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Abstract

Unmanned Aerial Vehicles (UAV) greatly extended our possibilities to acquire

high resolution remote sensing data for assessing the spatial distribution of spe-

cies composition and vegetation characteristics. Yet, current pixel- or texture-

based mapping approaches do not fully exploit the information content

provided by the high spatial resolution. Here, to fully harness this spatial detail,

we apply deep learning techniques, that is, Convolutional Neural Networks

(CNNs), on regular tiles of UAV-orthoimagery (here 2–5 m) to identify the

cover of target plant species and plant communities. The approach was tested

with UAV-based orthomosaics and photogrammetric 3D information in three

case studies, that is, (1) mapping tree species cover in primary forests, (2) map-

ping plant invasions by woody species into forests and open land and (3) map-

ping vegetation succession in a glacier foreland. All three case studies resulted

in high predictive accuracies. The accuracy increased with increasing tile size

(2–5 m) reflecting the increased spatial context captured by a tile. The inclusion

of 3D information derived from the photogrammetric workflow did not signifi-

cantly improve the models. We conclude that CNN are powerful in harnessing

high resolution data acquired from UAV to map vegetation patterns. The study

was based on low cost red, green, blue (RGB) sensors making the method

accessible to a wide range of users. Combining UAV and CNN will provide

tremendous opportunities for ecological applications.

Introduction

Unmanned Aerial Vehicles (UAVs) or Remotely Piloted

Aircraft Systems (RPAS) have evolved to become an

invaluable remote sensing tool for mapping and monitor-

ing vegetation. Specifically, UAV-based photogrammetry

based on structure from motion (SfM) algorithms

expanded the ability to obtain high resolution orthomo-

saics and 3D information. Various studies have demon-

strated the value of UAV image capture and

photogrammetry for vegetation assessments, including the

mapping of species at the individual and stand level (Fritz

et al. 2013; Kattenborn et al. 2014; Sankey et al. 2017;

Cao et al. 2018; Lopatin et al. 2018), plant communities

(Husson et al. 2014; Malenovsk�y et al. 2017), canopy

structure (Getzin et al. 2012; Sankey et al. 2017) and

plant traits (Fritz et al. 2013; Zarco-Tejada et al. 2013,

Tian et al. 2017). UAV-based mapping is often conducted

at a local scale, but can also be extended to larger scales

through a combination with satellite-based remote sens-

ing (Kattenborn et al. 2019).

Despite this demonstrated potential of UAV data, there

is still space for improvement. For example, pixel-based

remote sensing approaches do not fully exploit the high

spatial resolution of UAV data (Zhang et al. 2006; Lopa-

tin et al. 2017; M€ullerov�a et al. 2017). Higher spatial

detail results in higher spectral variance per unit area,

making it more challenging to assign a pixel-based obser-

vation to a class or to fit a regression (Hsieh et al. 2001;

Aplin 2006). At the same time it is evident that higher
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spatial resolution can reveal characteristic patterns, such

as branching architectures or canopy shapes that can be

of high value to discriminate both individual species and

vegetation types (Kattenborn et al. 2019). Thus, instead

of examining single pixels alone, incorporation of the spa-

tial context will allow the spatial detail of high resolution

imagery to be fully exploited. A common approach is to

derive 2D texture metrics from orthoimagery, such as

grey level co-occurrence matrices (Haralick 1979), which

have been frequently applied in the context of UAV map-

ping (e.g. Michez et al. 2016; Lu and He 2017). Another

option is to derive metrics describing the 3D structure of

the canopy derived from the UAV-based photogrammet-

ric point clouds (Brodu and Lague 2012; Getzin et al.

2012; Kattenborn et al. 2014, 2019; Lopatin et al. 2019).

Yet, these 2D texture and 3D structure approaches cannot

automatically and sufficiently exploit the available infor-

mation to detect differences in vegetation characteristics

that are readily perceived by human eyes (Lopatin et al.

2018; Kattenborn et al. 2019).

To address this, we test Convolutional Neural Networks

(CNNs) to map both individual species and vegetation

types, as this deep learning technique has been shown to be

accurate and functional in a range of image recognition

tasks and contests (Krizhevsky et al. 2012; Shin et al. 2016;

Huang et al. 2018). The principle of CNN was inspired by

the functioning of the visual cortex, where neurons are sen-

sitive to visual stimuli at varying scales in different and

partly overlapping regions of the visual space, also known

as receptive fields (Hubel and Wiesel 1962; Cadieu et al.

2014; Angermueller et al. 2016). The combination of multi-

ple firing neurons, excited from multiple visual stimuli,

allows the brain to perceive spatial textures and context

within the field of vision. CNN behave in an analogous

way and, in contrast to previously mentioned approaches

using 2D texture or 3D structure metrics, the spatial met-

rics do not have to be hand-engineered because CNN auto-

matically learn the relevant patterns. As a result, CNN

require minimal preprocessing to capture spatial properties.

Convolutional Neural Networks have already been suc-

cessfully applied in vegetation related applications, for

example, the image-based detection of plant diseases

(Sladojevic et al. 2016), plant phenotyping (Ubbens and

Stavness 2017) and image-based identification of plant

species (see e.g. Pl@ntnet, Flora Incognita, Joly et al. 2016;

W€aldchen and M€ader 2018). However, the application of

CNN to UAV imagery for mapping vegetation properties

remains rare due to various challenges. These include (1)

the complexity of natural vegetation canopies, (2) the

need for spatially explicit and extensive reference data for

training and validation and (3) that mapping approaches

are not dedicated to characterize single images, but to

locate and characterize specific features within images.

1) Complexity of natural vegetation canopies: CNN are

most often used in classification tasks (Krizhevsky et al.

2012; Hu et al. 2015; W€aldchen and M€ader 2018, Wagner

et al. 2019). However, as a response to gradual changes of

environmental factors, vegetation canopies often feature

corresponding gradual changes in species cover, commu-

nity composition or canopy properties (Foody et al. 1992;

Schmidtlein and Sassin 2004; Rocchini et al. 2013). More-

over, pixels may contain more than one vegetation type,

even in very high resolution data. Therefore, vegetation

often tends to be more appropriately described by contin-

uous metrics (e.g. the coverage of a species [%]) and a

robust and flexible mapping approach should ideally

characterize the target variable using a continuous scale

rather than discrete classes.

2) Reference data availability: The predictive accuracy of

CNN commonly benefits from large quantities of training

data (also known as labels). Yet, in most remote sensing

applications reference data are generally a scarce com-

modity due to the cost of ground-based sampling and

difficulties in accessing sites. Moreover, the use of field

data may be impaired by the inability to accurately align

the geolocation of field-based observations with remote

sensing imagery and sampling bias resulting from

ground-based cover estimates (Lunetta et al. 1991; Lep�s

and Hadincov�a 1992; Valbuena et al. 2010; Kaartinen

et al. 2015; Leit~ao et al. 2018). One alternative is to use

spatially explicit observations from UAV imagery. This is

feasible if preexisting ground-based samples are available

to aid the visual delineation of the target canopies or if

the target variable is the cover of an easily identified spe-

cies or vegetation type (Vanha-Majamaa et al. 2000; Lusc-

ier et al. 2006; Lisein et al. 2015; Kattenborn et al. 2018,

2019).

3) Location and characterization of features within images:

Originally, CNN approaches were developed to analyze

images where the objects of interest cover a substantial

part of the image and the entire image is assigned to a

class (Krizhevsky et al. 2012). In contrast, an application

of CNN in vegetation remote sensing must enable to

locate vegetation features within the orthoimagery and

display corresponding spatial gradients. A solution to this

problem is to apply CNN to equally spaced tiles extracted

from the orthoimagery.

In the current paper, we propose a workflow for mapping

species and vegetation types where CNN are trained using

tiles of the orthoimage together with cover values of spe-

cies and vegetation types determined from the orthoimage

itself (see Fig. 1 for an illustration). The fitted CNN is

applied to gridded tiles of the entire orthoimage (or fur-

ther orthoimages) to generate spatially continuous maps

of the variable of interest.
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This procedure addresses the challenges stated above:

Smooth vegetation gradients and fine-scale variation in

vegetation cover are accounted for by mapping the target

variable on a continuous scale (here, per cent cover

instead of assignment to discrete classes). The problem of

limited, spatially explicit field reference data are addressed

by visual interpretation of the imagery. The problem of

locating the vegetation features within the orthoimages is

addressed using the tiles approach.

We test the proposed approach in three case studies

representing three common remote sensing applications:

(1) Mapping plant successions in the foreland of the

Mueller Glacier, New Zealand, (2) mapping of two woody

invasive species in Central Chile; and (3) tree species

mapping in a structurally complex primary forest in

Waitutu, New Zealand. We address the following research

questions:

• How accurate are CNN models combined with UAV

RGB imagery for mapping the spatial extent of different

species and different types of plant communities?

• What is the influence of tile size on mapping accuracy?

• Does the addition of photogrammetric 3D information

increase mapping accuracy?

Materials and Methods

Study sites description and data acquisition

Case study on herb and shrub communities in a
New Zealand glacier foreland (‘Vegetation
Succession’)

We tested the proposed CNN approach for mapping a

spatially complex vegetation succession in the Mueller

glacier foreland. Located in Mount Cook National Park

(New Zealand), it comprises about 450 ha and is

characterized by a sequence of lateral and latero-frontal

moraines formed 125–3370 � 290 years ago (Winkler

and Lambiel 2018). Previous studies on vegetation succes-

sion in the adjacent East Hooker Valley found distinct

plant communities on different aged terrain with pioneer

and early successional stages characterized by the herb

Epilobium melanocaulon and the moss Racomitrium lanug-

inosum, intermediate successional stages with Festuca and

Chionochloa grassland and later successional shrubland

with woody Dracophyllum spp. (Gellally, 1982). RGB data

were acquired in seven individual flights with a DJI Phan-

tom 4 Pro+ in February 2018. A flight height of 100 m

ensured an image resolution of 5 cm per pixel. The area

covered in each flight ranged from 20–50 ha. To define

vegetation successional stages, a vegetation survey was

conducted using 55 plots (2 9 2 m) distributed across

the area following a stratified-random approach based on

Normalized Difference Vegetation Index maps calculated

from Sentinel-2 data. For each plot, the species cover was

quantified based on the vertical projection of the perime-

ter of the crown of each component plant of that species.

Using the species cover data, four vegetation stages were

classified using the Isopam algorithm (Schmidtlein and

Sassin 2004; implemented in R, distance Bray-Curtis,

expert mode). Isopam is a cluster algorithm that is based

on a brute force approach to find the optimum separa-

tion of all descriptors – here species cover. The four clas-

sified vegetation successional stages included a pioneer

community, two intermediate and one late successional

class. The CNN training data for these classes were delin-

eated in the orthomosaic using visual image interpreta-

tion guided by the classified plot data (see supplementary

information 2 for sample photographs and orthoimagery

of each successional class). Due to the large spatial extent

of the study area, the analysis was restricted to seven areas

(150 9 150 m). These areas were manually positioned so

Figure 1. Scheme of the proposed CNN-based procedure for vegetation mapping. The training phase (left) is based on sampling random image

tiles and cover proportions of the target class (red). In the application phase (right), the cover [%] of the target class is predicted in form of

continuous maps (indicated by the grey arrow and colored grid) using the trained CNN model and regularly extracted image tiles.
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that all four successional stages were sufficiently covered

(see supplementary information 5 for map overviews).

Case study on invasive woody species in Central
Chile (‘Plant Invasion’)

We tested the potential of CNN for mapping woody plant

species invading native vegetation using the examples of

Pinus radiata and Ulex europaeus in Central Chile. Pinus

radiata is a coniferous tree, which was introduced to Cen-

tral Chile for timber production (Clapp 1995). It fre-

quently invades from managed plantations into natural

Nothofagus and sclerophyllous forest stands (Bustamante

and Simonetti 2005; Guerrero and Bustamante 2007).

Ulex europaeus was introduced to Central Chile as natural

hedge for livestock and for its ornamental value. Ulex

europaeus has spread vastly in Chile, causing negative eco-

nomic impacts to agriculture and silviculture (Noram-

buena et al. 2000).

For the two invasive species, we used RGB data from

four independent octocopter flights (Okto-XL, HiSystems

GmbH, Germany). The areas were selected with input

from local experts to cover representative situations of

the invasion. The octocopter was equipped with a Canon

100D with an 18 mm lens. The UAV flights were per-

formed in Chilean summer and spring (March, Novem-

ber) for Pinus radiata and Ulex europaeus, respectively.

We performed the image flights at an average height of

150 m above ground ensuring a spatial resolution of at

least 3 cm for the RGB imagery (depending on the ter-

rain). The area covered in each flight ranged from 21 to

37 ha. Further details on the study sites and the UAV

data acquisition are described in Kattenborn et al. (2019)

and Lopatin et al. (2019).

Case study on tree species in New Zealand
primary forests (‘Tree Species’)

We tested the mapping of tree species in a primary and

structurally complex forest in Waitutu, Southland and

New Zealand. The target species Metrosideros umbellata,

an angiosperm of the Myrtaceae and Dacrydium cupress-

inum, a gymnosperm of the Podocarpaceae, have been

selected because they were widespread in the areas of

investigation. Other important tree species in these forest

canopies include the angiosperms Weinmannia racemosa,

Lophozonia menziesii, Fuscospora cliffortiodes and the gym-

nosperms Podocarpus laetus and Prumnopitys ferruginea.

We used UAV data acquired for three plots (edge size of

100–150 m) along with a full inventory of individual trees

in each of these plots, with information about position in

space, species and diameter at breast height. In-situ data

were used to assist the visual delineation of the target

species and served as starting point of digitizing the indi-

vidual crowns. Further details on the individual tree data

acquisition, vegetation and site conditions are for example

given in Coomes et al. (2005) and Parfitt et al. (2005).

The UAV-based RGB imagery was acquired in November

2017 with an average ground sampling distance of 3 cm

data using an octocopter (Okto-XL, HiSystems GmbH,

Germany) carrying a Canon 100D with an 18 mm lens.

UAV data processing and reference data
acquisition

We produced orthomosaics using the SfM-based pho-

togrammetric processing chain in Agisoft Photoscan (Agi-

soft, Russia, vers. 1.4.2). The applied processing chain

included image matching through bundle adjustment and

dense point cloud creation. Prior to image matching, we

removed blurry images. Based on the dense point cloud,

Digital Elevation Models (DEM) were produced. The

orthomosaics were created by projecting the single image

frames on the DEM. Georeferencing of the dataset was

performed automatically in Agisoft Photoscan based on

the GNSS trajectories logged during the UAV image

flight. The estimated total error of the georeferencing did

not exceed 3 m. The orthomosaics were exported at spa-

tial resolutions corresponding to the average pixel size of

the single image frames (see Tab. 1 for a summary of the

orthoimagery). For compatibility the DEM were resam-

pled to the same spatial resolution. A tabular summary of

the UAV data is given in supplementary information 1.

The reference data required to train and to validate the

CNN-based models were derived using GIS-based visual

image interpretation and delineation of the target classes.

This approach ensured that the reference data and

orthoimagery were in direct spatial correspondence (no

geolocation mismatches), as they emerged from the same

data and perspective (nadir imagery). The visual interpre-

tation was based on knowledge gained through ground-

based sampling. For the case studies on plant invasions in

Chile and on vegetation succession in the Mueller Glacier

forelands, geotagged photographs, which were acquired

during the field campaign, were used to aid the image

interpretation. The delineation of tree crowns in the

Waitutu Tree Species case study was aided and checked

using full georeferenced inventory data (Coomes et al.

2005). The polygons created by visual interpretation were

cross-checked by at least one other interpreter (Table 1).

Training and applying the CNN-based Deep
Learning model

In each case study, we derived spatially continuous esti-

mates of the target classes using CNN models applied to
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gridded tiles of the imagery (compare Fig. 1). The CNN

models were trained and validated with image tiles and

visually delineated target canopies. The size of the image

tiles was varied from 2 to 5 m to test the trade-off

between spatial detail and accuracy of the mapping out-

put. In the second test, we compared the model perfor-

mance of CNN models incorporating the 3D information

(DEM) with models excluding 3D information.

The image tiles used for training and validation of the

CNN models were extracted from a regular grid of x- and

y-coordinates within the extent of the orthoimages. We

set the grid spacing to 5 m to ensure that the image tiles

(maximum size of 5 m) did not overlap. At each selected

grid position, rectangular tiles of the orthoimagery and

DEM were extracted, with edges measuring 2, 3, 4 and

5 m, respectively (Fig. 2). From each tile we extracted the

cover [%] of the target class using the digitized polygons

of that class (Fig. 2). The DEM values were normalized

(0–255 grey values) to remove effects of different ground

elevations between the study areas. Using this procedure

we randomly sampled 4000 image tiles for each target

canopy (together with the reference covers [%]). For the

Waitutu Tree Species case study, we used 2500 image tiles

due to the smaller spatial extent of UAV data available.

For each case study, the image tiles were split into train-

ing (66.6%) and validation sets (33.3%).

The CNN processing chain was implemented through

an R interface (version 2.2.4, R Core Team 2018) using

the Keras deep learning API and the TensorFlow backend

(Chollet and Allaire 2019). We trained the models on a

local workstation using the CUDA environment (GPU-

based processing) and a NVIDIA graphics card (GeForce

GTX 980 Ti). We setup the CNN using Depthwise Seper-

able Convolutions (also known as Xception, Chollet

2017). Depthwise Seperable Convolutions perform

convolutions for each channel separately (e.g. the three

RGB channels), and in the final layer (the 1 9 1 convolu-

tion) the output is merged. This procedure results in a

less complex network with fewer parameters than tradi-

tional CNN and is thus more robust for smaller datasets

and also computationally more efficient (Chollet 2017).

In view of the comparably small size of the reference

dataset, we used a relatively streamlined network architec-

ture to avoid overfitting (Fig. 3). The architecture

involved eight layers, including the application of six sub-

sequent 3 9 3 convolutions, each of them including a

rectified linear unit (ReLu). After the first two subsequent

3 9 3 convolutions (layer 2 and 4), a maximum pooling

with stride 2 reduced the feature map size by 50%. The

number of feature channels was doubled with each maxi-

mum pooling iteration. After the last two 3 9 3 convolu-

tions (layer 6) a global average pooling was used to

derive a 1 dimensional layer (layer 7). The last layer of

the neural network was based on a sigmoid activation

function limiting the range of possible predictions

between 0 and 1 (corresponding to 0 and 100%, layer 8).

To facilitate a direct comparison, we applied the same

CNN architecture for the different case studies (target

canopies) and tests (different tile sizes, including and

excluding 3D information).

We trained the models using the RMSprob optimizer

and the mean squared error (MSE) loss function. To

compensate for the limited size of training samples and

to increase model robustness, we applied data augmenta-

tion during model training. Data augmentation inflated

the number of frames by randomly rotating (in 40 degree

steps), shearing (0-0.2 radians), shifting (0–15%) and flip-

ping the image frames horizontally. The CNN models

were trained in 20 epochs, using a batch size of 32 and

1563 steps (~50 000 steps in total). 20 epochs were

Table 1. Summary of the case studies, vegetation classes and species of interest.

Case study Target area [ha] No of flights

Orthoimage

resolution [cm] Target variable/species

Vegetation succession 327.2 7 5 1. Pioneer class

Racomitrium spp., Stellaria gracilenta

2. Early intermediate class

Coriaria angustissima, Gaultheria crassa, Holcus lanatus

3. Later intermediate class

Acaena fissistipula, Leucopogon fraseri, Muehlenbeckia axillaris

4. Late succession

Podocarpus spp., Phyllocladus alpinus

Plant invasion 58.2 4 3 1. Ulex europaeus

93.5 4 3 2. Pinus radiata

Tree species 4.3 3 3 1. Metrosideros umbellata

2. Dacrydium cupressinum
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selected as all models converged before the 20th epoch

(usually between the 8th and 14th epoch). The model

weights for each epoch were only adjusted if the loss

(MSE) was lower than that of the prior epoch. The accu-

racy of the final models was reported by calculating the

R2 and the RMSE based on the independent validation

data. A summary of the hyper-parameters used for the

CNN training is given in Table 2.

We derived spatially continuous estimates for each case

study by applying the models to tiles of a continuous grid

covering the respective orthoimage (compare Fig. 1). The

tile sizes corresponded to the tile sizes used for training.

Results

The CNN regression models for the different case studies

had R² values between 0.57 and 0.85. We found no clear

differences in the predictive accuracy of the CNN

approach among the different case studies (Figs. 4–6).
The resulting maps (Figs. 4–6) show similar patterns for

the predictions at different tile sizes (2–5 m). For all case

studies, decreased noise at larger tile sizes corresponded

with increased prediction accuracy with increasing tile

size (larger R² and smaller RMSE, respectively). R² values
increased by 0.12–0.21 from 2 m to 5 m predictions and

RMSE values decreased by 4–10% cover.

Figure 2. Schematic representation of the input tiles at different sizes (2–5 m) used for training and applying the CNN models. Each tile consists

of RGB data, DEM information scaled from 0 (blue, low) to 1 (red, high) and reference data quantifying the per cent cover of the target canopy

(polygon boundary indicated by white dashed line).

Figure 3. Scheme showing the analysis of tiles in the Convolutional Neural Network (CNN) models used in this study. In the first step, the input

tiles (here with a size of 100 9 100 pixels) are analyzed using 32 filters (convolutions). In the subsequent steps, the spatial dimensions of the 32

resulting feature maps are reduced (maximum pooling operations) and further convolutions are applied with increasing numbers of filters with an

output of up to 256 feature maps after global average pooling. The actual result, that is % cover, is determined in the last layer (see main text

for details).

Table 2. Hyper-parameters used for training the CNN models.

Hyper-parameter Value

No. of input channels 3 (RGB) or 4 (RGB + 3D)

Filter size 1*32, 3*64, 2*128 (see Fig. 3)

Pooling size 2*2

Convolution kernel size 3

Number of epochs 20

Batch size 32

Steps per epoch 1563 (50 000 in total)

Optimizer RMSprob (lr = 0.001, rho = 0.9,

decay = 0.9)

Activation function ReLU/sigmoid (last layer)
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We assessed the contribution of including photogram-

metric 3D information by comparing the predictive accu-

racy (RMSE) of models that were trained with and

without elevation data (DEM). Results of the three case

studies indicate only minor differences in R² and RMSE

between models with and without 3D information (Tab1e

3). There is no clear trend in the contribution of pho-

togrammetric 3D information to model accuracy with

changing tile size.

Discussion

A primary strength of the approach presented is that it

exploits inexpensive, consumer-grade hardware to map

the cover of species or vegetation types on continuous

scales using ordinary RGB imagery. Mapping continuous

values of cover instead of discrete classes (see e.g. Hu

et al. 2015; Wagner et al. 2019) accounts for situations

where classes (species or plant communities) are mixed

within pixels or tiles, respectively. This approach is partic-

ularly applicable for landscapes featuring smooth transi-

tions among species or vegetation types and enables co-

occurrences of several vegetation classes to be revealed

through separate prediction layers. Moreover, the pre-

sented CNN-based regression approach is not only appli-

cable for cover fractions of classes, such as species or

vegetation types, but also directly applicable for purely

continuous metrics.

Performance of the CNN approach in the
three case studies

Are CNN regression models trained and applied on image

tiles accurate toward common mapping tasks? Overall,

the results for all case studies were very accurate. The

accuracies presented for mapping the target canopies are

comparable or surpass those of previous studies

combining UAV-based hyperspectral data and texture

metrics with pixel-based approaches on similar datasets

(Kattenborn et al. 2019; Lopatin et al. 2019) and results

obtained by other authors for different datasets (Lisein

et al. 2015; Sankey et al. 2017; Cao et al. 2018). This con-

firms that CNN algorithms combined with UAV-based

RGB imagery are of high value for vegetation mapping.

According to our observations, the accuracy of the

CNN-based mapping is determined by characteristic tex-

tural and structural differences of the target objects com-

pared to the surrounding vegetation. In the case of the

Waitutu Trees Species case study, Metrosideros umbellata

featured a very heterogeneous reflectance, with flowering,

tree age, nutrient supply and various stressors (e.g. soil

drainage) as likely reasons. Its canopy structure tended to

resemble the surrounding vegetation and the mapping

accuracy was accordingly lower. Dacrydium cupressinum,

in contrast, had a comparably distinct and homogeneous

appearance resulting in accurate cover predictions. Similar

high accuracies were found for mapping invasions of Ulex

europaeus in Chile. Here, the combination of yellow blos-

som and distinct branching patterns formed a clear con-

trast to the native vegetation matrix at the site.

The high predictive accuracies we obtained using CNN

algorithms demonstrate that UAV-based RGB imagery,

featuring a low spectral resolution and high spatial resolu-

tion, can be very useful to map vegetation types and

properties if spatial context is explicitly considered.

Where spectral discernibility is low, spatial pattern may

be the only key to successful classification. This suggests

great potential for low-cost and off-the-shelf UAV plat-

forms, which have become increasingly available and

user-friendly during recent years (Colomina and Molina

2014). At the same time, it can be assumed that combin-

ing high spatial resolution sensors with high spectral reso-

lution (multi- or hyperspectral data) will provide even

more accurate results (Sankey et al. 2017 or Kattenborn

Table 3. Comparison between CNN model accuracies (RMSE [% *0.01]) with and without photogrammetric 3D information.

3D information included

2 m 3 m 4 m 5 m

No Yes No Yes No Yes No Yes

Vegetation succession

Pioneer 0.066 0.064 0.051 0.049 0.040 0.042 0.045 0.043

Early Intermediate 0.134 0.137 0.134 0.135 0.106 0.108 0.106 0.096

Late Intermediate 0.144 0.151 0.123 0.121 0.114 0.109 0.103 0.104

Late successional 0.226 0.220 0.197 0.178 0.157 0.149 0.139 0.138

Plant invasion

Pinus radiata 0.231 0.239 0.191 0.182 0.155 0.158 0.141 0.139

Ulex europaeus 0.182 0.215 0.181 0.167 0.122 0.121 0.116 0.114

Tree species

Metrosideros umbellata 0.181 0.155 0.153 0.157 0.129 0.148 0.100 0.099

Dacrydium cupressinum 0.170 0.182 0.136 0.146 0.121 0.132 0.111 0.112
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et al. 2019), whereas the most accurate results are likely

to be obtained by applying such an approach using time-

series data (Lisein et al. 2015).

The trade-off of between spatial detail and
predictive accuracy

What is the ‘right’ tile size for mapping the target vari-

able? Our results indicate that the overall spatial patterns

of the target canopies are preserved at all spatial resolu-

tions considered (2–5 m), but the amount of noise

increases with finer spatial resolution (Figs. 4–6). Accord-
ingly, we found that predictive accuracy increases with

increasing tile size. This can be explained, as larger tiles

include more spatial information making it more likely

that characteristic diagnostic features, such as branching

patterns or the canopy shape, are detected. An additional

influence may be inaccuracies in the delineated reference

data used for validation, which would have a lower

impact at coarser spatial resolutions. Overall, the spatial

resolutions tested here are high in comparison to other

studies, demonstrating the potential for vegetation

Figure 4. Case study on vegetation succession in the foreland of the Mueller Glacier, New Zealand: RGB imagery, reference data (left) and

results (right) for subsets of the (A) late successional class and (B) the pioneer class. Scatterplots depict predictions versus validation data for each

tile size. Subsets and predictive accuracy are shown separately for each tile size considered (2–5 m).
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mapping tasks where high spatial detail matters, for

example, for tracking early plant invasions (Cao et al.

2018; Kattenborn et al. 2019), mapping small scale vege-

tation patterns (Husson et al. 2014; Malenovsk�y et al.

2017; Eichel 2019) or mapping occurrences of individuals

within complex vegetation.

The contribution of photogrammetric 3D
information

How large is the added value of including 3D information

on the canopy structure derived from the SfM processing

chain? Our analysis revealed that 3D information did not

clearly improve the mapping accuracy. The 3D informa-

tion on the canopy structure might be redundant as it is

already indirectly visible in the orthoimagery through cast

shadows and illumination differences within the canopy.

Yet, previous studies demonstrated that photogrammetric

3D information can be of high value for species classifica-

tion or trait retrieval (Kattenborn et al. 2014; Fraser et al.

2016; Alonzo et al. 2018; Lopatin et al. 2019). Hence we

suggest that the value of 3D information should be fur-

ther tested, since it is already available after the pho-

togrammetric processing at no additional cost. It might

Figure 5. Case study on the mapping of two woody invasive species in Central Chile: RGB imagery, reference data (left) and results (right) for

subsets of (A) Pinus radiata and (B) Ulex europaeus. Scatterplots depict predictions versus validation data for each tile size. Subsets and predictive

accuracy are shown separately for each tile size considered (2–5 m).
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be especially useful in situations with little presence of

cast shadows and illumination effects, as where sun angles

are high or light conditions are diffuse. Furthermore, the

value of 3D information might be in particular useful if

the target class or quantity is directly related to canopy

height. The value of 3D information may be further

increased when normalizing the relative heights to abso-

lute canopy heights by incorporating a Digital Terrain

Model (not available for all datasets tested here). A

promising way to include photogrammetric information

are algorithms that use point clouds instead of elevation

models in raster format (e.g. PointNet, Garcia-Garcia

et al. 2016). Another alternative may be the combined use

of orthoimagery and LiDAR data, as LiDAR data have

been proven to be a powerful tool to assess geometric

vegetation characteristics (Wallace et al. 2012, Sankey

et al. 2017). Combining multiple data sources, however,

can also be challenging as this requires accurate geometric

alignment.

Limitations and practical considerations

We used a straight forward CNN architecture (Fig. 3) to

avoid the overfitting that can result from small sample

Figure 6. Case study on tree species mapping in a structurally complex primary forest in Waitutu, New Zealand: RGB imagery, reference data

(left) and results (right) for subsets of (A) Metrosideros umbellata and (B) Dacrydium cupressinum. Scatterplots depict predictions versus validation

data for each tile size. Subsets and predictive accuracy are shown separately for each tile size considered (2–5 m).
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sizes. With increased availability of high quality data,

more sophisticated CNN architectures with more convo-

lutional layers and filters might perform better. Additional

strategies such as the use of pretrained libraries (Schwarz

et al. 2015) or freezing (Nogueira et al. 2017) can be used

to boost the performance of such models. Depending on

the target feature and the data, a different type of CNN

might be applicable. Here, we implemented a CNN-based

regression model to predict a continuous metric on tiles.

Given that the target variable is a discrete class (e.g. bin-

ary absences/presences of a species) and the available data

are of high quality and resolution, a semantic segmenta-

tion approach may be applicable (Kattenborn et al. 2019).

Semantic segmentation architectures, such as the U-net

(Ronneberger et al. 2016) or the DenseNet (J�egou et al.

2017) can be advantageous, since they enable the extent

of the target class to be predicted at the original resolu-

tion of the input imagery (Kattenborn et al. 2019). If the

objective is to identify single occurrences of a class (e.g.

individual trees) instance segmentation algorithms, such

as Mask R-CNN (He et al. 2017), can be used. However,

the latter requires that the individual are clearly definable

in the orthoimagery.

Further, we found the regression approach advanta-

geous when the image quality or resolution does not

allow for explicit segmentation of the objects. Such a

regression approach is also applicable for mapping con-

tinuous metrics, such as plant diseases (Sladojevic et al.

2016) and structure-related plant and community traits

such as crown width, canopy gap fraction or Leaf Area

Index (Getzin et al. 2014; Chianucci et al. 2016; Panagio-

tidis et al. 2017; Tian et al. 2017).

For training and validation, the workflow presented

here included the visual delineation of the target class

from the UAV-based RGB imagery. The delineation and

image interpretation was carefully checked using pho-

tographs and geocoded field data. Still, inaccuracies dur-

ing the delineation process are inevitable and therefore

might have affected the training and thus predictive accu-

racy of the CNN models. We noted cases where target

canopies were overlooked during the delineation resulting

in ‘false’ prediction that were in reality true (see Fig. 7

for an example). Validation based on holdouts of the

visually delineated reference data can be affected by such

inaccuracies, implying that a model might perform better

than indicated by the reference data (Kattenborn et al.

2019). Despite this, we believe that, if the target class can

be identified in the imagery, training CNN models using

visual delineation has the advantage that (1) the visual

delineation in orthomosaics is spatially explicit, (2) it is

not affected by geolocation alignment issues, (3) it is

derived from the same perspective (nadir) facilitating the

generation of statistical links, (4) it allows many observa-

tions to be acquired and (5) overcomes barriers and

biases resulting from inaccessible sites (Lunetta et al.

1991; Lep�s and Hadincov�a 1992; Valbuena et al. 2010;

Kaartinen et al. 2015; Leit~ao et al. 2018).

The resolution of the datasets acquired within the case

studies presented here ranged from 3 cm to 5 cm. How-

ever, important features of plant canopies might only be

identifiable at higher spatial resolutions, for example, leaf

or needle shape and arrangement, branching architecture,

presence and form of flowers or seeds (M€ullerov�a et al.

2013; Ghazi et al. 2017; W€aldchen et al. 2018). We believe

the predictive accuracy of the approach could potentially

be enhanced by increasing the spatial resolution. How-

ever, traditionally there has been a trade-off between spa-

tial resolution and area coverage of remote sensing

imagery. With time, we expect technological advances will

continue to increase spatial detail without compromising

spatial extent.

The spatial extents at which UAV data are commonly

acquired for vegetation mapping is generally limited to

not more than a few hectares or square kilometers. This

could be considered a substantial limitation of UAV-ap-

plications for vegetation mapping, as many research

Figure 7. Map extracts of the RGB imagery

(left) and predictions with 2 m tile size for

Dacrydium cupressinum (right). The red circle

marks plausible cover values for an overlooked

Dacrydium cupressinum tree, suggesting that

the CNN models may be even more accurate

than indicated by the delineated reference

data (white polygons).
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questions are centered at regional to global and not local

scales. However, UAV mapping products can be of high

value for large-scale analyses, as they can contribute large

training data for satellite-based mapping procedures (Kat-

tenborn et al. 2019; Riihim€aki et al. 2019).

Some authors consider that pattern recognition and

neural networks are limited by the computational

demands to train the models (Si�eler et al. 2010; Culbert

et al. 2012; Nogueira et al. 2017). Yet, recent develop-

ments in the computer industry have created multiple

possibilities for an efficient application of image analysis

(in particular for CNN algorithms) and neural networks

such as graphic-processing unit (GPU)-based computa-

tions using the parallel computing platform CUDA (Nvi-

dia). Here we used CUDA with a medium priced GPU

(GeForce GTX 980 Ti), on which training of the CNN

architecture with 5 m window size (27889 pixels) and

1562 steps and 20 epochs lasted approximately 2.5 h.

Once the model is trained, its application on further

images using the tile approach is computationally very

efficient and takes only seconds.

That the application of a trained CNN model is very

fast and a large share of the community has access to

UAV with comparable RGB systems opens up new possi-

bilities and advantages of sharing pretrained CNN mod-

els. A potential future direction is the establishment of

databases that offer CNN models for various classification

and regression tasks. For common tasks (e.g. fractional

vegetation cover mapping of common invasive species)

such a framework would be highly valuable for the com-

munity. Databases would also increase the quantity of

training data, as CNN and neural networks require com-

prehensiveness of training data. More specifically such

databases could either consist of labelled UAV image

frames or orthoimagery together with delineated polygons

of the target species.

Conclusion

Convolutional Neural Networks regression models are a

powerful tool to harness high resolution data acquired from

UAV to predict vegetation patterns. In many cases, where

spectral information is scarce or does not help in identifying

the given vegetation or species, spatial patterns can be essen-

tial. This cutting-edge technique, in concert with hyperspec-

tral remote sensing in a multi-temporal setting will pave the

way toward unprecedented accuracy in future vegetation

mapping. At the same time, CNN alone will revolutionize

the way we use high resolution spatial imagery. The high

predictive accuracies obtained in our case studies using low

cost RGB sensors highlights the potential application for a

wide range of users. We conclude that combining UAV and

CNN will provide ground-breaking opportunities for

applied vegetation mapping. Moreover, satellite images are

already approaching the high spatial resolutions relevant for

the methods tested in this contribution, opening up a

wealth of further applications.
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