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Abstract In this study, we examined temporal variation in topics regarding
new products by classifying words into clusters based on the co-occurrence of
words in Twitter entries. To help identify market trends, analysis of consumer
tweet data has received much attention. We collected Twitter entries about
new products based on their specific expressions of sentiment or interest. The
matrix obtained from the Twitter entries are sparse and of high dimensionality,
so we need to perform a dimensionality reduction analysis. We analyzed the
matrix using non-negative matrix factorization to reduce the dimensionality.
We also clarified temporal variation by using the weight coefficients which
show the strength of associations between entries and topics. It is important to
consider the temporal variation of these topics when detecting trending topics
by classifying words into clusters based on co-occurrence of words.
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1 Introduction

The distribution of posts on the internet has been increasing. Today uploading
habits have become part of our lifes. For example, sharing photos on social
networking sites, instant sharing with smartphones. People use texts and images
on the internet to represent their activities, interests and opinions. Despite
different demographics, posts of different users contain similar interests. It is
important to use consumers’ uploading habits on the internet for marketing
purposes. Bendle and Wang (2016) demonstrated the application of a topic
model in the business field, especially market research, from a conceptual
standpoint to solve this problem. They discussed the role and benefits of topic
model application to market research. They argued that what is revealed by
applying a topic model to user-generated content is a discussion about the
competitive structure of the market from the consumer’s perspective and the
positioning of companies, products and services. In addition, there are studies
by Liu et al (2017), and Tirunillai and Tellis (2014) with a focus on the same
points. In these researches that focused on product positioning, topic models
are applied to user-generated content to extract potential consumer-oriented
attributes in an industry, product, or brand. The extracted attributes are mainly
used for positioning companies and products. In the marketing field, this is the
mainstream research for the application of the topic model. A problem of the
analysis of unstructured consumers reviews is the revelation of topics that are
represented by the words used to express their experiences.

The purpose of this study is to detect trending topics in online word-of-mouth
data with a focus on topics related to new products. This was done by classifying
words into clusters based on their co-occurrence. We collected Twitter entries
about new products based on their specific expressions of sentiment or interest.
Twitter has been spreading in Japan. Twitter users post to represent their activities,
interests and opinions. To help identify market trends, the analysis of consumer
tweet data has received much attention. In this study, we examined temporal
variation in topics regarding new products by classifying words into clusters
based on the co-occurrence of words in Twitter entries. Personal concerns are
influenced by product strategies, such as marketing communication strategies,
and thus change over time. It is important to consider the temporal variation in
trending topics when detecting such trending topics by classifying words into
clusters based on co-occurrence of words in Twitter entries. We chose keywords
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representing various topics from Twitter entries and tracked the weekly variation
in these topics. We then classified the words extracted from Twitter data using
topic model such as non-negative matrix factorization (NMF) to reduce the
dimensionality (Lee and Seung, 2001).

2 The Data

The text data of Twitter entries regarding certain product names were searched
and collected at 5-minute intervals. We created a system for data cloning that
was programmed in Ruby. Due to changes in specifications of the system, our
Twitter API is not currently operational. However, until this change, we were
able to easily collect Twitter entries by using the R package “twitterR”. Similar
libraries are updated and released in many programming languages. We searched
for Twitter entries regarding a new brand of inexpensive, beer-like beverage
named “金のオフ” (Kin no Off), produced by Sapporo Breweries Ltd., and
we collected 4622 tweets from September 2nd, 2011 through May 18th, 2012.
This is the same data as in Nakayama (2017). Our reasons for focusing on
Twitter entries regarding new beverage products were twofold: It is a useful
means of diminishing the effect of past product strategies such as merchandising
and advertising, and we have found it particularly easy to evaluate time series
variation in personal concerns for newly released beverage products.

In this study, we looked for topics associated with new products by classifying
words into clusters based on the entry × word matrix of Twitter entries. To
detect topics more easily, we tokenized each tweet message that was written
in sentences or sets of words. However, one of the most difficult natural
language-processing problems in Japanese is tokenization. This is referred to as
the “wakachigaki” problem. In most Western languages, words are delimited
by spaces and punctuation. So, the white spaces, numbers and stopwords
can be eliminated to keep clean linguistic content if we use the tm package
of R to analyze English text.

In Japanese, words are not separated by spaces. An example is the following
sentence “私は新商品を購入した” (watashihashinshouhinwokounyuushita,
translated: “I bought a new item”) which shows no spaces or separation sym-
bols between the Japanese words. We used morphological analyses such as
tokenization, stemming, and part-of-speech tagging to separate the words. In
our study, we used the Japanese morphological analyzer ChaSen to separate
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words in passages and to distinguish all nouns, verbs, and adjectives. This pro-
cedure excludes function words such as particles and auxiliary verbs that can be
regarded as stop words. ChaSen is a fast, customizable Japanese morphological
analyzer that takes the form of a hierarchical structure. It is designed for generic
use, and can be applied to a variety of language-processing tasks – a detailed
discussion of ChaSen can be found in Kudo et al (2004).
Next, we selected keywords representative of our chosen topics. To better

understand topic characteristics, it was important to establish criteria to choose
appropriate words representing temporal variation. We performed a statistical
analysis based on the complementary similarity measure (CSM; Sawaki and
Hagita, 1996). CSM has been widely applied in the area of character recognition,
and was originally developed for the recognition of degraded machine-printed
characters. To construct appropriate word-set topics each week, we estimated
the associations within word pairs. CSM is able to measure the inclusion
relation between weeks 8 and 9 to recognize characters and identify word
trends on a weekly basis. Given the following table of data (see Table 1),
CSM is defined as follows:

CSM (Week 8, Week 9) = (03 − 12)√
(0 + 3) (1 + 2)

. (1)

Table 1: Example to demonstrate the method used to calculate CSM.

Week 8 Week 9

Frequency of the word X 0 1

Frequency of words other than X 2 3

Chi-square values have often been used to estimate the relation between two
words. The formulas for CSM and chi-square are quite similar. However, the
chi-square analysis is more likely to select words occurring with low frequency
compared to the CSMmethod when analyzing data that contain a large spread in
the occurrence frequency of words. Certain words occurred only rarely, whereas
others occurred quite frequently in the text data of Twitter entries used in this
study. Thus, the frequency of occurrence of some words was hundreds of times
larger than that of others. For this reason, we decided to use CSM in this study.
We collected the words receiving the top 10 CSM scores each week, and retained
words with a total selection frequency of eight or more. The CSM score depends
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on word frequency. Thus, it was possible for words with low total frequency of
occurrence to be selected as distinct words during a particular week, provided
that the words occurred frequently that week. We removed all entries that did
not include any of these words. The data comprised 4232 entries × 358 words.
The data showed co-occurrences among 358 words in the selected entries.

The words related to the launch of new products, the words related to a TV
commercial about new products, and the words related to purchasing or tasting
new products are extracted as feature words in a few weeks since launch. The
words related to a TV commercial about new products will not be extracted as
feature words as the GRP (Gross Rating Point) will greatly decrease in about
2 months after the launch of new products. On the other hand, the words “drink”,
“delicious”, “tasty”, “rich”, and “bitter” related to tasting the product are extracted.
. The GRP is widely used as indicator to measure of the size of an advertising
campain by a specific period. Let cumulative arrival rate of ads be R and average
freguency of ads be F. GRP is represented the following Equation 2:

' × � = �'%. (2)

The GRPs were provided by Video Research Co., Ltd. (Japan); for more details
on the GRP, see VR Digest (https://www.videor.co.jp/digestplus/tv/
2017/05/7917.html?wovn=en). Therefore, it is considered that the words
can be extracted to reflect the difference of the words appearing in each week.
For example, the words such as “Sapporo”, “Nagasaku”, “cute”, “purchase”,
“tasty”, and “new” are extracted as feature words on a launch week of the
new product. “Nagasaku” shows the name of the actress who appeared in the
“CM” (TV commercial), “cute” means the impression of the impression about
the actress by watching the TV commercial of the product, “Sapporo” is the
name of manufacturer that released the product, “Buy” and “Taste” represent
that consumer purchased or tasted the new product, and "new" indicates the
relationship with the launch of a new product. Therefore, words that reflect
consumer behavior and impressions are extracted. “Nagasaku” is the most
frequent at 307 times and “new” is the least frequent at 17 times in these words.
“Nagasaku” appeared 1221 times in all periods and this is 3% of all words. On
the other hand, “new” appeared 36 times and it is only 0.1% of the total. By
using the CSM for word extraction, it is possible to extract words that appear in
a specific period but have a low appearance frequency as feature words.

https://www.videor.co.jp/digestplus/tv/2017/05/7917.html?wovn=en
https://www.videor.co.jp/digestplus/tv/2017/05/7917.html?wovn=en
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3 The Analysis

3.1 Analysis of Topic Classification

The entry × word matrix obtained from the Twitter entries was sparse and of
high dimensionality, so it was necessary to perform a dimensionality reduction
analysis. We employed some excellent computing resources to help analyze
the highly dimensional and sparse matrices. In addition, these matrices often
contained noise, making it difficult to uncover the underlying semantic structure.
Because of these difficulties, we found it necessary to implement dimensionality
reduction. To reduce dimensionality, procedures such as Latent Semantic
Analysis (LSA) or Latent Semantic Indexing (LSI; Deerwester et al, 1990)
and Probabilistic Latent Semantic Analysis (PLSA) or Probabilistic Latent
Semantic Indexing (PLSI; e.g. Hofmann, 1999) are often applied. LSA reduces
the dimensionality of the entry × word matrix by applying a singular value
decomposition (SVD), and it then expresses the result in an intuitive and
comprehensible form. However, it can take a long time to perform LSA on a
large matrix. In PLSA, a probabilistic framework is combined with LSA. This
method uses mixture decomposition (the convex combination of aspects), which
has a well-defined probability distribution. The factors have clear probabilistic
interpretations in terms of the distribution of mixture components. We analyzed
the entry×wordmatrix using non-negativematrix factorization (NMF) to reduce
the dimensionality (Lee and Seung, 2001). Similar to principal component
analysis (PCA), NMF consists of positive coefficients in linear combination.
The computation of NMF is based on a simple iterative algorithm, which is
particularly useful for applications involving large, sparse matrices. Ding et al
(2006) have shown that both NMF and PLSI (PLSA) optimize the same objective
function, ensuring that the use of NMF and PLSI are equivalent. NMF is used
for dimensionality reduction as follows:

+= ≈ ,= × �A , A <
= · <
(= + <) (3)

The matrix + consists of non-negative data, such as that in an entry × word
matrix. The matrix, contains non-negative basis vectors and shows the strength
of associations between words and topics. The matrix � contains non-negative
coefficients and shows the strength of associations between entries and topics.
We can detect topics involving new products using the basis vector coefficients.
The results are conceptually similar to those of Principal Component Analysis
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(PCA), but the basis vectors are non-negative. Here, the original data are
represented purely through additive combinations of the basis vectors. This
characteristic of NMF, i.e., data representation based on additive combinations,
is effective because it suggests the intuitive notion of combining parts to form a
whole. NMF computation is based on this simple iterative algorithm, and it is
very efficient for applications involving large matrices.

Note that throughout this section, Japanese words will be followed by their
English translations in parentheses. We classified the words extracted from the
tweet data regarding a new brand of inexpensive, beer-like beverage named
“金のオフ?” (Kin noOff) produced by Sapporo Breweries Ltd.We implemented
NMF to reduce dimensionality using the R package “NMF” based on Lee’s
model (Lee and Seung, 2001). “Kin no Off” contains 50% less purine and
70% less carbohydrates than other inexpensive, beer-like beverages. It is
thus classified as a third-category beer, containing ingredients such as corn,
soybeans, and peas rather than malt for the purpose of price reduction. For
Japanese taxation purposes, brewed malt beverages in Japan fall into one of three
categories: beer, Happoshu, or third-category beer. Alcoholic beverages made
from malt are classified as beer if their malt content exceeds 67%. If a beverage
contains less than 67% malt content, it falls under the tax category of Happoshu.
Japanese breweries have produced even lower-taxed and non-malt brews made
from soybeans and other ingredients, which do not fall under either of these
classifications. These lower-taxed, non-malt brews, referred to by the mass media
as third-category beers, were developed to compete with Happoshu.
Lee’s model is an algorithm based on Euclidean distance that uses simple

multiplicative updates. We determined that the maximum number of topics
was 10, and the minimum as 4. In this analysis, eight topics are discussed
for interpretation purposes.
Table 2 lists the eight topics and shows the top 10 heavily weighted words

in the basis vector, . Spellings using the Roman alphabet as well as English
translations of the Japanese words are also shown in Table 3. From results such
as these, we are able to identify the one or two words that are most heavily
weighted. Each topic consists of a small, core set of words to convey intention
with short sentences. We can detect the prevalence of certain topics based on
observations of which words are most heavily weighted.
We were able to divide the eight topics into three groups. One was the

review topics, which consisted of Topics 1, 3, 7, and 8. Topic 1 was the review
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containing a link to an external website and product images, Topic 3 was the
review of purchasing behavior and information about the new product, Topic 7
was the review of the brewery’s release of the new product, and Topic 8 was the
review of experiences actually drinking the product. The second group was the
topics associated with advertising, which consisted of Topics 2, 5, and 6. Topic 2
was about advertisements on the train, Topic 5 was about TV commercials, and
Topic 6 was concerned with performers in TV commercials. The third group
consisted only of Topic 4. Topic 4 was not associated with inexpensive beer-like
beverages, and the product name used as a keyword to extract Twitter entries
that occurred in a different context.

Table 2: The eight topic results and the top 10 weighted Japanese words in the basis vectorW (reprints
of Table 3 of Nakayama (2017, p. 168); 1/3).

Japanese Roman Alphabet English Translation Weight

Topic 1

http http http 0.48
オフ ofu off 0.02
更新 koushin update 0.02
ブログ blog blog 0.02
良い yoi good 0.02
発売 hatubai release 0.01
なう nau now 0.01
ひる hiru daytime 0.01
新CM shinCM new TV commercial 0.01
新発売 shinhatubai new release 0.01

Topic 2

可愛い kawaii cute 0.28
広告 koukoku advertisement 0.21
見る miru see 0.08
良い yoi good 0.05
電車 densha train 0.05
永作 Nagasaku Nagasaku 0.04
電車内 denshanai on the train 0.03
人 hito people 0.03
ー ー ー 0.02
ω ω ω 0.02

Topic 3

ビール biiru beer 0.13
買う kau purchase 0.08
オフ ofu off 0.07

Reprinted with permission of Springer Nature, Cham (Switzerland). Nakayama (2017), Copyright 2017.
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Table 2: The eight topic results and the top 10 weighted Japanese words in the basis vectorW (reprints
of Table 3 of Nakayama (2017, p. 168); 2/3).

Japanese Roman Alphabet English Translation Weight

Topic 3

美味しい oisii delicious 0.06
プリン体 purintai purine 0.04
味 azi taste 0.04
50% 50% 50% 0.04
発泡酒 happoushu low-malt beer 0.04
上手い umai tasty 0.03
糖質70 toushitu70 carbohydrate 70 0.02

Topic 4

ＲＴ RT RT 0.21
なう nau now 0.04
ｗ w w 0.03
金 kin Friday 0.02
オフ会 ofukai alcoholic party 0.02
予定 yotei schedule 0.02
いる iru stay 0.02
下さる kudasaru do 0.02
お願い onegai please 0.02
宜しい yoroshii kind regards 0.02

Topic 5

CM CM TV commercial 0.51
見る miru see 0.06
ー ー ー 0.03

可愛い kawaii cute 0.03
出る deru perform 0.03
似る niru resemble 0.03
やる yaru do 0.02
好き suki like 0.02
パフ Pafu Puff 0.01
曲 kyoku music 0.01

Topic 6

永作 Nagasaku Nagasaku 0.56
可愛いすぎる kawaiisugiru way too cute 0.12
見える mieru appear 0.03
ポスター Posuta poster 0.02
大島優子 Oshima Yuuko Yuuko Oshima 0.02
似る niru resemble 0.02
好き suki like 0.01
車内広告 shanaikoukoku advertisement on the

train
0.01

男装 dansou dressing as a man 0.01
ひる hiru daytime 0.01

Reprinted with permission of Springer Nature, Cham (Switzerland). Nakayama (2017), Copyright 2017.
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Table 2: The eight topic results and the top 10 weighted Japanese words in the basis vectorW (reprints
of Table 3 of Nakayama (2017, p. 168); 3/3).

Japanese Roman Alphabet English Translation Weight

Topic 7

サッポロ Sapporo Sapporo 0.48
上手い umai tasty 0.02
味 azi taste 0.01
発泡酒 happoushu low-malt beer 0.01
出る deru release 0.01
金麦 Kinmugi Kinmugi 0.01
発売 hatubai release 0.01
ひる hiru daytime 0.01
良い yoi good 0.01
こだわる kodawaru pursue 0.01

Topic 8

飲む nomu drink 0.43
寝る neru sleep 0.02
見る miru see 0.02
味 azi taste 0.02
ー ー ー 0.02

美味しい oishii delicious 0.02
好き suki like 0.01
笑 wara laugh 0.01
なう nau now 0.01
いる iru stay 0.01

Reprinted with permission of Springer Nature, Cham (Switzerland). Nakayama (2017), Copyright 2017.

Topics 1, 3, 7, and 8 are all based on reviews, though in various ways. In Topic 1,
the words associated with the review containing a link to an external website
and product images are heavily weighted. The most heavily weighted word was
“http”, so it is the core word of Topic 1. Other words with comparatively large
weights, ranking within the top 10, were often found along with the core word
in tweets. Some Twitter entries were posted containing links to the external
website and in-line product images, as well as phrases such as

– “the new product ‘Kin no Off’ was released, and I updated my blog about it”,

– “the new TV commercial for the new product ‘Kin no Off’was broadcast” or

– “‘Kin no Off’ is a new release and it tastes good”.

Some users posted links to external websites, such as their own blogs or the
manufacturer’s homepage. Others added in-line product images to their tweets.
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We, therefore, believe that it would be possible to infer the topic of these tweets,
namely reviews containing a link to an external website as well as product
images, solely from the most heavily weighted words of Topic 1.

In Topic 3, the words associated with the review of purchasing behavior and
information about the new product were heavily weighted. The most heavily
weighted word was “ビール” (beer), followed by “買う” (purchase / buy). These
words are the core words of Topic 3. Other words with comparatively large
weights, ranking within the top 10, were often found along with the core words
in tweets. “Kin no Off” contains 50% less purine and 70% less carbohydrates
than other third-category beers, and is thought to be a healthier product. We
believe that these features of the new product can be inferred from the list
of heavily weighted words of Topic 3. Actual Twitter entries corresponding
to this topic include

– “I bought the third-category beer named ‘Kin no Off,’ and it features 50%
reduced purine and 70% reduced carbohydrate”,

– “the catch-phrase of the third-category beer named ‘Kin no Off’ is that it
is delicious, though the purine and carbohydrate are reduced, so we should
purchase it if its taste is as delicious as that of low-malt beer or especially
normal beer” and

– “the features of the third-category beer named ‘Kin no Off’ include are 50% re-
duced purine and 70% reduced carbohydrate, and it is as tasty as normal beer”.

To repeat, Topic 3 is reflected in tweets concerning purchasing behavior and
information about the new product.
In Topic 7, the words associated with the review of the release of the new

product from Sapporo BreweriesLtd. are heavily weighted. The most heavily
weighted word is the Brewery’s name, “サッポロ” (Sapporo), and it is the core
word of Topic 7. Other words with comparatively large weights, ranking within
the top 10,were often found alongwith the coreword in tweets. “金麦” (Kinmugi)
is a rival third-category beer. Further Twitter entries include

– “Sapporo ‘Kin no Off’ is tasty, and the taste is better than other low-malt beers,
so I think the materials to make it were selected carefully” and

– “I made a trial purchase of Sapporo ‘Kin no Off’ that had been newly released,
and its taste is good”.

To repeat, Topic 7 is associated with the release of the new product from Sapporo
BreweriesLtd. and reviews of its taste.
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In Topic 8, the words associated with reviews of drinking the product have the
heaviest weight. The most heavily weighted word is “飲む” (drink), and it is the
core word of Topic 8. Other words with comparatively large weights, ranking
within the top 10, were often found along with the core word in tweets. Some
examples of Twitter entries associated with Topic 8 include

– “I like to drink ‘Kin no Off’”, “personally, it is my very favorite taste”,

– “I will sleep well after drinking ‘Kin no Off’ because I am tired today” and

– “I drank ‘Kin no Off,’ and it was more delicious than other third-category
beers”.

To repeat, Topic 8 is associated with reviews of product consumption. Topics 2,
5, and 6 are associated with advertising. Topic 2 regards advertisements on the
train, Topic 5 is associated with a TV commercials, and Topic 6 concerns a TV
commercial performer. In Topic 2, the words associated with advertisements
on the train have the heaviest weight. The most heavily weighted word is
“可愛い” (cute), followed by “広告” (advertisement). These words are the
core words of Topic 2. Other words with comparatively large weights, ranking
within the top 10, were often found along with the core words in tweets.
Hiromi Nagasaku (永作博美), a popular Japanese actress, appeared in the
advertisements on the train. We believe that it would be possible to infer
this by observing the top words of Topic 2. In Topic 5, the words associated
with advertising have the heaviest weight. The most heavily weighted word
is “CM” (TV commercial), and it is the core word of Topic 5. Other words
with comparatively large weights, ranking within the top 10, were often found
along with the core word in tweets. The Twitter entries generally contained
positive feedback with regards to the performer in the TV commercial. The song
“Puff, the Magic Dragon” played during the TV commercial, and Twitter entries
addressing the music were also posted. We believe that the top words of Topic 5
reflect tweeters’ impressions of the performer and music in the commercial. In
Topic 6, the words associated with the performer in the advertisement are most
heavily weighted. The most heavily weighted word is “永作” (Nagasaku), the
name of the performer, followed by “可愛すぎる” (way too cute). These words
are the core words of Topic 6. Other words with comparatively large weights,
ranking within the top 10, were often found along with the core words in tweets.
In the advertisement, Nagasaku is dressed as a man. Twitter entries regarding
this topic have generally been positive, and have included phrases such as
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– “I like the TV commercial performer ‘Nagasaku’”,

– “the TV commercial performer ‘Nagasaku’ dressed as a man in the advertise-
ment is cute” or

– “theTVcommercial performer ‘Nagasaku’ resembles ‘YuukoOshima’” (a pop-
ular Japanese actress and singer).

Therefore, we believe that tweeters’ general impressions of Nagasaku in the
commercial can be inferred by observing the list of top words for Topic 6.

3.2 Analysis of Topic Transition Patterns

Personal concerns are influenced by new product strategies, such as marketing
communication strategies, and they change over time. It is important to con-
sider the temporal variation of these topics when detecting trending topics by
classifying words into clusters based on the co-occurrence of words.
On September 22nd 2011, the new brand of inexpensive, beer-like beverage

was launched, and TV commercials for the product began running that week. A
peak in Twitter entries was reached a few weeks after the product release. The
number of entries per week slowly decreased after this peak. The gross rating
point declined during the 2 months following the release, and the number of
entries also decreased. Small peaks, however, were triggered by the release of
new TV commercials. These data show how the weekly number of Twitter entries
exhibited temporal change. Thus, to understand topic characteristics, it is impor-
tant to consider temporal variation in trending topics and to establish criteria to
select appropriate words that are representative of such temporal variation.

We clarified temporal variation by using the weight coefficients � which show
the strength of associations between entries and topics. The data comprised
4232 entries × 8 topics. In order to capture the tendency of entries, we analyzed
the weight coefficients � by PCA and t-SNE (t-Distributed Stochastic Neighbor
Embedding; van der Maaten and Hinton, 2008). t-SNE is a technique for
dimensionality reduction that is particularly well suited for the visualization
of high-dimensional datasets. Contrary to PCA, t-SNE is not a mathematical
technique but a probabilistic one. t-SNE minimizes the divergence between
two distributions: A distribution that measures pairwise similarities of the
input objects and a distribution that measures pairwise similarities of the
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corresponding low-dimensional points in the embedding. Essentially, what this
means, is that it looks at the original data that is entered into the algorithm
and looks at how to best represent this data using less dimensions by matching
both distributions. Hinton and Roweis (2003) proposed a way of converting a
high-dimensional dataset into a matrix of pairwise similarities and presented a
technique for visualizing the resulting similarity data. t-SNE is efficiently able
to capture the local structure of the high-dimensional data and show global
structure such as the presence of clusters at several scales. The technique is
based on SNE (Stochastic Neighbor Embedding; Hinton and Roweis, 2003),
that is much easier to optimize, and produces significantly better visualizations
by reducing the tendency to crowd points together in the center of the map.
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Figure 1: Two-dimensional configuration of the results obtained from analysis of PCA.

To reveal the structure of entries, we analyzed the weight coefficients � by PCA
and t-SNE. Figure 1 shows the configuration obtained from analysis of PCA
and Figure 2 shows the configuration obtained from analysis of t-SNE. In these
figures, the number represents weeks, numbered from 24 to 60, where 24 was
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the first week of data collection, and 60 is the last. We collected tweets from
September 2nd, 2011 through May 18th, 2012. Each point corresponds to an
entry and the label shows the week when each entry was posted. Figure 1 was
not able to clearly show the difference between the features of entries. We could
not capture the tendency of entries from the figure. The cumulative contribution
rate is about 35% to the second principal component. PCA could not reveal the
relationship between entries.
In Figure 2, the shades of label colors indicated differences of weeks. The

lighter shade of the labels were the week immediately after the release of the
new product. The darker the shade of the label, the more time had elapsed since
the release of the new product. Figure 2 reveals that several groups of entry exist.
Some groups consist of similar shades. This shows that there were topics posted
in a specific period. The others consist of various shades. They show that there
were topics posted in multiple periods. These results were thought to be caused
by the influence of personal concerns on tweet contents of Twitter users.

Figure 2: Two-dimensional configuration of the results obtained from analysis of t-SNE.
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4 Conclusion

We detected trending topics related to a new product by classifying words into
clusters based on the co-occurrence of words in Twitter entries. We were able
to divide the eight topics into three groups: Those associated with reviews,
those associated with advertising, and those not associated with inexpensive
beer-like beverages. Each topic also consisted of a small set of core words to
convey intention with short sentences. These topics were further classified by
the characteristics of their core words. We detected trends in topics related to
new products by using the weight coefficients � which show the strength of
associations between entries and topics. We found that there are topics posted
in a specific or multiple periods. These results are thought to be caused by
the influence of personal concerns on tweet contents of Twitter users. From
the results obtained by t-SNE, it was found that time series similarity and
dissimilarity of entries existed. However, the reason why such similarity and
dissimilarity exist is not sufficiently discussed. We need to discuss this in future
study. In the analysis, expressions like “http” and “beer” got high weights.We did
not set most words as stop words, because we aimed to capture typical posting
trends on Twitter. But it might be better to consider these words as stop words,
because this text collection is about beer products. Therefore, we think it is an
important challenge to consider the setting of stop words in a future study.
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