute frequency density 

appears to be a close match to the respective hypothetical normal distribution curve.  
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Figure 5.41: Histograms of the geochemical records of stalagmite VSMS2 for δ18O, δ13C, Mg, Sr, Ba Fe, Mn and P. 
The solid black line illustrates the absolute frequency density for a hypothetical normal distribution of the data in 
each graph. 
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Figure 5.42: Histograms of the geochemical records of stalagmite VSMS2 for Si, Al, Na, U, Cu, Zn, Rb and Cd. The 
solid black line illustrates the absolute frequency density for a hypothetical normal distribution of the data in each 
graph. 
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5.6.2 Correlation Matrices 

5.6.2.1 Stalagmite VML22 

The Spearman’s rank coefficients () were calculated for all geochemical records of stalagmite 

VML22 analysed in this study and are summarised as a matrix in Table 5.8. For the calculation 

of the coefficients, all trace element data were averaged to correspond to the isotope data sets as 

described in Section 4.6. Out of the 120 correlation coefficients, 43 indicate a positive 

correlation with  ≥ 0.3 whereas only three indicate a negative correlation with  ≤ -0.3. Twenty 

values in total are not significant at the 0.05 level, using the 2-tailed test of significance in the 

Origin software. All other values have passed the significance test.  

Based on this correlation matrix, two main groups of geochemical records can be distinguished 

in the case of stalagmite VML22, as illustrated by two separate clusters of values with green 

shading indicating positive correlation in Table 5.8:  

Group I comprises δ18O, δ13C, Mg, Sr and Ba that are all positively correlated to one another, 

with values of  ranging from 0.35 (δ13C vs. Ba) to 0.88 (Sr vs. Ba), the latter representing the 

highest  value in the entire matrix. Apart from that maximum value, particularly high  values 

are achieved in the case of δ18O vs. δ13C (0.67), of δ18O vs. Mg (0.71) and of δ13C vs. Mg (0.70). 

Group II contains Mn, Si, Al, Na, Cu, Zn and Rb, although Zn is less strongly correlated with 

the other elements of the group, with  values not exceeding 0.54 (Zn vs. Rb). In this group,  

values range from 0.40 (Na vs. Zn) to 0.74 (Na vs. Cu). Particularly high  values are also 

achieved in the case of Na vs. Al (0.72) as well as of Mn vs. Al (0.68), Al vs. Rb (0.63), Si vs. 

Al (0.63) and Mn vs. Cu (0.62).  

Iron appears to be positively correlated to elements of both groups mentioned above, although 

correlation coefficients are generally lower than within these two distinct groups. The strongest 

correlation of Fe and any other analysed element is with Na, with a  value of 0.58.  

Phosphorus stands out amongst all studied geochemical signals, being the only element that is 

positively correlated with elements of Group II, with  values ranging from 0.24 to 0.34, but 

negatively correlated with elements of Group I. The strongest negative correlation of P and any 

other analysed element is with Sr, with a  value of -0.43. Correlation between P and Mg is also 

negative ( = -0.36). Although the correlation coefficients between P and the remaining 

elements of Group I are above -0.3, the correlation matrix suggests that these are also negatively 

correlated with P (e.g. (δ13C vs. P) = -0.24). Phosphorus is extraordinary in yet another way: It 

is the only element that shows any noteworthy correlation with U, the corresponding  value 

(0.72) being one of the highest in the entire matrix. Therefore P and U are attributed to Group 

III.  

Apart from P, only Zn is negatively correlated with another element of the VML22 data set, 

namely with Mg ( = -0.31).  



 

 

Table 5.8: Matrix of Spearman’s rank correlation coefficients () for all geochemical records of stalagmite VML22 analysed in this study. Positive correlations are highlighted in 
green, negative correlations in red, with the strength of the correlation increasing with respective colour depth. All trace element data are averaged to correspond to the isotope data 
sets as described in Section 4.6. All values that are not significant at the 0.05 level (using the two-tailed test of significance) are shaded in grey. 

 δ13C δ18O Mg Sr Ba Fe Mn Si Al Na Cu Zn Rb P U Cd 

                 δ13C 1 0.67 0.70 0.46 0.35 0.35 -0.01 -0.15 0.14 0.28 0.13 -0.17 -0.01 -0.27 -0.21 0.14 

δ18O 0.67 1 0.71 0.54 0.47 0.48 -0.05 -0.22 0.04 0.29 0.11 -0.26 -0.08 -0.23 -0.01 0.12 

Mg 0.70 0.71 1 0.51 0.40 0.36 -0.15 -0.22 0.00 0.13 0.00 -0.31 -0.14 -0.36 -0.14 0.09 

Sr 0.46 0.54 0.51 1 0.87 0.27 -0.01 -0.02 0.06 0.25 0.14 -0.01 0.02 -0.43 -0.15 0.16 

Ba 0.35 0.47 0.40 0.87 1 0.33 0.11 0.12 0.21 0.39 0.27 0.15 0.18 -0.26 0.02 0.16 

Fe 0.35 0.48 0.36 0.27 0.33 1 0.30 0.25 0.49 0.58 0.48 0.14 0.29 0.19 0.13 0.06 

Mn -0.01 -0.05 -0.15 -0.01 0.11 0.30 1 0.49 0.68 0.55 0.62 0.53 0.52 0.31 0.15 0.07 

Si -0.15 -0.22 -0.22 -0.02 0.12 0.25 0.49 1 0.63 0.43 0.52 0.52 0.54 0.30 0.27 0.08 

Al 0.14 0.04 0.00 0.06 0.21 0.49 0.68 0.63 1 0.72 0.67 0.47 0.63 0.34 0.17 0.06 

Na 0.28 0.29 0.13 0.25 0.39 0.58 0.55 0.43 0.72 1 0.74 0.40 0.55 0.39 0.24 0.08 

Cu 0.13 0.11 0.00 0.14 0.27 0.48 0.62 0.52 0.67 0.74 1 0.53 0.57 0.32 0.17 0.10 

Zn -0.17 -0.26 -0.31 -0.01 0.15 0.14 0.53 0.52 0.47 0.40 0.53 1 0.54 0.24 0.17 0.10 

Rb -0.01 -0.08 -0.14 0.02 0.18 0.29 0.52 0.54 0.63 0.55 0.57 0.54 1 0.25 0.13 0.14 

P -0.27 -0.23 -0.36 -0.43 -0.26 0.19 0.31 0.30 0.34 0.39 0.32 0.24 0.25 1 0.72 -0.06 

U -0.21 -0.01 -0.14 -0.15 0.02 0.13 0.15 0.27 0.17 0.24 0.17 0.17 0.13 0.72 1 0.03 

Cd 0.14 0.12 0.09 0.16 0.16 0.06 0.07 0.08 0.06 0.08 0.10 0.10 0.14 -0.06 0.03 1 
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5.6.2.2 Stalagmite VSMS2 

Spearman’s rank coefficients () were calculated for all geochemical records of stalagmite 

VSMS2 analysed in this study and are summarised as a matrix in Table 5.9. For the calculation 

of the coefficients, all trace element data were averaged to correspond to the isotope data sets as 

described in Section 4.6. Out of the 153 correlation coefficients, 89 indicate a positive 

correlation with  ≥ 0.3 whereas only one indicates a negative correlation with  ≤ -0.3. 

Twenty-three values in total are not significant at the 0.05 level, using the 2-tailed test of 

significance in the Origin software. All other values have passed the significance test.  

Based on this correlation matrix, two main groups of geochemical records can be distinguished 

in the case of stalagmite VSMS2, as illustrated by two separate clusters of values with green 

shading indicating positive correlation in Table 5.9:  

Group I comprises δ18O, δ13C, Mg, Sr and Ba that are all positively correlated to one another, 

with values of  ranging from 0.12 (δ13C vs. Ba and δ18O vs Ba) to 0.75 (δ13C vs. δ18O). Apart 

from that maximum value, particularly high  values are achieved in the case of δ13C vs. Mg 

(0.64) and of δ18O vs. Mg (0.50). Barium is also positively correlated with elements of Group II, 

with values of  of up to 0.30 (Ba vs. Fe).  

Group II contains most of the remaining elements: Fe, Mn, Si, Al, Ti, Na, Cu, Zn, Rb, Th and 

Cd, with Cd being the least strongly correlated with the other elements of the group, with  

values not exceeding 0.55 (Cd vs. Zn). In this group,  values range from 0.30 (Th vs. Cd) to 

0.89 (Al vs. Si and Al vs. Rb). Particularly high  values are also achieved in the case of Rb and 

Fe in general, for instance vs. Al (0.89 and 0.85) and Si (0.89 and 0.83). Cadmium is also 

negatively correlated with elements of Group I, with  values of -0.33 vs. Mg and -0.27 vs. 

δ13C. Apart from these element pairs, only Mn and Sr are also negatively correlated with a  

value close to -0.3 (-0.28).  

The strongest positive correlation in the entire matrix is the one between P and U ( = 0.90), on 

the basis of which both elements can be attributed to Group III. Contrarily to stalagmite 

VML22, P and U in VSMS2 also correlate positively with elements of Group II with maximum 

 values of 0.54 (P vs. Cu) and 0.70 (U vs. Cu). Overall, the positive correlation of U with the 

Group II elements is slightly stronger than that of P.  

 

 

 

 

 



 

 

Table 5.9: Matrix of Spearman’s rank correlation coefficients () for all geochemical records of stalagmite VSMS2 analysed in this study. Positive correlations are highlighted in 
green, negative correlations in red, with the strength of the correlation increasing with respective colour depth. All trace element data are averaged to correspond to the isotope data 
sets as described in Section 4.6. All values that are not significant at the 0.05 level (using the two-tailed test of significance) are shaded in grey. 

 δ13C δ18O Mg Sr Ba Fe Mn Si Al Ti Na Cu Zn Rb Th Cd P U 

                   
δ13C 1 0.75 0.64 0.25 0.12 -0.07 0.01 0.01 0.01 0.02 -0.05 -0.13 -0.14 -0.01 0.00 -0.27 0.17 0.09 

δ18O 0.75 1 0.50 0.24 0.12 0.15 0.10 0.19 0.19 0.19 0.16 -0.02 0.10 0.17 0.05 -0.10 0.17 0.23 

Mg 0.64 0.50 1 0.36 0.21 -0.09 -0.05 -0.02 -0.01 0.01 -0.08 -0.13 -0.15 -0.04 -0.05 -0.33 0.07 -0.15 

Sr 0.25 0.24 0.36 1 0.69 0.06 -0.28 0.01 -0.01 0.04 0.05 -0.13 -0.07 0.00 -0.12 -0.12 -0.11 -0.09 

Ba 0.12 0.12 0.21 0.69 1 0.39 0.19 0.37 0.35 0.34 0.28 0.31 0.28 0.38 0.28 0.18 0.36 0.34 

Fe -0.07 0.15 -0.09 0.06 0.39 1 0.70 0.83 0.85 0.79 0.74 0.66 0.68 0.85 0.64 0.42 0.46 0.36 

Mn 0.01 0.10 -0.05 -0.28 0.19 0.70 1 0.67 0.70 0.61 0.59 0.78 0.69 0.70 0.62 0.36 0.64 0.45 

Si 0.01 0.19 -0.02 0.01 0.37 0.83 0.67 1 0.89 0.86 0.74 0.64 0.63 0.89 0.62 0.32 0.46 0.31 

Al 0.01 0.19 -0.01 -0.01 0.35 0.85 0.70 0.89 1 0.87 0.75 0.67 0.64 0.89 0.62 0.33 0.46 0.30 

Ti 0.02 0.19 0.01 0.04 0.34 0.79 0.61 0.86 0.87 1 0.71 0.59 0.57 0.84 0.58 0.31 0.38 0.24 

Na -0.05 0.16 -0.08 0.05 0.28 0.74 0.59 0.74 0.75 0.71 1 0.68 0.69 0.76 0.50 0.37 0.40 0.35 

Cu -0.13 -0.02 -0.13 -0.13 0.31 0.66 0.78 0.64 0.67 0.59 0.68 1 0.86 0.69 0.56 0.48 0.70 0.54 

Zn -0.14 0.10 -0.15 -0.07 0.28 0.68 0.69 0.63 0.64 0.57 0.69 0.86 1 0.67 0.49 0.55 0.63 0.50 

Rb -0.01 0.17 -0.04 0.00 0.38 0.85 0.70 0.89 0.89 0.84 0.76 0.69 0.67 1 0.64 0.35 0.48 0.32 

Th 0.00 0.05 -0.05 -0.12 0.28 0.64 0.62 0.62 0.62 0.58 0.50 0.56 0.49 0.64 1 0.30 0.42 0.27 

Cd -0.27 -0.10 -0.33 -0.12 0.18 0.42 0.36 0.32 0.33 0.31 0.37 0.48 0.55 0.35 0.30 1 0.36 0.41 

P 0.17 0.17 0.07 -0.11 0.36 0.46 0.64 0.46 0.46 0.38 0.40 0.70 0.63 0.48 0.42 0.36 1 0.90 

U 0.09 0.23 -0.15 -0.09 0.34 0.36 0.45 0.31 0.30 0.24 0.35 0.54 0.50 0.32 0.27 0.41 0.90 1 
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As the three growth periods of stalagmite VSMS2 are separated by two hiatuses by about 5.9 ka 

and 5.4 ka, and because scatter plots of the geochemical records from VSMS2 suggest the 

existence of multiple statistical populations (Section 5.6.3.2), correlation matrices for each of 

the three growth periods were constructed separately as well and are given in Table 5.10 toTable 

5.12.  

First growth period: 25.3 ka to 21.9 ka BP 

Out of the 153 calculated correlation coefficients, 38 indicate a positive correlation with  ≥ 0.3 
whereas 12 indicate a negative correlation with  ≤ -0.3, and 57 values in total are not 

significant at the 0.05 level (Table 5.10). Compared to the correlation matrix integrating over all 

three growth periods, there are noticeably less positive and more negative and statistically 

insignificant correlations.  

The geochemical records of the previously defined Group I are much less associated with one 

another compared to the correlation matrix integrating over all three growth periods. Only Sr 

and Ba are strongly positively correlated ( = 0.75), and δ13C and Mg show a weak positive 

correlation ( = 0.34). Both stable isotope records correlate negatively with one another (-0.20) 

and δ18O and Ba feature the strongest negative correlation among the Group I records (-0.40). 

The Group I records tend to be negatively correlated with all other geochemical records, except 

for δ13C that features only statistically insignificant negative  values. Carbon isotopes are also 

positively correlated with Mn (0.34) and the Group III elements P (0.28) and U (0.24).  

Of the previously defined Group II elements, especially Cu, Zn and Cd are less obviously 

associated with the remaining Group II elements. While the Group III elements P and U are still 

strongly positively correlated to one another (0.88), they only feature a positive correlation with 

Cu and Mn among the Group II elements. Phosphorus and U are negatively correlated with δ18O 

(-0.42 and -0.37), but show a weak positive correlation with δ13C (0.28 and 0.24).  

 

 

 

 

 



 

 

 

Table 5.10: Matrix of Spearman’s rank correlation coefficients () for all geochemical records of stalagmite VSMS2 analysed in this study during its first growth period (n = 225). 
Positive correlations are highlighted in green, negative correlations in red, with the strength of the correlation increasing with respective colour depth. All trace element data are 
averaged to correspond to the isotope data sets as described in Section 4.6. All values that are not significant at the 0.05 level (using the two-tailed test of significance) are shaded in 
grey. 

 δ13C δ18O Mg Sr Ba Fe Mn Si Al Ti Na Cu Zn Rb Th Cd P U 

                   
δ13C 1 -0.20 0.34 -0.10 0.01 -0.09 0.26 -0.08 -0.05 -0.07 -0.05 0.03 -0.10 -0.09 0.11 0.03 0.28 0.24 

δ18O -0.20 1 0.10 -0.21 -0.40 -0.17 -0.31 -0.01 0.00 0.08 0.06 -0.20 0.02 0.04 -0.06 -0.06 -0.42 -0.37 

Mg 0.34 0.10 1 -0.21 -0.05 -0.43 -0.07 -0.32 -0.38 -0.37 -0.40 -0.15 -0.10 -0.37 -0.12 -0.12 0.04 0.05 

Sr -0.10 -0.21 -0.21 1 0.75 -0.25 -0.43 -0.31 -0.30 -0.24 -0.12 -0.18 -0.29 -0.29 -0.29 -0.13 -0.21 -0.10 

Ba 0.01 -0.40 -0.05 0.75 1 -0.12 0.00 -0.21 -0.20 -0.19 -0.15 0.10 -0.11 -0.17 -0.05 -0.04 0.25 0.30 

Fe -0.09 -0.17 -0.43 -0.25 -0.12 1 0.76 0.80 0.85 0.75 0.65 0.20 0.32 0.79 0.52 0.23 0.00 -0.03 

Mn 0.26 -0.31 -0.07 -0.43 0.00 0.76 1 0.57 0.59 0.45 0.39 0.47 0.25 0.55 0.52 0.20 0.47 0.34 

Si -0.08 -0.01 -0.32 -0.31 -0.21 0.80 0.57 1 0.84 0.82 0.74 0.05 0.17 0.80 0.51 0.17 -0.09 -0.07 

Al -0.05 0.00 -0.38 -0.30 -0.20 0.85 0.59 0.84 1 0.84 0.75 0.11 0.23 0.83 0.51 0.21 -0.11 -0.11 

Ti -0.07 0.08 -0.37 -0.24 -0.19 0.75 0.45 0.82 0.84 1 0.75 0.03 0.23 0.80 0.50 0.17 -0.18 -0.13 

Na -0.05 0.06 -0.40 -0.12 -0.15 0.65 0.39 0.74 0.75 0.75 1 0.03 0.10 0.76 0.44 0.19 -0.18 -0.12 

Cu 0.03 -0.20 -0.15 -0.18 0.10 0.20 0.47 0.05 0.11 0.03 0.03 1 0.54 0.13 0.25 0.23 0.40 0.25 

Zn -0.10 0.02 -0.10 -0.29 -0.11 0.32 0.25 0.17 0.23 0.23 0.10 0.54 1 0.26 0.20 0.26 0.15 0.06 

Rb -0.09 0.04 -0.37 -0.29 -0.17 0.79 0.55 0.80 0.83 0.80 0.76 0.13 0.26 1 0.48 0.22 -0.07 -0.05 

Th 0.11 -0.06 -0.12 -0.29 -0.05 0.52 0.52 0.51 0.51 0.50 0.44 0.25 0.20 0.48 1 0.16 0.11 0.08 

Cd 0.03 -0.06 -0.12 -0.13 -0.04 0.23 0.20 0.17 0.21 0.17 0.19 0.23 0.26 0.22 0.16 1 0.13 0.10 

P 0.28 -0.42 0.04 -0.21 0.25 0.00 0.47 -0.09 -0.11 -0.18 -0.18 0.40 0.15 -0.07 0.11 0.13 1 0.88 

U 0.24 -0.37 0.05 -0.10 0.30 -0.03 0.34 -0.07 -0.11 -0.13 -0.12 0.25 0.06 -0.05 0.08 0.10 0.88 1 
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Second growth period: 16.0 ka to 13.1 ka BP 

Out of the 153 calculated correlation coefficients, 84 indicate a positive correlation with  ≥ 0.3 
whereas only five indicate a negative correlation with  ≤ -0.3, and 23 values in total are not 

significant at the 0.05 level (Table 5.11). Compared to the correlation matrix integrating over all 

three growth periods, there are still less positive and more negative and especially statistically 

insignificant correlations, but this discrepancy is not as obvious than with the correlation matrix 

integrating over the first growth period.  

The geochemical records of the previously defined Group I are much less associated with one 

another compared to the correlation matrix integrating over all three growth periods, but δ13C is 

strongly positively correlated with δ18O ( = 0.60), while still being weakly negatively 

correlated with Mg (-0.14). Strontium is strongly positively correlated with Ba ( = 0.59) and 

shows a weak positive correlation with Mg ( = 0.20). The strongest negative correlation among 

the Group I records is again between δ18O and Ba (-0.50) which is also the strongest negative 

correlation in the entire correlation matrix. Barium features weak positive correlations with the 

Group II elements, with  values up to 0.43 (vs. Si and Cu). The stable isotopes are weakly 

positively correlated with the Group III elements, especially δ18O with U ( = 0.37).  

The positive correlations between the Group II elements are noticeably stronger compared to the 

first growth period of stalagmite VSMS2, as are the positive correlations between Group II and 

Group III elements. The strongest positive correlation is between the Group III elements P and 

U (0.90), while both elements show a weak negative correlation with Mg and Sr.  

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Table 5.11: Matrix of Spearman’s rank correlation coefficients () for all geochemical records of stalagmite VSMS2 analysed in this study during its second growth period (n = 318). 
Positive correlations are highlighted in green, negative correlations in red, with the strength of the correlation increasing with respective colour depth. All trace element data are 
averaged to correspond to the isotope data sets as described in Section 4.6. All values that are not significant at the 0.05 level (using the two-tailed test of significance) are shaded in 
grey. 

 δ13C δ18O Mg Sr Ba Fe Mn Si Al Ti Na Cu Zn Rb Th Cd P U 

                   
δ13C 1 0.60 -0.14 -0.31 -0.18 0.08 0.12 0.10 0.06 0.07 0.10 0.02 0.07 0.06 0.08 0.10 0.16 0.26 

δ18O 0.60 1 -0.29 -0.50 -0.26 0.06 0.26 0.11 0.10 0.06 0.17 0.04 0.26 0.07 0.06 0.14 0.17 0.37 

Mg -0.14 -0.29 1 0.20 0.06 -0.11 -0.20 -0.15 -0.13 -0.08 -0.11 -0.26 -0.34 -0.17 -0.07 -0.24 -0.27 -0.21 

Sr -0.31 -0.50 0.20 1 0.59 -0.24 -0.43 -0.11 -0.17 -0.09 -0.12 -0.13 -0.14 -0.15 -0.18 -0.12 -0.24 -0.35 

Ba -0.18 -0.26 0.06 0.59 1 0.36 0.20 0.43 0.40 0.36 0.23 0.43 0.33 0.41 0.31 0.28 0.35 0.19 

Fe 0.08 0.06 -0.11 -0.24 0.36 1 0.75 0.72 0.75 0.63 0.58 0.68 0.53 0.80 0.71 0.42 0.47 0.39 

Mn 0.12 0.26 -0.20 -0.43 0.20 0.75 1 0.54 0.56 0.45 0.50 0.68 0.60 0.60 0.60 0.50 0.52 0.49 

Si 0.10 0.11 -0.15 -0.11 0.43 0.72 0.54 1 0.80 0.76 0.55 0.53 0.42 0.82 0.58 0.29 0.37 0.33 

Al 0.06 0.10 -0.13 -0.17 0.40 0.75 0.56 0.80 1 0.73 0.55 0.54 0.42 0.79 0.59 0.29 0.38 0.34 

Ti 0.07 0.06 -0.08 -0.09 0.36 0.63 0.45 0.76 0.73 1 0.47 0.44 0.33 0.71 0.51 0.28 0.29 0.27 

Na 0.10 0.17 -0.11 -0.12 0.23 0.58 0.50 0.55 0.55 0.47 1 0.65 0.61 0.60 0.45 0.41 0.44 0.42 

Cu 0.02 0.04 -0.26 -0.13 0.43 0.68 0.68 0.53 0.54 0.44 0.65 1 0.83 0.61 0.52 0.62 0.74 0.62 

Zn 0.07 0.26 -0.34 -0.14 0.33 0.53 0.60 0.42 0.42 0.33 0.61 0.83 1 0.51 0.45 0.69 0.61 0.56 

Rb 0.06 0.07 -0.17 -0.15 0.41 0.80 0.60 0.82 0.79 0.71 0.60 0.61 0.51 1 0.62 0.35 0.41 0.35 

Th 0.08 0.06 -0.07 -0.18 0.31 0.71 0.60 0.58 0.59 0.51 0.45 0.52 0.45 0.62 1 0.39 0.34 0.28 

Cd 0.10 0.14 -0.24 -0.12 0.28 0.42 0.50 0.29 0.29 0.28 0.41 0.62 0.69 0.35 0.39 1 0.54 0.46 

P 0.16 0.17 -0.27 -0.24 0.35 0.47 0.52 0.37 0.38 0.29 0.44 0.74 0.61 0.41 0.34 0.54 1 0.90 

U 0.26 0.37 -0.21 -0.35 0.19 0.39 0.49 0.33 0.34 0.27 0.42 0.62 0.56 0.35 0.28 0.46 0.90 1 
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Third growth period: 7.7 ka to 4.9 ka BP 

Out of the 153 calculated correlation coefficients, 77 indicate a positive correlation with  ≥ 0.3 
whereas 13 indicate a negative correlation with  ≤ -0.3, and 18 values in total are not 

significant at the 0.05 level (Table 5.12). Compared to the correlation matrix integrating over all 

three growth periods, there are still less positive and more negative and especially statistically 

insignificant correlations, but this discrepancy is not as obvious than with the correlation matrix 

integrating over the first growth period.  

The geochemical records of the previously defined Group I are less associated with one another 

compared to the correlation matrix integrating over all three growth periods, but δ13C is strongly 

positively correlated with δ18O ( = 0.71) and is weakly positively correlated with Mg (0.15), 

while still being negatively correlated with Sr (-0.34) and Ba (-0.20). Strontium is positively 

correlated with Ba ( = 0.40), but most noticeably shows negative correlations with all other 

geochemical records of stalagmite VSMS2 with  values down to -0.59 (vs. P). The strongest 

negative correlation among the Group I records is between δ18O and Sr (-0.40).  

Both Mg and Ba feature positive correlations with the Group II elements, with  values up to 

0.51 (vs. Mn and Al) and 0.46 (vs. Rb), respectively. The stable isotopes are still weakly 

positively correlated with P, while U concentration data are not available for the third growth 

period of stalagmite VSMS2 as a result of high blank values that lead to negative concentration 

values when subtracted because U concentrations were below the limit of detection during the 

third growth period. Phosphorus is strongly positively correlated with all Group II elements, but 

strongly negatively correlated with Sr (-0.59). 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Table 5.12: Matrix of Spearman’s rank correlation coefficients () for all geochemical records of stalagmite VSMS2 analysed in this study during its third growth period (n = 208). 
Positive correlations are highlighted in green, negative correlations in red, with the strength of the correlation increasing with respective colour depth. All trace element data are 
averaged to correspond to the isotope data sets as described in Section 4.6. All values that are not significant at the 0.05 level (using the two-tailed test of significance) are shaded in 
grey. 

 δ13C δ18O Mg Sr Ba Fe Mn Si Al Ti Na Cu Zn Rb Th Cd P 

                  
δ13C 1 0.71 0.15 -0.34 -0.20 0.19 0.22 0.04 0.02 -0.06 0.10 0.14 0.19 0.08 0.18 -0.19 0.35 

δ18O 0.71 1 -0.01 -0.40 -0.33 0.10 0.12 -0.03 -0.06 -0.10 0.08 0.10 0.17 -0.01 0.09 -0.05 0.27 

Mg 0.15 -0.01 1 -0.19 -0.05 0.47 0.51 0.46 0.51 0.48 0.45 0.46 0.45 0.45 0.26 -0.17 0.37 

Sr -0.34 -0.40 -0.19 1 0.40 -0.39 -0.50 -0.34 -0.39 -0.31 -0.31 -0.44 -0.52 -0.35 -0.25 -0.12 -0.59 

Ba -0.20 -0.33 -0.05 0.40 1 0.42 0.26 0.46 0.40 0.44 0.25 0.31 0.24 0.47 0.46 0.26 0.19 

Fe 0.19 0.10 0.47 -0.39 0.42 1 0.87 0.89 0.90 0.87 0.75 0.87 0.81 0.91 0.77 0.21 0.76 

Mn 0.22 0.12 0.51 -0.50 0.26 0.87 1 0.83 0.86 0.79 0.74 0.91 0.86 0.84 0.68 0.19 0.84 

Si 0.04 -0.03 0.46 -0.34 0.46 0.89 0.83 1 0.92 0.91 0.75 0.85 0.79 0.91 0.71 0.24 0.72 

Al 0.02 -0.06 0.51 -0.39 0.40 0.90 0.86 0.92 1 0.93 0.78 0.88 0.81 0.92 0.71 0.25 0.75 

Ti -0.06 -0.10 0.48 -0.31 0.44 0.87 0.79 0.91 0.93 1 0.75 0.84 0.77 0.89 0.67 0.25 0.68 

Na 0.10 0.08 0.45 -0.31 0.25 0.75 0.74 0.75 0.78 0.75 1 0.83 0.72 0.77 0.55 0.13 0.62 

Cu 0.14 0.10 0.46 -0.44 0.31 0.87 0.91 0.85 0.88 0.84 0.83 1 0.92 0.86 0.70 0.29 0.83 

Zn 0.19 0.17 0.45 -0.52 0.24 0.81 0.86 0.79 0.81 0.77 0.72 0.92 1 0.81 0.61 0.39 0.88 

Rb 0.08 -0.01 0.45 -0.35 0.47 0.91 0.84 0.91 0.92 0.89 0.77 0.86 0.81 1 0.74 0.24 0.74 

Th 0.18 0.09 0.26 -0.25 0.46 0.77 0.68 0.71 0.71 0.67 0.55 0.70 0.61 0.74 1 0.16 0.58 

Cd -0.19 -0.05 -0.17 -0.12 0.26 0.21 0.19 0.24 0.25 0.25 0.13 0.29 0.39 0.24 0.16 1 0.34 

P 0.35 0.27 0.37 -0.59 0.19 0.76 0.84 0.72 0.75 0.68 0.62 0.83 0.88 0.74 0.58 0.34 1 
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Figure 5.43: Scatter plot of VML22 δ18O vs. δ13C including a linear regression fit (solid line), the corresponding 
formula, the adjusted R2 as a measure for the goodness of the fit and the value of the Spearmans’s . Data points in 
red and blue are adjacent data points clearly plotting below the regression line, respectively (see text for details).  

5.6.3 Scatter Plots 

5.6.3.1 Stalagmite VML22 

Figure 5.43 shows the scatter plot of δ18O from stalagmite VML22 plotted against δ13C. 

Additionally to the respective scatter plot, the plot contains the Spearman’s  value for the two 

elements plotted against each other, as well as the line that results from a linear regression 

calculated for the cross plot using the software Origin, together with the formula mathematically 

describing the regression line. As a measure for the goodness of the fit, the coefficient of 

determination (R2) has been implemented in the plot, also calculated with the software Origin. 

In order to avoid the effect of artificially increased R2 by increased numbers of variables used 

for the fitting, the adjusted R2 is used as a quality measure, rather than merely R2. 

 

 

 

 

 

 

 

 

On the one hand, the close match between data points and regression line mirrors the high value 

of Spearman’s  for δ18O vs. δ13C (0.67). This linear correlation apparent over the entire data set 

of stalagmite VML22 suggests that both proxy signals are controlled by processes that influence 

the two signals in a similar fashion. On the other hand, the goodness of the fit is only moderate, 

with the value of adjusted R2 being 0.46, and in two separate areas of the scatter plot a number 

of data points tend to lower δ13C values relative to their corresponding δ18O values, thus plotting 

noticeably below the regression line: Data points in blue in Figure 5.43 are isotope samples 

number 18 to 34, counted from the top of the stalagmite, and represent the time period 0.73 – 

0.99 ka BP (3.4 – 6.5 mm DFT). Data points in red are isotope samples number 512 to 535 and 

represent the time period 7.39 – 7.64 ka BP (99.2 – 103.7 mm DFT).  
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This deviation towards decreased δ13C values relative to their corresponding δ18O values 

suggests the acting of a process leading either to decreased δ13C values without influencing the 

corresponding δ18O values, or causing increased δ18O values without influencing the 

corresponding δ13C values.  

Figure 5.48 shows the scatter plots of the geochemical records of stalagmite VML22 for δ18O 

and δ13C plotted against Mg, Sr, Ba and Fe, respectively. As for the calculation of the 

correlation matrices (Section 5.6.2), trace element data were averaged to correspond to the 

isotope data sets. Detailed plots like the ones combined in Figure 5.48 were created for all 

elements plotted against δ18O and δ13C, as well as against Mg and Al, to cover examples from 

both main groups of proxy signals identified in Section 5.6.2 (Group I and Group II). Additional 

detailed plots were created for element pairs with particularly strong (positive or negative) 

correlation as indicated by Spearman’s  values, for example Sr vs. Ba ( = 0.88). As there are 

240 scatter plots to be illustrated in total, all remaining scatter plots not displayed in detail were 

implemented in the form of scatter plot matrices and are shown in the Appendix.  

As suggested by the high values of Spearman’s  in the correlation matrix (Section 5.6.2), all 

elements of Group I show a linear relation with both δ18O and δ13C, while this is slightly more 

evident in the case of δ18O than of δ13C. The linear fit is most suited for Mg with values of R2 of 

0.5 for both δ18O and δ13C, while the goodness of the fit is reduced for Sr with values of R2 of 

0.32 and 0.22 for δ18O and δ13C, respectively. The linear regression for Ba versus δ18O still 

yields an R2 of 0.20, but for Ba vs. δ13C the value of R2 is only 0.11 so that the relationship 

between Ba and δ13C cannot be well described with a linear regression. The linear regression 

appears to describe the relation between Mg, Sr and Ba fairly well (Figure C.4), as indicated by 

high to medium values of R2: 0.69 (Sr vs. Ba), 0.32 (Mg vs. Sr) and 0.20 (Mg vs. Ba).  

Both values of Spearman’s  and adjusted R2 indicate that the relationship between the elements 

of Group II and the elements of Group I cannot be well described with a linear correlation 

(Figure C.2 toFigure C.1). Furthermore, the scatter plots show that any alternative type of curve 

fitting (e.g. exponential or polynomial) will be just as ill-suited for describing the relation 

between the elements of both groups. This implies that the geochemical proxy signals from both 

groups are controlled by different suites of processes. Computed for the elements of Group II, 

the values of R2 are generally high (e.g. Figure C.7) and the relation between these elements can 

therefore be well described linearly, with the only exception being Cd. For instance, values of 

R2 for Al versus Fe, Mn, Si, Na, Zn and Rb are 0.55, 0.50, 0.66, 0.60, 0.42 and 0.57, 

respectively. 

Although Spearman’s  values computed for Fe vs. δ18O (0.48) and δ13C (0.35) are moderate 

and the majority of data points plot close to the regression line, a number of data points deviate 

strongly towards increased concentrations of Fe so that the corresponding values of R2 are close 

to zero (0.08 for δ18O and 0.03 for δ13C). This suggests that the highest Fe concentrations in 

stalagmite VML22 cannot be explained by the same processes that lead to the overall positive 

correlation between Fe and the other elements of Group I.  
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As the values of both Spearman’s  and R2 computed for Fe and the elements of Group II are 

much higher compared to those for Group I (e.g. R2 of Fe vs. Al: 0.54), Fe is rather attributed to 

Group II than to Group I. 

Phosphorus, on the other hand, can be attributed to the elements of Group I with which it is 

negatively correlated (Section 5.6.2). Values of R2 for P versus δ18O, δ13C, Mg, Sr and Ba are 

0.08, 0.10, 0.16, 0.31 and 0.08, respectively, so that a linear relation of P with these elements is 

the most evident for Mg and especially for Sr. The negative linear correlation of P with Mg and 

Sr is unique in the geochemistry of stalagmite VML22. The best linear fit of P with any other 

element, however, is achieved for U (R2: 0.58) with which it is strongly positively correlated (: 

0.72). The relation of P with the elements of Group II cannot be adequately described with a 

linear regression, all values of R2 are < 0.12. The corresponding scatter plots suggest that the 

positive correlation of P with the elements of Group II indicated by Spearman’s  is 

superimposed by a more erratic relation between these elements as P concentrations in 

stalagmite VML22 vary widely in the respective low concentrations range of the Group II 

elements.  

In a statistical sense, none of the 240 scatter plots of the geochemical proxy signals of 

stalagmite VML22 features multiple populations. Therefore, the data points of each proxy 

signal can be considered as a statistical unit and there are no subpopulations to be separated out 

for further analyses.  
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Figure 5.44: Scatter plots of the geochemical records of stalagmite VML22 for δ18O and δ13C plotted against Mg, Sr, 
Ba and Fe, respectively. Trace element data were averaged to correspond to the isotope data sets as described in the 
text. 
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Figure 5.45: Scatter plot of δ18O vs. δ13C for all three growth periods of stalagmite VSMS2, including linear 
regression fits (colour-coded solid lines) and the corresponding adjusted R2 as a measure for the goodness of the fit.  

5.6.3.2 Stalagmite VSMS2 

Figure 5.45 shows the scatter plot of δ18O from stalagmite VSMS2 plotted against δ13C for all 

three growth periods, including linear regression fits (solid lines) and the corresponding 

adjusted R2 as a measure for the goodness of the fit. 

 

 

 

 

 

 

 

 

From a statistical standpoint, the stable isotope proxy signals of stalagmite VSMS2 feature 

multiple populations that can be attributed to the three different growth periods of VSMS2. 

Therefore, these subpopulations are separated out for further analyses. The goodness of the 

linear fit for each growth period corresponds well with the respective value of Spearman’s ρ. 
During the first growth period, δ18O and δ13C are only weakly negatively correlated with one 

another (ρ = -0.20) and the relation between the isotope proxies cannot be well described with a 

linear regression as indicated by an adjusted R2 close to zero. However, during the second 

growth period, δ18O and δ13C are strongly positively correlated with one another (ρ = 0.60) and 
their relation can be fairly well described linearly (adjusted R2 = 0.31). This association is even 

stronger in the third growth period (ρ = 0.71; adjusted R2 = 0.48), suggesting that both stable 

isotope proxies are influenced by a certain suite of processes in a similar fashion during the 

second and third growth period, but not during the first. All remaining scatter plots are 

implemented in the form of scatter plot matrices in Appendix C.1and C.2. 

During the first growth period, the Group I elements are not strongly associated with one 

another (Figure C.12), with generally low values of ρ and adjusted R2, except for Sr and Ba (ρ = 
0.75; adjusted R2 = 0.46) and, to a lesser extent, for δ13C and Mg (ρ = 0.34; adjusted R2 = 0.15).  

During the second growth period (Figure C.13 top), the association between and δ18O and δ13C 

is the strongest (ρ = 0.60; adjusted R2 = 0.31), while the association between δ13C and Mg has 

vanished (ρ = -0.14; adjusted R2 = 0.03).  
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Figure 5.46: Scatter plot of δ18O vs. δ13C (left) and δ18O vs. Mg (right) during the second growth period of stalagmite 
VSMS2, differentiating between the first part (red) until 14.4 ka BP and the second part (black) of the growth period.  

Interestingly, the scatter plots of δ18O versus the remaining Group I elements again suggest two 

statistical populations, especially in the case of δ13C and Mg (Figure 5.46) which indicates a 

distinct shift in the relation between δ18O and the remaining Group I elements around 14.4 ka 

BP (DFT 64.8 mm) which allows a differentiation between a first and a second part within the 

second growth period of stalagmite VSMS2. During the third growth period (Figure C.13 

bottom), the association between and δ18O and δ13C is even stronger than during the second 

growth period (ρ = 0.71; adjusted R2 = 0.48). All other Group I elements are not significantly 

associated with one another and their relation cannot be well described with linear regression as 

indicated by the overall low values of adjusted R2.  

 

The main elements attributed to Group II (Fe, Mn, Si, Al and Ti) are generally strongly 

associated with one another in a linear fashion as indicated by high values of ρ and of adjusted 
R2, with the strength of this assocation generally increasing from the first growth period 

(Appendix, Figure C.14) over the second (Appendix, Figure C.15 top) to the third growth period 

(Appendix, Figure C.15 bottom). The remaining elements attributed to Group II (Na, Cu, Zn, 

Rb and Th) behave similarly, but their association to one another is weaker overall Appendix, 

(Figure C.16 and Figure C.17). Phosphorus and U (Appendix, Figure C.18) are strongly 

associated with one other during the first and second growth phases. For the third growth period 

U concentration data are not available as U concentrations were below the detection limit during 

that growth period.  
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5.6.4 Autocorrelation Coefficients 

5.6.4.1 Stalagmite VML22 

Table 5.13 summarises the lag-1 autocorrelation coefficients (Lag-1 ACC; Spearman’s ρ) 
calculated for the geochemical records of stalagmite VML22. Again trace element data were 

averaged to correspond to the isotope data sets as described in Section 4.6 for the computation 

of the Lag-1 ACC. Values of the Lag-1 ACC for Rb and Cd are 0.38 and 0.14, respectively 

(grey shading), and are considered to be too low for these geochemical datasets to constitute 

valid geochemical signals of the palaeoenvironment. Rubidium and Cd are therefore omitted 

from all further analyses conducted within the framework of this thesis, another reason being 

that only less than half of the original data points remain after removal of negative values 

(below the limit of detection) and outliers (Table 4.1).  

The remaining geochemical signals of stalagmite VML22 feature Lag-1 ACC that range from 

0.55 (U) to 0.95 (δ13C). The highest Lag-1 ACC are achieved for those elements attributed to 

Group I based on their respective Spearman’s rank coefficients in Section 5.6.2. Within this 

group, Lag-1 ACC range from a still high minimum of 0.78 (Ba) to a maximum of 0.95 (δ13C), 

closely followed by the second highest values of 0.93 (δ18O).  

Table 5.13: Lag-1 autocorrelation coefficients for the geochemical records of stalagmite VML22. Values with grey 
shading are deemed too low for the proxy signals to be applicable for palaeoenvironmental reconstruction. 

Data set δ13C δ18O Mg Sr Ba Fe Mn P 

Lag-1 ACC 0.95 0.93 0.88 0.80 0.78 0.62 0.70 0.65 

Data set Si Al Na U Cu Zn Rb Cd 

Lag-1 ACC 0.56 0.60 0.69 0.55 0.59 0.66 0.38 0.14 

 

5.6.4.2 Stalagmite VSMS2 

Table 5.14 summarises the lag-1 autocorrelation coefficients (Lag-1 ACC; Spearman’s ρ) 
calculated for the geochemical records of stalagmite VSMS2. Again trace element data were 

averaged to correspond to the isotope data sets for the computation of the Lag-1 ACC. Values of 

the Lag-1 ACC for Cd and Th are 0.51 and 0.44, respectively (grey shading), and are considered 

to be too low for these geochemical datasets to constitute valid geochemical signals of the 

palaeoenvironment. Cadmium and Th are therefore omitted from all further analyses conducted 

within the framework of this thesis, another reason being that only less than half of the original 

data points remain after removal of negative values (below the limit of detection) and outliers 

(Table 5.4).  

The remaining geochemical signals of stalagmite VSMS2 feature Lag-1 ACC that range from 

0.72 (Ti) to 0.99 (δ18O). The highest Lag-1 ACC are achieved for δ18O, δ13C and Mg attributed 

to Group I based on their respective Spearman’s rank coefficients in Section 5.6.2.2.  
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Within Group I, Lag-1 ACC range from a still high minimum of 0.74 (Ba) to a maximum of 

0.99 (δ18O), closely followed by the second highest values of 0.98 (δ13C).  

Lag-1 ACC were also computed separately for each of the three growth periods of stalagmite 

VSMS2. These values are comparable to the values computed for the entirety of each respective 

data set and are given in Table 5.15 to Table 5.17.  

Table 5.14: Lag-1 autocorrelation coefficients for the geochemical records of stalagmite VSMS2. Values with grey 
shading are deemed too low for the proxy signals to be applicable for palaeoenvironmental reconstruction. 

Data set δ13C δ18O Mg Sr Ba Fe Mn P Ti 

Lag-1 ACC 0.98 0.99 0.96 0.83 0.74 0.82 0.83 0.83 0.72 

Data set Si Al Na U Cu Zn Rb Cd Th 

Lag-1 ACC 0.75 0.77 0.80 0.78 0.86 0.88 0.74 0.51 0.45 

 

Table 5.15: Lag-1 autocorrelation coefficients for the geochemical records of stalagmite VSMS2 during its first 
growth period. Values with grey shading are deemed too low for the proxy signals to be applicable for 
palaeoenvironmental reconstruction. 

Data set δ13C δ18O Mg Sr Ba Fe Mn P Ti 

Lag-1 ACC 0.91 0.91 0.89 0.78 0.72 0.75 0.62 0.78 0.72 

Data set Si Al Na U Cu Zn Rb Cd Th 

Lag-1 ACC 0.74 0.77 0.73 0.76 0.63 0.67 0.68 0.03 0.30 

 

Table 5.16: Lag-1 autocorrelation coefficients for the geochemical records of stalagmite VSMS2 during its second 
growth period. Values with grey shading are deemed too low for the proxy signals to be applicable for 
palaeoenvironmental reconstruction. 

Data set δ13C δ18O Mg Sr Ba Fe Mn P Ti 

Lag-1 ACC 0.92 0.98 0.88 0.71 0.59 0.57 0.66 0.75 0.50 

Data set Si Al Na U Cu Zn Rb Cd Th 

Lag-1 ACC 0.56 0.51 0.67 0.73 0.74 0.84 0.54 0.51 0.44 

 

Table 5.17: Lag-1 autocorrelation coefficients for the geochemical records of stalagmite VSMS2 during its third 
growth period. The value for U is missing due to an insufficient number of data points.  

Data set δ13C δ18O Mg Sr Ba Fe Mn P Ti 

Lag-1 ACC 0.94 0.88 0.82 0.76 0.70 0.80 0.85 0.88 0.81 

Data set Si Al Na U Cu Zn Rb Cd Th 

Lag-1 ACC 0.79 0.86 0.80 - 0.90 0.92 0.80 0.51 0.51 
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5.6.5 Frequency Analysis 

5.6.5.1 Stalagmite VML22 

The results of the frequency analysis, the red-noise spectra, are illustrated in Figure 5.47 for 

δ18O, δ13C (top), Mn and P (bottom), the remaining spectra are included in the Appendix. The 

bias-corrected estimated red-noise spectrum of the respective data set is plotted against the 

frequency of the variations inherent in each data set (black line). The higher the spectrum at a 

certain frequency, the more often the values of the data set vary at that specific frequency. This 

allows to identify potential cyclic patterns in the proxy signal variations with their respective 

cycle duration. The cycle duration is the inverse of its corresponding frequency and is referred 

to as “periodicity” in the following. In each graph, the pink, blue and red solid lines represent 

the 99%, the 95% and the 90% confidence level, respectively. Peaks in the red-noise spectra 

exceeding the 95% and/or 99% confidence level are labelled with a number that represents the 

respective periodicity (in years) of the cyclic behaviour represented by each peak. For example, 

the number 200 would indicate that a statistically significant number of variations in the 

respective proxy signal occur at intervals of 200 years, at a frequency of 1/200 = 0.005 years-1.  

The errors of each statistically significant periodicity detected in the data sets are not shown in 

the spectrum diagrams, but separately in Figure 5.48. The maximal absolute error of each peak 

in terms of frequency depends on the interval for which the spectrum is calculated: In case of 

the trace elements, for instance, the spectrum is calculated for frequencies at constant intervals 

of 0.00020 years-1 (stable isotopes: 0.00007 years-1). This yields a maximal absolute error of 

±0.00020 years-1. As the periodicity is the inverse of its corresponding frequency, the difference 

in periodicity between two adjacent frequencies, which represents the maximum error in terms 

of periodicity, is maximal for the lowest frequency and decreases with increasing frequency. For 

example, the difference between the first (0.00020 years-1) and the second frequency (0.00040 

years-1) for which the spectrum is calculated equals to a cycle duration of about 2,528 years, 

while the difference between the second and the third frequency (0.00059 years-1) equals to a 

cycle duration of about 843 years. Thus, the periodicity corresponding to the second frequency 

(2,528 years) has a positive error of 2,528 years and a negative error of 843 years.  

As the maximum errors related with each peak in the frequency spectra are dramatically 

increased at low frequencies, i.e. long periodicities (as explained above), all periodicities 

exceeding 1,000 years are omitted and the discussion of the spectra focuses on periodicities of ≤ 
150 years duration. 

The number of periodicities exceeding the confidence levels of 95% and/or 99%, range from 14 

(δ18O) to 47 (Ba) and are generally more numerous for the trace elements than the stable 

isotopes, although the Na data set also only yields 15 statistically significant periodicities. Most 

of the detected periodicities are multi-decadal (Figure 5.48), while the time series of Fe and Si 

also seem to contain several multi-year periodicities as short as three years.  
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Figure 5.47: Estimated red-noise spectra of the proxy signals from stalagmite VML22 for δ18O, δ13C (top), Mn and P 
(bottom). The numbers above peaks significant at the 95% and/or 99% confidence level indicate the respective 
periodicity (in years) of the potential cyclic behaviour represented by each peak. 

 

 

Figure 5.48 might give the impression that the statistically significant periodicities (of up to 150 

years) detected by frequency analysis are distributed fairly uniformly, especially if the error 

ranges are considered as well. However, Figure 5.49 demonstrates that the distribution of 

periodicities is not uniform, but that the periodicities rather seem to cluster in a range from 

about 30 to 70 years cycle duration. Periodicities shared by most (at least six) proxy signals are 

28 (δ18O, δ13C, Sr, Ba, Si, Zn, U), 30 (Sr, Ba, Si, Fe, Zn), 34 (δ18O, Mg, Ba, P, U, Fe), 35 (Sr, 

Ba, Fe, Mn, Si, Al, Cu, Zn), 39 (δ13C, Mg, Sr, Ba, Fe, Mn, P, U, Al), 40 (δ18O, δ13C, P, U, Mg, 

Zn), 47 (δ13C, Mg, Fe, Cu) and 52 years (Ba, Si, Na, Mn, Fe, Cu, Zn, Mg, U). It is important to 

note that, considering dating uncertainty, it is impossible to tell these periodicities apart, but it is 

evident that multi-decadal periodicities are numerous in the geochemical time-series of 

stalagmite VML22. Two separate peaks in absolute frequency are identified at at 108 years (Mg, 

Mn, Fe, U, Zn, P) and 174 years (Si, U, P, Al, Na, Cu). These periodicities do not seem to be 

shared specifically by proxy signals attributed to the same geochemial group as defined in 

Section 5.6.2, but also by proxy signals attributed to different groups. However, the element 

pairs with the strongest correlation (Sr/Ba and P/U) share about half of their respective 

periodicities. 
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Figure 5.48: Statistically significant periodicities (cycle durations) identified by frequency analysis of the proxy 
records of stalagmite VML22 (rectangles), including their respective maximum error range down to ±1 years. All 
values are rounded to whole numbers. Note the change in scale at 150 years cycle duration (horizontal line). Higher 
periodicities are omitted due to their increased error.  
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Figure 5.49: Absolute frequency distribution of all the periodicities (up to 250 years) in the geochemical records of 
stalagmite VML22 identified by frequency analysis.  
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Figure 5.50: Estimated red-noise spectra of the proxy signals from stalagmite VSMS2 for δ18O, δ13C (top), Mn and P 
(bottom). The numbers above peaks significant at the 95% and/or 99% confidence level indicate the respective 
periodicity (in years) of the potential cyclic behaviour represented by each peak. 

5.6.5.2 Stalagmite VSMS2 

As only the age model during the second growth period of stalagmite VSMS2 was deemed 

accurate enough for a successful frequency analysis, the first and third growth periods were not 

analysed for potential periodicities.  

Figure 5.50 shows the frequency spectra for δ18O, δ13C (top), Mn and P (Figure 5.47bottom) 

only, the remaining spectra are included in the Appendix, while the errors of each statistically 

significant periodicity detected in the data sets are shown separately in Figure 5.51. Overall, the 

spectra are similar to those calculated for stalagmite VML22. However, the frequency spectra 

for δ18O and δ13C clearly stand out among the remaining spectra due to their distinctive shape 

with a local minimum at a frequency of 0.02 years -1. Furthermore, both spectra are virtually 

(but not numerically) identical and only yield statistically significant values at the high-

frequency end of the spectrum with periodicities ranging from 19 to 29 years. The first order 

variation in the spectra is superimposed by low-amplitude peaks that seem equally spaced. All 

these features suggest that the frequency analysis of both stable isotope data sets was 

unsuccessful and that the resulting spectra actually represent artefacts rather than interpretable 

results. It is also noteworthy that the spectrum of P only contains four periodicities that exceed 

the 95% and/or the 99% confidence level.  
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Figure 5.51: Statistically significant periodicities (cycle durations) identified by frequency analysis of the 
proxy records of stalagmite VSMS2 (rectangles), including their respective maximum error range down to ±1 
years. All values are rounded to whole numbers. Note the change in scale at 150 years cycle duration 
(horizontal line). Higher periodicities are omitted due to their increased error. 
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Figure 5.52: Absolute frequency distribution of all the periodicities (up to 250 years) in the geochemical records of 
stalagmite VSMS2 identified by frequency analysis. 

Apart from the stable isotope data sets, frequency analysis was succesful. The number of 

periodicities exceeding the confidence levels of 95% and/or 99%, range from 15 (Cu) to 36 

(Fe). As for stalagmite VML22, most of the detected periodicities are multi-decadal (Figure 

5.51), while the time series of Ba, Fe, Si, Al, Na and Rb also contain several multi-year 

periodicities as short as four years.  

Similarly to stalagmite VML22, Figure 5.52 demonstrates that the distribution of the 

statistically significant periodicities is not uniform, but that the periodicities rather cluster in a 

range from about 30 to 70 years cycle duration. Periodicities shared by most (at least eight) 

proxy signals are 19 (δ18O, δ13C, Al, Ba, Na, Cu, Si, Ti, Fe), 21 (δ18O, δ13C, Al, Si, Ti, Fe, Rb, 

Mn), 23 (δ18O, δ13C, Mg, Ba, Fe, Al, Ti, Rb, U), 24 (δ18O, δ13C, Mg, Sr, Ba, Fe, Si, Ti), 26 

(δ18O, δ13C, Mg, Si, Ti, Na, Zn, Rb), 28 (δ18O, δ13C, Mg, Ba, Fe, Mn, Ti, Na, U), 30 (Mg, Sr, 

Ba, Fe, Si, Al, Na, Rb, U) and 36 years (Mg, Sr, Ba, Fe, Mn, Al, Na, Zn), with two separate 

peaks in absolute frequency at 89 years (Mn, Si, Na, Cu, Rb, P, U) and 189 years (Sr, Ba, Mn, 

Si, Al, Ti, Na, Rb). If the stable isotopes periodicities are not included, these are still the most 

frequently detected periodicities. As for stalagmite VML22, there is no obvious dependence 

between shared periodicities and attribution of the geochemical records to a specific 

geochemical group as defined in Section 5.6.2.  
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Figure 5.54: X-ray diffractograms for samples G2-01, -03, -05, -06 and -08 including the peak positions of synthetic 
calcite, synthetic Mg-calcite and dolomite for reference (vertical bars). 

Figure 5.53: X-ray diffractograms for samples G_05, G_02-1 and G_02-2 including the peak positions of synthetic 
calcite, synthetic Mg-calcite and dolomite for reference (vertical bars). 

5.7 Cave Environment 

5.7.1 Characterisation of Host Rock, Soils and Plants 

5.7.1.1 Host Rock Mineralogy 

The host rock surrounding and overlying cave Ma Le 2 (samples G_05, G_02-1 and G_02-2) 

mainly consists of calcite and Mg-calcite (Figure 5.53). In some cases the reference peaks for a 

synthetic Mg-calcite containing 3 wt-% Mg plot at slightly higher 2θ values than the sample 

peaks in the diffractogram indicating that the actual sample contains less than 3 wt-% Mg. Only 

sample G2_05 clearly also features dolomite.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://de.wikipedia.org/wiki/Stimmloser_dentaler_Frikativ


 5.7  Cave Environment 

 

  225 

Figure 5.55: X-ray diffractograms for samples G2-02 and -04 including the peak positions of synthetic calcite, 
dolomite and quartz for reference (vertical bars). 

Figure 5.56: X-ray diffractograms for samples G2-07 and -09 including the peak positions of synthetic calcite and 
dolomite for reference (vertical bars). 

Of the host rock samples from inside cave Sang Ma Sao, the samples G2-01, -03, -05, -06 and -

08 predominantly consist of calcite and Mg-calcite with a Mg content of less than 3 wt-% 

(Figure 5.54). The portion of dolomite is so low that it can barely be distinguished from 

background noise, even in sample G2-05 where the dolomite signal is strongest. Samples G2-02 

and -04 mainly consist of quartz but also contain calcite (Figure 5.55). Additionally, dolomite is 

barely detectable in sample G2-04. While dolomite is only a minor constituent in all other rock 

samples from inside cave Sang Ma Sao, it is a major component in samples G2-07 and -09 

(Figure 5.56) besides the dominant mineral calcite.  
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Figure 5.57: X-ray diffractogram for the black crust on the walls of cave Sang Ma Sao (sample SMS BC) including 
the peak positions of calcite, dolomite, quartz, hydroxylflouroxyapatite and hydroxylapatite for reference (vertical 
bars). 

The black crust found on the walls of cave Sang Ma Sao predominantly consists of hydrox-
ylflouroxyapatite and hydroxylapatite (Figure 5.57), but also contains small amounts of calcite, 
dolomite and quartz. 
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Figure 5.58: Geochemical composition from ICP-MS analyses of host rock samples G_02-1 and G_02-2 from inside 
Ma Le 2 cave and of sample G_05 from above cave Ma Le 2. Element concentrations are given in g/kg (red bars) and 
mg/kg (grey bars). 

5.7.1.2 Host Rock Geochemistry 

The geochemical composition of the host rock samples confirms the host rock mineralogy 

(Section 5.7.1.1). The predominance of calcite in most of the host rock samples is evident from 

the predominance of Ca with portions of almost 45 wt-% indicating that these samples almost 

exclusively consist of CaCO3 (Figure 5.58 and Figure 5.59). In these samples, Mg is the second 

most abundant element, consistent with the identification of Mg-calcite and even small amounts 

of dolomite in the X-ray diffractograms.  
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Figure 5.59: Geochemical composition from ICP-MS analyses of host rock samples G2-01, -03, -05, -06 and -08. 
Element concentrations are given in g/kg (red bars) and mg/kg (grey bars). 
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Figure 5.61: Geochemical composition from ICP-MS analyses of host rock samples G2-02 and -04. Element 
concentrations are given in g/kg (red bars) and mg/kg (grey bars). 

Figure 5.60: Geochemical composition from ICP-MS analyses of host rock samples G2-07 and -09. Element 
concentrations are given in g/kg (red bars) and mg/kg (grey bars). 

The only two host rock samples with Mg contents significantly exceeding several weight-‰ are 
samples G2-07 and -09 (Figure 5.60) with Mg portions of 6.1 and 6.3 wt-%, respectively. 

Together with the Ca contents reduced to 34.7 and 34.1 wt-% compared to 45 wt-%, 

respectively, this clearly indicates the presence of dolomite as a major component in these 

samples.  

Two of the host rock samples (G2-02 and -04) from inside cave Sang Ma Sao do not mainly 

consist of calcite, but are dominated by quartz (Figure 5.55). The geochemical composition of 

these two samples (Figure 5.61) confirms that calcite only constitutes a secondary component, 

with Ca contents of only 3.8 and 4.0 wt-%, respectively.  
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Figure 5.62: Geochemical composition from ICP-MS analysis of a sample of the black crust on the walls of cave 
Sang Ma Sao (sample SMS BC), after sample dilution by a factor of five (left) and 20 (right). Element concentrations 
are given in g/kg (red bars) and mg/kg (grey bars). 

 

Besides the predominant elements Ca, Mg and Si (in case of samples G2-02 and -04), all host 

rock samples contain other elements at various concentrations that do not reach one wt-‰ and 
therefore potentially contribute to the geochemical composition of the studied stalagmites. The 

most abundant of these elements are, depending on the individual samples, Fe and Al (G2-02 

and -04), Ba (G2-03), Sr (G2-02) or P (G2-08). Sample G2-02 stands out by its low 

concentrations of elements other than Ca, sample G2-08 by its high P concentrations (620 

mg/kg; Figure 5.59, bottom left) compared to the other host rock samples.  

 

The geochemical composition of the black crust on the walls of cave Sang Ma Sao (sample 

SMS BC) is significantly different from the host rock composition. Although most abundant 

element in this sample is still Ca at 30.8 wt-%, the second most abund element is not Mg, but P 

at 10.8 wt-%, followed by Mn (1.9 wt-%). Furthermore, a large number of elements are present 

at concentrations exceeding one wt-%, including Zn, Al, Mg, Ba, K and Fe indicating an even 

more complex geochemistry than is evident from the corresponding mineralogy (Figure 5.57).  
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Figure 5.63: X-ray diffractograms for soil samples at site SP01 above cave Ma Le 2 from soil layers L01 to L04 
including the peak positions of silicon dioxide, synthetic calcite, hematite, goethite, gibbsite, and of the clay minerals 
kaolinite, montmorillonite, nontronite, dickite and nacrite for reference (vertical bars); top: overview; bottom: detail. 
For better readability reference materials are not included in the legend of the bottom sub-plot. 

5.7.1.3 Soil Mineralogy 

The soil samples from above cave Ma Le 2 are higly similar to each other in their mineralogical 

composition (Figure 5.63 andFigure 5.64). The topmost layers are clearly dominated by silicon 

dioxide or quartz but relatively small and broad peaks in the X-ray diffractograms indicate the 

presence of hematite, goethite and gibbsite.  

The soils also contain a number of clay minerals, in particular kaolinite. The X-ray 

diffractograms are also consistent with the presence of other clay minerals of the kaolin group 

such as dickite and nacrite and clay minerals of the smectite group such as montmorillonite and 

nontronite. However, as X-ray diffractometry was performed on standard samples with 

randomly oriented mineral grains, these peaks in the diffractograms cannot be confidently 

attributed to specific clay mineral species. The lower layers of the soils (layer L04 in sample 

SP01 and layers 02 and 03 in sample BOD) also exhibit these peaks, but at higher signal 

intensities, while the peaks representing quartz are almost absent. The low height and the wide 

base of the diffractogram peaks suggest that the soil samples contain a large number of different 

mineral phases including clay minerals exhibiting similar but not identical d-values.  
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Figure 5.64: X-ray diffractograms for soil samples at site BOD01 above cave Ma Le 2 from soil layers 01 to 02 
(BOD02) and at site BOD03 above cave Ma Le 2 including the peak positions of silicon dioxide, hematite, goethite 
and of the clay minerals kaolinite, montmorillonite, nontronite, dickite and nacrite for reference (vertical bars); top: 
overview; bottom: detail. 

 

 

 

 

 

 

 

 

 

 

 

 

The soil samples from above cave Sang Ma Sao (Figure 5.65) contain much less silicon dioxide 

(quartz) than the ones from above cave Ma Le 2. At site SMS Soil01, the three depth increments 

from which soil samples were taken do not significantly differ in their mineralogical 

composition. Relatively small and broad peaks dominate the X-ray diffractograms of the Sang 

Ma Sao soils, again indicating the presence of a large number of different mineral phases with 

similar but not identical d-values.  

The most prominent peaks are consistent with the presence of hematite, goethite and gibbsite as 

well as a number of clay minerals including kaolinite, dickite (in sample SMS Soil02) and 

nacrite from the kaolin group and montmorillonite from the smectite group. As outlined above, 

these different clay mineral species cannot be identified specifically as X-ray diffractometry was 

not performed on samples with oriented mineral grains, but the data still indicate the presence of 

numerous different clay mineral species.  

While the presence of calcite can be inferred from the diffractogram of SMS Soil02, this is not 

the case for SMS Soil01. The coarse fraction (> 2 mm) of SMS Soil02 (Figure 5.67) mainly 

consists of calcite, but also contains small amounts of dolomite and quartz.  
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Figure 5.65: X-ray diffractograms for soil samples at site SMS Soil01 above cave Sang Ma Sao from soil layers 01 to 
03 including the peak positions of silicon dioxide, hematite, goethite, gibbsite and of the clay minerals kaolinite, 
montmorillonite and nacrite for reference (vertical bars); top: overview; bottom: detail. 

Figure 5.66: X-ray diffractogram for soil sample SMS Soil02 above cave Sang Ma Sao including the peak positions 
of silicon dioxide, hematite, goethite, gibbsite, calcite and of the clay minerals kaolinite, montmorillonite, dickite and 
nacrite for reference (vertical bars); top: overview; bottom: detail. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5  Results 

 

234 

Figure 5.67: X-ray diffractogram for the coarse fraction (> 2 mm) of soil sample SMS Soil02 above cave Sang Ma 
Sao including the peak positions of calcite, quartz and dolomite for reference.  
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Figure 5.68: Geochemical composition from ICP-MS analyses of soil samples at site BOD01 from above cave Ma Le 
2 cave from soil layers BOD01 and BOD02 and at site BOD03 from above cave Ma Le 2 cave. Element 
concentrations are given in g/kg (red bars) and mg/kg (grey bars). 

5.7.1.4 Soil Geochemistry 

The geochemical composition is consistent with the mineral phases identified in the 

corresponding X-ray diffractograms (Section 5.7.1.3). In all soil samples the two most abundant 

elements are Al and Fe (Si not measured).  

The two soil layers at site BOD01 are almost identical in geochemical composition (Figure 5.68 

top) in a relative sense, while the absolute concentrations of Al and Fe in layer BOD01 (5.7 and 

4.4 wt-%, respectively) are significantly lower than in layer BOD02 underneath (11.3 and 6.8 

wt-%, respectively). These concentrations are similar to those measured at site BOD03 (Figure 

5.68 bottom) where they amount to 11.8 and 8.4 wt-%, respectively. Titanium is the third most 

abundant element in all three samples, with Ca and K concentrations exceeding 1 wt-%. At site 

BOD03, also Mn and P exceed 1 wt-%.  
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Figure 5.69: Geochemical composition from ICP-MS analyses of soil samples at site SP01 from above cave Ma Le 2 
from soil layers L01 to L04. Element concentrations are given in g/kg (red bars) and mg/kg (grey bars). 

At site SP01 above cave Ma Le 2, the three topmost soil layers contain noticeably lower 

amounts of Al and Fe compared to the bottom layer (Figure 5.69). While the topmost layer 

(L01) features Al and Fe concentrations of 6.4 and 5.6 wt-%, respectively, the two layers below 

(L02 and L03) exhibit concentrations of 4.2 and 3.9 wt-% and of 4.4 and 4.0 wt-%, respectively. 

Soil layer L04, however, contains 13.3 and 12.2 wt-% Al and Fe, respectively. The high 

abundance of Al and Fe in the soil samples corroborates the interpretation of the X-ray 

diffractograms indicating Al-bearing minerals such as gibbsite, Fe-bearing minerals like 

hematite, goethite and clay minerals such as kaolinite that contribute to the Al pool in the soils.  

In all four soil layers, Ti, Mg and Ca also occur in concentrations exceeding one wt-‰. 
Titanium is the most abundant element of this group, with concentrations around 8 wt-‰ or 0.8 
wt-%. Potassium and Mn are present in similar, only slightly lower concentrations.  

While Ca is partly associated with small amounts of calcite in the samples (except for L04), no 

mineral phases containing Mg and K per se, such as dolomite or feldspars, could be identified 

from the X-ray diffractograms. These elements are therefore likely associated with the clay 

mineral fractio, for instance, Mg could be associated with montmorillonite.  
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Figure 5.70: Geochemical composition from ICP-MS analyses of soil samples at site SMS Soil01 above cave Sang 
Ma Sao from 0-10 cm, 15-20 cm and 35 cm, respectively. Element concentrations are given in g/kg (red bars) and 
mg/kg (grey bars). 

If actual Ti- and Mn-phases are present in the soil samples, their concentration is either too low 

for their detection by XRD or their peaks get lost in the wide and broad peaks in the 

diffractograms caused by amorphous mineral phases.  

The soils above cave Sang Ma Sao are similar to those above cave Ma Le 2 with regard to their 

geochemical composition (Figure 5.70 and Figure 5.71). At site SMS Soil01, Al and Fe 

concentrations in the three analysed soil layers are 8.4 and 7.5 wt-%, 9.4 and 7.8 wt-% and 8.9 

and 8.1 wt-%, respectively (Figure 5.70), at intermediate levels compared to the concentrations 

measured in the three topmost soil layers at site SP01 and the bottom layer at that site.  

The third most abundant element is not Ti, but K with concentrations around 1.1 wt-%, but the 

elements present at concentrations exceeding one wt-‰ are the same (K, Mg, Ca, Ti and Mn). 

Phosphorus is slightly more abundant (up to almost 1 wt-%) than in the soils above cave Ma Le 

2 (up to about 0.4 wt-%), especially in the top soil layers. 
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Figure 5.71: Geochemical composition from ICP-MS analyses of soil samples at site SMS Soil02 above cave Sang 
Ma Sao representing the fine fraction (left; ≤ 2 mm) and the coarse fraction (right; > 2 mm). Element concentrations 
are given in g/kg (red bars) and mg/kg (grey bars). 

 Soil sample SMS Soil02 features a similar geochemical composition as the other soil samples, 

although in this case Fe is the most abundant element with a concentration of 9.9 wt-%, closely 

followed by Al with a concentration of 8.8 wt-% (Figure 5.71 left). It also contains calcite as 

confirmed by the third most abundant element being Ca at 1.3 wt-%. Again Ti, Mg, K and Mn 

are the other elements with concentrations exceeding one wt-‰. The coarse fraction of this 
sample (Figure 5.71 right) mainly consists of calcite with 33.8wt-% Ca. The Mg (0.3 wt-%) 

seems to be associated mainly with dolomite (Figure 5.67). Although the diffractogram does not 

allow to deduce the presence of Al- and Fe-bearing mineral phases, the results of the 

geochemical analysis indicate that these also occur in the coarse fraction, most likely due to an 

agglomeration of clay particles.  

 

5.7.1.5 Carbon Isotope ratios in Host Rock, Soils and Plants 

Figure 5.72 illustrates the organic carbon isotope values (δ13C) of the plant samples (left) and 

the soil samples (right) collected at the surface of caves Ma Le 2 and Sang Ma Sao and 

additional soil samples taken in the study area (locations given in Table A.1 in the Appendix).  

The δ13C values of the plant samples from above cave Ma Le 2 range from -28.7 ‰ to -23.8 ‰, 
with an average of -27.0 ‰ and a median of -27.3 ‰. As these values are well within the range 
of δ13C values of known C3-plants (Section 2.4.2.2), all these plants can be confidently 

categorised as C3-plants. Three of the four plant samples from above cave Sang Ma Sao (PL01, 

02 and 04) exhibit similar δ13C values ranging from -29.8 ‰ to – 25.6 ‰, with an average of -

27.8 ‰ and a median of -28.0 ‰. This indicates that these three plants are also C3-plants. 

However, one plant sample (PF03) has a noticeably higher δ13C value of -13.5 ‰ which is 
therefore identified as a C4-plant. 
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Figure 5.72: Carbon isotopes values (δ13C) of plant samples (left) and soil samples (right) including error bars. 

The δ13C values of the organic matter in the soil samples from above cave Ma Le 2 (Figure 5.72 

right) range from -24.5 ‰ to -18.1 ‰, with an average of -20.8 ‰ and a median of -20.1 ‰. 
While the samples with the three lowest δ13C values can still be attributed to a vegetation cover 

clearly dominated by C3-plants, the samples with the four highest δ13C values indicate a 

vegetation composition including both C3- and C4 plants. Based on the simplifying assumption 

that C3-plants are represented by a discrete δ13C value of -26 ‰ and that C4-plants are 

represented by a discrete δ13C value of -13 ‰, the portion of C4-plants contributing to the 

mixed signal in the case the samples with the four highest δ13C values can be calculated to about 

61 %, 56 %, 52 % and 45 %, respectively. Interestingly, increased δ13C values in organic matter 

seems to be related to soil samples collected at or near the surface, while deeper soil layers tend 

to lower δ13C values. For instance, at site SP01 δ13C values drop from -18.1 ‰ in the depth 
increment 45 - 70 cm (layer L02) to -20.1 ‰ in the depth increment 70 - 100 cm (L03) and 

finally to -24.5 ‰ in the depth increment below 100 cm. If deeper soil layers can be regarded as 
representing time periods further in the past, this trend could indicate that the contribution of 

C4-plants to the carbon pool of the soil has increased with time.  

The δ13C values of the organic matter in the soil samples additionally collected in the study area 

are generally lower than in the samples from above cave Ma Le 2, ranging from -23.9 ‰ to -
21.5 ‰ with an average and a median of -22.7 ‰. This finding suggests that the contribution of 

C3-plants to the soils carbon pool exceeds the one of C4-plants if a larger area is considered.  

Two of the three soil samples collected from above cave Sang Ma Sao feature organic matter 

δ13C values that are comparable to the values in the soil samples from the larger area. With δ13C 

values of -22.9 ‰ and -21.9 ‰, the organic matter is isotopically lighter than the one in the soil 
samples collected above cave Ma Le 2 suggesting a predominance of C3-plants contributing 

isotopically light carbon to the soil carbon pool.  
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Figure 5.73: Organic and inorganic carbon content of the soil samples for the fine fraction (< 2 mm). 

However, one soil sample (Soil02) features a much higher organic matter δ13C value of -15.3 

‰. A simplified calculation as described above yields C4-plant portion of about 88 %.  

The carbon content of the soil samples is shown in Figure 5.73. Total carbon contents range 

from 0.5 to 4.2 wt-%, with an average of 2.0 wt-% and a median of 1.9 wt-%. In all samples 

organic carbon represents the larger fraction of total carbon, ranging from 59 to 95 %, with an 

average and a median of 80 %. The contents of total and organic carbon tend to decrease with 

increasing depth within the same soil profile. The soil sample with the highest organic matter 

δ13C value (Soil02) is also the sample with the lowest organic carbon fraction of the total carbon 

content.  
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Figure 5.74: Carbon isotopes values (δ13C) of rock samples including error bars. 

The δ13C values of the carbonate host rock samples from cave Ma Le 2 (Figure 5.74, black) are 

3.3 ‰ and 3.4 ‰. While three of the five host rock samples from cave Sang Ma Sao (Figure 

5.74, red) feature similar values between 2.2 ‰ and 3.3 ‰, the two samples G2-01 and G2-08 

feature much lower δ13C values of -3.5 ‰ and -2.7 ‰, respectively. This indicates that the host 

rock in cave Sang Ma Sao is not homogenous with respect to carbon isotope values, despite 

their similar mineralogical and geochemical composition (Sections 5.7.1.1and 5.7.1.2) and 

despite the rock samples all originating from the vicinity of the drip site of stalagmite VSMS2.  
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Figure 5.75: Local meteoric water lines (LMWL) based on 78 rainwater samples from Ma Le Commune (left) and 25 
rainwater samples from Sang Ma Sao Commune (right) in comparison with the global meteoric water line (GMWL; 
Craig, 1961). 

5.7.2 Oxygen Isotope ratios in Rainwater 

The rainwater δ18O and δD values determined in the manually collected rainwater samples in 

the study area were used to establish a preliminary Local Meteoric Water Line (LMWL) which 

is illustraed in Figure 5.75),  in comparison with the Global Meteoric Water Line (GMWL) of 

Craig (1961). Both LMWLs established from rainater data from the communities of Ma Le 

(Figure 5.75, left) and of Sang Ma Sao (Figure 5.75, right) are highly similar to each other as 

well as to the GMWL. Only at very high δ18O values, both LMWLs exhibit a weak positive 

anomaly relative to the δ18O- δD relationship of the GMWL.  

When plotted against the time of collection (Figure 5.76), the rainwater δ18O values also show a 

similar pattern over the course of the year with higher values during the dry season and lower 

values during the rainy season. During the rainy season in 2015, average δ18O value in rainwater 

collected at Ma Le Commune was -7.5 ‰, during the rainy season in 2016, it was -9.0 ‰, while 
it was -10.7 ‰ in in rainwater collected at Sang Ma Sao Commune. During the dry season 
between 2015 and 2016, average δ18O value in rainwater was -4.5 ‰ at Ma Le Commune and -
5.0 ‰ at Sang Ma Sao Commune. Therefore, the difference in average rainater δ18O between 
rainy and dry season was 5.7 ‰ at Sang Ma Sao Commune and ranged from 3.0 ‰ to 4.5 ‰, 

comparing the 2015/2016 dry season with the previous and the subsequent rainy season, 

respectively. In general, rainwater δ18O values were highest at the end of the recorded dry 

seasons, with values of up to 0.2 ‰ in the case of Sang Ma Sao Commune and of -0.4 ‰ in the 
case of Ma Le Commune. Lowest rainwater δ18O values were reached during the rainy season, 

with minima of -14.1 ‰ and -12.4 ‰, respectively.  
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Figure 5.76: Oxygen isotope values in rainwater samples from Ma Le Commune (black) and Sang Ma Sao Commune 
(red). Horizontal lines represent the average rainwater δ18O value of the respective season. 
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6 Discussion 

6.1 The Evolution of the Asian Monsoon as Recorded in 

Northern Vietnam 

The two new stalagmite δ18O records from Northern Vietnam (VML22 from Ma Le 2 cave and 

VSMS2 from Sang Ma Sao cave) generated for this thesis are illustrated in Figure 6.1. For 

comparison, Figure 6.1 also includes stalagmite δ18O records from the EASM-influenced region 

from cave sites roughly located along a SW-NE transect in China (from south to central China: 

Dongge, Heshang, and Sanbao cave; Figure 2.22) representing the consistent stalagmite δ18O 

signal in Monsoon Asia discussed in Section 2.8.4. Multiple stalagmites from Sanbao cave 

(110°26’ E, 31°40’ N; Wang et al., 2008; Dong et al., 2010) precisely replicate this signal and 

illustrate impressively how robust this signal is, not only with regard to the gradual δ18O change 

during the Holocene in parallel with summer insolation (Berger & Loutre, 1991), but also with 

regard to distinct millennial-scale climate fluctuations such as the cold Heinrich Stadial 1 

(HS1), the Bølling/Allerød (BA) warm phase and the Younger Dryas (YD) cold phase. Both 

long-term (orbital) and medium-term (millennial) δ18O variations are accurately reflected in the 

VML22 and the VSMS2 δ18O record, respectively. This strongly suggests a common driver for 

these signals and confirms that the processes controlling the first-order fluctuations in 

stalagmite δ18O values in both VML22 and VSMS2 on orbital and millennial time-scales are the 

same as in the entire EASM-influenced region.  

Comparing the stalagmite δ18O records with summer insolation (Figure 6.1; red curves) 

averaged over the months June, July and August for the latitude of the respective cave site, 

calculated from Earth orbit parameters using the equation of Berger & Loutre (1991), confirms 

that the Asian Monsoon is controlled by summer insolation on orbital timescales, in agreement 

with the orbital monsoon theory of John Kutzbach (Kutzbach, 1981). This theory has been 

confirmed by numerous climate proxy studies, including studies of multiple stalagmites from a 

specific site that have been combined to yield stalagmite composites spanning up to several 

glacial/interglacial cycles (Wang et al., 2001; Wang et al., 2008; Cheng et al., 2009; Cheng et 

al., 2012). Recently, one such stalagmite composite record was published from Sanbao cave in 

NE-China that spans the last 640,000 years (Cheng et al., 2016a), thereby covering the complete 

time span accessible by U/Th dating.  
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Figure 6.1: The two new stalagmite δ18O records from Northern Vietnam (bottom; green and blue; V-PDB) generated 
for this thesis in comparison with stalagmite δ18O records from the EASM-influenced region in China (Dongge: 
Dykoski et al., 2005 (D4) and Wang et al., 2005 (DA); Heshang: Hu et al., 2008; Sanbao: Wang et al., 2008 (SB3) 
and Dong et al., 2010 (all others)). All δ18O values are given in ‰ relative to the V-PDB standard. The two red 
curves represent summer insolation averaged over the months June, July and August for 32°N and 23°N, 
respectively, calculated from Earth orbit parameters using the equation of Berger & Loutre (1991). Vertical bars 
designate distinct millenial-scale climate fluctuations discussed in the text (YD = Younger Dryas; BA = 
Bølling/Allerød; HS1 = Heinrich stadial 1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Comparing the δ18O values of stalagmite VML22 with stalagmite δ18O records from the ISM 

region confirms the similarity between the records on millennial times-cales (Figure 6.2). The 

initial signal of ISM intensity can be represented by the δ18O record of stalagmite Q5 from Qunf 

cave, southern Oman (Fleitmann, 2003) and can be tracked into the southern Tibetan Plateau, as 

shows the study of stalagmite TM18 from Tianmen Cave by Cai et al. (2012).  
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Figure 6.2: The δ18O record from stalagmite VML22 from Northern Vietnam (right axes; blue) generated for this 
thesis in comparison with proxy records from the ISM-influenced region: Stalagmite δ18O records Q5 from Qunf 
cave, southern Oman (Fleitmann, 2003) and TM18 from Tianmen Cave, southern Tibetan Plateau (Cai et al., 2012); 
sediment Ti contents in ODP hole 165-1002C from the Cariaco Basin, off the Venezuelan coast (Haug et al., 2001).  

The ISM intensity signal is also documented in other kinds of proxy archives, such as upwelling 

records from the Arabian Sea (Gupta et al., 2003; Gupta et al., 2005), peat bog records from the 

southeastern Tibetan Plateau (Hong et al., 2003), and the titanium concentration profile from the 

Cariaco Basin in the tropical Atlantic, off the Venezuelan coast (Figure 6.2 top; Haug et al., 

2001). Increased Ti concentrations are interpreted to reflect enhanced terrigenous input to the 

ocean sediment from riverine runoff due to enhanced precipitation related to a more northerly 

mean latitudinal position of the ITCZ (Haug et al., 2001). The mean ITCZ position is controlled 

by Northern Hemisphere summer insolation (NHSI) via a direct feedback and an indirect 

feedback through the effect of NHSI on sea surface conditions in the tropical Pacific (Fedorov 

& Philander, 2000). 
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Figure 6.3: The δ18O records from stalagmites VML22 and VSMS2 from Northern Vietnam in comparison with other 
stalagmite δ18O records from the Asian Monsoon region plotted along the moisture transport pathway. The VML22 
δ18O values (blue) are too low by at least 2 ‰ to fit into the supra-regional pattern of stalagmite δ18O values 
decreasing along the moisture transport pathway from the ISM region (Q5: Fleitmann, 2003) to the EASM region in 
southern (DA: Wang et al., 2005; D4: Dykoski et al., 2005) and central China (SB10 and SB43: Dong et al., 2010). 
The VSMS2 δ18O values are even about 1.5 ‰ lower than the VML22 δ18O values.  

Intriguingly, while the relative δ18O variations in stalagmite VML22 during the Holocene mirror 

the variations observed in the consistent stalagmite δ18O signal in the Asian Monsoon region, 

the absolute δ18O values in stalagmite VML22 are consistently too low by at least 2 ‰ to fit into 
the supra-regional pattern of stalagmite δ18O values decreasing along the moisture transport 

pathway, as illustrated in Figure 6.3. VML22 δ18O values rather plot between the stalagmite 

δ18O values from southern and central China, while being closer to those from central China.  

The absolute offset between stalagmite δ18O values in stalagmites from Dongge and Ma Le 2 

caves may be explained by the difference in cave temperature and in the elevation at which 

precipitation occurs that has been feeding the stalagmites. For a direct comparison of the two 

sites, both factors and their influence on isotope fractionation need to be accounted for (Hu et 

al., 2008). With a mean annual air temperature (MAT) of 19.5 °C at Ma Le 2 cave and of 15.6 

°C at Dongge cave, the MAT difference is 3.9 °C. Assuming a similar temperature history of 

both sites due to their spatial proximity, the dependence of oxygen isotope fractionation on cave 

temperature would explain the stalagmite δ18O values from Ma Le 2 cave being about 1 ‰ (V-

PDB) lower than those from Dongge cave. The difference in elevation (Ma Le 2: 1,015 m; 

Dongge: 680 m) amounts to about 335 m.  
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Based on the simplifying assumption that precipitation at both sites forms at a similar height 
relative to local ground levels and using an upper limit lapse rate of -3 ‰ δ18O / km for the 
altitude effect (Gonfiantini et al., 2001; Poage & Chamberlain, 2001; Fleitmann et al., 2004; 
Lachniet & Patterson, 2006), this elevation difference accounts for another 1 ‰ by which the 
Ma Le 2 δ18O values are expected to be lower than those from Dongge cave. Therefore, a value 
of 2 ‰ may be added to the Ma Le 2 δ18O values to correct for differences in cave temperature 
and elevation.  

As Dongge cave is located about 360 km southeast of Ma Le 2 cave and therefore downstream 

of it along the same moisture transport pathway, their stalagmite δ18O records should be similar 

and their difference should reflect the amount of precipitation integrated between the two cave 

sites. After correcting for differences in cave temperature and elevation as described above, 

applying the two-site approach of Hu et al. (2008) by differencing 100a-averages of the 

stalagmite δ18O records from Ma Le 2 and Dongge caves yields the corresponding Δδ18O record 

illustrated in Figure 6.4. As the Δδ18O record is supposed to represent the amount of 

precipitation integrated between the two cave sites it can be regarded as a measure for regional 

rainfall that can be expected to be related to local rainfall as recorded by proxies such as 

stalgmite δ13C values. The δ13C record in stalagmite VML22 can thus be used to test the 

plausibility of the Δδ18O record as a proxy for regional rainfall and is therefore compared to it in 

Figure 6.4. There is a positive covariation between Δδ18O and δ13C values, especially with 

regard to the timing of the major fluctuations, even if not all of the observed variability is shared 

by both records, such as the local Δδ18O minimum at 2.75 ka BP that is absent in the δ13C 

record. Nevertheless, both records are strikingly similar to one another with increased Δδ18O 

values generally corresponding to increased δ13C values.  

As increased δ13C values in stalagmites are generally related to decreased water availability, 

regardless of the proposed underlying mechanism, the positive covariation between Δδ18O and 

δ13C values is the exact opposite of the behaviour expected if the Δδ18O record reflected 

precipitation amount between the two cave sites via the upstream depletion mechanism outlined 

above. The upstream depletion mechanism would relate increased precipitation amount to 

increased Δδ18O values. According to that premise, Δδ18O values would be expected to covary 

negatively with stalagmite δ13C values, not positively. As the positive correlation with other 

hydrologically sensitive proxies such as Mg and Sr concentrations (described below) further 

corroborates the interpretation of VML22 δ13C values in terms of water availability, the 

upstream depletion mechanism alone cannot explain the difference in stalagmite δ18O values 

between the two sites of Ma Le 2 and Dongge caves. However, an amount effect acting at the 

Ma Le 2 cave site, but not at the Dongge cave site could explain this seeming contradiction: 

During times of increased precipitation at Ma Le 2, the amount effect would cause decreased 

δ18O values on-site, resulting in corresponding decreased values in the Δδ18O record and, thus, a 

positive correlation with δ13C values. Therefore, in contrast to the upstream depletion 

mechanism, a local amount effect would cause decreased Δδ18O values to reflect increasing 

local rainfall amount, in accordance with the other hydrologically sensitive proxies (δ13C values, 

Mg and Sr concentrations).  
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Figure 6.4: The Δδ18O record calculated by subtracting 100a-averages of the δ18O values in stalagmite DA from 
Dongge cave from those in stalagmite VML22 from Ma Le 2 cave (black) in comparison with the δ13C record from 
stalagmite VML22 (blue) as a potential proxy for local water availability with decreased values indicating increased 
water availability.  
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However, there are several factors that cast doubt on the applicability of the two-site approach 

of Hu et al. (2008) in this case: Firstly, the corrections for differences in cave temperature and 

elevation between sites may not be valid. This can be deduced from comparing the sites of Ma 

Le 2 cave and Sanbao cave with an elevation of 1,900 masl and a MAT of 8.5 °C. In this case, 

the corrections for temperature and elevation cancel each other out which suggests that adding 2 

‰ to the δ18O values in stalagmite VML22 as done for applying the two-site approach is not 

valid. Secondly, and more importantly, the δ18O values in stalagmite VSMS2 are even lower by 

about 1.5 ‰ than those in stalagmite VML22 (Figure 6.3). Therefore, if the δ18O values in 

stalagmite VSMS2 were used for a two-site comparison with Dongge cave site, even a 2 ‰ 
correction would be insufficient for the VSMS2 δ18O values to exceed those of stalagmite DA 

from Dongge cave. Concordantly, the stalagmite δ18O values at Ma Le 2/Sang Ma Sao caves are 

too low for the two-site comparison with Dongge cave to be valid. The covariation between the 

VML22 δ13C record and the calculated Δδ18O record (Figure 6.4) is probably an artefact and 

results from the positive correlation between the VML22 δ13C and δ18O records.  

The fact that the δ18O values in stalagmite VSMS2 are about 1.5 ‰ lower than those of 
stalagmite VML22 implies that the VML22 δ18O values have been increased relative to the 

VSMS2 δ18O values, most likely through evaporative enrichment. As both Ma Le 2 and Sang 

Ma Sao caves are located only two kilometres apart, the waterbalance at both sites can be 

regarded as virtually identical.  



6  Discussion 

 

250 

It is therefore more likely that evaporative enrichment of VML22 δ18O values has occurred 

inside Ma Le 2 cave rather than at the surface above the cave, most probably due to a generally 

enhanced ventilation compared to Sang Ma Sao cave (Section 3.3) causing cave air relative 

humidity to drop below 100%. Enhanced ventilation in Ma Le 2 cave can also be deduced from 

δ13C values that are about 7.1 ‰ higher in VML22 than in VSMS2 consistent with preferential 
removal of isotopically light CO2 from drip water during CO2-degassing due to increased cave 

ventilation. The importance of cave ventilation in controlling δ13C values in stalagmite VML22 

is further underpinned if a potential effect of soil layer thickness on vegetation cover/density 

and soil microbial activity is considered: As the soils above Ma Le 2 cave are significantly 

deeper than those above Sang Ma Sao cave that are very shallow, both vegetation cover/density 

and soil microbial activity can be expected to be at least similar at both sites if not higher above 

Ma Le 2 cave. This would cause a higher input of biogenic isotopically light CO2 to the VML22 

drip site and therefore VML22 δ13C values would rather be anticipated to be lower than those in 

stalagmite VSMS2. Furthermore, the amplitude of change in δ13C values in VML22 (6 ‰) is 
about the 3-fold of that oberserved in VSMS2 during the period of co-eval growth indicating 

that Ma Le 2 cave is a much more dynamic system with regard to stalagmite δ13C values than 

Sang Ma Sao cave. This is consistent with a more significant cave ventilation control in Ma Le 

2 cave.  

While the discrepancies in δ18O and δ13C values between stalagmites VML22 and VSMS2 can 

partly be attributed to uncertainties in the age model of stalagmite VSMS2 (Section 5.1.2), 

another potential factor contributing to these discrepancies is kinetic fractionation due to 

evaporation and ventilation inside Ma Le 2 cave. However, the similarity of the VML22 δ18O 

values to those from numerous stalagmites from the ISM and EASM regions indicates that 

kinetic fractionation is not sufficiently strong or random to efface the original climate signal 

contained in the δ18O values on millennial timescales.  

The δ18O values from stalagmites VML22 and VSMS2 are by at least 2 ‰ and 3.5 ‰ 
(respectively) too low to fit into the supra-regional pattern of stalagmite δ18O values decreasing 

along the moisture transport pathway from the ISM region to the EASM region in southern and 

central China (Figure 6.3). This negative offset suggests that precipitation feeding the Chinese 

stalagmites had a significant contribution of isotopically heavy rain, probably originating from a 

more local source such as the South China Sea that has not undergone such intense Rayleigh 

fractionation. This notion is consistent with modelling results that show that central China, for 

instance, receives only about 60% of its modern-day rainfall from the Indian Ocean (Liu et al., 

2014). In particular East China receives significant portions of total moisture from the South 

China Sea and the North Pacific in addition to the Indian Ocean path, according to model 

simulations (Cai et al., 2015). This causes isotopically heavier water vapour and thus rainfall in 

East China compared to South China and Northern Vietnam (Figure 6.5). The Xiabailong cave 

site in South China would be suited for a two-site comparison with Ma Le 2 cave, but to the 

present day no speleothem δ18O record spanning the mid- and late Holocene is available from 

that site.  
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Figure 6.5: Modeled vapor transport (arrows, m s−1 x kg m−2) averaged over the summer months June, July and 
August and δ18O values (‰ V-SMOW) of the modern-day vapour integrated over the entire air column, indicated by 
the colour-shading (Cai et al., 2015). Symbols designate cave sites discussed in the text: Xiaobailong (XBL), Hulu 
(HL), Dongge (DG), Sanbao (SB), Tianmen (TM), Ma Le 2 (ML2) and Sang Ma Sao (SMS). Water vapour over East 
China is isotopically heavier than over the study area in Northern Vietnam. Figure modified from Cai et al. (2015).  
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Figure 6.6: The robust positive correlation between δ18O, δ13C (‰ V-PDB) and the concentrations of Mg, Sr and Ba 
(µg/g) in stalagmite VML22 strongly suggests that these proxies have recorded local hydrological change with 
increased values representing reduced water availability at the cave site.  

6.2 Multi-proxy Evidence for Local Hydrological Change 

The robust positive correlation between δ18O, δ13C and the concentrations of Mg and Sr in 

stalagmite VML22 (Figure 5.8 and Figure 6.6) strongly suggests that these proxies have 

recorded local hydrological change linked to the large-scale variations in monsoon intensity 

outlined in Section 6.1. This is because a number of different processes cause increased values 

of all these proxies to potentially reflect reductions in water availability within the karst system 

feeding the stalagmite’s drip site, as outlined in detail in Section 2.  

While increased δ18O values may mirror reduced rainfall via the amount effect or enhanced 

evaporative enrichment, increased δ13C values can indicate an increase in the C4/C3 ratio of the 

vegetation growing at the surface above the cave, a decrease in vegetation cover/density or in 

soil microbial activity, the occurrence of prior calcite precipitation (PCP) or enhanced CO2-

degassing from dripwater as a result of decreased drip rates that cause longer dripwater 

residence times on the stalagmite tip. All these processes are usually related to drier conditions 

and therefore increased stalagmite δ13C values often reflect locally decreased water availability. 

The same applies to a shift from a more open to a more closed system dissolution of the 

carbonate host rock if this shift is caused by diminished production of isotopically light CO2, for 

instance, due to reductions in vegetation cover/density or soil microbial activity. Only if this 

shift to a more closed system dissolution is brought by the dripwater flowpath network being 

completely filled with water, a more closed system dissolution increasing stalagmite δ13C values 

is not an indicator of decreased water availability.  
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If the flowpath network is water-saturated due to clogging, however, increased stalagmite δ13C 

values still do not necessarily reflect an increase in local rainfall. Therefore, stalagmite δ13C 

values represent a promising proxy for local precipitation, if anthropogenic influences, for 

instance through deforestation and cultivation of crops, can be confidently excluded. It should 

be noted that enhanced cave ventilation also increases stalagmite δ13C values via preferential 

removal of isotopically light CO2 during dripwater degassing. Cave ventilation is controlled by 

thermally or dynamically induced differences in air pressure between the cave and ambient air, 

rather than by variations in local precipitation amount.  

Similarly, increased Mg/Ca and Sr/Ca ratios in karst cave dripwater and thus increased Mg and 

Sr concentrations in stalagmites are most commonly interpreted as indicators of palaeoaridity 

based on multiple processes (details in Section 2): As dolomite dissolution is kinetically 

discriminated versus calcite dissolution (“differential dissolution”), increased seepage water 
residence time within the karst system, related to low flow conditions, leads to increased Mg/Ca 

ratios. Enhanced ratios of both Mg/Ca and Sr/Ca in dripwater have been attributed to a 

relatively enhanced drainage of low-permeability soil and aquifer compartments that are 

dominated by seepage-flow (“selective leaching”), again corresponding to low flow conditions 

resulting from dryness. During incongruent dolomite dissolution (IDD), dolomite dissolves as 

calcite precipitates which leads to increased Mg/Ca ratios but decreased Sr/Ca. With IDD being 

enhanced at higher seepage water residence time, it also reflects low flow under relatively dry 

conditions. Most importantly, PCP as a process bound to drier conditions also enhances 

dripwater Mg/Ca and Sr/Ca ratios and therefore stalagmite Mg and Sr concentrations due to the 

small partition coefficients of Mg and Sr with respect to calcite. As PCP additionally leads to 

increased δ13C values, increasing and covarying values of Mg/Ca, Sr/Ca and δ13C are commonly 

interpreted as evidence for a dominating PCP control on these proxies and for reduced water 

availability within the karst system.  
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Figure 6.7: High concentrations of Group II elements in stalagmite VML22 correspond to darker laminae of brown to 
black colour (here represented by Si and Al) indicating events of high infiltration or even cave flooding during these 
times. The green line represents the locus of the LA-ICP-MS measurements. The contrast of the flatbed scan was 
enhanced to make the differences in colour and brightness easier to discern.  

6.3 Evidence for Events of High Infiltration / Cave 

Flooding 

In addition to the proxies of the local hydrology discussed in the previous section, there is 

evidence in stalagmite VML22 of events during which infiltration of rainwater into the 

subsurface was extraordinarily high or even of events during which Ma Le 2 cave was 

completely flooded. This evidence consists of high concentrations of the Group II elements as 

defined in Section 5.3.1. These elements are commonly transported within the karst system in 

the form of particles and colloids (Section 2). Furthermore, a comparison of their concentration 

peaks with the colour of stalagmite VML22 shows that most of the peaks correspond to darker 

laminae of brownish to black colour Figure 6.7.  

As the concentrations of Fe and Al in the soil zone (Section 5.7.1.4) are about three orders of 

magnitude higher than in the carbonate host rock (Section 5.7.1.2) and still significantly higher 

for the remaining Group II elements, the soil zone is probably the dominant source for these 

elements in stalagmite VML22. Furthermore, the relative height and width of the peaks of the 

different elements are highly similar which suggests that the particles incorporated in the 

stalagmite originate from the same source during each event.  
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Figure 6.8: Comparison of Mg and Si concentrations in stalagmite VML22 as proxies of the local hydrological 
conditions. The axis for Mg is reversed for easier comparison. Vertical lines indicate peak matches and mismatches in 
green and purple, respectively.  

The fact that redox-sensitive elements within Group II such as Mn are positively correlated with 

elements independent of redox reactions such as Al suggests that redox reactions have not 

played an important role during downward transport of soil particles with percolating waters. 

High input of particles from the surface to the stalagmite tip is usually related to events of high 

infiltration of rainwater into the subsurface or even to events of cave flooding. As both of these 

events require strong precipitation, the concentration peaks of Group II elements in stalagmite 

VML22 may represent events of intense rainfall assuming that events of cave flooding have not 

been caused by a blocking of the cave stream outflow due to cave ceiling collapses. This 

assumption is reasonable in case of Ma Le 2 cave as its passages are too wide and high for 

debris from the cave ceiling to effectively block the cave stream, unless the ceiling collapses 

right at the outflow where the passage diameter is the lowest. For the same reason flooding 

events are also unlikely in Ma Le 2 cave so that high concentrations of detrital particles most 

likely reflect high infiltration events caused by intense rainfall.  

As both Group I and Group II elements in stalagmite VML22 are likely to reflect the local 

hydrological conditions, albeit through different processes and on potentially differing 

timescales, both groups are compared in Figure 6.8, with Mg representing Group I and Si 

representing Group II as the most abundant element in each group.  

Intriguingly, these two hydrology-sensitive proxies are not very similar to one another, in line 

with an only weak negative correlation between the two data sets (ρ = -0.22). While some peaks 

in Si concentration do coincide with troughs in Mg concentrations, such as at 2.8, 2.1, 1.0 and 

0.7 ka BP, a similar number of the peaks occur at different times.  
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For instance, the three prominent peaks in Si concentration at 7.1, 6.9 and 6.8 ka BP are not 

mirrored by troughs in Mg concentration as would be expected if there was a direct relation 

between increased water availability and the occurrence of strong infiltration events. 

Furthermore, the overall trend towards decreased water availability as indicated by the long-

term increase in Mg concentrations (from past to present) is not reflected by a decreased 

frequency in infiltration events.  

The overall different behaviour of the two proxies and the presence of high-frequency 

variability in both records complicate their comparison. As a result, even apparent peak matches 

might in fact be coincidental. Taking this into account, the similar number of peak mismatches 

and matches in Figure 6.8 suggests that increased water availability and strong infiltration 

events do not necessarily correlate in the case of Ma Le 2 cave, but rather behave independently 

from each other. One possible explanation for this independent behaviour might be that strong 

infiltration events are recorded in the stalagmite through enhanced Group II element 

concentrations, while being too short-lived to be recorded through decreased Group I element 

concentrations. In contrast, it seems that sufficiently strong increases in water availability can 

trigger strong infiltration events, for example at 1.6 ka BP.  

It remains puzzling that the period from 1.0 to 0.6 ka BP which was relatively wet according to 

decreased Group I element concentrations corresponds to infiltration events only at the 

beginning and the end of the period, but not in between. This time of surprisingly low Group II 

element concentrations corresponds to the depth increment with the brightest colour (3 – 6 mm 

DFT; Figure 6.7) in stalagmite VML22, which confirms the low detrital contamination. This 

might imply another process at work during that time of enhanced water availabilty that 

impeded the input of detrital material from the soil zone into the subsurface flowpath network 

and thus the incorporation of detritus in the stalagmite. One potential mechanism having this 

effect is a hydrology-related increase in vegetation density/cover that counteracted soil erosion 

during precipitation events. This hypothesis is consistent with the stalagmite δ13C values that 

decreased by 4 ‰ during the period 1.0 – 0.6 ka BP.  
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6.4 Hydrology of the Heinrich 1 / Bølling-Allerød 

Transition 

Variability in the ASM system does not only occur on orbital timescales (Figure 6.1) on which 

it is controlled by Northern Hemisphere summer insolation (NHSI) as illustrated in Section 6.1, 

but the ASM also varies on the millennial time-scale which cannot be explained by the slow and 

gradual NHSI fluctuations caused by changes in the Earth’s orbit around the sun. However, as 
millennial ASM variability is of similar amplitude as orbital ASM variability, it is important to 

identify it and to investigate its causes. Since the last glacial period that culminated in the Last 

Glacial Maximum (LGM), the most prominent example of ASM variability is the millennial-

scale change during the Heinrich Stadial 1 (HS1; ~ 18.5 – 14.5 ka BP) and during the transition 

to the subsequent Bølling-Allerød warm period (BA; ~ 14.5 – 12.9 ka BP). Of minor amplitude, 

but still of NH-wide influence is the cooler Younger Dryas interval (YD; ~ 12.9 - 11.7 ka BP). 

While first identified in proxy records from marine sediments in the North Atlantic (Broecker, 

1994) and from ice cores extracted from the Greenland ice sheet (Grootes & Stuiver, 1997), 

evidence of these climatically distinct periods has also been found in proxies recording the 

dynamics and intensity of the Asian Monsoon (e.g. Wang et al., 2001), revealing the existence 

of climatic relationships between distant regions on Earth, referred to as climatic 

teleconnections.  

Comparing one of the first composite stalagmite δ18O records from the EASM region spanning 

much of the last glacial (~ 75 – 11 ka BP) with the ice core δ18O record from Greenland as a 

temperature proxy (Grootes & Stuiver, 1997), Wang et al. (2001) established that periods of 

reduced EASM intensity indicated by increased stalagmite δ18O values corresponded with cold 

periods in Greenland and the North Atlantic, especially with Heinrich stadials (Broecker, 1994; 

Hemming, 2004). Since then, this observation made for the EASM region has been confirmed 

by numerous other climate proxy studies (e.g. Wang et al., 2005; Wang et al., 2008). The new 

δ18O record from stalagmite VSMS2 from Sang Ma Sao cave in Northern Vietnam constructed 

for this thesis offers the opportunity to assess whether these millennial-scale monsoon 

fluctuations can also be identified in the transition zone between the EASM and the ISM.  
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Figure 6.9: Millennial-scale monsoon fluctuations as recorded by the new stalagmite δ18O record from Northern 
Vietnam within the EASM/ISM transition zone (green) and by stalagmite δ18O records from China within the EASM 
region (Yamen: Yang et al., 2010 (Y1); Dongge: Dykoski et al., 2005 (D4); Hulu: Zhang et al., 2013 (YT). The 
VSMS2 chronology was shifted into the past by 250 years. The five green dots with error bars indicate the dating 
points available for VSMS2 for this period. YD = Younger Dryas; BA = Bølling/Allerød; HS1 = Heinrich stadial 1.  

Figure 6.9 shows the millennial-scale monsoon fluctuations as recorded by the new stalagmite 

δ18O record from Northern Vietnam within the EASM/ISM transition zone (green) during the 

period 16.3 – 13.4 ka BP in comparison to stalagmite δ18O records from China within the 

EASM region. The distinct pattern of δ18O variation in the Chinese stalagmites with increased 

values during the HS1 and decreased values during the BA are replicated very closely by δ18O 

values in stalagmite VSMS2. Even fluctuations of minor amplitude are shared by the records 

from China and Northern Vietnam, for instance, the ~ 1.5 ‰ increase in δ18O values between 

16.3 and 16.0 ka BP. Another example is the positive excursion between 14.1 and 13.8 ka BP 

that is superimposed on the decreasing trend during the first half of the BA. While it is not 

discernible in the δ18O record of stalagmite from Dongge cave due to insufficient resolution of 

the data, the record from Yamen cave (25°29ƍ N, 107°54ƍ E), about 30 km northwest of Dongge 

cave, clearly exhibits this positive excursion also identified in the VSMS2 record.  

For this match to be achieved, the chronology of stalagmite VSMS2 had to be shifted into the 

past by 250 years. This approach is valid for multiple reasons: Firstly, the δ18O record in 

stalagmite VSMS2 precisely reproduces the structure of δ18O change in the Chinese stalagmites 

so that matching the Vietnamese record with the Chinese record is possible.  
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Secondly, the Chinese records are based on a robust chronology, while the dating errors (green 

dots and error bars in Figure 6.9) and therefore the uncertainties in the age model of stalagmite 

VSMS2 are considerable. Thirdly, a possible lag of the Vietnamese record behind the Chinese 

records does not make any systemic sense as the stalagmite δ18O signal in the ASM region is 

generated in the Indian Ocean and is then transmitted to India and Southeast Asia, as outlined in 

Section 2.8.4. Therefore, if any temporal discrepancy between the Vietnamese and the Chinese 

stalagmite δ18O records were to be expected, it would be a lead rather than a lag of the 

Vietnamese record.  

Similar to the observations made for the Holocene (Section 6.1), the δ18O values in stalagmite 

VSMS2 are lower than the ones in the South Chinese stalagmites by a constant offset of about 

1.5 ‰. This confirms the hypothesis made in Section 6.1 that precipitation feeding the Chinese 

stalagmites had a significant contribution of isotopically heavy rain, probably originating from a 

more local source such as the South China Sea. With 1.5 ‰ the offset is slightly lower than the 
2 – 3.5 ‰ offset observed during the Holocene. This implies either that local moisture sources 
also contributed more to precipitation feeding the Vietnamese stalagmites during the HS1 and 

the BA, or that monsoonal rainfall derived from the distant Indian Ocean played a diminished 

role in Northern Vietnam during that time, or both. Despite this offset, the similarity between 

the δ18O records in Vietnamese and Chinese stalagmites strongly suggests a common process 

driving the observed variations and increases confidence in their interpretation in terms of 

climatic change, with decreased stalagmite δ18O values indicating an increased intensity of the 

ASM (Figure 6.9; Dykoski et al., 2005; Yang et al., 2010; Zhang et al., 2013).  

The current hypothesis linking periods of reduced ASM intensity to Greenland cold intervals is 

based on changes in the distribution of heat between the North Atlantic and the South Atlantic 

and its effect on the mean latitudinal position of the ITCZ. In the Atlantic Ocean, heat is 

transported from the Southern Hemisphere across the equator to the Northern Hemisphere by 

surface currents referred to as Atlantic Meridional Overturning Circulation (AMOC) as an 

important part of the global ocean circulation of surface and deep water called “Thermohaline 
Circulation” (THC) or “Great Ocean Conveyor” (Broecker, 2010). On its way from the tropics 

to the North Pole, these warm surface currents give off much of their heat, warming the North 

Atlantic in the region of the Gulf stream and the North Atlantic stream. Cooling and increases in 

salinity due to evaporation and salt rejection during freezing of sea water in the higher latitudes 

of the North Atlantic cause water density to increase until it is high enough to sink downward in 

the Labrador sea and the region between Greenland, Iceland and Norway, to flow back to the 

South Atlantic as North Atlantic Deep Water (NADW). Therefore, the stronger the AMOC, the 

more heat is transported from the South Atlantic to the North Atlantic and vice versa (Crowley, 

1992).  
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This relationship gives rise to a distinct anti-phasing in the temperature evolution between 

Greenland and Antarctica as evidenced by temperature proxy records from Greenland and 

Antarctic ice cores (EPICA Community Members, 2006) and as confirmed by climate 

modelling (Vellinga & Wood, 2002), referred to as “bipolar seesaw” (Broecker, 1998). 

Modelling suggests that a reduced strength of the AMOC that has been related to the input of 

relatively low-density fresh (melt-)water to the North Atlantic causes an immediate reduction in 

northward heat transport and thus cooling in the North Atlantic (Vellinga & Wood, 2002). 

Within decades this temperature signal would be transmitted to the South Atlantic where it 

manifests itself in the form of increased surface temperatures (Rind et al., 2001; Vellinga & 

Wood, 2002; Schmittner et al., 2003). Modelling and climate proxy studies further suggest that 

cooling in the North Atlantic causing increased land/sea ice extent (Bitz et al., 2007; Jin et al., 

2007) together with warming in the South Atlantic result in a southward shift of the mean 

latitudinal position of the ITCZ (Vellinga & Wood, 2002; Chiang & Bitz 2005; Denton et al., 

2005; Broccoli et al., 2006; Denton et al., 2010). In turn, this causes weakening of Northern 

Hemisphere monsoon systems (e.g. Haug, et al., 2001; Cheng et al., 2006), strengthening of 

Southern Hemisphere monsoons systems and corresponding latitudinal shifts in the main 

precipitation belts (e.g. Ayliffe et al., 2013).  

The new δ18O record from stalagmite VSMS2 seems consistent with this hypothesis, as 

illustrated in Figure 6.10: During HS1, Greenland and North Atlantic SST and AMOC strength 

are reduced (Bard et al., 2000; Stuiver & Grootes, 2000; McManus et al., 2004). The reduction 

in AMOC strength manifests itself by an immediate decrease in the percentage of polar species 

in the foraminiferal assemblage in the South Atlantic in the region of the modern-day 

Subtropical Front (STF) of the Antarctic Circumpolar Current (ACC; Barker et al. 2009). 

Therefore, North Atlantic cooling corresponds to South Atlantic warming, in line with the 

bipolar seesaw hypothesis. Barker et al.(2009) attribute this fast response in foraminiferal 

species composition to the reduced AMOC strength to a southward shift of the northern fronts 

of the ACC. As polar foraminiferal species are practically absent north of the present-day STF 

but are dominant south of the Sub-Antarctic Front (SAF) south of the STF due to the steep SST 

gradient of > 7°C over only 5° latitude, even minor shifts in the latitudinal position of those 

fronts can induce marked variations in the percentage of polar foraminiferal species (Barker et 

al., 2009). North Atlantic cooling and South Atlantic warming seem to have resulted in a 

southward migration of the mean ITCZ position which, in turn, has caused reductions in ASM 

strength as evidenced by relatively high δ18O values in stalagmite VSMS2 (green line in Figure 

6.10). With the transition from HS1 to the BA warm period, all these processes are reversed: 

Greenland and North Atlantic SST and AMOC strength are increased, the ACC fronts as well as 

the ITCZ shift northward and ASM intensity is increased.  
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Figure 6.10: Comparison of palaeoclimate records over the last deglaciation. a) Greenland temperature from ice core 
GISP2 δ18O values (Stuiver & Grootes, 2000); b) N-Atlantic SST from alkenone unsaturation ratios from marine 
sediment core SU8118 from the Iberian margin (Bard et al., 2000); c) AMOC strength from 231Pa/230Th ratios from 
marine sediment core GGC5 from the subtropical N-Atlantic (McManus et al., 2004); d) portion of polar 
foraminiferal species in marine sediment core TN057-21 from the S-Atlantic southwest of South Africa beneath the 
modern-day Subtropical Front (STF) of the Antarctic Circumpoloar Current (ACC; Barker et al., 2009); e) ASM 
intensity and meridional ITCZ position from δ18O values of stalagmite VSMS2 from N-Vietnam (this study); f) 
intensity of the Australian-Indonesian Summer Monsoon (AISM) from a composite stalagmite δ18O from Flores 
Island, Indonesia (Ayliffe et al., 2013). Axes for c) and e) are reversed. YD = Younger Dryas; BA = Bølling/Allerød; 
HS1 and HS2 = Heinrich stadials 1 and 2. 
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That these changes in ASM intensity are indeed related to latitudinal ITCZ migrations is 

suggested by one of the first (albeit low-resolution) stalagmite δ18O records from the AISM 

domain on the Southern Hemisphere (Liang Luar cave, 8°32’ S, 120°26’ E; Flores Island, 
Indonesia) that covers these time intervals (Ayliffe et al., 2013). During HS1 and the BA, 

Ayliffe et al. (2013) interpret the δ18O record in terms of Australian-Indonesian Summer 

Monsoon (AISM) intensity and precipitation amount as a result of latitudinal ITCZ migrations, 

with decreased δ18O values indicating increased AISM intensity. As the ITCZ migrated south 

during HS1, AISM intensity increased while ASM intensity in the Northern Hemisphere 

decreased, indicating that AISM intensity is indeed synchronous and anti-phased with ASM 

intensity as previously suggested (Wang et al. 2006; Wang et al. 2007). Ayliffe et al. (2013) 

further back up their claim of a southward shift of the Australasian monsoon system during HS1 

by referring to additional hydroclimate records from the Southern Hemisphere tropics including 

from southern Indonesia (Muller et al., 2012), southern Papua New Guinea (Shiau et al., 2011) 

and northern Australia (Mohtadi et al., 2011) that also indicate increased rainfall during HS1.  

If ASM intensity is defined in terms of local rainfall amount, stalagmite δ18O records should 

only be capable of tracking ASM intensity if they are significantly controlled by the amount 

effect. A hypothetical southward shift of the mean ITCZ position decreasing rainfall amounts in 

the Northern Hemisphere monsoon systems could then explain the observed increases in 

stalagmite δ18O values in stalagmite VSMS2 and in Chinese stalagmites during HS1. However, 

several factors are in disagreement with the hypothesis of the mean ITCZ position determining 

local rainfall amount in subtropical Asia:  

Firstly, the amount effect has proven difficult to constrain in analyses of modern data for 

rainfall amount and rainfall δ18O values (Johnson & Ingram, 2004; Dayem et al., 2010), 

especially in the northern parts of China. This observation has led investigators to suggest non-

local effects to control Chinese stalagmite δ18O records (e.g. Liu et al., 2015), in particular the 

upstream depletion mechanism outlined in Section 2.8.4.  

Secondly, climate model simulations suggest that the change in rainfall amount between full 

glacial conditions during the LGM and present-day conditions attributed to a southward shift of 

the ITCZ mainly manifests itself in the tropics and less in the subtropics in Asia (Chiang & Bitz, 

2005), as illustrated in Figure 6.11. Therefore, a southward shift of the ITCZ due to increased 

land and sea ice cover during periods such as the LGM or HS1 can explain increased rainfall 

over the Indopacific just south of the equator as inferred by Ayliffe et al. (2013) from Liang 

Luar cave (8° S) as well as decreased rainfall over the Indopacific just north of the equator as 

inferred from stalagmites from northern Borneo (4° N; Partin et al., 2007; Carolin et al., 2013), 

but not necessarily further north at Sang Ma Sao cave (23° N) or at the Chinese cave sites.  
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Figure 6.11: Precipitation change (mm/d) during the LGM compared to present-day conditions simulated with the 
CCM3 General Circulation Model (GCM) by Chiang and Bitz (2005), imposing LGM land ice extent from a 
reconstruction by Peltier (1994). Figure adapted from Chiang and Bitz (2005).  

 

 

 

 

 

 

 

 

 

 

 

In view of this controversy, Pausata et al. (2011) simulated a Heinrich event using a fully 

coupled GCM (CCSM3) by imposing an abrupt freshwater input to the North Atlantic that 

causes sea ice in the northern North Atlantic to reach extents typical of Heinrich events 

(Hemming, 2004). They then compared the results for temperature, precipitation and 

precipitation δ18O values with the ones from a model simulation of the LGM based on the 

insolation, atmospheric CO2 concentrations, ice sheets and continental geometry at 21 ka BP 

(Otto-Bliesner et al., 2006).  

Pausata et al. (2011) found a good agreement of the modelled increase in precipitation δ18O 

values during Heinrich event 1 (H-1) compared to the LGM with the increase in stalagmite δ18O 

values recorded in stalagmites from the ASM region (Figure 6.12). The modelled and observed 

δ18O increases are largest in the northern parts of the Indian subcontinent and over the Tibetan 

Plateau. However, while the model comparison featured decreases in summer precipitation over 

the northern parts of the Indian Ocean, most parts of the Indian subcontinent and parts of the 

Tibetan Plateau (Figure 6.13), accounting for parts of the δ18O increases via the amount effect, 

no decreases in total or summer precipitation were apparent in the EASM region.  
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Figure 6.12: Precipitation δ18O values (‰ V-SMOW) over the ASM region for a simulated Heinrich event (Pausata 
et al., 2011) compared to a simulated LGM. Symbols designate cave sites with numbers indicating the recorded 
increase in stalagmite δ18O values during Heinrich event 1 (H-1): Timta (Sinha et al., 2005), Songja (Zhou et al., 
2008), Hulu (Wang et al., 2008), Dongge (Yuan et al., 2004) Sang Ma Sao (this study). Figure adapted from Pausata 
et al. (2011).  

Figure 6.13: Summer precipitation amount (%) over the ASM region for a simulated Heinrich event (Pausata et al., 
2011) compared to a simulated LGM. Symbols for cave sites as in Figure 6.12. Figure adapted from Pausata et al. 
(2011).  
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As winter precipitation within the ASM region is commonly isotopically heavier than summer 

precipitation (e.g. Wang et al., 2001; Johnson & Ingram, 2004) it has been suggested that 

changes in the relative contribution of winter/summer rainfall to annual totals is in part 

responsible for the δ18O variations observed in stalagmites (e.g. Cheng et al., 2009), referred to 

as the seasonality effect. According to this hypothesis, a decreased ratio of summer to winter 

rainfall might contribute to the observed increase in stalagmite δ18O values during H-1. Whereas 

Pausata et al. (2011) identified such a decrease of the summer/winter rainfall ratio at the site of 

Timta cave in northern India from a value of about 6.7 modelled for the LGM to about 2.8 

during H-1 (Δ = 3.9), the ratio remained quasi-constant at the Chines cave sites. The ratio at 

Dongge cave (the closest to Sang Ma Sao cave among the studied sites) remained at a value of 

about 1.3.  

Therefore, the increases in δ18O values in stalagmites from the EASM region during the H-1 can 

neither be attributed to decreases in local rainfall amount via the amount effect, nor can they be 

attributed to decreases in the summer/winter rainfall ratio. In contrast, both the amount and the 

seasonality effect can explain the relatively large δ18O increase in the stalagmite from Timta 

cave in northern India (Sinha et al., 2005). Based on these results, Pausata et al. (2011) 

suggested that the observed δ18O increase in the Chinese stalagmites are predominantly caused 

by a non-local effect: Due to decreased SSTs in the northern Indian Ocean (Figure 6.13), 

convection and monsoon intensity in the ISM region diminished and caused increased 

precipitation δ18O values via the amount effect. The thus isotopically heavier moisture was then 

transported to the EASM region including Northern Vietnam and China, both directly and 

indirectly after continental moisture recycling, where it caused isotopically heavier 

precipitation. This hypothesis also explains why the H-1 increase in δ18O values in stalagmites 

from northern India in the ISM region is larger than that in the EASM region as the Indian 

subcontinent was additionally affected by a decrease in the summer/winter rainfall ratio. 

Consequently, the hypothesis of Pausata et al. (2011), being based on the upstream rainout 

mechanism (Section 2.8.4), does not imply a decrease in local rainfall amounts in the EASM 

region during the H-1 to explain the observed increase in stalagmite δ18O values, in contrast to 

earlier work interpreting Chinese stalagmite δ18O records as straight-forward proxies for EASM 

intensity in terms of local rainfall amount.  

In order to examine which of the interpretations of stalagmite δ18O records from the EASM 

region is more likely, further proxy records sensitive to local hydrological change are needed. 

The multi-proxy record from stalagmite VSMS2 from Northern Vietnam, shown in Figure 6.14, 

offers this possibility. As discussed in Sections 6.2 and 6.3, increased δ13C values and Mg 

concentrations in stalagmites potentially indicate decreased local water availability, while a 

decrease in amplitude and/or frequency of elements related to detritus incorporated in 

stalagmites can reflect a decrease in amplitude and/or frequency of high infiltration events or 

events of cave flooding. In Figure 6.14, these elements in stalagmite VSMS2 are represented by 

Si.  
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Figure 6.14: Comparison of potential proxies for hydrological conditions from stalagmite VSMS2 in Northern 
Vietnam. Note the difference in scale between the two stable isotope records. Original chronology shifted as in Figure 
6.9. The dark-blue column indicates a period of increased δ13C values and Mg concentrations between HS1 and the 
BA.  

While VSMS2 δ18O values markedly decreased by more than 4 ‰, from a maximum value of -
6.2 ‰ during HS1 to a minimum value of -10.4 ‰ during the mid-BA at 13.5 ka BP, VSMS2 

δ13C values remained relatively constant throughout the almost 3,000 years of growth. During 

most of the time, δ13C values varied around this quasi-constant baseline at -9.75 ‰ with 
amplitudes below 0.5 ‰. The most prominent feature in the VSMS2 δ13C record from 16.2 to 

13.4 ka BP is a 600 years-long period from 15.2 to 14.6 ka BP during which δ13C values were 

increased by up to 1 ‰, reaching a maximum value of -8.75 ‰ at 14.9 ka BP. This positive 

excursion in δ13C values coincided with increased Mg concentrations and therefore may reflect 

a reduction of local water avaiability during that period as a consequence of the hydrology-

related processes outlined in Section 6.2. It is difficult to pinpoint which of the various 

processes causing increased δ13C values and Mg concentrations during drier conditions is 

predominant during that time, but as the 1 ‰ increase in δ13C values at 15.2 ka BP was very 
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abrupt, the responsible process(es) must be fast-acting, such as PCP. In contrast, the gradual 

increase in Mg concentrations from 14.6 to about 13.8 ka BP may, however, not be related to a 

local change in water availability which is indicated by the δ13C record having remained 

relatively constant. A potential explanation for this discrepancy is a change in hydrological 

routing above the cave with increased occurrence of dolomite along the new flowpath which 

caused increased Mg concentrations but did not affect the δ13C values.  

Silicon concentrations during the 15.2 – 14.6 ka BP period do not exhibit pronounced decreases 

that could indicate a decrease in the amplitude/frequency of high infiltration/flooding events, 

except for a 50 years-long period around 15.0 ka BP. However, it is evident that the largest peak 

in Si concentrations occurs at 14.5 ka BP, directly after the presumably drier period possibly 

indicating a sudden increase in local rainfall amount and/or the occurrence of extraordinarily 

intense rainfall events.  

The presumed dry spell during the 15.2 – 14.6 ka BP period could be caused by a maximum 

southward shift of the mean ITCZ position at the end of HS1. As the mean ITCZ position is 

thought to have migrated north again at the transition from HS1 to the BA, the reduction in local 

rainfall was counteracted after a relatively short time period and ended at 14.6 ka BP. Therefore, 

the δ13C values and Mg concentrations during the 15.2 – 14.6 ka BP period are consistent with 

the ITCZ migration hypothesis. However, the δ18O values do not exhibit any obvious increase 

during that period which suggests that they are indeed not related to local rainfall amount, as 

presumed according to the hypothesis suggested by Pausata et al. (2011) relating increased 

stalagmite δ18O values from the EASM region during HS1 to decreased ISM intensity and the 

upstream rainout mechanism.  

Interestingly, the decrease in Mg concentrations as well as in δ18O and δ13C values at 14.6 ka BP 

at the end of the presumed dry spell do coincide. This suggests that the shift of the mean ITCZ 

position back northwards during that time and the re-invigoration of the ISM due to increasing 

SSTs in the Indian Ocean during the BA happened at the same time. This might again indicate 

that these reorganisations at the HS1-BA transition are dynamically linked. It can thus be 

concluded that the new multi-proxy record from stalagmite VSMS2 is consistent with both 

changes in local hydrology at the HS1-BA transition and with non-local effects controlling the 

δ18O signal in stalagmites from the EASM region including China and Northern Vietnam.  
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7 Conclusions 

The new δ18O records from stalagmites VML22 and VSMS2 accurately replicate the highly 

robust and consistent stalagmite δ18O signal in Monsoon Asia, both in terms of long-term δ18O 

variations on an orbital time-scale in parallel with summer insolation, as well as of medium-

term δ18O variations on a millennial time-scale related to the cold Heinrich Stadial 1, the 

Bølling/Allerød warm phase and the Younger Dryas cold phase. This strongly suggests a 

common driver for these signals and confirms that the processes controlling the first-order δ18O 

fluctuations in stalagmites VML22 and VSMS2 are the same as in other stalagmites from the 

EASM-influenced region, at least on orbital and millennial time-scales.  

The positive covariation of the δ18O record of stalagmite VML22 with summer insolation 

calculated from Earth orbit parameters (Berger & Loutre 1991) confirms that the Asian 

Monsoon is controlled by summer insolation on orbital timescales, in agreement with the orbital 

monsoon theory of John Kutzbach (Kutzbach, 1981).  

The new δ18O record from stalagmite VML22 also exhibits highly similar behaviour to 

stalagmite δ18O records from the ISM region on millennial time-scales as well as other proxy 

archives that document ISM intensity. Therefore, the new δ18O records from stalagmites 

VML22 and VSMS2 generated within the framework of this PhD thesis are consistent with both 

the “EASM stalagmite δ18O signal” as well as with proxy records reflecting ISM intensity, at 
least in relative terms. In absolute terms, however, the δ18O values from stalagmites VML22 and 

VSMS2 are by at least 2 ‰ and 3.5 ‰ (respectively) too low to fit into the supra-regional 

pattern of stalagmite δ18O values decreasing along the moisture transport pathway from the ISM 

region to the EASM region in southern and central China. While this anomaly inherently cannot 

be explained by the upstream depletion mechanism, this negative offset suggests that 

precipitation feeding the Chinese stalagmites had a significant contribution of isotopically heavy 

rain, probably originating from a more local source such as the South China Sea that has not 

undergone such intense Rayleigh distillation. This hypothesis is consistent with modelling 

results that show that central China receives only about 60% of its modern-day rainfall from the 

Indian Ocean (Liu et al., 2014) and that East China receives significant portions of total 

moisture from the South China Sea and the North Pacific in addition to the Indian Ocean (Cai et 

al., 2015).  

This negative anomaly of the new δ18O records from stalagmites VML22 and VSMS2 with 

respect to the established supra-regional pattern of stalagmite δ18O values hampers the 

application of the „two-site approach” of Hu et al. (2008) to reconstruct the amount of 

precipitation integrated between the two sites of Ma Le 2 and Dongge cave as a measure for 

regional rainfall, even after correcting for differences in cave temperature and elevation.  
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The fact that the δ18O values in stalagmite VSMS2 are about 1.5 ‰ lower than those of 
stalagmite VML22 during the period of coeval growth implies that the VML22 δ18O values have 

been increased relative to the VSMS2 δ18O values, most likely through evaporative enrichment 

due to a generally enhanced ventilation inside Ma Le 2 cave compared to Sang Ma Sao cave. 

This notion is consistent with the δ13C values in stalagmite VML22 being about 7.1 ‰ higher 
than those in stalagmite VSMS2 as well as about three times as variable, as enhanced 

ventilation in Ma Le 2 cave would lead to preferential removal of isotopically light CO2 from 

drip water during CO2-degassing. This effect even seems to be strong enough to 

overcompensate the presumably higher input of biogenic isotopically light CO2 to the VML22 

drip site. Therefore, it is likely that both the δ18O and δ13C records in stalagmite VML22 have 

been influenced by kinetic fractionation due to evaporation and ventilation inside the cave. 

However, kinetic fractionation apparently has not been sufficiently strong or random to efface 

the original climate signal contained in the δ18O values on millennial timescales, as suggested 

by the similarity of the VML22 δ18O values to those from numerous stalagmites from the ISM 

and EASM regions.  

The robust positive correlation between δ18O, δ13C and the concentrations of Mg and Sr in 

stalagmite VML22 (Group I elements) strongly suggests that these proxies have recorded local 

hydrological change linked to the large-scale variations in monsoon intensity outlined in Section 

6.1, with increased values of all four parameters indicating reduced water availability within the 

karst system. All four proxy signals exhibit a positive trend towards the present-day, in line with 

a gradual reduction in meteoric supply on orbital time-scales corresponding to reduced solar 

insolation, driven by long-term changes of the Earth’s orbit.  

Trace elements attributed to geochemical Group II in both stalagmites VML22 and VSMS2 are 

evidence of events during which infiltration of rainwater into the subsurface was extraordinarily 

high or even of events of cave flooding, as these elements are commonly transported within the 

karst system in the form of particles and colloids. Furthermore, most of the peaks in their 

concentration correspond to darker laminae of brownish to black colour indicating the 

incorporation of detritus in the stalagmite fabrics. The soil zone is probably the dominant source 

for these elements as their concentrations are significantly higher in the overyling soils than in 

the carbonate host rock. The similarity of the relative height and width of the concentration 

peaks of the different elements suggests a common source during each event.  

The similar number of peak mismatches and matches when comparing elements of Group I and 

Group II suggests that regionally increased water availability and strong infiltration events do 

not necessarily coincide. This independent behaviour of these hydrologically sensitive element 

groups might be explained with the hypothesis that infiltration events recorded through 

enhanced Group II element concentrations are too short-lived to be recorded through decreased 

Group I element concentrations. 
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The prominently bright and detritus-poor section in stalagmite VML22 (3 – 6 mm DFT) seems 

to have formed during a time of enhanced water availabilty (1.0 – 0.6 ka BP) that caused a 

hydrology-related increase in vegetation density/cover that counteracted soil erosion during 

precipitation events, thereby impeding the input of detrital material from the soil zone into the 

subsurface flowpath network and thus its incorporation in the stalagmite. This hypothesis is 

consistent with the stalagmite δ13C values that decreased by 4 ‰ during that period.  

Similar to the observations made for the Holocene, the δ18O values in stalagmite VSMS2 are 

lower than the ones in the South Chinese stalagmites during the H-1/BA transition, confirming 

the new hypothesis that precipitation feeding the Chinese stalagmites had a significant 

contribution of isotopically heavy rain, probably originating from a more local source such as 

the South China Sea. Furthermore, this offset only amounts to about 1.5 ‰ in comparison to the 
offset of 2 – 3.5 ‰ during the Holocene. This implies either that local moisture sources also 
contributed more to precipitation feeding the Vietnamese stalagmites during the HS1 and the 

BA, or that monsoonal rainfall derived from the distant Indian Ocean played a diminished role 

in Northern Vietnam during that time, or both.  

Via climatic teleconnections reduced EASM intensity indicated by increased stalagmite δ18O 
values corresponded with cold periods in Greenland and the North Atlantic, especially with 

Heinrich stadials. The new δ18O record from stalagmite VSMS2 from Sang Ma Sao cave in 

Northern Vietnam constructed for this thesis confirms that these millennial-scale monsoon 

fluctuations can also be identified in the transition zone between the EASM and the ISM, 

sharing even minor fluctuations with stalagmite δ18O records from the EASM region.  

The current hypothesis linking periods of reduced ASM intensity to Greenland cold intervals is 

based on changes in the distribution of heat between the North Atlantic and the South Atlantic 

and its effect on the mean latitudinal position of the ITCZ as a result of varying AMOC 

strength. The new δ18O record from stalagmite VSMS2 seems consistent with this hypothesis: 

During HS1, North Atlantic cooling and South Atlantic warming as an effect of the “bipolar 
seesaw” seem to have resulted in a southward migration of the mean ITCZ position which, in 
turn, has caused reductions in ASM strength as evidenced by relatively high δ18O values in 

stalagmite VSMS2.  

However, ASM intensity in the EASM region as well as in the ISM/EASM transition zone 

cannot simply be defined in terms of local rainfall amount: Firstly, the amount effect has proven 

difficult to constrain in analyses of modern data for rainfall amount and rainfall δ18O values, 

especially in the northern parts of China. Secondly, climate model simulations suggest that the 

change in rainfall amount between full glacial conditions during the LGM and present-day 

conditions attributed to a southward shift of the ITCZ mainly manifests itself in the tropics and 

less in the subtropics in Asia. Likewise, changes in the relative contribution of winter/summer 

rainfall to annual totals as an explanation for increased stalagmite δ18O values in the 

ISM/EASM transition zone during the HS1 can be ruled out on the basis of climate modelling 

results. Therefore, the upstream rainout mechanism has been favoured in more recent studies.  
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The multi-proxy record from stalagmite VSMS2 from Northern Vietnam offers the possibility 

to examine which of the interpretations of stalagmite δ18O records from the EASM region is 

more likely by providing additional and independent proxy records sensitive to local 

hydrological change. In conclusion, the new multi-proxy record from stalagmite VSMS2 is 

consistent with both changes in local hydrology at the HS1-BA transition and with non-local 

effects (such as the upstream rainout mechanism) controlling the δ18O signal in stalagmites from 

the EASM region including China and Northern Vietnam.  

 

 

 

 

 

 

 

 

 



  

 272 

Part II: 

Development of Automated Dripwater 

Samplers 
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1 Motivation and State of the Art 

Sampling karst cave dripwaters for subsequent hydro- and geochemical analysis is 

indispensable for understanding the response of dripwater geochemistry to its meterological, 

climatic and hydrogeological controls (Fairchild & Baker, 2012) such as rainfall events 

(McDonald, 2004), dry conditions (Baker et al., 1997) as well as changes in the cave ventilation 

(Mattey et al., 2010) regime. This understanding is again crucial for a more comprehensive and 

reliable interpretation of the geochemical time series generated from speleothems to reconstruct 

past climates and environements (Fairchild et al., 2006). This is why thorough long-term 

dripwater monitoring is so important to speleothem science.  

However, the manual collection of dripwater samples is not only time-consuming but also 

expensive and logistically challenging. This is particularly true in remote areas with poor or no 

infrastructure, where expenses for field trips and equipment transport to the sampling site and 

back are often significantly increased. Furthermore, as the (isotope geo)chemical composition of 

dripwater changes with time, for instance, the concentration of the most commonly investigated 

cations Mg and Sr, it is necessary to repeat dripwater sampling multiple times at short intervals 

and over a sufficiently long time period in order to capture the temporal variability of dripwater 

geochemistry at each dripsite under investigation. This further increases the logistical 

constraints. When it comes to long-term monitoring of a drip site at relatively short intervals, 

manual sampling is definitely no viable option anymore, not only in speleothem science, but in 

all sorts of liquid sampling schemes (Chapin, 2015).  

This impasse can only be overcome by automation: Autosamplers suitable for field operation, 

such as the portable sampler 3700C Compact (Teledyne ISCO, USA; www.teledyneisco.com 

/en-us/waterandwastewater/Pages/3700C-Compact.aspx; access: 6th of April, 2019) are already 

available on the market and offer the opportunity to automatically and repeatedly sample water 

bodies (oceans, estuaries, lakes, rivers, groundwater, etc.). As they can be powered by batteries 

or solar panels these autosamplers do not need a connection to the grid and can, therefore, be 

applied even in remote areas.  

Despite their suitability for a wide range of applications, available autosamplers lack the 

capacity to automatically seal the sample vials after collection. This, however, is absolutely 

essential in many sampling applications in speleothem science and other fields where any 

exchange of gases and/or volatile components between the sample and the ambient air needs to 

be prevented in order to preserve the sample’s original properties until analysis. In speleothem 
science, this particularly applies to the investigation of the dynamics of dripwater stable 

isotopes, especially of oxygen (δ18O) and of carbon (δ13C).  
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Similarly, sample vials also need to be gastight directly after sample collection where 

evaporation or condensation has to be impeded to prevent sample alteration. This is paramount 

in all studies, in speleothem science as well as other fields, investigating the hydrological cycle 

based on the stable isotopes of hydrogen and oxygen (δD and δ18O). The majority of such 

studies rely on rainwater samples (mostly) collected manually at stations of the Global Network 

of Isotopes in Precipitation (GNIP; IAEA/WMO, 1994) coordinated by the International Atomic 

Energy Agency (IAEA) with the sampling performed by dedicated partner institutions in 

member states of the IAEA or the World Meteorological Organisation (WMO). At these 

stations, rainwater is generally sampled at monthly resolution to ensure worldwide compatibility 

of GNIP data from different sources. While most of these samples are collected manually, a 

number of active or passive totalizers compliant with the GNIP sampling guidelines (Terzer et 

al., 2016) are in operation at GNIP stations without permanent staffing. Manual sampling at 

higher temporal resolution, such as rainfall event-based sampling, is practically impossible as 

this would require round-the-clock stand-by duty.  

Furthermore, sample alteration due to evaporation is commonly prevented by sealing the water 

samples’ surface with paraffin oil despite it causing an increased need for maintenance of the 
standard instrument for water isotope analysis, i.e. Cavity Ring-Down Spectroscopy (CRDS).  

Establishing an isotope baseline for meteoric waters is crucial for research in speleothem 

science, hydrology, meteorology and other scientific fields. While remarkable progress has been 

made thanks to GNIP data, the network is still spatially and temporally discontinuous, among 

other reasons due to the practical constraints on rainwater sampling in remote areas. Automated 

rainwater sampling could help solve this issue and increased maintenance of spectrometers 

could be avoided by applying gastight sample vials. This clearly illustrates the need for 

automated rainwater and cave dripwater sampling with gastight sample vials.  

Furthermore, the need for automated liquid sampling in general is demonstrated by a number of 

technical developments by multiple groups with the aim of creating automated liquid samplers 

capable of sealing the samples after collection. For instance, researchers at Oregon State 

University have developed the “OPEnSampler” (Nelke, Selker and Udell, 2017; 
http://www.open-sensing.org/opensampler/; access: 6th of April, 2019) that comprises an array 

of 24 solenoid valves, allowing the 24 sampling containers to be sealed from the environment 

after sample collection. Lukas Neuhaus has developed the “Lisa Liquidsampler” (not published) 
that fills 48 sample vials sealed by septa (engineered membranes that permit the transfer of 

fluids without air contact, usually using a double cannula) using a vacuum pump via 48 separate 

transfer tubes. Applying a new automated precipitation collector obtaining 96 sequential 15-mL 

samples, Coplen et al. (2008) were able to measure a strong decrease of 51% in the hydrogen 

isotope ratio (δD) of precipitation over only one hour resulting from the landfall of an 
extratropical cyclone along the coast of California. Evaporation and subsequent isotopic 

fractionation was minimised by a Teflon-coated vial cover (sample vials are not sealed 

individually).  
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In addition to these newly developed liquid autosamplers two different autosampler prototypes 

were designed, built and tested within the framework of this thesis. Both prototypes have their 

benefits for scientific (and non-scientific) applications, however, they differ from one another 

with regard to the characteristics they are optimised on: While Prototype 1.0 was optimised for 

maximal operation times by minimising its power consumption and for maximal fail-safety by 

minimising its technical complexity, Prototype 2.0 was optimised for collecting samples that 

need to be absolutely gastight in order to prevent any sample alteration from evaporation, 

contamination or gas exchange. Both prototypes are discussed in detail in the following 

sections. 

 

 

 



 

 276 

2 Prototype 1.0 

2.1 Optimisation Characteristics 

There are seven characteristics Prototype 1.0 was optimised on (in order of priority):  

1. minimal power consumption 

2. maximal fail-safety / minimal technical complexity 

3. simultaneous collection of three different types of samples  

4. custom-built components 

5. low cost 

6. low weight 

7. small size / reasonable dimensions 

Minimising its power consumption and therefore maximising its operation times makes 

Prototype 1.0 particularly well-suited for long-term monitoring, even in remote areas where 

devices requiring regular manual operations are impractical. Such a scenario is very common in 

speleothem science as most karst caves are located in highly remote areas with only limited 

infrastructure to access the study site and the cave itself. Furthermore, minimising its power 

consumption also ensures that its power consumption is not a limiting factor for the 

autosampler’s overall performance and applicability.  

In the case of Prototype 1.0, a minimal power consumption was mainly achieved by using 

gravity to collect the (drip)water samples (passive sampling), rather than an external force such 

as overpressure/underpressure generated with an electric pump (active sampling) that would 

increase power consumption considerably. In addition, a hibernation mode was implemented 

during which power consumption is drastically reduced (5 mA) compared to the active 

operating mode (82.5 mA). The autosampler is programmed to enter the hibernation mode (“go 
to sleep”) after each sample collection and to re-enter the active mode (“wake up”) when the 
subsequent sample is to be collected. At its current setup, Prototype 1.0 can operate 

autonomously for about six months at a weekly sampling interval, collecting its full capacity of 

24 samples, each consisting of three different sample types with volumes of 5, 20 and 20 mL 

(Section 2.2), respectively, thereby collecting a total of 72 “sub-samples”.  
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Maximising its fail-safety by minimising its technical complexity is another crucial measure to 

make Prototype 1.0 applicable in long-term monitoring. A high fail-safety reduces the 

probability of malfunctions and thus the need for procuring spare parts and for transporting 

them to the operating site as well as for time-consuming and costly repairs. A technically simple 

design also ensures that, in case of a malfunction, the autosampler is relatively easy to repair or, 

if necessary, even to rebuild.  

The technical simplicity of Prototype 1.0, both in terms of software (programming) and 

hardware (mechanics), was mainly ensured by the design choice of a minimal amount of 

movements necessary for the realisation of the dripwater sampling process:  

- First movement - Revolution around the Z-axis: The sample vials are arranged along 

concentric circles in a revolver- or carrousel-like sample vial rack (sample holder). 

Positioning of empty sample vials for the collection of a new set of samples, after 

collection of the antecedent samples is finished, is achieved by an appropriate rotation 

(here: by 15°) of the sample vial rack around its vertical axis.  

- Second movement - Translation along the Z-axis: Once empty sample vials are 

correctly positioned underneath the dripwater nozzles at the bottom of the “drip divider” 
(that feeds the dripwater from the stalactite to the sample vials; Figure 2.4), the “drip 
divider” is moved downwards by the Z-motor via a worm drive spindle. As soon as the 

custom-made silicone septa of the sample vials are pierced by the dripwater nozzles, the 

passive dripwater sample collection is initiated.  

At the end of the respective sampling interval (after one day or one week, depending on the 

operator’s choice), the “drip divider” is moved back up to its up position, the sample vial rack 
rotates by 15° to bring a new set of empty sample vials into position, the “drip divider” is 
moved back down and a new set of samples is collected.  

The technical simplicity of Prototype 1.0 resulting from this “two-axes” design permits a 
correspondingly simple software design. Another design aspect that further contributes to the 

technical simplicity of Prototype 1.0 is the passive sampling method instead of an active 

sampling method that would require an artificial exertion of overpressure/underpressure by a 

pump for the sample collection.  

Simultaneous collection of three different types of samples is beneficial especially when the 

collected samples are required to remain at the location of sample collection (here: inside the 

respective cave) for an extended period of time, as is often the case in speleothem science due to 

the remoteness of the monitored caves that make transporting the collected samples to the lab in 

short, regular intervals impractical and uneconomic. The longer the samples remain inside the 

caves before being stored under ideal conditions, i.e. in a dark and cool place such as a fridge, 

the more important it becomes to stabilise the analytes under investigation inside the sample 

solution.  
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This is commonly achieved by adding certain chemicals to the sample solution directly after 

sample collection (such as acids like HNO3 to stabilse metal ions or toxic compounds such as 

sodium azide (NaN3) to prevent the consumption of nutrient ions by biota occuring in the 

sample, mostly bacteria). For stabilising stable isotopes aquatic samples are commonly collected 

in gastight brown glass vials to protect them from sample alteration resulting from evaporation 

or gas exchange.  

Therefore, Prototype 1.0 is equipped with three separate sample containers per batch that are 

simultaneously filled with sample cave dripwater with three different “sub-samples”: The 
sample collected in the 5 mL brown glass vial is used for the analysis of the stable isotopes of 

hydrogen (δD), oxygen (δ18O) and carbon (δ13C), the sample collected in one of the two 20 mL 

plastic flasks, pre-filled with 50 µL of 65 % HNO3 (suprapure) is used for analysing both main 

and trace elements prevalent as cations, while the sample collected in the other 20 mL plastic 

flask, however pre-filled with 50 µL of 1 % NaN3, is used for analysing nutrients prevalent as 

oxyanions.  

The use of custom-built components is advantageous for prototyping for several reasons: 

Components can be tailor-made to exactly meet the specific requirements of any particular 

prototype and its specific applications. Furthermore, components that are custom-built in-house 

are often significantly cheaper than if their construction was outsourced. In addition, in-house 

custom-built components are usually fast and easy to obtain as shipment is rendered obsolete. 

They can also be quickly re-designed and re-made, should any changes in design prove 

necessary.  

In the case of Prototype 1.0, many components were custom-built by 3D-construction 

(AutoCAD, Autodesk) and 3D-printing (Ultimaker 3 Dual Extruder, Ultimaker) such as the 

“drip divider”, the protective cases for the Z-motor and the electronics as well as the connectors 

fitted into the brown glass sample bottles used for the collection of dripwater samples for 

subsequent stable isotope analysis. The dripwater collector (Figure 2.2) was custom-built by 

various techniques of machining and handcraft in the Institute workshops (drilling, turning, 

sawing, filing, glueing etc.).  

Another important aspect of Prototype 1.0 is its low cost, with the cost for all the materials, 

excluding labour, amounting to about 500 €. The low cost of the autosampler allows to spend 
the remaining funds on other assets such as additional equipment or chemical analyses and/or 

makes it affordable to build/buy multiple autosamplers which increases the range of scientific 

opportunities.  

The relatively low weight of Prototype 1.0 of about 5 kg (+ 5.8 kg battery) makes it easy and/or 

cost-effective to transport, even via air-mail. It also makes it possible to install the autosampler 

in karst caves at the desired drip sites to which heavy items are mostly very difficult (if not 

practically impossible) to transport. The same applies to the reasonable dimensions of 

Prototype 1.0 (width = 400 mm; length = 440 mm; height: 330 mm).  
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2.2 Autosampler set-up and design 

2.2.1 Hardware design and sampling process 

The main components of Prototype 1.0 have been newly developed or adapted within the 

framework of this thesis and comprise a “dripwater container” mounted on a “telescope stand” 
and connected to a “drip divider” via a silicone tube, a revolver-like sample vial rack holding a 

total of 72 sample containers (with each sample batch consisting of three different sub-samples), 

two motors for both the translation along the Z-axis (using a worm drive spindle) and the 

revolution around the Z-axis, the electronics and protective cases for the electronics and the 

motors (Figure 2.1). All components except for the dripwater container and the telescope stand 

are assembled on an HDPE slab and a framework of X-slot profiles.  

The dripwater that is to be collected leaks from the monitored stalactite and drops on a 

Stalagmate drip rate logger (Mattey & Collister, 2008) installed inside the dripwater container. 

In order to ensure optimal settings for the Stalagmate to log drip rate reliably, the Stalagmate is 

installed at an angle of 15 to 20° relative to the horizontal. This keeps each drip from pooling 

which would interfere with the registration of the subsequent drip while retaining an impact 

surface that is sufficiently flat for the drips to produce a detectable sound on impact. 

Furthermore, installing the Stalagmate at an angle reduces any potential build-up of carbonate 

precipitates on the Stalagmate which would eventually prevent the drip rate logger from 

registering and recording the drips when the carbonate crust has become too thick.  

To avoid the need for drilling into the Stalagmate drip rate logger and thus the risk of damaging 

it, the Stalagmate logger is centrally clamped in place by two custom-made PVC screws (ø = 20 

mm; thread pitch = 1.0) with flat tips attached to the dripwater container via a PVC “skirt” with 
a height of 40 mm and a width of 30 mm on each side of the dripwater container (Figure 2.2). 

After installation of the Stalgmate logger the PVC screws are tightened using metal rods 

(yellow in Figure 2.2; ø = 8 mm) and then held in place by corresponding custom-made PVC 

nuts (red in Figure 2.2). Another advantage of holding the Stalagmate logger in place by 

clamping rather than permanently attaching it to the dripwater container is the ease of handling 

when it comes to taking the logger out of the dripwater container for data read-out or 

maintenance (exchanging batteries, etc.).  
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Figure 2.1: Overview of all components of Prototype 1.0 as a solid CAD model, together with the first of the two 
newly developed dripwater containers (left; including the Stalagmate drip rate logger) funneling the dripwater to the 
autosampler. The dripwater container is mounted on the newly developed telescope stand installed on the 
corresponding stalagmite stump (cut brown cone on the left) left after stalagmite extraction. The autosampler is 
mounted to the wall (brown cuboid on the right).  
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Figure 2.2: X-ray CAD model of the first of the two newly developed dripwater containers (including the Stalagmate 
drip rate logger) funneling the dripwater to the autosampler. This dripwater container can be either mounted on the 
newly developed telescope stand  (installed on the stalagmite stump left after stalagmite extraction; Figure 2.3, left), 
or suspended to the newly developed stalactite collar (Figure 2.3, right).  

As the Stalagmate logger needs to be exactly centered underneath the monitored drip site so that 

drip fall depth is sufficient for drip registration and logging the dripwater container including 

the Stalagmate logger is mounted on a telescope stand that allows precise positioning through 

adjustments along all three directions in space (Figure 2.3, left). The telescope stand consists of 

a horizontal metal rail featuring a central long-hole and of two metal tubes of different 

diameters so that the smaller inner tube can slide back and forth within the bigger outer tube and 

thus can be attached to the outer tube at different positions by screwing through discrete holes in 

the inner tube (spaced at 10 mm) and a set of three long-holes in the outer tube. This allows 

changing the overall length of the telescope tubing and thus adjusting the Z-position of the 

dripwater container. Additionally to these adjustments along the Z-axis, the dripwater container 

can be shifted along the length of the lateral rail and the rail itself can be rotated freely which 

allows adjustments of the dripwater container’s position in the X-Y-plane. These adjustments 

along all three axes enable precise positioning of the dripwater container in a three-dimensional 

cylinder-shaped action range with a diameter of 270 mm and a height of 185 mm (Appendix, 

Figure F.7).  
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Figure 2.3: Solid CAD models of the first of the two newly developed dripwater containers (including the Stalagmate 
drip rate logger) funneling the dripwater to the autosampler. This dripwater container can be either mounted on the 
newly developed telescope stand (left; installed on the stalagmite stump left after stalagmite extraction), or suspended 
to the newly developed stalactite collar (right). 

Sometimes it can be more practical to attach the dripwater container to the stalactite rather than 

the stalagmite stump left after stalagmite extraction, especially when the removed stalagmite is 

very long in which case the telescope stand might be too short for optimal positioning of the 

dripwater container. For these cases a “stalactite collar” has been developed within the 
framework of this thesis (Figure 2.3, right and Appendix, Figure F.5). Similar to the dripwater 

container it comprises four custom-made PVC-screws (ø = 20 mm) including flexible rubber 

elements screwed into the screw tips to clamp the stalactite collar to the stalactite in the centre 

of the collar. Again the PVC screws are secured by custom-made PVC nuts. To ensure that the 

dripwater container is positioned directly underneath the drip site, it is connected to the 

stalactite collar with two metal tubes (aluminium, wall thickness = 2 mm; purple in Figure 2.3, 

right), suspended directly underneath the stalactite. The fall depth of the drips can be adjusted 

by securing the metal tubes to the stalactite collar by inserting the corresponding metal rods (ø = 

8 mm; yellow in Figure 2.3, right) through holes (spaced at 20 mm) at different levels along the 

metal tubes.  
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After impact on the Stalagmate logger, the dripwater flows out of the dripwater container 

through a central threaded hose connector on the bottom, through a silicone tube (inner ø = 4 

mm) and into the “drip divider” (Figure 2.4) via another threaded hose connector. The drip 

divider divides each droplet into three “sub-droplets” of similar volume by passively using the 

gravitational force the causes the droplet to splash on impact on the cross-section (the “impact 
tri-star”, narrow green horizontal faces in Figure 2.4) of three internal dividing walls arranged at 

120° angles. To ensure a reliable “fission” of the droplets, they need to impact on the impact tri-
star dead centre. This is achieved by the passage through the “drip concentrator” at the top of 
the drip divider, a cylindrical element inside of which the central dripwater flow channel tapers 

off to ensure that droplets come off dead centre and fall down centrally inside the “fall tube”. 
The fall tube has a length of 100 mm so that droplets reach a sufficient fall velocity and 

momentum for a reliable droplet “fission”. After the “fission” of the droplet, the sub-droplets 

trickle downwards via three “drip channels” to exit through three “drip nozzles” at the bottom 
end of the drip divider to fall into the sample flasks positioned directly underneath. 

To make sure that droplets fall parallel to the axis of the fall tube for reliable droplet “fission”, a 
bubble level is glued to a plane that is exactly perpendicular to the fall tube. The bubble level 

can be used to check if the entire autosampler including the fall tube are installed plumb-

vertically. To enable for fine adjustments in inclination, the autosampler is installed inside the 

cave by attaching it to a nearby cave wall (or column) using an M12 metal threaded rod 

connected to the autosampler via an angle joint (purple in Figure 2.1) screwed into the top x-slot 

profile of the autosampler framework. To facilitate installing the autosampler plump-vertically, 

the angle joint is positioned directly above the centre of gravity of the autosampler so that 

gravity pulls the autosampler’s X-Y-plane into the horizontal. To prevent the autosampler from 

moving and changing its inclination after installation, its inclination is fixed using two screws 

holding the ball inside angle joint in place.  

Additionally to enabling a reliable droplet fission, installing the autosampler plumb-vertically 

eliminates the need for keeping the stepper motor used for the revolution of the sample rack 

active in order to prevent the sample rack from rotating due to gravitational pull. Instead, the 

stepper motor can be deactivated during sleep mode (“sent to sleep”) which decreases power 
consumption of the autosampler even further.  

To prevent or reduce sample alteration by contamination, evaporation or gas exchange during 

pre-storage of the dripwater samples inside the cave for extended periods of time (of up to six 

months), the sample flasks were custom-made (Figure 2.5) and sealed with a layer of silicone 

(thickness = 1 mm) cut out of sheets of silicone using broaches of corresponding size (ø = 15 

mm and 35 mm). To be able to accommodate the drip nozzles of the drip divider and to act as 

septa, these silicone layers were pre-slotted using a bevel-edged chisel (length of cutting edge = 

10 mm) and glued to the caps of the sample flasks.  
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Figure 2.4: The „drip divider“ of Prototype 1.0 as a solid (left) and an X-ray (right) CAD model, exploded for 
improved visualisation. The topmost part is the “drip concentrator” ensuring that all droplets fall down exactly in the 
center of the “fall tube” directly underneath. On impact on the “impact tri-star”, the droplet splashes and is 
“fissioned” into three sub-droplets of equal volume that are then piped through the “drip channels” to the “drip 
nozzles” at the bottom of the “drip divider”.  

To be able to accommodate the drip nozzles a central hole with a diameter of 12 mm was drilled 

into the caps of the 20 mL plastic sample flasks and the caps were roughened using sand paper 

before glueing the silicone septa to the caps. As the inner diameter of the original brown glass 

vials for the stable isotope samples were too small to accommodate the drip nozzles of the drip 

divider adapted plugs (Appendix, Figure F.16) were designed and 3D-printed for increasing the 

diameter of the sample vials and for providing a sufficiently large adhesive surface. 

The actual sampling process is illustrated in four steps in Figure 2.6: Before the beginning of a 

sampling sequence consisting of 24 sampling cycles the operator chooses a sampling interval by 

accordingly flipping the corresponding switch on the electronics casing (Appendix, red box in 

Figure F.1, right). 



 2.2  Autosampler set-up and design 

 

  285 

Figure 2.5: The two types of custom-made sample flasks for the three different “sub-samples” in each batch. To 
prevent or reduce sample alteration by contamination, evaporation or gas exchange during sample storage, the sample 
flasks were sealed by custom-made silicone septa.  

 

 

 

 

 

 

 

At the current set-up of Protoype 1.0, both daily and weekly sampling intervals are available, 

both starting with the next full hour. Time and date can be programmed using the Arduino 

software interface and are saved by the built-in real-time clock that uses a separate 3V lithium 

button cell battery as a buffer battery in order to prevent time and date from being deleted 

during short periods without electric power. To set the time and date, the corresponding switch 

on the electronics casing must be flipped (Appendix, lower button on the red box in Figure F.1, 

right) accordingly. Before starting the sampling sequence, this switch must be flipped to the 

position “Sampler”.  

The sampling sequence starts when the 12 V Pb-acid battery (20 Ah, non-spillable, 5.8 kg, 76 x 

167 x 181 mm) is connected to the autosampler and the sampling rack automatically turns until 

the first set of empty sample flasks is positioned directly underneath the drip nozzles of the drip 

divider (Figure 2.6, top left). At the next full hour, the Z-arm is moved downwards by the Z-

motor via the worm spindle drive (downward translation) until the nozzles of the drip divider 

pierce the septa of the custom-made sample flasks (Figure 2.6, top right). Once the programmed 

bottom position is reached, the passive dripwater sampling starts and the dripwater from the 

stalactite is piped into the sample flasks. Any dripwater in exceedance of the sample flasks’ 
capacity spills over so that the samples mostly represent the chemical conditions of the 

dripwater during the time it took for completely filling the sample flasks. During this phase of 

the sampling cycle the autosampler enters a hibernation mode (“goes to sleep”) to minimise 
power consumption. After the end of the first sampling cycle (after one day or one week, 

depending on the chosen setting), the autosampler reactivates (“awakes”) and the Z-arm 

including the drip divider moves upwards (upward translation) until the programmed top 

position is reached. Subsequently, the sample rack rotates counter-clockwise (revolution) by 

exactly 15°, thus positioning the next empty set of sample flasks directly underneath the drip 

divider (Figure 2.6, bottom left) and the Z-arm is again moved downwards to pierce the septa of 

the new set of sample flasks, the autosampler re-enters the hibernation moden and the next 

passive dripwater sampling commences (Figure 2.6, bottom right).  
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Figure 2.6: The sample collection procedure of Prototype 1.0: (1) Initial setup before the first sampling cycle (top 
left); (2) Downward translation of the Z-arm until the nozzles of the drip divider pierce the septa of the sample flasks; 
Start of passive dripwater sampling (top right); (3) Upward translation of the Z-arm and counter-clockwise revolution 
of the sample rack; positioning of an empty set of sample flasks underneath the drip divider (bottom left); (4) 
Downward translation of the Z-arm and start of the next sampling cycle (bottom right). Only parts of the CAD 
models shown and these partly sliced for improved visualisation.  
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Figure 2.7: Technical and logistical challenges posed by the cave environment: (1) High relative humidity of around 
100% and moisture inside the caves (top left), (2) difficult transport due to low and narrow cave passages, sometimes 
filled with water (top right; cave river in Sang Ma Sao cave); (3) assembly with strongly limited technical means (e.g. 
tools, etc.) and under challenging conditions (lack of a flat, dry, clean and well-lit working environment). (Potos: top 
left: A. Hartmann; 29th of July, 2015; rest: Tran Diep Anh (VIGMR); 27th of July, 2015).  

Subsequent to extensive indoor testing in the office to ensure reliable functioning of all 

components and the autosampler as a whole, two Prototypes 1.0 were partially disassembled 

(Appendix, Figure F.1), transported to Vietnam, reassembled, tested one final time and installed 

both in Ma Le 2 cave and Sang Ma Sao cave on the 22nd and 27th of July 2015, respectively 

(Figure 2.7). The partially water-filled low passage close to the entrance of Sang Ma Sao cave 

required the autosampler to be transported through that passage in disassembled form, floating 

on a slab of Styrofoam to keep the autosampler dry as crossing that passage requires crawling 

on all fours (Figure 2.7, top right). Therefore, reassembly was conducted inside Sang Ma Sao 

cave (Figure 2.7, bottom).  
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Figure 2.9: Initial setup of Prototype 1.0 installed in Ma Le 2 cave right after the start of the first sampling cycle (left) 
showing no signs of errors and close-up of the “drip divider” with its nozzles successfully piercing the septa of the 
sample flasks. (Photo: A. Hartmann; 22nd of July, 2015).  

Figure 2.8: Dripwater collection system consisting of the Prototype 1.0 dripwater autosampler and the dripwater 
container including the Stalagmate drip rate logger, installed inside Sang Ma Sao cave (left) and Ma Le 2 cave 
(right). In the left picture, the yellow box on the left-hand side of the dripwater collector is the Tinytag TGP-4500 
T/RH logger. (Photos: A. Hartmann; 22nd and 29th of July, 2015, respectively).  

The final set-up of Prototype 1.0 installed in both Me Le 2 cave and Sang Ma Sao cave is shown 

in Figure 2.8. The Prototype 1.0 autosampler is part of the cave monitoring system applied in 

both caves within the framework of this thesis, including the newly developed dripwater 

container and telescope stand together with the Stalagmate drip rate logger and the Tinytag 

TGP-4500 logger for registering temperature and relative humidity. At the beginning of the 

sampling cycle, there were no signs of any errors (Figure 2.9). 
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Figure 2.10: Flowchart illustrating the autosampler’s operation for a setup comprising 24 sample flasks (72 sub-
samples in total), arranged in three concentric circles at a spacing of 15° (“X direction”). Once the last sample has 
been collected, the program enters an infinite loop and waits for input from the operator. 

2.2.2 Electronic and Software Design 

Most of the autosampler’s electronic components are accommodated inside the electronics 

casing (red box in Figure 2.8). Upon final assembly, this casing was screwed shut and 

additionally sealed with silicone for protecting the electronic components from being impaired 

or damaged by the high humidity close to 100% common in karst caves. The cables leading 

from the inside of the electronics casing to the motors outside the casing were laid through a 

water-proof connector additionally sealed with Teflon tape.  

The centrepiece of the electronic design is the Arduino® Mega 2560 board which is based on an 

Atmel ATmega 328-P microcontroller. This microcontroller enables the autosampler to enter a 

hibernation mode during which power consumption is reduced 50-fold as compared to the 

power consumption during slide movement (active mode). It also contains a non-volatile 4 KB 

EEPROM memory in which the data (time and position) of the previous injection are saved 

temporarily. The interrupts of the hibernation mode at the beginning of each sampling cycle are 

triggered by a real-time clock (RTC) chip that includes a separate 3V lithium button cell battery 

which ensures that the program controlling the sampler operation remains active, even if the 

main power supply may be interrupted.  

The program controlling the autosampler was constructed with the open-source software 

Arduino (version 1.8.3). The code is written in Java and can be uploaded to the board via a USB 

connection. A flowchart illustrating the operation of Prototype 1.0 is shown in Figure 2.10. A 

Bill of Materials is given in the Appendix (Table F.1)  
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Figure 2.11: Prototype 1.0 installed in Sang Ma Sao cave destroyed by the cave river during an exceptionally high 
flow event after a couple of days of strong rain (photo: Prof. Dr. Thomas Neumann; 6th of October, 2015).  

2.2.3 Failure of Prototype 1.0 in Field Operation 

Despite all testing prior to the installation of the Prototype 1.0 autosamplers inside the karst 

caves in Vietnam and in spite of maximising the fail-safety of the autosampler by minimising its 

technical complexity, both in terms of hardware and software (Section 2.1), the Prototype 1.0 

autosampler installed in Ma Le 2 cave failed. Although the finals tests of the autosampler before 

installing it inside the cave were successful and although the autosampler showed no signs of 

error with the nozzles of the drip divider successfully piercing the septa of the sample flasks at 

the beginning of the sampling cycle (Figure 2.9, right), the autosampler seems to have ceased 

operation entirely, moving neither the Z-arm, nor the sample rack. Even after thorough error 

diagnosis, the reasons for this malfunction are unknown, however, the most likely cause is a 

failure of the electronics as a result of the high relative humidity of about 100%, as the battery 

was confirmed to be charged sufficiently when checked on the next field trip and no mechanical 

problems were identified on close inspection of the autosampler.  

Unfortunately, the Prototype 1.0 autosampler installed in Sang Ma Sao cave was destroyed by a 

high-flow event of the cave river after intense rainfall in the cave river’s catchment area. As the 
autosampler was mounted to the cave wall at a height of ≥ 150 cm (level of the lowest point), 
the cave river must have reached a water level exceeding 150 cm during this high-flow event, 

surpassing the mean water level of only 5 cm by 145 cm (2.900 %). The force of the cave river 

tore the autosampler from the cave wall and washed it downstream over about 10 m where the 

autosampler hit the cave wall and got stuck, damaged beyond repair (Figure 2.11).  
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The failure/destruction of both Prototype 1.0 autosamplers required a new autosampler to be 

built in order to finish the technical development of a dripwater autosampler proven to function 

reliably and without fault. In addition, the results of an experiment designed to test the stable 

isotope sample vials for gastightness have shown that the custom-made sample vials are not 

suited for decreasing sample alteration through evaporation and/or gas exchange down to an 

acceptable level (Figure 2.12), as discussed in the following.  

For the gastightness experiment, ten stable isotope sample vials were filled to the brim with 

Milli-Q distilled water featuring a δD value of -57.3 ‰ (± 0.3 ‰) and a δ18O value of 8.27 ‰ (± 
0.06 ‰), sealed with the corresponding custom-made septa and stored in a wooden container 

that was screwed shut with a wooden lid. To simulate the high humidity environment of karst 

caves with active cave rivers, an air humidifier was activated at intervals of 30 min for a 

duration of 5 min over the course of the entire experiment. Using an analogue hair 

hygrometer/thermometer (TFA 45.2028) also stored inside the wooden container, RH and T 

were checked multiple times per day to be constant at 95 % and 25 °C, respectively, with 

temperature conditions representative of a low-lying tropical cave. As a control, another stable 

isotope sample vial was filled with the same Milli-Q distilled water but screwed shut with the 

original corresponding screw cap and stored inside the container as well.  

To quantify the drift in δ18O values due to evaporation and/or gas exchange over time, ten cavity 

ring-down spectroscopy (CRDS) measurements were conducted on a liquid water isotope 

analyser (LWIA-24d; Los Gatos Research) on 6 different dates between the 20th of July, 2015 

and the 22nd of February, 2016, thereby spanning an overall period of seven months (Figure 

2.12). On three of these dates, samples from multiple vials were analysed for δ18O to determine 

the scatter of the δ18O drift among samples. The sealed control (reference) was analysed for 

δ18O on five different dates between the 20th of July, 2015 and the 8th of February, 2016. The 

standards used for calibration were LGR1A, USGS 46 and USGS 48. The accuracy (<0.07 ‰) 
was tested by repeated measurements of the control standard material LGR 2C. The average 

precision of the individual measurements (n = 30) was ±0.4 ‰.  

While the δ18O values of the sealed control only vary between -8.30 ‰ and -8.16 ‰ (initial 
δ18O value = 8.27 ‰) while varying randomly rather than exhibiting a clear positive trend, the 
δ18O values of the samples stored in vials with custom-made septa steadily increase from -6.96 

‰ on the 20th of July, 2015 to between -2.71 ‰ and -2.04 ‰ on the 22nd of February, 2016, 

exhibiting a clear positive trend with an overall amplitude of 6.23 ‰ compared to the initial 
δ18O value of -8.27 ‰ (Figure 2.12). These results clearly demonstrate that the custom-made 

septa are not sealing the samples sufficiently to decrease sample alteration through evaporation 

and/or gas exchange down to an acceptable level.  
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Figure 2.12: Oxygen isotope values (δ18O) of the demineralised water inside the vials sealed with the custom-made 
septa (red circles) and of the demineralised water inside the vials sealed with a screw cap (black squares) for 
reference.  

 

 

 

 

 

 

 

 

 

 

As the two Prototype 1.0 autosamplers failed or were destroyed and as the prevention of sample 

alteration through evaporation and/or gas exchange is crucial for dripwater monitoring in 

speleothem science, a new autosampler, Prototype 2.0, was developed that would fulfil this 

requirement and that would be better protected from any damage resulting from high humidity. 

Prototype 2.0 is presented and discussed in detail in the following section.  
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3 Prototype 2.0 

3.1 Optimisation Characteristics 

There are eight characteristics Prototype 2.0 was optimised on (in order of priority):  

1. gastight sample vials 

2. space-efficiently arranged sample vials and easy-to-increase vial number 

3. protection from water/dust ingress and mechanical damage 

4. custom-built components 

5. low power consumption 

6. low cost 

7. low weight 

8. small size / reasonable dimensions 

Implementing absolutely gastight sample vials was the highest priority during design and 

development of Prototype 2.0, as the gastightness is a crucial requirement to prevent sample 

alteration through evaporation and/or gas exchange. This requirement becomes even more 

important, the longer a specific drip site is supposed to be monitored.  

In the case of Prototype 2.0, the gastightnes of the sample vials was achieved by implementing 

professional sample vials sealed with rubber septa that have been specifically designed to stay 

absolutely gastight even after the rubber septa have been pierced by a double cannula (12 mL 

soda glass Labco Exetainer® 738W vials with a thickness of the rubber septa of ≥ 3 mm), as the 
elastic rubber effectively seals the holes once the double cannula is pulled out again. However, 

using gastight sample vials for sample collection requires active sampling applying an artifical 

force, in this case the overpressure exerted by a peristaltic pump, which rendered it necessary to 

increase the technical complexity of the autosampler, both in terms of hardware and software.  

As most comparable liquid autosamplers including Prototype 1.0 feature a maximum sample 

capacity of 24 samples, achieving a higher sample capacity by arranging the sample vials 

space-efficiently and making vial number easy to increase were two other main goals of 

developing Prototype 2.0.  
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In case of Prototype 2.0, the relatively small sample vials (external ø = 15.5 mm) are arranged 

in an orthogonal matrix of lines and rows rather than in concentric circles. While the 

arrangement of sample vials in concentric circles offers the advantage that only two kinds of 

movement are required for sample collection - translation and revolution (as realised in 

Protopye 1.0) – a matrix-like sample arrangement is advantageous for maximising space-

efficiency and the possibility to increase vial number. In contrast, increasing the number of vials 

arranged in concentric circles is only possible by disproportionally increasing the sample rack 

dimensions. In its current set-up, Prototype 2.0 comprises 48 sample vials but the autosampler 

can be equipped with up to 160 sample vials at the given casing dimensions without requiring 

any modification of the current sample vial arrangement in straight rows and lines (Figure 3.5, 

top). Furthermore, in future developments, sample vials can be arranged with their external 

diameters touching each other, in alternating rows shifted by the half of the vial diameter, 

similar to the close-packing of equal spheres found in crystal structures. With such an 

optimisation of the sample vial arrangement, Protopye 2.0 could hold a total of 208 sample vials 

at its current casing dimensions Figure 3.5, bottom). The matrix-like arrangement of sample 

vials requires three movements for sample collection, three translations along all three 

directions in space (X, Y and Z).  

Protection from water/dust ingress and mechanical damage is another important 

requirement for a technical device meant for long-term monitoring such as a dripwater 

autosampler. Ingressing water would cause short-circuits that would result in a failure or 

malfunctions of the electronic components, while dust ingress would risk the mechanical 

components of the autosampler to malfunction, for instance by clogging the gears of the motors.  

To prevent Prototype 2.0 from being damaged or otherwise impaired, the more sensitive 

components such as the electronics and the motors are enclosed by protective casings. 

Furthermore, the entire unit of Prototype 2.0 is enclosed by a water-tight and airtight heavy-duty 

casing (Peli®, model 1610) including a valve for automatic pressure purge.  

Similar to Prototype 1.0, Prototype 2.0 was designed and built using multiple custom-built 

components in order to take advantage of the benefits related to custom-built components, as 

described in Section 2.1.  

For the development of Prototype 2.0, many components were custom-built by 3D-construction 

(AutoCAD, Autodesk) and 3D-printing (Ultimaker 3 Dual Extruder, Ultimaker) such as the 

“double cannula holder” (Appendix, Figure F.17), the “servo connector” connecting the Z-slide 

to the servo (Appendix, Figure F.18), the matrix-like sample rack (Appendix, Figure F.19) as 

well as the second of the two dripwater containers newly developed within the framework of 

this thesis (Figure 3.7). The “dripwater pre-collector” (Figure 3.3, left) was custom-built by 

various techniques of machining and handcraft in the Institute workshops (drilling, turning, 

sawing, filing, glueing etc.).  
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Achieving a low power consumption and therefore providing long operation times was another 

goald during designing and developing Prototype 2.0 to make it well-suited for long-term 

monitoring, similar to Protoype 1.0. However, in comparison with Protoype 1.0, Protoype 2.0 

consumes more power during hibernation mode (16.5 mA compared to 5 mA) due to the more 

complex and thus power consuming electronics necessary for controlling the peristaltic pump 

for active sampling and the additional servo compared to Prototype 1.0. At its current setup, 

Prototype 2.0 can operate autonomously for about 100 days at a 2-day sampling interval, 

collecting its full capacity of 48 samples with a volume of 12 mL.  

Another important aspect of Prototype 2.0 is its low cost, with the cost for all the materials, 

excluding labour, amounting to about 1.100 €. The relatively low cost of the autosampler allows 
to spend the remaining funds on other assets such as additional equipment or chemical analyses 

and/or makes it affordable to build/buy multiple autosamplers which increases the range of 

scientific opportunities.  

The relatively low weight of Prototype 2.0 of about 13 kg (+ 5.8 kg battery) makes it easy 

and/or cost-effective to transport, even via air, similar to Prototype 1.0. It also makes it possible 

to install the autosampler in karst caves at the desired drip sites to which heavy items are mostly 

very difficult, if not practically impossible, to transport. The same applies to the reasonable 

dimensions of Prototype 1.0 (width = 530 mm; length = 675 mm; height: 310 mm).  
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Figure 3.1: Hardware design of the Prototype 2.0 autosampler (top view, schematical). Water samples are pumped 
directly into vials that are permanently kept gastight by rubber septa. The shown set-up comprises 48 sample vials but 
the autosampler can be equipped with up to 160 or even 208 sample vials at the given casing dimensions (Figure 3.5). 

3.2 Autosampler Set-up and Design 

3.2.1 Hardware Design and Sampling Process 

The main components of Prototype 2.0 (published as "GUARD" by Hartmann et al., 2018) 

comprise a “pre-collector”, an intake hose, a peristaltic pump, a mobile injection system and a 

sample vial holder (Figure 3.1). A detailed description of the autosampler’s integral components 
is given in Table 3.1. To prevent any sample alteration resulting from contamination, 

evaporation, condensation and/or gas exchange during sample storage, the dripwater samples 

(12 mL) are injected into gastight vials using a peristaltic pump, at a user-defined date, time and 

interval.  

Before the beginning of the first sampling interval, the dripwater emerging from the stalactite of 

the drip site under investigation is caught by a funnel attached directly underneath the stalactite 

via the second of the two newly developed stalactite collars (Figure 3.2).  
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Figure 3.2: The second of the two newly developed stalactite collars, in this case attaching the dripwater funnel of 
Prototype 2.0 directly underneath the stalactite (= dripwater source; not shown) as a solid (left) and an X-ray (right) 
CAD model, sliced for improved visualisation.  

Figure 3.3: Left: “pre-collector” including the 3D-printed floating body (white); Right: 3D-printed floating body as a 
solid (left) and an X-ray (right) CAD model.  

Subsequently, this dripwater is piped through an FKM tube to a specifically designed pre-

collection container (“pre-collector”; Figure 3.3, left) with an internal volume of exactly 12 mL 

where the dripwater is pre-collected. This pre-collection of dripwater is necessary to prevent the 

peristaltic pump of Prototype 2.0 from running dry and taking damage as a consequence.  

During dripwater pre-collection a 3D-printed floating body (Figure 3.3, right) inside the pre-

collector rises until it seals the pre-collector once it is completely filled with dripwater. Any 

dripwater in excess of 12 mL spills over through a small hole at the top of the pre-collector.  
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Figure 3.4: Depiction of the four steps that make up the sample injection process of Prototype 2.0: (1) The double 
cannula is moved into position directly above an empty sample vial; (2) The servo moves the double cannula 
downwards until it just pierces the rubber septum of the vial and the dripwater injection by the peristaltic pump 
commences. For pressure equalisation, the air inside the vial is pressed out (purple triangle) through the pressure 
release cannula; (3) The sample vial is filled completely until several droplets flow over; (4) The double cannula is 
moved back up leaving the sample vial sealed again and is positioned above the subsequent sample vial (not shown).  

At the beginning of the first sampling interval, the 12 mL of dripwater pre-collected in the pre-

collector are sucked into the autosampler’s tubing made of flexible and chemical-resistant FKM. 

As the tubing is just long enough to accommodate precisely 12 mL (i.e. 1247 mm), the sample 

is not yet injected into the corresponding vial, but at first remains inside the tubing where it is 

already protected from gas exchange.  

At the beginning of the subsequent sampling interval, two electric motors move the sampler’s 
X- and Y-slide via toothed rubber belts until two separate end-switches are triggered that 

provide positioning calibration. Both slides are then positioned directly above the first sample 

vial (Figure 3.4, step 1). After a 2-seconds safety delay, a servo screwed to the sampler’s Z-slide 

moves the Z-slide down, until a metal double cannula attached to the front end of the FKM 

tubing just barely pierces the rubber septum which keeps the vial permanently gastight. After 

another 2-seconds safety delay, the sampler’s pump is reactivated and the collected water is 

injected into the vial through one of the cannulas (the “sample cannula”; Figure 3.4, step 2) 

while the subsequent sample is sucked into the sampler’s tubing simultaneously. As a result of 

this design, the sample injection always lags the sample collection by one interval.  

As the sample vials are gastight, an overpressure builds up inside the vials during sample 

injection. Pressure equalisation is achieved via the second of the two cannulas which are 

soldered to one another. To achieve the maximum sample volume (here: 12 mL) this “pressure 
release cannula” is located 2-3 mm above the sample cannula, and the vials are filled with an 

overflow of several droplets. This setup avoids any unwanted interaction (e.g. gas or isotope 

exchange) between the collected fluid sample and the supernatant air/gas left inside the vial.  
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Subsequent to a 10-seconds safety delay implemented to allow for complete pressure 

equalisation and sample injection (Figure 3.4, step 3), the Z-slide with the double cannula is 

moved back up to its home position and the X- and Y-slides are positioned above the next 

sample vial (Figure 3.4, step 4). After another 2-seconds safety delay, the sampler enters a 

hibernation mode to minimise power consumption until the hibernation is interrupted with the 

start of the next sampling interval. After completion of a full sampling sequence the Z-slide 

moves back up to its home position, the X-slide moves to its end position and the sampler waits 

for input from the operator.  

In the current setup of Prototype 2.0 the collected samples have a volume of 12 mL which is 

sufficient for most analyses, including isotope ratio mass spectrometry (IR-MS) and inductively 

coupled plasma mass spectrometry (ICP-MS). The pumping process takes only about 22 

seconds and, thus, the collected sample represents the water under investigation at a given 

instant (integrated over 22 seconds). As one entire sampling step takes only 41 seconds (power 

consumption: 2.1 mAh), the autosampler is capable of high-resolution fluid sampling with a 

minimum interval of one minute. This is valuable where high-frequency variations in the 

composition of the sampled fluid need to be resolved, for instance, in artificial tracer tests at the 

onset of the tracer breakthrough where samples are commonly collected at intervals as short as 

one minute (Leibundgut et al., 2009). If needed, the sample volume can be modified by 

changing the duration of the pumping step. For example, to obtain a 100 mL sample the 

pumping step would take about 3 minutes. 

Using a 12 V battery with a capacity of 40 Ah Prototype 2.0 can operate off-grid for about 100 

days without interruption at a 2-day interval (one full sampling sequence), thanks to the 

hibernation mode during which power consumption is reduced to 16.5 mA. On such long time 

spans the power consumed during the actual sampling process is practically negligible. If longer 

operation durations are necessary, multiple batteries can be connected in parallel to increase the 

total capacity. The sampler can also run on 12 V Li-ion batteries if weight is an important 

constraint. Additionally, nearly discharged batteries can be replaced with fully charged ones 

without interrupting a running sampling sequence by using an electrical bypass. Of course, 

implementing an appropriate rectifier, the autosampler can also run on mains power in which 

case runtime limitations do no longer apply.  

In its current set-up, Prototype 2.0 comprises 48 sample vials (Figure 3.1) but the autosampler 

can be equipped with up to 160 sample vials at the given casing dimensions, just by maxing out 

the x-dimension of the current sample holder Figure 3.5, top), keeping the sample vials arranged 

in straight lines and rows. Furthermore, by arranging the sample vials with minimal distance in 

between, in alternating rows shifted by the half of the vial diameter, Protopye 2.0 can hold a 

total of 208 sample vials at its current casing dimensions (Figure 3.5, bottom).  
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Figure 3.5: Prototype 2.0 with maximised sample vial number: Top: Without modifying the sample vial arrangement 
in straight lines and rows, just by maxing out the x-dimension of the sample holder, Prototype 2.0 can be equipped 
with up to 160 sample vials at the given casing dimensions; Bottom: When sample arrangement itself is optimised to 
achieve maximum vial density, Prototype 2.0 can be equipped with up to 208 sample vials at the given casing 
dimensions.  
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Figure 3.6: The automated dripwater sampler Prototype 2.0 in detail (left) and in operation (right) during a 5-day case 
study (Section 3.4) carried out in the cave “Kleine Teufelshöhle” in the Franconian Switzerland region, Germany. At 
a 4-hour interval, a total of 22 dripwater samples were automatically collected for subsequent analysis of the carbon 
isotope values (δ13CDIC) of the dissolved inorganic carbon (DIC).  

Figure 3.6 shows Prototype 2.0 in detail and in operation during a 5-day case study (Section 3.4) 

designed for Speleothem science, focusing on the carbon isotope geochemistry (δ13CDIC) of 

dripwater originating from a stalactite in a karst cave in northern Bavaria, Germany. If drip rate 

logging is required as well, it can be realised with the Stalagmate drip rate logger (Mattey & 

Collister, 2008) installed inside the second of the two newly developed dripwater containers 

(Figure 3.7), at an angle of 20° relative to the horizontal for optimal drip registration.  

This dripwater container was entirely 3D-printed. For minimising any potential sample 

alteration due to evaporation and/or gas exchange during drip rate logging, the container can be 

covered with a corresponding 3D-printed lid and multiple 3D-printed rings (Figure 3.7, top) to 

leave an opening that is just large enough for the drips to fall into the container and impinge on 

the Stalagmate drip rate logger to be registered. For increased stability, the container comprises 

a hollow socket at the bottom that can be filled with sand or other kinds of material to increase 

the weight of the dripwater container and to shift its centre of mass downwards.  
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Table 3.1: Detailed description of the autosampler’s integral components. 

COMPONENTS DESCRIPTION 

MECHANICAL  

CASING Peli®, model 1610, heavy-duty, water-tight and airtight, including a 

valve for automatic pressure purge 

Z-MOVEMENT:  

SERVO 

Reely® Standard RS-610 MG, operating voltage 6.6 V, attached to the 

Z-slide containing the double cannula via an elongated hole in the 

servo’s horn 

X-/Y- MOVEMENT:  

MOTORS 

Sanyo Denki®, bipolar hybrid stepping motors, 1 A, 24 V, 1.8°/step, 

0.265Nm, 4 wires 

PUMP Peristaltic (flexible-tube) pump, model AP-40; operating voltage 12 V,  

SAMPLE VIALS Labco Exetainer® 738W, soda glass, 12 mL, flat bottom, height (vial + 

cap) ≤ 101 mm; external ø ≤ 15.5 mm; internal ø ≥ 13.2 mm; including 

rubber septa with a thickness ≥ 3 mm 

TUBING Deutsch & Neumann®, FKM (synthetic rubber, “Viton”), Shore hard-

ness 75, external ø ≤ 6.2 mm, internal ø 4 mm 

DOUBLE CANNULA Braun Sterican®, metal, external ø 0.60 mm; length excluding Luer-

Lock connector 30 mm 
 

ELECTRONIC  

BATTERY Panasonic®, valve regulated Pb-acid battery 12 V, 20 Ah, maintenance-

free, non-spillable, low self-discharge, 5.8 kg, 76 x 167 x 181 mm;  

MICROCONTROLLER 

BOARD 

Arduino® Mega 2560 including an Atmel ATmega 2560 

microcontroller with 54 digital I/O pins, 16 analogue inputs, 6 interrupt 

inputs, 4 serial interfaces, 1 I2C interface and 4 KB EEPROM memory 

(non-volatile); hibernation mode-enabled 

REAL-TIME CLOCK RTC PCF8563 powered by a separate 3V lithium button cell battery as 

a buffer battery 

DISPLAY Liquid crystal display (LCD) with 2 lines à 16 characters 

OTHER ELECTRONIC 

COMPONENTS 

operating voltage 5 V; 3 DC/DC converters; 2 stepping motor driver 

carriers: Pololu® A4988; relay board including 2 relays; keypad com-

prising the characters 1 to 9, * and #  
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Figure 3.7: The second of the two newly developed dripwater containers implementing the Stalagmate drip rate 
logger (Mattey & Collister, 2008) installed at an angle of 20° relative to the horizontal, shown as a solid (top left) and 
an X-ray (top right) exploded CAD model as well as a solid CAD model (bottom) sliced for improved visualisation. 
This dripwater container was 3D-printed and not machined like the first of the two newly developed dripwater 
containers.  
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Figure 3.8: Flowchart illustrating the operation of Prototype 2.0 for a setup comprising 48 sample vials in total, 
arranged in lines (X direction) of 8 and columns (Y direction) of 6 vials, respectively. Once the last sample has been 
collected, the program enters an infinite loop and waits for input from the operator.  

3.2.2 Electronic and Software Design 

Most of the electronic components of Prototype 2.0 are accommodated in the control unit 

(Figure 3.1) inside an additional casing for protection. The centrepiece of the electronic design 

is the Arduino® Mega 2560 board which is based on an Atmel ATmega 2560 microcontroller. 

This microcontroller enables the autosampler to enter the hibernation mode during which power 

consumption is reduced 50-fold as compared to the power consumption during slide movement. 

It also contains a non-volatile 4 KB EEPROM memory in which the data (time and position) of 

the previous injection are saved temporarily. The interrupts of the hibernation mode at the 

beginning of each sampling interval are triggered by a real-time clock (RTC) chip that includes 

a separate 3V lithium button cell battery which ensures that the program controlling the sampler 

operation remains active, even if the main power supply may be interrupted. The program 

controlling the autosampler was constructed by Ralf Wachter (AGW) with the open-source 

software Arduino (version 1.8.3). The code is written in Java and can be uploaded to the board 

via a USB connection. A flowchart illustrating the operation of Prototype 2.0 is shown in Figure 

3.8. The electrical circuit diagram as well as a Bill of Materials are given in the Appendix 

(Figure F.20 and Table G.1, respectively).  
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3.3 Demonstration of the autosampler’s functioning 

3.3.1 X-Y-Positioning 

During and after the development of Prototype 2.0 various indoor experiments were conducted 

to test the mechanical functioning of the prototype. One important requirement in that respect is 

a precise and reliable positioning of the X- and Y-slides at the exact locations of the sample 

vials. High precision is especially important for an efficient use of the space available for the 

sample vials which are arranged in straight lines and rows as close as possible to each other. To 

achieve this high precision, all movements are executed by Computerised Numerical Control 

(CNC). The stepper motors for the slide movement in X- and Y-direction are programmed to 

turn in quarter-steps which correspond to a rotation of only 0.45 °. Consequently, the slide 

movements along the X- and Y-axis are accurate to less than 1 mm. As the pierceable area of 

the rubber septa is 7 mm in diameter, there is a more than sufficient error margin of about 350 

%. This prevents the double cannula from hitting the sample rack during the Z-slide’s 
downward movement which would cause the double cannula to deform and the respective 

sampling sequence to fail. 

3.3.2 Sample Injection 

Another important aspect of an error-free mechanical functioning is a successful sample 

injection with an optimal use of the available sample volume. To demonstrate the fulfilment of 

this prerequisite a complete sampling cycle comprising 48 tap water “samples” was run and the 
size of the air bubbles remaining in the vials after sample injection were analysed. The results of 

this test are shown in Figure 3.9: Most bubbles are 9.5 mm in diameter or less which confirms 

that the vials (internal diameter ≤ 15 mm) are filled quasi-completely during sample injection. 

Assuming the bubbles were a perfect sphere, they would make up ≤ 0.45 mL (or ≤ 4 % of the 
inner vial volume). Considering that the bubbles are in fact strongly flattened, they more like 

make up ≤ 0.22 mL (or ≤ 2 % of the inner vial volume). Therefore, any sample alteration due to 
interactions between the fluid sample and the supernatant air/gas, for instance, due to isotopic 

exchange, is negligible.  
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Figure 3.9: Top view (digitised facsimile) of the sample vials (black circles) turned upside down in order to illustrate 
the air/gas bubbles (blue circles) remaining in the vials after sample injection.  

 

 

 

 

 

 

 

3.3.3 First Field Test: Comparison of Automatic and Manual Samples & 

Long-term Sample Stability 

With respect to the quality of the samples collected by Prototype 2.0, there are two main 

prerequisites: 1) Samples need to yield identical analytical results, whether they are collected 

automatically or manually, and 2) samples need to be unaltered and stable, even in the long 

term, which is ensured by the sample vials being gastight. In order to ascertain the fulfilment of 

both of these criteria, Prototype 2.0 was applied in a first field experiment in a karst cave to 

automatically sample the water at a specific drip site over the course of 33 days at daily 

intervals. For comparison, 12 dripwater samples were collected manually. Then the oxygen 

isotopes in these water samples were analysed with cavity ring-down spectroscopy (CRDS) on a 

liquid water isotope analyser (LWIA-24d; Los Gatos Research). The standards used for 

calibration were LGR1A, USGS 46 and USGS 48. The accuracy (<0.07 ‰) was tested by 
repeated measurements of the control standard material LGR 2C. The average precision of the 

individual measurements (n = 124) was ±0.4 ‰. The isotope data are shown in Figure 3.10 and 

Figure 3.11.  

Figure 3.10 demonstrates that the oxygen isotope results from the automatically and the 

manually collected samples are in good agreement with each other, especially considering the 

respective analytical error ranges. In two cases (13th of December 2016, around 3 pm and 22nd 

of December 2016, around 4 pm), δ18O values do not seem to agree within error at first. 

However, as the manual samples had to be collected at least 15 minutes before or after the 

automatic collection in order to allow for sufficient sample volumes (due to the low drip rate at 

this specific site), this seeming mismatch can be explained with the high-frequency variability 

of the dripwater δ18O values at this drip site.  
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Figure 3.10: First field testing of Prototype 2.0: Oxygen isotope values (indicated as δ18O relative to the international 
standard V-SMOW) in dripwater samples from a specific drip site in the karst cave „Laichinger Tiefenhöhle“ in the 
Swabian Alb region, southern Germany. Samples were collected automatically (blue circles) over the course of 33 
days (December 13, 2016, to January 14, 2017) and supplemented by 12 samples collected manually (red squares) for 
comparison of both methods. Error bars represent measurement uncertainty. Blue and red horizontal lines indicate the 
overall arithmetic mean of each data set. Note the difference in scale of the x-axes of the two sub-plots. Not all of the 
33 samples were analysed for isotopic composition.  

This is best exemplified with the last two automatically collected samples in the left sub-plot in 

Figure 3.10, where δ18O values dropped from -10.05 ‰ to -10.24 ‰ within only 30 minutes. 
The sample collected manually exactly in between these two yields an intermediate δ18O value 

of -10.06 ‰ and is therefore consistent with the automatically collected samples. More 

importantly, there is no systematic discrepancy between the automatically and the manually 

collected samples, with the respective arithmetic mean δ18O values, calculated for the entire 

sampling period (both sub-plots of Figure 3.10), differing by only 0.03 ‰. The results for δD 
are similar to the δ18O results and also confirm the long-term stability of the samples (Appendix, 

Figure G.2).  

 

 

 

 

 

 

 

 

 

 

In order to demonstrate that the sample vials are completely airtight and remain so even after the 

double cannula has pierced the rubber septa during sample injection, the oxygen isotopic 

composition of nine different samples (stored in a fridge at 11.2 °C) were measured repeatedly 

over a time interval of six months. The results (Figure 3.11) confirm the long-term stability of 

the samples: If the vials were not airtight, evaporation would have led to a preferential removal 

of isotopically light water molecules from the water samples due to their higher vapour pressure 

(e.g. Hoefs, 2015) and, consequently, to an increase of the δ18O value of the remaining water 

sample over time.  
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Figure 3.11: Results of repeated δ18O measurements (circles in tones of blue) measured in the automatically collected 
samples together with the original δ18O data from Figure 3.10 (green circles) plotted against their respective label 
(“lt” stands for Laichinger Tiefenhöhle). The darker the tones of blue, the later the respective measurement was 
repeated.  

Such a positive trend is not present in the data and the results from the repeated measurements 

agree well with the initial ones. The difference in δ18O values between initial and repeated 

measurements ranges from 0.00 ‰ (lt02-05) to 0.15 ‰ (between 2nd and 3rd measurement of 

sample lt03), but averages out at -0.01 ‰ over all measurements (median also -0.01 ‰) 
indicating that there is no systematical discrepancy between initial and repeated analyses. The 

results for δD are similar to the δ18O results and also confirm the long-term stability of the 

samples (Appendix, Figure G.1).  

 

 

 

 

 

 

 

 

 

To demonstrate the effect evaporation would have had on the sample δ18O values, both 

evaporation and δ18O change were calculated for the conditions prevalent in the fridge 

(temperature 11.2 °C, relative humidity 24 %) assuming an opening of the sample vial of 5 % to 

imitate a minor lack of airtightness. The results of these calculations (Appendix, Figure G.3) 

demonstrate that even a small slit in a sample vial’s rubber septum equalling only 5 % of the 

vial’s inner cross-section leads to a substantial shift towards higher δ18O values in the residual 

water over time. After three months (90 days), for instance, δ18O values would have risen from -

10.1 ‰ by about 1.3 ‰ to -8.8 ‰. For comparison, the difference between the lowest and the 
highest δ18O value in Figure 3.11 is still below 0.3 ‰, while those data points span an even 
longer period of six months. Most importantly, there is no positive trend in the δ18O values in 

Figure 3.11 which illustrates that the sample vials are sealed properly, even after sample 

injection.  
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3.4 Case Study: High-resolution Drip Sampling for 

Speleothem Science 

The potential and usefulness of Prototype 2.0 are demonstrated in a first case study that would 

have been both too expensive and time-consuming to conduct without such an autosampler. The 

goal was 1) to prove the existence of high-frequency (daily) variability in the carbon isotope 

values (δ13C) of dissolved inorganic carbon (DIC) in cave dripwaters and 2) to quantify its 

amplitude. This variability has important implications for the reconstruction of past 

environmental changes from speleothem δ13C values as these are not only a function of the 

dripwater δ13C signal originating from the surface environment, but also of the intensity of 

degassing of excess CO2 from the dripwater (Fairchild et al., 2006). However, to date δ13CDIC 

variability has only been documented on the seasonal and annual scale (e.g. Spötl et al., 2005; 

Mattey et al., 2010) certainly also due to the lack of practical solutions for the high-frequency 

dripwater sampling in caves.  

The existence of such high-frequency variability in δ13CDIC can be postulated based on the 

knowledge that cave air CO2 concentrations can vary both strongly and quickly (e.g. Luetscher 

& Ziegler, 2012) as a response to ventilation processes (e.g. Tremaine et al., 2011): In general, 

strong ventilation of a cave system leads to an input of low CO2 ambient air which (partly) 

replaces the CO2 enriched cave air. The lowered CO2 concentration causes enhanced degassing 

of excess CO2 from the cave dripwater, which, in turn, results in increased dripwater δ13CDIC 

values, as isotopically light CO2 transits preferentially from the liquid to the gas phase (Clark & 

Fritz, 1997).  

3.4.1 Study Area 

This case study was carried out in the “Kleine Teufelshöhle” (N 49°45ƍ17Ǝ, E 11°25ƍ12Ǝ) in the 
Franconian Switzerland region in northern Bavaria, Germany. This cave is characterized by 

dynamic ventilation (forced convection). The mean annual air temperature is around 8°C and 

the air humidity is close to saturation. This site warrants conditions suitable for a demanding 

field test due to 1) the lack of an electric supply network and to 2) the high relative humidity 

which poses challenges for electrical appliances in general. Prototype 2.0 was placed at a 

location adequate for sampling the dripwater from a specific group of stalactites, at drip site 

“DS4” (Figure 3.6, right).  

3.4.2 Materials and Methods 

Dripwater sampling was conducted automatically at 4-hour intervals over a period of five days 

yielding a total of 22 samples. The stable carbon isotopic composition of the dripwater DIC was 

determined at the University of Innsbruck using continuous-flow isotope ratio mass 

spectrometry following the method described in Spötl (2005).  
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Figure 3.12: Time series of T, CO2 and δ13CDIC generated during a first case study applying Prototype 2.0 (units are 
given in the legend). Cave air CO2 concentrations and dripwater δ13CDIC values correlate negatively. Main CO2 peaks 
are highlighted with circled numbers.  

Calibration of the raw results versus the V-PDB scale is achieved using in-house calcite 

standards (subsequent to linearity correction) that have been calibrated against NBS-18, NBS-

19, CO-1 and CO-8 reference materials. The external precision calculated over 12 standards per 

run is typically ≤0.07 ‰ for δ13C.  

Cave air CO2 concentrations were logged every 30 minutes with a Vaisala GM70 hand-held unit 

equipped with a CO2 probe optimised for the 0–2000 ppmV range (GMP222; accuracy: ± 1.5 % 

of the calibration value plus 2 % of the measured value). Cave air temperature (T) and relative 

humidity (RH) were logged at 10-minute intervals with a Tinytag TGP-4500 (Gemini Loggers; 

accuracy: ± 0.5 °C at 8 °C and ± 3.0 % RH at 25 °C), while the combined drip rate of the 

stalactite cluster was logged with a Stalagmate Mark 3 (TGC-0011; Driptych) and integrated 

over 5-minute increments.  

3.4.3 Results 

Over the duration of the 5-day case study, RH was constant at 100 % and the drip rate oscillated 

between 26 and 28 drops per 5-min increment (5.2 to 5.6 drops/min). The results of the T, CO2 

and δ13CDIC analyses are summarised in Figure 3.12. Cave air CO2 concentrations range from 

520 to 1430 ppmV, with an average of 748 ppmV (n = 476) and a median of 710 ppmV, and 

δ13CDIC values range from -9.8 to -7.7 ‰, with an average of -8.8 ‰ (n = 22) and a median of -
8.9 ‰.  
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Carbon dioxide concentrations peaked three times (circled numbers in Figure 3.12), with two 

smaller peaks of 910 and 1030 ppmV at the beginning of the monitoring period being followed 

by the most prominent and broad peak of 1430 ppmV that occurred during the night from the 

2nd to the 3rd of May 2017.  

All three CO2 peaks, particularly the last one, precisely coincide with troughs in the δ13CDIC 

values, while CO2 troughs coincide with δ13CDIC peaks, which results in a distinct negative 

correlation (Spearman’s ρ = -0.88) of both geochemical signals. Temperature varies only very 

slightly, with both average and median being 8.6°C (n = 1425). Despite the low amplitude of T 

variations, T appears to correlate positively with δ13CDIC, but only weakly (Spearman’s ρ = 
0.36).  

3.4.4 Interpretation 

The dripwater analyses obtained from the Kleine Teufelshöhle at 4-hour resolution over five 

days clearly prove the presence of a high-frequency variability in the δ13CDIC, in addition to the 

already documented seasonal and interannual variability (Spötl et al., 2005; Mattey et al., 2010). 

In this case, the maximum amplitude is 2.1 ‰ – a change that is great enough to be resolved by 

state-of-the-art isotope-ratio mass spectrometers (IR-MS). While this 2.1 ‰ change occurred 
over a period of almost two days (2017-05-02 01:00 to 2017-05-03 17:00), additional variability 

is observed on even smaller time-scales. For example, the difference in δ13CDIC values between 

the first local minimum (-9.04 ‰) and the first local maximum (-8.32 ‰) came about in only 8 
hours, with an amplitude of 0.72 ‰, suggesting rapid responses to even small changes in the 
ventilation regime.  

The strong negative correlation between δ13CDIC values and CO2 concentrations is consistent 

with ventilation events that lead to decreased cave air CO2 concentrations: As high CO2 cave air 

is partly replaced by low CO2 ambient air degassing of excess CO2 from the dripwater is 

enhanced. As the process of degassing favours isotopically light CO2 molecules, the δ13CDIC 

values in the dripwater are increased during these ventilation events. This interpretation also 

seems to be confirmed by the measured T variations: Although they are very small, the positive 

albeit moderate correlation with δ13CDIC suggests that, during ventilation, part of the cave air is 

replaced by relatively warm low CO2 ambient air. During winter months, it would be replaced 

by relatively cold but still low CO2 ambient air. 

In order to characterize the changes in the dripwater δ13CDIC with respect to the cave air CO2 

concentration, the amplitude of the maxima/minima in δ13CDIC and CO2 relative to their 

respective overall mean was determined, simply by subtracting each maximum/minimum from 

the mean. This yields a total of six maximum/minimum pairs that plot very well along a linear 

regression line (Figure 3.13). According to this regression, a change in cave air CO2 

concentration of about 435 ppmV produces a change in dripwater δ13CDIC of 1 ‰ that is then 
transferred to the δ13C signal in the speleothem fed by this dripwater.  



3  Prototype 2.0 

 

312 

Figure 3.13: Relationship between cave air CO2 concentrations and dripwater δ13CDIC quantified based on the six 
maxima/minima recorded during the case study (black circles). The relationship can be fitted very well with a linear 
regression (red line).  
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4 Comparison of Autosamplers 

In comparison with Prototype 1.0, Protoype 2.0 features the following advantages:  

1. Sample vials are absolutely gastight. This prevents any sample alteration through 

contamination, evaporation or gas exchange and makes Prototype 2.0 suited for studies 

involving the investigation of stable isotope systems such as carbon and oxygen isotopy 

in rain water and dripwater, common in speleothem science.  

2. The design is more space-efficient: Prototype 2.0 can hold up to 160 sample vials 

without modification and up to 208 sample vials when sample vial density is 

maximised.  

3. The design systemically allows for easily increasing the sample vial capacity.  

4. The additional protetice casing enclosing the entire Prototype 2.0 autosampler is water-

proof and heavy-duty. Prototype 2.0 is therefore better protected from any kind of 

mechanical (rocks, debris, water) and electronic damage such as short-circuits (water, 

vapour, humidity), which makes it better suited for application in harsh (outdoor) 

conditions. Interference with the sample collection by animal activity is also prevented.  

5. The sampling interval can be customised by the operator between one minute and seven 

days. This allows for high-resolution sampling as well as long-term monitoring.  

 

Prototype 2.0 also features some disadvantages with respect to Prototype 1.0: 

1. The power consumption in hibernation mode is increased, being 16.5 mA compared to 5 

mA in the case of Protoype 1.0. During active mode, power consumption amounts to 

82.5 mA for both prototypes. Therefore, operating time is decreased to 100 days 

compared to 180 days for Protoype 1.0.  

2. The technical complexity is increased decreasing the overall fail-safety as a result of 

more complex code, the implementation of the peristaltic pump that should not run dry 

and the more complex three-movements-design compared to the two-movements-design 

of Prototype 1.0. Therefore, both assembly and service/maintenance are more complex.  

3. Construction costs are increased cost, with 1.200 € compared to 480 € 

4. Overall volume is doubled, with 0.11 m³ compared to 0.06 m³ 

5. Sample volume is slightly decreased, with 12 mL compared to 20 mL, but is still 

sufficient for most analyses and applications 
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A comparison of the major characteristics of both prototypes is shown in Table 4.1.  

 

Furthermore, it is important to compare the prototype autosamplers developed within the 

framework of this thesis with similar devices. To date, the only type of device similar to 

Prototype 2.0 already available on the market is the portable autosampler 3700C Compact 

(Teledyne ISCO, USA). While there are also other (bigger and heavier) models from Teledyne 

ISCO and similar devices offered by other companies, the 3700C Compact autosampler is 

representative of the technical state of the art. The comparison of the most relevant properties of 

these autosamplers is shown in Table 4.2 and includes other non-commercial autosamplers 

developed by members of the scientific community, such as the “OPEnSampler” (Nelke, Selker 
& Udell, 2017), the “Lisa Liquidsampler” (not published) developed by Lukas Neuhaus as well 
as the automated precipitation collector developed by Coplen et al. (2008).  

As might be expected when comparing a prototype with a market-ready product it is evident 

that the Prototype 2.0 autosampler lacks specific features that enhance the end-user comfort, 

such as rinse cycles between samples, an automatic compensation for changes in hydraulic head 

and different modes of sampling pacing. Both the Prototype 2.0 and the 3700C Compact 

autosamplers are similar in weight and size. Almost a third of the weight of Prototype 2.0 is due 

to the Pb-acid battery used in the presented setup. The battery can be transported separately 

from the autosampler or can be replaced with lighter Li-Ion batteries to reduce weight. Most 

importantly, however, the Prototype 2.0 autosampler is capable of collecting gastight samples, 

while the 3700C Compact autosampler is incapable of doing so.  

Table 4.1: Comparison of Prototype 1.0 and Prototype 2.0. 

Properties Prototype 1.0 Prototype 2.0 

sampling mode passive active 

Movements 1 translation, 1 revolution 3 translations 

gastight samples no (but covered) yes 

sample frequency 1 day or 1 week 1 min to 168 h 

estimated operating time 180 days 100 days 

maximum number of samples vials 24 (72 sub-samples) 160 / 208 

sample volume 5 mL and 20 mL ≤ 12 mL 

weight 5 kg (+5.8 kg battery) 13 kg (+5.8 kg battery) 

total outer dimensions H: 33 cm; L: 44 cm; W: 40 cm H: 31 cm; L: 67.5 cm; W: 53 cm 

total volume 0.06 m³ 0.11 m³ 

construction costs 480 € 1.200 € 
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While the other liquid autosamplers also fulfill this important requirement, Prototype 2.0 

features a considerably higher maximum number of sample vials. Thanks to a wide range of 

selectable sample frequencies and its capacity to operate for extended periods of time, the 

Prototype 2.0 autosampler is well-suited for long-term sampling projects where a large number 

of samples need to be collected.  

As liquid autosamplers available on the market such as the 3700C Compact do feature neither 

gastight samples nor high numbers of sample vials, the Prototype 2.0 autosampler is less 

competing with existing autosamplers as much as it closes a market gap in long-term 

monitoring where samples definitely need to be gastight with respect to air/gas exchange to 

prevent sample alteration. Within this sector, the Prototype 2.0 autosampler offers many 

opportunities in various applications, as outlined in Section 5.  

 



  

 

Table 4.2: Comparison of Prototype 2.0 with conventional autosamplers available on the market, represented here by the 3700C Compact from Teledyne ISCO (information retrieved 
from the manufacturer’s website: www.teledyneisco.com) as well as other non-commercial autosamplers developed by members of the scientific community.  

Properties Prototype 2.0 “3700C Compact” “OPEnSampler” “Lisa Liquidsampler” “Coplen” 

gastight samples yes no yes yes yes (covered by 
Teflon lid) 

sample frequency 1 min to 168 h 1 min to 99 h 50 min 1 min to n.a. 1 h or 24 h 30 min or n.a. 

estimated operating time (at a 2-day 
interval) 

100 days < 70 days n.a. 100 days n.a. 

maximum number of samples vials 160 / 208 24 24 48 96 

sample volume ≤ 12 mL 0.375 to 9.45 L 250 mL 20 to 60 mL 15 mL 

weight (incl. battery; excluding 
samples) 

13 kg (+5.8 kg battery) 11.3 kg ≥ 25 kg * ≥ 13 kg (case only) +  n.a. 

weight (incl. battery and samples) 18.8 to 20.7 kg (de-
pending on sample 
number) 

15.8 to 23.3 kg (depending 
on sample size and 
number) 

≥ 31 kg * ≥ 14 kg to 16 kg (case and 
samples; depending on sample 
size) + 

≥ 1.4 kg 
(samples only) 

total outer dimensions H: 31 cm; L: 67.5 cm; 
W: 53 cm; V: 0.11 m³ 

H: 70.5 cm; ø: 45 cm;  
V: 0.14 m³ 

H: 51 cm; L: 109 cm; W: 
53 cm; V: 0.29 m³ * 

H: 59 cm; L: 80 cm; W: 60 cm; 
V: 0.28 m³ + 

n.a. 

rinse cycle(s) between samples No Yes, up to three Yes n.a. No 

liquid presence detector (automatic 
compensation for changes in hydrau-
lic head) 

No Yes No No No 

different modes of sample pacing 
(e.g. time, flow) 

No Yes No No No 

* including the Pelican 80QT Elite Wheeled Cooler for better comparability 
+ including the Zarges K470 Plus 40503 case for better comparability 
n.a.: no information foun
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5 Potential Applications and Outlook 

The application Prototype 2.0 was specifically designed for are dripwater monitoring schemes 

in karst caves that are necessary especially, if not exclusively, in speleothem science (Ford & 

Williams, 2007; Fairchild & Baker, 2012). The case study presented in Section 3.4 illustrates 

well the potential of Prototype 2.0 for offering new research opportunities. As most cave sites 

are located far from researchers’ offices and are often difficult to get to, there is a great need for 
automation in dripwater monitoring studies. The autosampler’s application in high-frequency 

(short-interval) dripwater sampling will enable researchers to identify, resolve and quantify 

short-term variability in dripwater geochemistry and to better understand these complex cave 

systems – a prerequisite for reliable reconstructions of past climates and environments from 

speleothem proxies. 

In addition to studies in the field of speleothem science focussing on karst cave dripwater, 

Prototype 2.0 can be applied in various other applications where sample alteration through 

contamination, evaporation or gas exchange pose a challenge that needs to be overcome.  

One example of such an application is the investigation of the hydrological cycle based on 

isotopes in all sorts of water bodies, including rainwater. As mentioned in Section 1, for this 

purpose the IAEA supplies researchers with isotope data generated from monthly composite 

samples of rainwater collected at the ~ 1,000 GNIP stations worldwide. If these stations were 

supplemented with Prototype 2.0 autosamplers, much shorter sampling intervals would become 

possible which would enable researchers to investigate shorter-term variability in precipitation 

isotope systematics to improve the understanding of the underlying processes. To achieve this, 

sampling frequency needs to be at least high enough to resolve different precipitation events 

(“event-based” sampling). For instance, only by using such event-based data Celle-Jeanton et al. 

(2001) were able to demonstrate characteristic differences in the isotopic composition of 

rainwater in the Mediterranean coastal region of France the authors attributed to different types 

of synoptic weather systems. As the synoptic weather situation can change rather quickly, 

monthly rainwater isotope data would have most likely been of insufficient temporal resolution 

to identify this relationship between isotope composition and synoptics. Naturally, the increased 

number of samples generated by high-frequency sampling needs to be considered.  

In addition, paraffin oil would not be required to prevent evaporation and increased maintenance 

of CRDS instruments could be avoided. The Prototype 2.0 autosampler could also be applied at 

the ~ 750 stations of the Global Network for Isotopes in Rivers (GNIR), also coordinated by the 

IAEA. Especially in very remote areas, the application of Prototype 2.0 samplers would be a 

cost-effective solution to supplement GNIP and/or GNIR stations and it might even facilitate the 

installation of new stations too remote for regular manual sample collection. In order to 

overcome the potential problem of particles suspended in the auto-sampled river water clogging 
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the tubing or, in particular, the double cannula of Prototype 2.0, the implementation of a 

mechanism to pre-extract particles from the auto-sampled river water before the actual sampling 

process would represent a useful future development. This could be achieved by a combination 

of sedimentation of coarser particles inside some sort of siphon-shaped ante-chamber and of 

filtration of finer particles in a chamber comprising multiple filter stages of decreasing pore 

size.  

Due to the temporally discontinuous nature of rainfall automatic rainwater sampling requires 1) 

sample pre-collection for temporary storage of rainwater until a sufficient sample volume is 

available while minimising or even preventing evaporation and 2) a detector such as a photo 

sensor to end hibernation and trigger sample collection once a sufficient sample volume has 

been provided by rainfall. For the case studies in karst caves presented in this thesis a 

specifically designed pre-collection container (“pre-collector”) with an internal volume of 
exactly 12 mL was applied (Figure 3.3, left). During dripwater pre-collection a 3D-printed 

floating body (Figure 3.3, right) inside the pre-collector would rise until it seals the pre-collector 

once it is completely filled with dripwater. Any dripwater in excess of 12 mL spills over 

through a small hole at the top of the pre-collector. It is important to note that, at its current 

setup, the Prototype 2.0 autosampler does not comprise a sample volume detector and is 

therefore not yet suited for rainwater sampling. As automatic rainwater sampling would be 

beneficial in numerous applications, such a detector certainly represents a useful future 

extension to the current Prototype 2.0 system. 

Last but not least, thanks to its capacity of collecting samples in gastight vials, Prototype 2.0 is 

also applicable in all sorts of schemes where sample alteration is of concern. Examples are 

numerous and include cases of water being contaminated by toxic gases originating from 

anaerobic degradation of organics (e.g. CH4 and H2S) or by volatile organic compounds 

(VOCs), such as tetrachloroethene, benzene, MTBE or formaldehyde (e.g. Reemtsma and Jekel, 

2010). In scenarios where non-volatile components like cations and anions need to be 

quantified, sample alteration through evaporation can also be prevented, that would otherwise 

cause erroneously augmented concentration values (Hiscock and Bense, 2014), especially in 

long-term monitoring schemes.  

To conclude, thorough monitoring of water is important, not only in speleothem science and not 

only for scientific purposes but also to prevent adverse effects on human health and ecosystems, 

whether in the short, medium or long term. The two autosamplers developed within the 

framework of this thesis are an important contribution to achieving that goal.  
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Figure A.1: Soil at the surface above cave Ma Le 2 where soil samples BOD01 and BOD02 were taken (March 7th, 
2014). Scale length 120 cm (left) and 60 cm (right).  

Figure A.2: Soil at the surface above cave Ma Le 2 where soil sample BOD03 was taken (March 7th, 2014). Scale 
length 100 cm. 
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Figure A.3: Soil at the surface above cave Sang Ma Sao where the soil was sampled in three depths (0-10 cm, 15-20 
cm and ~ 35 cm; March 28th, 2016). The scale reaches a depth of about 25 cm. 

 

 

 

Table A.1: Additional soil samples collected in the study area for carbon isotope analyses.  

Label  Description of the sampling location 

  BOD04 Valley of river Ma Le 1; from the left-hand side (facing downhill) of an erosion gully on the left slope 
(facing downstream) of the valley; 23°16’44.0’’ N; 105°18’12.7’’ E; 1,165 masl; from about 1 m depth 

BOD05 As sample BOD04, but from the right-hand side of the erosion gully; from 15 cm depth 

BOD06 Valley of river Ma Le 1 from a cultivated field; 23°17’57.3’’ N; 105°18’37.9’’ E; 1,163 masl; from 
surface 

BOD07 From the surface above cave Tia Sang; 23°16’48.8’’ N; 105°18’20.5’’ E; 1,161 masl; from depth 
increment 0-10 cm 

BOD08 From the surface above cave Tia Sang; 23°16’44.0’’ N; 105°18’12.7’’ E; 1,165 masl; from depth 
increment 0-10 cm 

BOD09 From the surface above cave Tia Sang; 23°16’38.8’’ N; 105°18’22.1’’ E; 1,242 masl; from depth 
increment 0-10 cm 

BOD10 Valley of river Seo Ho, 23°17'23.17" N 105°18'45.67" E; 1,002 masl; from surface 

BOD11 Valley of river Seo Ho; at the upstream end of the headrace channel of the Seo Ho hydropower plant; 
23°17'23.17" N 105°18'45.67" E: 972 masl; from surface 
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Figure A.4: Plant samples from the surface above cave Ma Le 2 (from left to right and from top to bottom): PFL02 to 
PFL06; Bottom right: Pile of corn remains that are burned by the farmers at the beginning of the rainy season to 
fertilise the soils. All pictures taken during the dry season on March 7th, 2014.  
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Figure A.5: Plant samples from the surface above cave Sang Ma Sao (from left to right and from top to bottom): SMS 
PL01 to SMS PL04.; All pictures taken during the dry season on March 28th, 2016. 
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Table A.2: List of the 31 sub-areas defined for vegetation mapping at the surface above cave Ma Le 2 and 
descriptions of the vegetation cover with focus on vegetation density.  

Area  Description 

  01 high vegetation density; dominated by plant designated as sample PFL01; agricultural 
02 high vegetation density; dominated by plant designated as sample PFL02; agricultural 
03 high vegetation density; dominated by PFL01; agricultural 
04 host rock outcrop; low vegetation density; scarce and low-growing natural vegetation 
05 intermediate vegetation density (~ 40%); dominated by PFL01; agricultural 
06 host rock outcrop, but with relatively dense low-growing (~ 30 cm) natural vegetation 
07 steep slope (inclination ~ 25°); very scarce natural vegetation dominated by plant designated as sample 

PFL04; agricultural 
08 multiple agrigulural fields dominated by PFL01, partly scarce, partly dense 
09 host rock outcrop with trees / shrubs of multiple species; sample PFL03 is an example, not representative 
10 low host rock outcrop dominated by low-growing ferns and grasses, isolated shrubs 
11 slope (inclination ~ 15°) with host rock outcrop; intermediate vegetation density (~ 50%) with low-

growing (~ 30 cm) and withered vegetation 
12 high vegetation density; dominated by PFL01; agricultural 
13 very steep slope; almost no vegetation 
14 high vegetation density; dominated by PFL01; agricultural 
15 fallow fields; probably corn cultivation during rainy season; withered specimen of plant designated as 

sample SMS PL04 
16 bare soil; no vegetation 
17 high vegetation density; dominated by PFL01; agricultural 
18 bare soil; isolated grasses 
19 slope dominated by ferns (~ 90%), but also multiple species of low-growing trees and shrubs 
20 strips of trees, mostly conifers 
21 bare soil; no vegetation 
22 steep slope; intermediate vegetation density (~ 50%); dominated by plant designated as sample PFL04 (= 

SMS PL02) and SMS PL04 to similar extents 
23 slope; mostly rubble (~ 70%), vegetation (~20 %) dominated by a medium-growing herbaceous 
24 very steep slope with host rock outcrop; a couple of high grasses 
25 steep slope (inclination ~ 40%); intermediate vegetation density; dominated by PFL04 and PFL06 
26 steep slope with host rock outcrop (~ 60%); intermediate vegetation density with PFL06 (~ 10%),low-

growing grasses (~ 20%) and a mixture of various plant species (~ 10%) comprising young trees that seem 
to be cut back regularly including specimen of PFL03 

27 intermediate vegetation density; ferns and various shrubs 
28 high vegetation density; various shrubs, grasses and ferns 
29 bare soil; no vegetation 
30 intermediate vegetation density; high-growing grasses, possibly for feeding livestock 
31 slope, but similar to ML2-30 
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Figure B.1: Microstratigraphic log for stalagmite VML22 superimposed on the corresponding thin slides as  
reassembled microscopic images (crossed polars) and flatbed scans (-15 brightness, +15 contrast). The gap between 
the left and right stalagmite pieces is an inevitable result of thin slide production. Fabric types according to Frisia 
(2015): Ce = Columnar elongated; Celo = Ce with lateral overgrowth; Cm = Columnar microcrystalline; Mc = 
Mosaic calcite; M = Micrite; H = Hiatus. The log refers to the bottom edge of both images. 

B Microstratigraphic Logs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



B  Microstratigraphic Logs 

 

ii 

Figure B.2: Microstratigraphic log for stalagmite VSMS2 superimposed on the corresponding thin slides as 
reassembled microscopic images (crossed polars) and flatbed scans (-15 brightness, +15 contrast). The gaps between 
the stalagmite pieces is an inevitable result of thin slide production. Fabric types according to Frisia (2015): C = 
Columnar; Co = Columnar open; Ce = Columnar elongated; Celo = Ce with lateral overgrowth; Cm = Columnar 
microcrystalline; D = Dendritic; M = Micrite; Mc = Mosaic calcite; H = Hiatus. The log refers to the bottom edge of 
each image.  

 

 

 

 

 

 

 



 C.1  Scatter Plots Stalagmite VML22 
  

 

  i 

C Statistical Analyses 

C.1 Scatter Plots Stalagmite VML22 

 

 

 

 

 

 

 

 

Figure C.1: Scatter plots of the geochemical records of stalagmite VML22 for δ18O and δ13C plotted against Rb and 
Cd, respectively. Trace element data were averaged to correspond with the isotope data sets as described in the text. 
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Figure C.2: Scatter plots of the geochemical records of stalagmite VML22 for δ18O and δ13C plotted against Mn, P, 
Si and Al, respectively. Trace element data were averaged to correspond to the isotope data sets as described in the 
text. 
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Figure C.3: Scatter plots of the geochemical records of stalagmite VML22 for δ18O and δ13C plotted against Na, U, 
Cu and Zn, respectively. Trace element data were averaged to correspond with the isotope data sets as described in 
the text. 
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Figure C.4: Scatter plots of the geochemical records of stalagmite VML22 for Mg and Al plotted against Sr, Ba, Fe 
and Mn, respectively. Trace element data were averaged to correspond to the isotope data sets as described in the 
text. 
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Figure C.5: Scatter plots of the geochemical records of stalagmite VML22 for Mg and Al plotted against P, Si and 
Na, respectively, and against each other. Trace element data were averaged to correspond to the isotope data sets as 
described in the text. 
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Figure C.6: Scatter plots of the geochemical records of stalagmite VML22 for Mg and Al plotted against Zn, Rb and 
Cd, respectively. Trace element data were averaged to correspond to the isotope data sets as described in the text. 
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Figure C.7: Scatter plots of the geochemical records of stalagmite VML22: Sr vs. Ba, Fe vs. Na, Sr vs. P, Mn vs. Cu, 
P vs. U, Na vs. Cu, Si vs. Rb and Rb vs. Mn. Trace element data were averaged to correspond to the isotope data sets 
as described in the text. 
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Figure C.8: Scatter plot matrix of the geochemical records of stalagmite VML22 for Sr, Ba, Fe vs. Mn, P and Si (top) 
and vs. Na, U and Cu (bottom). All trace element data are given in µg/g and were averaged to correspond to the 
isotope data sets as described in the text. Linear regression lines and the respective values of adjusted R2 are indicated 
in red. 



 C.1  Scatter Plots Stalagmite VML22 
  

 

  ix 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C.9: Scatter plot matrix of the geochemical records of stalagmite VML22 for Sr, Ba, Fe, Zn, Rb and Cd. All 
trace element data are given in µg/g and were averaged to correspond to the isotope data sets as described in the text. 
Linear regression lines and the respective values of adjusted R2 are indicated in red. 
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Figure C.10: Scatter plot matrix of the geochemical records of stalagmite VML22 for Mn, P, Si vs. Na, U and Cu 
(top) and vs. Zn, Rb and Cd (bottom). All trace element data are given in µg/g and were averaged to correspond to 
the isotope data sets as described in the text. Linear regression lines and the respective values of adjusted R2 are 
indicated in red. 
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Figure C.11: Scatter plot matrix of the geochemical records of stalagmite VML22 for Zn, Rb, Cd, Na, U and Cu. All 
trace element data are given in µg/g and were averaged to correspond to the isotope data sets as described in the text. 
Linear regression lines and the respective values of adjusted R2 are indicated in red. 
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Figure C.12: Scatter plot matrix of the geochemical records of stalagmite VSMS2 attributed to Group I (δ13C, δ18O, 
Mg, Sr and Ba) during its first growth period. Stable isotope data are given as δ in ‰ relative to the V-PDB standard 
All trace element data are given in µg/g and are averaged to correspond to the isotope data sets as described in the 
text. Linear regression lines and the respective values of adjusted R2 are indicated in red. 
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Figure C.13: As Figure C.12, but for the second (top) and third (bottom) growth periods of stalagmite VSMS2. 
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Figure C.14: Scatter plot matrix of the geochemical records of stalagmite VSMS2 attributed to Group II (Fe, Mn, Si, 
Al and Ti) during its first growth period. All trace element data are given in µg/g and are averaged to correspond to 
the isotope data sets as described in the text. Linear regression lines and the respective values of adjusted R2 are 
indicated in red. 
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Figure C.15: As Figure C.12, but for the second (top) and third (bottom) growth periods of stalagmite 
VSMS2. 
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Figure C.16: Scatter plot matrix of the geochemical records of stalagmite VSMS2 attributed to Group II (Na, Cu, Zn, 
Rb and Th) during its first growth period. All trace element data are given in µg/g and are averaged to correspond to 
the isotope data sets as described in the text. Linear regression lines and the respective values of adjusted R2 are 
indicated in red. 

 

 

 

 

 

 

 

 

 

 



 C.2  Scatter Plots Stalagmite VSMS2 
  

 

  xvii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C.17: As Figure C.16, but for the second (top) and third (bottom) growth periods of stalagmite 
VSMS2. 
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Figure C.18: Scatter plots for P vs. U from stalagmite VSMS2 during its first (left) and second (right) growth period. 
All trace element data are averaged to correspond to the isotope data sets as described in the text. Linear regression 
lines and the respective values of adjusted R2 are indicated in red. 
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C.3 Frequency Analysis Stalagmite VML22 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C.19: Estimated red-noise spectra of the proxy signals from stalagmite VML22 for Mg, Sr, Ba, Al, Na and Cu. 
The numbers above peaks significant at the 95% and/or 99% confidence level indicate the respective periodicity (in 
years) of the potential cyclic behaviour represented by each peak. 
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Figure C.20: As Figure C.19, but for Fe, Si, Zn and Rb. Each spectrum is illustrated in two parts (left and right) for 
better readability. 
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Figure C.21: As Figure C.19, but for Cd (top), P and U. 
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Table C.1: Statistically significant periodicities (cycle durations) identified by frequency analysis of the proxy records 
of stalagmite VML22 for all Group I elements, including their respective maximum error range down to ±1 years. 
The most prominent periodicities are indicated in red. All values are rounded to whole numbers.  

δ18O δ13C Mg Sr Ba 

Period. 

[years] 

Error 

[years] 

Period. 

[years] 

Error 

[years] 

Period. 

[years] 

Error 

[years] 

Period. 

[years] 

Error 

[years] 

Period. 

[years] 

Error 

[years]           1345 +135 423 +11 843 +171 1264 +421 1264 +421 

192 +2 105 ±1 506 +57 562 +71 843 +171 

120 ±1 94 ±1 421 +37 421 +37 632 +92 

107 ±1 84 ±1 297 +19 316 +20 421 +37 

63  81  266 +15 241 +12 337 +24 

58  78  211 ±9 181 +7 297 +19 

53  75  153 ±5 169 ±6 253 +13 

43  69  140 ±4 140 ±4 221 +10 

41  66  108 ±2 120 ±3 181 +7 

40  64  105 ±2 110 ±2 169 ±6 
34  55  101 ±2 103 ±2 144 ±4 
33  53  94 ±2 97 ±2 123 ±3 
30  49  86 ±1 86 +2 118 ±3 

28  48  82 ±1 82 ±1 112 ±3 
  47  79 ±1 78 ±1 103 ±2 
  46  75 ±1 73 ±1 99 ±2 
  45  72 ±1 66 ±1 94 ±2 
  44  70 ±1 62 ±1 86 +2 

  42  67 ±1 59 ±1 83 ±1 
  40  65 ±1 56 ±1 80 ±1 
  39  61 ±1 51 ±1 75 ±1 
  28  54 ±1 50 ±1 71 ±1 
  27  52 ±1 49  66 ±1 
    49  46  59 ±1 
    47  45  57 ±1 
    44  43  54 ±1 
    40  42  52 ±1 
    39  40  51 ±1 
    34  39  49  
    31  37  48  
      35  46  
      32  45  
      30  44  
      28  41  
      25  40  
        39  
        37  
        36  
        35  
        34  
        33  
        32  
        30  
        29  
        28  
        27  
        26  
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Table C.2: Statistically significant periodicities (cycle durations) identified by frequency analysis of the proxy records 
of stalagmite VML22 for the remaining Group II elements, including their respective maximum error range down to 
±1 years. The most prominent periodicities are indicated in red. All values are rounded to whole numbers. 

Si Al Na Cu Zn 

Period. Error Period. Error Period. Error Period. Error Period. Error 

          1011 +253 1011 +253 1011 +253 1685 +843 1685 +843 

281 +17 632 +92 632 +92 1011 +253 506 +57 

253 +13 361 +28 389 +33 562 +71 389 +33 

211 ±9 297 +19 297 +19 389 +33 297 +19 

174 ±6 220 +10 266 +15 297 +19 253 +13 

163 +6 187 ±7 220 +10 211 ±9 220 +10 

144 ±6 174 ±6 174 ±6 174 ±6 194 +8 

130 ±3 163 ±5 126 ±3 153 ±5 149 +5 

112 ±2 153 ±5 118 ±3 137 ±4 137 ±4 
82 ±1 133 +4 90 ±2 126 ±3 126 ±3 

67 ±1 126 ±3 71 ±1 115 ±3 118 ±3 
62 ±1 112 ±2 62 ±1 103 ±2 108 ±2 
54 ±1 87 ±2 59 ±1 95 ±2 95 ±2 
52 ±1 79 ±1 52 ±1 90 ±2 90 ±2 
50 ±1 73 ±1 50 ±1 86 +2 

-1 
 

86 +2 
-1 

 48 ±1 62 ±1   80 ±1 80 ±1 
46  59 ±1   71 ±1 72 ±1 
44  54 ±1   68 ±1 63 ±1 
43  49 ±1   67 ±1 61 ±1 
35  39    61 ±1 58 ±1 
30  35    59 ±1 56 ±1 
28  31    52 ±1 52 ±1 
27  30    50 ±1 50 ±1 
23      47  49 ±1 
20      35  45  
19      29  42  
17      25  40  
16      22  35  
14      21  31  
12        30  
10        28  
8        22  
4        21  
3        18  
        17  
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Table C.3: Statistically significant periodicities (cycle durations) identified by frequency analysis of the proxy records 
of stalagmite VML22 for Fe, Mn, P and U, including their respective maximum error range down to ±1 years. The 
most prominent periodicities are indicated in red. All values are rounded to whole numbers. 

Fe Mn P U 

Period. Error Period. Error Period. Error Period. Error 

        2528 +2528 2528 +2528 1264 +421 1264 +421 

722 +116 562 +72 632 +92 632 +92 

460 +46 389 +33 361 +28 389 +33 

297 +19 316 +20 316 +20 297 +19 

253 +13 202 +9 241 +12 241 +12 

202 +9 174 ±6 202 +9 202 +9 

163 +6 
-5 

158 ±6 174 ±6 163 +6 

140 ±4 137 ±4 163 +6 137 ±4 

123 ±3 108 ±2 137 ±4 123 ±3 
108 ±2 97 ±2 126 ±3 112 ±2 
99 ±2 70 ±1 118 ±3 108 ±2 
87 ±2 62 ±1 112 ±2 101 ±2 

82 ±1 59 ±1 108 ±2 97 ±2 

79 ±1 54 ±1 101 ±2 87 ±2 

73 ±1 52 ±1 97 ±2 83 ±2 

68 ±1 45  90 ±2 75 ±1 
64 ±1 39  87 ±2 73 ±1 

60 ±1 38  83 ±1 70 ±1 

57 ±1 35  78 ±1 66 ±1 

52 ±1   73 ±1 62 ±1 

47    67 ±1 60 ±1 

45    64 ±1 56 ±1 
39    55 ±1 52 ±1 

37    52 ±1 51 ±1 

35    47  47  
34    40  40  
32    34  39  
30      34  
26      33  
17      29  
16      28  
14      26  
13        
12        
11        
9        
5        
4        
3        
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Figure C.22: Estimated red-noise spectra of the proxy signals from stalagmite VSMS2 for Mg, Sr, Ba and Al. The 
numbers above peaks significant at the 95% and/or 99% confidence level indicate the respective periodicity (in years) 
of the potential cyclic behaviour represented by each peak. 
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Figure C.23: As Figure C.22, but for Fe, Si, Rb, Zn and Cu. 
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Figure C.24: As Figure C.22, but for Na, P and U. 

 

 

 

 

 

 

 

 

 

 

 

 

 



C  Statistical Analyses 

 

xxviii 

C.5 R Code for Averaging Trace Element Data 

Stalagmite VML22 

 

 

# removing previous outputs 

rm(list = ls()) 

# set working directory to source file location 

setwd("E:/Promotion/Proben und Daten/LA-ICP-MS Mainz/Auswerte-Dateien/Spurenelemente 

VML22") 

 

# importing data from .csv file: Trace element concentrations vs. depth 

d <- read.csv("Cd_DFT.csv", header = TRUE) 

 

# identifying the depths exceeding consecutive depth increments of 0.189 mm (spatial 

resolution of stable isotope data) 

n <- 1 

i <- 1 

dlimits <- 1 

for (n in 1:17269)  

  { 

  if (d[n,1] > i*0.189009009)  

    { 

    dlimits[n] <- n 

    depthlimits <- data.frame(dlimits) 

    i = i+1 

  } 
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} 

 

# deleting blank columns  

depthsfinal <- data.frame(depthlimits[complete.cases(depthlimits),]) 

 

# calculating the arithmetic means of the trace element concentrations for consecutive depth 

increments of 0.189 mm (spatial resolution of stable isotope data) 

n <- 1 

means <- 0 

for (n in 1:17269)  

  {  

  means[n] <- mean (d[depthsfinal[n,1]:(depthsfinal[n+1,1]-1),2], na.rm = TRUE, trim = 0) 

  meanscalc <- data.frame(means) 

} 

 

# saving output in .txt file 

write.table(meanscalc, file="trace element_averaged_new.txt", sep=" ") 
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Stalagmite VSMS2 

 

 

# set working directory to source file location 

setwd("D:/Promotion/Proben und Daten/LA-ICP-MS Mainz/Auswerte-Dateien/Spurenelemente 

VSMS2") 

 

# removing previous outputs 

rm(list = ls()) 

 

# importing data from .csv file: Trace element concentrations vs. depth 

d <- read.csv("Zn67_DFT.csv", header = TRUE) 

 

# identifying the depths exceeding consecutive depth increments of 0.199 mm (spatial 

resolution of stable isotope data) 

n <- 1 

i <- 1 

dlimits <- 1 

for (n in 1:23457)  

  { 

  if (d[n,1] > i*0.199081992031872)  

    { 

    dlimits[n] <- n 

    depthlimits <- data.frame(dlimits) 

    i = i+1 

  } 
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} 

 

# deleting blank columns  

depthsfinal <- data.frame(depthlimits[complete.cases(depthlimits),]) 

 

# calculating the arithmetic means of the trace element concentrations for consecutive depth 

increments of 0.199 mm (spatial resolution of stable isotope data) 

n <- 1 

means <- 0 

for (n in 1:23457)  

  {  

  means[n] <- mean (d[depthsfinal[n,1]:(depthsfinal[n+1,1]-1),2], na.rm = TRUE, trim = 0) 

  meanscalc <- data.frame(means) 

} 

 

# saving output in .txt file 

write.table(meanscalc, file="trace element_averaged.txt", sep=" ") 
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D.1 Stalagmite VML22 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure D.1: Overview of the most important trace elements for this study from stalagmite VML22, plotted in the depth domain. All concentrations are given in µg/g. Grey lines 
indicate the original concentrations after all corrections, black lines are 30-pt smoothed data (weighted Adjacent-Averaging), red lines are 300-pt smoothed data. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D.2: Geochemical proxy records of stalagmite VML22 attributed to Group I: δ18O, δ13C, Mg, Sr and Ba; plotted in the depth domain. Both stable isotope ratios are expressed 
in ‰ as δ values relative to the V-PDB standard, all trace element concentrations are given in µg/g and are averaged to match the resolution of the isotope data sets (Section 4.6).  



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D.3: Geochemical proxy records of stalagmite VML22 attributed to Group II: Si, Al, Na, Cu, Zn and Rb; plotted in the depth domain. All concentrations are given in µg/g. 
Grey lines indicate the original concentrations after all corrections, black lines are 30-pt smoothed data (weighted Adjacent-Averaging), red lines are 300-pt smoothed data. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure D.4: Geochemical proxy records of stalagmite VML22 attributed to Group III (P and U) including Sr for comparison and Cd for the sake of completeness, plotted in the depth 
domain. All concentrations are given in µg/g. Grey lines indicate the original concentrations after all corrections, black lines are 30-pt smoothed data (weighted Adjacent-Averaging), 
red lines are 300-pt smoothed data;  
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Figure D.5: Trace element concentrations (in µg/g) of Mg, Sr, Ba, Fe, Mn and P from stalagmite VSMS2 during its 
first growth period, plotted in the depth domain. Grey lines indicate the original concentrations after all corrections, 
black lines are 30-pt smoothed data (weighted Adjacent-Averaging), red lines are 300-pt smoothed data 
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Figure D.6: Trace element concentrations (in µg/g) of Mg, Sr, Ba, Fe, Mn and P from stalagmite VSMS2 during its 
second growth period, plotted in the depth domain. Grey lines indicate the original concentrations after all 
corrections, black lines are 30-pt smoothed data (weighted Adjacent-Averaging), red lines are 300-pt smoothed data. 
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Figure D.7: Trace element concentrations (in µg/g) of Mg, Sr, Ba, Fe, Mn and P from stalagmite VSMS2 during its 
third growth period, plotted in the depth domain. Grey lines indicate the original concentrations after all corrections, 
black lines are 30-pt smoothed data (weighted Adjacent-Averaging), red lines are 300-pt smoothed data. 
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Figure D.8: Geochemical proxy records from stalagmite VSMS2 attributed to Group I: δ18O, δ13C, Mg, Sr and Ba 
(plotted in the depth domain). Both stable isotope ratios are expressed in ‰ as δ values relative to the V-PDB 
standard, all trace element concentrations are given in µg/g and are averaged to match the resolution of the isotope 
data sets (Section 4.6). Linear regression lines are indicated in red. 
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Figure D.9: Geochemical proxy records during the first growth period of stalagmite VSMS2 attributed to Group I: 
δ18O, δ13C, Mg, Sr and Ba (plotted in the depth domain). Both stable isotope ratios are expressed in ‰ as δ values 
relative to the V-PDB standard, all trace element concentrations are given in µg/g and are averaged to match the 
resolution of the isotope data sets (OV Methods). Linear regression lines are indicated in red. 

Figure D.10: Geochemical proxy records during the second growth period of stalagmite VSMS2 attributed to Group 
I: δ18O, δ13C, Mg, Sr and Ba (plotted in the depth domain). Both stable isotope ratios are expressed in ‰ as δ values 
relative to the V-PDB standard, all trace element concentrations are given in µg/g and are averaged to match the 
resolution of the isotope data sets (Section 4.6). Linear regression lines are indicated in red. 

 

 

 

 



D  Geochemical Records in the Depth Domain 

 

vi 

Figure D.11: Geochemical proxy records during the third growth period of stalagmite VSMS2 attributed to Group I: 
δ18O, δ13C, Mg, Sr and Ba (plotted in the depth domain). Both stable isotope ratios are expressed in ‰ as δ values 
relative to the V-PDB standard, all trace element concentrations are given in µg/g and are averaged to match the 
resolution of the isotope data sets (Section 4.6). Linear regression lines are indicated in red. 
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Figure D.12: Concentrations of trace elements from stalagmite VSMS2 attributed to Group II (Si, Mn, Fe, Ti and Na) 
in µg/g (plotted in the depth domain). Grey lines indicate the original concentrations after all corrections, black lines 
are 30-pt smoothed data (weighted Adjacent-Averaging), red lines are 300-pt smoothed data. 
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Figure D.13: Concentrations of trace elements during the first growth period of stalagmite VSMS2 attributed to 
Group II (Si, Mn, Fe, Ti and Na) in µg/g, plotted in the depth domain. Grey lines indicate the original concentrations 
after all corrections, black lines are 30-pt smoothed data (weighted Adjacent-Averaging), red lines are 300-pt 
smoothed data. 
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Figure D.14: Concentrations of trace elements during the second growth period of stalagmite VSMS2 attributed to 
Group II (Si, Mn, Fe, Ti and Na) in µg/g, plotted in the depth domain. Grey lines indicate the original concentrations 
after all corrections, black lines are 30-pt smoothed data (weighted Adjacent-Averaging), red lines are 300-pt 
smoothed data. 

Figure D.15: Concentrations of trace elements during the third growth period of stalagmite VSMS2 attributed to 
Group II (Si, Mn, Fe, Ti and Na) in µg/g, plotted in the depth domain. Grey lines indicate the original concentrations 
after all corrections, black lines are 30-pt smoothed data (weighted Adjacent-Averaging), red lines are 300-pt 
smoothed data. 
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Figure D.16: Concentrations of trace elements from stalagmite VSMS2 attributed to Group II (Cu, Zn, Rb, Th and 
Cd) in µg/g, plotted in the depth domain. Grey lines indicate the original concentrations after all corrections, black 
lines are 30-pt smoothed data (weighted Adjacent-Averaging), red lines are 300-pt smoothed data. 
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Figure D.17: Concentrations of trace elements during the first growth period of stalagmite VSMS2 attributed to 
Group II (Cu, Zn, Rb, Th and Cd) in µg/g, plotted in the depth domain. Grey lines indicate the original concentrations 
after all corrections, black lines are 30-pt smoothed data (weighted Adjacent-Averaging), red lines are 300-pt 
smoothed data. 
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Figure D.18: Concentrations of trace elements during the second growth period of stalagmite VSMS2 attributed to 
Group II (Cu, Zn, Rb, Th and Cd) in µg/g, plotted in the depth domain. Grey lines indicate the original concentrations 
after all corrections, black lines are 30-pt smoothed data (weighted Adjacent-Averaging), red lines are 300-pt 
smoothed data. 
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Figure D.19: Concentrations of trace elements during the third growth period of stalagmite VSMS2 attributed to 
Group II (Cu, Zn, Rb, Th and Cd) in µg/g, plotted in the depth domain. Grey lines indicate the original concentrations 
after all corrections, black lines are 30-pt smoothed data (weighted Adjacent-Averaging), red lines are 300-pt 
smoothed data. 
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Figure D.20: Concentrations of trace elements from stalagmite VSMS2 attributed to Group III (P and U) in µg/g 
including Mn for comparison, plotted in the depth domain. Grey lines indicate the original concentrations after all 
corrections, black lines are 30-pt smoothed data (weighted Adjacent-Averaging), red lines are 300-pt smoothed data. 

Figure D.21: Concentrations of trace elements during the first growth period of stalagmite VSMS2 attributed to 
Group III (P and U) in µg/g including Mn for comparison, plotted in the depth domain. Grey lines indicate the 
original concentrations after all corrections, black lines are 30-pt smoothed data (weighted Adjacent-Averaging), red 
lines are 300-pt smoothed data. 
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Figure D.22: Concentrations of trace elements during the second growth period of stalagmite VSMS2 attributed to 
Group III (P and U) in µg/g including Mn for comparison, plotted in the depth domain. Grey lines indicate the 
original concentrations after all corrections, black lines are 30-pt smoothed data (weighted Adjacent-Averaging), red 
lines are 300-pt smoothed data. 

Figure D.23: Concentrations of trace elements during the third growth period of stalagmite VSMS2 attributed to 
Group III (P and U) in µg/g including Mn for comparison, plotted in the depth domain. Grey lines indicate the 
original concentrations after all corrections, black lines are 30-pt smoothed data (weighted Adjacent-Averaging), red 
lines are 300-pt smoothed data. 
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Figure E.1: Geochemical proxy records from stalagmite VSMS2 attributed to Group I: δ18O, δ13C, Mg, Sr and Ba. 
Both stable isotope ratios are expressed in ‰ as δ values relative to the V-PDB standard, all trace element 
concentrations are given in µg/g and are averaged to match the resolution of the isotope data sets (Section 4.6). 
Linear regression lines are indicated in red. 





 E  Remaining Geochemical Records of Stalagmite VSMS2 
 

 

  ii 

Figure E.2: Concentrations of trace elements from stalagmite VSMS2 attributed to Group II (Si, Mn, Fe, Ti and Na) 
in µg/g. Grey lines indicate the original concentrations after all corrections, black lines are 30-pt smoothed data 
(weighted Adjacent-Averaging), red lines are 300-pt smoothed data. 
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Figure E.3: Concentrations of trace elements from stalagmite VSMS2 attributed to Group II (Cu, Zn, Rb, Th and Cd) 
in µg/g. Grey lines indicate the original concentrations after all corrections, black lines are 30-pt smoothed data 
(weighted Adjacent-Averaging), red lines are 300-pt smoothed data. 
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Figure E.4: Concentrations of trace elements from stalagmite VSMS2 attributed to Group III (P and U) in µg/g. Grey 
lines indicate the original concentrations after all corrections, black lines are 30-pt smoothed data (weighted 
Adjacent-Averaging), red lines are 300-pt smoothed data.  
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Figure E.5: Concentrations of trace elements during the first growth period of stalagmite VSMS2 attributed to Group 
II (Cu, Zn, Rb, Th and Cd) in µg/g. Grey lines indicate the original concentrations after all corrections, black lines are 
30-pt smoothed data (weighted Adjacent-Averaging), red lines are 300-pt smoothed data. 
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Figure E.6: Concentrations of trace elements during the second growth period of stalagmite VSMS2 attributed to 
Group II (Cu, Zn, Rb, Th and Cd) in µg/g. Grey lines indicate the original concentrations after all corrections, black 
lines are 30-pt smoothed data (weighted Adjacent-Averaging), red lines are 300-pt smoothed data. 
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Figure E.7: Concentrations of trace elements during the third growth period of stalagmite VSMS2 attributed to Group 
II (Cu, Zn, Rb, Th, Cd) in µg/g. Grey lines indicate the original concentrations after all corrections, black lines are 
30-pt smoothed data (weighted Adjacent-Averaging), red lines are 300-pt smoothed data. 
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Figure E.8: Overview of the most important trace elements for this study from stalagmite VSMS2, plotted in the 
depth domain. All concentrations are given in µg/g. Grey lines indicate the original concentrations after all 
corrections, black lines are 30-pt smoothed data (weighted Adjacent-Averaging), red lines are 300-pt smoothed data. 





 

 

Figure F.1: Prototype 1.0 prepared for transport and installation inside the caves: Transport in assembled form for 
installation inside Ma Le 2 cave (left) and in disassembled form for installation inside Sang Ma Sao cave (right). 
(Photos: A. Hartmann; 22nd and 27th of July, 2015, respectively).  

F Prototype 1.0 Autosampler 
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Figure F.2: Overview of all components of Prototype 1.0 as an X-ray CAD model, together with the newly developed 
dripwater container (left; including the Stalagmate drip rate logger) funneling the dripwater to the autosampler. The 
dripwater container is mounted on the newly developed telescope stand installed on the corresponding stalagmite 
stump (cut brown cone on the left) left after stalagmite extraction. The autosampler is mounted to the wall (brown 
cuboid on the right).  
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Figure F.3: Overview of all components of Prototype 1.0 as a solid CAD model, together with the second of the two 
newly developed stalactite collars, in this case attaching the dripwater funnel to the stalactite. The autosampler is 
mounted to the wall (brown cuboid on the right). 
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Figure F.4: Overview of all components of Prototype 1.0 as an X-ray CAD model, together with the second of the 
two newly developed stalactite collars, in this case attaching the dripwater funnel to the stalactite. The autosampler is 
mounted to the wall (brown cuboid on the right). 
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Figure F.5: The first of the two newly developed stalactite collars, as a solid (top) and an X-ray (bottom) CAD model. 
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Figure F.6: X-ray CAD models of the first of the two newly developed dripwater containers (including the 
Stalagmate drip rate logger) funneling the dripwater to the autosampler. This dripwater container can be either 
mounted on the newly developed telescope stand (left; installed on the stalagmite stump left after stalagmite 
extraction), or suspended to the newly developed stalactite collar (right).  
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Figure F.7: Visualisation of the action range (purple cylinder) of the Stalagmate drip rate logger inside the first of the 
two newly developed dripwater containers, in this case mounted on the also newly developed telescope stand 
installed on the stalagmite stump left after stalagmite extraction. The action range is 270 mm in diameter and 185 
mm in height.  
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Figure F.8: Technical drawings of an early development stage of the first of the two newly developed dripwater 
containers in top view (top) and in side view (bottom). 
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Figure F.9: Technical drawings of the first of the two newly developed dripwater containers in top view (top) and in 
side view (bottom).  
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Figure F.10: Technical drawings of the first of the two newly developed dripwater containers in side view, once 
perpendicular to the container’s main axis (to the PVC-screws; top) and once rotated by 10° round the Z-axis 
(bottom).  
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Figure F.11: Solid CAD model of the first of the two newly developed dripwater containers (including the Stalagmate 
drip rate logger) funneling the dripwater to the autosampler. This dripwater container can be either mounted on the 
newly developed telescope stand (installed on the stalagmite stump left after stalagmite extraction, or suspended to 
the newly developed stalactite collar. 
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Figure F.12: Drip divider of Prototype 1.0 (length section) as a solid CAD model. 

Figure F.13: The second of the two newly developed stalactite collars, in this case attaching the dripwater funnel of 
Prototype 1.0 directly underneath the stalactite (= dripwater source; not shown) as a solid (left) and an X-ray (right) 
CAD model.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



F  Prototype 1.0 Autosampler 
 

 

xii 

Figure F.15: 3D-printed box to enclose the main electronic part of Prototype 1.0, as a solid (left) and an X-ray (right) 
CAD model.  

Figure F.14: 3D-printed box to enclose the motor for the movements along the Z-axis of Prototype 1.0, as a solid 
(left) and an X-ray (right) CAD model. 

Figure F.16: 3D-printed plug for increasing the diameter of the water isotope sample vials and for attachment of the 
silicone septa to be pierced by the dripwater divider of Prototype 1.0, as a solid (left) and an X-ray (right) CAD 
model. 
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Figure F.17: 3D-printed double cannula holder of Prototype 2.0 for the vertical attachment of the double cannula to 
the Z-slide and the servo actuating the movement along the Z-axis via a long-hole in its servo horn, as a solid (left) 
and an X-ray (right) CAD model.  

Figure F.19: 3D-printed sample rack of Prototype 2.0 with a capacity of 160 sample vials, as a solid (left) and an X-
ray (right) CAD model. 

Figure F.18: 3D-printed servo connector of Prototype 2.0 connecting the Z-slide to the servo actuating the movement 
along the Z-axis via a long-hole in its servo horn, as a solid (left) and an X-ray (right) CAD model. 
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Figure F.20: Electrical circuit diagram of the Prototype 2.0 autosampler. 
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Table F.1: Bill of Materials for the Prototype 1.0 autosampler. Costs are given in EUR.  

Components Description quantity cost/unit cost company order no. 

Mechanical             

Motors Sparkfun NEMA 17 stepping motors, 0.33 A,  

12 V, 1.8°/step, 0.016 Nm, 2 wires 

2 13.62 27.24 EXP Tech EXP-R05-621  

Motor control 

units 

Adafruit Motor/Stepper/Servo Shield for Arduino v2 Kit 1 17.21 17.21 EXP Tech EXP-R15-151 

Sample vials 

stable isotopes 

LLG threaded vials ND24 (EPA) brown soda glass, 5 mL, 

flat ďottoŵ, height ;ǀial + ĐapͿ ч ϳϮ.ϱ ŵŵ; eǆterŶal ø ч 
15.5 mm; 30 vials of 100 in a packaging unit 

1 11.30 11.30 häberle 

shop 

6.267 125 

Sample flasks  PlastiĐ saŵple ĐoŶtaiŶers ͞Pathogefäß͟, ϮϬ ŵL, flat 
ďottoŵ,  height ;ĐoŶtaiŶer + ĐapͿ ч ϰϴ ŵŵ; eǆterŶal ø ч 
26.5 mm 

50 0.29 14.50 paracelsus 104589 

Tubing DeutsĐh & NeuŵaŶŶ®, FKM ;sǇŶthetiĐ ruďďer, ͞VitoŶ͟Ϳ, 
“hore hardŶess ϳϱ, eǆterŶal ø ч ϲ.Ϯ ŵŵ, iŶterŶal ø ϰ ŵŵ 

3 12.90 38.70 häberle 

Shop 

9.205 765 

Framework X-slot 

profiles 

X-slot profiles, type I, slot 5, Aluminium, 20 x 20 mm, 

length 500 mm 

6 1.53 9.18 Motedis 019586 

Slot nuts X-slot 

profiles 

Slot nuts, type I, slot 5, M4 thread, 14 nutsof 100 in a 

packaging unit 

1 18.00 18.00 Motedis 096214 

Screws X-slot 

profiles 

Screws, M4x8, DIN 7984, 14 nutsof 100 in a packaging 

unit 

1 12.00 12.00 Motedis 7984vzM4x8 

Brackets X-slot 

profiles 

Connecting brackets 20x40 mm, type I, slot 5, 7 brackets 

of 10 in a packaging unit 

7 6.30 6.30 Motedis 093W202N05 

HDPE slab HDPE Polytehylen slab 1000x495x6 mm 1 17.90 17.90 A+H 

Kunststoffe 

n.a. 

Threaded rod  Threaded rod, M12, length 500 mm 1 1.90 1.90 Bauhaus n.a. 

Angle joint Angle joint CS, D1 = 16 mm, D2 = M12 1 2.82 2.82 Norelem 27650-16121 

Tube connector Threaded tube connector R1/4 mm 4 mm, 8 bar, PN 8 1 0.51 0.51 Fitting 

Center 

GT 144 K 

Tube connector Threaded tube connector R1/8 4 mm, 8 bar, PN 8 1 0.35 0.35 Fitting 

Center 

GT 184 K 

Silicone for septa Silicone sheet, DIN A4, thickness 1.5 mm 2 6.50 13.00 Ebay n.a. 

Glue for septa Glue Uhu Max Repair 1 7.89 7.89 Conrad 407846 - 62 

Silicone for 

sealing 

Silicone Uhu 1 9.24 9.24 Conrad 478807 - 05 

Shaft coupling 

motors 

Shaft coupling, 4 mm on 5 mm  2 3.99 3.99 Ebay n.a. 

Z-arm Easy Tube 12 with spindle stroke 100 mm 1 49.50 49.50 Igus SET-12-AWM 

Toothed belt Toothed belt, HTD profile 3M, width 15 mm, length 843 

mm, 281 teeth 

1 8.59 8.59 Conrad 1001988 - 05 

Turn table Turn table Toolcraft, diameter 254 mm 1 4.53 4.53 Conrad 1507140 - 05 

3D-printouts PolǇlaĐtiĐ AĐid ;PLAͿ: ͞drip diǀider͟, proteĐtiǀe Đases for 
Z-motor and electronics, plugs for stable isotope sample 

vials, sample rack, etc.  

1 26.89 26.89 Conrad 1008311 - 62 

Electronic             

Battery Panasonic®, valve regulated Pb-acid battery 12 V, 20 Ah, 

maintenance-free, non-spillable, low self-discharge, 5.8 

kg, 76 x 167 x 181 mm; the sampler can also run on 12 V 

Li-ion batteries if weight is an important constraint 

1 75.03 75.03 Voelkner S167901 

Microcontroller 

board 

Arduino® Nano including an Atmel ATmega 328-P 

microcontroller with 14 digital I/O pins, 8 analogue 

inputs, 6 interrupt inputs, 1 serial interface, 1 I
2
C 

interface and 1 KB EEPROM memory (non-volatile); 

hibernation mode-enabled 

1 18.90 18.90 Conrad 1172623 - 05 

Real-time clock RTC PCF8563 powered by a separate 3V lithium button 

cell battery as a buffer battery 

1 10.91 10.91 Conrad 1195070 - 05 

Other electronic 

components: 

relay module 1 8.52 8.52 Exptech EXP-R25-187 

  drivers for stepping motors 2 7.95 15.90 Exptech EXP-R25-001 

  DC/ DC converter 12V 1 12.00 12.00 Conrad 154170-05  

  DC/ DC converter 6,5V 1 5.82 5.82 Conrad 156674-05 

  CR2032 3V lithium button cell battery as a buffer battery  1 2.26 2.26 Conrad 1086225-05 

  USB service interface FrontCom® Micro IE-FCM-USB-A 

Weidmüller  

1 20.35 20.35 Conrad 746885-05 

  Cable gland PG7 Polyamide black (RAL 9005) KSS 

EGRWW7 water-tight 

1 0.34 0.34 Conrad 533738-05  

  USB cable PC/Sampler 1 4.29 4.29 Conrad 1592198-62 

  Total ϰϳϱ.ϴϲ € 
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Figure G.1: Results of repeated δD measurements (circles in tones of blue) measured in the automatically collected 
samples together with the original δD data from Figure 3.10 (green circles) plotted against their respective label (“lt” 
stands for Laichinger Tiefenhöhle). The darker the tones of blue, the later the respective measurement was repeated.  

G Prototype 2.0 Autosampler 

The δD results (Figure G.1) also confirm the long-term stability of the samples: Again, if the 

vials were not airtight, evaporation would have led to a preferential removal of isotopically light 

water molecules from the water samples due to their higher vapour pressure (e.g. Hoefs, 2015) 

and, consequently, to an increase of the δD value of the remaining water sample over time. Such 
a positive trend is not present in the δD data and the results from the repeated measurements 

agree well with the initial ones. The difference in δD values between initial and repeated 
measurements ranges from -0.30 ‰ (lt20 and lt23) to 0.70 ‰ (lt02-05), but averages out at 0.0 

‰ over all measurements (median also 0.0 ‰) indicating that there is no systemic discrepancy 

between initial and repeated analyses.  
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To demonstrate of the effect of evaporation on the sample δ18O values, both evaporation and 

δ18O change for the conditions prevalent in the fridge in which the samples have been stored 

were calculated. Despite being set to 8 °C, the temperature in the fridge was measured to be 

11.2 °C, relative humidity was 24 % according to measurements. Based on these conditions and 

assuming an opening of the sample vial of 5 % to imitate a minor lack of airtightness, 

evaporation was calculated using a formula that has proven adequate for inactive indoor 

swimming pools that are not influenced by direct sunlight or wind (Smith, Löf and Jones, 1994) 

using a water density of 1 g cm-3: 

 

 

where /A is the evaporation rate [kg (m2 hr)-1], vw is the air velocity over the water surface [m 

s-1], Pw is the saturation vapour pressure at the water temperature [mm Hg], Pa is the saturation 

vapour pressure at the air dew point [mm Hg] and ΔHv is the latent heat of water at the pool 

temperature [kJ kg] 

Figure G.2: First field testing of the Prototype 2.0 autosampler: Hydrogen isotope values (indicated as δD relative to 
the international standard V-SMOW) in dripwater samples from a specific drip site in the karst cave „Laichinger 
Tiefenhöhle“ in the Swabian Alb region, southern Germany. Samples were collected automatically (blue circles) over 
the course of 33 days (December 13, 2016, to January 14, 2017) and supplemented by 12 samples collected manually 
(red squares) for comparison of both methods. Error bars represent measurement uncertainty. Blue and red horizontal 
lines indicate the overall arithmetic mean of each data set. Note the difference in scale of the x-axes of the two sub-
plots. Not all of the 33 samples were analysed for isotopic composition.  
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Figure G.3: Effect of evaporation on the δ18O value of the residual water in a 12 mL sample vial at a temperature of 
11.2 °C and a relative humidity of 24 %.  

The δ18O value of the residual water remaining at each given time was calculated on the basis of 

a fractionation factor α between water and vapour according to the following formula (e.g. 

Clark and Fritz, 1999): 

 

 

where Tk represents the temperature of the phase change [K] and on the following relationship 

(e.g. Hoefs, 2015): 

 

 

where Rw is the isotope ratio of the water at a given time [‰ V-SMOW], Rw0 is the initial 

isotope ratio of the water [‰ V-SMOW], and f is the fraction of the residual water [-]. The 

results of these calculations (S4) demonstrate that even a small slit in a sample vial’s rubber 
septum equalling only 5 % of the vial’s inner cross section leads to a substantial shift towards 

higher δ18O values in the residual water over time. After three months (90 days), for instance, 

δ18O values have risen from -10.1 ‰ by about 1.3 ‰ to -8.8 ‰. The difference between the 
lowest and the highest δ18O value in Figure 3.11 is still below 0.3 ‰, while those data points 
span a longer period of six months. Most importantly, there is no positive trend in the δ18O 

values in Figure 3.11 which illustrates the sample vials are sealed properly, even after sample 

injection.  
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Table G.1: Bill of Materials for the Prototype 2.0 autosampler. Costs are given in EUR 

Components Description quantity cost/unit cost company order no. 

Mechanical             

Casing Peli®, model 1610, heavy-duty, water-tight and airtight, 

including a valve for automatic pressure purge 

1 252.35 252.35 Waterproof-

Cases 

- 

Z-movement: 

servo 

Reely® Standard RS-610 MG, operating voltage 6.6 V, 

attached to the Z-slide containing the double cannula via 

aŶ eloŶgated hole iŶ the serǀo’s horŶ 

1 12.60 12.60 Conrad 

Electronic 

1365925 - 05 

X-/Y- move-

ment: motors 

Sanyo Denki®, bipolar hybrid stepping motors, 1 A, 24 V, 

1.8°/step, 0.265Nm, 4 wires 

2 38.95 77.90 RS Compo-

nents 

829-3499  

Pump Peristaltic (flexible-tube) pump, model AP-40; operating 

voltage 12 V,  

1 19.90 19.90 Gemke 

Technik  

APE40CD12V 

Sample vials Labco Exetainer® 738W, soda glass, 12 mL, flat bottom, 

height ;ǀial + ĐapͿ ч ϭϬϭ ŵŵ; eǆterŶal ø ч ϭϱ.ϱ ŵŵ; 
iŶterŶal ø ш ϭϯ.Ϯ ŵŵ; iŶĐludiŶg ruďďer septa ǁith a 
thiĐkŶess ш ϯ ŵŵ; ϰϴ ǀials of ϯϬϬ iŶ a paĐkagiŶg uŶit 

1 22.2 22.28 IVA IVA738W 

Tubing DeutsĐh & NeuŵaŶŶ®, FKM ;sǇŶthetiĐ ruďďer, ͞VitoŶ͟Ϳ, 
Shore hardness ϳϱ, eǆterŶal ø ч ϲ.Ϯ ŵŵ, iŶterŶal ø ϰ ŵŵ 

3 12.90 38.70 häberle 

Shop 

9.205 765 

Double cannula Braun Sterican®, metal, external ø 0.60 mm; length 

excluding Luer-Lock connector 30 mm 

2 3.40 6.80 häberle 

Shop 

7.079 505 

Framework for 

slide move-

ment 

Makeblock XY Printer 1 269.95 269.95 Eckstein MB90014 

Electronic             

Battery Panasonic®, valve regulated Pb-acid battery 12 V, 20 Ah, 

maintenance-free, non-spillable, low self-discharge, 5.8 kg, 

76 x 167 x 181 mm; the sampler can also run on 12 V Li-ion 

batteries if weight is an important constraint 

1 75.03 75.03 Voelkner S167901 

Microcontroller 

board 

Arduino® Mega 2560 including an Atmel ATmega 2560 

microcontroller with 54 digital I/O pins, 16 analogue 

inputs, 6 interrupt inputs, 4 serial interfaces, 1 I
2
C interface 

and 4 KB EEPROM memory (non-volatile); hibernation 

mode-enabled 

1 21.99 21.99 Conrad 1409778 - 05 

Real-time clock RTC PCF8563 powered by a separate 3V lithium button cell 

battery as a buffer battery 

1 10.91 10.91 Conrad 1195070 - 05 

Display Liquid crystal display (LCD) with 2 lines à 16 characters 1 9.87 9.87 Conrad 183045 - 05 

Other 

electronic 

relay module 1 8.52 8.52 Exptech EXP-R25-187 

  drivers for stepping motors 2 7.95 15.90 Exptech EXP-R25-001 

  casing for control panel 1 5.28 5.28 Conrad 522641-99  

  DC/ DC converter 12V 1 12.00 12.00 Conrad 154170-05  

  DC/ DC converter 5V 1 2.65 2.65 Conrad 157954-05 

  DC/ DC converter 6,5V 1 5.82 5.82 Conrad 156674-05 

  CR2032 3V lithium button cell battery as a buffer battery  1 2.26 2.26 Conrad 1086225-05 

  USB service interface FrontCom® Micro IE-FCM-USB-A 

Weidmüller  

1 20.35 20.35 Conrad 746885-05 

  Membrane keypad Matrix 1 x 12 SU709948 1 11.11 11.11 Conrad 1341283-62 

  3D print-outs (sample rack, connectors, double-canula 

adapter) 

1 15.00 15.00 - - 

  Aluminium slot profiles 20x20 mm Slot 5 (m) 1 2.94 2.94 Motedis 19586 

  Sliding nuts Slot 5 100 pieces 1 21.42 21.42 Motedis 96214 

  Screws DIN 7984 M4x10 Slot 5 100 0.12 12.00 Motedis - 

  Brackets 20x40 I-type Slot 5 10 pieces 3 7.50 22.50 Motedis 093W202N05 

  Swivel Feet. Series 10 PA; foot 40, threaded rod 5x60 4 

pieces 

4 1.00 4.00 Motedis - 

  Miniature sliding rail IGUS drylin TK-04 1 10.16 10.16 IGUS TS-04-07 

  CNC Aluminium Servo Horn 60mm for Futaba servos 25 

teeth 

1 6.90 6.90 Ebay 251439671553 

  Cable gland PG7 Polyamide black (RAL 9005) KSS EGRWW7 

water-tight 

1 0.34 0.34 Conrad 533738-05  

  zip ties different sizes 200 pieces 1 3.80 3.80 Conrad 541665-62 

  USB cable PC/Sampler 1 4.29 4.29 Conrad 1592198-62 

  Merck® silicone grease for sealing 100gr. 1 68.70 68.70 häberle 

Shop 

1.07746.0100 

  Hose fitting, straight, 4040 10 2.15 21.50 häberle 

Shop 

9.207 801 

  Total ϭ,Ϭϵϱ.ϳϮ € 


