

Experiments on Thermohydraulics of Stratified Melt Pool – SIMECO-II and LIVE2D Tests

X. Gaus-Liu, T. Cron, B. Fluhrer (KIT) A. Komlev, W. Ma, S. Bechta (KTH)

Outline

- Objectives
- Experimental setups
 - SIMECO-II
 - LIVE2D
- Performance of LIVE2D test series
- Results of LIVE2D test series
- Summary and Outlook

Objectives

- In-vessel melt retention by external cooling
- High risk of thermal load on the vessel wall in the metallic layer due to the heat flux focusing effect influenced by:
 - Interlayer crust
 - Upper layer thickness
 - Upper boundary cooling condition

Experimental Setup – SIMECO-II facility

LIVE2D Experimental Setup

- Slice geometry:
 - 1 m in diameter, 12 cm in width,
- Transparent front wall and insulated back wall,
- Nine layers of evenly distributed electrical heating cables in the vessel,
- External boundary rigid cooled; upper surface either rigid cooled or under hot air atmosphere.

Performance of LIVE2D test series

	Simulant material		Heigh of layer, mm		Heating phase, W	Boundary condition	
Test	Upper layer	Lower layer	Upper layer	Lower layer	heating only in lower layer	Top surface	Vessel wall
SO1		eutectic	35	340	1300 – 940 – 1040 – 1310 – 1400 – 900	Hot air (metal plate covers the vessel)	Water cooled
	Thermal		75	340	1300 – 1800- 1150		
	OII	NaknO ₃	110	340	2200 - 1800 - 1400 - 1600		
			75	340	1600		
SOTC	Thermal oil	eutectic NaKNO ₃	110	340	3000 - 3600 - 4250	Rigid cooling (Water cooled lid)	Water cooled
			75	375	4230 - 3000 - 3600		
			35	415	3600 - 3000 - 4300 - 3400 -2400 - 1800		

HORIZON 2020

Material properties in LIVE2D tests

Material properties	unit	Lower 50% KNO ₃ -5	layer: 50% NaNO ₃	Upper layer: Thermal oil	
		at 224 °C	at 260 °C	at 140 °C	at 220 °C
density	kg/m³	1964	1937	755	540
kinematic viscosity	mm²/s	2.76	2.23	11	9
thermal conductivity	W/(mK)	0.48	0.47	0.15	0.15
thermal capacity	J/(gK)	1.29	1.31	1.7	1.83
Pr		14.5	12.0	94	59

Compact crust

HORIZON 2020

Almost no crust

Half crust

Result - Transient process in SO1 test

LIVE2D Results - upper layer melt flow pattern

SO1 test: hot atmosphere at the upper surface: global circulation

SOTC test: rigid cooled upper surface. Raleigh-Bernard convection

Results - Upper layer temperature profiles in SO1 test

35 mm layer, 1400 W

Results - LIVE2D Heat fluxes (1)

SO1 test: hot atmosphere at the upper surface

HORIZON 2020

SOTC test: rigid cooled upper surface

upper layer 37mm -3.6kW

Results - Heat flux focusing effect

heat source density, kW/m³

Upper layer sidewall heat flux

heat source density, kW/m³

up/ down sidewall heat flux ratio

- Heat flux focusing factor reduces strongly under rigid surface cooling,
- Heat flux focusing factor decreases gradually when the interlayer crust melts down and the layer interface temperature increases.

Results - Nu and Ra of the upper layer sidewall heat transfer (theory)

International Seminar IVMR-2020 – Juan-les-Pins

HORIZON 2020

Results - Nu and Ra in LIVE2D tests

International Seminar IVMR-2020 – Juan-les-Pins

16 $I \sim \sum_{2020} R$

Heat Balance in LIVE2D tests

SO1 test

Q_{wall} /Q_{in} ~ 0.37-0.46 Main heat losses via

- Front wall (radiation)
- Cooled sidewall above the melt
- Hot air above the melt

SOTC test

- Q_{wall} /Q_{in} ~ 0.21-0.31
- Waterside heat transfer measurements at the sidewall and at the upper surface were not reliable due to the low water pressure and low flow rate.

Summary

- SIMECO-II and LIVE2D test facilities were designed for the thermal hydraulic studies of a stratified melt pool in large geometry,
- SIMECO-II test will apply metallic simulant material in the upper layer, whereas LIVE2D applied thermal oil for the upper melt layer,
- Two series of LIVE2D test with 3 upper-layer thicknesses were performed,
- The transient process of the upper layer is longer than that of the lower layer, and it reflects the time period of interlayer crust change,
- Strong heat flux focusing effect was observed when the heat transfer at the melt upper surface was poor; whereas upper surface rigid cooling can effectively minimize the heat flux focusing effect,
- The experimental results of Nu of upper layer sidewall heat transfer is considerably lower than the Churchill & Chu correlations.

Outlook

• SIMECO-II plans?

This work is funded by the IVMR grant agreement number 662157 (H2020) and national governments

