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Abstract: Solar energy does not always follow the normal distribution due to the characteristics
of natural energy. The system advisor model (SAM), a well-known energy performance analysis
program, analyzes exceedance probabilities by dividing solar irradiance into two cases, i.e., when
normal distribution is followed, and when normal distribution is not followed. However, it does
not provide a mathematical model for data distribution when not following the normal distribution.
The present study applied the skew-normal distribution when solar irradiance does not follow the
normal distribution, and calculated photovoltaic power potential to compare the result with those using
the two existing methods. It determined which distribution was more appropriate between normal
and skew-normal distributions using the Jarque–Bera test, and then the corrected Akaike information
criterion (AICc). As a result, three places in Korea showed that the skew-normal distribution was more
appropriate than the normal distribution during the summer and winter seasons. The AICc relative
likelihood between two models was more than 0.3, which showed that the difference between the
two models was not extremely high. However, considering that the proportion of uncertainty of solar
irradiance in photovoltaic projects was 5% to 17%, more accurate models need to be chosen.

Keywords: global horizontal irradiance (GHI); photovoltaic power potential; normal distribution;
skew-normal distribution; exceedance probabilities

1. Introduction

The variation of annual performance in solar energy systems is the essential factor considered
in a project’s economic feasibility [1]. The risk evaluation of P50/P90 is mainly used to evaluate the
economic feasibility of wind farm projects. Since solar irradiance is a more predictable resource than
wind velocity, it can be applied to risk evaluations of photovoltaic (PV) or concentrated solar thermal
power projects [2,3].

P50 means that the predicted solar resource/energy yield may either be exceeded or not be
exceeded, with a 50% probability of either occurring. The P90 value is expected to be exceeded in 90%
of the cases. Thus, P90 is less than P50. For example, in the PV power generation system, a P50 value
of 30,000 kWh means the system output may exceed 30,000 kWh with a probability of 50%. Similarly, a
P90 value of 30,000 kWh would mean that the system is likely to generate over 30,000 kWh 90% of the
time. Figure 1 shows the concept of P50 and P90 as a graph.

For PV system, which is widely used as a simulation program of solar energy systems [4], annual
solar irradiance is assumed to follow the normal distribution in the P50/P90 calculation [5]. With the
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system advisor model (SAM) algorithm, two methods are used. Depending on whether or not the solar
irradiance data distribution follows the normal distribution, P50/P90 is calculated from the cumulative
distribution function (CDF) of the normal distribution if the solar irradiance data follow the normal
distribution. Otherwise, P50/P90 is calculated from the empirical CDF, based on the assumption that all
data occurrence probabilities are the same, by sorting the data in ascending order [3]. Furthermore, the
results of a study performed in Spain, which exhibited the characteristics of annual global horizontal
irradiance (GHI) in 13 locations in the USA, Europe, etc., reported that they followed the normal
distribution [6].Energies 2019, 12, x FOR PEER REVIEW 2 of 12 
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Figure 1. P50 and P90 values represented in a normal distribution: (a) P50; (b) P90. 
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Figure 1. P50 and P90 values represented in a normal distribution: (a) P50; (b) P90.

However, real solar irradiance is a variable natural energy source that does not always follow the
normal distribution, as shown in Figure 2. This graph shows the probability density function (PDF) of
the normal distribution and probability histogram of the GHI on Mokpo over a 27-year period (1991
to 2017). Moreover, existing studies have also reported that the actual solar irradiance follow the
asymmetric distribution rather than the normal distribution [1].
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Figure 2. Probability density function (PDF) of the normal distribution and probability histogram of
the global horizontal irradiance (GHI) in Mokpo, Korea.

This study calculated the P50/P90 PV power potential from the skew-normal distribution, whereby
skewness was applied to the normal distribution rather than assuming that the probability was the
same, after sorting the data in ascending order if the solar irradiance simply did not follow the
normal distribution.

In previous studies, the skew-normal distribution was found to be ideal for presenting appropriate
models of real data that did not follow the normal distribution. Thus, a large number of studies
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on the application of the skew-normal distribution have been conducted [7–9]. In particular, the
authors of Reference [7] improved the predictability of probabilistic solar irradiance using Bayesian
model averaging (BMA), to which the skew-normal PDF was applied using the ensemble technique in
Singapore. Moreover, when producing a daily solar irradiance using the CLImate GENerator (CLIGEN)
model for regions in China, the model’s performance was improved by adding a skew coefficient to the
normal distribution [9]. In addition, a study on daily solar irradiance modeling was also conducted
based on various distributions in a tropical climate in France and Nigeria [10–12].

In this paper, four cities in Korea, which is located in the mid-latitude temperate zone and
has four distinct seasons (spring, summer, autumn, and winter), were targeted to apply the normal
distribution, skew-normal distribution, and empirical cumulative distribution, from which the P50/P90
PV power potential was calculated and the results were compared. The Jarque–Bera test was used as
the goodness-of-fit test to determine whether solar irradiance data followed the normal distribution,
and the AICc was used to determine which method produced a better result between normal and
skew-normal distributions.

2. Research Area and Data

2.1. Research Area

As shown in Table 1, the average GHI value from 9 a.m. to 5 p.m. during the period 1991–2017
was calculated, and the result showed that the average GHI in Daejeon and Mokpo was highest at
around 0.40 kWh/m2 among four cities, and that of Seoul was the lowest at 0.34 kWh/m2. Figure 3
shows the GHI map at four cities during the period 2013–2017.Energies 2019, 12, x FOR PEER REVIEW 4 of 12 
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Table 1. City information.

City Latitude (N) Longitude (E) Altitude (m) Annual Avg. of GHI (kWh/m2)

Seoul 37.57 126.97 85.5 0.34
Daejeon 36.37 127.37 68.9 0.40
Mokpo 34.82 126.38 38.0 0.40

Jeju 33.51 126.53 20.5 0.37

2.2. Data

This study used hourly GHI and air temperature data supplied by the Korea Meteorological
Administration (KMA), as presented in Table 2. The data were produced using the Automatic Synoptic
Observing System (ASOS), which comprises a pyranometer and an atmospheric temperature sensor.
The GHI is stored every minute and observed once every second, thereby storing a mean solar irradiance
of 60 observations. Each observatory stores the mean GHI per min (W/m2) data and the hourly
cumulative GHI data (MJ/m2). A pyranometer from Kipp & Zonen CM21 was used. The air temperature
sample was taken every 10 s using an electric resistance temperature sensor (100 Ω platinum resistance),
and six recordings taken at 10-second intervals were averaged to obtain the minute-unit data. The hourly
air temperature means the air temperature measured at 00 min of each hour [14,15].

Table 2. Data information.

Division GHI Air Temperature

Source Korea Meteorological Administration (KMA)

Period 1 January 1991–31 December 2017 (27 years)

Sensor CM 21 Atmospheric temperature sensor

Resolution Hourly cumulative GHI (MJ/m2) Hourly air temperature (◦C)

Accuracy 3% (hourly), 2% (daily) ±0.3 ◦C

3. Methodology

As shown in Figure 4, whether the annual GHI data follow the Gaussian shape was determined
by performing the Jarque–Bera test after inputting the hourly cumulative GHI data. Which distribution
is more appropriate, i.e., which quality of the normal and skew-normal distribution is better, was
determined using the AICc. Finally, the P50/P90 PV power potential was calculated using three
methods, and their results were compared. In this paper, the simplest P50/P90 calculation method was
used, and uncertainties such as data quality and climate change were not considered.

3.1. Three Distributions

3.1.1. Normal Distribution

P50 or P90 is calculated from the normal distribution CDF if the data distribution follows the
normal distribution. The normal distribution is one of the continuous probability distributions, which
is also called the Gaussian distribution. The shape is determined by mean µ and standard deviation
σ. The mean and standard deviations were determined using the Maximum Likelihood Estimation
(MLE). The P50 value means a mean value, and the P90 value can be calculated through the CDF of the
normal distribution, such as Equation (1) [16]. The P90 value is obtained when F(x) = 0.1.

F(x) =
1
2

[
1 + erf

(
x− µ

σ
√

2

)]
(1)

erf: Error function (also called the Gauss error function);
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µ: Mean;
σ: Standard deviation.
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3.1.2. Skew-Normal Distribution

This study attempted a new method using skew-normal distribution, in which skewness was
applied to the normal distribution. This distribution was originally introduced by Azzalini (1985) [17],
and its PDF is presented in Equation (2) [18].

f (x) = 2φ(x)Φ(αx) (2)

φ(x) =
1
√

2π
e−

x2
2 (3)

Φ(x) =

x∫
−∞

φ(t) dt (4)

In Equations (3) and (4), φ(x) and Φ(x) refer to the standard normal PDF and CDF. α refers to the
shape parameter, which has a range of −∞ < α < ∞. As shown in Figure 5, when α is a negative value
according to the sign of α, it is skewed toward the right, but when α = 0, normal distribution, and
when α is a positive value, it is skewed toward the left.
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The CDF in the skew-normal distribution is presented in Equation (5), through which P50 and
P90 were calculated. The scale parameter ω, mean ξ, and the shape parameter α have to be fitted to the
data. This three-dimensional optimization problem was solved by creating a 3D parameter grid and
testing the objective function at the grid points.

F(x) =
1
2

[
1 + erf

(
x− ξ

ω
√

2

)]
− 2T(

x− ξ
ω

,α) (5)

T(h, α): Owen’s T function;
ω: Scale parameter;
ξ: Mean;
α: Shape parameter.

3.1.3. Empirical Distribution

This method is used when the data do not follow the normal distribution, in which the data
distribution is skewed when abnormal climate conditions, such as a blizzard or a volcanic eruption,
occur. This method does not assume a specific statistical probability distribution, but the data are
sorted in ascending order based on the assumption that each set of data occurs at the same probability
to calculate P50 and P90. Table 3 presents the calculation process of the empirical CDF using the
example of a four-point dataset.

Table 3. Example of empirical cumulative distribution function (CDF) calculation.

Data Estimated CDF

10,798 0.25
12,563 0.50
15,375 0.75
16,564 1.00

3.2. Goodness of Fit Test

To determine whether the data follow the normal distribution, the Jarque–Bera test (usually
shortened to just JB test) was used, as described above. Through the skewness of the Jarque–Bera test,
the tendency of the data distribution shape to deviate toward either side of the mean can be found, and
kurtosis can be used to determine the extent to which the data distribution shape is concentrated in the
center. This can be expressed by Equation (6) [20]. The critical values and the p-value were calculated
with a 0.05 significance level using the Monte Carlo simulation to accommodate the small sample size.

JB =
n
6
(S2 +

(K − 3)2

4
) (6)

n: Sample size;
S: Sample skewness;
K: Sample kurtosis.

3.3. Relative Quality of Statistical Models

Next, the relative quality of normal and skew-normal distributions were evaluated using AICc,
as presented in Equation (7) [21–23], and an evaluation was conducted to determine which model
was more appropriate. Since the relative information loss due to the model through the AIC value
can be known, it can be estimated that the smaller the AIC value, the higher the quality of the model,
which represents the data well. Because of the small sample size in this study, the AICc that best
accommodated a small sample size was used.
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AICC =
2kn

n− k− 1
− 2In(L) (7)

n: Sample size;
k: Number of model parameters;
L: Likelihood of model.

The difference between the two models can be found through the relative likelihood of the model,
as presented in Equation (8). When selecting the high-quality model, it is better to choose a model
whose relative likelihood is smaller. This value is between 0 and 1.

Relative likelihood of model i = exp((AICCmin −AICCi)/2) (8)

3.4. PV Power Potential

The PV power potential in this study was affected by the solar irradiance, temperature, and
conversion efficiency of the solar cell array, as presented in Equation (9) [24]. This study exemplified a
3-kW small-scale PV power generation system, and the PV power potential was calculated using the
target system, whose efficiency was 15% and area was 24 m2 array.

PPV = ηSI[1− 0.05(to − 25)] (9)

η: Conversion efficiency of the solar cell array (%);
S: Array area (m2);
I: Solar irradiance (Wh/m2);
to: Outside air temperature (◦C).

4. Results and Discussion

4.1. Distribution Results

The AICc results showed that the information loss was relatively smaller when the normal
distribution was selected, rather than the skew-normal distribution for Seoul, as presented in Table 4.
However, the skew-normal distribution seemed more appropriate for Daejeon in the summer season
(May to July) and the winter season (November to December). Similarly, for Mokpo and Jeju Island, the
skew-normal distribution seemed more appropriate during May and November, and July or August.
This result was obtained due to variables such as the rainy season and typhoon during the summer,
when solar irradiance is high, and variables such as the heavy snowfall during the winter, when solar
irradiance is low.

However, given that the range of the AICc relative likelihood was from 0 to 1, and that the
difference between the two models increased as the AICc relative likelihood came closer to 0, the fact
that the AICc relative likelihood was 0.3 on average indicated that there was no significant difference
between the two models. Table 5 presents the annual and monthly AICc values in Daejeon. These
values show how much data information was lost when fitting with each of the models. Figure 6 shows
the PDF and the CDF of the normal and skew-normal distributions in Daejeon in December. The more
appropriate distribution for Daejeon was the skew-normal distribution in December, in which the
AICc value was 7.31 smaller than that obtained when the normal distribution was selected, and the
difference between the two models was the largest among the four selected cities.
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Table 4. Distributions of four cities.

Period
AICc Would Recommend AICc Relative Likelihood

Seoul Daejeon Mokpo Jeju Seoul Daejeon Mokpo Jeju

Year Normal Normal Skew Skew 0.30 0.64 0.43 0.76

Month

Jan

Normal

Normal Normal

Normal 0.42 0.58 0.28 0.28
Feb Skew 0.35 0.40 0.35 0.83
Mar

Normal
0.44 0.28 0.53 0.90

Apr 0.35 0.43 0.82 0.43

May
Skew

Skew Skew 0.33 0.75 0.99 0.42
Jun Normal

Normal
0.29 0.29 0.29 0.29

Jul Skew 0.29 0.30 0.93 0.30

Aug
Normal Normal

Skew 0.29 0.78 0.30 0.18
Sep

Normal
0.37 0.81 0.36 0.53

Oct 0.29 0.33 0.59 0.28

Nov
Skew

Skew Skew 0.34 0.35 0.82 0.29
Dec Normal Normal 0.28 0.03 0.34 0.41

Table 5. Annual and monthly Akaike information criterion (AICc) values in Daejeon.

Period
AICc

Normal Distribution Skew-Normal Distribution

Year 481.94 482.82

Month

Jan 388.52 389.62
Feb 385.52 387.35
Mar 399.56 402.11
Apr 389.13 390.84
May 393.12 392.54
Jun 386.08 383.61
Jul 364.80 362.41

Aug 371.20 371.70
Sep 370.34 370.77
Oct 360.04 362.25
Nov 380.64 378.54
Dec 369.45 362.14Energies 2019, 12, x FOR PEER REVIEW 9 of 12 
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4.2. Comparison of the Three Distributions

The difference between the three distributions was calculated based on the distribution
recommended by AICc, as shown in Table 6. In the comparison, the area showing the greatest
difference is Daejeon. If the normal distribution is the reference, the difference in the P90 value between
the normal distribution and the empirical distribution is 4.37%. The next difference is Mokpo, which is
the difference in the P90 value between the skew-normal and empirical distributions. Figure 7 shows
the annual CDF graph of Mokpo’s annual PV power potential with three distributions. Based on the
skew-normal distribution, which had a smaller AICc value than the normal distribution, the difference
in the P90 value between the skew-normal distribution and the empirical distribution was 2.14%.
In addition, there was a 0.54% difference in P90 between the skew-normal and normal distributions.

Table 6. P90 and P50 PV power potentials of four cities.

City
Normal Distribution Skew-Normal Distribution Empirical Distribution

P90 P50 P90 P50 P90 P50

P
(kWh)

Diff
(%)

P
(kWh)

Diff
(%)

P
(kWh)

Diff
(%)

P
(kWh)

Diff
(%)

P
(kWh)

Diff
(%)

P
(kWh)

Diff
(%)

Seoul 5439 - 5932 - 5451 0.21 5917 0.00 5462 0.42 5866 0.01
Daejeon 6185 - 6781 - 6164 0.35 6828 0.01 5915 4.37 6825 0.01
Mokpo 6093 0.54 6674 0.01 6060 - 6740 - 5930 2.14 6694 0.01

Jeju 5301 0.94 5787 0.01 5252 - 5856 - 5152 1.90 5858 0.00

P: PV power potential, Diff: Difference rate.
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At P90, the average difference was 1.35% more than at P50. We further inferred that the reason for
the difference in the P90 value is that it was less likely to occur than the average meaning of P50 and
showed irregular characteristics.

The seasonal analysis of each region shows that Seoul, Daejeon, and Mokpo produced the highest
generation in spring and the lowest in summer. However, in the case of Jeju Island, the lowest power
potential was produced in winter. It is inferred that the main reason is the high temperature of Jeju
Island in winter. Based on the data from 1991 to 2017, the average winter temperatures in the four
regions were analyzed to be 7 ◦C in Jeju Island, while the other three regions were as low as −0.4 ◦C
to 3 ◦C. According to the KMA, in January 2020, despite the winter season, the highest daytime
temperature on Jeju Island was 23.5 ◦C, the highest temperature in January.
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5. Conclusions

This study determined the best goodness-of-fit distribution when applying the normal,
skew-normal, and empirical distributions based on the long-term solar irradiance database in four
major cities in Korea, and compared the results after calculating the P50/P90 PV power potentials. In
PVsyst, which has been widely used as a performance simulation program in existing solar energy
systems, the normal distribution was assumed for annual solar irradiance data, and the P50/P90 values
were calculated from the empirical CDF, whose data were sorted in ascending order based on the
assumption that the probability of occurrence of all data was the same when the solar irradiance data
did not follow the normal distribution in the existing SAM algorithm. However, this study presented a
distribution, which was closer to the actual solar irradiance distribution mathematically, by applying
the skew-normal distribution when the solar irradiance data did not follow the normal distribution.
The Jarque–Bera test was used as the goodness-of-fit test to determine whether the solar irradiance
data followed the normal distribution, while the AICc was used to determine which model produced a
better quality result between the normal and skew-normal distributions.

1. For Seoul, the result of AICc was obtained that the solar irradiance distribution was appropriate
to the normal distribution. In contrast, for Daejeon, Mokpo, and Jeju Island, the skew-normal
distribution was more appropriate during May and November, and July and August. The above
results show that the appropriate distribution shape may differ depending on the region and season.

2. Considering that the relative likelihood of the annual AICc was at least 0.3 or larger in the four
regions, the quality of any single distribution model was not considered to be much better than
the others. Information loss occurred upon selecting a single model, which showed that any
one distribution would be appropriate for all. For the purposes of this study, only 27 samples
were used, but at least 30 samples would be needed for model fitting [25]. Thus, the larger the
number of samples, the lower the uncertainty will be [26]. Therefore, it is necessary to secure
more annual solar irradiance data than the current study because this will make possible a more
accurate model fitting.

3. The results of the comparison of the P90 and P50 values when applying three distributions
showed a larger difference in the P90 values than in the P50 values. The greatest difference
between distributions was obtained in Daejeon, where the difference between the normal and
empirical distributions was around 4.37%, followed by Mokpo, where the difference between the
skew-normal and empirical distributions was around 2.14%.

4. Based on the PV power potential, according to the seasonal analysis of the four cities, Jeju Island
produced the lowest generation in winter, unlike the other three cities. In addition, in the previous
study, when the PV power generation ramp analysis was conducted on 1450 PV power plants
in Korea, the average ramp rate of Jeju Island was 11.5%, which was the most variable region
in Korea [27]. Therefore, when the PV penetration level increased, especially in Jeju Island, it
was necessary to thoroughly prepare for the worst case and take complementary measures when
estimating backup facility capacity and reserve.

Projects that utilize solar energy, such as photovoltaics and concentrated solar thermal power,
entail a certain degree of uncertainty, with the proportion attributable to solar resource uncertainty
being around 5% to 17% [28]. This uncertainty could increase the project risk. As such, we hope that
the results of this study could be used as the main data in an effort to reduce the degree of uncertainty
in PV projects in Korea, where the proportion of PV power is being steadily increased by identifying
the difference, although the difference was found to be just under 5% after applying a more realistic
distribution to Korea, which has a continental climate.

Author Contributions: Conceptualization, software and formal analysis, S.Y.K. and B.S.; data curation, writing—
original draft preparation, review and editing, S.Y.K.; supervision, G.J.; review and funding acquisition, H.-G.K.;
funding acquisition, Y.-H.K. All authors have read and agreed to the published version of the manuscript.



Energies 2020, 13, 676 11 of 12

Funding: The article processing charges (APC) was funded by the Korea Institute of Energy Technology Evaluation
and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No.
20194210200010).

Acknowledgments: This work was supported by the Korea Institute of Energy Technology Evaluation and Planning
(KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20194210200010).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviation:

AICC Corrected Akaike Information Criterion
ASOS Automatic Synoptic Observing System
BMA Bayesian Model Averaging
CDF Cumulative Distribution Function
CLIGEN CLImate GENerator
GHI Global Horizontal Irradiance
KMA Korea Meteorological Administration
MLE Maximum Likelihood Estimation
PDF Probability Density Function
PV Photovoltaic
SAM System Advisor Model
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