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Abstract

The volumes of data that are collected and analyzed in all aspects of life rise steadily
and offer numerous challenges and opportunities. When analyzing large volumes of
data, two main considerations are the capability to detect relationships within the
data and the time efficiency necessary when processing the data. Large data sets
in particular often contain dependencies that are less obvious than linear or propor-
tional relationships. Such complex dependencies could be quantified and analyzed
with methods from the field of information theory. In this dissertation, we study
time-efficient methods to detect, quantify and illustrate complex dependencies. More
specifically, we consider three core problems that have applications in the analysis
of energy data. The general form of these problems as well as our solutions and
results are as follows:

One use case for dependency analysis is real-time monitoring in order to detect
abrupt changes, which could indicate faults. In other words, the task is maintaining
an up-to-date score of the intensity of a dependency for the most recent data. We
quantify this intensity with mutual information, a concept from information theory.
The state-of-the-art approach is computing the score from scratch whenever new
data becomes available using well-known estimation techniques. On the one hand,
we prove that the required time to compute these estimation results scales at least
super-linearly with the data size. In detail, the lower bound for the time complexity
of these estimates is Ω(n log n). This result also implies the lower bound Ω(log)
for the time complexity to update existing scores for individual data changes. On
the other hand, we present two fully dynamic data structures that maintain the
aforementioned mutual information scores for a set of points, i.e., the data structures
support insertion and deletion of points. We show that our data structures offer
better asymptotic runtime than the state-of-the-art, i.e., linear time complexity,
when updating a score. For one of the estimation techniques we achieve near-
optimal time complexity, i.e., O(log n log log n). Practical evaluation with synthetic
and real data validate our formal results and show that our methods are faster by
orders of magnitudes.

Another scenario are analysis tasks with dynamic conditions. For instance, one
such case are threshold queries, i.e., the question whether the intensity of a depen-
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vi ABSTRACT

dency is above or below a threshold. This threshold might for instance indicate the
difference between normal operation and a suspicious state. Such queries have dy-
namic requirements on the result quality, because errors in the score are acceptable
if they do not change whether the score is above or below the threshold. Then,
the required precision, and thus computational effort, depends on the proximity be-
tween the score and the threshold. Another example for dynamic conditions are data
streams with irregular arrival times, e.g., event-based sensors. Real-time monitoring
in this case needs so-called “anytime” algorithms, which may be interrupted at any
point in time and still yield results. Even so, result quality of anytime algorithms
improves with more time before interruption. Our solution to such dynamic condi-
tions is an iterative estimator for mutual information. Our approach yields a rough
estimate as fast as possible and improves the results in time steps with fine granular-
ity, called iterations. An important feature of our approach is that early estimates
are accompanied by statistical guarantees towards the still unknown, high precision
results. As illustration, this information can determine the probability that the
current estimate yields the wrong answer to a threshold-query in comparison to the
exact result. Our experiments with real-world data show that our iterative approach
answers threshold-queries faster than existing methods, even with a tolerated error
rate of 0%.

Finally, we consider not only the intensity of complex dependencies but also
explanations for such dependencies that are interpretable by humans. Here, the goal
is detection and illustration of relationships between a designated outcome attribute,
such as machine labels or product quality, and all other available attributes. In
contrast to classification, these explanations should summarize the relationships
within given data as detailed as possible instead of targeting more general decision
rules. Naturally, human interpretability also requires conciseness. Existing solutions
for this task are restricted to categorical attributes and binary outcomes. However,
sensor and machine data are often numerical and have multiple different outcomes.
Our contribution to this task is an approach that overcomes the those restrictions,
i.e., we also summarize numerical data with multiple outcomes. The main challenge
of this task is the vast domain size of numerical data, which results in an even higher
number of potential intervals and combinations of intervals for these attributes.
We experimentally show with real-world data that our approach offers better time
efficiency and summary quality in comparison to approaches that we adapted from
related tasks.

In summary, this dissertation provides new methods for complex dependency
analysis. We present algorithms that provide important tools in light of increasing
data volumes and complexity. Our methods can be used to analyze the dependencies
directly and serve as preprocessing step in bigger analytic frameworks to find relevant
or redundant attributes.



Deutsche Zusammenfassung

Die steigenden Mengen an Daten, die für Analysen verwendet werden, sind Quelle
zahlreicher Herausforderungen und Möglichkeiten. Zwei Kernaspekte der Anal-
yse solcher Datenmengen sind die Zeiteffizienz und die Fähigkeit, Zusammenhänge
zu erkennen. Gerade in größeren Datenbeständen ergeben sich hierbei oft Ab-
hängigkeiten, die über Proportionalitäten und Linearitäten hinausgehen. Solche
komplexen Abhängigkeiten könnten mithilfe der Shannonschen Informationstheorie
quantifiziert und damit analysiert werden. Entsprechend beschäftige ich mich in
dieser Dissertation mit zeiteffizienten Verfahren um komplexe Abhängigkeiten zu
erfassen und darzustellen. Im Speziellen betrachte ich hierbei drei grundlegende
Problemstellungen, die häufig in der Analyse von Energie-Zeitreihen wiederzufinden
sind. Die entsprechenden allgemeinen Problemstellungen sowie meine Lösungen und
Ergebnisse sind wie folgt:

Ein häufiges Szenario ist das Überwachen von Abhängigkeiten in Echtzeit, um
abrupte Änderungen und damit potenzielle Störungen zu erkennen. In allgemeiner
Form besteht das Problem darin, die aktuelle Intensität der Abhängigkeit, hier quan-
tifiziert durch Transinformation (engl. „Mutual Information“), bei Änderungen der
Daten zu bestimmen. Der bisherige Stand der Technik für dieses Problem ist eine
komplette Neuberechnung mit gängigen Schätzmethoden. Einerseits beweise ich
eine superlineare untere Schranke für die Zeitkomplexität dieser Schätzmethoden,
die ebenfalls eine untere Schranke für Aktualisierungen des Schätzwerts bei Datenän-
derung impliziert. Andererseits entwickle ich eine Datenstruktur für Punkte, die
die Transinformation der enthaltenen Punkte bestimmt und voll dynamisch ist,
d.h. Einfügen und Entfernen von Punkten unterstützt. Diese Datenstruktur hat
bessere asymptotische Laufzeit als bestehende Methoden und erreicht für eines der
Schätzverfahren nahezu optimale Zeitkomplexität für Aktualisierungen. Experi-
mente mit realen Daten belegen die formalen Ergebnisse und zeigen Beschleuni-
gungen um Größenordnungen.

Ein anderes Szenario stellen Analyseaufgaben mit dynamischen Anforderungen
dar. Hierbei sind beispielsweise Schwellenwert-Anfragen gemeint, d.h. die Frage, ob
die Intensität der Abhängigkeit über oder unter einem Schwellenwert liegt. Die dy-
namische Natur dieser Anfrage liegt darin, dass eine gewisse Unsicherheit bezüglich
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der Schätzung erlaubt ist, solange es mit statistischer Sicherheit keinen Unterschied
bezüglich des Schwellenwerts gibt. Entsprechend ist die nötige Präzision und damit
der Rechenaufwand der Schätzung abhängig davon, wie nahe der Schwellenwert
ist. Ein anderes Beispiel dynamischer Anforderungen ist die Echtzeit-Überwachung
von unregelmäßigen Datenströmen, beispielsweise von ereignisgetriebenen Sensoren.
Dieses Szenario benötigt sogenannte "Anytime"-Algorithmen, die jederzeit unter-
brochen werden können und dennoch ein Ergebnis liefern; dabei führt mehr Zeit
zu höherer Ergebnisqualität. Meine Lösung für dynamische Anforderungen ist ein
iterativer Schätzer für Transinformation. Dieser liefert nach kürzester Zeit eine
Schätzung, die in feingranularen Zeitschritten, genannt Iterationen, verbessert wer-
den kann. Die Besonderheit meiner Lösung ist dabei, dass frühzeitige Schätzungen
zusätzliche zu dem unsicheren Schätzwert auch statistische Garantien bezüglich dem
Endergebnis bieten. Hiermit ist es beispielsweise möglich, die Fehlerwahrschein-
lichkeit einer unsicheren Schätzung bezüglich einer Schwellenwert-Anfrage zu bes-
timmen. Meine Experimente mit realen Daten zeigen, dass mein iteratives Ver-
fahren Schwellenwert-Anfragen, selbst mit 0% Fehlerwahrscheinlichkeit, grundsät-
zlich schneller beantworten kann als bestehende Verfahren.

Schließlich habe ich mich neben der Intensität von komplexen Abhängigkeiten
auch mit verständlichen Erklärungen solcher komplexen Abhängigkeiten beschäftigt.
Hier ist das Ziel, die Zusammenhänge zwischen einem Klassen- oder Ergebnisat-
tribut, beispielsweise Maschinentyp oder Produktqualität, und den weiteren gemesse-
nen Attributen zu erkennen und darzustellen. Im Gegensatz zur Klassifikation geht
es dabei insbesondere um eine möglichst spezifische Zusammenfassung des Datenbe-
stands anstelle von allgemeingültigen Entscheidungsregeln. Bisherige Lösungen für
dieses Problem waren der signifikanten Beschränkung ausgesetzt, lediglich kate-
gorische Attribute und binäre Ergebnisse zu unterstützen. Sensor- und Maschi-
nendaten sind jedoch oft numerisch und haben mehrere unterschiedliche Ergeb-
nisklassen. Mein Beitrag zu diesem Problem ist ein Verfahren, das Erklärungen
auch für numerische Daten und mehrwertige Ergebnisse erstellt. Die großen Domä-
nen von numerischen Daten sowie die Kombinationsmöglichkeiten innerhalb eines
Attributs für Intervalle und zwischen unterschiedlichen Attributen sind dabei die
zu bewältigenden Herausforderungen. Mithilfe von realen Daten zeige ich experi-
mentell, dass mein Verfahren bessere Zeiteffizienz und Erklärungsqualität hat als
andere Verfahren für verwandten Probleme.

Zusammenfassend bietet diese Dissertation neue Verfahren als Werkzeug zur
Analyse von Abhängigkeiten angesichts steigender Datenmengen und Komplexität.
Die entwickelten Verfahren können dabei sowohl direkt zur Auswertung eingesetzt
werden als auch als Vorverarbeitung für weiterführende Verarbeitung und Analysen.
Beispielsweise wird die Intensität der Abhängigkeit genutzt um möglichst relevante
oder unabhängige Attribute auszuwählen.
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Chapter 1

Introduction

Collecting and processing data has become a significant aspect of personal lives
and industries alike. The quick access of information through internet search en-
gines is not only based on the vast information from web pages but also individual
person-based optimization [FG08, SG05]. Non-intrusively recording human behav-
ior through digital systems is also used to improve route planning [L+08], product
design [JLJL16] and advertisement [CH12]. Industrial machines also include more
and more sensors that are continuously monitored. This data is not only useful for
the machine producers to improve the design, but also operators of the machines.
Detailed machine information may save costs by detecting machines in bad condition
before they break and induce costly interruptions to the production [Has11].

Extracting insights from the available data is a broad task that is tackled by
countless researchers using a vast variety of techniques [MR05]. Generally speak-
ing, this knowledge discovery usually formalizes some kind of regularity or pattern
within the data such as probability distributions for individual quantities or varying
similarities between objects. While the knowledge found is usually imperfect, e.g.,
only true to certain degree or for a limited portion of the data, it remains useful for
various tasks such as predicting future data. One form of this knowledge are depen-
dencies between different measured quantities, which is particularly relevant in light
of the increasing number of monitored and recorded devices. These dependencies are
not primarily focused on the values measured, but rather on the questions whether
the values of different quantities appear to affect each other. The motivation to find
dependencies is that they show which measured quantities are linked to each other
and thus further the understanding of the underlying system producing the data.

Example 1.1. Consider the stock market, which provides an estimated value for
companies through frequent trades of small shares. Grouping companies by region
and combining their values then enables higher level perspectives, where the com-
bined value serves as index for the group. Figure 1.1a graphs the change of value
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Figure 1.1: Relative stock prices of the American S&P and the European Stoxx
index during 2018 and the beginning of 2019. (a) Development of both stock indices
over time. (b) Scatter plot of the two stock indices with each point representing one
week and a dashed line to illustrate the linear relationship.

for American companies, the “S&P 500 Index”, and European companies, the “Stoxx
Europe 600”, for 2018 and early 2019. While there are some discrepancies, both
curves exhibit similar behavior like a drop at the end of 2018 and subsequent recov-
ery. An alternative illustration of this data that neglects the exact sequence is shown
in Figure 1.1b, where each dot represents the same week for both stock index val-
ues. While not perfectly aligned, there is also a clear trend indicated: Those weeks
with comparatively high S&P Index values tend to also have Stoxx Europe values and
vice versa. This means that the data shows some dependency between the two stock
indices. After all, this observation is not overly surprising as the current economy
is strongly linked in the sense that many American companies have European com-
panies as suppliers and vice versa. At this point it is important to note, that the
dependency indicates that these indices are somewhat linked, even without any finan-
cial knowledge or explanation for the phenomenon. Similarly, if there is a significant
change in this dependency, e.g., the discrepancy between curves increases, this hints
at a change in the system producing the data such as stricter trading policies that
result in economies that are more autonomous.

The dependency shown in this example is the well-known case of linear correla-
tion, also called just correlation. In this case, there is a linear relationship between
the two attributes in the sense that the data can be roughly approximated with a
non-axis-aligned line. Depending on the sign of slope of this line or “trend”, the data
is correlated positively, cf. Figure 1.1b, or negatively, also known as anti-correlated.
This denotes whether relatively higher values in one attribute occur with relatively
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Figure 1.2: Various forms and strengths dependencies with their Pearson correlation
coefficient (CC) and mutual information (MI) score: (a) Independent, (b) Linear,
(c) Cubic, (d) Sinusoidal, (e) Split-beam, (f) Checkers, (g) Donut, (h) Diamond.

higher or relatively lower values of the other attribute. If the line is axis-aligned
or the noise of individual points overshadows the line, the data is uncorrelated. In
consequence, the more clearly data fits such a line, the stronger the correlation.

In this thesis, we consider dependencies as any data that is not statistically inde-
pendent. Thus, data without dependencies is generally also uncorrelated, the inverse
is not true. Figure 1.2 shows eight scatter plots of data with different relationships
between two attributes. Note that seven plots, i.e., all except (a), show some depen-
dency pattern while only three plots are correlated as indicated by a high Pearson
correlation coefficient [Ric06] (CC). We call dependencies complex if they are not
linear relationships , i.e., they are not identified by Pearson correlation coefficient.
While this is a straightforward definition, it is only a binary label that does not
distinguish between clearer dependencies such as Figure 1.2d and data with more
randomness such as Figure 1.2h. To this end, we use the concept of mutual informa-
tion from information theory to quantify the intensity of (complex) dependencies,
as it has the desired property of scoring zero if and only if the data is independent.
Returning to Figure 1.2, all plots except (a), which shows independent data, has a
mutual information (MI) score above zero.

Another form of complex dependencies arises by examining multiple attributes.
Relationships between more than two attributes may or may not be visible when
examining smaller attribute sets. For instance, solar power generation depends on
both the season and weather, but even without the season, there is a relationship
between weather and generated solar power. Alternatively, consider an “either-or”
scenario, which corresponds to the logical XOR operator, represented by a lamp
connected to two light switches as illustrated in Figure 1.3. If either switch is flipped,
the light is on, but if both or neither switches are flipped, the light is off. As a result,
there is no dependency when observing only one switch and the light, as one can
observe “light on” and “light off” for both position of that switch. However, there is
a ternary relationship since knowledge of both switches determines the light status



4 CHAPTER 1. INTRODUCTION

(a)

Switch 1

off

on

Switch 2

on off

light
off

light
on

light
on

light
off

(b)

Figure 1.3: (a) An exemplary room with two independent switches connected to the
same light. (b) Table showing the effect of switch positions on the light status.

and similarly the position of one switch and the light status suffice to determine
the position of the other switch. Unfortunately, there is no standardized measure
to detect or quantify such dependencies. While mutual information is a very good
measure for (complex) relationships between two attributes, it is not defined for more
attributes and so far, there is no consensus on a proper generalization. This lack of
a formal measure is one indicator of the remaining challenge to define, describe and
interpret dependencies between multiple attributes.

So far, we discussed the notion of complex dependencies on a conceptual level.
The environment for practical applications, however, is less ideal. In general, chal-
lenges arise due to measured real-world data instead of well-defined probability dis-
tributions. As a result, there is a limited number of measurements, there are errors
in the data and there is no ground truth. As illustration, 1.2b offers a much clearer
relationship than Figure 1.1b. This means that some interpretation and estima-
tion is necessary when working with complex dependencies. Mutual information is
no exception to this case: It is properly defined on probability distributions and
thus requires estimation when working with real-world data, which usually has an
unknown distribution.

Returning to the opening scenario, the implications of rising data volumes are
interesting. On the one hand, more available data allows for analysis of weaker
and more intricate dependencies. That is, the more measurements are available the
better one can distinct between dependencies and measurement error or coincides.
Thus, complex dependency analysis for real-world applications becomes more rel-
evant as it is easier to detect such dependencies. On the other hand, algorithms
that analyze complex dependencies are also non-trivial themselves and often com-
putationally expensive, e.g., their runtime scales super-linearly with the data size.
This is prohibitive for time-restrictive tasks such as real-time monitoring or data
exploration, where one considers many potential dependencies. While it would be
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possible to improve the computational burden by using only some of the available
data, one might miss the relevant dependencies due to decreasing result quality. In
consequence, it is necessary to improve the time-efficiency in a way that does not
impact the result quality for the corresponding analysis task.

In summary, methods to analyze complex dependencies require large data vol-
umes for reliable results on real data, yet the same methods are challenged by large
data volumes due to their scalability. Additionally, complex dependencies are harder
to describe and interpret, particularly when multiple attributes are involved. Re-
ducing both the computational and mental burden necessary to consider complex
dependencies when analyzing data might enable analysts to extract more knowledge
from the data available. This might enable plant managers to incorporate complex
dependencies as part of their monitoring system or help researchers to gain more
insights from an experiment.

1.1 Contributions

In this dissertation, we introduce algorithms to facilitate more widespread analysis
of complex dependencies. Our contributions include practical algorithms for depen-
dency analysis as well as formal results and algorithms for more general geometric
problems. In particular, our contributions are as follows:

Complexity of Nearest-Neighbor Based Mutual Information Estimation.
We prove a lower bound for the computational complexity of the popular nearest-
neighbor based mutual information estimation [Eva08, KSG04]. This bound proves
the asymptotic optimality of current computation algorithms and enables the deriva-
tion of lower bounds for variants of the estimation tasks. In consequence, this con-
tribution provides a point of reference for optimal efficiency.

Fully Dynamic Data Structure and Stream Processing. We present two
data structures that contain a set of data points and the corresponding mutual
information estimate. These data structures are fully dynamic by supporting inser-
tion and deletion of points with time-efficient computation of the updated mutual
information estimate. In detail, we achieve sub-linear time complexity for these up-
dates, which is only a logarithmic factor slower than the optimal time complexity.
To achieve this result, we formally proof the limited effect of appearing and disap-
pearing individual points on geometric constellations like the nearest neighbors of
other points. For real-time monitoring of dependencies within data streams, our
data structures reduce the run times by orders of magnitudes. However, the generic
nature of the data structures allows for other use cases as well.
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Iterative Estimation. We present an iterative method to estimate mutual in-
formation that provides a rough estimate almost immediately and improves this
estimate with additional computation time in small increments, called iterations.
Additionally, estimates are accompanied by statistical guarantees towards the accu-
rate, nearest-neighbor based estimate. For instance, for a rough estimate one could
determine the probability that the difference to the accurate estimate is at most 0.1
without computing the accurate estimate itself. Our iterative method enables mu-
tual information estimation as anytime algorithm where the available computation
time may be unknown beforehand. Additionally, our experiments show that our
method answers some queries, e.g., whether the mutual information score is above
or below a threshold, faster even when no errors are tolerated. To achieve these re-
sults, we establish the statistical background enabling the guarantees and present a
new lightweight algorithm for nearest-neighbor search. This nearest-neighbor search
is necessary since it is unknown beforehand how much time is available or necessary
to answer individual queries. As a result, it is necessary to minimize the overhead
and front-loaded computations in case few iterations are performed without falling
behind if many iterations are performed.

Explaining Relationships with Multiple Numerical Attributes. We build
a framework to produce human-interpretable summaries of dependencies based on
existing formalism that is limited to discrete attributes. In addition to the se-
mantically meaningful inclusion of ordinal and numerical attributes into the formal
framework, we also develop an algorithm to produce such summaries. Notably, nu-
merical attributes are not discretized as preprocessing, but rather the full domain of
values is used to produce the most informative summaries. As part of this process
we use a novel and lightweight data structure that is tailored to solve special cases
of the geometric problem “range sum query”.

1.2 Thesis Outline
The remaining chapters of this dissertation are structured as follows. In the next
chapter, Chapter 2, we briefly recapitulate relevant terms and techniques from both
information theory. Chapter 3 reviews work that is related to this dissertation. Our
contributions are then contained in the subsequent two chapters: In Chapter 4 we
present our results on the estimation of mutual information. Then, Chapter 5 shows
our work on explanation and summarization of relationships for human interpreters.
Finally, Chapter 6 summarizes our findings and illustrates the further potential both
for immediate applications and future research.



Chapter 2

Fundamentals of Information Theory

Here, we recapitulate the aspects and techniques of information theory relevant
to this dissertation. For completeness, we start with a brief historical motivation
of Shannon entropy as measure of information. Then, we introduce the concepts
of mutual information as a measure of dependence and maximum entropy models
as accurate representation of unknown distributions based on limited knowledge.
While these concepts have theoretic origins, we also recapitulate methods for good
approximations for practical use with real data.

2.1 Shannon Entropy
Claude Shannon introduced the theoretical study and formalization of information
in the context of telecommunication and signal processing[Sha48]. To study the
limitations of information transmission, a formalization of information is necessary.
Shannon defined the information of a message to relate to its probability of occurring,
as an expected message offers little insight. For instance, a daily message whether
the earth was hit by an asteroid today will almost always be negative and thus offer
no insights as this coincides with our expectations. Conversely, the very unlikely
positive message has a high information content as it strongly contrasts our previous
state of knowledge. Formally, the information content of a message x from a source
X by Shannon is

I(x) = − log(pX(x)), (2.1)

where pX(x) is the probability that X sends x. The base of the logarithm determines
the unit for the information, i.e., a binary logarithm measures information in bits
and a natural logarithm measures the information in nats. For instance, a message
with probability 0.5, like the probability of a coin toss resulting in “heads”, has an
information content of 0.693 nats or 1 bit, as it distinguishes exactly two states.
The expected information of a message from X, i.e., the weighted average, is called

7
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H(X) H(X,Y ) H(X|Y )

H(Y )H(Y |X) I(X;Y )

Source X

Receiver Y

Loss

Noise

(a)

H(X) H(Y ) H(X,Y )

H(X|Y ) H(Y |X)I(X;Y )

(b)

Figure 2.1: Illustration of the relationship between various measures of information
content in relation to the transmission-scenario (a) and as Venn-diagram (b).

the entropy H(X) of X. With X being the set of all messages X can send, this is
formally

H(X) =
∑
x∈X

− log(pX(x)) · pX(x) = −
∑
x∈X

pX(x) log(pX(x)). (2.2)

Next, consider a receiver Y that receives a message y for each message x sent
by X. In addition to the entropy H(Y ) based on pY which represents the aver-
age information received by Y , this also gives way to further interpretations when
considering both X and Y . Figure 2.1 illustrates the relationship of the following
definitions. Using conditional distributions, i.e., p(y|x) being the probability that
Y received y when X sent x, enables additional quantifications. Specifically, the
so-called conditional entropies

H(X|Y ) =
∑
y∈Y

p(y)
∑
x∈X

− log(p(x|y)) · p(x|y) and (2.3)

H(Y |X) =
∑
x∈X

p(x)
∑
y∈Y

− log(p(y|x)) · p(y|x) (2.4)

represent the loss of information and noise, respectively. The loss of information
H(X|Y ) models the information sent by X but not received by Y . The noise
H(Y |X) quantifies the information received by Y that was not sent byX. Lastly, the
joint distribution p(x, y) of messages both sent and received gives way to the total
entropy H(X, Y ) and mutual information I(X;Y ), which quantifies the information
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transmitted from X to Y . Formally, these are

H(X, Y ) = −
∑

y∈Y,x∈X

log(p(x, y)) · p(x, y) and (2.5)

I(Y ;X) = H(X)−H(X|Y ) = H(Y )−H(Y |X) (2.6)
= H(X) +H(Y )−H(X, Y ) (2.7)

=
∑

y∈Y,x∈X

p(x, y) log

(
p(x, y)

p(x) · p(y)

)
. (2.8)

Translating these definitions to our use cases in data analysis, X and Y are (sets
of) attributes and X and Y are the possible (combinations of) values. The entries
in the data set then provide an empirical estimate for the (conditional) probabilities
of the value combinations. For instance, the probability p(x|y) is the fraction of
of entries with value(s) x for attribute(s) X among all entries with value(s) y for
attribute(s) Y . That is, each entry is considered as a message and the data set serves
as estimate of the distribution. While this transfer loses the semantic relationship
between a source and receiver, the general concept of information sharing remains.
That is, independent attributes share no information, which can be easily seen by
substituting p(x, y) with p(x) ·p(y) in Equation 2.8. Conversely, the more dependent
X and Y are, the higher is their shared information. For instance, if the value(s)
of Y can be determined from the value(s) of x, the conditional entropy H(Y |X) is
zero and the shared information I(X;Y ) is equal to H(Y ) by Equation 2.6.

However, contrary to messages from a specified set, attribute values may also
be numerical from an infinite domain. Particularly attributes with real values may
have unique values for each entry and follow a continuous distribution instead of a
discrete one. As a result the probability p(x) of messages is not a set that sums up
to one, but a probability density function f(x) for all messages that integrates up to
one. Overall, there are equivalent definitions for the different concepts of information
theory for this case, which substitute the sum of probabilities with integrals over
probability densities. The result is called differential information theory and has the
following definitions [CT06].

H(X) = −
∫
x

f(x) log(f(x)) dx (2.9)

H(X|Y ) = −
∫
y

f(y)

∫
x

f(x|y) log(f(x|y)) dy (2.10)

H(X, Y ) = −
∫
x

∫
y

f(x, y) log(f(x, y)) dy dx (2.11)

I(X;Y ) =

∫
x

∫
y

f(x, y) log

(
f(x, y)

f(x) · f(y)

)
dy dx (2.12)
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Differential information theory is a powerful tool for dependency analysis, as mu-
tual information quantifies any kind of dependency between two attributes. How-
ever, some challenges arise with practical scenarios and real data. While discrete
probabilities are straightforward to estimate from a sample, estimating the proba-
bility density of a continuous distribution of numerical data is an ongoing field of
study [DL01, Gra18].

2.2 Entropy Estimation
Estimating probability densities is an important task [Sil86, WJ95] that gained
attention in statistics before the concept of entropy and information theory [WW39].
Particularly important are methods that make no assumptions on the characteristics
of the distribution, which are called non-parametric methods. Despite this name,
these methods may still use parameters, however they are not dependent on specific
types of distributions.

Usually, non-parametric estimation techniques use the values and proximity of
the entries to each other as foundation to estimate the density for all possible values.
The general idea is to find the probability density function that is likely to yield a
sample identical to the data available without fitting the function too specifically.
Working with continuous distributions, let X ⊆ Rd be the combination of d real val-
ued attributes in the available data. For a combination of values x ∈ Rd, a common
approach to estimate the density f(x) is using a fixed area around x to count en-
tries inside and potentially weight them by distance. With the exact area definition
and weighting scheme being variable, this general approach is called kernel density
estimation [Sil86, WJ95]. In entropy estimation, however, an alternative approach
gained much popularity. First introduced by Loftsgaarden and Quesenberry [LQ65],
one determines a number k and evaluates how much space around x is necessary to
contain k points of the sample. That is, the distance εkX(x) of x to the kth nearest
neighbor in X determines the estimated density. Formally, it is

f̂(x) =
k

|X| ·
1

V (d, dist) · (εkX(x))d
, (2.13)

where V (d, dist) is the volume of an d-dimensional unit ball using distance function
dist. In the same work, it is also proven that Equation 2.13 is a consistent estimator,
i.e., the estimated value converges towards the true value with increasing sample size.
While they used the euclidean distance as default, it is explicitly stressed that any
distance function is equally usable. Naturally, this estimate could be used with
Equation 2.9 and approximation techniques for the integration to estimate H(X).
However, a far simpler approach is to use the fact that H(X) is the expected value
of −log(f(x)), which means the average over all entries x ∈ X can also serve as
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estimator. Formally, this estimator is

Ĥ(X) = − 1

|X|
∑
x∈X

log

(
k

|X| ·
1

V (d, dist) · (εkX(s))d

)
(2.14)

= − 1

|X|
∑
x∈X

(
log(k)− log(|X|)− log(V (d, dist))− d · log(εkX(x))

)
(2.15)

= − log(k) + log(|X|) + log(V (d, dist)) +
d

|X|
∑
x∈X

log(εkX(x)). (2.16)

Originally, Loftsgaarden and Quesenberry suggested [LQ65] that the choice of k
scales with |X| for the density estimation Equation 2.13. Through the works of
Kozachenko and Leonenko [KL87], as well as Singh et al. [SMH+03] a correction
was introduced that yielded the estimator

ĤKL(X) = −ψ(k) + ψ(|X|) + log(V (d, dist)) +
d

|X|
∑
x∈X

log(εkX(x)), (2.17)

where ψ is the digamma function, i.e., ψ(x) =
(∑x−1

m=1
1
m

)
−γ for x ≥ 1 and γ ≈ 0.577

being the Euler-Mascheroni constant. This estimator is consistent for any fixed k
and mostly attributed to Kozachenko and Leonenko in the literature [Eva08, GOV18,
KMB15, KSG04]. Furthermore, we follow the literature [Eva08, KSG04] and use the
maximum norm ‖(x1, . . . , xd), (x

′
1, . . . , x

′
d)‖∞ = maxi(|xi − x′i|), which is also called

called L∞ metric or Chebyshev-distance. This results in V (d, dist) = 2d.
Next, let P = {p1 = (x1, y1), . . . , (xn, yn)} ⊆ R2 be the combinations of two

attributes X and Y available in the data. Figure 2.2a illustrates the following terms
with an exemplary set P = {(1, 5.5), (8, 1), (5, 4), (3.5, 7), (2, 2), (8, 1)}. Next, X and
Y are the sets of individual values in the data for the attribute, i.e., X = {x1, . . . , xn}
and Y = {y1, . . . , yn}. Analogue to previous notation, εkP (pi), εkX(xi) and εkY (yi) is
the distance of pi, xi and yi to its k-th nearest neighbor in P , X and Y , respectively.
Substituting the entropy values in Equation 2.7 with ĤKL yields the estimator

Î3KL(P ) =− ψ(k) + ψ(n) + log(2) +
1

n

n∑
i=1

log(εkX(xi))

− ψ(k) + ψ(n) + log(2) +
1

n

n∑
i=1

log(εkY (yi))

+ ψ(k)− ψ(n)− log(22)− 2

n

n∑
i=1

log(εkP (pi)) (2.18)

=ψ(n)− ψ(k) +
1

n

n∑
i=1

log

(
εkX(xi) · εkY (yi)(

εkP (pi)
)2

)
, (2.19)
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Figure 2.2: Illustration of the notation used for mutual information estimation with
the 3KL estimator (a) and the KSG estimator (b), respectively.

called the 3KL estimator for mutual information. Because each term in Equation 2.7
is substituted with a consistent estimator, the 3KL estimator is also consistent.

Later, Kraskov et al. [KSG04] argued argued that the errors in estimation for
H(X), H(Y ) and H(X, Y ) are unlikely to cancel out and rather lead to a larger
overall error. They also proposed a different approach to use the entropy estimator
in Equation 2.16 for mutual information estimation. While the 3KL estimator uses
the same k when estimatingH(X), H(Y ) andH(X, Y ) to obtain a compact formula,
Kraskov et al. adjust k for every point such that the logarithmic term is 0. The idea
is to make the distances εkP (pi), ε

k
X(xi) and εkY (yi) of a point to its nearest neighbors

in X, Y and P comparable. To achieve this, the parameter k for εkX(xi) and εkY (yi)
has to be set accordingly and may be different for each point. Specifically, Kraskov
et al. proposed two version, where the first worked with identical distances and the
second one worked with “identical neighbors”. Because the approach with identical
distances used the KL estimator properly only for either H(X) or H(Y ), the second
version was created. While both version are very similar and thus all results and
techniques in this dissertation apply to both version, we only introduce and discuss
the second version to avoid ambiguity and redundancy. In this version, illustrated
by Figure 2.2b, each nearest neighbor pj of pi in P should result in xj being a
nearest neighbor of xi in X and yj being a nearest neighbor of yi in Y . For each
point pi ∈ P , its k ∈ N+ nearest neighbors in P using the maximum distance form
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the set kNN(pi). More formally, it is

kNNP (pi) = arg min
S⊆(P\{p}) s.t. |S|=k

max
pj∈S
‖pi, pj‖∞, (2.20)

with ‖p, s‖∞ = max(|xi−xj|, |yi−yj|). We define the largest distance between xi and
any x-value among the k nearest neighbors of pi as δkx(pi) = maxpj∈kNN(pi) |xi − xj|.
We use this distance δkx(pi) to define the x-marginal count

MCk
x(pi) = |{x ∈ (X \ {xi}) : |x− xi| ≤ δkx(pi)}|, (2.21)

which is the number of points whose x-value is “close to p”. Specifically, the x-
marginal count is the smallest number of nearest neighbors for x such that each of
the k nearest neighbor of p is also a nearest neighbor of x, i.e.,

pi ∈ kNNP (p)⇒ xi ∈
MCkx(pi)︷︸︸︷
kpi NNX(xi) (2.22)

holds. In Figure 2.2b, vertical dashed lines mark the area of points whose x-values
are at least as close as the nearest neighbor of p3. Since this area contains one point
excluding p3, it is MC1

x(p3) = 1. The distance δky (pi) and the y-marginal count
MCk

y (pi) are defined analogously. Note that δkx(pi) and δky (pi) may differ, which
results in differently sized areas for the marginal counts, as seen in Figure 2.2b.
These marginal counts are then used as substitute for k when estimating H(X) and
H(Y ). Defering the full derivation to [KSG04], the KSG estimator, named after its
inventors inventors Kraskov, Stögbauer and Grassberger, is

ÎKSG(P ) = ψ(n) + ψ(k)− 1

k
− 1

n

n∑
i=1

ψ
(
MCk

x(pi)
)

+ ψ
(
MCk

y (pi)
)
. (2.23)

While the original introduction of the KSG estimator offered no formal guaran-
tees, empirical studies showed benefits over the 3KL estimator and entirely different
techniques. Recently, Gao et al. [GOV18] studied the formal properties of the KSG
estiamtor and proved that it is a consistent estimator for fixed k.

We conclude this section with a few additional remarks on nearest-neighbor based
estimation of mutual information. While both the 3KL and KSG have k as open
parameter, they are consistent estimators for any fixed choice and the literature
recommends small choices, e.g., k ≤ 10 [KA14, KBG+07, KSG04]. As a result, we
consider k to be a constant for asymptotic considerations. Furthermore, other “non-
parametric” methods to estimate mutual information like kernel density estimation
or binning have parameters that are harder to choose [DL01, KBG+07, PK09]. Ad-
ditionally, nearest-neighbor based estimation consistently yields the best or among
the best results for non-parametric methods [KA14, KBG+07, PK09, WL09], result-
ing in the widespread use and popularity of the KSG estimator [AYL+11, KBHJ08,
QGP10, SHR+07]. As a result, we consider the 3KL and KSG as default methods
for mutual information estimation and the foundation for our techniques.
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2.3 Maximum Entropy Models

Naturally, entropy as formalization of information content offers many possibilities
in data analysis beyond quantifying dependency strength. Another use of entropy in
this dissertation is the representation of knowledge. In this section, we motivate and
present a technique that produces distributions based on limited information. More
precisely, the maximum entropy model is an distribution that is a representation of
incomplete knowledge about a unknown distribution. This concept is relevant to the
task of dependency summarization. To evaluate how well a summary describes the
dependency, one might compare the maximum entropy model corresponding to the
summary with the empirical distribution. In the following, we give a brief motiva-
tion and formalization for this method and recapitulate a well-known computation
algorithm.

The underlying problem for maximum entropy models is that some information
on a dependency is known in the form of a limited number of hints. Given two
discrete attributes X and Y , each hint defines a selection of value combinations
from X and Y and the overall probability of this selection. For instance, let X
and Y by two six-sided dice, then one hint could be that the probability of dice X
showing less than a four and dice Y showing an even number is 25%. As a result,
the hints representing the available, incomplete knowledge may overlap arbitrarily
and some value combination may not be covered by any hint. Nevertheless, many
applications demand a unified model or distribution for formal analysis, such as
analytical biology [PAS06]. In most cases, the available hints are insufficient to
exactly determine the distribution. This means that the challenge lies with the
choice from a potentially infinite number of distributions that conform to the hints
available.

A popular approach to tackle the problem of choice is commonly known by the
term “Occam’s Razor” [Laz10]. Plainly speaking, the concept states that the best
hypothesis is the one with the fewest assumptions that still yields the same pre-
dictions. Transferring this notion to distribution modeling, Jayne [Jay57] argued
that the “hypothesis with the fewest assumptions” translates well to the distribu-
tion with highest entropy. This understanding is called the principle of maximum
entropy. Among all distributions that conform to the available hints, the one with
the highest entropy is called the maximum entropy model and introduces the fewest
additional assumptions by this argumentation.

Next, we formalize the maximum entropy model and follow up with a brief exam-
ple. Let X and Y be discrete attributes with the domain X and Y, respectively. Ad-
ditionally, let p(x), p(y), and p(x, y) be the probability of X, Y and their joint distri-
bution to take the specific value, respectively. Lastly, let R = ((Z1, r1), . . . , (Zm, rm))
be the collection of hints with Zi ⊆ X× Y, ri ∈ R and

∑
(x,y)∈Zi p(x, y) = ri.
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Figure 2.3: Illustration of Example 2.1 for maximum entropy models.

Then the set of all probability distributions that conform to all hints is

P = {f : X× Y→ R | ∀(x, y) ∈ X× Y : f(x, y) ≥ 0

∧
∑

(x,y)∈X×Y

f(x, y) = 1

∧∀(Zi, ri) ∈ R :
∑

(x,y)∈Zi

f(x, y) = ri} (2.24)

and the maximum entropy model for the joint probability distribution is

arg max
f∈P

H(f) = arg max
f∈P

(
−

∑
y∈Y,x∈X

log(f(x, y)) · f(x, y)

)
(2.25)

Example 2.1. As a short example, we consider the attributes X = {A,B,C} and
Y = {1, 2, 3}. Then the set P and maximum entropy model depends on the set R
of hints. Figure 2.3 illustrates three sets for R with an exemplary distribution from
P and the maximum entropy model. The left column shows Rleft = ∅, the center
column is Rcenter = {({(3, A), (3, B), (3, C)}, 2

3
)} and the right column represents

Rright = {({(3, A), (3, B), (3, C)}, 2
3
), ({(1, C), (2, C), (3, C)}, 1

9
)}. For each column,
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the top row illustrates the corresponding set R, the middle row shows an arbitrary
distribution conforming to R and the bottom shows the respective maximum entropy
model. Note that the entropy of the maximum entropy model decreases with more
hints in R. The reason is that additional hints in R enforce more structure for con-
forming distributions, i.e., they have frequent, less informative values. For instance,
when comparing the bottom left distribution with the bottom center distribution, the
combinations with C = 3 are more frequent and the other combinations are less
frequent. Considering entropy, cf. Equation 2.5, these items are more frequent and
less informative which outweighs the increased information content of the now less
frequent items.

When analyzing dependencies, however, one might be more interested in the
interactions between X and Y and less interested in the probabilities of individual
combinations. Then, the conditional distribution f(y|x) of Y conditioned on X
might be more insightful. By the same arguments as before a maximum entropy
model for the conditional distribution is well defined and insightful as shown by its
use in natural language processing [BPP96, NLM99, PLV02] and outcome explana-
tions [GAG+14, MTV11, Sar01]. To be specific, the necessary modification for the
formal definition of the maximum entropy model of f(y|x) essentially substitutes
f(x, y) by p(x) · f(y|x). Note that this means that f(y|x) is a collection of probabil-
ity distributions, one distribution for each x ∈ X. The resulting formal definitions
are the set of potential conditional distributions

P ′ = {f : X× Y→ R | ∀(x, y) ∈ X× Y : f(y|x) ≥ 0

∧∀x ∈ X
∑
y∈Y

f(y|x) = 1

∧∀(Zi, ri) ∈ R :
∑

(x,y)∈Zi

p(x) · f(y|x) = ri} (2.26)

and the maximum entropy model for the conditional probability distributions is

arg max
f∈P ′

H(f) = arg max
f∈P ′

(∑
x∈X

p(x)

(
−
∑
y∈Y

log(f(y|x)) · f(y|x)

))
(2.27)

Next, it remains to determine the maximum entropy model algorithmically. This
is non-trivial because P ′ has many and potentially an infinite number of elements. It
has been shown that the optimaztion problem in Equation 2.27 with the constraints
in Equation 2.26 has an unconstrained dual problem that optimizes real-valued
multipliers. Deferring the details to Berger et al. [Ber97], this alternative form of
the optimization problem is

max
f∈P ′

H(f) = max
(λ1,...,λm)∈Rm

(∑
x∈X

p(x)

(
−
∑
y∈Y

log(f∧(y|x)) · f∧(y|x)

))
(2.28)
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with

f∧(y|x) =
e
∑
{i∈N:(x,y)∈Zi}

λi∑
y′∈Y e

∑
{i∈N:(x,y′)∈Zi}

λi
. (2.29)

While there is still no easy analytical solution to the unconstrained optimization
problem, it permits various numerical approximations. Berger et al. [BPP96, Ber97]
provided an algorithm exactly for Equation 2.28, which is called improved iterative
scaling. The core concept of this method is iteratively adjusting the multipliers λi
such that the modeled distribution matches one hint at a time. While we defer the
detailed derivation and proof of convergence [BPP96, PPL97], the equation used to
adjust individual multipliers is

g(∆i) := ri −
∑

(x,y)∈Zi

p(x) · f∧(y|x) · eR#(x,y)·∆i = 0, (2.30)

where R#(x, y) = |{(Zj, rj) ∈ R : (x, y) ∈ Zj}| is the number of hints that include
the combination (x, y). To be sufficiently practical, analytical solutions to Equa-
tion 2.30 require R#(x, y) to be constant. Since this is not true in general, the
proposed alternative is using Newton’s Method [AS72, BPP96], that is, using the
recurrence ∆j+1

i = ∆j
i −

g(∆j
i )

g′(∆j
i )

to obtain better approximates for ∆i in sequence.
This is done consecutively and repeatedly for each multiplier until all multipliers
converge (up to a choosable precision ε). Algorithm 2.1 summarizes the steps of
improved iterative scaling.
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Algorithm 2.1: Improved Iterative Scaling
1 λ1, . . . , λm ← 0
2 repeat
3 ∆1, . . . ,∆m ← 0
4 for i← 1 to m do
5 if R#(x, y) constant for all x ∈ Xi, y ∈ Yi then
6 ∆i ← Solution to ri =

∑
(x,y)∈Zi p(x) · f∧(y|x) · eR#(x,y)·∆i

7 else
8 ∆i ← 0
9 repeat

10 ∆′ ← ∆i

11 ∆i ← ∆′ − ri−
∑

(x,y)∈Zi
p(x)·f∧(y|x)·eR#(x,y)·∆′∑

(x,y)∈Zi
p(x)·f∧(y|x)·eR#(x,y)·∆′ ·R#(x,y)

12 until |∆i −∆′| < ε;

13 λi ← λi + ∆i

14 until
∑m

i=1 |∆i| < ε;



Chapter 3

Related Work

The topic of complex dependencies has many facets and allows for many perspectives
and aspects to focus on. In this chapter, we provide a brief overview on related work.
For this purpose, we consider different scopes and goals of this dissertation and put
them into context with prior and competing work. We start with a short discussion
of dependency measurements and the position of mutual information. Then, we
focus on more specific aspects of this thesis. That is, we briefly discuss related fields
to our contributions and introduce prior work and competing methods.

3.1 Quantifying Dependencies

At first glance, one might expect that an optimal dependency measure, i.e., unlimited
by sample size and computational power, would be straightforward and easy to
define. However, for given data or distributions it is unclear which portions represent
some kind of dependency and which portions are noise. If the studied dependency is
well defined, the separation is easier and allows for clear quantification of the noise
involved. An examples for such cases is the Pearson correlation coefficient [Ric06]
for linear dependencies. With the objective to quantify arbitrary dependencies, it
becomes unclear how one could define the noise such that it is comparable across
different dependency patterns. Remembering the illustration of various dependency
types in Figure 1.2, there are no definitive criteria to determine whether one sample
has a stronger dependency than another. As a result, there are various concepts one
may use as foundation for a general dependency measures.

From a purely statistical perspective copulas, which are multivariate distribution
where the marginal distributions are uniformly distributed, provide an interesting
starting point. By Sklar’s Theorem [DFS13, Skl59] any multivariate distribution
can be formulated as combination of the marginal distributions and a copula. For a
joint distribution of multiple attributes, a corresponding copula then encapsulates

19
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the interaction between the attributes, because the behavior of individual attributes
is “factored out”. This enables simple measures for dependencies that use distances
between the copula and a independent, multivariate uniform distribution [PGS12].
Other dependency measures based on copulas may be less intuitive. For instance, af-
ter transforming available data based on an estimated copula, the “Randomized De-
pendence Coefficient” [LHS13] uses correlation across random non-linear projections
and “Copula Index for Detecting Dependence and Monotonicity” [KM19] evaluates
piece-wise monotonicity for different regions of the data.

Another starting point utilizes the implication of independent attributes that
the distribution of one attribute does not change if it is conditioned on the other
attribute. A practical implementation of this notion is “Contrast” [KMB12, Kel15],
which selects a subset of the data based on random ranges on some attribute(s).
Then, a statistical test is used to determine whether the distribution of another
attribute is different between the original data and the subset. This process is
repeated multiple times with different random ranges and the contrast measure
is the average significance of the test. This approach was further developed with
“Monte Carlo Dependency Estimation” [FB19], which compares two complementary
subsets instead and generalizes the statistical test used.

Other methods to quantify dependencies, i.e., being zero if and only if the data is
independent, include the “Maximal Information Coefficient” [RRF+11] and “Distance
Correlation” [SRB+07]. The maximum information coefficient is loosely based on
mutual information, although a stronger emphasis is put on structural discretization
of the data. That is, a large number of grids is used to discretize the data with
mutual information being used to determine how well individual grids represent the
structure of the data. In contrast, distance correlation utilizes distances within a
sample both regarding including all marginal distances within the data to provide a
measure with a similar overall structure as Pearson’s correlation coefficient [Ric06].
Although it is less intuitive that this measure captures arbitrary dependencies, the
authors offer extensive statistical analysis.

Overall, however, there is no consensus yet regarding the evaluation and com-
parison between different measures. Rényi [Rén59] proposed a set of rules that
dependency measures should satisfy, and mutual information does so when it is
normalized [Bel62]. However, many measures have not been tested against these
rules. Additionally, Rényi offers no optimization goal to compare different measures.
Another proposition to evaluate dependency measures is “Equitability” [RRF+11],
which demands similar scores for different functional dependencies with similar noise.
Unfortunately, it remains up to debate what formalization of this notion is proper
and whether any dependency measure can satisfy the criterion [KA14, MMM14].
In summary, entropy and mutual information are far from the only options when
quantifying dependencies. However, due to its semantic meaning, widespread us-
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age [AYL+11, KBHJ08, QGP10, SHR+07] and comparatively long history, which
permitted a high volume of studies and analysis [KA14, KBG+07, PK09, WL09],
mutual information remains a very compelling choice.

3.2 Efficient Mutual Information Estimation

While there exist different approaches to estimating mutual information, this work
focuses on the nearest-neighbor based approaches introduced in Section 2.2. This
is because they offer good estimation quality [KA14, KBG+07, KSG04, PK09] and
are widely used [HSPVB07, PQB05]. Note however, that comparative studies focus
primarily on the quality of estimation without particular assessment of the com-
putation time. So far, there has been little research regarding the computational
complexity of mutual information estimation in general and the KSG and 3KL meth-
ods in particular. Several proposals to compute the KSG appear in the original KSG
article [KSG04] with the claimed time complexity O(n) for their fastest, so-called
“box-assisted” algorithm on smooth distributions. Vejmelka et al. [VH07] compare
their own approach with the box-assisted algorithm and cite [Sch95] for different
conditions for a linear runtime of the box-assisted algorithm. In the end, the best
universal time complexity of their presented algorithms is O(n log n). The same
complexity is given for the algorithm computing the 3KL by Evans [Eva08]. As
part of this thesis we show that this limit is not a coincidence, i.e., we prove that
no algorithm computing these estimators can have a time complexity lower than
O(n log n).

3.3 Data Streams

One of our contributions is a fully dynamic data structure to estimation mutual
information. While there are various applications working with dynamic sets of
data, a prime example that is gaining more and more prominence are data streams.
Data streams are data sources that yield new data over time possibly without end.
Because data streams grow over time, and memory and storage is limited, it is im-
possible to store all data points. This means that information is lost over time. Nev-
ertheless, there exist space-efficient estimators for entropy of discrete distributions
on streams. With Equation 2.7, entropy estimators can also be used to estimate
mutual information, but with accumulating error. The estimator of Chakrabarti
et al. [CCM07] provides multiplicative approximations of entropy on insert-only
streams. In contrast, the estimator by Harvey et al. [HNO08] offers multiplicative
and additive approximations of entropy on streams with insertions and deletions,
but requires knowledge about the maximum length of the stream. However, both es-
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timators are restricted to discrete distributions. Estimating mutual information on
discrete distributions is easier, because the relative count of points is a good estima-
tor for the probability. Estimating the density of continuous distributions requires
more elaborate techniques and remains an ongoing field of research [Gra18, Sil86].
Some works exist for estimation of probabilities on data streams [CHM12, ZCWQ03],
however, we are not aware of any work that extends these techniques to entropy or
mutual information estimation.

Instead, the few works on the estimation of mutual information on data streams
exclusively use the nearest-neighbor based estimation introduced in Chapter 2. The
“Mutual Information Stream Estimator” (MISE) framework [KMB15] offers esti-
mates of mutual information between continuous variables for any time interval on
data streams. To achieve these results without storing all data points, Equation 2.23
is not computed exactly but rather approximated. The framework provides a sam-
pling scheme such that results are more precise for more recent time intervals. Ad-
ditionally, queries with equal ratio between interval size and the offset to the current
time provide roughly the same quality of estimation. An improvement to this ap-
proach was recently proposed as “Point-Based Approach” (PBA) [ABR19], which
removes some estimation bias and simplifies the algorithmic structure. However, a
relatively common task for processing data streams is monitoring of recent events.
This scenario essentially requires accurate estimates in a sliding window using a
fixed number of the most recent data points. To provide accurate estimates for such
cases, MISE and PBA require both unlimited storage and time that is superlinear
in the size of the sliding window. For such scenarios DIMID [BH17] is an approach
that provides approximate results to Equation 2.19 with constant storage and time
logarithmic in the size of the sliding window. As approximation technique, DIMID
uses random projections to transform the joint distribution of two attributes into a
third distribution with a single dimension.

Overall, existing works build upon the nearest-neighbor based estimation, how-
ever, the results are only approximations that cannot claim the same estimation
quality of the KSG or 3KL. In this thesis, in turn, we present fully dynamic data
structures that yield exactly the KSG and 3KL estimation results. Thus, the up-
dates of a sliding window can be easily realized as insertions and deletions within
that structure. As the state-of-the-art for KSG estimation on sliding windows is
computation from scratch for each step [KBHJ08, QGP10], we provide better time
complexity by offering liner-time updates. For 3KL estimation, we even offer time
in O(log n log log n) for updating an estimate according to a sliding window.
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3.4 Anytime Algorithms

Another contribution of ours is an iterative estimator of mutual information, which
provides the anytime property. Anytime algorithms [Zil96] use available time to
increase their result quality. One can obtain a low-quality result after a short time
and a better one when waiting longer. In data analysis, anytime algorithms exist for
clustering [MHF+15], classification [YWKT07] and outlier detection [AKBS12]. The
very recent and previously mentioned “Monte Carlo Dependency Estimation” [FB19]
is another dependency measure with anytime capability. So far, however, there is
no anytime algorithm to estimate mutual information, which remains the widely
accepted approach for general dependency estimation. In consequence, the anytime
algorithm for mutual information estimation proposed in this thesis extends the
set of tools available for anytime computations. Additionally, there has been more
general work on the optimal use of available anytime algorithms [HZ01, KS09], which
may improve the performance of our proposed method in larger systems.

3.5 Dependency Summarization

Another important aspect of this thesis are explanations for dependencies, i.e., com-
pact, human-readable summaries of concrete dependencies. As dependency mea-
sures offer only a single number, it is often unclear what kind of relationship these
attributes actually have. Commonly [GAG+14, MTV11, Sar01], such summaries
describe multiple portions of the data where stronger claims on the relationship
are possible. To simplify the task somewhat and improve interpretability of the
summaries, one attribute or combination of attributes is designated as outcome be-
forehand. That is, the summaries are built with the intent of summarizing the
influence of all other attributes on this outcome. For the task of selecting these
portions of the data used for the summary, various approaches exist. We categorize
the available approaches into the following three categories.

Maximum-Entropy Models A self-evident starting point is using the condi-
tional distribution P (outcome|attributes) as formalization of the dependency be-
tween the outcome and the remaining attributes. This means, the better a summary
describes this distribution, the more informative it is. A popular way [GAG+14,
MTV11, Sar01] to judge this description quality is comparing the maximum entropy
model (cf. Section 2.3) for a summary with the empirical distribution provided by
the data. The task of building a summary is then equivalent to the search for the set
of hints, usually of a fixed size to ensure conciseness, that yield the entropy model
with the smallest distance to the empirical distribution. However, the task to find
the optimal set for a given size is NP-hard [GAG+14].
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While there exist multiple heuristics, the most recent and best performing ap-
proach is explanation tables [GAG+14, FGS17, GFG+18]. The core idea is that
relevant hints for the model usually cover large portions of the data. Thus, when
drawing a small to moderate sample from the data, most relevant hints should cover
at least one of the data points in the sample.

So far, all approaches to produce summaries based on maximum entropy models
only support nominal attributes. That is, for numerical values these approaches
consider all values entirely distinct irrespective of the differences. Our proposed
method to summarize dependencies extends the capabilities of these existing meth-
ods to support also ordinal and numerical values. That is, we propose a framework
that uses summaries for discrete attributes to build summaries that also support
ordinal and nominal attributes. While our method is compatible with any approach
that uses maximum entropy models, in this dissertation we use explanation tables
as they currently offer the best results [GAG+14, GFG+18].

Subgroup Discovery A strongly related field is subgroup discovery, where the
goal are subsets of data that have a very different distribution of outcomes com-
pared to the entire data set [Atz15, Hel16, HCGdJ11, VL18]. The parallel to our
summarization problem is that these interesting subgroups correspond to different
relationships between the attributes and the outcome. Thus, a collection of inter-
esting subgroups is also a summary of the dependency. However, each subgroup is
individually assigned an interestingness score without considering other subgroups.
This leads to subgroups that are interesting on their own but redundant and there-
fore not informative as part of a larger collection. We compare our approach to
summarize dependencies experimentally with two state-of-the-art subgroup discov-
ery techniques that also support ordinal and numerical attributes.

The first approach, MergeSD [GR09], introduces pruning techniques to reduce
the number of candidate subgroups. The interestingness measure used for subgroups
is the difference in likelihood of a true outcome between the overall data and the
subgroup, weighted by subgroup size. They show an upper bound for this measure
under “refinement” of subgroups. That is, for each subgroup, characterized as a
pattern, they determine the maximum interestingness for any pattern matching a
subset of this subgroup. This upper bound is then used in a depth-first search to
prune the pattern space.

The second method is Diverse Subgroup Set Discovery (DSSD) [vLK12], which
aims to find non-redundant subgroups. DSSD uses a three-phase approach to ensure
subgroup diversity. First, it uses a greedy best-first search that maintains a fixed
number of candidates to find a large set of relevant subsets. Next, DSSD diversi-
fies the candidate set by pruning dominated subgroups. Here, a subgroup dominates
another subgroup if it is formed by a subset of the conditions and has higher interest-
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ingness. Finally, the best subgroups from this diversified set are selected. However,
this approach may still select similar subgroups, if they are not strictly dominated
by others, e.g., through slightly different conditions or higher interestingness.

Classification Instead of summarizing the relationship between an outcome and
the remaining attributes, classification uses these relationships to predict the out-
come. The representation of the dependency is then encoded in the model of the
classifier, which may or may not take a form that is interpretable for humans.
This means that the goals are not identical but somewhat similar and compara-
ble to summarization. Classifiers are judged by their correctness on data out-
side the initial “training” set instead of their ability to summarize existing data.
Additionally, human interpretability is often sacrificed for accuracy through fea-
ture engineering [GRD+11], ensembles [Rok09] or neural networks [KSH12, Zha00].
Rule based classifiers such as decision trees [Qui93] are an exception as human-
interpretable classification methods that partition the data into non-overlapping
sets. Interpretable Decision Sets [LBL16] are another exception, which allow a min-
imal amount of overlap to reduce the number of decision boundaries. However, these
approaches are not concise, even after applying optimizations such as tree or rule
pruning [GFG+18]. This means that the number of rules used is often overwhelming
for human interpretation. So far, there already exists evidence that decision trees
and interpretable decision sets produce less informative summaries than explanation
tables [GAG+14, GFG+18], which form the basis of our approach. Nevertheless, we
include decision trees as a competing approach when evaluating our proposed ap-
proach to produce summaries.





Chapter 4

Estimating Mutual Information

This chapter discusses our advances in regards to efficient quantification of complex
dependencies. As discussed in the previous chapter, we consider mutual information
as the most relevant measure and nearest-neighbor based estimation the most com-
pelling approach. We improve the understanding of this approach and its usability
through the following aspects. First we consider the computational complexity of the
estimation and prove a lower bound for the problem, which shows that current com-
putation techniques are asymptotically optimal. This means that new algorithms
can improve the computation time only by constant factors but not its scalability
with the size of the data. Then, we turn to estimation of mutual information on
dynamic data, i.e., data sets that change over time. Formally, we consider dynamic
data as a set that allows insertion and deletion of individual items. Sliding windows,
which are one of the most well-known cases of dynamic data, then correspond to
one insertion and one deletion for each time step. We establish the complexity of
updating estimates according to changes in the data and present new algorithms
to compute these updates. Finally, we consider the scenario of dynamic estima-
tion of mutual information in the sense that the estimator itself offers a dynamic
time-quality-tradeoff. Specifically, we introduce an iterative estimator that quickly
offers a rough approximation of the nearest-neighbor based estimate and could use
additional computation time to improve this approximation. Additional computa-
tion time is used in fine-grained time-steps called iterations. This gives the iterative
estimator the anytime property as one could interrupt the estimation at any point
in time and obtain the results from the latest finished iteration. Additionally, this
estimator offers statistical guarantees for its approximations such that users can
evaluate whether a given estimation quality is sufficient or additional time should
be used.

27
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4.1 Computational Complexity

This section is previously published in a mostly identical form at the International
Conference on Extending Database Technology (EDBT ’18) in [VRB18]. There are
only some adjustments to fit the form and consistency for this dissertation.

In this section we present our first contribution, the lower bounds for computing
estimates using the KSG and 3KL. As a brief reminder, the corresponding equations
are (cf. Section 2.2):

Î3KL(P ) = ψ(n)− ψ(k) +
1

n

n∑
i=1

log

(
εkX(xi) · εkY (yi)(

εkP (pi)
)2

)
, (2.19 revisited)

ÎKSG(P ) = ψ(n) +ψ(k)− 1

k
− 1

n

n∑
i=1

ψ
(
MCk

x(pi)
)

+ψ
(
MCk

y (pi)
)
. (2.23 revisited)

All existing approaches to compute the 3KL and KSG follow the original de-
scription in the sense that they first compute the nearest neighbors of all points.
In the case of the KSG, the marginal counts MCk

x and MCk
x are computed after-

wards. However, it is not known if this is the only approach to compute Î3KL(P ) and
ÎKSG(P ), or if it is computationally optimal. For instance, there could be a different
formula for either of these estimators that does not require explicit computation
of the nearest neighbors. Consequently, the complexity of computing the 3KL and
KSG estimates can only be based on the result and not on intermediate steps such
as determining the nearest neighbors. The problems whose complexities we want to
study in general, i.e., without confinement to specific algorithms, are the following
ones.

Problem 4.1 (3KL-Estimation). For a set P ⊆ R2 of points, determine Î3KL(P ).

Problem 4.2 (KSG-Estimation). For a set P ⊆ R2 of points, determine ÎKSG(P ).

In the following, we show the complexity of Problem 4.1. By reducing a problem
with known complexity to 3KL-Estimation, we prove that it has a lower bound
of Ω(n log n) in the algebraic computation tree model [Ben83]. We use the algebraic
computation tree model because it allows us to prove bounds without assuming any
statistical properties of the data. This is important because we want general-purpose
estimation of mutual information. If knowledge regarding the data or its distribution
was known, it could be used to model the density function in Equation 2.19.

Theorem 4.3. The problem 3KL-Estimation has time complexity Ω(n log n).
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Figure 4.1: An illustration of the construction of P in Theorem 4.3.

Proof. The proof is by reduction from the problem IntegerElementDistinct-
ness: Given a multiset A = {a1, . . . , an} of integers, are there two indices i 6= j such
that ai = aj are duplicates. The problem IntegerElementDistinctness has a
known lower bound of Ω(n log n) in the algebraic computation tree model [LR91].
For an instance A of IntegerElementDistinctness, we construct an instance
of 3KL-Estimation P as follows. For ai ∈ A, the set P contains two points
pi = (i, ai + 1

4+i
) and pn+i = pi + (0.25, 0.25). Note that pi and pn+i are closer

than any other pair, because i and ai are integers. Additionally, we add the off-
set 1

4+i
to the y-coordinates, because duplicates in A would otherwise lead to a

nearest-neighbor distance of 0 and thus log(0) in Equation 2.19. Figure 4.1 features
an example for this construction for the IntegerElementDistinctness instance
A = {1, 2, 4, 3, 1}. The point p1 is highlighted as circle and its nearest-neighbor
distances are highlighted.

Claim 4.4. A contains a duplicate if and only if Î3KL(P ) 6= ψ(|P |)−ψ(1) for k = 1.

Subproof. Let i 6= j ∈ {1, . . . , n} be two integers. By construction of P , it follows
that |xi−xj| = |xn+i−xn+j| ≥ 1. Additionally, it is |xi−xn+i| = |yi− yn+i| = 0.25.
Using the reverse triangle inequality, it is |xi−xn+j| ≥ |xi−xj|− |xj−xn+j| ≥ 0.75.
This holds for any i 6= j, which means that pi is the nearest neighbor of pn+i and vice
versa, because we use the maximum norm. As a consequence the nearest-neighbor
distances are ε1P (p) = 0.25 for all p ∈ P and ε1X(x) = 0.25 for all x ∈ X. Note that
this means that the nearest-neighbor distances in P and X are independent of the
existence of duplicates in A.

If A does not contain any duplicates, it follows that |yi− yj| = |yn+i− yn+j| ≥ 4
5
,

since A only contains integers and the difference between 1
4+i

and 1
4+j

is less than
1
5
. By the same arguments as above it follows that |yi − yn+j| ≥ 0.55 and that
ε1Y (y) = 0.25 for all y ∈ Y . We can then use these values in Equation 2.19, which
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yields:

Î3KL(P ) = ψ(|P |)− ψ(1) +
1

|P |

|P |∑
m=1

log

(
0.25 · 0.25

(0.25)2

)
= ψ(|P |)− ψ(1). (4.1)

Conversely, if A contains the duplicates ai = aj, it is |yi− yj| = | 1
4+i
− 1

4+j
| ≤ 0.2

and |yi−yn+j| ≥ |0.25− 1
4+j
| and thus ε1Y (yi) ≤ 0.2. Additionally, because of j 6= i it

also is ε1Y (yi) > 0. Also, because the maximum norm is used for nearest neighbors,
it is log(

ε1X(xm)·ε1Y (ym)

(ε1P (pm))2 ) ≤ 0 for all m ∈ {1, . . . , |P |}. It follows that

log

(
ε1Y (yi) · ε1X(xi))

(ε1P (pi))2

)
<0⇒ 1

|P |

|P |∑
m=1

log

(
ε1X(xm) · ε1Y (ym)

ε1P (pm))2

)
<0 (4.2)

and analogously to Equation 4.1 we obtain Î3KL(P ) < ψ(|P |)−ψ(1). This concludes
the subproof. �

It is clear that P can be constructed in time O(|A|), which means |P | ∈ O(|A|).
After computing Î3KL(P ), the result is only compared to a sum over |P | numbers,
because ψ(|P |)−ψ(1) =

∑|P |−1
m=1

1
m

by definition of the digamma function. Note that
this reduction works analogously for any fixed k > 0 by placing k − 1 points evenly
spaced on the diagonal between each pair pi and pn+i. Because k is fixed, the size of
P increases only by a constant factor. Therefore, the complexity of the reduction is
in O(n). This means that determining Î3KL(P ) has a lower bound of Ω(n log n).

This lower bound matches the running time of the algorithm presented by
Evans [Eva08] to solve 3KL-Estimation. Consequently, this algorithms is already
asymptotically optimal, and the lower bound is tight.

Corollary 4.5. The computational complexity of 3KL-Estimation is Θ(n log n).

We use the same approach to prove a lower bound for KSG-Estimation. With
the algorithms presented by Vejmelka et al. [VH07] this lower bound is tight as well.

Theorem 4.6. The problem KSG-Estimation has a time complexity in Ω(n log n).

Proof. Similarly to the Proof of Theorem 4.3, we reduce the problem to Inte-
gerElementDistinctness. For any instance A of IntegerElementDistinct-
ness, we construct an instance of KSG-Estimation P as follows. For ai ∈ A, the
set P contains two points pi = (i, ai) and pn+i = (i + 0.25, ai + 0.25). We use 0.25
because it means that this pair of points is closer than any other pair, because i
and ai are integers. Figure 4.2 features an example for this construction for the
IntegerElementDistinctness instance A = {1, 4, 2, 5, 3, 2}. The dashed lines
in the figure illustrate the areas of the marginal counts MC1

x(p3) and MC1
y (p3).
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Figure 4.2: An illustration of the construction of P in Theorem 4.6.

Claim 4.7. It is ÎKSG(P ) 6= ∑|P |−1
m=1 ( 1

m
) − 1 for k = 1 if and only if A contains a

duplicate.

Subproof. Let i 6= j ∈ {1, . . . , n} be two integers. By construction of P , it follows
that |xi−xj| = |xn+i−xn+j| ≥ 1. Additionally, it is |xi−xn+i| = |yi− yn+i| = 0.25.
Using the reverse triangle inequality, it is |xi−xn+j| ≥ |xi−xj|− |xj−xn+j| ≥ 0.75.
This holds for any i 6= j, which means that pi is the nearest neighbor of pn+i and
vice versa, because we use the maximum norm. As a consequence, the marginal
counts MC1

x(p) are 1 for all p ∈ P , independent of the existence of duplicates in A.
If A does not contain any duplicates, it follows that |yi− yj| = |yn+i− yn+j| ≥ 1,

since A only contains integers. By the same arguments as above it follows that
|yi− yn+j| ≥ 0.75 and that MC1

y (p) = 1 for all p ∈ P . We can then use these values
in Equation 2.23 and because of ψ(x) =

∑x−1
m=1( 1

m
)− γ it is:

ÎKSG(P ) = ψ(1) + ψ(|P |)− 1

1
− 1

|P |

|P |∑
m=1

ψ(1) + ψ(1) =

|P |−1∑
m=1

(
1

m

)
− 1 (4.3)

Conversely, if A contains the duplicates ai = aj, it follows that |yi − yj| = 0 and
|yi − yn+j| = 0.25 and thus MC1

y (pi) ≥ 3. Because of ψ(x + 1) = ψ(x) + 1
x
> ψ(x)

for all x ≥ 0, it is, analogous to Equation 4.3, ÎKSG(P ) <
∑|P |−1

m=1 ( 1
m

) − 1. This
concludes the subproof. �

It is clear that P can be constructed in time O(|A|), which means |P | ∈ O(|A|).
Note that this reduction works analogously for any fixed k > 0 by placing k − 1
points evenly spaced on the diagonal between each pair pi and pn+i. Because k is
fixed, the size of P increases only by a constant factor. After computing ÎKSG(P ),
the result is only compared to a sum over |P | numbers. Therefore the complexity of
the reduction is in O(n). This means that determining ÎKSG(P ) has a lower bound
of Ω(n log n).
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Corollary 4.8. The computational complexity of KSG-Estimation is Θ(n log n).

To summarize this section, we have proven a lower bound for the well-known
nearest-neighbor based mutual information estimators. As this lower bound matches
the run-time of existing computation algorithms, the bound is tight and the algo-
rithms are asymptotically optimal. In the next section we expand this investigation
of complexity and solutions from estimation for a fixed data set to estimation with
dynamic data.

4.2 Mutual Information Estimation on Changing
Data

This section is previously published in a mostly identical form at the International
Conference on Extending Database Technology (EDBT ’18) in [VRB18]. There are
only some adjustments to fit the form and consistency for this dissertation.

Now, we investigate the challenges and opportunities to estimate mutual infor-
mation on dynamic data. The distinctive feature of dynamic data is that the data
changes over time. For a set P of points, all changes can be modeled using insertion
of new points and deletion of existing points. For instance, moving a point from
(x, y) to (x′, y′) can be modeled with one deletion of (x, y) and one insertion of
(x′, y′). To maintain an estimate of mutual information with the 3KL or KSG, we
need to adjust the estimate according to such insertions or deletions. We see this
as a problem for a dynamic data structure and thus allow storage of some auxiliary
information about P , noted as state SP of a dynamic data structure. The formal
problem is then:

Problem 4.9 (3KL-Update). Let P ⊆ R2 be a set of points, SP the state for
P and p ∈ R2 a point. Determine Î3KL(P ∪ {p}) and SP∪{p} if p is inserted and
Î3KL(P \ {p}) and SP\{p} if p is deleted using only SP and p.

Problem 4.10 (KSG-Update). Let P ⊆ R2 be a set of points, SP the state for
P and p ∈ R2 a point. Determine ÎKSG(P ∪ {p}) and SP∪{p} if p is inserted and
ÎKSG(P \ {p}) and SP\{p} if p is deleted using only SP and p.

Because these problems can be used to solve 3KL-Estimation and KSG-
Estimation, respectively, we can use the previous results to infer lower bounds
for their time complexities. If we start with an empty set P and incrementally in-
sert n points, the total time required cannot generally be asymptotically faster than
Ω(n log n) by Theorem 4.3 and Theorem 4.6. Because this includes n insertions, the
time complexity of individual insertions is in Ω(log n).
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Corollary 4.11. The problem 3KL-Update has a time complexity in Ω(log n).

Corollary 4.12. The problem KSG-Update has a time complexity in Ω(log n).

These lower bounds represent both challenge and opportunity, since they are
much lower than the lower bounds for static estimation. On the one hand this in-
dicates that there is a lot of potential for asymptotic improvements. On the other
hand, it is very challenging to provide algorithms with logarithmic runtime, that is,
it is hard to achieve asymptotically optimal algorithms. This is particularly true be-
cause these bounds might not be tight. So there could exist another, asymptotically
higher lower bound. In the following, we present two data structures for these tasks,
evaluate their time complexities and compare them to the lower bounds presented
here.

4.2.1 Updating Estimates

Naturally, the simplest solution to KSG-Update and 3KL-Update is storing ex-
actly P in SP and computing Î3KL(·) and ÎKSG(·), respectively, with every change.
The result from the previous section is that any such approach would require time
in Ω(n log n) for 3KL-Update and KSG-Update. In the following we show that
this is not optimal and present a more efficient solution.

We propose the data structure DEMI (Dynamic Estimation of Mutual Informa-
tion) that focuses on updating an estimate of the 3KL or KSG for a single insertion
or deletion. First, we present how this data structure works with 3KL estimates in
detail. Afterwards, we describe the differences when maintaining a KSG estimate.
For the 3KL estimate, we first describe the changes that can occur by inserting or
deleting a point. Then we describe which information our data structure stores and
how it determines the changes in the 3KL estimate efficiently. Lastly, we evaluate
the space complexity of our data structure as well as the time complexity of adding
or deleting a point.

Updating 3KL Estimates

Let P = {p1 = (x1, y1), . . . , pn = (xn, yn)} ⊆ R2 be the set of points in our sample
and let X = {x1, . . . , xn} and Y = {y1, . . . , yn} be the set of values per attribute,
respectively. For a new point pn+1 = (xn+1, yn+1) ∈ R2, let P ′ = P ∪ {pn+1},
X ′ = X ∪{xn+1} and Y ′ = Y ∪{yn+1} be the sets including pn+1, xn+1 and yn+1, re-
spectively. Considering Equation 2.19, the change from Î3KL(P ) to Î3KL(P ′) consists
of three partial changes:

(1) ψ(n) increases to ψ(n+ 1) = ψ(n) + 1
n
,
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Data Structure 4.1: DEMI
struct {

real x, y
real εkP , εkX , εkY

} DemiPoint ;

struct {
DemiPoint[ ] PD
BST<DemiPoint*> Tx, Ty
real base, sum

} state;

(2) the arithmetic mean includes n+ 1 logarithms instead of n,

(3) and the nearest-neighbor distances εkP (pi), εkX(xi) and εkY (yi) may change for
any i ∈ {1, . . . , n}.

While Change (1) is trivial, Change (2) requires the computation of εkP ′(pn+1),
εkX′(xn+1) and εkY ′(yn+1). However, Change (3) could require the re-evaluation of
all nearest-neighbor distances. Clearly, these changes apply analogously if p1 is re-
moved from P instead of inserting pn+1. Following these observations, we propose
a dynamic data structure that determines these changes efficiently and evaluate its
computational complexity.

Overview Our data structure, DEMI, is given in Data Structure 4.1. For each
point pi ∈ P of our sample, we store its attributes xi, yi and k-th nearest-neighbor
distances εkP (pi), εkX(xi) and εkY (yi) as a DemiPoint. In addition, we store references
to all DemiPoints, ordered by the x-component and y-component of the point, in bi-
nary search trees (BST) Tx and Ty, respectively. Using self-balancing BSTs like red-
black-trees, we can insert, delete and search items in logarithmic time. Additionally,

we also maintain the values base = ψ(|P |)−ψ(k) and sum =
∑n

i=1 log

(
εkX(xi)·εkY (yi)

(εkP (pi))2

)
.

The collection of all stored data is the state SP of our data structure for the sam-
ple P . Because we store a constant amount of information per point, the space
complexity of DEMI is Θ(n). Given State SP , one can query the 3KL estimate
on the set P in constant time as Î3KL = base + sum

|P | . However, this data structure
requires adjustment of SP after every change of P .

Insertion Algorithm To insert a point pn+1 into a state SP , illustrated in Algo-
rithm 4.2, we distinguish two phases of the update. First (Lines 1-6), we add pn+1
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Algorithm 4.2: Insert(SP , pn+1)

1 Compute εkP ′(pn+1) O(n)
2 Compute εkX′(xn+1) and εkY ′(yn+1) O(k · log n)
3 Insert pn+1 into PD O(1)
4 Reference pn+1 in Tx, Ty O(log n)
5 base← base + 1

n
O(1)

6 sum← sum + log
(
εk
X′ (xn+1)·εk

Y ′ (yn+1)

(εk
P ′ (pn+1))2

)
O(1)

7 A← {pi ∈ P : max(|xi − xn+1|, |yi − yn+1|) < εkP (pi)} O(n)
8 B ← {pi ∈ P : |xi − xn+1| < εkX(xi)} O(n)
9 C ← {pi ∈ P : |yi − yn+1| < εkY (yi)} O(n)

10 forall pi ∈ A do
11 Compute εkP ′(pi) O(|A| · n)
12 sum← sum + log((εkP (pi))

2)− log((εkP ′(pi))
2) O(|A|)

13 forall pi ∈ B do
14 Compute εkX′(xi) O(|B| · k · log n)
15 sum← sum− log(εkX(xi)) + log(εkX′(xi)) O(|B|)
16 forall pi ∈ C do
17 Compute εkY ′(yi) O(|C| · k · log n)
18 sum← sum− log(εkY (yi)) + log(εkY ′(yi)) O(|C|)

as a DemiPoint to PD and update base and sum accordingly. Second (Lines 7-18),
we determine which nearest-neighbor distances change and adjust sum according to
the changes. We now describe these steps in more detail, together with the compu-
tational complexity of elementary operations, to allow for an easier evaluation. We
discuss possible improvements in Section 4.2.2.

To add pn+1 to SP , we first compute its k-th nearest neighbor in P ′ by linear
search and derive the k-th nearest-neighbor distance εkP ′(pn+1) (O(n), Line 1). To
determine the k-th nearest-neighbor distances εkX′(xn+1) and εkY ′(yn+1) we can use
the binary search tree and evaluate the distance to the next k and preceding k
elements (O(k · log n), Line 2). With this information we construct the DemiPoint
for pn+1 and insert it into PD (O(1), Line 3). References to this point are then
inserted into Tx and Ty (O(log n), Line 4). Then, we add the appropriate terms to
base and sum (O(1), Lines 6 and 7), respectively.

Next, we find all previous nearest-neighbor distances that changed, by linear
search. For each i ∈ {1, . . . , n} we test whether pn+1, xn+1 and yn+1 is closer than
εkP (pi), ε

k
X(xi) and εkY (yi), respectively. This takes time in O(n) and yields the sets

A, B and C (Lines 7-9), respectively. For each point pi ∈ A we compute εkP ′(pi)
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analogously to εkP ′(pn+1), which takes O(n) each. Then we adjust sum accordingly
(O(1), Line 12). The sets A and B are handled in an analogous way, using εkX′(xi)
and εkY ′(yi), respectively, instead (Lines 13-18). Note that these distances can be
computed in time O(k · log n) each, instead of O(n), analogous to εkX′(xn+1) and
εkY ′(yn+1).

Computational Complexity The total runtime for inserting a point into our
structure therefore is in O(k · n + |A| · n + (|B| + |C|) · k · log n). In the following
theorem we show that |A|,|B| and |C| are in O(k), because there are at most 8 · k
points for which pn+1 is one of the k nearest neighbors. Consequently, our insertion
time is in O(k·n+k2·log n). Since k is suggested to be a small constant, e.g., less than
10, in the literature, we can assume k to be constant. This means that an insertion
is in O(n). This results in the total time complexity of O(n). Because deleting a
point changes the estimate analogously, we can use an analogous algorithm with the
same complexity, i.e., O(n).

Theorem 4.13. Let P ⊆ R2 be a set of points. For any point p ∈ P there exist at
most 8k points q ∈ P such that p is one of the k nearest neighbors of q using the
maximum norm.

Proof. Let p = (x, y) ∈ P be a point and Q ⊆ P be the set of points such that for
each point q ∈ Q, p is one of the k nearest neighbors of q. We separate Q into eight
sets based on their relative location to p, as illustrated in Figure 4.3a. There are four
axis-aligned rays QL, QR, QU , QD ⊆ Q centered at p such that points on any of these
rays share one component with p and differ in the other one. Additionally, there are
four quadrants QRU , QLU , QLD, QRD ⊆ Q centered at p excluding the axis-aligned
rays. Because p cannot be its own nearest neighbor, these eight sets partition Q. To
prove the lemma we proceed to show that each of these eight sets contains at most
k points.

Let r = (xr, yr) be the most distant point to p in the axis-aligned ray QR, that
is, |x − xr| = max(xi,yi)∈QR |x − xi|. Then all other points in QR are on the line
between p and r and thus closer to r than p. This means that QR cannot contain
more than k points, because p would not be a nearest neighbor of r otherwise. By
symmetry, this result also holds for the sets QL, QU , QD.

Similarly, Let r = (xr, yr) be the most distant point to p in the quadrant QRU

and let ∆ be that distance. More formally, it is

∆ = max(|x− xr|, |y − yr|) = max
(xi,yi)∈QRU

max(|x− xi|, |y − yi|). (4.4)

An exemplary illustration can be found in Figure 4.3b with the set QRU = {s, r}.
For any other point qi = (xi, yi) ∈ QRU with qi 6= r it is x < xi ≤ x + ∆ and
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Figure 4.3: (a) The partioning of Q in Theorem 4.13 and (b) an example for QRU .

y < yi ≤ y+ ∆, because r is the point most distant to p. Figure 4.3b illustrates this
by delimiting the area in which all points of QRU lie with dashed lines. Because of
xr > x and yr > y, it follows that |xr − xi| < ∆ and |yr − yi| < ∆. This means
that qi is a nearest neighbor of r. Figure 4.3b shows this by highlighting the area of
nearest neighbors of r with dotted lines. Analogously to the axis-aligned rays, QRU

cannot contain more than k points, because p would not be a nearest neighbor of r
otherwise. By symmetry, this result also holds for the sets QLU , QLD, QRD.

As context for the update time of O(n), Theorem 4.3 proves that any algorithm
requires time in Ω(n log n) to compute the 3KL from scratch. As a result, updating
an estimate using DEMI is asymptotically faster than recomputing it, independently
of the method used. In Section 4.2.2 we show how the time for updates on the 3KL
can be improved even further. However, we first discuss how we use the same
approach to update KSG estimates.

Updating KSG Estimates

Now, we describe how we achieve the same results, that is linear space and linear
time for updates, using KSG estimates instead of 3KL estimates. As with the 3KL,
we decompose the KSG estimate into ÎKSG = base+ sum

|P | . Comparing Equation 2.19
and Equation 2.23, it follows that base and sum need to maintain different values
when maintaining 3KL or KSG estimates. The different equation for base, that is
base = ψ(|P |)+ψ(k)− 1

k
instead of base = ψ(|P |)−ψ(k), does not have any influence

on the overall procedure. However, the change from sum =
∑n

i=1 log

(
εkX(xi)·εkY (yi)

(εkP (pi))2

)
to sum = −∑n

i=1 ψ(MCk
x(pi)) + ψ(MCk

y (pi)) has stronger implications. Most no-
tably, we do not require explicit nearest-neighbor distances per point but need
marginal counts. We need to update a marginal count MCk

x(pi) if and only if the
nearest neighbors of pi in P changes, or a point (x, y) with |x − xi| ≤ δkx(pi) is in-
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Data Structure 4.3: DEMI-KSG
struct {

real x, y
real εkP , δkx, δky
int MCk

x ,MCk
y

} DemiPointKSG ;

struct {
DemiPointKSG[ ] PD
BST<DemiPointKSG*> Tx, Ty
real base, sum

} state;

serted or deleted. As a consequence, per point pi we do not store εkX(xi) and εkY (yi)
but the distances to the furthest x- and y-values among the k nearest neighbors
in P , i.e., δkx(pi) and δky (pi). Additionally we track the marginal counts MCk

x(pi)
and MCk

y (pi). These slight changes are displayed in Data Structure 4.3. Further-
more, this means that we still store a constant amount of information per point,
and the space complexity of the data structure remains Θ(n).

Updating the data structure follows the same principles as before, that is, we
include the new point into the data structure and evaluate its impact on other
marginal counts afterwards. In the following we describe the changes in specific
steps between the update algorithm for 3KL estimates and KSG estimates, that is,
Algorithm 4.2 and Algorithm 4.4.

Tracking marginal counts, instead of nearest-neighbor distances, per attribute
allows for faster updates, because the counts only need increments and decrements
(O(1) each, Lines 16 and 18), instead of recomputation. However, a change of
nearest neighbors does also invalidate the marginal counts and requires computing
them and correct adjustment of sum (Lines 11-14). Computing marginal counts
from scratch can be done with linear search (O(n) each, Lines 2 and 13).

Regarding the time complexity of Algorithm 4.4, it is important to note that B
and C are not sets of points with changed nearest neighbors. As a consequence,
only the size of A has an upper bound of 8 ·k by Theorem 4.13. In the worst case, B
and C contain all points, that is, |B| ≤ n and |C| ≤ n. The total time complexity
therefore is O(n + |A| · n) = O(k · n). As before, k is taken as constant, which
yields the time complexity O(n). This is asymptotically faster than recomputing
the estimate by Theorem 4.6.
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Algorithm 4.4: Insert-KSG(SP , pn+1)

1 Compute δkx(pn+1), δky (pn+1) and εkP ′(pn+1) O(n)

2 Compute MCk
x(pn+1) and MCk

y (pn+1) O(n)

3 Insert pn+1 into PD O(1)
4 Reference pn+1 in Tx, Ty O(log n)
5 base← base + 1

n
O(1)

6 sum← sum− ψ(MCk
x(pn+1))− ψ(MCk

y (pn+1)) O(1)

7 A← {pi ∈ P : max(|xi − xn+1|, |yi − yn+1|) < εkP (pi)} O(n)
8 B ← {pi ∈ P : |xi − xn+1| < δkx(pi)} O(n)
9 C ← {pi ∈ P : |yi − yn+1| < δky (pi)} O(n)

10 forall pi ∈ A do
11 sum← sum + ψ(MCk

x(pi)) + ψ(MCk
y (pi)) O(|A|)

12 Compute δkx(pi), δ
k
y (pi) and εkP ′(pi) O(|A| · n)

13 Compute MCk
x(pi) and MCk

y (pi) O(|A| · n)

14 sum← sum− ψ(MCk
x(pi))− ψ(MCk

y (pi)) O(|A|)
15 forall pi ∈ B do
16 sum← sum− 1

MCkx(pi)
O(|B|)

17 MCk
x(pi)←MCk

x(pi) + 1 O(|B|)
18 forall pi ∈ C do
19 sum← sum− 1

MCky (pi)
O(|C|)

20 MCk
y (pi)←MCk

y (pi) + 1 O(|C|)

4.2.2 Polylogarithmic Updates

Because DEMI relies only on simple algorithms like linear search and binary search
trees during insertions and deletions, faster solutions might exist. In this section we
determine which parts of our insertion algorithm have a high computational cost
and present solutions for these tasks. There are two factors that lead to the linear
time complexity of Algorithm 4.2.

1. Computing the nearest neighbors with linear search

2. Finding the points whose nearest neighbors changed by linear search

Computing the Nearest Neighbors Computing the k nearest neighbors of a
point is a classic problem of computational geometry, which has received a lot of
research. While there exist many solutions, most of them are built for static data
and are not compatible with the incremental changes in dynamic data. But there
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also exist solutions that allow for insertions and deletions. Chan [Cha06] proposed a
dynamic data structure that computes nearest neighbors in two-dimensional spaces
with sub-linear times for insertion, deletion and queries. However, the computational
complexity of deletions is O(log6 n), which is quite high. Kapoor and Smid [KS96]
provide an alternative based on dynamic range trees [Wil85]. With dynamic frac-
tional cascading [MN90] the time complexities for insertions, deletions and querying
the nearest neighbor of a point are in O(log n log log n). To query two nearest neigh-
bors, we can query one nearest neighbor, delete this point from the tree, query the
new nearest neighbor and insert the deleted point. Querying the k nearest neighbors
can thus easily be achieved through a sequence of k queries, k − 1 deletions, and
k − 1 insertions, with total time in O(k · log n log log n).

Finding Points with Changed Nearest Neighbors Finding all points whose
nearest neighbors have changed is also a geometric problem, that is, finding the
reverse nearest neighbors of the inserted or deleted point. For each point p = (x, y)
with nearest-neighbor distance ε, all nearest neighbors of p (using the maximum
norm) are within the square [x − ε, x + ε] × [y − ε, y + ε] ⊆ R2. To find all points
whose nearest neighbors contain a point p′, the task is to determine which squares
contain p′. One data structure to solve this problem is the segment tree by Bent-
ley [Ben77]. The technique of dynamic fractional cascading is also applicable for
segment trees [MN90] and yields the time complexities for insertions and deletions
in O(log n log log n). Queries require time in O(log n log log n + m), where m is the
number of squares returned.

Improving DEMI To achieve sub-linear time complexity for updates, we inte-
grate a two-dimensional dynamic range tree and a two-dimensional dynamic segment
tree into DEMI. We call this the augmented version of DEMI (ADEMI). The in-
sertion algorithm is nearly identical to Algorithm 4.2, except for changes in time
complexities and insertions and deletions to the integrated tree structures. The
full data structure and insert algorithm are listed in Data Structure 4.5 and Al-
gorithm 4.6. For brevity, we only mention the changes relative to Algorithm 4.2
here, indicating line numbers of the corresponding lines in both algorithms as Line
[Algorithm 4.2]/[Algorithm 4.6] Using the dynamic range tree, Line 1/1 re-
quires only time in O(k · log n log log n), and Line 11/14 requires time in O(|A| ·
k · log n log log n). Using the dynamic segment tree, Line 7/9 can be done in time
O(log n log log n + |A|). Additionally, B and C can only contain elements that are
at most k positions before and after xn+1 and yn+1 in Tx and Ty, respectively. Con-
sequently, Lines 8-9/10-11 can also be done using the binary search trees in time
O(k · log n).
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Data Structure 4.5: ADEMI
struct {

real x, y
real εkP , εkX , εkY

} DemiPoint ;

struct {
DemiPoint[ ] PD
BST<DemiPoint*> Tx, Ty
real base, sum
2D dynamic range tree Trange
2D dynamic segment tree Tseg

} state;

Algorithm 4.6: ADEMI-Insert(SP , pn+1)

1 Compute εkP ′(pn+1) O(k · log n log log n)
2 Compute εkX′(xn+1) and εkY ′(yn+1) O(log n)
3 Insert pn+1 into PD O(1)
4 Reference pn+1 in Tx, Ty O(log n)
5 Insert pn+1 into Trange O(log n log log n)
6 Insert square(pn+1, P

′) into Tseg O(log n log log n)
7 base← base + 1

n
O(1)

8 sum← sum + log
(
εk
X′ (xn+1)·εk

Y ′ (yn+1)

(εk
P ′ (pn+1))2

)
O(1)

9 A← {pi ∈ P : max(|xi − xn+1|, |yi − yn+1|) < εkP (pi)}
O(log n log log n+ |A|)

10 B ← {pi ∈ P : |xi − xn+1| < εkX(xi)} O(k · log n)
11 C ← {pi ∈ P : |yi − yn+1| < εkY (yi)} O(k · log n)
12 forall pi ∈ A do
13 Delete square(pi, P ) from Tseg O(|A| · log n log log n)
14 Compute εkP ′(pi) O(|A| · k · log n log log n)
15 Insert square(pi, P ′) into Tseg O(|A| · log n log log n)
16 sum← sum + log((εkP (pi))

2)− log((εkP ′(pi))
2) O(|A|)

17 forall pi ∈ B do
18 Compute εkX′(xi) O(|B| · k · log n)
19 sum← sum− log(εkX(xi)) + log(εkX′(xi)) O(|B|)
20 forall pi ∈ C do
21 Compute εkY ′(yi) O(|C| · k · log n)
22 sum← sum− log(εkY (yi)) + log(εkY ′(yi)) O(|C|)
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Additionally, we need to maintain the integrated tree structures. Specifically,
we insert pn+1 into the dynamic range tree in Line -/5 and insert the square of its
nearest neighbors, that is,

square(pn+1, P
′) = [xn+1 − εkP ′(pn+1), xn+1 + εkP ′(pn+1)]

× [yn+1 − εkP ′(pn+1), yn+1 + εkP ′(pn+1)], (4.5)

into the dynamic segment tree in Line -/6. This square corresponds exactly with
the area of nearest neighbors, which is illustrated with dashed lines during the intro-
duction of the 3KL in Figure 2.2a. Both insertions require time in O(log n log log n).
Finally, for each point pi ∈ A we delete its old square square(pi, P ) from the dynamic
segment tree in Line -/13 and insert the new square square(pi, P ′) in Line -/15.
This requires time in O(|A| · log n log log n).

For an overview of the new time complexity, the complexity per operation of
the insertion algorithm for ADEMI are shown in Algorithm 4.6. Because it is
|A|, |B|, |C| ∈ O(k), the total time complexity of an insertion is O(k2·log n·log log n).
As before, k can be assumed to be a small constant, which leads to an insertion
time of O(log n log log n). Deleting a point is completely analogous to insertions in
(A)DEMI, and the used tree structures have the same complexity for insertions
and deletions. Consequently, deletions in ADEMI also have a deletion time of
O(log n log log n). Since the time complexity of queries is in O(1), ADEMI solves
problem 3KL-Update in time O(log n log log n). This means that ADEMI is nearly
optimal, since its time complexity is only a factor log log n higher than the lower
bound from Corollary 4.12.

The drawback of ADEMI is an increased space complexity. The two-dimensional
range tree and segment tree both have the space complexityO(n log n). Additionally,
the improvements to the time complexity cannot be used when maintaining KSG
estimates. This is because the number of points whose marginal counts change
during an update has no bound lower than n. Also, the impact of incrementing
or decrementing a marginal count on the overall estimate depends on the current
count, which can be any value between k and n. As a consequence, it remains
unclear whether any dynamic data structure can solve KSG-Update in sub-linear
time, or whether there exists a stronger lower bound.

4.2.3 Experiments

In this section we empirically validate the estimation quality and time efficiency of
our approach. To this end, we use data with known mutual information values and
show that the 3KL converges to these values even with small samples. We also do
so for the KSG. For brevity we only present the results for k = 4, since this value
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offers good rates of convergence for both the KSG and 3KL and follows the gen-
eral recommendation of small values for k. Additionally, we compare the runtimes
for maintaining 3KL estimates using ADEMI, DEMI and repeated estimation from
scratch (REFS). For REFS we compute the 3KL, i.e., Equation 2.19, repeatedly with
a state-of-the-art static approach [Eva08], i.e., using sorting and space-partitioning
trees for nearest-neighbor searches. While we have already proven a clear hierar-
chy regarding their asymptotic scalability, the complexity classes neglect constant
factors. So it remains interesting how their concrete runtimes compare.

Setup All approaches are implemented in C++ and compiled using the Gnu Com-
piler (version 5.4) with optimization (-O3) enabled. We use the non-commercial
ALGLIB1 implementation of KD-Trees as space-partitioning trees in REFS. We
conduct all experiments on Ubuntu 16.04.2 LTS using a single core of an AMD
OpteronTM Processor 6212 clocked at 2.6 GHz and 128GB RAM.

Data

For our evaluation, we use synthetic and real data sets. In particular, we use the
dependent distributions with noise used for comparing mutual information estima-
tors [KBG+07]. These distributions have a noise parameter σr, which we vary from
0.1 to 1.0. Thus, we use 10 distributions for each of these dependency types. Ad-
ditionally, we use the uniform distributions used to compare mutual information
with the maximal information coefficient [KA14] as well as independent uniform
and normal distributions. As real data sets, we use sensor data of randomly charged
and discharged batteries [BKD14] and time series of household power consump-
tion [DG17b]. Monitoring mutual information on such data could be useful to
monitor the condition of battery cells for maintenance or to infer knowledge about
the behavior of the households inhabitants. In the following, we briefly describe the
different distributions and data sets.

Linear To construct the point pi ∈ P , we draw the value xi from the normal dis-
tribution N(0, 1). Additionally, we draw some noise ri from the normal distribution
N(0, σr), where σr is the noise parameter of the distribution. This yields the point
pi = (xi, xi + ri).

Quadratic This distribution is generated analogously to the linear distribution,
except that the point is pi = (xi, x

2
i + ri).

1ALGLIB (www.alglib.net), Sergey Bochkanov
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Figure 4.4: An overview of the uniform distributions used.

Periodic For each point pi ∈ P , we draw the value xi from the uniform distribution
U [−π, π]. Additionally, we draw some noise ri from the normal distributionN(0, σr),
where σr is the noise parameter. This yields the point pi = (xi, sin(xi) + ri).

Chaotic This distribution uses the classical Hénon Map, that is,

hxi+1
= 1− α · h2

xi
+ hyi

hyi+1
= β · hxi ,

with α = 1.4, β = 0.3 and (hx0 , hy0) = (0, 0). For a point pi we additionally inde-
pendently draw noise rxi, ryi from the distribution N(0, σr), where σr is the noise
parameter. Each point pi ∈ P is then pi = (hxi + rxi, hyi + ryi).

Uniform The uniform distributions A to H we use are illustrated in Figure 4.4.
Note that the striped areas contain twice as many points as the dotted areas. For
these distributions, each striped area with size 0.25 · 0.25 contains 25% of all points,
while dotted areas of the same size contain 12.5% of all points. The distribution A
simply draws values vi from U[0,1] and constructs the points pi = (vi, vi).

Independent Lastly, we use the distributions UInd and NInd, where each point
consists of two values drawn independently and identically distributed from U [0, 1]
and N(0, 1), respectively.

Battery Data This data set, available at the NASA Prognostics Center of Excel-
lence [BKD14], monitors voltage, current and temperature of battery cells during
random loads. We use the data corresponding to battery cell “RW9” and use each
combination of the attributes as bivariate sample.
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Figure 4.5: Avoiding duplicates in a sample by adding minimal noise (top) or filling
the missing precision uniformly (bottom).

Power Consumption This data set, available at the UCI Machine Learning
Repository [DG17b], monitors the power consumption of a household in France.
We use each combination of global active power, global reactive power and voltage
as a bivariate sample.

Data Precision

The nearest-neighbor based entropy estimator, and by consequence the 3KL and
KSG, expects samples from continuous distributions and require samples without
duplicate values. Because of the limited precision of the battery and the power
consumption data, we add noise to the sample. Kraskov et al. also have observed this
issue and recommend the addition of low intensity noise, e.g., a normal distribution
with variance 10−10, to eliminate duplicate points [KSG04]. However, we think
that filling the missing precision with uniform noise is a better compensation for
rounded or imprecise data. Figure 4.5 illustrates both approaches with the number
of duplicates per value of an imprecise data set in parentheses. For our experiments
we use the second approach.

Quality of Estimation

To evaluate the quality of estimation, we use all data sets with well defined mutual
information values. That is, all synthetic data sets except the chaotic distributions,
whose probability densities are unknown, and the uniform distribution A, whose
mutual information is infinite. We use these distributions to evaluate the consis-
tency and the rate of convergence of the KSG, 3KL and the estimator used by
DIMID [BH17]. Specifically, we are interested in the difference between the esti-
mated mutual information and true value for the distribution as well as the variance
of estimates for samples of the same distribution. Since the behavior has turned out
to be very homogeneous across the different distributions, we restrict our presenta-
tion to selected results.



46 CHAPTER 4. ESTIMATING MUTUAL INFORMATION

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 10  100  1000  10000

A
ve

ra
g
e 

E
rr

or
 [

n
at

]

Sample Size

KSG (k=4)
3KL (k=4)

DIMID

Figure 4.6: Average difference of estimates to true mutual information values de-
pending on sample size.

Development with sample size For each distribution we created samples with
sample sizes between 10 and 10000 and 1000 repeats per size. Figure 4.6 graphs the
average difference between the estimate and the true mutual information value of
the respective distribution. Additionally, Figure 4.7 shows the standard deviation of
estimates of the same distribution and sample size, averaged across all distributions.
One can see in these diagrams, that both the 3KL and the KSG converge quickly
to the true values and have only small variance. In contrast, the approximate
estimator in DIMID has a strong variance and difference. We think the reason is
the random projection used by that estimator. It may retain enough information
such that estimates are comparable to each other, as shown in their work [BH17].
However, we think that the projection loses too much information regarding the
joint probability density to allow for good mutual information estimates.

Different dependency types We also studied whether the quality of estimation
changes for different dependency types. As we have seen in the previous paragraph,
both the 3KL and KSG are very consistent even with moderate sample sizes. As a
result we use a small sample size, i.e., 100, to highlight differences. Figure 4.8 shows
the average estimation error and standard deviation of estimates using 3KL, KSG
and DIMID for each dependency type. While the variance of both KSG and 3KL are
comparable for all dependency types, the difference to the true value is imbalanced
for the KSG but not the 3KL. Unfortunately, we do not have any explanation
for this difference. As before, we notice strong differences between the DIMID
approximation and the results of KSG and 3KL.
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Figure 4.7: Standard deviation of estimates depending on sample size.
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Runtime Analysis

We have benchmarked runtimes of our data structures for all data sets. Because we
are not aware of any competitor that offers good mutual information estimates on
dynamic data, we compare our performance to naïve recomputation of the estimate
when an update occurs. We compare the runtime to maintain 3KL estimates using
DEMI and ADEMI as well as repeated recomputation (REFS). We use a slight
simplification of the ADEMI trees, compared to the description in Section 4.2.2.
Specifically, we did not implement dynamic fractional cascading and relied only on
the technique of Willard [Wil85] for insertion and deletion of nodes. The reason is
that dynamic fractional cascading provides a small asymptotic benefit, i.e., reducing
a factor log n to log log n, but requires a lot of overhead. As a result, the structure
labeled ADEMI in this section has insertion and deletion time in O(log2 n) instead
of O(log n log log n).

By design, both DEMI and ADEMI require only constant time for querying
the current mutual information value, but require more time to update the data
structure during insertions and deletions. The repeated static estimation REFS has
inverse properties, i.e., constant time insertions and deletions but expensive queries.
To provide a good overview we use the task of monitoring the mutual information of
a changing data set of fixed size. That is, each update consists of deleting one point,
inserting a different point and querying the current mutual information estimate.
For these experiments we averaged the time required per update using 1000 updates
per distribution and sample size.
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Figure 4.9 shows the average update time required across all synthetic distribu-
tions per sample size. The same graph based on the real data sets instead of the
synthetic distributions is Figure 4.10. As expected, the time complexity of each ap-
proach translates directly to asymptotic scaling with sample sizes, that is, steepness
of the curve in the double log plot. To highlight this, the graphs include different
asymptotic functions with dashed and dotted lines. An interesting result is that
ADEMI has by far the worst performance for small windows and by far the best
performance for large ones. Our explanation is as follows: The maintenance of the
range trees and even more so the segment trees is expensive, even if it scales favor-
ably. For instance, when inserting a square into a two-dimensional segment tree,
8 · (1 + log n) nodes are created in the tree. This is a lot even for small n but does
not increase significantly for large n.

Discussion

To summarize our experiments, we confirmed the estimation quality of 3KL and KSG
across all dependency types tested. Additionally, we compared the performance of
DEMI, ADEMI and REFS both on synthetic and real data. As expected, DEMI
consistently outperforms REFS. The evaluation of ADEMI depends on the context
and application. While it is slow for small window sizes, it barely slows down for
larger sizes. On the one hand, this means that it is often recommendable to use
DEMI if the data size is small. On the other hand, ADEMI can be used for very
data-intensive tasks such as monitoring high-throughput streams. A problem with
stream monitoring often is the multiplicative cost of high temporal resolutions: A
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stream with frequent items permits less time to process a new item, and a window
with fixed time length contains more items. This leads to increased time to process
a new item. As we have seen, the second factor is nearly negligible when using
ADEMI.

Overall our experiments show that our techniques reduce the computation time
for maintaining mutual information estimates on sliding windows by orders of mag-
nitudes. As result, using mutual information for real-time monitoring becomes real-
istically feasible. For instance, if we consider a data stream with a frequency of 50
Hz, which is the frequency of the European power grid, real time processing cannot
take longer than 20ms per update. Then, REFS can handle sliding windows up to
roughly 4000 points (80 seconds worth of data) while DEMI and ADEMI can handle
up to 50000 (16 mintues) and 200000 (70 minutes), respectively.
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4.3 Iterative Mutual Information Estimation

This section is previously published in a mostly identical form at the International
Conference on Extending Database Technology (EDBT ’19) in [VB19]. There are
only some adjustments to fit the form and consistency for this dissertation.

Now, we turn our attention from mutual information estimation on dynamic data
to dynamic estimation. While the 3KL and KSG offer good estimation results, they
are very rigid in their time requirements and regarding the estimation quality. Once
the computation has started, they impose a fixed time requirement and do not yield
any preliminary result if they are terminated prematurely. They also are unable to
exploit ‘easier’ queries like whether the mutual information value is above a certain
threshold but instead determined the value. These characteristics are also present
with any other estimation technique for mutual information. However, such features
are highly relevant for high-dimensional data and data streams with irregular arrival
rate as we showcase with the following two scenarios.

Scenario 4.14. Consider a modern production plant with smart meters installed on
each machine. A first step in data exploration is determining which attributes are
strongly dependent. For instance dependencies among currents or energy consump-
tion may offer insights into production sequences. For this first step, a query like
“Which pairs of measurements have a mutual information value above the thresh-
old MIT?” often suffices. With conventional mutual information estimators, each
pair either induces high computational costs, or results are uncertain because of low
estimation quality.

Scenario 4.15. Think of a database with financial data and its real-time analysis.
To maintain a diverse portfolio, it is important to track the relationships between
stocks. Because bids and trades happen irregularly, new information and market
prices arrive at irregular speed. Thus, it is not known how much time is available
to monitor stock relationships in the presence of incoming data. Current mutual
information estimators cannot adapt during execution. They risk not producing a
result in time, or estimates are of low quality.

To improve upon these shortcomings, we study estimation of mutual informa-
tion with dynamic allocation of computation time. Ideally, such an estimator does
not only offer preliminary results, but also indicate its remaining uncertainty. Fig-
ure 4.11 shows exemplary progression over time of such an estimator based on our
experiments with real data. The black line indicates the preliminary estimate after
a certain runtime, and the gray area shows the (expected) maximum error of the
preliminary estimate. To obtain the definitive result MIfin, a user would require time
tfin. However, he could also stop the estimator as soon as the estimate is above
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Figure 4.11: MI estimation with dynamic time allocation.

a threshold MIT with certainty, or he can use the preliminary result available at an
arbitrary time t.

In this section, we focus on iterative estimation of MI in order to offer this
functionality. Here, ‘iterative’ means quickly providing an estimate, but with the
option to improve the estimation if there is time left. In other words, improving the
estimate with some time available is what we call an iteration. At the same time, an
iterative estimator can terminate the estimation, i.e., stop iterating, when the result
is good enough. For efficiency, it is important that computations from previous
iterations remain useful and are not repeated or discarded in a later iteration. So
far, efficient iterative estimators for mutual information do not exist.

The outline for the presentation of our iterative mutual information estimator
(IMIE) is as follows. First we describe the core concept for IMIE, its underlying data
structure as well as the algorithms for the initialization and for subsequent iterations.
Then we describe our approach for nearest-neighbor search, which is better for
iterative algorithms than the conventional methods. Afterwards, we describe the
statistical bounds that IMIE provides with its estimates. Due to our unconventional
approach for the nearest-neighbor search and the dynamic nature of the estimation
task, we present an extensive analysis of the time complexity with IMIE. Finally, we
present the quality of estimation and practical run time of IMIE through extensive
experiments with synthetic and real data.
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4.3.1 Core Principles

The core concept of our approach lies with the fact that both the KSG and 3KL
estimates consists of a fixed value and an the average of something that is computed
for each point in the data. As a brief reminder, the equations (cf. Section 2.2) are

Î3KL(P ) = ψ(n)− ψ(k) +
1

n

n∑
i=1

log

(
εkX(xi) · εkY (yi)(

εkP (pi)
)2

)
, (2.19 revisited)

ÎKSG(P ) = ψ(n) +ψ(k)− 1

k
− 1

n

n∑
i=1

ψ
(
MCk

x(pi)
)

+ψ
(
MCk

y (pi)
)
. (2.23 revisited)

This means that that up to some offset that depends only on n and k, the esti-
mates are exactly the arithmetic means of sets of numbers. While it is computation-
ally expensive to compute each exact mean, which we have shown in Theorem 4.3
and Theorem 4.6, the idea is that we may not need the exact mean. Specifically,
if we compute this mean not over all n indices but only some of them, we can use
statistical properties. disregarding the offset for a brief moment, the exact estimates
are means of random variables with finite populations. Then the mean of a sub-
sample of such a population has an expected value equal to the exact mean and
converges to the true mean with increasing subsample size. For brevity, we focus all
further explanations and formalism to the KSG estimates. This is because all the
following techniques work analogously and the KSG is the more well-known method.

To define IMIE, we introduce some notation in addition to the one from Sec-
tion 2.2. For a point p ∈ P , we define the pointwise estimate

Ψ(p) = ψ
(
MCk

x(p)
)

+ ψ
(
MCk

y (p)
)
. (4.6)

The set of all pointwise estimates is ρ = {Ψ(p1), . . . ,Ψ(pn)}. Seeing ρ as a finite
population of size n with mean µρ, Equation 2.23 can be rewritten as

ÎKSG(P ) = ψ(n) + ψ(k)− 1

k
− µρ. (4.7)

Using a (random) subsample % ⊆ ρ, its mean µ% is an (unbiased) estimation of µρ.
This in turn yields an (unbiased) estimate of ÎKSG(P ),

Î%(P ) = ψ(n) + ψ(k)− 1

k
− µ%. (4.8)

The variance σ2
% of our subsample serves as a quality indicator of this approxima-

tion, which we further discuss in Section 4.3.3. The idea of IMIE is to maintain a
subsample % and use Î%(P ) to estimate ÎKSG(P ). Each iteration then increases the
sample size of % by one, to improve the estimate. Starting with an empty set, this
means there are exactly |P | iterations before IMIE yields exactly the same result as
the KSG, i.e., Î%(P ) = ÎKSG(P ).
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Data Structure 4.7: IMIE
struct {

Point[ ] P
Real Mean, Var
Int k,m
Int[ ] OrderR, Orderx, Ordery
Real Offset

};

Algorithm 4.8: Init(P, k)

1 Persist k and P O(n)
2 Mean, Var, m← 0 O(1)
3 OrderR, Orderx, Ordery ← (0, 1, . . . , |P | − 1) O(n)
4 Sort Orderx and Ordery O(n log n)
5 Offset ← ψ(|P |) + ψ(k)− 1

k
O(1)

4.3.2 IMIE Data Structure

IMIE uses and stores P and k as well as some additional information listed in Data
Structure 4.7. In the following we use the zero-indexed array notation P [i] = pi+1.
Contrary to the original data sample P , we do not store % explicitly. Instead we
store its mean Mean, its variance Var and size, which is the number of performed
iterations m. To maintain the current variance efficiently, we use the online algo-
rithm by Welford [Wel62]. To ensure that % is a random subsample of ρ, we need to
draw without replacement. To this end, IMIE maintains an array of indices OrderR,
where index i at position j means that Ψ(pi) is added to % in the j-th iteration.
The positions of this array are randomly swapped during iterations to perform the
random selection. This enables a fast selection of a random element without re-
placement in each iteration. In addition, we maintain two arrays Orderx and Ordery
containing references to all points in P ordered by their x- and y-value, respectively.
For instance, index i at Orderx[0] means that pi has the smallest x-value in P , i.e.,
pi = arg minp∈P xp. These ordered arrays are used to find nearest neighbors, as we
describe later in this section. Finally, we store the Offset = ψ(n) + ψ(k)− 1

k
. With

this, the (preliminary) MI estimate is available as Î%(P ) = Offset −Mean.

Methods We now present the two methods Init and Iterate outlined in Al-
gorithms 4.8 and 4.9. For brevity, these algorithms already show amortized time
complexities per operation, which we derive and discuss properly in Section 4.3.4.
Init ensures the proper state of Data Structure 4.7 before the first iteration, i.e.,



4.3. ITERATIVE MUTUAL INFORMATION ESTIMATION 55

Algorithm 4.9: Iterate
1 ID ← Draw random integer from [m,n− 1] O(1)
2 Swap values of OrderR[m] and OrderR[ID ] O(1)
3 p← P [OrderR[m]] O(1)
4 kNN(p)← NNSearch(p) (see Algorithm 4.10) O(

√
n)

5 Compute δkx(p), δky (p) O(1)

6 Compute MCk
x(p), MCk

y (p) O(log n)

7 Ψ(p)← ψ
(
MCk

x(p)
)

+ ψ
(
MCk

y (p)
)

O(1)

8 m← m+ 1 O(1)
9 Diff old ← Ψ(p)− Mean O(1)

10 Mean ← Mean +Diff old
m

O(1)
11 Diff new ← Ψ(p)− Mean O(1)

12 Var ← Var·(m−1)+Diffold·Diffnew
m

O(1)

preparing all variables assuming that |%| = 0. Observe that Init is a straightforward
method for the simple case of static data with two attributes. For other scenarios,
such as high-dimensional or streaming data, some adjustments to the initialization
may be appropriate, as we discuss in Section 4.3.4.

Iterate increases the size of sample % by one. This requires computing Ψ(p)
for a random p ∈ P with Ψ(p) 6∈ %. Iterate consists of three phases. In the first
one (Lines 1-3), we select a random point p of P that has not been selected earlier.
In the (m-1)-th iteration, we swap the index at position m of OrderR with the
index at a random position after m− 1. This ensures that we do not use any index
twice, since positions before m are not considered, and that each unused index
has the same probability of being selected. This random swap is one step of the
Fisher-Yates Shuffle in the version of Durstenfeld [Dur64], which fully randomizes
the order of a sequence. The second phase (Lines 4-7) computes Ψ(p) using the
ordered lists Orderx and Order y. The last phase (Lines 8-12) performs the online
algorithm [Wel62] to maintain mean and variance of a sample, in our case %.

Example 4.16. Disregarding the dashed lines for now, Figure 4.12 illustrates the
state of Data Structure 4.7 after initialization and before the first iteration. For the
first iteration, we draw an integer ID from {0, . . . , n− 1}. Suppose that we drew 5.
We swap the content of OrderR[0] and OrderR[5]. OrderR[0] now contains 5. This
means that this iteration adds Ψ(P [5]) = Ψ(p6) to our implicit sample %. We then
determine its nearest neighbor 1NN(p6) = {p15}, the distances δ1

x(p6) and δ1
y(p6) as

well as the marginal counts MC1
x(p6) = 1 and MC1

y (p6) = 3. The dashed lines in
Figure 4.12 illustrate the area of counted points in x and y-direction, respectively. It
follows that Ψ(p6) = ψ(1)+ψ(3) = 0.346. Substituting the appropriate variables, the
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Figure 4.12: State of IMIE after initialization.
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Figure 4.13: State of IMIE after two iterations (Ψ(p6) and Ψ(p7)).

remaining values are set accordingly, i.e., m = 0 + 1 = 1, Mean = 0 + 0.346
1

= 0.346
and Var = 0·0+0·0.346

1
= 0. The second iteration is analogous, drawing ID = 6

at random from {1, . . . , n − 1}, thus choosing p7. Its nearest neighbor is p8, and
the marginal counts are MC1

x(p7) = 1 and MC1
y (p7) = 6, cf. the dashed lines in

Figure 4.13. As a result, it is Ψ(p7) = ψ(1) +ψ(6) = 1.129. Analogously to the first
iteration, the remaining values are m = 1 + 1 = 2, Mean = 0.346 + 0.783

2
= 0.738

and Var = 0·1+0.783·0.391
2

= 0.153. Figure 4.13 graphs the state of Data Structure 4.7
after both iterations, and the new MI estimate is 1.164− 0.738 = 0.426.

Lightweight Nearest-Neighbor Search

A computation-intensive step in Iterate is the computation of nearest neighbors,
which also is a key step for static estimation with the KSG. The classic solu-
tion [KSG04, VH07] is using space-partitioning trees, which are optimal in terms
of computational complexity by Corollary 4.8. This efficiency is achieved because
the slow tree construction is performed once, and each nearest-neighbor search af-
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terwards is fast. Contrary to the traditional KSG estimation, it is not known be-
forehand how many nearest-neighbor searches IMIE performs. Constructing such
a tree for IMIE would not only delay the first estimate, but may also be an inef-
ficient choice overall if only few iterations take place. The opposite, i.e., searching
nearest neighbors without any preparation, is a linear search. Each iteration would
then require time linear in the number of data points. Since IMIE should offer
both fast iterations and preliminary estimates after a short time, our approach is a
compromise between these two options. The general idea is to use sorted arrays to
perform a “guided” linear search that offers a good amortized time complexity (cf.
Section 4.3.4). In the following, we elaborate on our approach, NNSearch.

Let p be the point whose nearest neighbor we are searching for and q the nearest
neighbor we have found so far. Then any point r with |xp − xr| > ‖p− q‖∞ cannot
be a nearest neighbor with the maximum norm. This means that we only have to
consider the interval [xp−‖p−q‖∞, xp+‖p−q‖∞] in the sorted array Orderx. When
we find a closer point during the search, this interval gets smaller, and fewer points
need to be considered. For the y-values, this is analogous. To reduce the number
of worst-case scenarios, we perform this search simultaneously in both directions
and terminate when either one terminates. See Algorithm 4.10 for an algorithmic
description of NNSearch.

Example 4.17. Figure 4.14 illustrates an exemplary run of this procedure for k = 1.
The figure shows four states corresponding to the variables of NNSearch(p) after
0, . . . , 3 loops. The query point p is the filled square, and a projection of the points
to their x- and y-coordinates is shown at the bottom and the left side, respectively.
These projections indicate the order of points in Orderx and Ordery, respectively.
Each state after the first loop also illustrates the variables of NNSearch. The
nearest neighbor found so far is marked with a circle and is labeled NN , and the
distance δmax = ‖p−NN‖∞ is used for the dashed lines that highlight the remaining
area of nearest neighbor candidates. Points accessed via Orderx in a previous itera-
tion are marked with a diagonal stripe from the upper left to the lower right. This is
done analogously for Ordery. Each loop considers the next unmarked point in both
directions for both Orderx and Ordery. Additionally, the small arrows illustrate the
minimal distances ∆◦± for any further point accessed when iterating over Orderx or
Ordery in the respective direction. After the third loop, the arrows of ∆y+ and ∆y−
both exceed the area of the remaining candidates, represented by the dashed lines.
This means that all relevant candidates have been considered via Ordery, and that
the current nearest neighbor is correct.
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Algorithm 4.10: NNSearch(p)
1 ix, iy ← index of p in Orderx, Order y, respectively
2 ∆x+,∆x−,∆y+,∆y−, loops← 0
3 δmax ←∞
4 NN ← {}
5 while min(∆x−,∆x+) < δmax ∧min(∆y−,∆y+) < δmax do
6 loops ← loops + 1
7 if ∆x+ < δmax then
8 ∆x+ ← |xp − xP [Orderx[ix+loops]]|
9 UpdateNN(P [Orderx[ix + loops]])

10 if ∆x− < δmax then
11 ∆x− ← |xp − xP [Orderx[ix−loops]]|
12 UpdateNN(P [Orderx[ix − loops]])

13 if ∆y+ < δmax then
14 ∆y+ ← |yp − yP [Ordery [iy+loops]]|
15 UpdateNN(P [Ordery[iy + loops]])

16 if ∆y− < δmax then
17 ∆y− ← |yp − yP [Ordery [iy−loops]]|
18 UpdateNN(P [Ordery[iy − loops]])

19 return NN

function UpdateNN(q)
1 if ‖p− q‖∞ < δmax then
2 insert q into NN
3 if |NN| > k then
4 remove arg maxr∈NN ‖r − p‖∞ from NN

5 if |NN| = k then
6 δmax ← maxr∈NN ‖r − p‖∞

4.3.3 Statistical Quality Indicators

Finally, we present statistical guarantees for early estimates by IMIE. Since % is
a subsample of ρ, statistical tests with µ% and σ2

% yield statistically significant as-
sertions regarding µρ. Equations 4.7 and 4.8 give way to analogous assertions for
ÎKSG(P ).
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Figure 4.14: Illustration of Algorithm 4.10 for each loop.

Theorem 4.18 ([Ric06]). Let ρ be a finite population of size n with mean µρ and
a variance σ2

ρ. When drawing an i.i.d. sample % of size m from ρ, the sample mean

µ% has an expected value of E(µ%) = µρ and a variance of σ2
µ% =

σ2
ρ

m

(
n−m
n−1

)
.

Proof. See [Ric06].

While the classic version of the Central Limit Theorem is not formulated for
finite populations, it has been proven that some variations are applicable, and that
µ% is approximately normally distributed [Ric06]. In other words, drawing a sample
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Figure 4.15: Illustration of the normal distributions N (µρ, σµ%) (upper labels) and
N (0, 1) (lower labels).

of size m with a sample mean µ is as likely as drawing µ from N (µρ, σµ%). So we
can estimate the probability that a sample mean µ% is off by more than a specified
value ε > 0 by using the cumulative distribution function Φ of the standard normal
distribution N (0, 1). This is illustrated in Figure 4.15 and is formally described as

Pr[|µ% − µρ| ≥ ε] = 2 · Φ
(−ε
σµ%

)
. (4.9)

Alternatively, one can specify a tolerated error probability α and obtain a con-
fidence interval. Let Φ−1 be the inverse cumulative distribution function of the
standard normal distribution, i.e., Φ(Φ−1(α)) = α. Then the mean of a sample
deviates with probability 1 − α by at most |Φ−1(α

2
)| · σµ% from µρ. This is because

both tails of the distributions have to be considered. More formally, it is

Pr
[
µ% −

∣∣∣Φ−1
(α

2

)∣∣∣σµ% ≤ µρ ≤ µ% +
∣∣∣Φ−1

(α
2

)∣∣∣σµ%] = 1− α. (4.10)

Lastly, there are two more considerations necessary to obtain these statistical
guarantees from IMIE. One is that the variance σ2

ρ, which is used to determine σ2
µ%

in Theorem 4.18, is not known. Using the approximation σ2
ρ ≈ σ2

%
m(n−1)
(m−1)n

yields the

unbiased approximation σ2
µ% ≈

σ2
%(n−m)

(m−1)n
, see [Ric06]. The other point is the multiple

testing problem. The probabilities for errors only hold for individual tests. But when
performing multiple tests to obtain a statistically significant result, the chance of an
erroneous result in one test is higher. For instance, this occurs when the response
to a statistically insignificant test result is to perform another test, evaluating the
result without considering the first, inconclusive result. We illustrate this effect with
an example.
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Example 4.19. Consider an instance of IMIE that has performed some iterations so
far. We use the current mean and var to perform a statistical test whether ÎKSG(P )
is above a threshold t. We accept an error chance of 10%. Let us assume that the
result of the first test is not significant enough, i.e., the probability is less than 90%
based on the current sample. We iterate our estimate a few times and perform a
second test, which achieves the desired probability of 90%. However, if ÎKSG(P ) is
below t, the likelihood that a test reports false certainty based on an unlikely sample
increases with each sample. For two tests, the probability of obtaining false certainty
is then Pr[ÎKSG(P ) < t] = 1− (1− 0.1)2 = 0.19.

To account for this problem, we use the correction due to Šidák [Šid67]: To
obtain an overall error chance of α, the error chance allowed for the c-th test is
αtest = 1− (1− α)

1
c .

To summarize this section, we present the full formula for the c-th statistical test
whether ÎKSG(P ) is greater than a threshold t, using variables from IMIE.

Pr[ÎKSG(P ) > t] ≈ 1−

1− Φ

Offset−Mean− t√
Var·(|P |−m)

(m−1)|P |

c

(4.11)

Since we approximate σ2
ρ, this equation is not exact. On the other hand, the

Šidák-correction is very conservative in our case. Namely, when iterating IMIE, the
new sample is a superset of the previous sample. This means that the tests based on
these samples are dependent, and that the effect of the multiple testing problem is
less pronounced. Ultimately, we do not have any formal result to which degree these
effects do cancel each other out. In all our experiments in Section 4.2.3 however,
the error rate never exceeds the bounds established in this section.

4.3.4 Complexity Analysis

Now we derive the time complexity of IMIE. First, we do so for our nearest-neighbor
search. We then use this result to derive the complexity for initializing and iterating
IMIE. Finally, we discuss potential improvements for specific scenarios.

Nearest-Neighbor Search

We establish the time complexity of Algorithm 4.10. Each call of UpdateNN(q)
takes time in O(k) to compute the (arg) maxr∈NN ‖r − p‖∞. Additionally, let I(p)
be the number of loops performed by NNSearch(p) before terminating. Then
the time complexity is in O(log n + I(p) · k). Namely, the only other step that is
not an elementary assignment is computing the indices of p in Orderx and Ordery
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X
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q

Figure 4.16: A degenerative case for NNSearch.

with binary search, in O(log n). However, I(p) is linear in n for the worst case.
Figure 4.16 shows such a degenerative case, where all points except for p and q are
equally distributed among the two grey areas. In this case, NNSearch(p) cannot
discover the nearest neighbor q via Orderx or Order y with fewer than n−2

2
loops.

However, we prove the nontrivial bound
∑

p∈P I(p) ≤ (4 ·
√
n · k + 1) · n below.

To prove this bound, we first introduce some additional notation and properties
for the several executions of Algorithm 4.10. For each point p ∈ P , let Vx(p)
and Vy(p) be the set of positions of Orderx and Order y, respectively, accessed by
NNSearch(p). Additionally, let Pospx be the position of Orderx containing the
reference to a point p, i.e., P [Orderx[Pospx]] = p. The set of points that access this
position during NNSearch(·) is Rx(p) = {q ∈ P : Pospx ∈ Vx(q)}. Pospy and Ry(p)
are defined analogously using Order y instead of Orderx. By definition, it is∑

p∈P

|Vx(p)| =
∑
p∈P

|Rx(p)|, (4.12)

as both count the total number of accesses of Orderx across all searches.
Note that NNSearch(q) for points q ∈ Rx(p) often performs several loops

before accessing Pospx. In particular, there are only two points q+ and q− such that
NNSearch(q+) and NNSearch(q−) access Pospx during their first loop. These
two points are the points corresponding to the neighboring positions of Pospx, i.e.,
q+/q− = P [Orderx[Pospx± 1]]. More specifically, for each c ∈ N0, there exist at most
two points whose positions are exactly c steps away. This is because Orderx is a
linear order of a finite set of elements. As a result, Rx(p) defines a lower bound for∑

q∈Rx(p) I(q). Formally, for each p ∈ P it is

2 ·
|Rx(p)|−1

2∑
i=1

i ≤ 0 + 0 + 1 + 1 + · · ·+
⌊ |Rx(p)| − 1

2

⌋
≤

∑
q∈Rx(p)

I(q). (4.13)



4.3. ITERATIVE MUTUAL INFORMATION ESTIMATION 63

Next, we also consider the properties of Vy(·) and Ry(·). During each loop of a
search NNSearch(p), it is min(∆y−,∆y+) < δmax. This means that NNSearch(p)
accesses at least one new position of Order y in Line 14 or Line 17. It follows that

I(p) ≤ |Vy(p)| (4.14)

and with Equation 4.13, it is

2 ·
Rx(p)−1

2∑
i=1

i ≤
∑

q∈Rx(p)

|Vy(q)|. (4.15)

Now, we use the fact that NNSearch stops accessing new positions in a certain
direction when this direction cannot offer a closer nearest neighbor. In the following
lemma, we use this pattern to limit the number of points p where NNSearch(p)
accesses certain positions of Orderx and Order y. That is, for each combination of
a position of Orderx and Order y, there is only a small number of points whose
nearest-neighbor search accesses both.

Lemma 4.20. For any two points p, q ∈ P , it is |Rx(p) ∩Ry(q)| ≤ 4 · k.

Proof. We consider a partitioning of R2 into four axis-aligned quadrantsRU,RD,LD
and LU centered at (xp, yq), as illustrated in Figure 4.17a. To ensure that any point
r ∈ P \ {p, q} is in exactly one partition, equalities such as xr = xp and yr = yq are
resolved by their ordering in orderx and order y, respectively. For the sake of con-
tradiction, suppose that there are k + 1 points {r0, . . . , rk} = RRU ⊆ Rx(p) ∩Ry(q)
in the area RU . We discern between two cases regarding the arrangement of these
points.

In the first case, we assume maxr,s∈RRU |xr − xs| ≥ maxr,s∈RRU |yr − ys|. That
is, the largest difference in x-values among points in RU is at least as large as any
difference in y-values among RU . For all r in RRU , it is Posrx > Pospx. Without
loss of generality, let r0 be the point closest to p and rk the furthest from p in Or-
derx, respectively. Formally, r0 = arg minr∈RRU Pos

r
x and rk = arg maxr∈RRU Pos

r
x.

This implies that |xrk − xr0| ≥ ‖rk − r‖ for all r ∈ RRU . As illustrated in Fig-
ure 4.17b, NNSearch(rk) accesses Posrx for all r ∈ RRU \ {rk} before accessing
Pospx. After accessing Posr0x and calling UpdateNN(r0), it holds for the variables
in NNSearch(rk) that δmax = ∆x−. The dashed line in Figure 4.17b illustrates
this. This means that NNSearch(rk) does not access further positions of Orderx
in this direction, and thus there is a contradiction to rk ∈ Rx(p).

Conversely, in the the second case it is maxr,s∈RRU |xr−xs| < maxr,s∈RRU |yr−ys|.
This is symmetric to the first one using Order y instead of Orderx, with r0 and rk
being the closest and furthest point from q in Order y, NNSearch(rk) also accesses
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Figure 4.17: Illustration of arrangements in Lemma 4.20. (a) Partitioning of R2

based on (xp, yp). (b),(c) Two cases of layouts of RU .

all positions corresponding to other points in RRU before Posqy. Analogously, it
is δmax = ∆y− after calling UpdateNN(r0), as illustrated in Figure 4.17c. Thus
NNSearch(rk) does not access the position Posqy, which contradicts rk ∈ Ry(q).

As a result there are at most k points from Rx(p)∩Ry(q) in RU . By symmetry,
the same is true for RD,LD,LU . This yields the lemma.

Combining this lemma with other equations introduced in this section yields the
following bound for the total number of iterations performed by all searches.

Lemma 4.21. For a set P ⊆ R2 of points, the total number of iterations performed
by NNSearch(p) for all p ∈ P is bounded as

∑
p∈P I(p) ≤ (4 ·

√
n · k + 1) · n.

Proof. Following Lemma 4.20, each position of Order y is accessed at most 4 ·k times
by searches accessing one specific position of Orderx. Then for any p ∈ P , the total
number of accesses to all n cells of Order y by NNSearch(q) with q ∈ Rx(p) is at
most 4 · k · n. More formally, with Equation 4.15, it is for each p ∈ P

4 · k · n ≥
∑

q∈Rx(p)

|Vy(q)| ≥ 2 ·
|Rx(p)|−1

2∑
i=1

i

= 2 ·
|Rx(p)|−1

2
( |Rx(p)|−1

2
+ 1)

2
≥
( |Rx(p)| − 1

2

)2

2
√
k · n ≥ |Rx(p)| − 1

2

4 ·
√
k · n ≥ |Rx(p)| − 1 (4.16)

Combining Equations 4.12, 4.14 and 4.16 yields∑
p∈P

I(p) ≤
∑
p∈P

|Vx(p)| =
∑
p∈P

|Rx(p)| ≤ (4 ·
√
k · n+ 1) · n. (4.17)
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Because k is a small constant, the time complexity of performing NNSearch
for all points is in O(n · √n). So the time complexity for each individual search is
in amortized O(

√
n).

Theorem 4.22. NNSearch has an amortized time complexity of O(
√
n).

Data Structure

We derive the time complexity for initializing and iterating IMIE.
In Init, most operations are assignments, of constant size (Lines 2, 4) or of

linear size (Lines 1, 3). The only exception is sorting Orderx and Ordery, which is
O(n log n). So the overall runtime of Init is O(n log n). However, we show in the
following section that more efficient variants are possible for scenarios encompassing
more than one estimation task. Furthermore, our experiments in Section 4.3.5 indi-
cate that the actual runtime of Init often is negligible in comparison to Iterate.

As for the runtime of Iterate, there are only two steps that are not elementary
assignments of constant size. One step is computing the marginal counts MCk

x(p)
and MCk

y (p) (Line 6). It can take place in O(log n), with binary searches on the
sorted arrays as follows. Let i be the smallest integer in {0, . . . , |P | − 1} with
xP [Orderx[i]] ≥ xp−δkx(p). Similarly, let j be the largest integer in {0, . . . , |P |−1} with
xP [Orderx[j]] ≤ xp + δkx(p). Because Orderx contains all points sorted by x-coordinate,
it is MCk

x(p) = j − i. The other marginal count MCk
y (p) is available analogously,

using Order y, yp and δky (p) instead. The other step is the nearest-neighbor search
(Line 4), which has an amortized time complexity of O(

√
n) by Theorem 4.22. As a

result, Iterate also has an amortized time complexity of O(
√
n). Since P and thus

ρ contain n elements, IMIE requires time in O(n
√
n) to reach the final estimate, the

one equal to the KSG estimate. This means that IMIE is only moderately slower
in reaching the final result than the lower bound Ω(n log n) for algorithms without
preliminary results, cf. Theorem 4.6.

Application-Dependent Considerations

The initialization procedure Init presented in Section 4.3.2 explains the core concept
and properties. Init has been defined in a way that is always applicable. However,
in many scenarios a user has more than one estimation task based on the same or
similar data. Think of estimating the mutual information for overlapping attribute
pairs when searching for strongly dependent attributes. In such a case, it may not
be necessary for each instance of IMIE to sort the arrays from scratch, which is the
primary computational burden of Init. In this section we present the improvements
possible for IMIE in scenarios with high-dimensional data as in Scenario 4.14 and
with streaming data as in Scenario 4.15. We consider benefits over both the naïve
initialization of IMIE as well as the non-iterative estimation.
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High Dimensional Data The number of attribute pairs grows quadratically with
the number of attributes. If the data has d attributes, the number of pairs is d·(d−1)

2
.

We now consider using one instance of IMIE for each pair to obtain the pairwise
mutual information estimates. A naïve initialization of these instances would require
time in O(d2 · n log n). However, we only need to sort the points once per attribute
to use the respective sorted arrays for several attribute pairs. This reduces the time
complexity for initialization to O(d · n log n).

Non-iterative estimators for the KSG use two-dimensional space-partitioning
trees [KSG04, VH07]. This means that each attribute pair requires a different tree,
which prohibits a similar improvement. In addition, non-iterative estimators must
commit the computation time beforehand. IMIE in contrast can budget computa-
tion time between different pairs of attributes, depending on which pairs a user finds
interesting, based on the preliminary estimates.

Data streams With data streams, new data is arriving continuously, and compu-
tation time is limited. We consider estimating the current mutual information using
all points whenever new data arrives. This means that most data points remain
unchanged. When maintaining up-to-date mutual information estimates, IMIE can
reuse the instance of Data Structure 4.7 used for the previous estimate instead of an-
other initialization. Considering Data Structure 4.7, only the adjustment of Orderx,
Order y and OrderR does not incur constant costs when a new data point arrives.
Adjusting Orderx and Order y to accommodate new data can take place in O(log n).2
Since OrderR is shuffled randomly during the estimation, IMIE can also start off
with a (partially) shuffled order and only needs the addition of new indices for new
data items. This means that initialization of a new estimator on a data stream can
take place in O(log n) instead of O(n log n).

Additionally, if the delays between items from the data streams are irregu-
lar in length, IMIE automatically offers the best estimate for the time available.
Previous work regarding efficient, non-iterative mutual information estimation on
streams [ABR19, BH17, KMB15] as well as our methods DEMI and ADEMI impose
a fixed computation time. This means they cannot easily adapt if items arrive faster.

Takeaway While the time complexity of Init may appear prohibitively large in
its basic form, we have demonstrated here that concrete settings can allow for more
efficient solutions. Note that the improvements described are not mutually exclu-
sive. This means that both improvements can be combined when dealing with
high-dimensional data in the form of streams. Table 4.1 summarizes the impact

2From a technical perspective, this time complexity requires Orderx and Ordery to be imple-
mented as binary search trees. For simplicity we keep calling them sorted arrays.
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Optimization Time Complexity
Naïve application O(d2 · n log n)
Reuse previous data structure O(d2 · log n)
Reuse sorted dimensions O(d · n log n)
Both O(d · log n)

Table 4.1: Impact of optimization techniques for initializing IMIE for pairwise mu-
tual information of d data streams.

of these techniques on the initialization of IMIE for pairwise mutual information
estimation between d data streams.

4.3.5 Experimental Evaluation

Now, we investigate the performance of IMIE in terms of runtime and estimation
quality. We also perform experiments to test the potential benefits from the statis-
tical guarantees and the anytime property of IMIE.

As reference for the performance of IMIE we use the KSG (see Equation 2.23),
because it offers high-quality estimations, and it is the basis of IMIE. To ensure
competitive runtime of the KSG we use KD-Trees for its nearest-neighbor search,
resulting in the optimal computation complexity of O(n log n). As a reference point
for faster estimates with lower estimation quality, we use the KSG on subsamples of
the data. Since the number of points subsampled can be expressed as a percentile
of all points or as an absolute number, we introduce a notation for both. Using
a random sample of p% from all data points to compute the KSG is denoted as
KSG%p. Subsampling exactly q points at random from all data points to compute
the KSG on this subsample is denoted as KSG@q.

Setup All approaches and experiments are implemented in C++ and compiled
using the Microsoft R© C/C++ Optimizing Compiler Version 19.00. We use the non-
commercial ALGLIB3 implementation of KD-Trees for the KSG. We also use the
non-commercial ALGLIB3 implementation of the cumulative density function of the
standard normal distribution Φ and its inverse Φ−1 when computing our statistical
guarantees. All experiments are conducted on Windows 10 using a single core of an
Intel R© CoreTM i5-6300U processor clocked at 2.4 GHz and 20GB RAM.

3ALGLIB (www.alglib.net)

www.alglib.net
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Data

In our experiments we use both synthetic and real-world data. As synthetic data,
we use dependent distributions with noise used to compare mutual information es-
timators, see [KBG+07], uniform distributions used to compare mutual information
with the maximal coefficient, see [KA14], as well as independent uniform and nor-
mal distributions. These are the same synthetic distributions used when evaluating
DEMI and ADEMI in Section 4.2.3. For distributions with a noise parameter σr,
we vary σr between 0.1 and 1.0. As real data, we use smart meter readings from
an industrial plant (HIPE) [BTV+18], recorded smart phone sensors to recognize
human activities (HAR) [DG17a], and physical quantities for condition monitoring
of hydraulic systems (HYDRAULIC) [HPS15]. As proposed by the inventors of the
KSG [KSG04], we prevent duplicate points in real-world data by adding noise with
minimal intensity. In the following we provide some detail to these data sets.

HIPE This data set, available online4, contains high-resolution smart meter data
from 10 production machines over 3 months. This data has over 2000 attributes
total and over 1.5 million data points. We consider a reduced data set containing
the first 1000 data points of the machines “PickAndPlaceUNIT”, “ScreenPrinter”
and “VacuumPump2” with a grand total of 333 attributes.

HAR This data set, available at the UCI ML repository5, features accelerometer
and gyroscope sensor readings from smartphones to classify the activity of the human
carrying the phone. The data set contains 561 attributes and a total of 5744 data
points.

HYDRAULIC This data set, available at the UCI ML repository6, features
recordings of several physical quantities such as temperature, vibrations and effi-
ciency factors at different sampling rates. For our experiments we use all quantities
with a sampling rate of 10 Hz. As a result, each of the 2205 data points has 480
attributes.

Synthetic Benchmarks

We first evaluate the concrete runtimes of IMIE. While we have established in Sec-
tion 4.3.4 that the time complexity is competitive, actual runtimes may have con-

4https://www.energystatusdata.kit.edu/hipe.php
5http://archive.ics.uci.edu/ml/datasets/Smartphone+Dataset+for+Human+Activity+

Recognition+(HAR)+in+Ambient+Assisted+Living+(AAL)
6http://archive.ics.uci.edu/ml/datasets/Condition+monitoring+of+hydraulic+

systems

https://www.energystatusdata.kit.edu/hipe.php
http://archive.ics.uci.edu/ml/datasets/Smartphone+Dataset+for+Human+Activity+Recognition+(HAR)+in+Ambient+Assisted+Living+(AAL)
http://archive.ics.uci.edu/ml/datasets/Smartphone+Dataset+for+Human+Activity+Recognition+(HAR)+in+Ambient+Assisted+Living+(AAL)
http://archive.ics.uci.edu/ml/datasets/Condition+monitoring+of+hydraulic+systems
http://archive.ics.uci.edu/ml/datasets/Condition+monitoring+of+hydraulic+systems
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Figure 4.18: Average runtime depending on the data size for IMIE and subsampling
variants.

stant factors that time complexity does not capture. We also look at the estimation
quality offered by IMIE after a variable number of iterations. Since the true mutual
information value of real data is unknown, we perform these experiments using syn-
thetic data. Each synthetic data set corresponds to one pair of attributes, for which
we produce samples of varying sizes. For each pair, sample size and estimator, we
perform 100 estimates and average the runtime and mean absolute error (MAE).

Figure 4.18 shows the average runtime of IMIE with various numbers of iterations
and the KSG with various subsampling settings. Note that the concrete performance
of IMIE when iterating until convergence andKSG%100 is very similar. This means
that computing the exact KSG in the conventional way with a KD-tree and without
preliminary results is not generally faster than using IMIE. Another point to observe
is the difference in runtime between IMIE with only the initialization and IMIE that
has performed some iterations. Even with only 5% of the iterations, IMIE already
consumes more than double the time used for initialization. This shows that the
time used for iterations quickly dominates the time required for initialization, even
though Init has a higher time complexity.

Figure 4.19 graphs the MAE of subsampling and IMIE depending on the runtime.
The plot shows curves per estimator corresponding to a specific sample size, and
the time is measured relative to the runtime of the naive KSG estimation for this
size. Each point corresponds to the average runtime and absolute error of 100
estimations with the same number of iterations or subsampling size, respectively.
In other words, the leftmost point corresponds to subsampling 5% or iterating 5%
respectively, while the rightmost point uses all points or iterates until convergence,
respectively. The result is that IMIE and KSG with subsampling offer the same
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Figure 4.19: MAE of IMIE and subsampling depending on the runtime relative to
KSG for the same data.

time-quality-tradeoff for data of size 1000, with IMIE being somewhat faster for
smaller data and somewhat slower for larger data. However, this assumes “optimal”
subsampling, in the sense that it is known beforehand which subsampling size is
desired. In cases where it is not clear how much time is available or how much
time an estimate for a given subsample size takes, this is not given. The time spent
finding a good subsampling size is discussed later in this section.

Statistical Quality Indicators

Next, we investigate the practical relevance of the statistical guarantees. The sce-
nario considered is high-dimensional data. A common information need for high-
dimensional data is finding highly dependent attributes. In our experiments we
want to know for each of the d·(d−1)

2
pairs of attributes whether it is above or below

a threshold τ . For IMIE we keep iterating the estimate and perform the test from
Equation 4.11. To be precise, one test is performed for ÎKSG(P ) > τ , and one test is
performed for ÎKSG(P ) < τ . To reduce the necessary Šidák-correction for our signif-
icance level αtest, we perform these two tests only every 10 iterations. We start with
a minimum sample size of 30 to reduce effects of minimal sample sizes. The exact
choice of initial iterations and iterations between tests is arbitrary as long as they
are not extreme, e.g., performing statistical tests with sample size one or iterating
|P |
4

times between tests. Regarding the target significance level, we test different
values α ∈ {0.1, 0.05, 0.01, 0}. We use fixed percentile subsamples for comparison,
i.e., KSG%5, KSG%25 and KSG%50.
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Figure 4.20: Time and error rate of IMIE and subsampling variants, depending on
the chosen threshold τ .
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Figure 4.20 shows the results for the three real-world data sets with τ varying
between 0 and 1. The figure contains two plots per data set. The “Error Rate”
shows the number of pairs falsely classified over or under τ as a relative count of all
pairs (left axis) and as absolute count (right axis). The “Run Time” shows the total
execution time relative to the "naïve" estimation using the KSG (left axis) and as
absolute time (right axis). The behavior depending on τ is different per data set.
This is because the dependencies in the data are distributed differently. The closer τ
is to the actual mutual information value, the easier it is for an approximate result to
be above the threshold while the actual value is below, or vice versa. So it is harder
to obtain statistical certainty that the actual value is above or below. To illustrate,
the attributes in HIPE are largely independent. This yields mutual information
values close to zero, resulting in high error rates for subsampling approaches and
longer execution times for IMIE. Conversely, the attributes of HYDRAULIC are
highly dependent. This in turn increases error rates and computation times, for
subsampling and IMIE respectively, for higher threshold values.

Nevertheless, there are several common patterns. One is that IMIE does offer
better time-quality-tradeoffs than subsampling. I.e., for each subsampling rate there
is an α such that IMIE yields fewer errors using less time. A second pattern is that
IMIE does adapt to “tough threshold values” by increasing the computation time
used. Subsampling in turn makes more false claims. A third interesting pattern is
that IMIE with α = 0 is almost always faster than the naïve KSG estimation. IMIE
can speed up such queries significantly with essentially no risk of error.7

Anytime Experiments

Now we test the performance of IMIE as anytime algorithm. In other words, the
available time is not known beforehand. To mimic the behaviour of IMIE to im-
prove the estimate with additional time, we also examine two strategies based on
subsampling. KSGLin consecutively computes KSG%10, KSG%20, . . . , KSG%100
as long as time is available. We also consider KSGExp, which computes KSG@10,
KSG@20, KSG@40, KSG@80, etc. until no time is left.

For this experiment we randomly select 100 pairs of attributes from each real-
world data set and estimate mutual information using IMIE, KSGLin and KSGExp.
After some time the estimate is interrupted, and the most recent result is used. Since
IMIE and subsampling appear most comparable in our synthetic benchmarks for
data size n = 1000, we use the first 1000 data points of each attribute pair. Given the
small scale of time per estimate (cf. Figure 4.18), we use 1000 estimators in parallel
for each pair. One “iteration” then performs the next computation sequentially for
each of these estimators.

7Technically there could still be errors due to rounding, numerical evaluation of Φ−1 and the
approximation in Section 4.3.3. However, no such error has occurred in any of our experiments.



4.3. ITERATIVE MUTUAL INFORMATION ESTIMATION 73

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

In
fo

rm
at

io
n
 [

n
at

]

Time Per Estimate [ms]

IMIE MAE
IMIE MSD

IMIE e
KSGLin MAE
KSGLin MSD
KSGExp MAE
KSGExp MSD

Figure 4.21: Mean absolute error (MAE) and mean standard deviation (MSD) of
anytime approaches as well as the mean ε of IMIE.

Figure 4.21 shows the mean absolute error compared to a KSG estimate using
1000 points as well as the mean standard deviation of estimates for the same at-
tribute pair. Additionally, for each estimate from IMIE we use the statistical quality
indicator to determine the distance ε. Additionally, the plot displays the average
value ε such that our preliminary estimate is wrong by at most ε with a confidence
of 95%. This value is obtained for each estimate using Equation 4.10. Note that
KSGLin does not consistently produce estimates with time less than 0.3 ms per
estimate, and IMIE does not consistently finish the first iteration in 0.1 ms.

A result of this experiment is that IMIE has smaller errors on average than the
subsampling approaches, even though they are comparable in Figure 4.19. This is
because the subsampling strategies are not efficient for iterative estimation. Esti-
mates from previous iterations are discarded without further benefit, and iteration
steps are less granular. This means that only a part of the overall time available is
spent on the estimate that is ultimately presented.

Discussion

To summarize our experiments, IMIE offers a time-quality tradeoff similar to the one
when estimating the KSG with varying subsampling settings. The time necessary
for IMIE to converge towards the KSG result is slightly lower for small data and
slightly higher for larger data, compared to the naive KSG estimation. But IMIE
also offers preliminary results and achieves this time-quality tradeoff even if the time
available is not known beforehand. This means that IMIE offers significant benefits
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for tasks that use these features, such as threshold queries or irregular data-stream
processing, without notable drawbacks for regular tasks.

4.4 Summary

Mutual information is a well-known measure to quantify complex dependencies. In
this chapter, we studied the efficiency of mutual information estimation using the
popular nearest-neighbor based estimation methods. Our results are threefold:

First, we established a lower bound for the computational complexity to compute
these estimators. Using reductions to the IntegerElementDistinctenss prob-
lem, we have proven the lower bound Ω(n log n, ) for both the KSG as well as the
3KL estimator in the algebraic computation tree model. Since existing methods for
computation achieve exactly this time complexity, they are asymptotically optimal
and our lower bound is tight. In consequence, no new algorithm can be asymp-
totically faster without yielding different estimation results or assuming stronger
computation models.

Second, we considered the specific scenario for mutual information estimation
where an estimate should be maintained for a changing data set. As formalization,
we considered this task as a problem to compute the new mutual information esti-
mate when data is inserted or deleted. Additionally, some information may be stored
between estimates. Even so, the consequence of our lower bound for regular estima-
tion is that computing such updated estimates has a computational complexity of at
least Ω(log n). For this task, we then presented two dynamic data structures DEMI
and ADEMI that maintain 3KL and KSG estimates. We have proven that both data
structures require asymptotically less time to update their estimate than the lower
bound to recompute it. Additionally, for maintenance of 3KL estimates, the time
complexity of ADEMI is near optimal with a time complexity in O(log n log log n).
Our experiments validate the formal time complexities for DEMI and ADEMI and
show that DEMI is always at least a factor of five, usually an order of magnitude,
faster than conventional recomputation. For ADEMI, our experiments have shown
that the superior scalability imposes some fixed additional computations. Thus,
ADEMI is the slowest approach for very small data sets and the fastest approach
for large data sets.

Third, we considered iterative estimation of mutual information. The goal has
been to provide an estimator that offers a first estimate quickly and improves the
estimation with additional time. It should also use the available time efficiently,
even if the time available is not known beforehand. To this end, we have proposed
IMIE, which exploits the structure of nearest-neighbor based estimation formulas
for statistical approximations. While we focused on the KSG because it is more
well-known, this approach would work analogously with the 3KL. Our approach
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converges towards the same result as the nearest-neighbor based estimator after suf-
ficiently many iterations. Before convergence, the preliminary results of IMIE also
offer helpful statistical quality indicators, which one can use to infer information
regarding the final estimate, i.e., the KSG result. This can take the form of con-
fidence intervals or the probability of surpassing a certain threshold. In addition
to these formal results on estimation quality, we also have studied the time com-
plexity of IMIE both in general and when tailored towards specific use cases. One
result is that the time complexity to compute the exact KSG estimate is O(n

√
n),

which is only slightly larger than the lower bound to compute the KSG without any
preliminary results. Based on experiments with synthetic and real data, we have
shown that IMIE remains competitive with its estimation quality per time, even
when being compared to approaches without preliminary results. The experiments
also demonstrate a significant runtime improvement when searching for attribute
pairs with high mutual information in high-dimensional data.

These results offer additional insights for a better understanding of the computa-
tional aspects of nearest-neighbor based mutual information estimation. We offered
both lower bounds for exact computation as well as new approaches that offer faster
computation under specific circumstances such as dynamic data or results with small
error chances. In consequence, our algorithms improve the feasibility to use mutual
information in real-time applications.





Chapter 5

Explaining Dependencies

This chapter is previously published in a mostly identical form at the Interna-
tional Conference on Scientific and Statistical Database Management (SSDBM’19)
in [VGBS19]. There are only some adjustments to fit the form and consistency for
this dissertation.

Now, we consider dependencies from a different perspective. Instead of searching
and quantifying dependencies, the focus of this chapter lies with understanding
certain dependencies. To this end, we consider one attribute as designated outcome
and the remaining attributes as the explanatory attributes. A common data analysis
task is to determine how a chosen outcome attribute is affected by the explanatory
attributes. That is, the question is not only whether there is a dependency and how
strong it is, but also how this dependency manifests. Before building complex models
and making data-driven decisions, data scientists therefore are often interested in
exploring and summarizing the data. This motivates the problem of constructing
human interpretable summaries for the effect of the explanatory attributes on the
outcome attribute in a given dataset.

Prior work proposed explanation tables [GAG+14, GFG+18, FGS17] to solve this
problem in a concise, interpretable and informative way, with informativeness de-
fined as the ability to capture the distribution of the outcome attribute. However,
only discrete explanatory attributes were supported. In contrast, large parts of the
data collected and analyzed today, e.g., by the Internet of Things [AIM10] and by
smart infrastructure [CNW+12, FMXY12], are ordinal or numeric. Therefore, we
argue that data summarization is particularly compelling and timely with ordinal
and numeric explanatory attributes, such as time, temperature or locations. Nu-
meric domains can be very large, which makes summarization techniques critical,
but also technically challenging. To fill this gap and address these challenges, we
propose a method for Lightweight Extraction of Numeric Summaries (LENS) in this
chapter. The following example highlights the need and benefit of our approach.

77
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Table 5.1: A fragment of a building Occupancy dataset

Day Hour Temp. Humid. Light CO2 Occupied
Mon 14 23.7 26.27 585.2 749.2 True
Mon 18 22.39 25 0 805.5 False
Wed 10 23.39 25.6 738 1042 True
Thu 15 22.5 27 469 1063 True
Fri 02 21 25 0 440 False
Sun 13 20.5 28.7 265 426.7 False
Tue 11 22.2 27.6 535.7 1137 False
...

...
...

...
...

...
...

Example 5.1. Consider the Occupancy dataset [CF16], an excerpt of which is
shown in Table 5.1. The dataset includes sensor measurements from a smart build-
ing (time, temperature, humidity, light level, carbon dioxide level) as well as an
outcome attribute denoting whether a given room was occupied at the time. Suppose
a data scientist wants to understand how the sensor measurements inform occupancy
status. Table 5.2 shows the corresponding explanation table [GAG+14]. Each row
is a pattern that represents a subset of the data matching the given values of the
explanatory attributes, with “*” matching all values. Each pattern also includes the
count of matching records and the fraction of records within this subset having a true
outcome. The first row indicates that 23 percent of all records correspond to occupied
rooms. The second row, chosen to provide the most additional information about the
distribution of the outcome attribute, suggests that rooms are not occupied when the
light level is zero. The next two rows similarly suggest that rooms are not occupied
on Saturdays and Sundays. In contrast, LENS produces the summary shown in Ta-
ble 5.3. The use of value ranges allows LENS summaries to capture patterns such
as weekdays (“Mon-Fri”) or evening hours (“15-23”), which would have to be pieced
together from multiple rows of an explanation table. For example, the second row
indicates that 4911 records, i.e., 23 percent of the data, correspond to occupied rooms
on weekdays when the light level is high, which would require many separate rows
without ranges. Subsequent rows identify additional subsets whose outcome distri-
bution diverges from the expectation such as occupied rooms during evening hours
with lights on (which, again, would require a separate pattern for each hour without
ranges).
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Table 5.2: An explanation table for the Occupancy dataset

Day Hour Light CO2 Count Occupied Correct
∗ ∗ ∗ ∗ 20560 True 23.1%
∗ ∗ 0 ∗ 12772 True 0.01%

Sun ∗ ∗ ∗ 2880 True 0.00%
Sat ∗ ∗ ∗ 2880 True 0.00%
Thu 13 ∗ ∗ 122 True 13.85%
Thu 14 ∗ ∗ 118 True 41.48%

Table 5.3: An informative summary for the Occupancy dataset created by LENS

Day Hour Light Count Occupied Correct
∗ ∗ ∗ 20560 True 23.1%

Mon–Fri ∗ 356–1697 4911 True 96.27%
Mon–Tue ∗ 428–536 2025 True 99.41%
∗ 15–23 429–576 1522 True 99.67%

Thu–Fri 9 ∗ 240 True 99.58%

5.1 Fundamentals and Formalization

We now formalize informative summaries as a generalization of explanation ta-
bles [GAG+14, GFG+18, FGS17] to ordered attributes, patterns with intervals, and
multi-valued outcomes. We then present our problem statement and a greedy frame-
work for building informative summaries. The context for this task is somewhat
different compared with mutual information so far. Most notably, this task consid-
ers an arbitrary number of attributes and has a stronger emphasis on the potential
that the data is a multiset, i.e., the data contains duplicate tuples. As a result, we
use some notation that is different from the previous chapter for the same high-level
concepts. To avoid confusion, the following section introduces all notation used both
for known and novel concepts, with Table 5.4 summarizing the notation.

5.1.1 Informative Summaries

Let A1, . . . , Ad be a set of d explanatory attributes with data space A = A1×· · ·×Ad
and let O be an outcome attribute. For each attribute domain Ai = {a1

i , . . . , a
|Ai|
i },

if Ai is ordered, we assume that aji is before aki in the ordering if and only if j < k.
We assume finite domains, i.e., we restrict the domains of real values to the values
present in the data. A dataset is a multiset of tuples over A × O. We represent
it as a function f : A × O → N that counts the number of tuples for specific
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Table 5.4: Notation

Symbol Meaning
Ai Explanatory attribute
d Number of explanatory attributes
A Data space formed by A1 × · · · × Ad
t A tuple of explanatory attributes (t ∈ A)
O Outcome attribute

o ∈ O An outcome value
f(t, o) A dataset represented by tuple counts
f(o) Count of tuples with outcome o
f(t) Count of tuples t disregarding outcome
n Total number of tuples
p A pattern

supp(p) Number of tuples matching p
cnt(p, o) Number of tuples matching p with outcome o
r(p, o) A rule formed by a pattern p and outcome o
S An informative summary as set of rules

P (o|t) Probability for a tuple t to have outcome o
PS(o|t) Maximum entropy estimate of P (o|t) by S
gS(p) Maximal gain by including any rule with p

combinations of attribute and outcome values. The total number of tuples in the
dataset is n =

∑
t∈A
∑

o∈O f(t, o). For brevity, we overload f to sum over the
omitted parameter, that is, f(o) =

∑
t∈A f(t, o) and f(t) =

∑
o∈O f(t, o).

Patterns are compact specifications of subsets of A. For each attribute Ai, a
pattern p specifies a closed interval [pi, qi] with pi, qi ∈ {1, . . . , |Ai|}. Note that
for attribute Ai without ordering, the only meaningful intervals are single values,
[pi, pi], and all values, [1, |Ai|]. A tuple t = (t1, . . . , td) ∈ A matches a pattern
p = ([p1, q1], . . . , [pd, qd]) if apii ≤ ti ≤ aqii for all i ∈ {1, . . . , d}. We also write t � p
for “t matches p”. Next, the support of p is the count of matching tuples regardless
of their outcome: supp(p) =

∑
t∈A�p f(t). Additionally, for each outcome value

o ∈ O, cnt(p, o) =
∑

t∈A�p f(t, o) is the count of matching tuples with this outcome.
A rule r(p, o) is a combination of a pattern p, outcome o, pattern support supp(p)
and outcome percentage cnt(p, o)/supp(p). An informative summary S is a set of
such rules.

We use the following notation for patterns. Intervals [pi, qi] that cover all values,
i.e., pi = 1 and qi = |Ai|, are called wildcards and are represented by “∗”. If an
interval covers exactly one value, i.e. pi = qi, it is a constant, represented by apii .
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All other intervals include both endpoints: [apii ,a
qi
i ]. Additionally, we say a pattern

is simple if it consists of only constants or wildcards.
Let P (o|t) be the conditional distribution of outcome value o for a given combi-

nation of explanatory attribute values t. For a given dataset, we can calculate P (o|t)
empirically from f . Formally, for all o ∈ O and t ∈ A, P (o|t) = f(t,o)

f(t)
if f(t) > 0 and

0 otherwise. While the set of all these probability distributions is informative, it is
too large for human interpretation, i.e., it is not concise. We consider informative
summaries as compact representations of these conditional probabilities.

Following previous work on data summarization [GAG+14, FGS17, MTV11,
Sar01], we use information theoretic methods to quantify informativeness. Let
PS = {PS(o|t) : o ∈ O, t ∈ A} be a model of the conditional probabilities based on
the information contained in a summary S. By the maximum-entropy principle (cf.
Section 2.3), the distribution with the fewest additional assumptions is the one with
the highest entropy. In general, this is the most uniform distribution that agrees
with the rules in S, which we called hints in Section 2.3. Formally, this is PS that
maximizes

H(PS) = −
∑
t∈A

∑
o∈O

f(t)

n
PS(o|t) log

(
PS(o|t)

)
(5.1)

with the constraints that 0 ≤ PS(o|t) ≤ 1, and for all rules r(p, o) ∈ S, that
cnt(p, o) =

∑
t�p f(t) ·PS(o|t). Computing PS is non-trivial as it has no closed form

and requires numeric methods such as improved iterative scaling, which we detailed
in Chapter 2 with Algorithm 2.1. To give some additional intuition on maximum
entropy models in practice, the following example calculates PS for an easier case
which can be solved without improved iterative scaling.

Example 5.2. Consider the Occupancy dataset from Table 5.1 and an informative
summary S containing the first two patterns from Table 5.2, call them p1 and p2.
Since p1 matches all tuples, the maximum-entropy model for PS distinguishes only
between tuples that match p2 and those that do not. In consequence, we have to find
x1 = PS(true|t) for t � p2 and x2 = PS(true|t′) for t′ 6� p2. Since the outcome is
binary, the probabilities are complementary, i.e., PS(false|t) = 1 − PS(true|t) and
PS(false|t′) = 1− PS(true|t′). Based on the values we know from S, the restrictions
are 20560 · 0.231 = 12772 · x1 + 7788 · x2 and 12772 · 0.01 = 12772 · x1, which
yields x1 = 0.01 and x2 = 0.59. Naturally, this becomes harder when there are more
probabilities to determine than constraints, as induced by overlapping patterns.

We use the Kullback-Leibler (KL) Divergence between P (o|t) and PS(o|t) to
measure the accuracy of S in estimating P (o|t). For each tuple t, this divergence is
defined as

KLt
(
P
∣∣∣∣PS) =

∑
o∈O

P (o|t) log

(
P (o|t)
PS(o|t)

)
. (5.2)
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Since this yields one divergence value per tuple, we aggregate the divergences and
weigh them by tuple frequency to obtain the total error of a summary S:

div
(
P
∣∣∣∣PS) =

∑
t∈A

f(t)KLt
(
P
∣∣∣∣PS) . (5.3)

The informativeness of a summary is measured as the reduction in error compared
to only knowing the overall outcome distribution in the entire dataset. That is, we
compare the divergence of the maximum-entropy estimate to a baseline model that
uses only the total outcome distribution. For all o ∈ O and t ∈ A, the baseline is
PB(o|t) = f(o)

n
. The information gain based on an informative summary S is then

gain(S) = div
(
P
∣∣∣∣PB)− div

(
P
∣∣∣∣PS) . (5.4)

Our formal problem statement is as follows:

Problem 5.3 (Informative Summarization Problem). Given a dataset rep-
resented as function f counting entries for each attribute and outcome combination
and a desired number of rules s, compute an informative summary S with |S| = s
that maximizes gain(S).

5.1.2 Constructing Informative Summaries

Since informative summaries generalize explanation tables, the NP-hardness to con-
struct optimal explanation tables [GAG+14] extends to optimal informative sum-
maries. As a result, exact solutions are infeasible assuming P 6= NP . Instead, a
common approach [GAG+14, FGS17, MTV11] for this and similar problems is a
greedy approach, as shown in Algorithm 5.1. Starting with an empty summary S,
the rules are selected one at a time until the desired number of rules s is reached,
i.e., |S| = s1. For each selection, improved iterative scaling is performed to obtain
the current model PS. Then, a set of candidate rules R is considered and a rule
r(p, o) ∈ R that maximizes gain(S ∪ {r(p, o)}) is selected.

Since R can be very large, even if only simple patterns are considered, one way
to speed up Algorithm 5.1 is to prune R. For example, the Flashlight [GAG+14]
and SIRUM [FGS17] techniques perform sample-based pruning as follows. In each
iteration of the while loop, a random sample is drawn from the dataset, and R
is populated with only those simple patterns that match at least one sampled tu-
ple. The intuition is that informative patterns are likely to have high support and
therefore should match at least one sampled tuple.

Even after pruning the candidate rule set, Algorithm 5.1 may be too expensive
because line 5 requires gain calculations for each candidate. For efficiency, prior work

1In the unlikely case that no rule yields additional gain, we stop the algorithm early.
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Algorithm 5.1: Greedy Construction of Informative Summaries
1 S ← ∅
2 while |S| < s do
3 PS ← Improved Iterative Scaling(S)
4 R← candidate rule set
5 r(p, o)← arg maxq∈R gain(S ∪ {q})
6 S ← S ∪ {r(p, o)}
7 return S

uses the following approximation for binary outcomes [GAG+14, MTV11, Sar01].
Let r(p, o) be a candidate rule and S+ = S∪{r(p, o)}. It is assumed that PS+(o|t) ≈
cnt(p,o)
supp(p)

for t � p and PS+(o|t) ≈ PS(o|t) otherwise. That is, when computing gain,
it is assumed that adding r(p, o) only refines the outcome distribution estimates for
tuples matching p, without requiring recomputing the estimates for any other tuples
(which would require improved iterative scaling). Additionally, in the current model
based on S without the new candidate, all tuples matching p are given the same
probability PS(o|t) ≈

∑
t�p f(t)·PS(o|t)
supp(p)

. With this approximation, the improvement in
gain by adding rule r(p, o) is [GAG+14]:

gain(S+)− gain(S) ≈ cnt(p, o) · log

(
cnt(p, o)∑

t�p f(t) · PS(o|t)

)
(5.5)

+ (supp(p)− cnt(p, o)) · log

(
supp(p)− cnt(p, o)∑
t�p f(t) · (1− PS(o|t))

)

Call the two possible outcome values o and o′. Note that the second term above
accounts for the gain due to refining the probability estimates for the complementary
outcome value o′ because supp(p)− cnt(p, o) = cnt(p, o′) and 1−PS(o|t) = PS(o′|t).

We now extend the above approximation to non-binary outcomes. A rule r(p, o)
describes the frequency of one particular outcome value o within its matching tuples.
With binary outcomes, we can immediately infer the frequency of the other value o′.
With non-binary outcomes, the question is how to adjust the probability estimates
due to r(p, o) for all the other outcome values besides o. Formally, Equation 5.5
becomes
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gain(S+)− gain(S) ≈ cnt(p, o) log

(
cnt(p, o)∑

t�p f(t) · PS(o|t)

)
(5.6)

+
∑

o′∈O\{o}

cnt(p, o′) log

(∑
t�p f(t) · PS+(o′|t)∑
t�p f(t) · PS(o′|t)

)
.

To approximate PS+ without improved iterative scaling, we again appeal to the
maximum-entropy principle. When computing gain due to r(p, o), we adjust the
probabilities P (o′|t) for each o′ 6= o proportionally to the adjustment for P (o|t).
This approximates the necessary adjustments to PS+ without introducing any as-
sumptions beyond r(p, o). Formally this is

PS+(o′|t) ≈ PS(o′|t)1− PS+(o|t)
1− PS(o|t) = PS(o′|t) supp(p)− cnt(p, o)

supp(p)−∑t′�p f(t′) · PS(o|t′) . (5.7)

With this equation, we can now substitute PS+ in Equation 5.6. Cancelling∑
t�p f(t) · PS(o′|t) from the fraction within the logarithm of the sum yields as

approximation

gain(S+)− gain(S) ≈ cnt(p, o) log

(
cnt(p, o)∑

t�p f(t) · PS(o|t)

)
(5.8)

+
∑

o′∈O\{o}

cnt(p, o′) log

(
supp(p)− cnt(p, o)

supp(p)−∑t′�p f(t′) · PS(o|t′)

)
.

Note that with non-binary outcomes, we need to make two decisions when seeking
the next rule with the highest gain: its pattern p and its outcome value o. We use
gS(p) to denote the highest gain of any rule with pattern p over all the possible
outcome values, i.e., gS(p) = maxo∈O gain(S ∪ {r(p, o)})− gain(S).

Finally, we note that some existing techniques that use similar information-
theoretic methods [FGS17, Sar01] are compatible with numeric outcomes. The idea
is to scale each outcome value by the sum of all the outcomes, which means that the
scaled outcomes add up to one and can be thought of as a probability distribution.
We omit the details and remark that this transformation is compatible with our
summarization method for numeric explanatory attributes.

5.2 LENS Approach
We now present the Lightweight Extraction of Numeric Summaries (LENS) ap-
proach for informative summaries with numeric attributes. We motivate our ap-
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proach and present an overview, followed by a discussion of candidate rule genera-
tion and how we speed up the gain computation of the selected candidates. We end
with a discussion of the computational complexity of LENS.

5.2.1 Motivation and Overview

Numeric and ordinal explanatory attributes produce a much larger pattern space
that cannot be handled effectively by existing methods. For example, a straightfor-
ward extension of the sample-based pruning method used by Flashlight [GAG+14]
and SIRUM [FGS17] is to consider all patterns with all possible intervals that
match at least one sampled tuple. However, when we tested this extension on the
Occupancy dataset, this modified version of Flashlight could not produce a single
rule within 3 hours. This means that the candidate rule space is too large even after
sample-based pruning.

Another straightforward optimization that is used in many interval pattern
mining techniques is to discretize or bin numeric domains. However, this leads
to information loss, and minimizing the impact of this loss requires careful se-
lection of the discretizing technique depending on both the application and the
data [BKB00, GLS+13]. Alternatively, one can discretize the data manually. How-
ever, this requires domain knowledge for meaningful intervals, and even then, it may
not be clear which intervals are informative. For example, in the Occupancy dataset,
one would have to know that days of the week can be binned into weekdays and
weekends. But even then, we would lose interesting patterns if, e.g., the building
was occupied differently at the beginning of a workweek than at the end. Since
informative summaries are meant to provide insights for users who may not be fa-
miliar with the data, requiring domain knowledge beforehand defeats their purpose.
This means that we need a solution that is data driven and does not perform any
discretization apriori.

Figure 5.1 summarizes the ideas behind LENS. Instead of abandoning existing
methods completely, we leverage their strengths (finding simple informative pat-
terns) while avoiding their weaknesses (inability to scale to large ordered domains).
In each iteration, LENS first uses an existing method (shown at the top of the figure)
to find top k simple informative patterns. Notably, LENS is compatible with any
greedy method for finding simple informative patterns such as Flashlight, SIRUM
or SURPRISE [Sar01]. LENS then “grows” the presumably informative constants
in the ordered attributes of these patterns in a principled way to form informative
intervals. Furthermore, the intervals considered by LENS are deterministic for each
underlying simple pattern, and therefore benefit from pre-computations. To do this,
we present a data structure called Sparse Cumulative Cube (SCC) in Section 5.2.3
that stores intermediate sums required by Equation 5.8 to estimate gain.
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Figure 5.1: Summary of LENS

Algorithm 5.2 details the operations of LENS. Starting with an empty summary
(Line 1), LENS performs improved iterative scaling (Line 3) and selects the next
best rule (Lines 3-14) s times (Line 2). For each rule, LENS first obtains k simple
patterns using some existing method (Line 5). For each of these patterns (Line 6),
LENS explores patterns with intervals over ordered attributes (Line 10), as we
describe in the following section, with q being the best pattern in terms of gain.
To speed up the gain computation, we build sparse cumulative cubes (Lines 8-9),
which we describe in Section 5.2.3. While q is the most informative pattern based
on a particular simple pattern p, rbest stores the rule with highest gain across all
patterns (Lines 11-13), which is added to the summary (Line 14). We restrict the
search to simple patterns with fewer than 5 constants (Line 7) for interpretability
and efficiency. Patterns with many constants or intervals are harder to interpret by
users [LBL16], and, as we discuss in Section 5.2.3, the size of the sparse cumulative
cube grows exponentially with the number of constants.

5.2.2 Interval Exploration

This section describes how LENS creates intervals based on a simple pattern p.
Intervals are created only over ordered attributes that have a constant in p; un-
ordered attributes or ordered attributes with a wildcard in p are not considered.
However, the number of possible intervals over the considered attributes can still be
prohibitively large. Take an ordered attribute Ai and a constant ai ∈ Ai. There are
up to |Ai|

2
values before and after ai in the ordering as valid interval endpoints. This

gives up to
( |Ai|

2

)2 intervals on Ai containing ai. If a simple pattern has more than
one constant, the set of potential patterns is the Cartesian product of the intervals
for each attribute.

To reduce the set of candidate rules, we consider exponentially increasing inter-
vals. For an attribute Ai with ordered values a1

i , . . . , a
|Ai|
i and a constant pi occurring
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Algorithm 5.2: LENS
Input: Data f , summary size s, number of simple patterns k
Output: Informative summary S

1 S ← ∅
2 while |S| < s do
3 PS ← Improved Iterative Scaling(S)
4 maxGain← 0
5 Candidates← top k simple patterns
6 foreach p = ([p1, q1], . . . , [pd, qd]) ∈ Candidates do
7 if |{i ∈ {1, . . . , d} : pi = qi}| < 5 then
8 foreach o ∈ O do
9 Build Co and CSo cf. Section 5.2.3

10 q ← IntervalExploration(p) cf. Algorithm 5.3
11 if gS(q) > maxGain then
12 rbest ← arg maxr∈{r(q,o):o∈O} gain(S ∪ {r})
13 maxGain← gain(S ∪ {rbest})

14 S ← S ∪ {rbest}
15 return S

in a simple pattern, we consider starting points pi, pi−1, pi−3, pi−7, . . . and ending
points pi, pi+1, pi+3, pi+7, . . . , bounded by 1 and |Ai|, respectively. Note that these
exponential steps are based on the rank order of attribute values and not the values
themselves, meaning that all pairs of consecutive values are treated as equidistant.
Also, note that the considered intervals are more fine grained close to pi. This is
desirable because pi was chosen to be an informative constant in the simple pattern,
so values close to pi could also be informative. Additionally, for any interval [p′i, q

′
i]

on Ai containing ai, we consider starting and ending points that are similar to p′i and
q′i in distance to ai. This exponential strategy reduces the number of intervals over
an attribute Ai to at most

(
log2

( |Ai|
2

))2. Overall, there are up to Πd
i=1

(
log2

( |Ai|
2

))2

patterns with intervals for each simple pattern. Note that our approach for interval
selection is adaptive to the data and to the rules included into the summary so far
as it is centered around constants from a pattern that is informative in this context.
This is different than other interval selection schemes such as those using quantiles,
which are similar to apriori discretization.

To further reduce the candidate search space, we use a greedy breadth-first search
(BFS) that prunes some intervals along the way. We say that a pattern p is incre-
mented if it is extended by moving its starting or ending point by one position in
the allowed set of positions listed above. For any pattern p′ resulting from an in-
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Algorithm 5.3: IntervalExploration
Input: Simple pattern ([p1, q1], . . . , [pd, qd])

1 List← {(([p1, q1], . . . , [pd, qd]), 0)}
2 bestGain← 0
3 while List 6= ∅ do
4 NextList← ∅
5 foreach (([p′1, q

′
1], . . . , [p′d, q

′
d]), prevGain) ∈ List do

6 thisGain← gS(([p′1, q
′
1], . . . , [p′d, q

′
d]))

7 if thisGain > bestGain then
8 bestGain← thisGain
9 bestPattern← ([p′1, q

′
1], . . . , [p′d, q

′
d])

10 if thisGain > prevGain then
11 forall 1 ≤ i ≤ d do
12 if p′i > 1 then
13 nextLim←max(1, p′i − (2 · |pi − p′i|) + 1)
14 nextPat←([p′1, q

′
1], . . . ,[nextLim,q′i], . . . ,[p′d, q′d])

15 NextList.insert(nextPat, thisGain)

16 if q′i < |Ai| then
17 nextLim←min(|Ai|, q′i + (2 · |qi − q′i|+1))
18 nextPat←([p′1, q

′
1], . . . ,[p′i,nextLim], . . . ,[p′d, q

′
d])

19 NextList.insert(nextPat, thisGain)

20 List← NextList

21 return bestPattern

crement of p, we further explore the increments of p′ only if p′ has higher gain than
p. Starting with p, the BFS considers patterns with the same number of increments
from p during each iteration. As a result, duplicate patterns during the search could
only occur within one iteration of the BFS. Keeping track of the candidates in each
iteration via a hash table therefore prevents redundant computations during the
interval exploration of a simple pattern p without explicitly listing all the previously
considered patterns.

Algorithm 5.3 shows the interval exploration for one simple pattern, assuming
for simplicity that all d attributes are ordered. Unordered attributes do not change;
that is, they keep the same constant or wildcard as in the original simple pattern.
For multiple simple patterns, the algorithm runs separately for each one, as seen in
Algorithm 5.2. List is the set of patterns considered during the current iteration
of the BFS, together with the gain thresholds used to test whether the increment
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producing the pattern increases gain. Starting with the simple pattern itself and
zero as the threshold (Line 1), the algorithm considers all patterns in List (Line 5)
and evaluates their gain (Line 6). If it is the highest gaining pattern so far, we store
it as bestPattern (Lines 7-9). If the gain is higher than the accompanying threshold
in List, the increment producing this pattern improves gain, and we include further
increments in the next BFS iteration (Lines 10-19). Specifically, for each attribute
(Line 11), we determine the next smaller starting point (Line 13) if it is not the
smallest value, i.e. 1 (Line 12). The new pattern obtained by replacing this starting
point (Line 14) is then inserted with the gain of the current pattern into nextList.
nextList collects patterns for the next BFS iteration (Line 20). Analogously, a
pattern with the next ending point, if possible, is inserted (Lines 16-19). Note that
attributes with wildcards in the original simple pattern are never altered because
their intervals already span from 1 to |Ai|. Finally, the algorithm returns the best
pattern (Line 21) when there is no pattern left for another BFS iteration (Line 3).
While this termination can happen early if no increment has resulted in a higher
gain, there are at most

∑d
i=1 2·log2

( |Ai|
2

)
increments to any pattern before it consists

entirely of wildcards. Similarly, since no pattern is considered twice, the inner loop
(Lines 6-19) is executed at most Πd

i=1

(
log2

( |Ai|
2

))2 times.
We illustrate our interval search with an example and the accompanying Fig-

ure 5.2. Note that the gain values depend on the current model PS and are just
used for illustrative purposes. The figure shows each iteration of the BFS as one
block of patterns. Incrementing a pattern for the next BFS iteration is displayed
as an arrow from the original pattern towards the incremented one. For brevity, we
refer to increments as p′i → X. This means that the pattern is the same except for
the starting or an ending point p′i of one of the attributes being replaced by X.

Example 5.4. Consider the Occupancy dataset illustrated in Table 5.1 and the
simple pattern p = (Thu, 13, ∗, ∗). In our formal notation, this pattern is written as
([p1, q1], [p2, q2], [p3, q3], [p4, q4]) = ([4, 4], [13, 13], [1, |Light|], [1, |CO2|]). Additionally,
let its gain be gS(p) = 355.3. Since this pattern already covers the full range for Light
and CO2, the available increments are p′1 → p1 − 1, q′1 → q1 + 1, p′2 → p2 − 1 and
q′2 → q2 +1. As shown in Figure 5.2, only q′2 → 14 and p′1 → 3 result in higher gain,
of 357.2 and 365.1 respectively. Next, we consider the patterns obtained through
increments of these two patterns. We then check which of these patterns increase
the gain over their predecessor. This process is repeated until no improvements are
found or all the intervals become wildcards.

5.2.3 Efficient Gain Estimation

Even though we have reduced the number of patterns to consider, it is inefficient to
evaluate the gain of each candidate, cf. Equation 5.8, by a separate linear scan of
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Weekday Hour Light CO2 Gain

Thu 13 ∗ ∗ 355.3

Thu 12–13 ∗ ∗ 354.7
Thu 13–14 ∗ ∗ 357.2

Wed–Thu 13 ∗ ∗ 365.1
Thu–Fri 13 ∗ ∗ 328.9

Mon–Thu 13 ∗ ∗ 368.2
Wed–Fri 13 ∗ ∗ 348.9
Wed–Thu 12–13 ∗ ∗ 365.1
Wed–Thu 13–14 ∗ ∗ 366.4
Thu–Fri 13–14 ∗ ∗ 331.7
Thu 12–14 ∗ ∗ 356.8
Thu 13–16 ∗ ∗ 360.5

Figure 5.2: BFS Pattern Exploration

the data. We introduce a data structure to quickly provide cnt(p, o) and
∑

t�p f(t) ·
PS(o|t) for all outcomes o ∈ O. With f : A × O → N for ordered attributes
being integers in a (d+ 1)−dimensional space, cnt(p, o) becomes a range-sum query.
Similarly, the expected number of tuples

∑
t�p f(t) · PS(o|t) based on the current

summary S is a range-sum query on similar data with fS(t, o) = f(t) · PS(o|t).

Example 5.5. Consider an ordered attribute A = (a1, . . . , a15). One way to count
the number of records matching pattern [a3, a8] is to sequentially scan the dataset.
However, if we precompute an array C where C[i] stores the count of records with
A ≤ ai, then the number of records matching our pattern is simply C[8]− C[2].

There exists a data structure for such range-sum queries called Prefix-Sum Ar-
ray [HAMS97]. It precomputes cumulative sums across all data dimensions and
answers range-sum queries in time O(2d+1), i.e., independently of n and of attribute-
domain sizes. However, these cumulative sums are stored for all attribute combi-
nations, leading to excessive memory consumption. In our case, this data structure
has |O| ·Π1≤i≤d|Ai| sums, and we need two data structures, one for f and one for fS.
Since numeric attributes can have very large domains, this memory footprint is too
large, even with few attributes. Even for the smallest real-world dataset that we use
in our experiments, it is Π1≤i≤d|Ai| ≥ 1019, i.e., at least 1010 gigabytes of memory.

Our solution is to create compact versions of this data structure for each simple
pattern tailored to our pattern exploration scheme. That is, they are built for
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Figure 5.3: Aggregation thresholds for attribute A1 = (a1
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13
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p1 = 8. The brackets represent starting and ending points considered by Algo-
rithm 5.3 during interval exploration.

each simple pattern LENS explores and used only to speed up gain evaluation of
increments from that simple pattern, which is Line 6 in Algorithm 5.3. We use two
properties of our exploration scheme, namely that wildcards are never reduced to
smaller intervals and that intervals grow exponentially. The first property allows us
to ignore attributes with a wildcard in the simple pattern in the sense that we only
store the sum of all values of these attributes. Second, the predefined interval limits
indicate which subset sums will be required. For instance, if a simple pattern p has a
constant value pi for an attribute Ai, our exploration does not consider any pattern
with an ending point of pi + 2. Since prefix-sum arrays store cumulative sums, this
aggregation is implicit and only the following upper bounds of aggregatable intervals
are relevant

Bi(pi) = (pi − 2blog(pi−1)c, . . . , pi − 8, pi − 4, pi − 2, pi − 1,

pi, pi + 1, pi + 3, pi + 7, . . . , |Ai|) (5.9)

as illustrated in Figure 5.3. Note that these upper bounds are equal to the interval
ending points we consider during pattern exploration, while they are shifted by one
for the starting points. This is because range-sum queries on these cumulative sums
subtract the sum up to the lower bound from the sum at the upper bound. As a
result, we reduce both the dimensionality of our data structure and the domain size
per dimension.

Additionally, note that we use this data structure to compute cnt(p, o) and∑
t�p f(t) · PS(o|t), respectively, which means that each query covers exactly one

outcome value. Therefore, we can build the data structure separately for each out-
come value instead of treating the outcome value as an additional dimension. In
contrast to the previous optimizations, this does not reduce memory consumption
as we need the same number of cells, which are simply spread across multiple in-
stances. However, since the time complexity of range-sum queries is exponential in
the dimensionality of the data structure, this optimization halves the query time.

To improve readability, and without loss of generality, suppose that the attributes
are ordered so that the m attributes where a simple pattern p = ([p1, q1], . . . , [pd, qd])
uses a constant are at the front. That is, there exists an integer 1 ≤ m ≤ d with
pi = qi for i ≤ m and pi 6= qi for i > m. Our sparse cumulative cube (SCC)
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is an m-dimensional array, where each cell with i1, . . . , im in B1(p1), . . . , Bm(pm),
respectively, is defined as

Co[i1] · · · [im] =

i1∑
j1=1

· · ·
im∑

jm=1

|Am+1|∑
jm+1=1

· · ·
|Ad|∑
jd=1

f((aj11 , . . . , a
jd
d ), o) (5.10)

Analogously to [HAMS97], a range-sum query, in our case cnt(p, o), is

cnt(p, o) =
∑

i1∈{p1−1,q1}

· · ·
∑

im∈{pm−1,qm}

Co[i1] · · · [im] · (−1)
∑m
j=1 I(ij ,pj−1) (5.11)

where I(ij, pj − 1) is the identity function, i.e., it is 1 if ij = pj − 1 and 0 otherwise.
Note that Co only includes range sums for the first m attributes (with constants in
the simple pattern) and implicitly aggregates all values of the remaining attributes
(with wildcards in the simple pattern). Similarly, we build a SCC CSo by substituting
f(t, o) with fS(t, o) = f(t) · PS(o|t) in Equation 5.10. This allows us to compute∑

t�p f(t) · PS(o|t). Note that both of our SCCs can be constructed in a single
pass over the data for each simple pattern considered for interval exploration: the
interval endpoints are known beforehand because they depend on the constants in
the simple pattern.

Example 5.6. Consider a dataset with the three attributes A1 = (a1
1, . . . , a

11
1 ),

A2 = (a1
2, . . . , a

5
2) and A3 = (a1

3, . . . , a
4
3), and two outcomes o and o′. Figure 5.4a

shows the tuple counts f for one fixed outcome o as a cube. Additionally, let
p = ([8, 8], [4, 4], [1, 4]) be a simple pattern, i.e., (8, 4, ∗). All patterns considered in
IntervalExploration(p) therefore cover the full range of A3. This means that the
SCC is two dimensional to accommodate queries with different ranges for A1 and A2.
To provide all the relevant numbers for this example, Figure 5.4b shows the counts
of items with outcome o summed up over different values for A3, which may not be
visible in (a). As 8 and 4 are the constants of p, the relevant aggregation thresholds
for our data structures are B1(8) = (4, 6, 7, 8, 9, 10) and B2(4) = (2, 3, 4, 5). The
SCC Co is thus a 6 × 4−matrix with accumulated item counts up to the thresholds
B1(8) and B2(4) as shown in Figure 5.4c.

A pattern that might be checked during our exploration is p′ = ([5, 11], [3, 4], [1, 4]).
Without Co, evaluating cnt(p′, o) would require a linear scan of all entries of f or
at least summation of 40 cells if f is stored with random access like the cube in
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Figure 5.4: (a) Illustration of f as cube displaying the count of tuples with outcome
o. (b) Projection of A3, i.e. summation, to a 2-dimensional matrix. (c) Sparse
cumulative cube Co.
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Figure 5.4a. With Co, we can determine cnt(p′, o) with 4 cells by Equation 5.11:

cnt(p, o) =
∑

ai∈{4,11}

∑
a2∈{2,4}

Co[a1][a2] · (−1)I(a1,a4
1)+I(a2,a2

2)

= Co[4][2] · (−1)2 + Co[11][2] · (−1)1

+ Co[4][4] · (−1)1 + Co[11][4] · (−1)0

= 9− 31− 22 + 86 = 42

5.2.4 Time Complexity

We now study the worst-case time complexity of LENS. Since LENS can use any
method for simple pattern generation and since improved iterative scaling runs until
convergence without bounded complexity, our analysis focuses on the complexity of
our contribution, which is Lines 6-14 in Algorithm 5.2.

In Lines 8-9, we build two SCCs for each outcome, which repeat for each of the
k simple patterns and s rules generated. The size of an SCC depends on the domain
size of the attributes, which is generally only bounded by n since every data record
could have a different value. As LENS limits the maximum number of constants of
simple patterns to 5 in Line 7, each SCC has a maximal size of (2 · log(n

2
))5. Since

a single scan of the data suffices to build an SCC, each construction takes time
O(n+ log5(n)) = O(n).

Next, the worst case for our interval exploration scheme is that there is no
pruning. As a result, for each simple pattern, all patterns obtainable through our
increments would be considered once. For each attribute Ai, we would consider
up to 2 · log2(|Ai|) intervals. Since the attribute domain sizes can still only be
bounded by n, up to ((log2(n

2
))2)5 ≤ log10

2 (n) patterns with intervals would be
considered for each simple pattern. Note that the only operation in Algorithm 5.3
that is not an elementary assignment or set insertion is the computation of gain in
Line 6. By Equation 5.8, gain can be computed for a pattern p with cnt(p, o) and∑

t�p f(t) ·PS(o|t) for each o ∈ O. These intermediate values can be computed each
using 25 cells of our SSCs by Equation 5.11. In total, this step can be performed
in time O(1), and thus Line 10 in Algorithm 5.2 takes time O(log10

2 (n)) to build an
informative summary with s rules.

The remaining lines in Algorithm 5.2, except for the simple pattern generation
and improved iterative scaling, consist of assignments and gain computations, which
take constant time with our SCCs. Let TIS and TSP be the time complexity of
improved iterative scaling and the method used to select simple patterns. The total
complexity of LENS is then O(s · (TIS +TSP + k ·n)). Since our pattern exploration
scales linearly, it is unlikely to dominate the total complexity of LENS.
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5.3 Experiments

In this section, we experimentally evaluate the performance of LENS on real datasets.
We analyze the informativeness and runtime of LENS against related methods, pa-
rameter choices and scalability.

5.3.1 Setup

We implemented LENS in C++ and compiled it using the Microsoft R© C/C++
Optimizing Compiler Version 19.00. We use Flashlight [GAG+14] as the simple
pattern generation subroutine. All experiments are conducted on Windows 10 using
a single core of an Intel R© CoreTM i5-6300U processor clocked at 2.4 GHz and 20GB
RAM. Unless otherwise noted, all presented results are arithmetic means over 100
runs. We use the following datasets.

Occupancy measures room temperature, humidity, lighting and CO2 concentration,
and includes a binary outcome indicating whether the room was occupied.
This dataset is described in [CF16] and is available in the UCI repository2.
Splitting the available timestamps into “Day of the week” and “Hour of the
day”, this dataset has 7 attributes and 20560 entries.

Wine described in [CCA+09] and available in the UCI repository3, measures chem-
ical wine properties and includes a quality score as an outcome. Merging the
red wine and white wine parts of the data and using colour as an additional
attribute yields 6497 entries with 12 attributes. Although there are 10 scores
as outcome, we discretize them into “good” ( scores 6 and higher) and “bad”
to enable a comparison with subgroup discovery approaches.

Electricity presents data from the Australian New South Wales energy market.
Each of the 45312 entries has the rising or falling price trend as outcome
and 7 attributes such as energy price and demand in new South Wales and
the neighboring Victoria region, excluding dates. The data is in the openML
repository4.

Gas measures the effect of two stimuli, bananas and wine, on an array of 8 gas
sensors. The data is provided by Huerta et al. [HMF+16] and is available in
the UCI repository5. There are 928991 entries with 10 attributes after adding

2https://archive.ics.uci.edu/ml/datasets/Occupancy+Detection+
3http://archive.ics.uci.edu/ml/datasets/Wine+Quality
4https://www.openml.org/d/151
5http://archive.ics.uci.edu/ml/datasets/Gas+sensors+for+home+activity+

monitoring

https://archive.ics.uci.edu/ml/datasets/Occupancy+Detection+
http://archive.ics.uci.edu/ml/datasets/Wine+Quality
https://www.openml.org/d/151
http://archive.ics.uci.edu/ml/datasets/Gas+sensors+for+home+activity+monitoring
http://archive.ics.uci.edu/ml/datasets/Gas+sensors+for+home+activity+monitoring
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Table 5.5: Dataset characteristics

Name Rows Columns Outcomes Data space size
Occupancy 20560 7 2 1.9 · 1019

Wine 6497 12 2 1.1 · 1025

Electricity 45312 7 2 1.4 · 1020

Gas 928991 10 3 8.3 · 1053

Appliance 19735 25 2 5.7 · 1079

temperature and humidity to the gas sensors, and one of three outcomes (no
stimulus, wine and banana).

Appliance measures power consumption of household appliances with temperature
and humidity per room as well as local weather measurements. The data
was described in [CFD17] and is available via Github6. The outcome in our
experiments is the total power consumption, discretized into two values of
equal frequency. Each entry has 25 other measurement attributes.

Table 5.5 contains statistics for these data sets. Most of our experiments use
Occupancy, Electricity and Wine because they have similar size and all compet-
ing approaches produce summaries in reasonable time. These datasets represent tall
(Electricity), wide (Wine) and balanced (Occupancy) data. To evaluate scala-
bility, we use Gas and Appliance as these datasets have many rows and columns,
respectively.

5.3.2 Parameter Sensitivity

Before comparing LENS to its competitors, we explore parameter choices and sen-
sitivity. Our approach has two parameters: the sample size FLS for Flashlight’s
sample-based pruning, and the number k of simple patterns for exploration by LENS.
To establish sensitivity, we evaluate the impact on gain and runtime for informa-
tive summaries of size 20 for our datasets, with the other parameter being fixed to
FLS = 8 or k = 16, respectively.

The impact of the sample size FLS is graphed in Figure 5.5 with a logarithmic
x-axis. These graphs show that larger samples increase the runtime without a clear
benefit in terms of informativeness. These results are in line with the conclusion
of the authors of Flashlight that small samples suffice to find the highest gaining
(simple) patterns [GAG+14].

For the number k of explored simple patterns for each rule, the impact is shown
in Figure 5.6 with a logarithmic x-axis. As one might expect, k represents a classic

6https://github.com/LuisM78/Appliances-energy-prediction-data/

https://github.com/LuisM78/Appliances-energy-prediction-data/
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Figure 5.5: Impact of FLS on runtime of LENS and informativeness for Occupancy
(top), Wine (middle) and Electricity (bottom)

time-quality tradeoff, as it directly controls how many (non-simple) patterns are
considered. Based on these experiments, runtime increases significantly for large k
while the gain stagnates.

Our conclusion regarding parameter sensitivity is that moderate choices for k
and FLS suffice, as larger values increase runtime without a significant gain im-
provement. Specifically, we use FLS = 8 and k = 16 in all further experiments.

5.3.3 Competing Approaches

As a brief reminder from Section 3.5, we consider methods for Subgroup Discovery
and Decision Trees as related approaches and include them as competitors. Since
neither Subgroup Discovery nor Decision Trees are intended for informative sum-
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Figure 5.6: Impact of k on runtime of LENS and informativeness for the Occupancy
(top), Wine (middle) and Electricity (bottom) data sets.

marization, we now describe how we adapted these methods to produce informative
summaries comparable to those produced by LENS.

Subgroup discovery algorithms produce subgroups without a specified outcome
value or model for the outcome distribution. To compare their informativeness with
LENS, we use datasets with a binary outcome. For each subgroup, a comparable
summary contains one rule with the subgroup as the pattern and an arbitrary out-
come value (recall that for binary outcomes, we can easily infer the distribution of
the other outcome value). We then use improved iterative scaling, as in LENS, to
compute the maximum-entropy estimates. However, the time for improved iterative
scaling is not included in the reported runtime of subgroup discovery methods as it
is only necessary for our calculation of gain for comparison with LENS.
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As mentioned in Section 3.5, we use DSSD [vLK12] and mergeSD [GR09] due
to their focus on subgroup diversity and numeric data, respectively. While we use
the official C++ implementation of DSSD7, we reimplemented mergeSD as no C++
implementation was available. Due to the abundance of parameters for DSSD, we
use mostly default settings, e.g., beamWidth=100, qualMeasure=WKL, beamStrat-
egy=cover and minCoverage=10. The parameters maxDepth (maximum number of
non-wildcard intervals of a pattern), floatNumSplits (number of bins for discretiza-
tion) and beamVarWidth (dynamic adaption of beam width) all appear to show
time-quality-tradeoffs. MergeSD also uses the parameters maxDepth and floatNum-
Splits but no other parameters. We found that the parameter choices mostly affect
runtime but not gain in our experiments. As such, we use the following parame-
ters with low runtime. For DSSD we use maxDepth=1 and floatNumSplits=10 and
beamVarWidth=false, and for MergeSD we use maxDepth=1 and floatNumSplits=5.
We suspect that gain does not increase because these methods focus on different
quality criteria, not informativeness.

For decision trees, each leaf is equivalent to a rule. For each leaf, we represent
the collection of decisions leading to this leaf as pattern and the dominant class of
the leaf as the outcome. Different than production rules from decision trees [Qui87],
we also consider the precision of the dominant class for the data represented by
the leaf. Since these leaves form a partition of the data and the outcome is binary,
the decision tree therefore provides a well defined model for P (o|t). This enables a
comparison of informativeness, where the summary size is the number of leaves in the
decision tree. For this comparison, we use the C++ implementation8 of “Yet another
Decision Tree builder” (YaDT) [Rug04] version 2.2.0 with several optimizations to
reduce runtime and memory consumption. However, a problem with decision tree
algorithms, including YaDT, is that we cannot build a tree of a particular size.
For instance, using the default parameter values, the decision trees have 51, 477
and 1427 leaves for the Occupancy, Wine and Electricity data, respectively. This
means that we have to perform a parameter search for every requested summary
size and dataset in order to find an appropriate tree. As a result, we perform a grid
search on the parameters confidence ∈ {0.01, 0.04, 0.16, 0.64}, minCasesToSplit ∈
{2, 8, 32, . . . , 2048} and maxDepth ∈ {1, 2, 4, 8}. As in previous work [GAG+14], the
reported time is the total time for the grid search.

In contrast, explanation tables are informative summaries by design. We used
our C++ implementation of Flashlight [GAG+14] that is also used as part of LENS.
For fairness, we also use FLS = 8 when evaluating stand-alone Flashlight.

Finally, note that some approaches, such as mergeSD, assume that the global
distribution of outcomes is known and only present subgroups whose distributions

7Available at http://www.patternsthatmatter.org/software.php#dssd
8Available at http://pages.di.unipi.it/ruggieri/software.html

http://www.patternsthatmatter.org/software.php#dssd
http://pages.di.unipi.it/ruggieri/software.html
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are significantly different. Others, like Flashlight, explicitly report the global dis-
tribution through an all-wildcard first rule (recall Table 5.2). To level the playing
field, each informative summary and subgroup collection is allowed to contain an
all-wildcard rule or subgroup without counting it towards the summary size.

5.3.4 Conciseness and Efficiency

We use a single plot that shows runtime and gain of summaries of various sizes for
each method. In Figure 5.7, each datapoint represents the average gain and runtime
for summaries of a certain size, noted by a small text label, for each method. Note
that YaDT cannot produce decision trees of size one, so the corresponding datapoints
are missing. In this case, the corresponding datapoints are missing. Overall, the
figure shows that LENS is the best overall choice in terms of gain per unit time.

Next, we zoom in on the time required to build informative summaries of certain
sizes. For up to 10 rules, LENS is a close second to unmodified Flashlight, whose
explanation tables contain no intervals. Since LENS uses Flashlight as a subroutine,
LENS cannot be faster if both are using the same sample size FLS. Beyond 10 rules,
DSSD is usually faster, as its runtime does not depend on the summary size. In
contrast, MergeSD and YaDT are significantly slower.

Figure 5.7 also shows that LENS provides the highest gain per summary size
with the exception of very small summaries on the Electricity dataset. Subgroup
discovery algorithms are very inconsistent across datasets: while there is sometimes
significant gain between summaries of size 1 and 2 and no gain from rules 11–20,
it may also be the other way around. On the Occupancy and Wine datasets, this
phenomenon manifests itself differently for MergeSD and DSSD. The reason for this
erratic behavior is most likely the different optimization goals of subgroup discovery
which may or may not coincide with information gain. As a final note, LENS shows
highest consistency of improvement of gain as the number of rules increases.

5.3.5 Scalability

To evaluate how well LENS scales with the number of columns, we use the Appliance
dataset. For any number d of attributes, we use the first d columns in the dataset.
Figure 5.8 shows the runtime to build informative summaries of size 20 on a loga-
rithmic scale depending on the number of columns, averaged over 10 runs. Runtime
increases superlinearly with the number of columns for both Flashlight and LENS.
Given that the runtime of Flashlight gets closer to the runtime of LENS as the
number of columns increases, we conclude that Flashlight dominates the runtime of
LENS. This means that any speedup to the process of selecting simple patterns would
directly speed up LENS, be it an improvement to Flashlight like SIRUM [FGS17],
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Figure 5.7: Runtime and gain for all methods and various summary sizes on
Occupancy (top), Wine (middle) and Electricity (bottom)

or an entirely different method. Given this result, we defer the issue of speeding up
simple pattern generation to future work.

For the Gas dataset, Figure 5.9 shows the row scalability of LENS and Flash-
light as a double log plot. Here, we create smaller datasets by randomly sampling
from Gas, to obtain unbiased subsets of the original attribute domains. LENS and
Flashlight scale roughly linearly with the number of rows. While LENS requires
nearly an order of magnitude more time than Flashlight for a smaller number of
rows, it requires only twice as much time as Flashlight on the full dataset. This
observation is also consistent with Figure 5.7. One explanation for the relatively
higher runtimes of LENS on small data is that small samples contained a number
of columns with very few duplicates. As a result, many simple patterns matched
only one tuple and therefore many patterns were pruned away during sample-based
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pruning. In contrast, LENS considered patterns with various intervals that matched
at least one sampled tuple.

5.3.6 Summary of Results

Our main experimental findings are that LENS generally produces the most infor-
mative summaries of a given desired size and excels at informativeness per unit of
runtime. In terms of scalability, LENS scales linearly with the number of rows and



5.4. SUMMARY 103

exponentially with the number of columns in the data. However, this exponential
scaling is due to using Flashlight as subroutine and could be improved with existing
parallel techniques for Flashlight [FGS17] or with different algorithms for simple
pattern selection. Finally, we find that the choices for the parameters sample size
FLS and number of candidates k influence the runtime significantly, while FLS
does not impact gain and k influences gain only moderately. As a result, small val-
ues, i.e., FLS = 8 and k = 16, lead to low runtimes without sacrificing information
gain.

5.4 Summary
In this chapter, we considered the task of explaining dependencies through human
interpretable summaries. Specifically, for a specified outcome attribute these sum-
maries describe the relationship between the outcome and the remaining, explana-
tory attributes. The informativeness of a summary is determined with information
theory using the maximum entropy principle to construct a distribution from the
summary. The better the distribution constructed from a summary approximates
the empirical distribution of the data, the more informative is the summary.

Our contribution to this task is the additional functionality of handling ordinal
and numerical explanatory attributes as well as non-binary categorical outcomes.
To this end, we formalized the problem such that summaries may use intervals to
capture ranges of values. The resulting challenge is that numerical domains are
large and thus the number of potential intervals and number of combinations of
intervals from different attributes are much larger. Our solution for this problem
is LENS, which is a heuristic approach using existing work to generate summaries
without intervals and expanding the chosen, informative constants. Additionally, we
introduced a data structure tailored to LENS that allows our approach to evaluate
the benefit of many potential additions to the summary with a single pass over the
data.

Finally, we experimentally evaluated LENS and showed the benefit of consid-
ering ordinal data when summarizing real data. Additionally, LENS outperforms
other related approaches that could be used as summarization methods in terms of
conciseness and time-efficiency. Our experiments also indicate that moderate pa-
rameter choices suffice and that LENS scales linearly with the number of rows in
the data.





Chapter 6

Conclusions and Outlook

Analyzing and understanding relationships is an important and challenging task in
data analysis. As the volume of available data rises, more intricate and non-linear
dependencies become noticeable. Unfortunately, algorithms that work with such
complex dependencies are often somewhat complicated and scale sub-optimally with
the data volume. As a result, the very same data volume that enables the analysis
of complex dependencies might be the main obstacle by inducing high computa-
tional costs. In this dissertation, we considered limitations and opportunities in
regards to time-efficient dependency analysis with two particular aspects as focus.
For one, we studied the detection and quantification of dependencies as practical
application for mutual information estimation. As second aspect, we considered
human-interpretable explanations for dependencies as a way to illustrate and un-
derstand them. In this chapter, we briefly recapitulate our results with an outlook
towards future work.

6.1 Summary

In this dissertation, we used mutual information as a measure for arbitrary depen-
dencies. Mutual information is a compelling candidate as it is zero if and only if the
data is independent, it has a semantic meaning to its score and it has been used for
this purpose for decades. As the most well-known estimator for continuous variables,
we specialized on the nearest-neighbor based estimation techniques 3KL [Eva08] and
KSG [KSG04]. While previous work considered the time complexity of their pro-
posed algorithms to compute the estimate [Eva08, KSG04, VH07], we are the first
to evaluate the complexity of the problem itself. As our first contribution, we have
proven the lower bound of Ω(n log n) to compute either the 3KL or the KSG, which
fits the complexity of the algorithms proposed so far. As a result, the existing algo-

105
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rithms are asymptotically optimal and any further asymptotic improvements require
specific scenarios or assumptions.

One such scenario is the maintenance of mutual information on dynamic data.
While we considered arbitrary insertions and deletions as possible changes, a specific
case with practical relevance are sliding windows. Here, the goal is an up-to-date
estimate of the mutual information for the most recent data points. That is, each
change is exactly the insertion of a new point and the deletion of the least recently
inserted point. As consequence of our lower bound for regular estimation, updat-
ing estimates for individual points takes at least time in Ω(log n). Our observation
for efficient updates is, that the impact of individual insertions and deletions on
the estimation equations is relatively limited. While mathematically easy to de-
fine, correcting these changes is algorithmically challenging. This is because of the
nearest-neighbor search that is necessary and the reverse nearest-neighbor search
to find those points whose nearest neighbors have changed due to an insertion or
deletion. The first data structure that we proposed, DEMI, utilizes only linear
and binary search for this task and achieves a linear time complexity for insertions
and deletions. With our second data structure, ADEMI, we substituted the linear
searches in the algorithms. Specifically, we included two augmented search trees,
i.e., a two-dimensional range tree and a two-dimensional segment tree. With these
more complex data structures and a technique called fractional cascading, ADEMI is
able to process updates to 3KL estimates with time in O(log n log log n). Our exper-
iments showed that our data structures improve the computation time for updating
estimation in sliding window by orders of magnitude.

Another option to improve the time efficiency of mutual information estimates
are approximations. Our proposed method, IMIE, offers two additional benefits over
naïve approximation approaches such as subsampling. First, IMIE offers anytime
capability, i.e., IMIE offers a very rough estimate as quickly as possible and improves
upon this result until it is interrupted or converges to the accurate result. This means
that IMIE offers a dynamic time-quality tradeoff in the sense that a user can decide
at runtime how much time they are willing to commit to this estimate. Second,
in addition to approximate results, IMIE also provides statistical quality indicators
that empower the user to make informed decision whether the current approximation
suffices. These quality indicators enable statistical tests to determine the probability
that the current approximation is more than some value above the exact KSG or
3KL estiamte. This is particularly useful if a user is interested in certain thresholds
and estimates can be concluded prematurely because the accurate estimate remains
below that threshold with sufficient probability. In our experiments, IMIE was faster
than conventional estimation even if the permitted chance of error was 0%.

Lastly, we considered the task of explaining the dependencies in an interpretable
manner. Specifically, we consider the task of summarizing the relationship between
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a designated outcome attribute and the remaining explanatory attributes. The re-
quirements for such a summary are that they are concise, in a readable form and
informative, which we determined through information theory. While there exist so-
lutions for this problem, they are limited to categorical attributes. Our approach to
this task, LENS, builds upon this existing work and supports ordinal and numerical
attributes by including intervals instead of specific values as part of the summary.
Finding these intervals is the main challenge for this task as numerical attributes
may have big domains with even larger numbers of possible intervals. LENS is a
heuristic that considers exponentially growing intervals originating at single values
that are considered informative. To maintain time efficiency, we presented a data
structure that prevents repeated scans of the data to evaluate the benefit of candi-
dates for the summary. While there exist no other approaches for exactly this task,
we used approaches from related tasks and adapted them as competing approaches.
In our experiments, LENS outperforms these approaches both in time-efficiency and
conciseness. LENS has also further proven its practical relevance with [VET+19],
where we used the summaries to create interpretable machine descriptions.

Overall, this dissertation provides multiple new algorithms and data structures
that make complex dependencies more accessible. DEMI and ADEMI reduce the
computational burden for real-time mutual information monitoring by orders of
magnitudes. IMIE enables anytime estimation of mutual information where users
can assess the quality of early estimates, which is often multiple times faster than
conventional estimation even with negligible error. LENS summarizes multivariate
dependencies with numerical data faster and more concise than existing related ap-
proaches. Additionally, we have proven some new characteristics of nearest-neighbor
based mutual information estimation and nearest neighbors. Finally, the insights
and techniques of this dissertation may be the catalyst for new research. We present
a small selection of possible direction in the following section.

6.2 Future Research Directions

Computational Complexity of Mutual Information Estimation While we
provided a tight lower bound for 3KL and KSG estimation, open questions remain.
For updating estimates, our solution nearly reaches the lower bound for the 3KL.
Regarding the KSG, however, there remains a large gap between our algorithm and
our lower bound for the problem. Notable, this gap exists because the limiting factor
in computing the updates is not based on nearest neighbors which is otherwise the
dominating challenge of these estimation techniques. Instead, the marginal counts
are affected stronger by changes. This begs the question, whether it might be
possible to prove formally that updating the KSG is harder than the 3KL, even
though they have the same complexity for estimation on static data.
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Another interesting consideration on the issue of complexity is, whether the
bound can be extended to certain approximations. As a reminder, our constructions
to reduce the problem IntegerElementDistinctness to the KSG and 3KL estimation
were comparatively simple. Therefore, a more elaborate construction could also show
the hardness of achieving certain approximation quality to the KSG or 3KL. If such
results exist, the hardness might be expanded from the particular estimation method
to the task of approximating mutual information in general with the results of Gao
et al. [GOV18] on the convergence behavior of nearest-neighbor based estimation.

New Statistical Anytime Algorithms Recalling IMIE, one might notice that
the only aspect of the KSG and 3KL that we utilize for the iterative construction
is that they average over something that they compute for each point. This means
that other algorithms might use the same construction, if the main burden of their
computation also relies on the average or sum of something computed for each point.
However, there are two things to consider. First, if the value computed for each point
does not depend on the entire data set, the approximation may be identical to naïve
subsampling. Second, the discrepancy in computational burden to compute this
value for one point and computing this value for all points should not be too large.
This is already noticeable with IMIE, where conventional estimation uses specialized
data structures that find nearest neighbors must faster than linear search and faster
than our lightweight search.

Depending on the task, it might be attractive to combine our iterative construc-
tion with techniques from database cracking [IKM07, SJD13], which tackle exactly
the problem of building efficient data structures without front-loading the compu-
tational burden.

Mutual Information with Higher Dimensionality While there is no consen-
sus how mutual information should be generalized for more than two attributes,
the two variables could be multivariate themselves. For two bivariate variables,
the KSG performs its nearest-neighbor search in the joint four-dimensional space
and counts marginal counts based on rectangles in the two-dimensional marginal
spaces [KSG04]. While it is easy to see how some of our results generalize to this
case, for others it is unclear. For instance, DEMI relies on linear search and is barely
affected by higher dimensions while the augmented trees for ADEMI scale unfavor-
able with increased dimensionality [dBCvKO08]. In contrast, it is unclear whether
the lightweight search used by IMIE performs better or worse with increased dimen-
sionality and how strong the impact of two-dimensional areas for marginal counts
is.
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