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Mapping and Understanding Patterns of Air Quality
Using Satellite Data and Machine Learning
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Hnstitute of Meteorology and Climate Research, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany,
2Institute of Photogrammetry and Remote Sensing, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

Abstract The quantification of factors leading to harmfully high levels of particulate matter (PM)
remains challenging. This study presents a novel approach using a statistical model that is trained to
predict hourly concentrations of particles smaller than 10 ym (PM10) by combining satellite-borne aerosol
optical depth (AOD) with meteorological and land-use parameters. The model is shown to accurately
predict PM10 (overall R* =0.77, RMSE = 7.44 ug/m?3) for measurement sites in Germany. The capability of
satellite observations to map and monitor surface air pollution is assessed by investigating the relationship
between AOD and PM10 in the same modeling setup. Sensitivity analyses show that important drivers of
modeled PM10 include multiday mean wind flow, boundary layer height (BLH), day of year (DOY), and
temperature. Different mechanisms associated with elevated PM10 concentrations are identified in winter
and summer. In winter, mean predictions of PM10 concentrations >35 yg/m?* occur when BLH is below
~500 m. Paired with multiday easterly wind flow, mean model predictions surpass 40 ug/m3 of PM10. In
summer, PM10 concentrations seemingly are less driven by meteorology, but by emission or chemical
particle formation processes, which are not included in the model. The relationship between AOD and
predicted PM10 concentrations depends to a large extent on ambient meteorological conditions. Results
suggest that AOD can be used to assess air quality at ground level in a machine learning approach linking
it with meteorological conditions.

Plain Language Summary In this study, factors leading to severe air pollution are determined
using machine learning. In addition, it is tested, to what extent, that the use of satellite data is adequate to
derive information on air quality near ground. It is shown that besides human emissions, concentrations of
particles in the air are to a large extent driven by meteorological factors such as wind direction, state of the
atmospheric boundary layer, and season.

1. Motivation and Research Questions

Extensive research has been conducted in recent years on the adverse health effects of particulate matter
(PM) on the human cardiovascular system and the lungs. Cohort studies show that negative effects include
emphysema, lung cancer, diabetes, and hypertension (Lelieveld et al., 2019; Lim et al., 2012; Pope et al.,
2002; Wichmann et al., 2000), which cause a large number of premature deaths (Lelieveld et al., 2019, 2015).
Although these risks are largely known and confirmed, discussions on effective measures to reduce exposure
to air pollution are ongoing. Suggested measures range from traffic bans for certain vehicle types (Ellison
et al., 2013; Qadir et al., 2013) over a reduced or more efficient use of solid fuel-based residential heating
(Chafe et al., 2015) to the expansion of urban vegetation (Bonn et al., 2016). However, the actual effects
of those measures are not always evident as not only local emissions but also ambient conditions such as
meteorology, vegetation, and other land cover can play a substantial role in determining local PM concen-
trations. Therefore, understanding and quantifying drivers of PM concentrations is necessary to improve
the efficiency of measures toward better air quality. The influence of meteorological conditions on partic-
ulate matter concentrations are diverse (see Figure 1) and have been described, for example, by Rost et al.
(2009), Reizer and Juda-Rezler (2016), Dupont et al. (2016), Li et al. (2017), and Fuzzi et al. (2015). Boundary
layer height (BLH) determines the height up to which particles are distributed in the atmosphere (Gupta &
Christopher, 2009a; Schifer et al., 2012). Precipitation leads to a substantial reduction in PM concentrations
by wet scavenging (Li et al., 2015; Rost et al., 2009). Wind regulates particle transport and turbulent mixing
away from the surface (Li et al., 2017). Depending on the location of the measuring point, air masses from
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Figure 1. Conceptual design of potential influences on variations in hourly PM10 concentrations. The machine
learning model is set up to reproduce these variations.

certain wind directions transport particles and lead to elevated concentrations (Lenschow et al., 2001; Li
et al., 2015). Temperature can regulate the particle number in the atmosphere by stimulating photochemi-
cal reactions, which transform precursor gases to secondary aerosols (Gupta & Christopher, 2009a; Wang &
Martin, 2007) or by causing partitioning of condensed precursor gases (Petit et al., 2014). Various land cover
types can act as sinks or sources for particles (Beloconi et al., 2018; Bonn et al., 2016; Churkina et al., 2017).
Topography can be of importance for PM concentrations, for example, as particles accumulate in valleys
(Emili et al., 2011; Emili et al., 2011).

Satellite AOD provides information on atmospheric particle concentrations and can expand information
to areas where station measurements are sparse (Emili et al., 2011), revealing hotspots and spatiotemporal
variations of pollution (Cermak & Knutti, 2009; Gupta et al., 2006). However, relying on satellite AOD as
a proxy for near-ground air pollution can be misleading, as AOD reflects the extinction of radiation in an
atmospheric column, while particulate matter concentrations reflect a highly localized dry mass concentra-
tion of particles of a certain size distribution typically measured near ground (Wang & Christopher, 2003).
Several studies have trained statistical models on the relationship between AOD and PM, accounting for a
range of additional parameters, and mostly with a focus on applications (see review by Rybarczyk, 2018).
Methods include linear regression models (Arvani et al., 2016), multiple-additive regression models (Gupta
& Christopher, 2009a; Zhang et al., 2018), land-use models (Kloog et al., 2011; Nordio et al., 2013), or a com-
bination of the latter two (Chudnovsky et al., 2014; Hu et al., 2014; Kloog et al., 2012). With increasing data
availability and computational power, machine learning methods, for example, artificial neural networks
(Gupta & Christopher, 2009b; Di et al., 2016) and random forests (RF) (Brokamp et al., 2017; Chen et al.,
2018; Grange et al., 2018) have been applied frequently in recent years. These machine learning models are
beneficial as they efficiently reproduce nonlinear relationships and interactions of input features (Brokamp
et al., 2017; Elith et al., 2008). In contrast to physical models, machine learning approaches do not require
extensive prior process knowledge and thus have the potential to reveal or quantify processes that are as yet
undetermined (Kniisel et al., 2019). Multivariate processes can be investigated by isolating certain variables
and studying inputs and responses for dominant patterns (Andersen et al., 2017; Cermak & Knutti, 2009;
Fuchs et al., 2018).

While numerous air pollution studies apply statistical models mainly to accurately predict PM concentra-
tions (Hu et al., 2017; Kloog et al., 2015; Stafoggia et al., 2017; van Donkelaar et al., 2010; Zhang et al.,
2018), recent studies additionally analyzed feature importances and the information content of explanatory
variables in the statistical models to infer processes. For example, Park et al. (2019) used a RF model to pre-
dict PM10 in South Korea and found large influence of AOD, day of the year (DOY), wind speed, and solar
radiation on the modeled PM concentrations. Similarly, Grange et al. (2018) obtained high feature impor-
tances for wind speed, back trajectory cluster, DOY, and air temperature, using the RF approach for PM10
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Table 1
List of Input Features Stating Data Origin, Data Representation, and Abbreviation
Data set Variable Abbreviation
Input features
MODIS MAIAC Aerosol optical depth AOD
MODIS Normalized difference NDVI
Vegetation index
NASA Earth at night Lights at night Nightlights
EU-DEM, v1.1 Elevation (m), Elev,
Topographic position index (m) TPI
CORINE land cover Land cover types 1CLC, 2CLC,
3CLC, 4CLC
5CLC, 6CLC
DWD meteorological Air pressure (sea level) (hPa) AirPres
measurements Relative humidity (%) RH
Continentality Conti
RADOLAN Time since last precip. (hr), Precip_tsince,
Magnitude of last precip. (mm/hr), Precip_magn,
Cumulative precip. last 24h (mm), Precip_acc
ERA-Interim wind vectors u,v (m/s), uwv
mean wind vectors of umean,
previous hours (m/s) vmean
Boundary layer height (m) BLH
Temperature (°), T
temperature anomalies (K), Tan
Convective available CAPE
potential energy (J/kg)
Surface solar radiation SSRD
downwards (J/m?)
EEA emission data base Annual emission of NH3, NH3, PM10em,
PM10, SO,, NO, (t/year) SO2, NOx
Other Day of year DOY
Day of week Weekday
Model outcome
UBA air quality measurements PM10 concentrations (ug/m?>) PM10
measurements in Switzerland. The present study builds upon the approaches applied in these studies but
provides a more in-depth analysis of model-inherent relationships. To this end, gradient boosted regression
trees (GBRT) are used to understand and quantify the conditions driving air quality, as well as determinants
of the relationship between AOD and PM10. GBRT have been successfully applied to study sensitivities of
aerosol processes before (cf. Fuchs et al., 2018). Thus, a basis is set for targeted satellite-based analyses of
spatial patterns of air quality.
2. Data and Methods
The data basis of this study is comprised of 8 years (2007-2015) including satellite observations from the
moderate resolution imaging spectroradiometer (MODIS) and others, model output from the European
Centre for Medium-Range Weather Forecasts (ECMWF), and station data from the German Meteorological
Service (Deutscher Wetterdienst, DWD) and the German Federal Environmental Agency (Umweltbunde-
samt, UBA). AOD observations are based on the multi-angle implementation of atmospheric correction
(MAIAC) algorithm. A statistical model is set up to predict hourly PM10 concentrations based on a vari-
ety of input features, which are summarized in Table 1. Data with high temporal resolution are selected to
STIRNBERG ET AL. 30f 34
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reflect the atmospheric situation close to the satellite overpass times. Generally, station measurements were
preferred for parameters, which have adequate coverage and which are not expected to vary on small scales
(e.g., air pressure).

2.1. Satellite Data
2.1.1. MAIAC AOD

Satellite-borne, high-resolution (1*1 km) MAIAC Collection 6 AOD is used (Lyapustin et al., 2011a; Lya-
pustin, Martonchik, et al. 2011; Lyapustin et al. 2011b; Lyapustin et al., 2018). The product is based on data
from the MODIS sensor aboard the Terra and Aqua satellites. The MAIAC algorithm makes use of look-up
tables, explicitly taking into account surface bidirectional reflectance factors (BRF). The calculation of AOD
relies on the assumption that surface BRFs remain largely constant over time, considering a time series of 16
consecutive days (Lyapustin et al., 2011a; Lyapustin, Martonchik, et al. 2011). Quality flags are applied for
filtering. Pixels were only incorporated when clear conditions are reported, that is, no contamination of the
data due to clouds is to be expected (Lyapustin et al., 2018). An additional filter was set up to exclude AOD
close to clouds to avoid increased AOD near cloud fringes due to aerosol swelling effects (Schwarz et al.,
2017; Varnai et al., 2013). Therefore, the distance to the nearest cloud as classified by the MAIAC algorithm
(Lyapustin et al., 2018) was calculated and a threshold of 0.1° was set, which corresponds to ~7 km. This is
in the range of what previous studies used as threshold (Emili et al., 2011; Koren et al., 2007). Terra or Aqua
satellite overpass times were used as temporal reference for data collocation, that is, other input feature val-
ues closest to the overpass times were used. Valid daytime AOD acquisition times as used in this study range
from ~9 to ~1 UTC. AOD is an important input to the statistical model as it provides implicit information
on the total aerosol loading in the atmosphere, reflecting natural as well as anthropogenic sources.

2.1.2. MODIS NDVI

Sixteen-day NDVI averages obtained from the MODIS MOD13Q1 Version 6 product are used (DOI:
10.5067/MODIS/MOD13Q1.006) to approximate photosynthetically active vegetation (Tucker C. J., 1979).
The NDVI was found to influence PM concentrations in several previous works (Beloconi et al., 2018;
Chudnovsky et al., 2014; Stafoggia et al., 2017). Vegetation acts as a sink by increasing the aerodynamic
roughness and available surface for mechanical deposition (Fuzzi et al., 2015). On the other hand, vegeta-
tion can increase background particle concentrations by emitting pollen in spring (Fuzzi et al., 2015) and by
enhancing the creation of secondary organic aerosols (SOA, Churkina et al., 2017). Around each PM station
coordinate, a window with an edge size of 20 km is established to reflect the local contribution of vegetation
to the total particle concentration. An edge size of 20 km is comparable to the mean representativeness of
the PM stations (EU, 2008). The mean NDVI of each window was used as a predictor.

2.1.3. NASA Night Lights

The NASA night lights data set is included as a surrogate for population density. Based on the data from the
Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-Orbiting Platform
(SNPP), the night-time lights product is available at 500 m resolution (Roman et al., 2018). Population density
is an important factor contributing to PM10 concentrations as it reflects human activity (Beloconi et al.,
2018; Park et al., 2019). The mean night light intensity of a 20 km window around each PM station was used
as a predictor.

2.1.4. EEA DEM

Topography can have a marked influence on the accumulation of particles (Emili et al., 2011). Here, the
v1.1 EU-DEM is used, which is a hybrid product produced by the European Environment Agency (EEA)
based on SRTM and ASTER GDEM fused by a weighted averaging approach. It has a spatial resolu-
tion of 25*25 m (more information and download at https://land.copernicus.eu/imagery-in-situ/eu-dem/
eu-dem-vl.1?tab=metadata). Station altitude and the dominant topography around each PM station are
incorporated as predictors. A topographic position index (TPI) is computed to provide information on the
topography of a pixel relative to its surrounding pixels. It employs the station altitude and subtracts the mean
altitude of surrounding pixels in its vicinity. Positive values indicate a summit position, whereas negative
values indicate a valley position (Egli et al., 2018). Again, a window size of 20 km was chosen.

2.1.5. EEA Corine Land Cover

Data from the CORINE land cover (CLC) inventory for the years 2006 and 2012 are used (Bossard et al.,
2000), accessed via https://land.copernicus.eu/pan-european/corine-land-cover/view. In its finest thematic
accuracy, the CLC data set consists of 44 classes. For this study, a more simplistic classification in six land
cover types was chosen, which represent the most relevant land cover types influencing air quality (see
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Table 2
Original Labels and Aggregation of Corine Land Cover Classes Used in This Study

Code Label Original labels included

1 Artificial surfaces Continuous urban fabric, discontinuous urban fabric,

industrial or commercial units, road and rail networks
and associated land, port areas, airports, mineral extraction
sites, dump sites, construction sites, green urban areas
2 Agricultural areas Nonirrigated arable land, permanently irrigated land,
rice fields, vineyards, fruit trees and berry plantations,
olive groves, pastures, annual crops associated with
permanent crops, complex cultivation patterns, land
principally occupied by agriculture with significant
areas of natural vegetation, agro-forestry areas
3 Forest and seminatural areas Broad-leaved forest, coniferous forest, mixed forest,
natural grasslands, moors and heathland, sclerophyllous
vegetation, transitional woodland-shrub, beaches &
dunes & sands, bare rocks, sparsely vegetated areas,
burnt areas, glaciers and perpetual snow
4 Wetlands Inland marshes, peat bogs, salt marshes, salines,
intertidal flats
5 Water bodies Water courses, water bodies, coastal lagoons, estuaries,
sea and ocean
6 No data, unclassified No data, unclassified land surface, unclassified water

bodies, unclassified

Table 2). The data have a spatial resolution of 250 m. Because the CLC data are categorical, a window of
20 km edge size was set up, and the number of occurrences of each type in that window was calculated. The
number of occurrences of each feature is used as predictor for the model.

2.2. Reanalysis Data

The Era-Interim reanalysis data by the ECMWF provides full spatial coverage for the whole study period
with an interpolated spatial resolution of 0.125 ° (Dee et al., 2011). The data set has been successfully used in
previous air quality studies (cf. Chen et al., 2018; Stafoggia et al., 2017; Zheng et al., 2017). To capture regional
transport of particles, ERA-Interim reanalysis wind components (m/s) in east-west and north-south direc-
tion (10 m height) are used. Wind direction and speed can influence both particle concentrations (Beloconi
et al., 2018; Chudnovsky et al., 2013; Li et al., 2015) and the relationship between AOD and PM10 (Stirnberg
et al., 2018; Zheng et al., 2017). Wind direction and speed are included as instantaneous values and as the
mean of precedent days (72 hr). BLH data are employed to approximate the vertical distribution of aerosols
in the lower troposphere, implying that particles are well mixed within the boundary layer (Ansmann et al.,
2000; Gupta & Christopher, 2009a). Dispersion of particles within a high and well-mixed boundary layer
leads to reduced particle numbers near ground. If the BLH is low, particles accumulate and increase PM con-
centrations near ground as they are constrained to a smaller volume (Gupta & Christopher, 2009a; Wagner
& Schifer, 2017). Era-Interim temperature in 2 m height is included as instantaneous values and as temper-
ature anomaly. Temperature anomalies are determined as the deviation of the expected value for each day of
the year. Expected values are calculated by averaging daily values over 30 years, then calculating a running
mean over 30 days to achieve a smooth sequence of the expected temperature. In addition to temperature,
downward surface solar radiation (SSRD) and convective potential energy (CAPE) are included to capture
potential secondary aerosol formation based on photochemical transformation processes (Wang & Martin,
2007) and to capture convective mixing in the atmosphere (Chudnovsky et al., 2013).

STIRNBERG ET AL.

50f 34



Journal of Geophysical Research: Atmospheres

10.1029/2019JD031380

sec. 2.1-2.4

Original data set
(AOD, met. conditions,
emissions, see Table 2)

SEe 57 .
Recursive Feature

Elimination

Random split

Training data (2/3) Test data (1/3)
sec. 253 secy2ot] Final model sec. 253

Input features Hyperparameter sec. 2.5.1. & 2.5. Input features,

' tuning, see Table 3 |
see Table 2 Full-year| | —1 see Table 2
model

Target feature: K Prediction:

hourly PM10 | Seasonal\\; hourly PM10

concentrations models concentrations

T

sec :
Model evaluation

& interpretation

Figure 2. Framework of this study: from input feature selection (i.e., separating important features from noise),
hyperparameter tuning, model training, and model evaluation to the interpretation of the results.

2.3. Ground-Based Data
2.3.1. UBA PM10

The focus here is on PM10 rather than PM2.5 because the latter excludes the fraction of larger particles,
which are nevertheless accountable for light extinction and thus contribute to AOD measured by the satel-
lite (Emili et al., 2011). In addition, PM10 measurements are more widely available. The PM stations are
maintained by the UBA and measure the hourly mean PM10 concentration. PM concentrations are deter-
mined by measuring the attenuation of g-radiation by a dust-coated filter (Umweltbundesamt, 2004) or
by the principle of oscillating micro weighing (TUVRheinland, 2012). To avoid condensation, the particle
inlet is heated permanently. Thus, measurements are largely uninfluenced by temperature and humidity
(Umweltbundesamt, 2004). The uncertainty of the continuous measurements is prescribed to be below 25%
(Bundesministerium der Justiz und fiir Verbraucherschutz, 2010; VDI, 2002). Instructions by the European
Union prescribe site locations that avoid microenvironmental effects. Stations are classified as background,
industrial, or traffic and are designed to be representative for urban, rural, or suburban areas. Traffic sites
are generally situated relatively close to main roads or intersections (EU, 2008). Urban background sites are
assumed to capture the contribution of all sources near the site without one particularly dominating source.
Suburban background stations need to be placed downwind (referring to the main wind direction) of emis-
sion sources. Rural background stations should not be influenced by agglomerations or industrial sites closer
than 5 km (EU, 2008). The spatial distribution of station types and their altitudes are shown in Figures Al
and A2. UBA PM station coordinates are used as spatial reference for data collocation, that is, pixels from
continuous data grids are collocated with the position of these stations if below a distance threshold of 0.01 °
(~0.7km). Urban industrial stations are not considered in this study, as they are primarily influenced by
local emissions from point sources that cannot be adequately represented with the available data. PM10 con-
centrations were checked for sudden peaks, which could be due to localized events. These are filtered out
by eliminating situations, where the PM10 concentration was more than double the mean of the previous
and following hours.

2.3.2. DWD Meteorological Data

Air pressure and relative humidity (RH) data were obtained from the German Meteorological Service
(DWD) (DWD Climate Data Center [CDC], 2017). Previous studies found a positive correlation of PM10
concentrations and air pressure. Higher air pressure indicates stable synoptic conditions, which favors the
accumulation of particles (Li et al., 2015). RH potentially enhances particle numbers by stimulating the
formation of aqueous SOA, forming in cloud or aerosol water (Ervens et al., 2011). In addition, RH can
influence the relationship between AOD and PM10, as higher levels of humidity lead to hygroscopic particle
growth. Moisture on particles increases their diameter, eventually causing a rise in AOD without affecting
PM10 measurements (Schwarz et al., 2017; Titos et al., 2014; Stirnberg et al., 2018).
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2.3.3. Continentality Factor

The relationship between AOD and PM10 as well as driving factors of PM10 concentrations may vary
in different climatic regions (Di et al., 2016). This is accounted for by the inclusion of a dimensionless
continentality factor k, which is calculated following the formula by Conrad (1946)

k= (1.7 % A/sin(¢ + 10°)) — 14, (1)

where A corresponds to the difference between the hottest and coldest mean monthly temperature and ¢ to
the latitude in decimal degree. Here, k was calculated using the mean temperature of July (1980-2010) and
the mean temperature of January (1980-2010). Temperature data are provided by the DWD (DWD Climate
Data Center [CDC], 2018).

2.3.4. DWD Radolan Precipitation

The influence of precipitation on PM10 concentrations includes wash-out effects and the limitation of move-
ment of particles after precipitation events (Fuzzi et al., 2015; Li et al., 2015; Rost et al., 2009). In this study,
data from the Radar Online Adjustment project (RADOLAN) are used. The data set is produced by the DWD
and merges radar measurements with rain gauge data, also including orographic correction (Bartels et al.,
2004; Weigl, 2017). The data are available with high spatial coverage and are expected to be better suited for
the present analysis than the Era-Interim precipitation product, which has some known biases (de Leeuw
et al., 2015). In the statistical model, the time since the last precipitation event (hr) and its magnitude
(mm/hr) as well as the accumulated precipitation of the last 24 hr (mm) are included. Hourly means of pre-
cipitation around each PM station are averaged within a window of edge size 5 km. The chosen window size
is smaller than the previous ones, as precipitation effects typically vary on small scales.

2.4. Other Input Data
2.4.1. EEA Emission Database

Annual emissions of NO,, PM10, SO,, and NH; (in tonnes, based on the year 2008) are included to approxi-
mate background pollution levels. The data are gathered by the European Environment Agency (EEA) and
described in Theloke et al. (2009). Diffuse air releases from traffic, agricultural, industrial, and residential
sources are covered. Strong emitters that fall under the European Pollutant Release and Transfer Register
(E-PRTR) are not included in this data set.

2.4.2. Spatiotemporal Information

Seasonality was shown to be an important factor in previous studies (Grange et al., 2018). Here, DOY is used
as seasonal proxy. To mirror the seasonal cycle, DOY was converted to a sine curve with +1 representing
summer solstice and —1 representing winter solstice (Park et al., 2019; Stolwijk et al., 1999). To further
approximate variability in emission strengths based on human activity, day of the week is included.

2.5. Gradient Boosted Regression Trees
2.5.1. Model Specifications

GBRT as implemented in python's scikit-learn module are used (Hastie et al., 2009; Pedregosa et al., 2012).
GBRT merge several statistical approaches found in machine learning applications: decision trees (1) and
boosting (2) with gradient descent (3).

1. Decision trees use decision nodes to split the predictor space in subsets, which provide the most homo-
geneous distribution, that is, the subsets’ variance is minimized. For each subset, regression trees fit the
mean response of the observations that go into the model (Elith et al., 2008).

2. Similar to the RF method, GBRT consist of an ensemble of decision trees. In GBRT models, however,
the construction of the ensemble is different, as decision tree regressors are sequentially added to the
ensemble (Elith et al., 2008; Hastie et al., 2009; Rybarczyk, 2018). Each new tree that is added to the
ensemble boosts its predecessor with the goal to minimize a loss function, and existing trees are not
changed when new trees are added. The trees are fitted on a subset of the complete data set, which induces
arandom component to the model to reduce overfitting (Elith et al., 2008; Hastie et al., 2009).

3. Each new predictor is fitted to the predecessor's previous residual error using gradient descent (Hastie
et al., 2009; Elith et al., 2008).

GBRT capture complex interactions and interactive effects between individual predictors (Brokamp et al.,
2017; Elith et al., 2008), which nevertheless need to be considered when interpreting the model outcome.
An advantage of tree-based methods such as RF or GBRT is that, compared to deep learning methods,
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Table 3
List of Hyperparameters and Parameter Grid That is Applied During the Grid Search
Hyperparameter Description Parameter grid
loss Loss function to be optimized fixed: least

squares regression

learning rate Contribution of trees to ensemble [0.08,0.05,0.01]
n_estimators Number of boosting iterations [800, 1,800, 2,500, 4,000]
subsample Fraction of samples used for individual tree [0.6,0.8]
min_samples_split Minimum number of samples used to split [6, 10, 14]

a decision node
min_samples_leaf Minimum number of samples [14, 18, 20]
required for a leaf node
max_depth Maximum depth for individual tree, [6, 10, 14]
i.e., maximum number of node layers
max_features Fraction of features to be considered when [0.5,0.8]

searching for best split

Note. Hyperparameters determine the architecture of the GBRT model.

model decisions can be retraced and dependencies of the model outcome to input features can be quan-
tified, allowing for conclusions regarding physical processes. This makes GBRT an interpretable machine
learning method. GBRT theoretically produce results more effectively than the RF method, as trees are built
systematically and less iterations are required (Elith et al., 2008). GBRT have shown to have good predictive
power in previous studies (Elith et al., 2008; Fuchs et al., 2018; Just et al., 2018). The general framework
of setting up the model is shown in Figure 2 and includes input feature selection, hyperparameter tuning,
model training, and model validation.

2.5.2. Feature Selection: Recursive Feature Elimination

Redundant input features lack information and potentially degrade model performance by inducing mis-
leading information, thus weakening the target orientation of the model (Meyer et al., 2018). Therefore, a
feature selection is conducted to eliminate redundant predictors. A base model is initialized with a fixed
number of trees (500), a fixed learning rate (0.1), and all other hyperparameters on default settings. One fea-
ture is then excluded, and the data set is randomly split into a training data set (2/3) and a test data set (1/3)
50-fold. After 50 repetitions, the decrease in model performance on the test data set due to the exclusion of
the feature was determined using R? as indicator. In the final model, the magnitude of the last precipitation
event, the accumulated rainfall of the last 24 hr, and the annual mean emission of SO, are excluded, as their
exclusion did not lead to a decrease in model performance.

2.5.3. Hyperparameter Tuning, Model Training, and Model Evaluation

Hyperparameters refer to the model architecture, for example, the number of trees or the number of decision
nodes. The determination of adequate model hyperparameters is essential to avoid overfitting of the model
but at the same time ensures that the model is able to generalize. A grid search is executed, where several
parameter combinations are tested. A list of tested parameters is provided in Table 3.

There are trade-offs between max_depth, n_estimators, and learning_rate. A lower learning_rate requires
a higher number of trees, as the contribution of each tree is decreased. The contribution of each tree is
effectively the step size of the gradient descent. Thus, if learning_rate is too large, the model cannot adapt to
the training data. The number of decision nodes in a tree (max_depth) also affects n_estimators: Increasing
max_depth reduces the number of necessary trees but increases the risk of overfitting.

The model penalizes erroneous predictions to improve accuracy. The calculation of the penalty value is
determined by the loss function. In this study, a least squares loss function is chosen. The least squares
loss function is sensitive to very high (low) values as it strongly penalizes large deviations between pre-
dictions and observations and will adjust the model accordingly. This is desirable, as the model should be
able to reproduce high concentrations of PM10. Model performance is validated using two kinds of valida-
tion strategies. The integrated scikit-learn split function creates a random training (2/3) and test data set
(1/3), ensuring a comparable distribution of both data sets. To test the spatial generalizability of the model,
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Figure 3. Scatter plot showing the full-year model predictions for hourly PM10 concentrations. Also shown are
coefficient of determination (R?), slope (red dotted line), and root mean square error (RMSE). The color range from
black (high) to orange (low) indicates the frequency of occurrence. The relatively high R? shows that the model covers
the majority of occurring variance. However, an underestimation of higher PM10 concentrations leads to a lower slope.

a leave-location-out (LLO) approach is conducted. Therefore, one third of randomly chosen stations are
restrained for validation. If the model performance is lower compared to the random approach, the spatial
generalizability of the model is limited (Meyer et al., 2018).

For further analysis, four seasonal models are trained on seasonal subsets of the data (see also Figure 2)
using the hyperparameters determined in the full-year grid search. One input feature set representative for
all seasonal models and the full-year model is used to ensure their comparability. The only exception is the
EEA emission data set, which is only included in the yearly model, since it represents yearly emissions.

2.6. Model Interpretation: Isolation of Feature Contributions
2.6.1. Feature Importance

The relative feature importance reflects the explanatory power a feature provides to the model. Assuming
that the model is able to capture physical processes well, the feature importance represents a valuable qual-
itative measure to determine the relative magnitude of the influence of input features to predicted PM10
concentrations. The feature importance is calculated by repeated permutation of one feature (Strobl et al.,
2007).

2.6.2. Partial Dependence

To quantify the influence of input features on the model, the partial dependence (PD) of modeled PM10
concentrations on input features is calculated. PDs express the average effect of one input feature on the
modeled PM10 outcome while accounting for average effects of complement input features (Elith et al., 2008;
Hastie et al., 2009; Goldstein et al., 2015). The investigated input feature is gridded and the corresponding
average PM10 prediction is calculated with respect to complement features, which are varied over their
marginalized distributions (e.g., 1st-99th percentile). Thus, PD plots reflect the mean change of average
predicted PM10 concentrations based on one input feature. The isolated effects of input features on the
model response can be evaluated and put into context regarding their significance to physical and chemical
processes determining PM10 concentrations (Grange et al., 2018).

2.6.3. Individual Conditional Expectation

PD plots reflect the mean model response and neglect model heterogeneity. Model responses to single data
instances (i.e., one set of input features related to one PM10 observation) can be unwrapped and bundled in
one plot using individual conditional expectation (ICE). ICE plots reflect individual predicted responses as a
function of one data instance depending on correspondent feature observations. Model responses are com-
puted by keeping the complement features constant while the investigated feature varies, thus creating new
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Figure 4. Scatter plot showing seasonal model predictions for hourly PM10 concentrations. Also shown are seasonal

R?, slope (red dotted line), normalized RMSE (NRMSE), and RMSE. The NRMSE was calculated by dividing the RMSE
by the mean of the corresponding seasonal subgroup of PM10 observations. Colors as in Figure 3.

data instances and predictions from the model. The average over all ICE lines yields the PD plot, allowing
model heterogeneity and mean model response to be depicted simultaneously (Goldstein et al., 2015).

3. Results and Discussion

3.1. Model Performance

The overall model performance is shown in Figure 3, depicting observed PM10 versus predicted PM10 for the
validation data. The full-year model explains 77% of the variance. The slope (0.76) shows a slight overestima-
tion of low PM10 concentrations as well as an underestimation of high PM10 concentrations. Presumably,
the underestimation is due to processes not captured by the input features, that is, street-scale processes not
covered by AOD observations but still influencing PM10 observations, such as increased PM10 emissions
due to traffic jams or localized dust resuspension. In addition, the model possibly tends to underestimate
higher PM10 observations, because most valid data points are available for medium to low PM10 concen-
trations. Thus, the model is optimized to best reproduce these observations. This tendency was reduced by
the choice of the least squares loss function as describes in chapter 2.5.3 but likely still continues to affect
the model accuracy. The model performance is comparable to similar studies, also in its underestimation of
PM (Hu et al., 2017; Grange et al., 2018; Stafoggia et al., 2017; Zhang et al., 2018). Tenfold random train/test
splits were conducted, resulting in 10 models. Validation of these models revealed very similar performances,
which is why only one model is shown and used for subsequent model analysis. Applying the LLO split

STIRNBERG ET AL.

10 of 34



~1
AGU

100

VANCING EAR
AND SPACE SCI

Journal of Geophysical Research: Atmospheres

10.1029/2019JD031380

Tan - [
AOD - HH
umean - -
T e
DOY —_—
BLH =
SSRD A ——
RH =H
2CLC 4 H
Weekday HH
NDVI A H—
u - "
AirPres - i
Elev - HH
vV A W
Precip_tsince H
vmean - i+
Conti A L
3CLC 1 H
TPI A "
NOX W
NH3 Hi
Nightlights - ¥
CAPE A
PM10em - W
4CLC A ¥
6CLC{ ™
1CLCq ™
5CLC ¥

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Relative feature importance

Figure 5. Relative importance of input features based on repeated permutation (see section 2.6). The range represents
the standard deviation. Abbreviations correspond to those shown in Table 1.

approach slightly deteriorated model performance. Depending on the restrained stations, R? ranged from
0.5 to 0.7. The model is considered as adequate to be used for further investigations. Nevertheless, note that
high PM10 values tend to be underestimated by the model (see Figure 3). The spatial distribution of the
model skill is shown in Figures B1 and B2.

Model performances vary seasonally (see Figure 4). The model performs best in winter and spring with
high R? values (0.77) and low NRMSEs (0.32 and 0.3), while R? is lowest in summer with an R? of 0.63 and
a slightly increased NRMSE of 0.34. PM10 concentrations generally show less variance in summer, which
reduces the RMSE but possibly provides the model less variance to learn from and deteriorates its skill (i.e.,
R?). Obviously, processes governing PM10 concentrations in summer are not as well captured by the model.
This will be further addressed in the following chapters.

3.2. Information Content of Input Features

Temperature (anomaly and absolute), AOD, 3-day mean east-west wind component, DOY, and BLH are of
high importance to the model (see Figure 5). The importance of the DOY suggests that the model captures
the seasonality of PM10 concentrations, which are higher in winter and lower in summer. The relatively
high importance of AOD and the good model performance emphasize the suitability of AOD to infer on
PM10 concentrations when additional parameters are taken into account. A comparison to similar studies,
for example, by Grange et al. (2018) and Park et al. (2019), reveals comparable relative feature importances
of AOD, solar radiation (Park et al., 2019), DOY, and BLH (Grange et al., 2018; Park et al., 2019). The high
importance of the 3-day mean of the east-west wind component found in this study aligns with the high
importance of the back trajectory clusters in the study by Grange et al. (2018). Both parameters reflect
regional particle transport. However, there is a discrepancy regarding the importance of wind speed and
temperature. Wind speed is considered as instantaneous wind components in this study, which have limited
importance. While the importance of absolute air temperature is comparable, the high importance of tem-
perature anomalies found here shows that the approach of splitting temperature information into absolute
values and anomalies as pursued in this study provides additional information to the model. Since compar-
ing feature importance values can provide only limited insights into processes behind air pollution patterns,
further quantitative analyses are presented in the following chapters using the ICE approach.
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Figure 6. Partial dependence plot showing the mean model response to changes in 3-day mean east-west wind
component (m/s) as bold lines for the full-year model (a) and each season separately (b—e, DJF, MAM, JJA, and SON).
Shaded areas show the range of the individual conditional expectation (ICE) lines (10th to 90th percentiles). The
horizontal distance of dots on the bold line indicates the distribution of valid data points. Negative (positive) values
represent dominant inflow of eastern (western) air masses.

3.3. Model Sensitivity
3.3.1. Mesoscale Wind Information

The PD of the 3-day mean east-west wind component shows a consistent pattern throughout all seasons.
Positive values (i.e., prevailing western direction of inflow) are associated with reduced concentrations of
PM10, whereas a negative east-west wind component (i.e., winds from the east) is associated with increased
model PM10 concentrations (Figure 6). For the full-year model the maximum difference in mean PM10 pre-
dictions is ~10 ug/m3, while in winter, the maximum difference is ~20 ug/m3. These numbers agree well
with results from van Pinxteren et al. (2019), who quantified the influence of eastern air masses on eastern
Germany. They found the contribution of trans-boundary transport from eastern European countries to be
13 ug/m? on average, depending on meteorological conditions. Air masses from continental eastern Europe
tend to transport higher amounts of particles, whereas western, more maritime air tends to be cleaner due to
precipitation along the trajectories of air masses. Source regions of PM10 include industrial and residential
areas in Poland and the Czech Republic with heavy industries or extensive usage of solid fuels for residen-
tial heating (Beloconi et al., 2018; Kiesewetter et al., 2015; Reizer & Juda-Rezler, 2016; van Pinxteren et al.,
2019). Results by Grange et al. (2018) also show increased values of PM10 for northern and northeastern
wind directions, although to a lesser extent. In winter, the effect of particle transportation is strongest, pre-
sumably due to increased emissions from domestic heating in eastern Europe (Reizer & Juda-Rezler, 2016;
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Figure 7. PD plot showing the mean model response to changes in east-west wind component (m/s) as bold lines for
the full-year model (a) and each season separately (b—e, DJF, MAM, JJA, and SON). Negative (positive) values
represent dominant inflow of eastern (western) air masses. Description as in Figure 6.

van Pinxteren et al., 2019). A slight increase in modeled PM10 at low values of instantaneous east-west wind
components is visible (see Figure 7). This could indicate insufficient mixing of the atmosphere, which would
lead to an accumulation of particles near ground (Chudnovsky et al., 2013). Overall, instantaneous wind
information has little influence on the model, causing the PD to remain relatively constant. The relatively
constant PD of instantaneous wind information implies little influence on PM10 predictions. This suggests
that wind information needs to be extended to a longer time scale to influence PM predictions.As shown in
Grange et al. (2018), wind speed aggregated for a daily period can substantially influence PM10 concentra-
tions, with lower speeds causing higher concentrations. Park et al. (2019) also found the maximum wind
speed of previous 3 hr to be of importance for their statistical predictions of PM10. The north-south wind
component PDs (instantaneous and 3 days) do not provide clear trends.

3.3.2. BLH and CAPE

The PD of BLH shows that the model is able to reproduce the pattern of decreasing particle concentrations
with increasing BLH (Gupta & Christopher, 2009a; Wagner & Schéfer, 2017).The shape of the full-year PD of
BLH shown in Figure 8a is similar to that provided by Grange et al. (2018) for observations in Switzerland.
They found a reduction of ~8 ug/m? for daily PM10 predictions. A reduction in mean PM10 predictions
of ~10 ug/m?3 for situations with higher BLH can be seen in Figure 8a. This similarity is encouraging and
proves the robustness of the modeling approach, since both studies use ERA-Interim BLH in a comparable
geographic setting.
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Figure 8. PD plot showing the mean model response to changes in instantaneous BLH (m) for the full-year model (a)
and each season separately (b—e, DJF, MAM, JJA, and SON). Description as in Figure 6.

m)o

For BLH values above ~800 m, the PD remains constant, that is, the influence of the boundary layer on PM
concentrations stagnates (Liu et al., 2018). Mean modeled PM10 concentrations increase slightly in condi-
tions with very high BLH (>2,000 m). This pattern could be related to the formation of a deep, convective
boundary layer coinciding with high temperatures, enhancing the formation of secondary aerosols (Grange
et al., 2018). The abundance of radiation, high temperatures, and precursor gases at excess concentrations
would be needed therefore (Fuzzi et al., 2015). Indeed, the pattern is most prominent in summer, when
these prerequisites are most likely to be met. The PD of BLH in summer is almost constant, that is, lit-
tle information is provided to the model. Figure 8d reflects a shift of the frequency of occurrence of data
points toward higher BLH: During summer months, medium to high BLHs are more likely to occur due
to enhanced convection. As mentioned before, a BLH above 800 m provides only little information to the
model, thus reducing its predictive ability. The accumulation effect of a lower BLH is most pronounced in
winter with increased mean PM10 predictions of almost 20 #g/m?3. In addition, PM10 emissions are expected
to be higher in wintertime due to combustion of solid fuels for domestic heating. This has been shown for
Eastern European countries (Reizer & Juda-Rezler, 2016; van Pinxteren et al., 2019) and likely influences
PM10 concentrations in Germany. Thus, with higher locally produced or advected PM10 emissions, the
accumulation effect of a low BLH is more distinct in winter than in summer, where reduced emissions are
expected and an accumulation of particles is not expected (Wagner & Schéfer, 2017). A dependence of model
PM10 on CAPE could not be identified using the PD approach.
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Figure 9. Two-way PD of umean and BLH, full-year model (a) and seasonal models (b-e, DJF, MAM, JJA, and SON).
Similar to the previously shown PD, the two-way PD shows the mean modeled PM10 (color coded from light orange to
black) to the isolated effects of umean and BLH. On top of the PD isolines, a probability density function (PDF) using
Gaussian kernel density estimates is added to indicate the qualitative frequency of occurrence of values from high

(yellow) to low (dark blue).
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(a) and each season separately (b-e, DJF, MAM, JJA, and SON). Description as in Figure 6.
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3.3.3. Two-Way PD: umean and BLH

Depicting the PD of BLH and the 3-day mean east-west wind component simultaneously allows for the
quantification of particularly high-polluted situations, considering combined effects of both features. A
probability density function (PDF) using Gaussian kernel density estimates is added to provide a qualita-
tive estimate of the frequency of occurrence of PD values. Values outside the PDF estimation as shown in
Figure 9 are extrapolated based on the trained model and do not represent observed data.

The two-way PD suggests mean modeled PM10 concentrations double due to changes in BLH and wind
flow, referring to the full-year model. Highest mean predictions (~35 ug/m?®) are modeled when eastern
winds coincide with shallow boundary layers, whereas lowest mean predictions occur during medium BLH
and western winds (~17 ug/m?). Note that due to the tendency of the model to underestimate high PM10
levels, concentrations could be higher in reality. Patterns differ seasonally. In winter, highest mean PM10
predictions surpass 45 ug/m? during shallow BLH conditions and wind flow from the east. In summer, this
is not the case. As mentioned in chapter 3.3.2, there is indication of elevated PM10 concentrations during
very high BLH (~>2,000 m) conditions, coinciding with eastern wind flow. Highest mean predictions in
summer do not surpass ~22 ug/m?3 (within the limits of the PDF estimation).

3.3.4. Thermal Influence on PM10

In spring, summer, and autumn, positive temperature anomalies cause a marked increase of mean model
PM10 predictions (see Figure 10). Presumably, higher temperatures in spring and summer (Figures 10c
and 10d) reflect enhanced biogenic activity, as vegetation is generally more active at higher temperatures.
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Consequently, emissions of primary particles such as debris or pollen and the emission of biogenic volatile
organic compounds (BVOCs) are stimulated (Laothawornkitkul et al., 2009). With higher BVOC emission,
an enhancement of secondary SOA formations is leveraged (Churkina et al., 2017; Megaritis et al., 2013).
In addition to increased biogenic activities, higher temperatures cause the soil to dry up more quickly, thus
increasing dust emissions (Hoffmann & Funk, 2015). In winter, positive anomalies have very little effect on
predicted PM10 concentrations (Figure 10b). This supports these hypotheses, since neither increased bio-
genic activity nor dried-up soils are to be expected in winter. Higher temperatures could reflect increased
photochemical oxidation processes, which trigger photochemical reactions leading to new particle forma-
tion processes (Birmili & Wiedensohler, 2000; Grofi et al., 2018; Wiedensohler, 2000). However, there was
no trend in the partial dependence of SSRD, which shows a weak influence of SSRD on PM10 predictions
(see Figure C1). Note however that the lacking influence of SSRD could also be due to the fact that this study
is confined to cloud-free situations due to the availability of AOD. The variation of SSRD would be higher
when including cloudy days, which would likely improve the information content provided to the model by
including SSRD. Another possible explanation for increased PM10 concentrations at higher temperatures
could be that these situations are associated with stable synoptic conditions (at least in spring, summer,
and autumn), causing particles to accumulate in the atmosphere. PD trends for instantaneous tempera-
ture (Figure 11) are inverse to those described for temperature anomalies. The full-year model PD shows
a decrease in predicted PM10 concentrations for higher temperatures. Presumably, instantaneous temper-
ature reflects the annual cycle of PM10 (similar to DOY), which is why the seasonal PDs show no trends.
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PD of air temperature as presented in Grange et al. (2018) reveal a different pattern. In their study, tem-
peratures below freezing are associated with high PM10 concentrations, medium temperature in the range
of 0-15° C with low PM10 concentrations, and temperature above 15° C with high PM10 concentrations.
However, when combining the effects of temperature anomalies and temperature presented in Figures 10a
and 11a, the emerging pattern would be similar. This suggests that the model presented in this study is able
to discriminate between the seasonal component of temperature and the immediate effect of temperature
on particle emissions, for example, due to new particle formation (cf. Birmili & Wiedensohler, 2000; Bressi
et al., 2013; Grof et al., 2018; Petetin et al., 2014; Wiedensohler, 2000)

3.3.5. RH and Precipitation

Increased RH is associated with higher PM10 predictions (see Figure 12). This is likely related to an increase
in AOD due to aerosol swelling in humid conditions (Crumeyrolle et al., 2014; Wang & Christopher, 2003).

Other than increasing AOD, the importance of RH could also be related to a correlation between BLH and
RH (see PDF estimate in Figure 13). Higher RH reduces the magnitude of turbulent vertical flux and subse-
predictions. On the other hand, vertical transport of water vapor is impeded by a low BLH, which increases
RH and stimulates formation of aqueous secondary aerosols (Liu et al., 2018). To analyze the influences of
BLH and RH on predicted PM10, a two-way PD of RH and BLH is calculated (see Figure 13). It shows a
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Figure 13. Two-way PD of RH and BLH, full-year model. Description as in Figure 9.

changing pattern with increasing RH, visible in a change of line structure orientation from vertical to more
horizontal in the two-way PD plot. While BLH dominates during shallow boundary layer conditions (ver-
tical lines), the influence of RH is more prominent at higher BLH values (horizontal lines). This pattern
points to an influence of RH on PM10 predictions, which is decoupled from the BLH, as the influence of
BLH above 800 m is marginal. A similar pattern is found for all seasons except for summer. In summer, the
model outcome does not show any response to changes in BLH, as there are rarely any BLH values below
800 m (see Figure D1). A study by Belle et al. (2017) conducted in the United States found RH to have posi-
tive impact on PM2.5 concentrations during cloud-free conditions due to an increase in sulfate and nitrate
masses. However, they found PM2.5 to decrease with increasing RH during cloudy conditions.

The more time passed since the last precipitation event, the higher the PM10 prediction tends to be, reflect-
ing the accumulation of local emissions in the atmosphere. The influence of this effect on the model is not
pronounced and stagnates from about 100 hr (see Figure C2). The magnitude of the last precipitation event
and accumulated precipitation of last 24 hr were not included in the model due to lacking importance as
determined in the feature selection (see chapter 2.5.2). Note however that the low importance of precipita-
tion could be related to the consideration of only cloud-free days in this study. Thus, the immediate effect of
rainfall on particles in the atmosphere cannot be investigated. In addition, possible effects of precipitation
along the trajectories of advected air masses are not covered.

3.3.6. NDVI, Corine Land Cover, and Spatiotemporal Factors

The NDVI was of minor importance for the prediction of PM10 concentrations. No trends or seasonal dif-
ferences were found by application of the PD approach. However, with increasing number of pixels in the
vicinity of a PM station classified as agricultural areas (2CLC), PM10 concentrations tend to be higher. Likely,
this is related to primary emission of dust from arable lands and the application of fertilizers (NH3), which
constitute important precursors for secondary particle formation (Hoffmann & Funk, 2015; Wagner et al.,
2015). For the other land cover classes, no trends were found using the PD approach. Lower PM10 concen-
trations are predicted on Saturdays and Sundays, indicating that reduced anthropogenic activity (less traffic,
reduced industrial production) has an immediate effect on PM10 concentrations. Increasing altitude slightly
reduces the mean PM10 prediction, possibly due to lower population density and more effective pollution
dispersion processes (Beloconi et al., 2018; Hu et al., 2014). The PDs of NH3, continentality, PM10 mean
annual emissions, and of the TPI do not show a distinct trend. SO, was excluded from the model during the
feature selection process.
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Figure 14. PD plot showing the mean model response to changes in AOD for the full-year model (a) and each season
separately (b-e, DJF, MAM, JJA, and SON). Description as in Figure 6.
3.4. Determinants of the Relationship Between AOD and PM10
The full-year model and the seasonal models associate increasing AOD with increasing PM10 (see Figure 14).
This pattern is less distinct in summer (except for very high AOD) when particles are generally more dis-
persed within a well-mixed boundary layer, and the AOD is largely determined by particles higher up in the
atmosphere, thus weakening the relation between AOD and PM10.
The relationship between AOD and PM10 is not bivariate and can be modified by ambient meteorol-
ogy (Gupta & Christopher, 2009a; Guo et al., 2009; Sorek-Hamer et al., 2017; Stirnberg et al., 2018). A
quantification of this effect is approached here by using the two-way PD method.
The two-way PD of AOD and BLH reveals a dependence of the model on both AOD and BLH (see Figure 15).
The importance of interactive effects of these features can be illustrated by the following example: assume
an AOD of 0.2 and BLH of 2,000 m versus an AOD of 0.2 and BLH of 200 m. In the latter case, the mean
predicted PM10 concentration is ~10 ug/m3 higher as the aerosol content determining AOD is closer to
the ground and thus more relevant for the PM10 prediction. In other words, a prediction based on AOD
(assuming that AOD is largely determined by attenuation in the boundary layer Schifer et al., 2008) alone
would lead to erroneous PM10 predictions, as AOD does not fully capture the particle accumulation effect
of a shallow boundary layer (cf. Stirnberg et al., 2018). Similar effects can be observed for the two-way PD
of AOD and the 3-day mean east-west wind component (see Figure 15) and for the two-way PD of AOD and
STIRNBERG ET AL. 20 of 34
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Figure 15. Two-way PD of AOD and BLH, full-year model. Description as in Figure 9.

temperature anomalies (plot not shown). The two-way PD of AOD and BLH shows only a minor seasonal
pattern, which is mostly driven by BLH (see Figure D2)

Westerly wind flow (positive umean) leads to substantially lower PM10 predictions when compared to sim-
ilar AOD values in situations dominated by easterly wind flow (negative umean). The two-way PD suggests
this effect to be as large as ~8 ug/m? (see Figure 16). Air masses from the east possibly carry a higher amount
of near-ground particles (Beloconi et al., 2018; Bonn et al., 2016; Reizer & Juda-Rezler, 2016), affecting PM10
observations more strongly than AOD. Another reason for the observed effect could be that western air
masses carry a relatively large amount of sea salts with a high hygroscopic growth factor. By effectively tak-
ing up water, these constituents enhance light scattering, thus increasing AOD without increasing PM10
measurements (Stirnberg et al., 2018; Zieger et al., 2014; Zieger et al., 2013). The seasonality for the two-way
PD of AOD and umean is weak (see Figure D3).

- 35.0
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- 30.0
-27.5

-25.0
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PM10 [ug/m?]

-22.5

-6 i -15.0
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Figure 16. Two-way PD of AOD and umean, full-year model. Description as in Figure 9.
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4. Summary, Conclusions, and Outlook

A machine learning model is used to advance the understanding of drivers of near-ground PM10 and the
capability to use satellite AOD to infer on PM10. Parameters pertaining to meteorology, land cover, and
satellite-based AOD are considered and related to hourly PM10 concentrations. The model performs well
(overall R? of 0.77, RMSE = 7.44 ug/m?) and provides a basis to assess sensitivities. These allow for the
isolation and quantification of effects of ambient conditions on PM10. Overall, the model is more sensi-
tive to meteorological conditions than to land cover parameters. BLH, east-west winds, DOY, temperature,
and RH are identified as the important driving factors of PM10 variations. Representing regional particle
transport, the 3-day mean of the east-west wind component substantially modifies PM10 concentrations,
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Figure A1l. Spatial distribution, type, and representativeness of UBA PM measurement stations in Germany.
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Figure A2. Altitude (m.a.s.l.) of UBA PM measurement stations in Germany.

depending on the direction of inflow. Eastern inflow generally increases PM10 concentrations. Modeled
PM10 concentrations were also increased during higher than average temperatures. Possibly, this is due to
stimulated vegetation activity, increasing primary particle and precursor gas emissions. The influence of
BLH is most prominent at very low (~<500 m) values. However, there is indication that very high BLH val-
ues (~<2,500 m) influence PM10 concentrations as well. While the former threshold marks the effects of

- 25

- 20

Mean PM10 concentrations [ug/m3]

- 15

Figure A3. Mean PM10 concentrations for measurement stations used in this study. Time period is the time frame
analyzed in this study (2007-2015).
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Figure A4. Standard deviation for PM10 concentrations for measurement stations used in this study. Time period is
the time frame analyzed in this study (2007-2015).

particle accumulation within a shallow boundary layer, the latter threshold could indicate the formation of
a deep boundary layer with stimulated formation of secondary aerosols as suggested by Grange et al. (2018).
If BLH is between these thresholds, its explanatory power is limited. In these situations, other processes
determine PM10 concentrations. Overall, the model outcome suggests that there are different meteoro-
logical boundary conditions that potentially cause elevated PM10 concentrations in winter and summer
(Figure 17).

Figure B1. Spatial distribution of R?.
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In winter, very shallow boundary layers, coinciding with multiday easterly wind flow cause highest mean
PM10 predictions (>30 ug/m?). Mean PM10 predictions for these conditions are as high as 40 ug/m3 (see
Figure 9). This is probably related to higher anthropogenic emissions in winter and frequently low BLH.

In summer, higher temperatures associated with increased formation of secondary aerosols and coincid-
ing with multiday easterly wind flow lead to mean predicted PM10 concentrations >27 ug/m3 (figure not
shown). High PM10 concentrations in summer appear to be largely uncoupled from changes in BLH (see
Figure 8d). The model R? decreases in summer, suggesting that the statistical model does not as well resolve
these processes. In addition, the relationship between AOD and PM10 is weaker in summer.

Results presented in this study suggest that meteorology plays a substantial role in the development of high
pollution situations. This has potential implications for plans toward better air quality in high-polluted
areas, as meteorological conditions need to be taken into account, for example, for temporary traffic bans.
In addition, there is a need to introduce measures to reduce air pollution on a regional scale. Measures lim-
ited to city scales can only decrease pollution levels associated with local emission sources, which can be
superimposed by transported particles.

The importance of AOD for the statistical model highlights the suitability of AOD for air quality stud-
ies. However, potential implications and limitations for the use of satellite AOD for air quality studies are
described. This study has shown that satellite-derived AOD can be used to infer street-level PM10 concen-
trations, if ambient meteorological conditions are taken into account explicitly. In particular, temperature
anomalies, the east-west regional wind component, and BLH modify the relationship between PM10 and
AOD. A drawback of including AOD is the restriction to cloud-free situations, which potentially introduces a
bias due to nonrandom data gaps (Belle et al., 2017). Depending on the situation and location, both an overes-
timation or underestimation of PM10 could be the consequence (Belle et al., 2017). In addition, the influence
of certain meteorological variables could be underestimated due to important processes under cloudy con-
ditions, which are not covered (Belle et al., 2017; Brokamp et al., 2018). The use of GBRT proved fruitful to
understand interconnected processes and the approach presented here can be potentially expanded to other
research questions focusing on the understanding multivariate processes. Future efforts will further address
the determination of mechanisms leading to high pollution events using machine learning not only for total
PM10 concentrations but for individual aerosol species.
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each season separately (b-e, DJF, MAM, JJA, and SON). Description as in Figure 6.

Appendix A: Distribution of UBA PM10 Station Types, Altitude, Mean
Concentrations, and Standard Deviations of PM10 Concentrations

The spatial distribution of PM10 measurement stations is shown in Figure Al. Overall, stations are dis-
tributed relatively homogeneously over the area of Germany. The number of stations is higher in urban
agglomerations. The majority of stations are classified as “urban” or “suburban.” “Rural” stations are rel-
atively rare. Most stations are labelled as representative for background conditions by the data provider.
Station altitudes (m.a.s.l.) are shown in Figure A2. Altitudes range from 0 to 970 m.a.s.1.

” «

Furthermore, mean PM10 concentrations and standard deviations of all stations for the study period
2007-2015 are shown in Figures A3 and A4, respectively. Mean concentrations are highest in the Rhine-Ruhr
area (north-west) and other urban areas such as Munich to the south, Berlin to the northeast, and Hamburg
to the north.

Appendix B: Spatial Distribution of Model Skill

Figures B1 and B2 show the spatial distribution of the coefficient of determination and the RMSE, respec-
tively. In the southwest and the northeast, R? tends to be higher, and RMSE tends to be lower. In the
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Figure C2. PD plot showing the mean model response to changes in time since last precipitation (hr) for the full-year
model (a) and each season separately (b-e, DJF, MAM, JJA, and SON). Description as in Figure 6.

Rhine-Ruhr region (northwest), performance seems to be generally worse. These stations generally have
high mean PM10 concentrations (see Figure A3). However, it appears that other urban areas, which also
have high mean PM10 concentrations can be modeled quite well (e.g., Berlin in the northeast or Hamburg
in the north).

Appendix C: Further Individual Conditional Expectation Plots

Solar radiation (Figure C1) and time since the last precipitation (Figure C2) were analyzed using the ICE
method as described in chapter 2.6.3. Both input features show only minor influence on mean PM10 pre-
dictions. The ICE functions for time since last precipitation show particularly large variability of model
responses of the individual data instances (shown by the shaded areas beneath the bold lines), indicating
strong interactions with other features.

Appendix D: Seasonal Two-Way Partial Dependence Plots

In addition to Figure 13, which shows the full-year model two-way partial dependence of RH and BLH,
Figure D1 additionally depicts the two-way partial dependence of the seasonal models. Similarly, Figures D2
and D3 show the seasonal two-way partial dependence of AOD and BLH and AOD and umean, respectively.
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Figure D1. Two-way PD of RH and BLH, full-year model (a) and seasonal models (b-e, DJF, MAM, JJA, and SON).
Description as in Figure 9.

Acronyms

AOD aerosol optical depth

BLH boundary layer height

BRF bidirectional reflectance factor

CAPE convective available potential energy
CLC Corine land cover

DEM digital elevation model
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Figure D2. Two-way PD of AOD and BLH, full-year model (a) and seasonal models (b-e, DJF, MAM, JJA, and SON).

Description as in Figure 9.

DOY day of year

DWD German Meteorological Service

EEA European Environmental Agency

ECMWEF Centre for Medium-Range Weather Forecasts

GBRT gradient boosted regression trees

LLO leave location out

MAIAC multi-angle implementation of atmospheric correction
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Figure D3. Two-way PD of AOD and umean, full-year model (a) and seasonal models (b-e, DJF, MAM, JJA, and SON).
Description as in Figure 9.

MODIS moderate resolution imaging spectroradiometer
NDVI normalized difference vegetation index

PDF probability density function

PM particulate matter

RADOLAN Radar-Online-Aneichung

RF random forest
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