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Summary
Recently proposed adaptive dynamic programming (ADP) tracking con-
trollers assume that the reference trajectory follows time-invariant exo-system
dynamics—an assumption that does not hold for many applications. In order
to overcome this limitation, we propose a new Q-function that explicitly incor-
porates a parametrized approximation of the reference trajectory. This allows
learning to track a general class of trajectories by means of ADP. Once our
Q-function has been learned, the associated controller handles time-varying ref-
erence trajectories without the need for further training and independent of
exo-system dynamics. After proposing this general model-free off-policy track-
ing method, we provide an analysis of the important special case of linear
quadratic tracking. An example demonstrates that our new method successfully
learns the optimal tracking controller and outperforms existing approaches in
terms of tracking error and cost.
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1 INTRODUCTION

Adaptive and iterative learning controllers are a powerful tool in case of unknown or partially unknown system
dynamics1-5 or in multiagent coordination problems.6 For the data-based tuning of optimal controllers, where the objec-
tive is to minimize a cost functional, adaptive dynamic programming (ADP), which is a method of reinforcement learning,
has recently gained extensive attention.7 In ADP, the controller adapts its behavior based on its interaction with an
unknown system and the associated cost signals.8

In order to employ ADP in a broader range of applications, this work focuses on the ADP tracking case. Here, the
aim is to track a desired reference trajectory optimally w.r.t. a given objective function for a system with unknown
dynamics and where no explicit system model is used (ie, the model-free setting is considered). The objective function
quantifies the control objectives and typically penalizes the control effort and/or the deviation of the system state from
the desired trajectory. Examples that require the tracking of flexible and time-varying trajectories are the longitudinal
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control of automated vehicles with desired velocity profiles,9 lateral steering controllers with lane-following
objectives,10 or various control problems in process engineering.11 In the model-free case, the trajectory-tracking opti-
mization problem is a challenging learning task, because the long-term cost, ie, the value of a state, changes depending on
the reference trajectory. Consequently, a controller that has learned to solve a regulation problem cannot be transferred
to the tracking case directly. In order to improve the tracking capabilities, the course of the reference trajectory should be
considered.

In the literature, there are several ADP tracking approaches in discrete time12-17 and continuous time.18-20 For the
tracking control of a simulated autonomous underwater vehicle, Shi et al12 extend the system state by the current and
next reference value and perform pseudo averaged Q-learning. While this is suited for their specific application, the ref-
erence trajectory has a very limited preview and the system state can lag behind in general as the controller reacts to
current deviations rather than considering the course of the trajectory. Ng et al13 use reinforcement learning to learn
maneuvers for autonomous helicopter flight. Their neural network controller uses the deviation from the desired posi-
tion as input. Thus, in order to follow a desired trajectory, steady-state goal positions are set consecutively while using
a projection of the trajectory in order to reduce the effect of lagging behind. However, the controller is never aware of
the course of the trajectory but is only provided a goal position. Furthermore, working only with the deviation from
the desired position is only valid for systems that are invariant with respect to the current absolute position. This is
approximately valid for the helicopter position but is violated in other instances, for example, in a spring-mass-damper
system.

A different, widely used ADP tracking approach is to assume that the reference trajectory rk can be modeled by
means of a time-invariant exo-system rk+1 = f ref(rk) (or ṙ(t) = f ref(r(t)) in the continuous case).14-20 Then, an approxi-
mated value function (or Q-function) is learned, which rates different states (or state-action combinations) w.r.t their
expected long-term cost considering the reference dynamics f ref. With this value function, approximated optimal control
laws are derived, either directly due to analytical relations between the value function and the optimal controller14-16,18,20

or by tuning an actor neural network based on the learned value function.17,19 However, a limitation of this ADP track-
ing approach is that whenever the reference trajectory and thus the function f ref change, the learned value function
and the learned controller are not valid anymore and need to be retrained. Consequently, the exo-system tracking case
with time-invariant reference dynamics f ref is not suited for the above-mentioned applications, which require tracking of
flexible and time-varying trajectories.21

Another possible approach would be to learn different value functions for each exo-system f ref and automati-
cally switch between them. This idea is inspired by the multiple-model approach presented by Kiumarsi et al,22

which is designed to cope with time-varying system dynamics. Here, self-organizing maps are used to determine
the contribution of each sub-model to the value function. However, when transferring this idea to time-varying
exo-system dynamics, new submodels have to be trained for each exo-system f ref. Furthermore, because the train-
ing is performed on-policy, new data have to be collected during each submodel training and the data cannot be
reused in contrast to using off-policy methods. Finally, the multiple-model method22 allows only partially-unknown
system dynamics. While the drift dynamics f(x) can be unknown, the input dynamics g(x) have to be known.
In comparison, our method does not require the training of submodels, is off-policy, and works completely
model-free.

In contrast to existing methods, our idea is to define a state-action-reference Q-function that explicitly incorporates
the course of the reference trajectory in contrast to the commonly used Q-function (see, eg, Sutton and Barto23) that only
depends on the current state xk and control uk. This general idea has first been proposed in our previous work,24 where
the reference rk is given on a finite horizon and assumed to be zero thereafter. Thus, the number of weights to be learned
depends on the horizon on which the reference trajectory is considered. As the reference trajectory is given for each
time step, this allows high flexibility, but the sampling time and (unknown) system dynamics significantly influence the
reasonable horizon length and thus the number of weights to be learned.

Based on the above-mentioned challenges, our major idea and contribution in the present work are to approximate
the reference trajectory at each time step k by means of a corresponding parameter set Pk, in order to compress the infor-
mation about the reference compared to our previous work24 and incorporate this parameter set into a new Q-function. In
doing so, the Q-function explicitly represents the dependency of the expected long-term cost on the desired reference tra-
jectory. The associated optimal controller is able to cope with time-varying parametrized references. We term this method
parametrized reference ADP (PRADP). Our proposed model-free ADP tracking approach allows reference trajectories that
are more flexible than trajectories generated by time-invariant exo-systems.14-20 In contrast to including only the desired
state (or its deviation) into the Q-function and hence into the ADP controller, we consider the course of the trajectory.
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This prevents the system state from lagging behind and allows the controller to thoroughly understand the current track-
ing situation. Finally, no retraining of the controller is required because the learned Q-function explicitly depends on the
parameter Pk, which parametrizes the reference trajectory and its future course from time step k on. Consequently, the
optimal controller, which is derived from the learned Q-function, is a function of both the state xk and the approximated
course of the reference trajectory by means of Pk.25

Our main contributions are summarized as follows.

• The introduction of a new reference-dependent Q-function that explicitly depends on the reference parameter Pk,
where Pk can be arbitrary and time-varying. This Q-function is a more generalized tracking approach compared to the
state-of-the-art ADP tracking controllers and does not require to be retrained when the reference trajectory changes.

• Function approximation of this Q-function in order to realize temporal difference (TD) learning (cf. Sutton26).
• Rigorous analysis of the form of this Q-function and its associated optimal control law in the special case of

linear-quadratic (LQ) tracking. We show that under reasonable assumptions, existence and uniqueness of the optimal
control law can be guaranteed.

• A comparison of our proposed method with algorithms assuming a time-invariant exo-system f ref and the ground truth
optimal tracking controller.

In the next section, the general problem definition is given. Then, PRADP is proposed in Section 3. Simulation results
and a discussion are given in Section 4 before the article is concluded.

2 GENERAL PROBLEM DEFINITION

Consider a discrete-time controllable system

xk+1 = f (xk,uk) , (1)

where k ∈ N0 is the discrete time step, xk ∈ Rn is the system state, and uk ∈ Rm is the control input. The sys-
tem dynamics f (⋅) is assumed to be unknown. Furthermore, let a parametrized reference trajectory r(Pk, i) ∈ Rn be
described by

r(Pk, i) = Pk𝝆(i) =
⎡⎢⎢⎢⎣

p⊺
k,1

p⊺
k,2
⋮

p⊺
k,n

⎤⎥⎥⎥⎦𝝆(i). (2)

Thus, at any time step k, the reference trajectory is parametrized by means of Pk ∈ Rn×p and given basis functions
𝝆(i) ∈ Rp. Here, i ∈ N0 denotes the time step on the reference from the local perspective at time k. Thus, for i = 0, the
reference at time step k results and i > 0 yields a prediction of the reference for future time steps. Therefore, in contrast
to methods that assume that the reference follows the time-invariant exo-system dynamics f ref, the parameters Pk in (2)
can be time-varying, allowing much more diverse reference trajectories.

The control objective is that the system state xk+i follows the desired reference trajectory r(Pk, i), i = 0, 1,… opti-
mally w.r.t. an objective function Jk. Thus, the aim is to obtain a controller through learning, which minimizes
the cost

Jk =
∞∑

i=0
𝛾 ic(xk+i,uk+i, r(Pk, i)), (3)

for a system with unknown dynamics. Here, 𝛾 ∈ [0, 1) is a discount factor and c(⋅) denotes a nonnegative single-step cost
that can, for example, penalize deviations of the system state xk+i from the desired state r(Pk, i) as well as the control
effort. We define our general problem as follows.

Problem 1. For a given parametrization of the reference by means of Pk according to (2), an optimal control sequence
that minimizes the cost (3) is denoted by u∗

k,u∗
k+1,… and the associated cost by J∗k . The system dynamics is unknown. At

each time step k, find u∗
k.
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3 PARAMETRIZED REFERENCE ADP

In order to solve Problem 1, we first propose a new, modified Q-function whose minimizing control represents a solution
u∗

k to Problem 1. In the next step, we parametrize this Q-function by means of linear function approximation. Then, we
apply least-squares policy iteration (LSPI) (cf. Lagoudakis and Parr27) in order to learn the unknown Q-function weights
from data without requiring a system model. Finally, we discuss the structure of this new Q-function for the LQ tracking
problem, where analytical insights are possible.

3.1 Proposed Q-function

When minimizing the cost Jk as given in (3), the relative position i on the current reference trajectory that is parametrized
by means of Pk according to (2) needs to be considered. In order to do so, one could explicitly incorporate the relative
time i into the Q-function that is used for ADP. This would yield a Q-function of the form Q(xk,uk,Pk, i). However, this
would unnecessarily increase the complexity of the Q-function and hence the challenge to approximate and learn such a
Q-function. Thus, we decided to implicitly incorporate the relative time i on the current reference trajectory parametrized
by Pk into the reference trajectory parametrization. This can be achieved by using a shifted parameter matrix P(i)

k according
to the following definition.

Definition 1 (Shifted parameter matrix P(i)
k ). Let the matrix P(i)

k be defined such that

r
(

P(i)
k , j

)
= r(Pk, i + j) (4a)

⇔ P(i)
k 𝝆(j) = Pk𝝆(i + j). (4b)

Thus,
P(i)

k = PkT(i), (5)

is a modified version of Pk = P(0)
k such that the associated reference trajectory is shifted by i time steps, where T(i) is a

suitable matrix. Note that T(i) is in general ambiguous as in the general case p > 1, the system of (4b) used to solve for
P(i)

k is underdetermined. Thus, T(i) can be any matrix such that (4) holds.
With P(i)

k as in Definition 1, our proposed Q-function that explicitly incorporates the reference trajectory by means of
Pk is given as follows.

Definition 2 (Parametrized reference Q-function). Let

Q𝝅 (xk,uk,Pk) = c (xk,uk, r(Pk, 0)) +
∞∑

i=1
𝛾 ic

(
xk+i,𝝅

(
xk+i,P(i)

k

)
, r(Pk, i)

)
= c (xk,uk, r(Pk, 0)) + 𝛾Q𝝅

(
xk+1,𝝅

(
xk+1,P(1)

k

)
,P(1)

k

)
. (6)

Here, 𝝅 ∶ Rn × Rn×p → Rm denotes the current control policy. With this definition, Q𝝅(xk,uk,Pk) represents the
accumulated discounted cost if the system is in state xk, the control uk is applied at time k, and the policy 𝝅(⋅) is
followed thereafter and the reference trajectory is parametrized by Pk. Based on (6), the optimal Q-function Q∗(⋅) is
given by

Q∗ (xk,uk,Pk) = c (xk,uk, r(Pk, 0)) + min
𝝅

𝛾Q𝝅
(

xk+1,𝝅
(

xk+1,P(1)
k

)
,P(1)

k

)
= c (xk,uk, r(Pk, 0)) + 𝛾Q∗

(
xk+1,𝝅

∗
(

xk+1,P(1)
k

)
,P(1)

k

)
. (7)

Here, the optimal control policy is denoted by 𝝅∗(⋅), hence 𝝅∗(xk+1,P(1)
k ) = u∗

k+1. This Q-function is useful for solving
Problem 1 as can be seen from the following lemma, which extends the relations from classical Q-learning28 to the PRADP
tracking case.
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Lemma 1. The control uk minimizing Q∗ (xk,uk,Pk) is a solution for u∗
k minimizing Jk in (3) according to Problem 1.

Proof. With (7)

min
uk

Q∗ (xk,uk,Pk) = c
(

xk,u∗
k, r(Pk, 0)

)
+ 𝛾Q∗

(
xk+1,u∗

k+1,P(1)
k

)
= min

uk ,uk+1,…

∞∑
i=0

𝛾 ic (xi,ui, r(Pk, i))

= J∗k (8)

follows, which completes the proof.

▪

As a consequence of Lemma 1, if the Q-function Q∗(xk,uk,Pk) is known, the desired optimal control uk is given by

u∗
k = arg min

uk

Q∗(xk,uk,Pk). (9)

Lemma 1 and (9) reveal the meaningfulness of Q∗ (xk,uk,Pk) for solving Problem 1. We express this Q-function by
means of linear function approximation in the following. Based on the temporal-difference (TD) error, the unknown
Q-function weights can then be estimated.

3.2 Function approximation of the tracking Q-function

As classical tabular Q-learning is unable to cope with large (or even continuous) state and control spaces, it is com-
mon to represent the Q-function, which is assumed to be smooth, by means of a linear function approximator.29 This
leads to

Q∗ (xk,uk,Pk) = w⊺𝝓 (xk,uk,Pk) + 𝜖 (xk,uk,Pk) . (10)

Here, w ∈ Rq is the unknown optimal weight vector,𝝓 ∈ Rq is a vector of activation functions, and 𝜖 is the approxima-
tion error. According to the Weierstrass higher-order approximation theorem,30 a single hidden layer and appropriately
smooth hidden layer activation functions 𝝓(⋅) are capable of an arbitrarily accurate approximation of the Q-function.
Furthermore, if q → ∞, 𝜖 → 0.

As w is unknown a priori, let the estimated optimal Q-function be given by

Q̂∗ (xk,uk,Pk) = ŵ⊺
𝝓 (xk,uk,Pk) . (11)

Analogous to (9), the estimated optimal control law is defined as

�̂�∗(xk,Pk) = arg min
uk

Q̂∗ (xk,uk,Pk) . (12)

Based on this parametrization of our new Q-function, the associated TD error26 is defined as follows.

Definition 3 (TD error of the tracking Q-function). The TD error that results from using the estimated Q-function Q̂∗(⋅)
(11) in the Bellman-like equation 7 is defined as

𝛿k = c (xk,uk, r(Pk, 0)) + 𝛾Q̂∗
(

xk+1, �̂�
∗
(

xk+1,P(1)
k

)
,P(1)

k

)
− Q̂∗ (xk,uk,Pk)

= c (xk,uk, r(Pk, 0)) + 𝛾ŵ⊺
𝝓
(

xk+1, �̂�
∗
(

xk+1,P(1)
k

)
,P(1)

k

)
− ŵ⊺

𝝓 (xk,uk,Pk) . (13)

Our goal is to estimate ŵ in order to minimize the squared TD error 𝛿2
k , as the TD error quantifies the quality of the

Q-function approximation. However, (13) is scalar while the unknown weight ŵ ∈ Rq needs to be estimated. Thus, we
utilize N ≥ q tuples

k =
{

ck, Q̂∗
k, Q̂∗+

k

}
, k = 1,… ,N,
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where

ck = c (xk,uk, r(Pk, 0)) ,

Q̂∗
k = ŵ⊺

𝝓k = ŵ⊺
𝝓 (xk,uk,Pk)

and

Q̂∗+
k = ŵ⊺

𝝓+
k = ŵ⊺

𝝓
(

xk+1, �̂�
∗
(

xk+1,P(1)
k

)
,P(1)

k

)
. (14)

These N tuples are generated from interactions with the system in order to estimate ŵ using LSPI (cf. Lagoudakis and
Parr27). Stacking (13) for the tuples k, k = 1,… ,N, yields

[
𝛿1
⋮
𝛿N

]
⏟⏟⏟

𝜹

=

[c1
⋮

cN

]
⏟⏟⏟

c

+
⎛⎜⎜⎝𝛾

⎡⎢⎢⎣
𝝓
+⊺
1
⋮

𝝓
+⊺
N

⎤⎥⎥⎦ −
[
𝝓
⊺
1
⋮
𝝓
⊺
N

]⎞⎟⎟⎠
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝚽

ŵ. (15)

If the excitation condition
rank 𝚽⊺𝚽 = q (16)

holds, a ŵ minimizing 𝜹⊺𝜹 exists, is unique, and given by

ŵ =
(
𝚽⊺𝚽

)−1𝚽⊺c, (17)

according to Åström and Wittenmark, theorem 2.1.31

Note 1. Using P(1)
k = PkT(1) (see (5)) in the training tuple k (14) rather than an arbitrary subsequent Pk+1 is important

as this procedure guarantees (in combination with (1)) that the Markov property holds, which is commonly required in
ADP.8

Remark 1. The procedure described above is an extension to Lagoudakis and Parr, section 5.1,27 to the tracking case where
the minimization of the squared TD error is targeted. In addition, an alternative projection method has been implemented
(cf. Lagoudakis and Parr, section 5.227), which targets the approximate Q-function to be a fixed point under the Bellman
operator. Both procedures yielded indistinguishable results for our LQ simulation examples, but this might be different
for the general case.

Note that �̂�∗(⋅) in Q̂∗+
k depends on ŵ, that is, the estimation of Q̂∗+

k relies on another estimation (of the opti-
mal control law). This mechanism is known as bootstrapping (cf. Sutton and Barto24) in reinforcement learning.
As a consequence, rather than estimating ŵ once by means of the least-squares estimate (17), a policy iteration
is performed starting with ŵ(0). This procedure is given in Algorithm 1, where eŵ is a threshold for the terminal
condition.

Note 2. Due to the use of a Q-function, which explicitly depends on the control uk, this method performs off-policy
learning.24 Thus, during training, the behavior policy (ie, the uk that is actually applied to the system) might need to
include exploration noise in order to satisfy the rank condition (16). However, due to the greedy target policy �̂�∗ (cf. the
policy improvement step (12)), the Q-function associated with the optimal control law is learned.

With Q̂(j)(⋅) = ŵ(j)⊺
𝝓(⋅) and Q�̂�(j) according to (6), where 𝝅 = �̂�(j), the following theorem also holds for our tracking

Q-function.

Theorem 1 (Convergence of the Q-function, cf. Lagoudakis and Parr, theorem 7.127). Let 𝜖 ≥ 0 bound the errors between
the approximate Q-function Q̂(j) and true Q-function Q�̂�(j) associated with �̂�(j) over all iterations, that is,

‖‖‖Q̂(j) − Q�̂�(j)‖‖‖∞ ≤ 𝜖,∀j = 1, 2,… . (18)
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Then, Algorithm 1 yields control laws such that

lim sup
j→∞

‖‖‖Q̂(j) − Q∗‖‖‖∞ ≤
2𝛾𝜖

(1 − 𝛾)2 . (19)

Proof. The proof is adapted from Bertsekas and Tsitsiklis, proposition 6.2.32 ▪

Lagoudakis and Parr27 point out that the appropriate choice of basis functions and the sample distribution (ie, exci-
tation) determine the error bound 𝜖. According to Theorem 1, Algorithm 1 converges to a neighborhood of the optimal
tracking Q-function under an appropriate choice of basis functions 𝝓(⋅) and excitation. However, for general nonlinear
systems (1) and cost functions (3), an appropriate choice of basis functions and the number of neurons is “more of an
art than science”33 and remains an open problem. Furthermore, the appropriate excitation of a general nonlinear system
requires that the training data covers all relevant areas of the state space in order to understand the nonlinearities of the
system and to learn the weights w correctly. As the focus of this article lies on the proposal of the new Q-function for
tracking purposes rather than the problem-specific tuning of neural networks and the excitation of nonlinear systems,
we focus on linear systems and quadratic cost functions in the following—a setting that plays an important role in con-
trol engineering. This allows analytic insights into the structure of Q∗ (xk,uk,Pk), and thus the proper choice of 𝝓(⋅) for
function approximation, in order to demonstrate the effectiveness of the proposed PRADP method.

Algorithm 1. PRADP based on LSPI

1: initialize j = 0, ŵ(0)

2: do
3: policy evaluation: calculate ŵ(j+1) according to (17), where ŵ = ŵ(j+1)

4: policy improvement: obtain �̂�(j+1) from (12)
5: j = j + 1
6: while ‖‖‖ŵ(j) − ŵ(j−1)‖‖‖2

> eŵ

3.3 The LQ-tracking case

In the following, assume the system dynamics

xk+1 = Axk + Buk, (20)

and the cost functional

Jk =
∞∑

i=0
𝛾 i [(xk+i − r(Pk, i))⊺Q (xk+i − r(Pk, i)) +u⊺

k+iRuk+i

]
=∶

∞∑
i=0

𝛾 i
[

e⊺k,iQek,i + u⊺
k+iRuk+i

]
. (21)

Here, Q ∈ Rn×n penalizes the deviation of the state xk+i from the reference r(Pk, i) and R ∈ Rm×m penalizes the control
effort. Furthermore, let the following assumptions hold.

Assumption 1. Let Q = Q⊺ ⪰ 0, R = R⊺ ≻ 0, (A,B) be controllable and (C,A) be detectable, where C is defined such that
C⊺C = Q.

Assumption 2. Let the matrix T(i), which defines the shifted parameter matrix P(i)
k according to (5) in Definition 1, be

such that ||𝜆j|| < 1, ∀j = 1,… , p, holds, where 𝜆j are the eigenvalues of
√
𝛾T(1).

Note 3. Assumption 1 is typical in the LQ setting in order to ensure the existence and uniqueness of a stabilizing solution
for the discrete-time algebraic Riccati equation associated with the regulation problem given by (20) and (21) for Pk = 0
(cf. Kučera, theorem 834), that is, if the reference trajectory is 0 for all k. Furthermore, it is evident that the reference
trajectory r(Pk, i) must be defined such that a controller exists, which yields finite cost Jk in order to obtain a reasonable
control problem. As will be seen in Theorem 2, Assumption 2 guarantees the existence of this solution.
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In order to derive the optimal control law, the tracking error ek,i is first expressed as

ek,i = xk+i − r(Pk, i) = xk+i − P(i)
k 𝝆(0) =

[
In

[−𝝆(0) … 0
⋮ ⋱ ⋮
0 … −𝝆(0)

]⊺]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=∶M

⎡⎢⎢⎢⎣
xk+i
p(i)

k,1
⋮

p(i)
k,n

⎤⎥⎥⎥⎦
⏟⏟⏟
=∶yk,i

, i = 0, 1,… , (22)

where In denotes the n × n identity matrix and yk,i is the state xk+i extended by the reference parameter P(i)
k . The associated

optimal controller is then given by the following theorem.

Theorem 2 (Optimal tracking control law). Let a reference (2) and a shift matrix T(i) as in Definition 1 be given. Then,

1. The optimal controller which minimizes (21) subject to the system dynamics (20) is linear w.r.t. the yk,i in (22) and can
be stated as

𝝅∗(xk+i,P(i)
k ) = u∗

k+i = −Lyk,i, i = 0, 1,… . (23)

Here, the optimal gain L is given by

L = (𝛾B̃⊺S̃B̃ + R)−1𝛾B̃⊺S̃Ã, (24)

where

Ã =
⎡⎢⎢⎢⎣
A 0 … 0
0 T(1)⊺ … 0
⋮ ⋮ ⋱ ⋮
0 0 … T(1)⊺

⎤⎥⎥⎥⎦ , B̃ =
⎡⎢⎢⎢⎣
B
0
⋮
0

⎤⎥⎥⎥⎦ , (25)

Ã ∈ Rn(p+1)×n(p+1), B̃ ∈ Rn(p+1)×m, Q̃ = M⊺QM and where S̃ denotes the solution of the discrete-time algebraic Riccati
equation

S̃ = 𝛾Ã⊺S̃Ã − 𝛾Ã⊺S̃B̃(R + B̃⊺S̃B̃)−1B̃⊺S̃Ã + Q̃. (26)

2. Furthermore, under Assumptions 1–2, the optimal controller 𝝅∗(xk+i,P(i)
k ) exists and is unique.

Proof. 1. With (22), the discounted cost (21) can be reformulated as

Jk =
∞∑

i=0
𝛾 i
[

yk,i
⊺M⊺QMyk,i + u⊺

k+iRuk+i

]
. (27)

Furthermore, note that with (20) and (5),

yk,i+1 =
⎡⎢⎢⎢⎣
Axk+i + Buk+i

T(1)⊺p(i)
k,1

⋮
T(1)⊺p(i)

k,n

⎤⎥⎥⎥⎦ = Ãyk,i + B̃uk+i (28)

holds. With 𝛾 , Ã, B̃, Q̃, and R, a standard discounted LQ-regulation problem results from (27) for the extended state
yk,i. Considering that the discounted problem is equivalent to the undiscounted problem with

√
𝛾Ã,

√
𝛾B̃, Q̃ and R

(cf. Gaitsgory et al35), the given problem can be reformulated to a standard undiscounted LQ problem. For the latter, it is
well known that the optimal controller is linear w.r.t. the state (here the extended state yk,i) and the optimal gain is given
by (24) (see, eg, Lewis et al, section 2.436). Thus, (23) holds and the first theorem assertion follows.

2. For the second theorem assertion, we note that the stabilizability of (
√
𝛾Ã,

√
𝛾B̃) directly follows from Assump-

tions 1 and 2 due to (A,B) being controllable and ||𝜆j|| < 1, ∀j = 1,… , p. In addition, Q ⪰ 0 yields Q̃ ⪰ 0. As (C,A) is
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detectable (Assumption 1), with C̃ such that C̃⊺C̃ = Q̃, it follows that (C̃
√
𝛾Ã) is also detectable, because all additional

states in Ã compared to A are stable due to Assumption 2. Finally, due to Q̃ ⪰ 0, R ≻ 0, (
√
𝛾Ã,

√
𝛾B̃) being stabilizable

and (C̃,
√
𝛾Ã) being detectable, a unique stabilizing solution exists (cf. Kučera, theorem 834). ▪

Note 4. Theorem 2 demonstrates that in the case of known system dynamics by means of A and B, the optimal tracking
controller L can be calculated directly by solving the discrete-time algebraic Riccati equation37 associated with

√
𝛾Ã,√

𝛾B̃, Q̃, and R.

Equation (28) also demonstrates that the important Markov property holds (cf. Note 1). As a consequence of Theorem
2, this yields the following problem in the LQ PRADP case with unknown system dynamics.

Problem 2. Let the system dynamics described by the matrices A and B be unknown. For i = 0, 1,…, find the lin-
ear extended state feedback controller L (cf. (23)) minimizing the cost functional Jk (21) and apply u∗

k = −Lyk,0 to the
unknown system (20).

Before we derive the control law L without using the system matrices A and B, we analyze the structure of the optimal
Q-function Q∗ (xk,uk,Pk) associated with Problem 2 in the following lemma.

Lemma 2 (Structure of the tracking Q-function). The Q-function associated with Problem 2 has the quadratic form

Q∗(xk,uk,Pk) = z⊺kHzk =

[ xk
uk

pk,1∶n

]⊺ [hxx hxu hxp
hux huu hup
hpx hpu hpp

][ xk
uk

pk,1∶n

]
, (29)

where zk =
[
x⊺

k u⊺
k p⊺

k,1∶n
]⊺ = [

x⊺
k u⊺

k p⊺
k,1 … p⊺

k,n
]⊺ and H is chosen such that H = H⊺.

Proof. With (6) and (7),

Q∗(xk,uk,Pk) = c (xk,uk, r(Pk, 0)) +
∞∑

i=1
𝛾 ic

(
xk+i,𝝅

∗
(

xk+i,P(i)
k

)
, r(Pk, i)

)
(30)

follows. With (20), (23), and (5), it is evident that the states xk+i and controls 𝝅∗(xk+i,P(i)
k ) are linear w.r.t. zk, ∀i = 0, 1,….

From this linear dependency and with (22), the linearity of the tracking error ek,i w.r.t. zk, ∀i = 0, 1,… results. Due to the
linear dependencies of ek,i and 𝝅∗(⋅) on zk and the quadratic structure of c(⋅) in (21), the Q-function in (30) is quadratic
w.r.t. zk, thus (29) holds. ▪

As a consequence of Lemma 2, the optimal Q-function Q∗ can be parametrized exactly by means of the function
approximator Q̂∗ using (11) if ŵ = w corresponds to the nonredundant elements of H = H⊺ (elements of ŵ associated
with off-diagonal elements of H need to be multiplied by the constant factor 2) and the activation functions are chosen as
𝝓 = zk ⊗ zk. Here, ⊗ denotes the Kronecker product. Based on Lemma 2, the optimal control law in terms of H, without
using the system matrices A and B, is given as follows.

Theorem 3 (Optimal tracking control law in terms of H). The unique optimal extended state feedback control minimizing
Jk (21) is given by

u∗
k = 𝝅∗(xk,Pk) = −LyPk

k = −h−1
uu
[
hux hup

] [ xk
pk,1∶n

]
. (31)

Proof. According to Lemma 1, the desired control u∗
k minimizing Q∗(xk,uk,Pk) also minimizes Jk. With (29) and H = H⊺,

the necessary condition
𝜕Q∗(xk,uk,Pk)

𝜕uk
= 2

(
huxxk + huppk,1∶n + huuuk

) !
= 0 (32)

yields the control u∗
k given in (31). Furthermore,

𝜕2Q∗(xk,uk,Pk)
𝜕u2

k

= 2huu (33)
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demonstrates that huu ≻ 0 is required in order to ensure that the control u∗
k (31) minimizes Jk (21). This is shown by the

following. If Q∗
reg(xk,uk) is the optimal Q-function related to the regulation case, that is, where r(Pk, i) = r(0, i) = 0, then

it is evident that
Q∗(xk,uk, 0) = Q∗

reg(xk,uk), ∀xk ∈ R
n,uk ∈ R

m, (34)

must be true. Furthermore, for the regulation case, it is well known that

Q∗
reg(xk,uk) =

[
xk
uk

]⊺ [hreg,xx hreg,xu
hreg,ux hreg,uu

] [
xk
uk

]
=
[

xk
uk

]⊺ [
𝛾A⊺SA + Q 𝛾A⊺SB
𝛾B⊺SA 𝛾B⊺SB + R

] [
xk
uk

]
(35)

holds (see, eg, Bradtke et al38). Here, S is the solution of the discrete-time algebraic Riccati equation

S = 𝛾A⊺SA − 𝛾A⊺SB(R + B⊺SB)−1B⊺SA + Q. (36)

Under Assumption 1, S = S⊺ ⪰ 0 exists and is unique (see Kučera, theorem 834). Thus, from (34) and (35),

huu = hreg,uu = 𝛾B⊺SB + R ≻ 0 (37)

results. This completes the proof. ▪

According to Theorem 3, if H (or equivalently w) is known, both Q∗ and 𝝅∗ can be calculated. In the following,
we describe how to determine w from the data tuples k, k = 1,… ,N given in (14). Lemma 2 shows that Q∗(xk,uk,Pk)
is quadratic w.r.t. zk for Problem 2. Furthermore, (31) in Theorem 3 establishes the relationship between H and the
optimal controller𝝅∗(xk,Pk). Consequently, w and thus the optimal controller𝝅∗(xk,Pk) can be learned from data without
using the system matrices A and B by employing the LSPI-based PRADP method as given in Algorithm 1. The policy
improvement step is directly given by

�̂�(j+1)(xk,Pk) = −
(

h(j+1)
uu

)−1 [
h(j+1)

ux h(j+1)
up

] [ xk
pk,1∶n

]
. (38)

In the next section, simulation results for this PRADP algorithm are presented.

4 RESULTS

In order to validate our proposed PRADP tracking method, we show simulation results where the reference trajectory
is parametrized by means of cubic polynomials.* Furthermore, we compare the results with an ADP tracking method
that assumes that the reference can be described by a time-invariant exo-system f ref(rk). Finally, we compare our learned
controller that does not know the system dynamics with the ground truth controller, which is calculated using full system
knowledge.

4.1 Cubic polynomial reference parametrization

We choose r(Pk, i) to be a cubic polynomial w.r.t. i, that is, 𝝆(i) =
[
(iT)3 (iT)2 iT 1

]⊺, where T denotes the sampling time.
An associated transformation that is needed to obtain the shifted version P(i)

k of Pk according to Definition 1 is then given
by

r(Pk, i + j) = Pk𝝆(i + j) = Pk

⎡⎢⎢⎢⎣
((i + j)T)3

((i + j)T)2

(i + j)T
1

⎤⎥⎥⎥⎦ = Pk

⎡⎢⎢⎢⎣
1 3iT 3(iT)2 (iT)3

0 1 2iT (iT)2

0 0 1 iT
0 0 0 1

⎤⎥⎥⎥⎦
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

T(i)

𝝆(j) = P(i)
k 𝝆(j). (39)

*Other approximations can be used by choosing different basis functions 𝝆(i) (eg, linear interpolation with 𝝆(i) =
[
iT 1

]⊺ or zero-order hold with
𝝆(i) = 1).
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F I G U R E 1 Example plot of the desired reference trajectory rdes,k,1 (gray) of the first state x1 and the cubic polynomial approximations
at the time steps k = 105 (red) and k = 106 (black) resulting from Pk=105 and Pk=106. The horizon for fitting the cubic polynomials is h = 10 in
this example (red solid and black dashed lines). Thus, at each time step k, the parameter Pk is fitted w.r.t. the horizon of length h [Color figure
can be viewed at wileyonlinelibrary.com]

For any given desired reference trajectory rdes,k, the parameter Pk is required at each time step k such that r(Pk, i),
i = 0, 1,… is an approximation of rdes,k+i. In order to determine Pk, we proceed as follows. Let a horizon h be given on
which the desired trajectory is known during runtime, that is, rdes,k:k+h−1 is given. Then, we determine Pk by means of
weighted least-squares (LS) regression. Therefore, let

rdes,k∶k+h−1 =
[
rdes,k … rdes,k+h−1

]
, 𝝆0∶h−1 =

⎡⎢⎢⎢⎢⎣
𝝆(0)⊺
𝝆(1)⊺
…

𝝆(h − 1)⊺

⎤⎥⎥⎥⎥⎦
and W p =

⎡⎢⎢⎢⎣
1 0 … 0
0 𝛾 … 0
⋮ ⋮ ⋱ ⋮
0 0 … 𝛾h−1

⎤⎥⎥⎥⎦ , (40)

where W p is the weighting matrix that incorporates the discount factor 𝛾 such that early time steps are more important
for the fitting process compared to later time steps (cf. the definition of the cost functional Jk in (3) and (21)). Then, the
reference trajectory approximation is given by the parameter

Pk = rdes,k∶k+h−1W p𝝆0∶h−1
(
𝝆
⊺
0∶h−1W p𝝆0∶h−1

)−1
. (41)

For the fitting horizon h = 10, which is also used in the following, example plots of the desired reference trajectory
rdes,k,1 and its approximations at k = 105 and k = 106 are given in Figure 1.

4.2 Example system

In the following, an example system and a cost functional are given, which are used in order to validate our method.
Consider a mass-spring-damper system

ẋ(t) =

[
0 1

− csys

msys
− dsys

msys

]
x(t) +

[
0
1

msys

]
u(t), (42)

with msys = 0.5 kg, csys = 0.1 Nm−1, and dsys = 0.1 k gs−1. Discretization of this system using Tustin approximation with
T = 0.1 s yields

xk+1 =
[

0.9990 0.0990
−0.0198 0.9792

]
xk +

[
0.0099
0.1979

]
uk. (43)

Here, x1 corresponds to the position and x2 to the velocity of the mass msys while the control uk corresponds to a
force acting on the mass. The system (42), or (43), is not known to the controller and is only needed in order to generate
simulation data and validate the learned controllers.

http://wileyonlinelibrary.com
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In our example, we desire to track the position of the mass (ie, x1). Thus, we set

Q =
[

100 0
0 0

]
and R = 1 (44)

to strongly penalize deviation of the first state from the parametrized reference (cf. (21)). Furthermore, we set the discount
factor to 𝛾 = 0.9. In this example, the Assumptions 1 and 2 hold, that is, the optimal controller 𝝅∗(xk+i,P(i)

k ) exists and is
unique according to Theorem 2.

4.3 Simulations

In order to investigate the benefits of our proposed PRADP tracking controller, we compare our method with an ADP
tracking controller from the literature,15,16 which assumes that the reference trajectory is generated by a time-invariant
exo-system f ref(rk). Thus, following the notation of Kiumarsi et al,16 the Q-function Q(xk,uk, rk) of the exo-system-based
approach depends on the current reference value rk at time step k and not on the parameter Pk as in our PRADP method
(cf. (7)). In the LQ-tracking case, their Q-function is quadratic w.r.t. xk, uk, and rk (cf. Kiumarsi et al,16 section 5.1) and
the Q-function-based Policy Iteration as given in Kiumarsi et al (algorithm 3)16 can be performed.

4.3.1 Training procedure

Both our PRADP method and the exo-system-based method from literature are trained on data tuples collected at 500
time steps. For excitation purposes, Gaussian white noise with a zero mean and a standard deviation of 1 is applied to the
system input uk for both ADP methods during data collection for training. Note that none of the methods requires the
system dynamics (20) described by A and B to be known. The reference trajectory during training is given by[

rk+1,1
rk+1,2

]
= rk+1 = f ref(rk) =

[
0.9988 0.0500

−0.0500 0.9988

]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Fref

rk (45)

for the exo-system method, where the initial value is set to r0 =
[
0 1

]⊺, along with the associated cubic polynomials
parametrized by means of Pk at each point in time for our PRADP method as described in Section 4.1. Our PRADP
controller is then trained according to Algorithm 1 with the termination condition eŵ = 1 × 10−6, using the policy
improvement (38) and activation functions 𝝓(⋅) that are quadratic w.r.t xk, uk, and pk,1:n as motivated by Lemma 2. We
furthermore initialize ŵ(0) such that �̂�(0) = 0.† The complete procedure is depicted in Figure 2. The comparison method is
implemented as given by Kiumarsi et al (algorithm 3),16 where we also use the terminal condition eŵ = 1 × 10−6 in order
to determine the convergence of the algorithm and set �̂�(0) = 0.

4.3.2 Validation of the trained controllers

In order to validate the learned ADP controllers, we first compare the controllers learned from data with their ground truth
solutions. Then, we give various simulation results in order to point out the differences between the PRADP controller
and the controller that assumes that the reference trajectory relies on time-invariant exo-system dynamics.

Concerning the parametrized reference method, the optimal controller L calculated using the full system information
(see Theorem 2 and Note 4) results in

𝝅∗(xk,Pk) = −
[
6.30 2.26 −0.31 −0.97 −2.37 −6.40 0 0 0 0

]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

L

[
xk

pk,1∶n

]
. (46)

†This can be done by setting the weights associated with huu such that huu ≻ 0 while all other weights are set to zero (see Lemma 2).
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F I G U R E 2 Flowchart
describing the data collection
and training procedure of the
PRADP algorithm. The control
input uk during training, the
reference trajectory rdes,k:k+h−1

during training, and the basis
functions 𝝆(i) for approximating
the reference trajectory and the
discount factor 𝛾 are the inputs.
When the terminal condition
(see Algorithm 1) is met, the
optimal controller �̂�(j) is returned
[Color figure can be viewed at
wileyonlinelibrary.com]

Comparing the learned PRADP controller LPRADP with this ground truth solution L yields ‖LPRADP − L‖ = 6.51 ×
10−14. Thus, the learned controller is virtually identical to the ground truth solution which demonstrates that the opti-
mal tracking controller has successfully been learned using the PRADP method without knowledge of the system
dynamics.

For the exo-system based tracking controller, the optimal controller Les (see (58) in Reference 16) results in

𝝅∗
es(xk, rk) = −

[
6.30 2.26 −6.28 −1.18

]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Les

[
xk
rk

]
(47)

for the given example. The controller Les,learned that is learned from data as described in Section 4.3.1 is virtually identical
to the ground truth solution of the exo-system approach (‖‖Les,learned − Les‖‖ = 2.60 × 10−13), that is, the training has been
successful.

In order to compare the performance of our PRADP tracking controller with the state-of-the-art methods (which
assume that the reference is generated by a time-invariant exo-system), three different scenarios are considered. In all
scenarios, the controllers that have previously been trained are used without further modifications. Furthermore, the
initial state is set to x0 =

[
1 0

]⊺ in each scenario. The different scenarios are as follows:

1. The first reference trajectory is generated by the same time-invariant exo-system used during training, that is, Fref as
given in (45). The resulting tracking performance of the position x1 is given in Figure 3A. The parameters pk,1 defining
the cubic polynomial associated with r1(Pk, 0) are given in Figure 3B.

2. The second reference trajectory is also generated by a time-invariant exo-system. However, exo-system dynamics other
than those used for training are used. Here, the reference trajectory is generated by

rk+1 =
[

0.9987 0.0030
−0.1998 0.9987

]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Fref, validation

rk, (48)

with r0 =
[
10 1

]⊺. The resulting tracking performance and the parameters pk,1 of the polynomials that approximate the
reference trajectory are depicted in Figure 4. Furthermore, in order to gain insight into the tracking quality by means
of the resulting cost, the immediate cost c(xk,uk, r(Pk, 0)) and the accumulated cost

∑k
𝜅=0 c(x𝜅,u𝜅, r(P𝜅, 0)) are shown.

http://wileyonlinelibrary.com
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(A) (B)

F I G U R E 3 Tracking results of our proposed PRADP method compared with a state-of-the-art ADP tracking controller for Scenario 1,
where the reference trajectory is generated by Fref. A, The approximated reference trajectory r1(Pk, 0) is depicted in gray, the tracking result of
our PRADP method in red and the result of the exo-system approach in black. B, Parameter set pk,1 of the cubic polynomials that yield the
reference trajectory r1(Pk, 0) [Color figure can be viewed at wileyonlinelibrary.com]

3. In the third case, the reference trajectory is not generated by a time-invariant exo-system. Instead, some arbitrary
user-defined reference trajectory is used for rk,1, which describes the desired position of the mass. This reference trajec-
tory is depicted in Figure 5A in gray. Furthermore, we set rk,2 = 0,∀k in this example (this is allowed since the second
state is not penalized due to the choice of Q in (44)). The results are given in Figure 5.

4.4 Discussion

As can be seen from Figures 3A, 4A, and 5A, our proposed method successfully tracks the parametrized reference tra-
jectory. Because the parameter Pk not only provides the controller with the steady-state goal but also with the desired
course of the trajectory (see Figure 1), the learned controller exhibits predictive rather than simply reactive behav-
ior. This can be seen in Figures 3A, 4A, and 5A, where the system states directly follow the reference trajectories and
do not lag behind. The exo-system method proposed by, for example, Luo et al15 and Kiumarsi et al16 results in the
same tracking performance as long as the reference trajectory corresponds to the exo-system used during the training
procedure (ie, as per Scenario 1, depicted in Figure 3). However, the exo-system-based approach results in major devi-
ations from the desired trajectory as soon as the reference does not follow Fref anymore (ie, as soon as (45) does not
hold). This can be seen in Scenario 2 (Figure 4) and Scenario 3 (Figure 5). Although the exo-system-based approach
roughly follows the desired state in Scenario 3,‡ the controller is not aware of the course of the trajectory (i.e. it can-
not correctly predict the desired trajectory). Consequently, the resulting trajectory lags behind the reference trajectory in
this case.

In addition, the instantaneous and accumulated costs in Figures 4C,D and 5C,D reveal that, as soon as the reference
trajectory deviates from the time-invariant exo-system description Fref, the cost of the exo-system approach drastically
exceeds the cost associated with the PRADP method due to the reduced tracking performance of the former. Consequently,
while the methods are comparable in Scenario 1, our method clearly outperforms the exo-system method in Scenario 2
and Scenario 3. PRADP does not require the assumption that the reference trajectory follows time-invariant exo-system
dynamics but is nevertheless able to follow this kind of reference as well as all other references that can be approximated

‡This is a result of the state feedback term of the controller Les (ie, the part of the control law that is directly related to xk), which is identical to the
state feedback term of the PRADP controller. This can be seen in (46) and (47).

http://wileyonlinelibrary.com
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(A) (B)

(C) (D)

F I G U R E 4 Tracking results of our proposed PRADP method compared with a state-of-the-art ADP tracking controller for Scenario 2,
where the reference trajectory is generated by Fref, validation ≠ Fref. A, The approximated reference trajectory r1(Pk, 0) is depicted in gray, the
tracking result of our PRADP method in red and the result of the exo-system approach in black. B, Parameter set pk,1 of the cubic polynomials
that yield the reference trajectory r1(Pk, 0). C, The instantaneous cost c(xk,uk, r(Pk, 0)) of the PRADP method is shown in red, whereas the
instantaneous cost resulting from the exo-system method is given in black. Note the logarithmic ordinate. D, The accumulated cost∑k

𝜅=0 c(x𝜅 ,u𝜅 , r(P𝜅 , 0)) of our method is given in red, the accumulated cost of the exo-system method is shown in black. Note the logarithmic
ordinate [Color figure can be viewed at wileyonlinelibrary.com]

by means of the time-varying parameter Pk. Thus, PRADP can be interpreted as a more generalized tracking approach
compared to existing ADP tracking methods.

5 CONCLUSION

In this article, we propose a new ADP-based tracking controller termed PRADP. This method implicitly incorporates
the approximated reference trajectory information into the Q-function that is learned. This allows the controller to track
time-varying parametrized references once the controller has been trained and does not require further adaptation or

http://wileyonlinelibrary.com
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(A) (B)

(C) (D)

F I G U R E 5 Tracking results of our proposed PRADP method compared with a state-of-the-art ADP tracking controller for Scenario 3,
where the reference trajectory is not generated by a time-invariant exo-system but by some arbitrary user-defined trajectory. A, The
approximated reference trajectory r1(Pk, 0) is depicted in gray, the tracking result of our PRADP method in red and the result of the
exo-system approach in black. B, Parameter set pk,1 of the cubic polynomials that yield the approximated reference trajectory r1(Pk, 0). C, The
instantaneous cost c(xk,uk, r(Pk, 0)) of the PRADP method is shown in red, whereas the instantaneous cost resulting from the exo-system
method is given in black. Note the logarithmic ordinate. D, The accumulated cost

∑k
𝜅=0 c(x𝜅 ,u𝜅 , r(P𝜅 , 0)) of our method is given in red, the

accumulated cost of the exo-system method is shown in black [Color figure can be viewed at wileyonlinelibrary.com]

retraining compared to previous methods. Simulation results show that our learned controller is more flexible com-
pared to state-of-the-art ADP tracking controllers which assume that the reference to be tracked follows a time-invariant
exo-system. Motivated by a straightforward choice of basis functions, we concentrate on the LQ-tracking case in our sim-
ulations where the optimal controller is learned successfully. However, as the mechanism of PRADP allows more general
tracking-problem formulations (see Section 3), general function approximators can be used in order to approximate Q
and allow for nonlinear ADP tracking controllers in the future.
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