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Abstract

Context The contribution of forest understory to the

temperate forest carbon sink is not well known,

increasing the uncertainty in C cycling feedbacks on

global climate as estimated by Earth System Models.

Objectives We aimed at quantifying the effect of

woody and non-woody understory vegetation on net

ecosystem production (NEP) for a forested area of

158 km2 in the European Alps.

Methods We simulated C dynamics for the period

2000–2014, characterized by above-average temper-

atures, windstorms and a subsequent bark beetle

outbreak for the area, using the regional ecosystem

model LandscapeDNDC.

Results In the entire study area, woody and non-

woody understory vegetation caused between 16 and

37% higher regional NEP as compared to a bare soil

scenario over the 15-year period. The mean annual

contribution of the understory to NEP was in the same

order of magnitude as the average annual European

(EU-25) forest C sink. After wind and bark beetle

disturbances, the understory effect was more pro-

nounced, leading to an increase in NEP between 35Electronic supplementary material The online version of
this article (https://doi.org/10.1007/s10980-019-00960-2) con-
tains supplementary material, which is available to authorized
users.
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and 67% compared to simulations not taking into

account these components.

Conclusions Our findings strongly support the

importance of processes related to the understory in

the context of the climate change mitigation potential

of temperate forest ecosystems. The expected

increases in stand replacing disturbances due to

climate change call for a better representation of

understory vegetation dynamics and its effect on the

ecosystem C balance in regional assessments and

Earth System Models.

Keywords Net ecosystem production � Carbon

sequestration � Mountain forest � Herb layer � Tree

regeneration � Forest disturbance � Ecosystem

modelling

Introduction

Earth System Models (ESM) substantially improved

our understanding of ecosystem carbon (C) cycling

feedbacks on global climate (Flato et al. 2013; Bonan

and Doney 2018). Nevertheless, many of the biogeo-

physical feedbacks remain to be addressed in a better

way (Steffen et al. 2018). In forests, among the biggest

challenges is the identification of C dynamics related

to the understory including shrubs, herbs, grasses and

small trees (Thrippleton et al. 2016; Landuyt et al.

2018). Forest ground vegetation contributes to ecosys-

tem production and litter input, mediating carbon and

nutrient dynamics (Nilsson and Wardle 2005; Gilliam

2007). At the same time, tree regeneration in the forest

understory and ground vegetation are crucial for

swiftly recovering C stocks after stand replacing

forest disturbance (Edburg et al. 2012). However, the

magnitude of uncertainty in modelled net ecosystem

production (NEP) estimates as a result of disregarded

processes mediated by forest understory is still

unknown.

Forest stand replacing disturbances are classical

examples where the understory determines C and

nutrient dynamics because trees in the mid- and

understory can take advantage of elevated light, water

and nutrient availability, rapidly increasing photosyn-

thetic activity and growth (Brown et al. 2010; Edburg

et al. 2011; Mathys et al. 2013; Williams et al. 2014).

However, a number of factors can limit tree

regeneration, thereby causing a delay in the recovery

of the C sink strength (Mayer et al. 2014; Matthews

et al. 2017). Tree regeneration in temperate forests is

often limited by browsing of large ungulates (Ammer

1996; Motta 1996; Friedrich Reimoser and Gossow

1996), seed predation by small mammals (Nopp-Mayr

et al. 2012), or a scarcity of microsites suitable for

germination (Diaci et al. 2005; Kupferschmid and

Bugmann 2005). In addition, understory grasses and

herbs (ground vegetation) can thwart tree regeneration

after disturbance through competition (Ammer 1996;

Pröll et al. 2015; Reimoser and Gossow 1996; Turner

et al. 1997), with potential negative effects on NEP. At

the same time, ground vegetation contributes to forest

C sequestration (Nilsson and Wardle 2005; Gilliam

2007). The effect of ground vegetation on C seques-

tration also increases after tree replacing disturbances.

This has been shown for lodgepole pine forests after a

mountain pine beetle outbreak in British Colombia,

Canada (Bowler et al. 2012), for a clearcut in North-

Eastern US mixed conifer-hardwood forest (Williams

et al. 2014), for wind throw areas in the High Tatra

Mountains, Slovakia (Don et al. 2012), and for

disturbed Norway spruce forests of the Kalkalpen

National Park, Austria (Zehetgruber et al. 2017).

The above-cited studies substantially improved our

knowledge about understory effects on C dynamics.

However, all of them were plot-scale studies, and

many were based on eddy flux measurements typically

located in topographically flat and homogenous areas

(Edburg et al. 2012). The effects of forest understory

on NEP can therefore not easily be generalized over

large, complex landscapes characterized by variation

in site conditions, stand age, disturbance impact,

understory plant functional attributes, and the ability

of tree species to regenerate (Edburg et al. 2012;

Williams et al. 2014). Moreover, disturbances are

likely to gain importance as drivers of understory

processes affecting NEP in temperate forests of

Europe since wind events (Gregow et al. 2017) and

bark beetle outbreaks are predicted to increase under

climate change (Seidl and Rammer 2017; Seidl et al.

2014).

This paper presents, to our knowledge, the first

landscape-scale study quantifying the effects of tree

regeneration and ground vegetation development on

temperate forest NEP using the ecosystem model

system LandscapeDNDC (Grote et al. 2009; Haas

et al. 2013) that includes process-based submodels for
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the simulation of forest carbon, nitrogen, and water

cycles. Various sources of information such as

airborne images, long-term field and LiDAR data

were used to initialize and calibrate the model. We

applied LandscapeDNDC on an area of 158 km2 at

Kalkalpen National Park, Austria, a complex moun-

tain region where disturbances have altered forest

structure and function in the recent past and are

expected to increase in the coming decades driven by

climate change (Thom et al. 2017b). We focused our

analysis on a 15 year time period (2000 to 2014),

characterized by the three warmest years (2005, 2010,

2014) in 165-year global instrumental records (WMO

2015), an extreme heat wave in 2003 (Ciais et al.

2005), and high disturbance activity.

We hypothesized that forest understory increased

the regional NEP through higher net primary produc-

tion (NPP) and C input to the soil. We expected a

higher NEP of the landscape after disturbance by

including both, tree regeneration (Brown et al. 2010;

Edburg et al. 2011; Mathys et al. 2013; Williams et al.

2014) as well as growth of ground vegetation (Bowler

et al. 2012; Don et al. 2012; Williams et al. 2014;

Zehetgruber et al. 2017) in the simulations. We also

hypothesized that understory growth of trees and

ground vegetation do not result in simple additive

effects on NEP but that ground vegetation supresses C

uptake of tree regeneration, particularly shortly after

disturbance events (Ammer 1996; Reimoser and

Gossow 1996; Pröll et al. 2015; Thrippleton et al.

2016).

Materials and methods

Study area

The Kalkalpen National Park is located at

N47.47� E14.22� in the Northern Limestone Alps of

Austria. The complex mountainous landscape, with

elevations ranging from 385 to 1963 m a.s.l., is mostly

forested (81%). Mean annual temperature ranges

between 3.6 and 9.0 �C and annual precipitation

between 1205 and 1741 mm (Thom et al. 2017b).

Soils are predominantly shallow with Lithic and

Rendzic Leptosols and Chromic Cambisols as the

dominant soil types over carbonate bedrock. In our

study, we focussed on all forested areas\ 1200 m

a.s.l. covering 158 km2 dominated by montane

European beech (Fagus sylvatica (L.)) and mixed

spruce (Picea abies (L. Karst.))—silver fir (Abies alba

(Mill.))—beech forest types. The investigated time

period between 2000 and 2014 included disturbance

events triggered by the storms Kyrill, Paula and

Emma, which hit Central Europe in the years 2007 and

2008. A subsequent bark beetle outbreak—fanned by

the storm events—lasted from 2007 to 2012 (Seidl and

Rammer 2017).

LandscapeDNDC model description

To estimate growth of over- and understory trees as

well as ground vegetation, and to distinguish between

soil and plant respiration, we applied the ecosystem

model system LandscapeDNDC (Grote et al. 2009;

Haas et al. 2013). LandscapeDNDC has been used to

determine forest development under undisturbed

(Grote et al. 2011; Molina-Herrera et al. 2015) as

well as disturbed conditions (Lindauer et al. 2014) and

to estimate associated emissions of atmospheric trace

gases (Kraus et al. 2015; Molina-Herrera et al. 2015)

as well as leaching losses (Kiese et al. 2011; Dirnböck

et al. 2016). Regional LandscapeDNDC applications

are grid-based assuming that each simulated grid cell

is an independent homogenous simulation unit repre-

senting a defined plant-soil system without lateral

exchange of water, energy and matter. Within Land-

scapeDNDC, core models are MeTrx (Kraus et al.

2015) and PSIM—Physiological Simulation Model

(Grote 2007) describing soil biogeochemical and

vegetation processes, respectively. The following

paragraphs briefly describe the most important con-

cepts and model adaptions regarding vegetation and

hydrology that are relevant for this study.

Cohort approach

PSIM characterizes the vegetation in a grid cell in

form of homogeneously distributed cohorts, i.e.,

groups of uniform morphology that represent different

species or different dimensions (e.g. trees of different

social classes) as well as ground covering species such

as grasses and herbs (Grote et al. 2011). The vegeta-

tion within one simulation unit can thus be represented

by multiple coexisting cohorts. The number of cohorts

needs to be initialized and is constant during the

simulation. This also means that cohorts are not

merged even if they would develop into similar
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dimensions (for details see section model input).

Biomass development of all cohorts (mature overstory

trees, understory trees, and ground vegetation) is

basically described by the same processes, which are

photosynthesis and phenology, respiration, allocation

and senescence (see Grote et al. 2009 and references

therein), considering in principal the same plant

organs (wood, foliage, fine roots, reserves, etc.).

Dimensional growth

For tree cohorts (over- and understory), structural

growth (height, stem and crown diameter, etc.) is

calculated for an average representative tree based on

the biomass changes of the woody compartment using

the allometric relationships presented by (Bossel

1996; Grote et al. 2011). The allocation into woody

tissue is calculated based on the pipe-model theory

(Shinozaki and Yoda 1964) that assumes a species-

specific ratio between sapwood area and foliage and is

driven by phenological development (Grote 2007).

Because this ratio is set to zero for ground vegetation,

no wood formation (and thus no woody biomass and

no structural growth) is computed for grass and

herbaceous ground vegetation cohorts.

For tree cohorts, area coverage directly results from

crown dimensions and number of individuals. Due to

missing structural growth of ground vegetation

cohorts, an empirical function was developed that

dynamically scales the area coverage of ground

vegetation (Ah) depending on overstory tree coverage

(Ao), using the findings of Helm et al. (2017). This

function was based on 54 permanent forest plots

(10 9 10 m), presenting a robust relationship of Ao

and Ah for the study region (see details in S2).

Linking dimensional growth and foliage biomass

Dimensional growth of cohorts determines the upper

limit of newly formed leaves from stored material at

budburst. This cohort-specific value is given as a

parameter for a closed canopy and restricted by crown

volume for tree species cohorts and area coverage for

ground vegetation cohorts.

Biomass distribution

Each cohort has its biomass distributed within the

canopy space that is differentiated into layers of equal

height. The distribution of leaf biomass over the length

of the crown is modelled with a distribution function

based on a species-specific parameter and crown

length as a variable (Grote 2003, 2007). In case of

ground vegetation, leaf biomass is completely allo-

cated to the first canopy layer above ground due to

missing structural growth. Leaf area per canopy layer

is afterwards determined from biomass and specific

leaf area. For trees, specific leaf area develops linearly

from a minimum at the treetop to a maximum at crown

base, while specific leaf area is set constant for grass

and herbaceous ground vegetation.

Competition

Micrometeorological-, water- and nitrogen balance

calculations determine climatic conditions and

resource availability in each of these layers that

affect—but are also influenced by—the cohort’s

properties and interactions. Thus, all cohorts are in

competition with each other. For example, light

availability and thus photosynthesis in one canopy

layer depends on the amount and properties of the

foliage in higher layers. Belowground, soil water and

nitrogen in a layer is only accessible for a plant cohort

when sufficient fine roots are present.

Hydrology

In addition to model adaptations regarding area cover

of ground vegetation, the tipping bucket approach of

vertical soil water movement (Kiese et al. 2011) is

replaced by a Van Genuchten approach to describe

water percolation more realistically. The adaptation of

the soil hydrology descriptions (details are provided in

S1) was motivated by numerical problems of the

tipping bucket approach for the simulation of soils

with high stone contents, which are widespread in the

study region.

Simulation design

The study region was discretized by a regular

100 9 100 m grid resulting in a total of 15,793

simulation units. The vertical discretization of the soil

and canopy domain was grid cell specific depending

on vegetation and soil characteristics available from

surveys. The height of the canopy domain is dynam-

ically calculated depending on the maximum height of
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prevalent vegetation cohorts. A maximum of 40

equally sized layers is used for the canopy discretiza-

tion. The vertical resolution of the soil domain

depends on total soil depth but generally 0.5 cm

layers were set for upper soil (O and A horizons) and

10 cm layer dimension for lower soil (B horizon).

Hourly simulations spanned 15 years covering the

time period 2000-2014. In order to explore the

potential effect of forest ground vegetation and tree

regeneration on ecosystem NEP, four hypothetical

scenarios were set up (Table 1).

Model input

Vegetation

The initialization of the vegetation was based on Thom

et al. (2017b), who compiled a wall-to-wall estimate of

vegetation structure and composition from forest

inventory and planning data, aerial image analysis,

and LiDAR data with a spatial resolution of

10 9 10 m. We aggregated this data to a spatial

resolution of 100 9 100 m (Table 2; see details in

S2). The maximum number of simulated vegetation

cohorts per grid cell was set to seven, one cohort

representing ground vegetation (only for the HR and H

scenario), two cohorts representing tree regeneration

(only for the HR and R scenario), and four cohorts

representing overstory trees (see details in S2). The

overstory cohorts represent the two most dominant

tree species (depending on aboveground biomass

shares) in the two most dominant height classes per

grid cell. In the HR and R scenario, two tree

regeneration cohorts (tree saplings of the type of the

respective overstory) were included in all grid cells at

the beginning of the simulation. Since Land-

scapeDNDC doesn’t provide a dynamic regeneration

module and also because much regeneration is carried

out or supported by management, new trees had to be

initialized specifically. A total of 2500 tree saplings

(height = 0.5 m) were initialized because it is the

recommended density for sustainable tree regenera-

tion according to regional forestry guidelines (Jasser

and Diwold 2014). We considered a proportional

partitioning of tree species into the two regrowth

cohorts according to the biomass of the respective tree

species in the overstory. In reality, however, a lower

density is often realized, so that we varied the tree

sapling density across simulations from 500 to

3000 ha-1 (500, 1000, 1500, 2000, 2500, and 3000).

The respective scenarios were indicated as R500,

HR500, R1000, HR1000, etc. Note, that browsing damage

to tree saplings by large ungulates was not modelled.

Disturbance effects on vegetation were taken from

a previous study carried out in the area (Thom et al.

2017b). This data contained spatially explicit yearly

information on disturbed tree volume and disturbance

type. The data resolution of 10 9 10 m was additively

scaled to the 100 9 100 m grid size to fit Land-

scapeDNDC simulations (see details in S2).

Soils

LandscapeDNDC requires soil-depth-specific initial

information of major soil properties, i.e., organic

carbon and nitrogen contents, bulk density, pH, texture

and soil hydrologic parameters. This information was

derived based on soil map data from Kobler (2004),

which was available on a spatial resolution of

100 9 100 m (see details in S2) (Table 2).

Weather and atmospheric properties

We used daily weather data from Thom et al. (2017b).

Nitrogen deposition was represented by a mean

nitrogen concentration in precipitation (2.87 mg l-1

N) taken from Dirnböck et al. (2016). Atmospheric

concentration of CO2 was set constant to 370 ppm.

Model parametrization and evaluation

Parametrization for spruces and ground vegetation has

been documented in Lindauer et al. (2014). Additional

Table 1 Model scenarios including (?) or excluding (-)

forest ground vegetation (i.e. herbs and grasses) and/or tree

regeneration

Scenario name Ground vegetation Tree regenerationa

HRa ? ?

H ? -

Ra - ?

NN - -

aNote that in addition to the four scenarios, tree regeneration

was initialized assuming different densities (500 to

3000 trees ha-1), thereafter indicated as R500, HR500, R1000,

HR1000, etc.
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parameters for beech have been obtained from various

sources and evaluated e.g. in Grote et al. (2011).

Calibration of few allometric parameters for the

current study region has already been carried out in a

previous study with LandscapeDNDC (Dirnböck et al.

2016). Some minor adjustments, such as the desired

height:diameter ratio were set from site measurements

to account for the differences between slope and

plateau. For evaluation, we used several data sets with

observations from the LTER Zöbelboden site (https://

deims.org/8eda49e9-1f4e-4f3e-b58e-e0bb25dc32a6),

which is a 90 ha long-term ecosystem research area in

the Kalkalpen National Park. The local forest types are

representative for the bulk of montane forests in the

park (Jost et al. 2011; Kobler et al. 2015; Dirnböck

et al. 2016; Zehetgruber et al. 2017). Data from two

long-term monitoring plots were used for the calibra-

tion of tree growth (IP1: 1996-2010 and IP2:

1998-2016), and soil respiration (IP1: 2009-2011; IP2:

2015) (see details in S3). IP1 is located on a flat plateau

(950 m a.s.l.) stocked by a 115-year-old spruce-beech

forest and Chromic Cambisols and Hydromorphic

Stagnosols as the main soil types. IP2 is located

adjacent to IP1 on a 36� steep slope, dominated by an

old growth, mixed beech-maple-ash-spruce forest on

shallow Lithic and Rendzic Leptosols. Both plots

experienced wind and bark beetle disturbances to

varying degrees (Kobler et al. 2015). For the com-

parison of measured versus modelled tree growth, soil

moisture, and soil respiration, we used the R package

hydroGOF version 0.3-10 (Zambrano-Bigiarini 2017).

Mean error, Pearson correlation coefficient and the

Kling-Gupta efficiency (Gupta et al. 2009) were used

as indicators to evaluate model performance. The

King-Gupta efficiency is an aggregated measure

expressing correlation, variability and bias concerning

the comparison of modelled simulations with empiri-

cal data. Long-term 10 9 10 m (n = 54; 1993–2014)

records of forest vegetation (Helm et al. 2017) were

used for the function that scales the ground coverage

of ground vegetation depending on overstory tree

coverage. Vegetation records at IP1 and IP2 were used

for validation of ground vegetation biomass dynamics

(see details in S3).

Data analyses

While the amount of C fixed by photosynthesis in an

ecosystem is defined as gross primary production

(GPP) and NPP results from GPP minus autotrophic

respiration, we defined NEP as GPP minus total

ecosystem respiration (the sum of autotrophic and

heterotrophic respiration) according to Lovett et al.

(2006). Cumulative regional NEP was calculated as

the sum of all simulated grid cells over the period 2000

to 2014. Tree regeneration as well as ground vegeta-

tion effects on NEP were calculated by subtracting the

respective scenarios from each other. For the calcu-

lation of understory effects after disturbance, we

differentiated between undisturbed areas and areas

with[ 211 m3 ha-1 stem wood damage, representing

1% of the total study area, and overstory tree

replacement for the average forest stand of the study

area (Table 2).

Results

Model evaluation

Predicted tree stem biomass and soil respiration was

well in accordance with observations at the two

Table 2 Initial stem volume (vol), C pool quantities of aboveground stem wood (st), branch wood (br) ? foliage biomass (fl), roots

(C below), and soil organic carbon stocks (SOC)

Overstory Tree regenerationa Ground vegetation Total

vol (m3 ha-1) 225.7 ± 169.3 0.05 ± 0.02 – 225.7 ± 169.3

C above (t C ha-1) st 55.3 ± 43.3 st 0.03 ± 0.01 0.25 ± 0.03 73.3 ± 58.6

br ? fl 17.6 ± 16.2 br ? fl 0.05 ± 0.05

C below (t C ha-1) 14.0 ± 10.3 0.03 ± 0.01 0.09 ± 0.01 13.8 ± 10.2

SOC (t C ha-1) – – – 119.7 ± 34.3

Values correspond to the mean and standard deviation across the complete study region
a2500 tree individuals ha-1
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intensively studied plots IP1 and IP2 (S3). Stem

biomass development between 1996 and 2010 (IP1)

and between 1998 and 2016 (IP2) of the two dominant

tree species could be modelled with a Pearson r[ 0.99

and Kling-Gupta efficiency between 0.57 and 0.97.

The model underestimated stem biomass (of Picea

abies and Fagus sylvatica) with a mean error of 1%

(IP1) and 33% (IP2) (Table 3). Note, that the degree of

error in IP2 resulted from the difficulty to simulate the

heterogeneous tree structure of the stand on the steep

slope and does not reflect annual growth estimates in

the same way, indicated by the high Pearson correla-

tion coefficients. Daily soil respiration was modelled

with a Pearson r = 0.97 and Kling-Gupta efficiency of

0.93 at IP1, whereas at IP2 Pearson r was 0.66 and

Kling-Gupta efficiency was 0.36. At IP1, the model

underestimated soil respiration with a mean error of

4.3% (IP1), and overestimated soil respiration with a

mean error of 15.2% at IP2 (Table 3). Seasonal peak

ground vegetation biomass as modelled with Land-

scapeDNDC corresponded well with measured bio-

mass (S3) records at IP1 and IP2 showing deviations

between 0.01 and 0.05 t ha-1, representing 1.3% and

8.3%, respectively (Table 4).

Cumulated net ecosystem production (NEP)

In the HR2500 scenario, the mean C sink of the study

region was 48.3 ± 20.8 t C ha-1 between 2000 and

2014 resulting in a total area cumulated NEP of 754 kt

C (Figs. 1, 2a). The NN scenario resulted in a mean

NEP of 36.5 ± 25.1 t C ha-1 adding up to a total of

570 kt C for the landscape (Fig. 1). Hence, NEP

increased by 32% (11.8 ± 12.6 t C ha-1) when tak-

ing tree regeneration and the ground vegetation layer

into account (Figs. 1, 2b). The sensitivity analysis

with different tree regeneration densities resulted in a

16% (HR500) to 37% (HR3000) NEP increase (Fig. 1).

When accounting for tree regeneration without

growth of ground vegetation, i.e. the R2500 scenario,

mean NEP resulted in 44.3 ± 22.6 t C ha-1 between

2000 and 2014 summing to an area cumulated NEP of

692 kt C (Fig. 1). Hence, NEP increased by 21% when

taking tree regeneration into account. The sensitivity

analysis resulted in a 6% (R500) to 26% (R3000) NEP

increase (Fig. 1).

When accounting for only ground vegetation, i.e.

the H scenario, mean NEP resulted in a 40.3 ± 22 t C

Table 3 Correspondence of modelled and measured stem biomass and soil respiration for the two intensive plots (IP1 and IP2)

Stem biomass (kg m-2) Soil respiration (kg C ha-1 day-1)

PIAB FASY

IP1 1996–2010 2009–2011

Mean error - 0.18 - 0.12 - 0.93

Pearson correlation coefficient 0.99 1 0.97

Kling-Gupta efficiency 0.97 0.89 0.93

IP2 1998–2016 2015

Mean error - 0.24 - 3.22 4.58

Pearson correlation coefficient 0.99 0.99 0.66

Kling-Gupta efficiency 0.71 0.57 0.36

See S3 for details about observation data

PIAB: Norway spruce (Picea abies (L.) H. Karst.); FASY: European beech (Fagus sylvatica L.)

Table 4 Estimated and modelled summer season (June to

August) ground vegetation biomass for the plateau (IP1) and

slope plot (IP2)

Year Ground vegetation biomass [t ha-1]

Estimated (mean) Modelled (mean ± SD)

IP1

2004 0.66 0.64 ± 0.10

2007 0.69 0.71 ± 0.11

2010 0.77 0.78 ± 0.12

IP2

2004 0.60 0.55 ± 0.04

See S3 for the methods applied to estimate biomass
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ha-1 sink for atmospheric carbon between 2000 and

2014 resulting in a cumulated NEP of 628 kt C of the

landscape (Fig. 1). This represents a 10% higher NEP

owing to ground vegetation.

The contribution of tree regeneration and ground

vegetation to NEP varied across the landscape

(Fig. 2b). On 25% of the area, the HR2500 scenario

resulted in a decrease of the cumulated NEP compared

to the NN scenario (mean of negative values:

2.1 ± 1.7 t C ha-1). In 3% of the area, the HR2500

scenario resulted in a decrease of the cumulated NEP

compared to the H scenario (mean of negative values:

0.7 ± 1.2 t C ha-1).

Mean annual GPP, NPP, total ecosystem respiration

(TER), and annual increments in soil organic C (SOC)

increased in the order NN\R2500\H\HR2500

scenario (Fig. 3). Mean annual NEP was lowest in

the NN scenario (2.4 ± 1.7 t C ha-1 year-1) and

highest in the HR2500 scenario (3.2 ± 1.4 t C

ha-1y-1), but the R2500 scenario showed higher values

(3.0 ± 1.5 t C ha-1 year-1) than the H scenario

(2.7 ± 1.5 t C ha-1 year-1). The latter was due to

high TER rates in the H scenario (Fig. 3) resulting in a

lower mean NPP:GPP ratio for the H scenario (0.43)

than the R2500 scenario (0.47). The contribution of

SOC to NEP, indicated by ratios of annual SOC

changes and NEP increased in the order NN

(0.12)\HR2500 (0.14)\R2500 (0.18)\H (0.2).

Mean annual NEP of the R500 to R3000 scenarios was

lower than mean annual NEP of the H scenario only

when less than 1000 tree saplings ha-1 were used.

Understory effects on NEP after disturbance

In the NN scenario, i.e. without considering tree

regeneration and ground vegetation, NEP was higher

in undisturbed areas (2.49 ± 1.73 t C ha-1 year-1)

than in disturbed areas (2.30 ± 1.67 t C ha-1 year-1)

during the entire study period (2000 to 2014). With

forest disturbance starting in the year 2005 and

disturbance impact on growing stock peaking between

2010 and 2012 (Fig. 4a), NEP diverged more strongly

between undisturbed and disturbed sites (Fig. 4b).

After the year 2007, NEP in disturbed areas was on

average 0.59 t C ha-1 year-1 lower than NEP in

undisturbed areas (NN scenario).

By evaluating joint effects of tree regeneration and

ground vegetation at disturbed sites, we found that

mean annual NEP was higher in the HR (HR500:

0.81 ± 0.31; HR2500: 1.18 ± 0.35; HR3000:

1.53 ± 0.37 t C ha-1 year-1) compared to the NN

scenario (Fig. 5a). These effects were smaller in

undisturbed sites (HR500: 0.37 ± 0.26; HR2500:

0.73 ± 0.24; HR3000: 0.82 ± 0.24 t C ha-1 year-1)

Fig. 1 Cumulative net ecosystem production (NEP) of the

study area for the four different scenarios. NN no ground

vegetation or tree regeneration, R no ground vegetation but tree

regeneration, H ground vegetation but no tree regeneration, HR

ground vegetation and tree regeneration. Light green and light

red shades show the R500 and R3000, and HR500 and HR500

scenario, respectively (subscripts indicate 500 and 3000 trees

ha-1 regeneration). Solid lines represent

2500 trees ha-1 regeneration
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(Fig. 5b). Compared to NN, the combined contribu-

tions of tree regeneration and ground vegetation

caused a 35 and 67% higher mean annual NEP for

HR500 and HR3000 in disturbed areas while only 15 to

33% for HR500 and HR3000 in undisturbed areas.

This difference was mainly driven by the acceler-

ated growth of ground vegetation and annual litter

input to the soil. Ground vegetation contributed

4.21 ± 1.13 and 2.7 ± 0.53 t C ha-1 year-1 to mean

annual GPP in disturbed and undisturbed areas,

Fig. 2 Cumulative net ecosystem production (NEP) from 2000

to 2014, A without tree regeneration and ground vegetation (NN

scenario), and B effect of tree regeneration and ground

vegetation on NEP. Positive values in A indicate net C sinks,

negative values indicate net C sources (not visible due to its

small extent). Positive values in B indicate higher NEP when

accounting for tree regeneration and ground vegetation,

negative values indicate lower NEP (in the range of

2.1 ± 1.7 t C ha-1). White area is outside the study region.

Understory effect was calculated by HR2500–NN
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respectively. In contrast, the difference in the contri-

bution of the tree regeneration to mean annual GPP in

disturbed and undisturbed areas was much lower

(disturbed areas: 1.43 ± 0.47 t C ha-1 year-1; undis-

turbed areas: 1.31 ± 0.52 t C ha-1 year-1). Since the

effect of forest ground vegetation on TER did not

Fig. 3 Magnitude (mean ± SD) of annual net ecosystem

production (NEP), gross primary production (GPP), total

ecosystem respiration (TER), net primary production (NPP),

and changes in soil organic C (SOC) in the four scenarios. NN no

herb layer or tree regeneration, R2500 no herb layer but tree

regeneration, H herb layer but no tree regeneration, HR2500 herb

layer and tree regeneration

Fig. 4 A Mean annual stem wood damage in disturbed areas of

the Kalkalpen National Park (1% of the area with stem wood

damage[ 211 m3 ha-1 between 2005 and 2014) and B annual

net ecosystem production (NEP) in disturbed (mean ± SD) and

undisturbed (mean) areas in the NN scenario (i.e. without

considering tree regeneration and ground vegetation)
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increase to the same extent, the NEP contribution of

ground vegetation increased relative to tree regener-

ation in the disturbed forest area. Yet, the number of

tree saplings had a strong positive effect on NEP after

disturbances. It has to be noted that ground vegetation

production was slightly higher in disturbed than in

undisturbed areas already in the year 2000 due to a

more open tree canopy (i.e. lower tree biomass causing

higher ground vegetation coverage and biomass) in

disturbed areas.

Discussion

In our simulations, tree regeneration as well as ground

vegetation increased the NEP through photosynthetic

C uptake, particularly after canopy opening due to

disturbance. This increase is in line with plot scale

studies from other regions (Amiro et al. 2010; Edburg

et al. 2011, 2012; Bowler et al. 2012; Don et al. 2012;

Williams et al. 2014) as well as chronosequence

measurements at Kalkalpen National Park (Zehetgru-

ber et al. 2017). While these previous analyses focused

on the plot to stand scale, we here showed that

understory vegetation is of considerable relevance for

the landscape-scale forest C balance. We achieved this

by using mapped soil and vegetation data, a recon-

struction of forest disturbances as drivers of the

ecosystem model LandscapeDNDC, as well as by

considering an environmentally driven development

of overstory trees, newly established seedlings, and

ground vegetation. Our results show that the cumula-

tive NEP over 15 years was between 16% and 37%

higher if accounting for the effect of tree regeneration

and of ground vegetation compared to simulations

without these components. The mean annual contri-

bution of tree regeneration and ground vegetation to

NEP (0.40 to 0.91 t C ha-1 year-1) was in the same

order of magnitude as the average annual European

(EU-25) forest C sink (0.75 t C ha-1 year-1) esti-

mated by Luyssaert et al. (2010) for the period 1990 to

2005. Among the two understory components, tree

regeneration contributed more strongly to NEP.

However, in disturbed areas the effect of ground

vegetation to NEP was in the same range. The

landscape-scale C cycle contribution of trees versus

ground vegetation was strongly determined by the

number of tree saplings prior to disturbance as well as

the density—and hence competitive strength—of

ground vegetation.

Understory effects on NEP

The modelled NEP under undisturbed forest condi-

tions (between 2.4 ± 0.40 (NN scenario) and

3.2 ± 1.4 (HR2500 scenario) t C ha-1 year-1) was

Fig. 5 Regional mean combined (± SD) and single effects of

tree regeneration and ground vegetation on annual net ecosys-

tem production (NEP), under disturbance (A [ 211 m3 ha-1

stem wood damage between 2005 and 2014) and without

disturbance (B). Combined effects were calculated as the

difference between scenario HR500 to HR3000 and NN (mean ±

SD for HR2500–NN). Single effects of tree regeneration (green

dashed line) were calculated as the difference between scenario

HR2500 and H. Single effects of ground vegetation (blue dotted

line) were calculated as the difference between scenario HR2500

and R2500
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similar to rates typically found in field observations

both in the study area (Kobler et al. 2015; Zehetgruber

et al. 2017; Kobler et al. 2019) and in other mature

temperate forest stands in Europe. As an example,

Kowalski et al. (2004) reported a NEP of approx. 1 to

5 t C ha-1 year-1 in mature high forests in Britain,

Finland, and France. Etzold et al. (2011) attributed 1.5

and 4.2 t C ha-1 year-1 of NEP to two mountain

forests in Switzerland.

While disturbances due to wind and bark beetle

began affecting the study area already in the year

2005, substantial loss of growing stock occurred only

after 2007 (Fig. 4). Accordingly, annual NEP

decreased by 0.7 ± 0.27 t C ha-1 year-1 after 2007

(NN scenario). The lowest NEP (- 4.0 t C ha-1 -

year-1 in the H and R2500 scenarios) occurred during

and after the years with peak disturbance (years 2011

and 2012). This finding corresponds well with obser-

vations from others, who accounted also for ground

vegetation by either using eddy covariance measure-

ments or empirical modelling. Zehetgruber et al.

(2017), studying a disturbance chronosequence within

our study area, showed that a Norway spruce forest on

deep Cambisols became a source of - 5.5 t C ha-1 -

year-1 3 years after stand replacing disturbance.

Furthermore, Matthews et al. (2017) observed a

seasonal (May to October) NEP of - 4.1 and

- 1.8 t C ha-1 year-1 three and four years after stand

replacing wind throw, respectively. Comparable NEP

rates (- 3.5 t C ha-1 year-1) were observed at a

forest site in Germany two years after windthrow from

the storm Kyrill (Lindauer et al. 2014), and after clear

cutting in four European forests (- 4.3 to

- 1.1 t C ha-1 year-1, Kowalski et al. (2004)). How-

ever, also higher levels of post-disturbance C loss have

been reported, e.g. in a Swedish wind throw area for

which Lindroth et al. (2009) estimated a NEP of up to

- 10.8 t C ha-1 year-1.

While understory had a positive effect on NEP in

most parts of our study area, the magnitude of the

effect differed across the landscape and was higher in

forests disturbed by wind or bark beetle than in

undisturbed forests. Under the NN scenario, i.e. in the

absence of tree saplings and ground vegetation, the

recovery of C uptake after disturbance was largely a

function of disturbance severity and site productivity,

corroborating current knowledge (Anderegg et al.

2016). Also in line with other studies, understory trees

surviving a disturbance event or establishing after

disturbance lead to a steady recovery of the forest,

eventually returning from a C source to a C sink

(Amiro et al. 2010; Edburg et al. 2012; Williams et al.

2014; Dobor et al. 2018). Resulting from the elevated

light, water and nutrient availability after disturbance,

an increased growth of ground vegetation, and litter

input to the soil, also plays a significant role in this

recovery process. Comparable to previous studies

(Bowler et al. 2012; Don et al. 2012; Williams et al.

2014; Zehetgruber et al. 2017), we found 35% (HR500)

to 67% (HR3000) higher NEP in disturbed areas in

contrast to 15 (HR500) to (HR3000) 33% in undisturbed

areas, when considering both tree regeneration and

ground vegetation. Notwithstanding the significance

of the contribution of the forest understory to NEP in

disturbed forests, high severity disturbances were

restricted to a relatively small portion of the area in our

study region (Thom et al. 2017a). Consequently,

interactions between understory dynamics and natural

disturbances did not substantially affect the landscape

scale C sink strength in our study area yet having a

large potential in the future (Seidl et al. 2014).

Non-woody plants exert competitive effects on tree

regeneration (Pröll et al. 2015; Thrippleton et al.

2016), potentially precluding tree establishment after

disturbance as shown in e.g. the Yellowstone National

Park (Turner et al. 1997). In temperate mountain forest

landscapes, these interactions are particularly impor-

tant because open tree canopies frequently result in a

dense herb and grass layer, rapidly increasing produc-

tion following canopy opening (Ammer 1996). Usu-

ally, larger gaps result in higher understory biomass

because of higher light availability, more growing

space and less root competition (Collins and Pickett

1987; Ritter et al. 2005). In our simulations we have

considered overstory regulation on understory growth

as well as competition for water and nutrients between

understory components. Since herbs and grasses have

a higher relative share of active compartments (foliage

and fine roots) than trees (that also consist of less

respiring wood), respiration per unit biomass and

specific turnover rates are higher. Thus, mean

NPP:GPP ratios are smaller under scenarios that

include ground vegetation (H and HR). This is in

accordance with typical findings from temperate

forests (Gilliam 2007). Consequently, the smallest

NEP was obtained when only forest ground vegetation

but no tree regeneration was considered (H scenario).

This is in spite of high relative increases in SOC owing
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to the annual litter inputs (highest SOC:NEP ratios

were found in the H scenario) which improves nutrient

supply and has been observed to increase carbon

assimilation efficiency (Vicca et al. 2012). However,

nutrient demand of ground vegetation is also higher so

that the overall nutritional state was not significantly

changed. Ground vegetation could expand coverage

rapidly after overstory disturbance resulting in a more

positive immediate effect on GPP than on that of tree

regeneration. However, the effect was compensated

quickly from the increasing growth of the more

efficient tree regeneration that also decreased growth

of grass and herbs after a few years in the HR

scenarios. Overall, the contributions of tree regener-

ation and ground vegetation to NEP were similar for

the observed period. Considering the whole investi-

gated area, the relatively small portion of severely

disturbed areas didn’t decrease NEP significantly on a

landscape scale, although the effect was considerable

looking on disturbed areas alone. Hence, we hypoth-

esize that the balance of positive and negative effects

of the forest understory on NEP at the landscape scale

will vary with region, disturbance regime as well as

the abundance of natural tree regeneration. For

temperate mountain forests it seems to be generally

important to consider forest ground vegetation in

addition to tree regeneration because they are often

characterized by open tree canopies resulting in high

levels of biomass in non-woody plants (Thrippleton

et al. 2016).

Limitations and potential model improvements

Based on our results showing that forest understory

and their interaction substantially affects the forest C

sink, we argue to consider related process also in Earth

System Models, corroborating the conclusions in the

review of Landuyt et al. (2018). Since forest distur-

bances disproportionately elevated the contribution of

understory to NEP, and forest disturbances are

expected to increase in the future due to climate

change (Seidl et al. 2014), the consideration of

understory processes in models becomes even more

important. We here provided an example for a possible

implementation in a process-based ecosystem model,

but shortcomings as to the representation of certain

processes still exist so that an extrapolation to other

systems remains to be tested. First, since we compared

vital tree regeneration with a hypothetical bare soil

scenario, the magnitude of understory effects on NEP

simulated here represents an upper bound estimate.

However, even though the growth and survival of tree

saplings can be limited by various factors, it is very

unlikely that trees would fail to regenerate across our

entire study area. By studying stem densities between

500 and 3000 saplings per hectare, we quantified the

sensitivity of the NEP effect of various regeneration

densities, representing realistic ranges. Nevertheless,

future studies should incorporate further mechanisms

limiting tree regeneration beyond light, water and

nutrient availability (e.g. browsing, seed availability),

as it has been considered in certain models of forest

dynamics (Bugmann 2001; Seidl et al. 2012). Land-

scapeDNDC doesn’t provide a mechanistically driven

regeneration model that would consider the appear-

ance of new trees over longer periods and possibly

include more species than could be considered in the

current approach. This would allow for a more

mechanistic representation of vegetation dynamics at

the landscape scale (Thrippleton et al. 2016).

Second, we acknowledge that some uncertainty

exists regarding the selection of cohorts, since it has

been shown that a high aggregation might produce

biased results under specific conditions (Wutzler

2008). However, more detail in stand structure

increases the dependence on initialization and param-

eter accuracy and decreases generality of the model

results. Therefore, the use of 2–3 cohorts in the few

process-oriented ecosystem models that are available

is still a common choice (Deckmyn et al. 2008; Jiang

et al. 2019).

Third, we have not addressed differences in non-

woody understory dynamics due to different species

compositions between forest types. However, See-

bacher et al. (2012) showed that varying water and

nutrient conditions favour different plant functional

types in our study area. It is very likely that the

responses of these functional types to environmental

perturbations and thus their impact on NEP will differ,

likely resulting in variation in their effects on NEP.

Exploiting differences in life history strategies when

implementing understory dynamics in models is hence

an important future direction of research (Landuyt

et al. 2018). Third, the total amount of C loss to the

atmosphere, apart from being determined by C uptake

in plants, is also driven by altered decomposition

dynamics of soil organic matter (Köster et al. 2011;

Don et al. 2012). Disturbance can result in warmer and
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wetter soil conditions, enhancing the decomposition of

SOM and thus soil respiration (Morehouse et al. 2008;

Mayer et al. 2014). These effects can, however, not be

broadly extrapolated because partial disturbances are

common (Senf et al. 2018), causing only moderate

changes in the microclimate and soil respiration

(Kobler et al. 2015). Hence, disturbance severity and

patch size play an important role for soil respiration in

post-disturbance temperate forests (Sommerfeld et al.

2018). Since LandscapeDNDC is not fully able to

reflect this heterogeneity in the disturbance regime of

temperate forests (Sommerfeld et al. 2018) and instead

simulates disturbance effects as a lowered LAI and a

homogeneously increased gap fraction, an underesti-

mation of soil warming and thus soil respiration is

likely.

Conclusions

We simulated a positive landscape scale C sink in all

our scenarios for the period 2000 to 2014 corroborat-

ing global (Pan et al. 2011) as well as Europe-wide

(Luyssaert et al. 2010) assessments showing that

temperate forests act as potent C sinks. However, a net

C sink of the landscape is by no means guaranteed in

the future. Among several factors, intensifications of

forest disturbances (Seidl et al. 2014) might increase

the frequency of periods with a net loss of C (Dobor

et al. 2018). We showed that forest ground vegetation

strongly compensated disturbance-induced C loss. At

the landscape scale, however, tree regeneration was

more important for NEP than ground vegetation.

Capitalizing from this potential to its full extent will

very likely be difficult considering the current degree

of damage to tree regeneration by ungulate browsing

in Austria (Reimoser and Reimoser 2010; Hangler

2017) and in other European temperate forest regions

(Ammer 1996; Motta 1996; Firm et al. 2009; Reimoser

and Reimoser 2010; Klopčič et al. 2017). In conclu-

sion, our findings underline the importance of tree

regeneration and ground vegetation in the context of

the climate change mitigation potential of temperate

forest ecosystems.

Acknowledgements Open Access funding provided by

Projekt DEAL. This study was funded by the Austrian

Climate and Energy Fund ACRP (Grant Agreement Nos.

KR14AC7K11960, CentForCSink) and the European Union’s

Horizon 2020 research and innovation programme (Grant

Agreement No. 641762, ECOPOTENTIAL). R. Seidl

acknowledges support from the Austrian Science Fund FWF

through START Grant Y895-B25. We are grateful to the

National Park Kalkalpen, the Austrian Federal Forests, and
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