
High-Quality Hypergraph Partitioning

Zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

von der KIT-Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Sebastian Schlag

aus Weinheim

Tag der mündlichen Prüfung: 11. Dezember 2019

Erster Gutachter: Prof. Dr. Peter Sanders
Karlsruher Institut für Technologie

Zweiter Gutachter: Prof. Dr. Henning Meyerhenke
Humboldt-Universität zu Berlin





To my parents, Klaus and Elisabeth Schlag





Abstract
This dissertation focuses on computing high-quality solutions for the NP-hard

balanced hypergraph partitioning problem: Given a hypergraph and an integer k,
partition its vertex set into k disjoint blocks of bounded size, while minimizing an
objective function over the hyperedges. Here, we consider the two most commonly
used objectives: the cut-net metric and the connectivity metric.
Since the problem is computationally intractable, heuristics are used in practice –

the most prominent being the three-phase multi-level paradigm: During coarsening,
the hypergraph is successively contracted to obtain a hierarchy of smaller instances.
After applying an initial partitioning algorithm to the smallest hypergraph, contraction
is undone and, at each level, refinement algorithms try to improve the current solution.

With this work, we give a brief overview of the field and present several algorithmic
improvements to the multi-level paradigm. Instead of using a logarithmic number of
levels like traditional algorithms, we present two coarsening algorithms that create a
hierarchy of (nearly) n levels, where n is the number of vertices. This makes consecutive
levels as similar as possible and provides many opportunities for refinement algorithms
to improve the partition. This approach is made feasible in practice by tailoring all
algorithms and data structures to the n-level paradigm, and developing lazy-evaluation
techniques, caching mechanisms and early stopping criteria to speed up the partitioning
process. Furthermore, we propose a sparsification algorithm based on locality-sensitive
hashing that improves the running time for hypergraphs with large hyperedges, and
show that incorporating global information about the community structure into the
coarsening process improves quality. Moreover, we present a portfolio-based initial
partitioning approach, and propose three refinement algorithms. Two are based on
the Fiduccia-Mattheyses (FM) heuristic, but perform a highly localized search at each
level. While one is designed for two-way partitioning, the other is the first FM-style
algorithm that can be efficiently employed in the multi-level setting to directly improve
k-way partitions. The third algorithm uses max-flow computations on pairs of blocks
to refine k-way partitions. Finally, we present the first memetic multi-level hypergraph
partitioning algorithm for an extensive exploration of the global solution space.

All contributions are made available through our open-source framework KaHyPar.
In a comprehensive experimental study, we compare KaHyPar with hMETIS, PaToH,
Mondriaan, Zoltan-AlgD, and HYPE on a wide range of hypergraphs from several
application areas. Our results indicate that KaHyPar, already without the memetic
component, computes better solutions than all competing algorithms for both the
cut-net and the connectivity metric, while being faster than Zoltan-AlgD and equally
fast as hMETIS. Moreover, KaHyPar compares favorably with the current best graph
partitioning system KaFFPa – both in terms of solution quality and running time.
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1Chapter 1

Introduction

“A good cook need sharpen his blade but once a year. He cuts cleanly. An
awkward cook sharpens his knife every month. He chops. I’ve used this knife
for nineteen years, carving thousands of oxen. Still the blade is as sharp as
the first time it was lifted from the whetstone. At the joints there are spaces,
and the blade has no thickness. Entering with no thickness where there is
space, the blade may move freely where it will: there’s plenty of room to
move. Thus, after nineteen years, my knife remains as sharp as it was that
first day.
“Even so, there are always difficult places, and when I see rough going ahead,
my heart offers proper respect as I pause to look deeply into it. Then I work
slowly, moving my blade with increasing subtlety until — kerplop! — meat
falls apart like a crumbling clod of earth. I then raise my knife and assess
my work until I’m fully satisfied. Then I give my knife a good cleaning and
put it carefully away.”

— Sam Hamill and J. P. Seaton, The Essential Chuang Tzu

This chapter sets the stage for the work presented in this dissertation. After motivating
the hypergraph partitioning problem in Section 1.1, we briefly summarize the main
contributions in Section 1.2. We then discuss the applied research methodology –
algorithm engineering – in Section 1.3 and outline the remainder of this work in
Section 1.4.

1.1 Motivation

Graph Partitioning. Graph partitioning – that is, the task to divide the vertices
of a graph into a fixed number of disjoint blocks of bounded size, such that the number
of edges crossing between blocks is minimized – is a classical and well-studied problem
in computer science [BS11; Bul+16]. It is commonly applied as a preprocessing
technique in settings where the goal is to divide a set of interrelated objects into a
certain number of subsets such that objects in the same subset are in some sense
strongly related and objects in different subsets are weakly related. In the graph-based
representation, the vertices of the graph represent the objects, while edges model
relationships, dependencies, or interactions between these objects. Just like Chuang
Tzu’s Taoist butcher carefully carves along the joints of the ox, partitioning algorithms
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1 Introduction

try to divide graphs at their “natural joints” such that as few edges as possible remain
that connect vertices in different blocks, while ensuring that each block contains
roughly the same number of vertices. Well-known applications of graph partitioning
include load balancing in parallel computing [Mil+93; SKK00], data distribution for
parallel graph analytics [AK06; SMR14; Wan+14; Slo+17], and route planning [Hil+06;
Del+11; LS14; Del+17]. In the first two examples, the goal is to distribute units
of computation or data evenly among the processors of a parallel computer while
minimizing the amount of communication between processors that occurs if dependent
computations or data elements are assigned to different processors. In route planning,
graph partitioning is used to identify “natural joints” (or bottlenecks) such as highways,
rivers or mountain ranges in road networks. This information is then exploited to
improve the query performance of shortest-path algorithms.

Limitations of Graph Models. While graphs permit the modeling of pairwise
interactions or dependencies, many real-world problems involve more complex rela-
tionships between objects [BS11, p.65]. Already in the 1960s and the early 1970s –
when graph partitioning just started to become an active area of research – Rutman
[Rut64] as well as Schweikert and Kernighan [SK72] observed that the standard graph
model is inappropriate for the task of partitioning electrical circuits in the field of
very-large-scale integration (VLSI) design. Here, the goal is to divide a circuit into
two or more blocks such that the number of external wires interconnecting circuit
elements in different blocks is minimized. Minimization of external wires is important,
because it reduces signal delays, wiring cost, and the total layout area [YM90; AK95c].
Consider, for example, the circuit consisting of 5 elements connected by 3 wires shown
in Figure 1.1 (a). By assigning circuit elements 2 and 3 to one block, and elements 1, 4,
and 5 to the other block, we get a partition into two blocks that requires one external
wire (b). In the traditional graph model, circuit elements correspond to vertices and a
wire connecting multiple circuit elements is represented by adding an edge between
every two distinct vertices (c). In this case, however, an optimal partition would put
element 5 in one block and all other elements in the other block, since this is the
only partition into two blocks that results in only two external edges. The difference
between the circuit solution and the graph partition arises, because graphs are unable
to concisely represent relationships between more than two objects.

Hypergraphs to the Rescue. Hypergraphs are a generalization of graphs, where
each (hyper)edge can connect an arbitrary number of vertices. Thus, unlike graphs,
which are restricted to dyadic relationships, hypergraphs can be used to model
more complex dependencies and interactions. Figure 1.1 (d) depicts the hypergraph
representation of the circuit shown in (a) along with the corresponding partition
into two blocks. Due to the increased modeling flexibility, the hypergraph correctly
represents the wiring of the circuit and thus a “good” partition of the hypergraph
corresponds to a “good” partition of the physical circuit. Hypergraphs have since been
shown to provide better models in various other application domains. The problem of
storage sharding in distributed databases, for example, can be solved more efficiently
using hypergraph-based approaches [Cur+10; QKD13; Kum+14; Kab+17]. Another

2
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Figure 1.1: Example used by Schweikert and Kernighan [SK72] to demonstrate
the shortcomings of the graph model for partitioning electrical circuits: (a) a
circuit consisting of 5 elements and 3 electrical wires, (b) a partition of the circuit
into two blocks with one wire connecting both blocks, (c) the best graph partition
with two edges connecting both blocks, (d) the best hypergraph partition with
one hyperedge connecting both blocks.

well-known problem is the parallelization of sparse matrix-vector multiplications
in the field of parallel scientific computing [ÇA01a; ÇA01b; UA04; VB05; UA07;
YB09; ÇAU10; UÇ10; Bis+12; KUÇ14; PB14; SAA17]. In this area, the benefits of
hypergraph-based approaches include the correct modeling of communication volumes
and the ability to handle unsymmetric data dependencies [Hen98; Çat99; HK00].
Especially for irregular problems, hypergraph models are regarded to yield better
results than graph-based approaches [BS11, p.78]. Furthermore, recent interest in the
analysis of group-wise interactions in social networks [Laz+09; Ama+18; Ant+19]
has shifted the focus from traditional graph processing frameworks [Mal+10; Chi+15]
towards distributed hypergraph processing systems [HC14; HC15; HZY15; Jia+18;
Hei+19].

Hypergraph Partitioning. The hypergraph partitioning (HGP) problem is the
generalization of the graph partitioning problem, i.e., the goal is to partition the
vertex set of the hypergraph into a fixed number of k disjoint blocks of bounded size,
while minimizing an objective function defined on the hyperedges. The two most
widely-used objective functions are the cut-net metric and the connectivity metric.
Cut-net is a straightforward generalization of the traditional edge-cut objective in
graph partitioning (i.e., minimizing the number of hyperedges that cross more than
one block). Since a hyperedge can connect more than two vertices, it is possible that it
crosses up to k blocks in a partitioned hypergraph. Therefore, the connectivity metric
additionally takes into account the actual number of blocks connected by a hyperedge
and favors solutions in which hyperedges are split among as few blocks as possible.

The Challenge. Computing optimal solutions for graph and hypergraph partition-
ing problems is computationally intractable, since both problems are NP-hard [GJS76;
Len90], and it is even NP-hard to find good approximate solutions for general
graphs [BJ92]. Therefore, heuristic algorithms are used in practice. In both areas, the

3



1 Introduction

most successful heuristic is the three-phased multi-level paradigm. In the coarsening
phase, multi-level algorithms first successively contract the input (hyper)graph to
obtain a hierarchy of smaller, structurally similar instances. After applying an initial
partitioning algorithm to the smallest (hyper)graph, contraction is undone and, at
each level, refinement algorithms are used to improve the partition induced by the
coarser level.

However, the increased modeling flexibility due to arbitrarily-sized hyperedges makes
hypergraph partitioning more difficult than graph partitioning in practice [HC14], since
algorithms on hypergraphs are considered to be “inherently more complicated than
those on graphs” [Kay+12] and thus more complex “in terms of implementation and
running time” [Bul+16]. Despite its numerous applications, hypergraph partitioning
is still considered to be “relatively less studied than graph partitioning” [Kab+17] and
although it “is widely used in both academia and industry, the number of publicly
available tools is limited” [ACU08].

1.2 Main Contributions

This dissertation presents several algorithmic advances to the multi-level paradigm,
which yield a high-quality hypergraph partitioning system that computes the best
solutions for a wide range of benchmark hypergraphs from different application areas
for both the cut-net and the connectivity metric – while still having a running time
comparable to that of hMETIS, the previously best system in terms of solution quality.
This work goes beyond the individual publications [Sch+16a; Akh+17a; HS17a;

ASS18a; HSS18a; HSS19a] and technical reports [Hen+15a; Sch+15a; ASS18b; HSS18b]
in that we take a holistic approach by putting our improvements in the historical
context and presenting all individual contributions in an integrated and consistent
manner. Detailed references and attributions will be given over the course of this
dissertation.

A Historical Overview of the Field. We provide a comprehensive survey of
almost 50 years of hypergraph partitioning history. In contrast to previous overview
articles [Kod72; Don88; AK95c; MWW95; Joh96; Lie97; Kah98; CC00; KAV04;
PM07; Kuc08; Bul+16] and related work sections in dissertations on hypergraph
partitioning [Alp96; Çat99; Lim00; Tri06; Lot16], we present a historical overview –
instead of an aggregation of similar concepts and techniques – that traces the lineage
of ideas throughout history and thus makes the scientific development of the field
more comprehensible.

n-Level Hypergraph Partitioning. We revisit the trade-off between solution
quality and running time inherent in the number of hierarchy levels, which is itself
determined by the rate at which successively smaller hypergraphs are produced in the
coarsening phase. Instead of using an approximately logarithmic number of levels like
traditional multi-level algorithms, we show how to evade this trade-off completely by
going to the extreme case of (nearly) n levels, removing only a single vertex in every

4



1.2 Main Contributions

level of the hierarchy. For this purpose, we generalize several basic ideas from the n-
level graph partitioning algorithm KaSPar [OS10a; OS10b] to hypergraph partitioning
and propose a hypergraph data structure, as well as two coarsening algorithms
specifically engineered to fit the n-level paradigm. This very fine-grained approach
makes consecutive hierarchy levels as similar as possible and thus provides refinement
algorithms with many opportunities to improve the solution. By devising several
lazy-evaluation techniques and sophisticated caching mechanisms for the algorithms
used in the coarsening and the refinement phase, we reduce the running time by more
than two orders of magnitude compared to a naïve adaptation of the n-level approach
used in KaSPar for traditional graph partitioning.

Hypergraph Sparsification. Especially for hypergraphs with many large hyper-
edges, computations involving the set of neighbors of a vertex can have a significant
impact on the overall running time of a partitioning algorithm. We alleviate this impact
by presenting a preprocessing technique based on locality-sensitive hashing [IM98]
that identifies and merges vertices with similar neighborhoods to reduce the sizes of
large hyperedges and thus significantly speeds up the overall partitioning process.

Community-Aware Coarsening. Furthermore, we show that traditional coars-
ening algorithms lack a global view of the problem. Since they are solely guided
by local, greedy decisions, they are prone to perform contractions that obscure the
naturally existing structure in the hypergraph. We therefore present an approach
which incorporates global information about the community structure into the coarsen-
ing process. Community detection is performed via modularity maximization using
the Louvain algorithm [Blo+08] on a bipartite graph representation which reflects
key structural properties of the hypergraph. Our experimental results indicate that
respecting community structure during coarsening not only significantly improves the
solutions found by the initial partitioning algorithm, but also consistently improves
overall solution quality.

Portfolio of Initial Partitioning Algorithms. We present a portfolio-based ap-
proach to initial partitioning to increase diversification. Instead of using a single
algorithm to compute the initial partitions of the coarsest hypergraphs, we use sev-
eral initial partitioning algorithms including random assignment, breadth-first search
(BFS), size-constrained label propagation [MSS14], and different variants of greedy
hypergraph growing [ÇA99].

Advanced Refinement Algorithms. We present three local improvement algo-
rithms to be applied in the refinement phase to improve the solution quality of an
initial partition. Two algorithms are based on the Fiduccia-Mattheyses (FM) heuris-
tic [FM82], but perform a highly localized search that starts with only two vertices
and then gradually expands by successively considering their neighbors. FM-style
algorithms move vertices to other blocks in the order of improvements in the objective,
allowing the objective to temporarily worsen to escape from local optima. The first
presented algorithm is specifically tailored to improving two-way partitions (i.e., parti-
tions consisting of k = 2 blocks) and can therefore be used in a setting where k-way

5



1 Introduction

partitions are computed via recursive bipartitioning. The second algorithm has a more
global view and is able to directly improve k-way partitions by moving vertices between
all k blocks. It represents the first FM-style k-way refinement algorithm (previously
regarded as “rather complex to describe and to implement” [BS11, p. 72]) that can
be efficiently employed in the multi-level setting. Current multi-level hypergraph
partitioning systems that employ k-way refinement schemes only use weaker greedy
local search algorithms which cannot escape from local optima [KK00; ACU08; TK08;
Çat+12b]. The third algorithm uses max-flow computations on pairs of blocks to
refine k-way partitions. For this, we generalize the flow-based refinement framework of
the graph partitioner KaFFPa [SS11] from graph to hypergraph partitioning, identify
shortcomings of the KaFFPa approach that unnecessarily restrict feasible solutions,
and introduce an improved model that overcomes these limitations.

Memetic n-Level Hypergraph Partitioning. As with many metaheuristics,
multi-level hypergraph partitioning gives better results if several repeated runs are
made with some measures taken to diversify the partitioning process. Still, even a
large number of repeated executions can only scratch the surface of the huge search
space of possible partitions. In order to explore the global solution space extensively,
more sophisticated metaheuristics are needed. This is where memetic algorithms,
i.e., genetic algorithms combined with local search, come into play. Memetic algo-
rithms permit effective exploration (global search) and exploitation (local search) of
the solution space. We therefore embed our n-level algorithms into an evolutionary
framework – generalizing and extending several ideas from the evolutionary graph
partitioning algorithm KaFFPaE [SS12] from graphs to hypergraphs – and present the
first memetic hypergraph partitioning algorithm that uses the multi-level paradigm to
effectively exploit the local solution space. Key components of our contribution are
new effective recombination operators that incorporate information about the best
solutions into the coarsening process and mutation operators that provide a large
amount of diversification.

The Karlsruhe Hypergraph Partitioning Framework. The algorithmic com-
ponents presented in this dissertation form the basis of our open-source hypergraph
partitioning framework KaHyPar (Karlsruhe Hypergraph Partitioning), which is im-
plemented in C++ and publicly available from http://www.kahypar.org. KaHyPar
supports both direct k-way and recursive bipartitioning-based partitioning, and allows
for optimizing the cut-net metric as well as the connectivity metric. Since its release,
it has already been employed in several research efforts [AH19; GLA19; Got19; Jal19b;
Net19; PS19; Sch+19a; SSS19b] and has also attracted attention from industry.

An Extensive Experimental Evaluation. The lack of experimental data com-
paring partitioning algorithms has been criticized several times [Don88; HB97]. Quite
often, newly developed algorithms are only evaluated on a few hypergraphs (usually
derived from a single application domain) and only compared with a small subset of
the available hypergraph partitioning systems. The experimental study presented in
this dissertation is, to the best of our knowledge, the most comprehensive evaluation
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to date in the literature. We compare our algorithms with several state-of-the-art hy-
pergraph partitioning systems: hMETIS [Kar+97a; KK99] and PaToH [ÇA99] (widely
used in practice for about 20 years), Mondriaan [VB05] (a still actively developed
matrix partitioner), and the recently proposed algorithms Zoltan-AlgD [SS18b] and
HYPE [May+18]. Experiments are performed on a wide range of hypergraphs derived
from well-established benchmark suites of the VLSI design, the SAT solving, the
scientific computing, and the graph partitioning community.
Our results indicate that KaHyPar – already without the memetic component –

computes better solutions than all competing algorithms for both the cut-net and the
connectivity metric, while being faster than Zoltan-AlgD and having a running time
comparable to that of hMETIS, the previously best system in terms of solution quality.
Hence, our algorithms are of particular interest for applications such as VLSI design,
where even small improvements in solution quality are considered critical [HB97; WA98].
In settings where running time is of higher importance than solution quality, our
experiments suggest that PaToH should be considered the method of choice. Additional
experiments show that, when used as a graph partitioner, KaHyPar compares favorably
with the current best algorithm KaFFPa [SS11] – computing solutions of slightly higher
quality for complex networks and solutions of comparable quality for the instances
of the 10th DIMACS Implementation Challenge on Graph Partitioning and Graph
Clustering [Bad+13] in a comparable amount of time.

1.3 Research Methodology

This dissertation adopts the algorithm engineering research methodology [San09;
MS10; SW11; SW13; Ang+19], which integrates classical algorithm theory with
experimental algorithmics into a feedback loop of design, analysis, implementation,
and experimentation.

Algorithm Theory and Experimental Algorithmics. Algorithm theory, rooted
in mathematics, focuses on abstract and well-defined problems and machine models
that are particularly amendable to theoretical analysis, with the goal to derive prov-
able performance guarantees on running time and/or solution quality for all possible
(known and unknown) types of inputs. Focusing on rigorous theoretical analyses and
provable worst- or average-case performance guarantees (which are essential in the
field of algorithmics), classical algorithm theory considers actual implementations of
algorithmic ideas to be out of scope and thus to be left to application developers.
Experimental algorithmics (i.e., “the study of algorithms and their performance by
experimental means” [McG12]), on the other hand, is mainly concerned with the
experimental process itself and thus addresses questions such as how to design and
execute experiments, and how to evaluate the experimental results to draw meaningful
conclusions. While an implementation is necessary to perform experiments, the actual
process of implementing an algorithm is not addressed sufficiently. Yet, transforming a
high-level algorithmic pseudocode description into an efficient implementation for mod-
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Figure 1.2: The algorithm engineering cycle of design, analysis, implementation,
and experiments – interfacing with real-world applications. Adapted from [Bin18].1

ern hardware requires overcoming large semantic gaps. Elegant theoretical algorithms
might require sophisticated data structures almost impossible to implement efficiently.
Furthermore, constant factors – ignored in the asymptotic analysis – suddenly play an
important role for the practicability of an implementation.

Algorithm Engineering. Algorithm engineering (AE) addresses the apparent gap
between algorithm theory on the one hand and applications, implementations, and
experiments on the other hand by providing a holistic approach centered around a
cycle of design, analysis, implementation, and experimentation – driven by falsifiable
hypotheses. Aiming at practicality, algorithm engineering interacts with the application
domain in several important ways. Applications form the basis for realistic models,
supply the AE process with real-world inputs (which are often significantly different
from the worst-case instances used in theory), and may influence algorithm design
as well as the experimental evaluation. Moreover, algorithm engineering fosters the
transfer of knowledge from the research domain to the application domain. Highly
efficient, well-engineered algorithm libraries provide clean, generic interfaces to a variety
of applications. A dedicated process of application engineering aims at transforming
research implementations into production-grade software. Furthermore, incorporating
realistic models and practical considerations already at the algorithm design phase
supports theoretical analyses in deducing performance guarantees that are relevant
in practice. A visualization of the algorithm engineering methodology is shown in
Figure 1.2.

1“Algorithm engineering as a cycle of design, analysis, implementation, and experiments.” by Timo
Bingmann, used under CC BY 4.0 / Text has been capitalized.

8

https://creativecommons.org/licenses/by/4.0/


1.3 Research Methodology

On Performance Guarantees. The partitioning problem we consider in this dis-
sertation is known to be NP-hard [GJS76; Len90]. Furthermore, deriving performance
guarantees for the multi-level heuristics used in practice is still an open problem [San09].
Hence, our focus is more on the design, implementation, and experimental evaluation
of partitioning algorithms. However, in Section 2.4, we will briefly elaborate on the
computational complexity of problems involving partitions of graphs and hypergraphs.

Interactions with Applications. Our work interfaces with the application domain
in various ways. The benchmark instances used in the experimental evaluation stem
from real-world problems of the VLSI design, the SAT solving, and the scientific
computing community, which are transformed into hypergraphs using widely-accepted
models. A detailed discussion will be given in Section 2.6.1. Moreover, our key software
artifact – the open-source partitioning framework KaHyPar – is not only instrumented
for experiments (e.g., by providing detailed statistics and timings in a format compatible
with SqlPlotTools [Bin14]), but also provides C++ and Julia [Jal19a] library interfaces
and can additionally be used as a standalone application. Furthermore, it is designed
as an extensible framework to foster the research and development of new heuristics.

Reproducibility. The HGP research community has been criticized for not describ-
ing implementations in sufficient detail for others to reproduce the results [CKM99b].
As we will see in Section 3.2, this already applies to the well-known and widely-used
Fiduccia-Mattheyses (FM) heuristic [FM82]. While a high-level description of this
algorithm is straightforward, several ambiguities and implicit design decisions may lead
to considerable differences in the solution quality of actual implementations [HHK97;
CKM99b; CKM00b]. With multi-level algorithms, the semantic gap between the
algorithmic description and the implementation becomes even more pronounced. Cald-
well, Kahng, and Markov [CKM00c], for example, note that “[a] lack of documented
key implementation details in the literature [...], and the implementation complexity
of hMETIS techniques, may be factors contributing to the lack of integration of
hMETIS quality partitioning methods in the VLSI community.” This is especially
problematic, as some of most sophisticated partitioning algorithms to date are only
distributed in binary format. However, describing an entire multi-level algorithm in
precise pseudocode such that it could be transcribed into an actual implementation is
impractical for both the author and the reader due to the high complexity of such
systems. Therefore, the approach taken in this dissertation is to employ pseudocode as
a means to support and enhance the textual description of an algorithm. However, the
actual implementations of all algorithms are made publicly available through KaHyPar
– thus documenting and disclosing all design decisions and implementation details.
Moreover, tuning parameters are externalized and accessible via INI configuration
files instead of being hidden in the source code. At the time of writing, KaHyPar
ranks third (out of 25 scientific software tools) in the softwipe code quality benchmark
with a quality score of 8.8/10.2 To further support reproducibility, all benchmark
hypergraphs used in this work are made publicly available [Sch19].

2https://github.com/adrianzap/softwipe/wiki/Code-Quality-Benchmark
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Types of Experimental Publications. In his “Theoretician’s Guide to the Ex-
perimental Analysis of Algorithms”, David Johnson [Joh99] differentiates between four
types of publications involving experimentation (with slightly different reasons for
doing the actual work of implementing an algorithm): application papers (describing
the impact of an algorithm on a particular application), horse race papers (demon-
strating superiority of an algorithm over competitors on standard benchmark sets),
experimental analysis papers (trying to better understand strengths and weaknesses
of algorithmic ideas in practice), and experimental average-case papers (generating
conjectures about average-case behavior where theoretical analysis is too hard).
The work summarized in this dissertation falls into the experimental analysis and

horse race categories. After describing the algorithmic ideas that form the basis of our
framework, we experimentally evaluate their effects on solution quality and running
time as well as their interactions. Having determined the best configurations, we then
enter into a horse race with the major state-of-the-art competitors to demonstrate the
effectiveness of our algorithms, but also to assess today’s partitioning algorithms in
terms of the time/quality trade-off.

1.4 Outline

The remainder of this dissertation is organized as follows. Chapter 2 presents the foun-
dations of this work and discusses our experimental design as well as our experimental
methodology. In Chapter 3, we then present an extensive review of prior work on
hypergraph partitioning. Afterwards, Chapter 4 focuses on the algorithmic components
of our n-level partitioning system, which is extended into a memetic algorithm in
Chapter 5. Both chapters include extensive evaluations of different aspects of the
proposed algorithms. Chapter 6 then compares our entire KaHyPar system with the
previous state of the art. Finally, Chapter 7 concludes the dissertation with a brief
summary and directions for future research.

Digressions. Throughout this dissertation, we use digressions like this to
present some additional information, insights or historical context that is related
to, but not essential for the understanding of the main text. The idea to
differentiate between the main text and additional digressions in such a fashion
is adopted from the work of Sebastian Wild [Wil16].
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2Chapter 2

Preliminaries

“When I use a word,” Humpty Dumpty said, in rather a scornful tone, “it
means just what I choose it to mean—neither more nor less.”
“The question is,” said Alice, “whether you can make words mean so many
different things.”
“The question is,” said Humpty Dumpty, “which is to be master—that’s all.”
— Lewis Carroll, Through the Looking-Glass, and What Alice Found There

Chapter Overview. This chapter covers the fundamentals of this dissertation. In
Section 2.1, we first introduce our terminology and the basic notation. Section 2.2
then defines the k-way hypergraph partitioning problem addressed in this work.
Section 2.3 gives an overview of related problem formulations that exist in the literature.
Afterwards, Section 2.4 briefly discusses the computational complexity of classical
cut problems in graphs and hypergraphs. In Section 2.5, we then introduce the most
common algorithmic approaches to solve the hypergraph partitioning problem. Finally,
Section 2.6 elaborates on our experimental design and experimental methodology.
References. This chapter consolidates the notation and definitions of several publi-
cations [Sch+16a; Akh+17a; HS17a; ASS18a; HSS18a; Baa+19a; HSS19a; Sch+19a].
Some text passages are therefore copied verbatim.

2.1 Notation and Definitions

Hypergraphs. A weighted undirected hypergraph H = (V,E, c, ω) is defined as a set
of n vertices V and a set of m hyperedges/nets E with vertex weights c : V → R>0
and net weights ω : E → R>0, where each net e is a subset of the vertex set V (i.e.,
e ⊆ V ). The vertices of a net are called pins.

The terminology of “nets” and “pins” originates from the VLSI design community,
where a circuit is repesented by a netlist, and each signal net represents a set of
circuit elements that must be interconnected. Since circuit elements can be part
of several nets, each net is assigned a specific point of contact with the circuit
element, known as a pin [CKM00b; CKL03]. Both terms have since been widely
adopted in the hypergraph partitioning community.

We extend c and ω to sets in the natural way, i.e., c(U) :=
∑
v∈U c(v) and ω(F ) :=∑

e∈F ω(e). A vertex v is incident to a net e if v ∈ e. I(v) denotes the set of all

11
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incident nets of v. The set Γ(v) := {u | ∃e ∈ E : {v, u} ⊆ e} denotes the neighbors
of v. The degree of a vertex v is d(v) := |I(v)|. We use ∆v to denote the maximum
degree, i.e., ∆v := maxv∈V d(v). The size |e| of a net e (or its arity [BS11, p.71]) is the
number of its pins, and we use ∆e := maxe∈E |e| to denote the maximum net size (also
referred to as the rank r of the hypergraph). We assume hyperedges to be sets rather
than multisets, i.e., a vertex can only be contained in a hyperedge once. We use P to
denote the multiset of all pins in H. Note that p := |P | =

∑
v∈V d(v) =

∑
e∈E |e|. The

number of pins p is used to measure the size of a hypergraph, since neither the number
of pins per net nor the number of nets per vertex is bounded, and thus n ∈ O(p) and
m ∈ O(p) [FM82]. We use d(v) and |e| to denote the average vertex degree/average
net size, while d̃(v) and |̃e| are used to refer to the median vertex degree/median
net size. Nets of size one are called single-vertex nets. We call two nets ei and ej
parallel if ei = ej . Given a subset V ′ ⊂ V , the subhypergraph HV ′ is defined as
HV ′ := (V ′, {e∩V ′ | e ∈ E : e∩V ′ 6= ∅}), and the section hypergraph H×V ′ is defined
as H × V ′ := (V ′, {e ∈ E | e ⊆ V ′}) [Ber75; Ber85]. In this dissertation, hypergraphs
are drawn according to the subset standard [Mäk90] (see Figure 2.1 (left)).

Partitions and Clusterings. A k-way partition of a hypergraph H is a partition
of its vertex set into k blocks Π = {V1, . . . , Vk} such that

⋃k
i=1 Vi = V , Vi 6= ∅ for

1 ≤ i ≤ k, and Vi ∩ Vj = ∅ for i 6= j. The block that vertex v is assigned to is denoted
with b[v]. We call a k-way partition Π ε-balanced if each block Vi ∈ Π satisfies the
balance constraint: c(Vi) ≤ Lmax := (1 + ε)d c(V )

k e for some parameter ε. We call a
block Vi overloaded if c(Vi) > Lmax and underloaded if c(Vi) < Lmax.
For each net e, Λ(e) := {Vi | Vi ∩ e 6= ∅} denotes the connectivity set of e. The

connectivity λ(e) of a net e is the cardinality of its connectivity set, i.e., λ(e) := |Λ(e)|.
A net is called a cut net if λ(e) > 1, otherwise (i.e., if |λ(e)| = 1 ) it is called an
internal net. A vertex u incident to at least one cut net is called a boundary vertex.
The number of pins of a net e in block Vi is defined as Φ(e, Vi) := |{Vi ∩ e}|. A block
Vi is adjacent to a vertex v /∈ Vi if ∃e ∈ I(v) : Vi ∈ Λ(e). We use B(v) to denote the
set of all blocks adjacent to v. Given a k-way partition Π of H, the quotient graph
Q := (Π, {(Vi, Vj) | ∃e ∈ E : {Vi, Vj} ⊆ Λ(e)}) contains an edge between each pair of
adjacent blocks.
A clustering C = {C1, . . . , Cl} of a hypergraph is a partition of its vertex set. In

contrast to a k-way partition, the number of clusters is not given in advance, and
there is no balance constraint on the actual sizes of the clusters Ci.

Contractions and Uncontractions. Contracting a pair of vertices (u, v) means
merging v into u. We refer to u as the representative and to v as the contraction
partner. After contraction, the weight of u becomes c(u) := c(u) + c(v). We connect
u to the former neighbors Γ(v) of v, by replacing v with u in all nets e ∈ I(v) \ I(u).
Furthermore, we remove v from all nets e ∈ I(u)∩I(v). If a contraction leads to parallel
nets, we remove all but one from H. The weight of the remaining net e is set to the
sum of the weights of the nets parallel to e. Single-vertex nets created by a contraction
are removed from the hypergraph, since such nets can never become part of the cut
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set. Uncontracting a vertex u reverses the contraction. The uncontracted vertex v is
put in the same block as u and the weight of u is set back to c(u) := c(u)− c(v).

Graphs. Let G = (V,E, c, ω) be a weighted (directed) graph. In this dissertation,
we use vertices and hyperedges/nets when referring to hypergraphs and nodes and edges
when referring to graphs. However, we use the same notation to refer to node weights
c, edge weights ω, node degrees d(v), and the set of neighbors Γ. In an undirected
graph, an edge (u, v) ∈ E implies an edge (v, u) ∈ E and ω(u, v) = ω(v, u). A path
P = 〈v1, . . . , vk〉 is a sequence of nodes such that each pair of consecutive nodes is
connected by a directed edge. A strongly connected component U ⊆ V is a set of nodes
such that for each u, v ∈ U there exists a path from u to v. Given a set of nodes
V = {v1, v2, . . . , vn}, an ordering vπ1 , vπ2 , . . . , vπn

is a bijection π : [1 . . . n]→ [1 . . . n],
where node vi is the jth node in the ordering if π(j) = i. A topological ordering is
a linear ordering ≺ of V such that every directed edge (u, v) ∈ E implies u ≺ v in
the ordering. A set of nodes B ⊆ V is called a closed set if there are no outgoing
edges leaving B, i.e., if the conditions u ∈ B and (u, v) ∈ E imply v ∈ B. A subset
S ⊂ V is called a node separator if its removal divides G into two disconnected
components. Given a subset V ′ ⊂ V , the induced subgraph G[V ′] is defined as
G[V ′] := (V ′, {(u, v) ∈ E | u, v ∈ V ′}). A matching M ⊆ E is a set of pairwise
non-adjacent edges. The weight of a matching M is defined as the sum of the weights
of all edges e ∈M . A matching M is maximal if there is no edge e ∈ E \M such that
M ∪ e is a valid matching. A matching M that has maximum weight ω(M) among all
possible matchings is a maximum weight matching. A vertex cover V ′ of an undirected
graph G is a subset of the node set V such that every edge e ∈ E has at least one
endpoint in V ′, i.e., ∀e = (u, v) ∈ E : u ∈ V ′ ∨ v ∈ V ′. A vertex cover is minimum if
it has the smallest possible size.

Flow Networks. A flow network N = (V, E , c) is a directed graph with two dis-
tinguished nodes s and t in which each edge e ∈ E has a capacity c(e) ≥ 0. An
(s , t)-flow (or flow) is a function f : V × V → R that satisfies the capacity constraint
∀u, v ∈ V : f(u, v) ≤ c(u, v), the skew symmetry constraint ∀u, v ∈ V × V : f(u, v) =
−f(v, u), and the flow conservation constraint ∀u ∈ V \{s , t} :

∑
v∈V f(u, v) = 0. The

value of a flow |f | :=
∑
v∈V f(s , v) is defined as the total amount of flow transferred

from s to t . The residual capacity is defined as rf (u, v) = c(u, v) − f(u, v). An
edge e = (u, v) is called saturated if rf (e) = 0. Given a flow f , Nf = (V, Ef , rf )
with Ef = {(u, v) ∈ V × V | rf (u, v) > 0} is the residual network. An (s , t)-cut is a
bipartition (S,V \S) of a flow network N with s ∈ S ⊂ V and t ∈ V \S. The capacity
of an (s , t)-cut is defined as

∑
e∈E′ c(e), where E ′ = {(u, v) ∈ E : u ∈ S, v ∈ V \ S}.

The max-flow min-cut theorem states that the value |f | of a maximum flow f is equal
to the capacity of a minimum cut separating s and t [FF56].

Graph-based Hypergraph Representations. The two most common ways to
represent an undirected hypergraph H = (V,E, c, ω) as an undirected graph are the
clique and the bipartite representation [HM85]. In the clique graph Gx(V,Ex ⊆ V 2) of
H, each net is replaced with an edge for each pair of vertices in the net, i.e., the edge
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Figure 2.1: A hypergraph with 13 vertices, 5 nets, and 17 pins (left) along with
the corresponding bipartite (middle) and clique-net representation (right).

set is defined as Ex := {(u, v) : u, v ∈ e, e ∈ E} [CP68]. Thus, the pins of a net e with
size |e| form a |e|-clique in Gx. In the bipartite graph G∗(V ∪̇E,F ) the vertices and
nets of H form the node set and for each net e incident to a vertex v, we add an edge
(e, v) to G∗ [SK72]. The edge set F is thus defined as F := {(e, v) | e ∈ E, v ∈ e}.
Each net in E therefore corresponds to a star in G∗, and |F | = p. The bipartite
graph G∗ is also known as the incidence graph [Bre13]. In both graph models, node
weights c and edge weights ω are chosen according to the problem domain [VH90;
HMV92; AK95c; Had95]. The most common weighting scheme for the edges e in the
clique graph is 1/(|e| − 1), where |e| is the size of the corresponding hyperedge [Len90;
HK92c]. An example of a hypergraph, along with its corresponding clique graph and
bipartite graph is shown in Figure 2.1.

2.2 The k-way Hypergraph Partitioning Problem

Problem Definition. The k-way hypergraph partitioning problem is to find an
ε-balanced k-way partition Π of a hypergraph H = (V,E, c, ω) that minimizes an
objective function over the cut nets for some value of ε. In this dissertation, we
consider the two most commonly used cost functions, namely the cut-net metric
fc(Π) :=

∑
e∈E′ ω(e) and the connectivity metric fλ(Π) :=

∑
e∈E′(λ(e) − 1) ω(e),

where E′ is the cut-set (i.e., the set of all cut nets) [Don88; Çat+15]. While the
cut-net metric sums the weights of all nets that connect more than one block of the
partition Π, the connectivity metric additionally takes into account the actual number
λ of blocks connected by the cut nets. Optimizing each of the objective functions is
known to be NP-hard [Len90]. Note that for k = 2, fc(Π) = fλ(Π). If k = 2 and ε > 0,
the problem is referred to as the bipartitioning problem. A bisection of an unweighted
hypergraph is a bipartition in which the number of vertices in the two blocks differs
by at most one (i.e., ε = 0).

The cut-net objective is perhaps the most widely studied objective function
for hypergraph partitioning [Alp96]. In VLSI placement, a reduced net cut is
correlated with shorter wires, while for parallelization of operations like sparse
matrix-vector multiplications a smaller cut-size translates to reduced communi-
cation between processing elements [PM07]. For k > 2, objectives that take the
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connectivity λ of cut nets into account are considered preferable. For VLSI design
applications, this is because signal nets that connect more blocks can consume
more resources [KLK93; AK95c]. When hyperedges are used to model volumes
of data exchanges, their connectivity determines how often an element has to be
communicated if data is distributed according to a k-way partition [BS11, p. 67].
Note that both cost functions revert to edge-cut (i.e., the sum of the weights of

those edges that have endpoints in different blocks) for plain graphs. We therefore
treat the graph partitioning problem minimizing the edge-cut as a special case of
the hypergraph partitioning problem. For a comprehensive overview over the graph
partitioning literature, we refer the reader to the survey of Buluç et al. [Bul+16].
Recursive Bipartitioning and Direct k-way Partitioning. In general, there
are two approaches to computing a k-way partition of a hypergraph. If k is a power
of two, recursive bipartitioning (RB) algorithms obtain the final k-way partition by
first computing a bipartition of the initial hypergraph, and then recursing on each of
the two blocks. Thus, it takes log2(k) such phases until the hypergraph is partitioned
into k blocks. If k is not a power of two, the approach has to be adapted to produce
appropriately-sized blocks. The 2-way partitions computed in the RB approach form
a tree, which is called the partition tree [ST97]. In direct k-way partitioning, the
hypergraph is directly partitioned into k blocks, without the detour over the recursive
2-way approach. We will discuss advantages and disadvantages of both techniques in
Section 3.6.3.
Graph-based Hypergraph Partitioning. In general, it is not possible to solve
the hypergraph partitioning problem by first modeling the hypergraph as a graph, and
then using graph partitioning algorithms on the graph-based hypergraph representation.
Ihler, Wagner, and Wagner [IWW93] show that there is no cut-model G = (V,E, ω)
for a hypergraph H = (V,N, ω) such that for any bipartition of the node/vertex set V
the weight of the cut edges E′ ⊆ E is the same as the weight of the cut-nets N ′ ⊆ N .
Furthermore, they show that even the addition of dummy vertices to the graph G does
not help unless negative edge weights are allowed – which is not the case for traditional
graph partitioning algorithms. Moreover, for the clique-net model, Lengauer [Len90,
p. 259] shows that independent of the weighting scheme for the graph edges, there
always exists some bipartition with a deviation of Ω(

√
|e|) from the desired unit cost

of cutting an unweighted net.

2.3 Related Problem Formulations

While this dissertation focuses on the traditional hypergraph partitioning problem as
described in the previous section, several related problem formulations exist in the
literature. In the following, we briefly summarize the most prominent ones with the
intent to give the reader a broader overview about existing problem variants.
Other Objective Functions. Several other objective functions exist in the lit-
erature [AK95c]. Metrics closely related to the connectivity metric fλ(Π) are the
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λ(λ− 1)-metric (used to model the communication volume for an all-neighbor commu-
nication pattern) [For+13] and the sum-of-external-degrees (SOED) metric fs(Π), for
which each cut net e contributes λ · ω(e) to the cut-size [IKS75; KK00] (sometimes
used in the VLSI placement context [AK95c; SS95]). Other objectives, such as the
ratio cut for bipartitioning, and its generalization to k-way partitioning (named scaled
cost), not only consider the cut-size, but also take into account the balance of the
partition. The ratio cut is defined as the bipartition Π = (A,B) that generates the
minimum ratio between the size of the cut-set and the product of the block weights,
i.e., frc(Π) := fc(Π)/(c(A) · c(B)) [WC89; WC91]. Here, the numerator favors small
cut-sizes, while the denominator favors a more balanced bipartition. For a k-way
partition, the scaled cost metric is defined as fsc(Π) := 1

n(k−1)
∑k
i=1

Ei

c(Vi) , where
Ei := ω{e ∈ E | λ(e) > 1 ∧ e ∩ Vi 6= ∅} [CSZ93; CSZ94].

Naturally Imbalanced Partitions. Motivated by the application of hypergraph
partitioning to consensus clustering [SG02a; SG02b] (i.e., combining multiple clustering
solutions into a single clustering), in which high-quality partitions often contain highly
imbalanced blocks, Yaros and Imielinski [YI13] propose to use an information-theoretic
entropy-based balance constraint

cl ≤ −
k∑
i

c(Vi)
c(V ) lg

(
c(Vi)
c(V )

)
≤ cu, (2.1)

where cl and cu are user defined bounds, to permit partitioning algorithms to recover
naturally imbalanced partitions.

Hyperedge Partitioning. Graph edge partitioning, (i.e., computing a partition
of the edge set of a graph into blocks of bounded size) is successfully employed in
distributed graph processing frameworks for load-balancing computations on large
scale-free networks with skewed degree distributions [Gon+12; Li+17]. This sparked
interest in the hyperedge partitioning problem, in which hyperedges are assigned to
blocks, and the vertex cut and the replication metrics are optimized [Yan+16; Yan+18a;
Yan+18b]. The former hereby is the analogue to the cut-net metric, while the latter
is the analogue to the connectivity metric.

Judicious Hypergraph Partitioning. The judicious version of the hypergraph
partitioning problem strives to find a k-way partition that minimizes the maximum
number of nets a block is connected to. In other words, judicious partitioning attempts
to optimize min max(L(V1), . . . , L(Vk)), where L(Vi) := |{e ∈ E | Φ(e, Vi) > 0}| is the
load of a block Vi. The problem is known to be NP-hard [ZTY15] and has mainly been
studied in the context of extremal combinatorics [BS97; BS02; Sco05]. To the best
of our knowledge, algorithmic aspects of the problem were first studied by Alistarh,
Iglesias, and Vojnovic [AIV15] in a streaming setting and by Tan, Gui, Wang, Gao,
and Yang [Tan+17], whose algorithm relies on heuristically solving minimal set cover
problems. Motivated by a data distribution problem in distributed phylogenetic
inference, a parallel version of the latter algorithm was recently implemented and
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engineered for a specific flavor of judicious hypergraph partitioning where every vertex
has the same degree. The corresponding paper [Baa+19a] was jointly published with
Ivo Baar, Lukas Hübner, Peter Oettig, Adrian Zapletal, Alexandros Stamatakis, Benoit
Morel, and the author of this dissertation.
Multi-Objective and Multi-Constraint Partitioning. Whereas in the tradi-
tional hypergraph partitioning problem a single objective is optimized subject to a
single balance constraint, there also exist partitioning formulations that address multi-
ple objectives and/or multiple constraints at once. For multi-objective partitioning,
the two most common approaches are to either keep the objectives separate and to
assign different priorities to each objective (i.e., the objective with highest priority
is optimized directly, while the other objectives are used for breaking ties), or to
create a single, “real” multi-objective function that combines the individual objectives
numerically [Aba+02; CLW03; SK03; SK06; Çat+12b; Çat+15]. In multi-constraint
partitioning, a weight vector is assigned to each vertex and several balance constraints
need to be satisfied for a solution to be feasible [Kar99; ÇA01b]. This restricts the
solution space, since vertex movements between blocks are more limited [ACU08].
There also exists some work on partitioning problems for which the balance constraints
are complex functions of the partition [PH01; KRU11], i.e., vertex weights cannot be
simply defined a priori before partitioning, but instead depend on the partition itself.
Partitioning with Vertex Replication. In the replicated partitioning problem
formulation, the goal is to further reduce the cut-size of a partition by determining a set
of vertices that is then replicated to different blocks. Approaches to solve the problem
can be divided into two categories [STA12; YA14]. The first category corresponds
to one-phase algorithms that perform partitioning and vertex replication simultane-
ously [KN91; Liu+95a; Liu+95b]. The second category of two-phase algorithms first
computes a partition optimizing some cut-related objective, and in the second phase
performs vertex replication on the solution of the first phase [HE92; HG95; YW95].

2.4 On The Computational Complexity of Cut Problems

In the following, we briefly discuss the computational complexity of some cut problems
for graphs and hypergraphs. We start with the problem of computing minimum cuts,
i.e., a minimum-weight set of (hyper)edges whose removal partitions the vertices into
two connected components. We then turn to the more general minimum k-cut problem,
where the goal is to find a subset of (hyper)edges of minimum weight whose removal
partitions the vertex set into (at least) k blocks. Thus, a minimum cut is simply a
minimum k-cut for k = 2. In both of these problems, there are no restrictions on the
sizes of the k blocks. At the end of this section, we therefore look at balanced k-way
partitioning, i.e., the problem variant addressed in this dissertation, in which the size
of each of the k blocks is restricted to at most (1 + ε) times the average block size.
Minimum Cuts. The minimum cut in a weighted graph can be found in O(mn+
n2 logn) time using either Nagamochi and Ibaraki’s algorithm [NI92] or the algorithm of
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Stoer and Wagner [SW97]. Furthermore, there exists a linear-time (2+ε) approximation
algorithm [Mat93]. For unweighted graphs, the current fastest algorithm due to
Henzinger, Rao, and Wang [HRW17] runs in time O(m log2 n log log2 n). The minimum
(s , t)-cut problem [HR55] is a closely related problem which asks to find a minimum
cut that separates two given nodes s and t . It can be solved by computing a maximum
(s , t )-flow [FF56] using e.g. the push-relabel algorithm of Goldberg and Tarjan [GT86]
which runs in time O(mn log(n2/m)) and is among the fastest algorithms in practice.

For hypergraphs, the fastest known minimum cut algorithms are based on the algo-
rithm of Stoer and Wagner [SW97] and run in O(np) time for unweighted hypergraphs
and in time O(np + n2 logn) for weighted hypergraphs [KW96; MW00]. Chekuri
and Xu [CX18] give an O(p+ λn2) time algorithm for computing a minimum cut for
unweighted hypergraphs (where λ is the minimum cut value), and present a (2 + ε)-
approximation algorithm that runs in time O( 1

ε (p logn+ n log2 n)) for weighted and
in time O(p/ε) for unweighted hypergraphs. Lawler [Law73] shows that the minimum
(s , t )-cut problem for hypergraphs can be solved by computing a maximum (s , t )-flow
in an auxiliary graph with n + 2m nodes and 2p + m edges. Li, Lillis, and Cheng
[LLC95] present a push-relabel algorithm that operates directly on the hypergraph.

Minimum k-Cuts. While minimum 2-cuts can be computed in polynomial time,
Goldschmidt and Hochbaum [GH94] showed that the minimum k-cut problem is NP-
hard when k is part of the input. When k is fixed to a constant, they were able to give
a deterministic O(nk2

T (n,m))-time algorithm, where T (n,m) is the time required to
compute a minimum (s , t )-cut of graph with n nodes and m edges. The current fastest
deterministic algorithm for constant k due to Thorup [Tho08] runs in Õ(mn2k−3)
time [CQX19].1 Furthermore, there exist several 2-approximation algorithms [SV95;
NR01; NK07]. For k = 3, the problem can be solved in time O(n2 T (n,m)) [NI00].

For hypergraphs and k = 3, there exists a polynomial-time algorithm that uses O(n3)
(s , t )-min cut computations [Xia08; Xia10]. However, no polynomial-time deterministic
algorithm is known for any k > 3 [FPZ19]. Until recently, the complexity was unknown
for any fixed k ≥ 4 [CL15; CX17]. Chandrasekaran, Xu, and Yu [CXY18] were the
first to give a randomized O(pn2k−1 logn)-time algorithm for arbitrary constant k in
arbitrary rank hypergraphs. Recently, Fox et al. [FPZ19] presented a Monte Carlo
algorithm for hypergraphs with arbitrary net sizes that runs in O(mn2k−2 log2 n) time
for all k ≥ 3 and an algorithm that runs in time Õ(nmax(r,2k−2)) for hypergraphs
with constant rank r. Computing minimum k-cuts in hypergraphs is considered to
be significantly harder than computing minimum k-cuts in graphs when k is part of
the input, as Chekuri and Li [CL15] recently showed that the problem is at least as
hard as the densest k-subgraph problem (i.e., given a graph G and an integer k, find a
subset of k nodes V ′ ⊆ V that maximizes the number of edges in the induced subgraph
G[V ′]) which is not believed to admit an efficient constant factor approximation unless
P=NP [CXY18].

1Õ hides polylog factors.
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Balanced k-way Partitioning. For k = 2 and ε = 0, the problem corresponds to
the NP-hard graph minimum bisection problem [GJS76], which can be approximated
within O(logn) [Räc08]. Andreev and Räcke [AR04; AR06] show that for k ≥ 3 and
ε = 0, there is no algorithm with a finite approximation factor for general graphs, unless
P=NP. If ε = 1, there exists an O(

√
log k logn) approximation algorithm [KNS09]. For

ε > 0, Feldmann and Foschini [FF12; FF15] present an algorithm with approximation
factor O(logn). However, the running time of that algorithm increases exponentially
with decreasing ε [Fel13]. Feldmann [Fel13] furthermore shows that for general graphs,
there is no fully polynomial time algorithm (i.e., with running time polynomial in n/ε
for any ε > 0 ) that computes ε-balanced partitions and approximates the cut size
within a finite factor of α, unless P=NP (see also [Fel12, Lem. 5.3]).

Wagner and Wagner [WW93] looked at the class of partitioning problems between
minimum cut on the one end and minimum bisection on the other end. They show
that the problem becomes harder the more balanced the solution has to be. More
precisely, if each block has to contain at least C vertices for some constant C, the
problem can be solved in polynomial time. However, the problem is NP-hard if the
block size |Vi| is restricted to be |Vi| ≥ αnε for some arbitrarily small α, ε > 0. The
case |Vi| ≥ logn is still open.
Räcke, Schwartz, and Stotz [RSS18] note that “Minimum Hypergraph Bisection is

much harder to approximate than Minimum Bisection in graphs [...]” and present an
O(
√
n log5/4 n) approximation algorithm. Furthermore, they show that the existence

of an approximation algorithm with a guarantee of O(n1/4−ε) is unlikely.

2.5 Algorithmic Approaches to Hypergraph Partitioning

Local Search Algorithms. A partitioning approach is based on the local search
paradigm if it creates a new solution based on (i) a neighborhood structure on the set
of feasible solutions, and (ii) the previous history of the search [AK95c; MS08]. The
neighborhood structure hereby defines the means of moving from the current solution to
a neighboring solution by performing some kind of perturbation. Common perturbation
mechanisms used in partitioning algorithms are swaps of two vertices belonging to
different blocks, or the movement of a single vertex from one to another block. The
search space of feasible solutions is then explored by repeatedly moving from the
current solution to a neighboring solution until a certain stopping criterion is fulfilled.
Some local search algorithms ignore the previous history of the search (e.g., simple
greedy algorithms that only use the current solution to decide to which neighboring
solution to move next), while others use it to form more complex neighborhood
structures than single vertex moves or pairwise swaps (e.g., a pass – in which several
vertices are allowed to be moved once and the best solution encountered during these
moves is adopted as the new solution).

Hill Climbing / Iterative Improvement (IIP) Algorithms. Hill climbing al-
gorithms (also known as IIP algorithms in the HGP literature) are a special form of
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local search algorithms that start with some feasible solution and then iteratively move
to the best neighboring solution (i.e., the solution that yields the largest improvement
in the optimization objective). The search terminates once no neighboring solution
is better than the current one. Thus, hill climbing algorithms always converge to a
local optimum with respect to both the initial solution and the chosen neighborhood
structure. The search space is therefore explored by performing multiple restarts of the
algorithm (each time using a different starting solution). As we will see in Chapter 3,
a large part of the hypergraph partitioning literature is concerned with IIP algorithms.
Furthermore, they are employed in all of today’s state-of-the-art HGP systems.

Spectral Partitioning. The general idea of spectral graph partitioning [DH72;
DH73; Bar82] is to use the spectrum (i.e., the eigenvectors) of the graph’s Laplacian
matrix to first construct a geometric representation of the graph (e.g., a linear or-
dering in which highly connected nodes are close to each other), and then use this
representation to heuristically infer a partition of the node set. The Laplacian matrix
of a graph G = (V,E) is defined as L = D−A, where D is the diagonal degree matrix
(i.e., dii := d(vi)) and A is the adjacency matrix of G (i.e., au,v := 1 if (u, v) ∈ E,
and zero otherwise). Fiedler [Fie73; Fie75a; Fie75b] showed that the eigenvector x2
corresponding to the second-smallest eigenvalue λ2 can be used to derive a bipartition
of V , because the components of x2 can be interpreted as node weights, and the differ-
ence between two weights xi and xj provides information about the distance between
nodes vi and vj [BS94]. Thus, sorting the nodes by their corresponding weights creates
an ordering of V in which nodes are “close” to each other. A bipartition can then
be inferred by choosing a real number t and assigning all nodes vi corresponding to
entries xi ≤ t to one block and all other nodes to the other block [Spi12, p. 506]. If t
is chosen to be the median, the resulting partition is a bisection of the graph. This
classical approach has since been extended and improved by several authors [Bar82;
PSL90; Sim91; BS93; AK94c; AK95b; AKY99]. In order to partition hypergraphs
using the spectral approach, the hypergraph is first transformed into a graph-based
representation [AKY99]. Since spectral techniques have been mostly superseded by it-
erative improvement algorithms and the multi-level paradigm described next [CKM00a;
MS12], we refer to the reader to Refs. [PSL90; Moh91; AK95c; CSZ99; Spi07; BS11] for
a more detailed introduction and an overview of more advanced spectral partitioning
approaches.

The Multi-Level Paradigm. The most prominent heuristic to tackle partitioning
problems is the multi-level paradigm. Initially used by Barnard and Simon [BS93]
to improve the running time of a recursive spectral bisection algorithm for graph
partitioning, it was first independently studied by Bui and Jones [BJ93], Hendrickson
and Leland [HL93; HL95], Hauck and Borriello [HB95], and Cong and Smith [CS93].
The key idea behind the multi-level approach can be summarized as follows: Instead
of attempting to compute a partition directly on the input hypergraph, multi-level
algorithms first compute a hierarchy of successively smaller approximations of the
original instance that reflect its basic structure. This process continues until the
hypergraph is small enough (i.e., contains only a small number of vertices and nets)
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to permit even simple partitioning heuristics to find reasonably good solutions. The
partition of the smallest hypergraph is then successively propagated back through
the hierarchy to derive a partition of the original instance. During this process, local
improvement algorithms are used at each level to further refine the solution. This is
possible because approximations on higher levels of the hierarchy have more degrees
of freedom than those on lower levels since they resemble the input hypergraph more
accurately. The three phases of the multi-level paradigm are known as the coarsening
phase (in which the hypergraph is recursively coarsened to create the hierarchy), the
initial partitioning phase (in which a solution is computed on the coarsest/smallest
hypergraph), and the uncoarsening / refinement phase (in which coarsening is undone
and the solution is refined further). Figure 2.2 shows an illustration of this process.
In order to create hypergraphs that are smaller than but structurally similar to

the given input hypergraph, algorithms employed in the coarsening phase try to
identify naturally existing clusters (i.e., groups of highly-connected vertices) that can
be contracted together to create the next level of the coarsening hierarchy. As we will
see in the next chapter, state-of-the-art hypergraph partitioning algorithms compute
matchings or clusterings using local similarity measures that take into account the
neighborhood of each vertex. By adjusting vertex and net weights during contractions
as described in Section 2.1, both the balance constraint and the optimization objective
are preserved across levels. Thus, an initial partition computed on the coarsest level
inherently induces a partition of the hypergraphs on the finer levels that has the same
balance and the same solution quality. This, in turn, allows iterative improvement
algorithms to efficiently exploit the additional degrees of freedom on each finer level
during uncoarsening.

We will take a thorough look at multi-level hypergraph partitioning algorithms and
the techniques used in each of the three phases in the literature review presented in
the next chapter. However, we would also like to point the reader to the work of Cong
and Shinnerl [CS03] for an extensive treatment of the multi-level paradigm in the
context of combinatorial optimization and VLSI design.
The hypergraph partitioning algorithms developed in this dissertation instantiate

the multi-level approach in its most extreme version – removing only a single vertex
in every level of the hierarchy. In contrast to the approximately logarithmic number of
levels created by traditional multi-level algorithms, this approach creates a hierarchy
of (nearly) n levels, which is why it is referred to as the n-level paradigm.

Memetic Algorithms. Genetic algorithms (GAs) [Hol75a; Hol75b] are a commonly
used metaheuristic for solving optimization problems [BR03; Tal09; HS15]. The
general idea behind genetic algorithms is inspired by the Darwinian concept of natural
selection in biological evolution [Dar59], namely to use mechanisms such as selection,
mutation, recombination and survival of the fittest during the optimization process.
A genetic algorithm starts with a population of individuals (in our case partitions of
the hypergraph) and evolves the population over several generational cycles (rounds).
In each round, the GA uses a selection rule based on the fitness of the individuals
of the population to select good individuals, and combines them to obtain improved
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Figure 2.2: Illustration of the multi-level hypergraph partitioning process.

offspring [Gol89]. When an offspring is generated, an eviction rule is used to select one
or more members of the population to be replaced by the new offspring. For a genetic
algorithm it is of major importance to preserve diversity in the population [Bäc96],
i.e., the individuals should not become too similar in order to avoid a premature
convergence of the algorithm. This is usually achieved by using mutation operations
that perturb individual solutions, and by using eviction rules that take similarity of
individuals into account. Memetic algorithms (MAs) were introduced by Moscato
[Mos89] and formalized by Radcliffe and Surry [RS94] as an extension to the concept
of genetic algorithms. More precisely, a memetic algorithm is a genetic algorithm
that is combined with local search [Kim+11], i.e., local search algorithms are used to
further improve the individuals and offspring solutions of the genetic algorithm. This
hybrid approach allows for effective exploration (global search) and exploitation (local
search) of the solution space. We refer to the work of Moscato and Cotta [MC10] for
an excellent introduction to field of memetic algorithms.

2.6 Experimental Design and Methodology

Throughout this dissertation, we present the results of a large number of experiments
involving different hypergraph partitioning algorithms, as well as different config-
urations of the same algorithm and various kinds of hypergraphs and graphs. In
this section, we therefore detail both our experimental design and our experimental
methodology.
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2.6.1 Benchmark Sets

The experimental evaluations presented in Chapters 4 to 6 use several benchmark
sets, which we briefly summarize here. Tables 2.1 and 2.2 give an overview about
the composition of each benchmark set. All data sets are publicly available via the
KITopen data repository [Sch19].

The Main Benchmark Set. Benchmark set A is used as the main benchmark
set. It was initially assembled by the author of this dissertation for the experimental
evaluation presented in Ref. [Sch+16a] and later extended to its current size in
Ref. [HS17a]. At the time of writing, it contains 488 hypergraphs derived from four
well-known benchmark suites: The ISPD98 VLSI Circuit Benchmark Suite [Alp98],
the DAC 2012 Routability-Driven Placement Contest [Vis+12], the SuiteSparse Matrix
Collection [DH11], and the international SAT Competition 2014 [Bel+14].
We include all 18 circuits from the ISPD98 benchmark suite and all 10 circuits

from the DAC 2012 benchmark suite. These VLSI instances are transformed into
hypergraphs by converting the netlist into a set of hyperedges. At the time benchmark
set A was assembled, the SuiteSparse Matrix Collection was organized into 172 groups
where each group contained matrices of different application areas. From each group,
we chose one matrix for each application area that had between 10 000 and 10 000 000
columns. In case multiple matrices fulfilled our criteria, we randomly selected one. In
total, we initially included 192 matrices, which are translated into hypergraphs using
the row-net model [ÇA99], i.e., each row is treated as a net, each column as a vertex,
and empty rows are discarded. From the international SAT Competition 2014 [Bel+14],
we randomly selected 100 instances from the application track and converted them
into three different hypergraph representations: For literal hypergraphs, each Boolean
literal is mapped to one vertex and each clause constitutes a net [PM07], while in
the primal model each variable is represented by a vertex and each clause forms a
net. In the dual model the opposite is the case [MP14]. Out of the 192 sparse matrix
(SPM) hypergraphs and the 100 SAT instances, eight SPM hypergraphs and eight SAT
hypergraphs were already excluded in Ref. [Sch+16a] because some of the evaluated
algorithms either ran out of memory or did not finish within the given time limit. All
subsequent publications [Akh+17a; HS17a; HSS18a; HSS19a] therefore used the 184
matrices and 92 SAT instances which are also used here. All hypergraphs have unit
vertex and net weights. Basic properties of all instances are shown in Figure 2.3.

Rationale for Benchmark Set A. At the time we started working on hypergraph
partitioning, most previous work only employed a small number of hypergraphs from
specific application areas in the experimental evaluations. Until the work of Çatalyürek
and Aykanat [ÇA99], for example, hypergraph partitioning algorithms were almost
exclusively evaluated on benchmark sets from the VLSI design community. These
instances (e.g. the ISPD98 hypergraphs) are known to have several salient properties
such as n ' m, small average vertex degrees and net sizes, as well as the fact that
they contain only a small number of very large nets [Cal+99; PM07]. Furthermore, it
was already observed by Goldberg and Burstein [GB83], as well as by Liu and Wong
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Table 2.1: Overview of different hypergraph benchmark sets. Sets B, C, and D
are subsets of set A. The last row gives the reference for each benchmark set.

Benchmark Set
A B C D E

DAC 2012 10 5 4 - -
ISPD 98 18 10 10 5 -
SAT14 Primal 92 30 18 5 -
SAT14 Dual 92 30 18 5 -
SAT14 Literal 92 30 18 5 -
SPM 184 59 32 5 -
Edge Partitioning - - - - 46
# Hypergraphs 488 164 100 25 46
Source [HS17a] [HS17a] [ASS18a] [HSS18a] [Sch+19a]

Table 2.2: Overview of the two graph benchmark sets used in our experiments.
The last row gives the reference for each benchmark set.

Benchmark Set
F G

Complex Networks 21 -
DIMACS Challenge - 17
Source [MSS14] [Bad+13]

[LW98], that a large fraction of all hyperedges in VLSI hypergraphs are actually graph
edges (i.e., |e| = 2). This can also be seen in Figure 2.3 for the hypergraphs derived
from the ISPD98 and the DAC 2012 benchmark sets. Note that the plots showing the
average and median vertex degrees and net sizes use a log-scale on the y-axis for all
except these two classes.

The plots also show that reporting average net sizes can be misleading. An
average net size of 4 might give the impression that we deal with hypergraphs
containing mostly small hyperedges, although – in fact – more than half of all
nets are actually just plain graph edges.

With the work of Çatalyürek and Aykanat [ÇA99], hypergraphs derived from sparse
matrices became of interest to the partitioning community. The fact that the structure
of a matrix highly depends on the actual application area lead to our decision to
sample a large number of instances from the entire SuiteSparse Matrix Collection.
Boolean formulae initially sparked our interest because they were mentioned alongside
matrices and logic circuits as a third context for hypergraph partitioning in the work
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Figure 2.3: Basic properties (number of vertices n, number of nets m, number
of pins p, average vertex degree d(v), median vertex degree d̃(v), average net size
|e|, median net size |̃e|) of the hypergraphs in the main benchmark set A.

of Papa and Markov [PM07]. While the authors described the literal representation,
we were made aware of both the primal and the dual representation though the work
of Mann and Papp [MP14; MP17]. With the goal in mind to develop algorithms that
are able to compute solutions of very high quality for a wide spectrum of hypergraph
partitioning problems, we therefore assembled benchmark set A as described above.

Benchmark Subsets. We additionally use three subsets of benchmark set A. Based
on an experiment to estimate the number of hypergraphs necessary to produce the
same qualitative results as the entire benchmark set, benchmark set B was initially
chosen in Ref. [Sch+16a] to contain the 10 largest ISPD98 VLSI hypergraphs, 30
randomly chosen SAT hypergraphs (literal representation), and 60 randomly chosen
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Figure 2.4: Basic properties (number of vertices n, number of nets m, number
of pins p, average vertex degree d(v), median vertex degree d̃(v), average net size
|e|, median net size |̃e|) of the edge partitioning hypergraphs in benchmark set E.

sparse matrix hypergraphs. In order to incorporate more recent VLSI circuits and
more common SAT models, it was then extended in Ref. [HS17a] to also contain the
five smallest DAC2012 circuits, as well as the primal and dual representations of each
literal SAT hypergraph. For the experiments presented in this work, we remove SPM
hypergraph IMDB from the benchmark set, because its partitioning time is considerably
larger than all other hypergraphs from set B. Benchmark set C was composed in
Ref. [ASS18a] such that it included hypergraphs from all instance classes and such that
all hypergraphs could be partitioned within the given time limit of eight hours. For
some extensive and long running parameter tuning experiments, we additionally use a
small subset consisting of 25 hypergraphs (benchmark set D). It was introduced in
Ref. [HSS18a] and was also used as parameter tuning benchmark set in Ref. [ASS18a].
Benchmark set D was chosen to contain five small to medium-sized hypergraphs from
each class except DAC2012, for which all instances were considered too large.

Case Study on Edge Partitioning. In Section 6.4, we present a case study on
graph edge partitioning (i.e., the task to partition the edge set of a graph into roughly
equally-sized blocks) – a problem that can be solved via hypergraph partitioning. The
case study is based on a conference paper jointly written with Christian Schulz, Daniel
Seemaier, and Darren Strash [Sch+19a]. In the evaluation, we use a benchmark set of
46 hypergraphs which are derived from a set of benchmark graphs. More precisely, we
use all instances of the Walshaw standard graph partitioning benchmark [SWC04],
SPMV graphs [Li+17], and random hyperbolic rhgX graphs. SPMV graphs are
bipartite locality graphs for sparse matrix vector multiplication (SPMV), which were
used in the evaluation of Li et al. [Li+17]. Given a n× n matrix M (in our case the
adjacency matrix of the corresponding graph), an SPMV graph corresponding to an
SPMV computation Mx = y consists of 2n vertices representing the xi and yi vector
entries and contains an edge (xi, yj) if xi contributes to the computation of yj , i.e., if
Mij 6= 0. The rhgX graphs were chosen since their degree distributions follow a power
law (and they are thus targeted by edge partitioning techniques). They are generated
using KaGen [Fun+18] with a power law exponent of 2.2 and an average degree of 8.

Each of these graphs is transformed into a hypergraph as follows: The hypergraph
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Table 2.3: The 85 instances of the DIMACS Implementation Challenge on Graph
Clustering and Graph Partitioning used in our experiments as benchmark set G.
The table is adapted from Ref. [Sch13b, p.139]. Note that we excluded graph
uk-2007-05 because it could not be partitioned by any partitioner on our system.

Graph Values of k
hugebubbles-00010 4 32 64 256 512
hugetric-00000 2 4 32 64 256
er-fact1.5-scale23 16 32 64 128 256
kron_g500-simple-logn17 2 4 8 16 32
kron_g500-simple-logn21 64 128 256 512 1024
delaunay_n15 8 16 32 64 128
coAuthorsCiteseer 4 8 16 32 64
asia.osm 64 128 256 512 1024
great-britain.osm 32 64 128 256 1024
M6 2 8 32 128 256
NLR 8 32 128 256 512
AS365 64 128 256 512 1024
auto 64 128 256 512 1024
rgg_n_2_18_s0 8 16 32 64 128
G3_circuit 2 4 32 64 256
kkt_power 16 32 64 256 512
nlpkkt160 4 8 16 32 64

contains a vertex for each graph edge and a hyperedge for each graph node. The pins
of a hyperedge are those vertices that correspond to the graph edges incident to the
graph node that is represented by the hyperedge. More details on the edge partitioning
problem will be given in Section 6.4. Basic properties of these hypergraphs are shown
in Figure 2.4.

Graph Partitioning Experiments. To evaluate the performance of our algorithm
in the context of traditional graph partitioning, we use the 21 large web graphs and
social networks used in the work of Meyerhenke et al. [MSS14] (benchmark set F),
and the graphs used in the final evaluation of the 10th DIMACS Implementation
Challenge on Graph Partitioning and Graph Clustering [Bad+13] (benchmark set G).
We excluded graph uk-2007-05 from benchmark set G, because no algorithm involved
in our experimental evaluation was able to partition that graph on our system. Basic
properties of benchmark sets F and G are shown in Figure 2.5.

2.6.2 System and Setup

System. All experiments presented in this dissertation were performed on the
bwUniCluster maintained by the Steinbuch Centre for Computing (SCC) at the KIT.
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Figure 2.5: Basic properties (number of vertices n, number of nets m, number
of pins p, average vertex degree d(v), median vertex degree d̃(v), average net size
|e|, median net size |̃e|) of the graphs in benchmark set F (complex networks) and
benchmark set G (DIMACS graphs).

Unless mentioned otherwise, we ran all algorithms exclusively on a single core of one
of the 512 “thin” compute nodes of this high-performance computing system. Each of
these nodes has two Intel Xeon E5-2670 Octa-Core (Sandy Bridge) processors clocked
at 2.6 GHz, 64 GB main memory, 20 MB L3- and 8x256 KB L2-Cache and runs Red
Hat Enterprise Linux 7.4. When compiling algorithms from source code, we used
g++-9.1 with flags -O3 -march=native.

Partitioning Setup. Unless mentioned otherwise, all hypergraphs and graphs are
partitioned with an allowed imbalance of ε = 0.03 into k ∈ {2, 4, 8, 16, 32, 64, 128}
blocks. For each value of k, a k-way partition is considered to be one test instance,
resulting in a total of 3 416, 1 148, 700 175, 322, and 147 instances for benchmark
sets A, B, C, D, E, and F, respectively. For benchmark set G, we use the values of k
that were used in the DIMACS challenge (see [Sch13b, p. 139]). Here, each graph is
partitioned into 5 different values of k out of k ∈ {2, 4, 8, 16, 32, 64, 128, 256, 512, 1024}
– resulting in a total of 85 instances for set G. The actual numbers of blocks each graph
is partitioned into are shown in Table 2.3. We restrict ourselves to an imbalance of
ε = 0.03, because the first and thus simplest version of KaHyPar already performed well
on partitioning problems with 1% and 10% imbalance [Sch+16a]. Unless mentioned
otherwise, all partitioning runs are repeated ten times with different random seeds.

Measured Performance Metrics. In all experiments, we measure the quality of
the computed partitions (i.e., the cut-net metric fc(Π) or the connectivity metric
fλ(Π)), the imbalance between the block sizes, and the running time of the algorithm.
When averaging over multiple runs with different seeds, we use the arithmetic mean.

2.6.3 Aggregate Performance Numbers

In order to concisely present the results of different configurations of our algorithms
over a benchmark set I containing s := |I| instances, we use the geometric mean
xg := s

√∏s
i=1 xi to average solution quality or running times over all benchmark
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Figure 2.6: Visualization of three examples from the Datasaurus data set [Cai16;
LD17; MF17] – a modern variation of Anscombe’s quartet [Ans73]. Each of
these distinct data sets consists of 142 (x, y) pairs and has identical summary
statistics up to two decimal places (e.g., means: x = 54.26, y = 47.83 and standard
deviations: sdx = 16.76, sdy = 26.93), yet looks entirely different when plotted.

instances. Since it holds that xg = exp( 1
s

∑s
i=1 ln xi), the geometric mean can be

interpreted as a log-normalized average [HB15]. It is regarded as a good choice for
summarizing skewed data [McG12, p. 229], because it is less sensitive to few large
values than the arithmetic mean, and thus more robust to outliers. Since both solution
quality and running times can vary by up to orders of magnitude depending on the
instance to be partitioned and the algorithm that computes the partition, it is therefore
more appropriate than the traditional arithmetic mean in our setting.
When comparing a baseline configuration A with a new algorithm configuration

B, we use the geometric mean solution quality xAg of A as a reference and report the
relative percentage change

−

(
xBg − xAg
xAg

)
· 100. (2.2)

Thus, if the relative percentage change is positive, we say that the cut/connectivity of
configuration B is x% less than the cut/connectivity of configuration A, or that the
improvement of configuration B over the reference configuration A is x%.

Note that relative changes are calculated in an asymmetric way, i.e., the relative
percentage change differs depending on which of the algorithms is used as a
reference point. If algorithm A computes a cut of size 500 and algorithm B
computes a cut of size 400, then the cut of algorithm B is −(400−500)/500·100 =
20% less then the cut of algorithm A (or the improvement of algorithm B over
algorithm A is 20%). Similarly, given the relative difference of −(500− 400)/400 ·
100 = −25%, the cut of algorithm A is 25% larger than the cut of algorithm B.
This asymmetry could be addressed by using symmetric indicators of relative
difference (see, e.g. Ref. [TVV85]). However, since these indicators are less
intuitive and since we only report improvements over a reference configuration,
we employ the relative percentage change as defined above.
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However, we would like to point out the fact that “any measure of the mean value
of data is misleading when there is large variance” [FW86]. Furthermore, examples
such as Anscombe’s quartet [Ans73] or the Datasaurus collection of data sets [Cai16;
LD17; MF17] – three of which are shown in Figure 2.6 – highlight the importance
of graphical representations as well as the fact that evaluating data solely based on
summary statistics is insufficient and may lead to misleading conclusions. Hence, we
mostly employ different means of visualization (i.e., the plots described in the next
sections) to explore experimental results.

2.6.4 Evaluating Solution Quality with Performance Profiles
Whenever we compare the solution quality of partitions computed by multiple algo-
rithms in detail, we use the performance profiles introduced by Dolan and Moré [DM01;
DM02], which are widely adopted for evaluating the performance of optimization
algorithms [GS16].
Performance Profiles. For a set of P algorithms and a benchmark set I containing
|I| instances, the performance ratio rp,i relates the cut computed by partitioner p for
instance i to the smallest minimum cut of all algorithms, i.e.,

rp,i := cutp,i
min{cutp,i : p ∈ P} . (2.3)

The performance profile ρp(τ) of algorithm p is then given by the function

ρp(τ) := |{i ∈ I : rp,i ≤ τ}|
|I|

, τ ≥ 1. (2.4)

For connectivity optimization, the performance ratios are computed using the con-
nectivity values λ−1

p,i instead of the cut values. The value of ρp(1) corresponds to
the fraction of instances for which partitioner p computed the best solution, while
ρp(τ) is the probability that a performance ratio rp,i is within a factor of τ of the
best possible ratio. Note that since performance profiles only allow to assess the
performance of each algorithm relative to the best algorithm, the ρ(1) values cannot
be used to rank algorithms [GS16] (i.e., to determine which algorithm is the second
best etc.). In our experimental analysis, the performance profile plots are based on the
best solutions (i.e., minimum connectivity/cut) each algorithm found for each instance,
unless mentioned otherwise. Furthermore, we choose parameters rinf � rp,i for all p, i
and rtimeout � rinf such that a performance ratio rp,i = rinf if and only if algorithm p
computed an infeasible solution for instance i, and rp,i = rtimeout if and only if the
algorithm could not compute a solution for instance i within the given time limit. In
our performance profile plots, performance ratios corresponding to infeasible solutions
will be shown on the 7-tick on the x-axis, while instances that could not be partitioned
within the time limit are shown implicitly by a line that exits the plot below y = 1.

Performance profiles have been shown to be both insensitive to changes in the results
on a small number of instances and to be largely unaffected by small changes in the
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results over many problems [DM02], which makes them a good tool for comparing the
performance of different partitioning algorithms.
Handling Skewed Data. In case the performance ratios are heavily right-skewed,
we divide the performance profile plots into three segments with different ranges for
parameter τ to reflect various areas of interest. The first segment highlights small
values (τ ≤ 1.1), while the second segment contains results for all instances that are up
to a factor of τ = 2 worse than the result of the best algorithm. Both segments use a
linear scale on the x-axis. The last segment contains all remaining ratios, i.e., instances
for which some algorithms performed considerably worse than the best algorithm,
instances for which algorithms produced infeasible solutions, and instances which could
not be partitioned within the given time limit. Since the right-skewed τ values are
plotted in the last segment, we use the approach of Tukey’s Ladder of Powers [Tuk57;
Tuk77b] to find a power transformation that makes the data fit the normal distribution
as closely of possible (see also Ref. [McG12, p. 244]). More precisely, we determine a
value ϕ to be used as the exponent in the transformation ξ(x) = xϕ. To do so, we
use the transformTukey function from the rcompanion R package [Man16], which
chooses ϕ such that it minimizes the test statistic of the Anderson-Darling [AD52] test
for normality. The resulting exponent used to transform the τ values shown in the
last segment is ϕ := −0.25. To prevent the transformed values from being reversed
due to ϕ being negative, we employ the transformation ξ(x) = −(xϕ) to preserve the
order of the τ values after transformation [McG12, p. 229].
Example. Figure 2.7 (left) shows the performance profiles of three hypothetical
partitioning algorithms. We see that out of all three algorithms, algorithm A performs
better than both algorithm B and C. It computes the best solutions for around 80%
of all benchmark instances. Furthermore, the solution quality of algorithm A is within
a factor of 1.3 of the best algorithm for almost all instances. However, we also see
that algorithm A could not partition 10% of all instances within the time limit, since
its performance profile leaves the plot at y = 0.90. Looking at the performance profile
of algorithm B, we see that it computed the best solution for around 15% of all
benchmark instances, but also computed imbalanced and thus infeasible solutions for
more than 30% of all instances. Algorithm C performs worst. For only in around 8%
of all benchmark problems, was it able to compute solutions that were within a factor
of 2 from the solution of the best algorithm.

2.6.5 Visualizing the Evolution of Solution Quality over Time
In Chapter 5, we present our memetic n-level hypergraph partitioning algorithm. For
a predefined amount of time, this algorithm evolves a population of individuals (i.e.,
partitions) to compute high-quality solutions. In the experimental evaluation, we
therefore use convergence plots [SS12] to visualize the evolution of solution quality
over time.
Convergence Plots. We start by explaining how to compute the data for a single
instance i, i.e., a k-way partition of a hypergraph H. Whenever an algorithm computes
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Figure 2.7: Example of a performance profile plot (left) and a convergence plot
(right) comparing the solution quality of three different algorithms.

a partition that improves the solution quality, it reports a pair (t, λ−1), where the
timestamp t is the current elapsed time and λ−1 is the computed connectivity metric.
For r repetitions with different seeds s, these r sequences T is of pairs are merged
into one sequence T i of triples (t, s, λ−1), which is sorted by the timestamp t. Since
we are interested in the evolution of the solution quality, we compute the sequence
T imin representing event-based average values. We start by computing the average
connectivity c and the average time t using the first pair (t, λ−1) of all r sequences
T is and insert (t, c) into T imin. We then sweep through the remaining entries (t, s, λ−1)
of T i. Each entry corresponds to a partition computed at timestamp t using seed s
that improved the solution quality to λ−1. For each entry we therefore replace the old
connectivity value of seed s that took part in the computation of c with the new value
λ−1, recompute c and insert a new pair (t, c) into T imin. T imin therefore represents the
evolution of the average solution quality c for instance i over time. In a final step,
we create the normalized sequence N i

min, where each entry (t, c) in T imin is replaced
by (tn, c) where tn := t/ti and ti is the average time a baseline algorithm needs to
compute a k-way partition of H.

Average values over multiple instances are then obtained as follows: All sequences
N i

min of pairs (tn, c) are merged into a sequence Nmin of triples (tn, c, i), which is then
sorted by tn. The final sequence SG presenting event-based geometric mean values is
then computed as follows: We start by computing the average normalized time tn and
the geometric mean connectivity G over all instances i using the first value of all N i

min
and insert (tn,G) into SG . We then sweep through the remaining entries of Nmin. For
each entry (tn, c, i), we replace the old connectivity value of i that took part in the
computation of G with the new value c, recompute G and insert (tn,G) into SG . The
sequence SG therefore represents the evolution of the solution quality averaged over
all instances and repetitions. The plots use a log-scale on the x-axis.
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Figure 2.8: Example of the combination of a scatter plot and a box plot used to
visualize the running times of different partitioning algorithms.

Example. Figure 2.7 (right) shows an example of a convergence plot comparing the
evolution of solution quality over time for three algorithms. We see that while all
algorithms start off with the same solution quality, their convergence behavior differs.
Algorithm A converges to solutions that are worse on average than the solutions of
both algorithm B and algorithm C. Furthermore, we see that while the average solution
quality of algorithm C is sometimes slightly worse than the average solution quality of
algorithm B, its final solutions are better than those of algorithm B, on average.

2.6.6 Visualizing Running Times

Depending on the structure and the size of the input hypergraphs, as well as on the
number k of blocks, the time it takes a multi-level algorithm to partition an instance
can sometimes vary by several orders of magnitude. Furthermore, as we will see in
the final evaluation of a large set of partitioning algorithms in Chapter 6, the running
time of different algorithms also varies by orders of magnitude. We therefore use
a combination of a scatter plot (which shows the running time for each particular
instance) and a Tuckey box plot [Tuk77a] to visualize running times. The box hereby
shows the 1st and 3rd quartiles, the line inside the box indicates the median, and the
whiskers indicate the location of the smallest/largest data point still within 1.5 times
the inter-quartile range (IQR) of the lower/upper quartile. All data points lying below
or above the whiskers are considered to be outliers.
Since the running times are right-skewed, we use a log-scale on the y-axis. Addi-

tionally, for each instance, we normalize the running time by the number of pins of
the hypergraph. In case the experimental results contain instances that could not
be partitioned because an algorithm aborted or did not finish within the given time
limit, we visualize these instances above a vertical line labeled “NA”. Note that these
instances are excluded from the computation of the box plot in order to avoid distorted
results.
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Example. An example is shown in Figure 2.8. We see that the median running times
of all three algorithms differ. Furthermore, algorithm C is significantly faster than the
other two algorithms and is the only algorithm that could partition all instances.

2.6.7 Testing for Statistical Significance
To determine whether or not the differences in solution quality between partitioning
algorithms are statistically significant, we follow the guidelines proposed by Dem-
sar [Dem06] and García et al. [GH08; Gar+10]. For comparisons involving two
algorithms, we use the Wilcoxon signed rank test [Wil45; Pra59]. When performing
all pairwise comparisons between a set of algorithms, we use the Friedman test [Fri37;
Fri40] with Iman Davenport modification [ID80] and the Bergmann-Hommel proce-
dure [BH88] to correct the p-values for multiple testing. Wilcoxon signed rank tests are
performed using the R package coin [Hot+08], while multiple comparisons involving
a set of algorithms are done using the scmamp package [CS16]. In all cases, we use a
1% significance level. Furthermore, the statistical tests are only based on instances for
which all algorithms were able to compute a solution, and we disqualify imbalanced
and thus infeasible results by setting the corresponding solution quality to a value
larger than the quality of the worst feasible solution.

We note that there is an ongoing controversy regarding statistical significance testing
and the use of p-values [Nuz14; WL16; MWS17; BD19; KW19] as well as which test
procedure to use in which setting [BCM16; BD19]. Therefore, we try not to overstate
the results of significance tests and use them only in combination with other means of
evaluating experimental data, i.e., the techniques presented in this section.
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3Chapter 3

A Brief History of Hypergraph
Partitioning

“Partitioning has been an active area of research for at least a quarter of a
century.”

— Frank M. Johannes [Joh96], 1996

The Structure of Scientific Revolutions. The history of hypergraph partitioning
is a prime example for the structure of scientific revolutions as proposed by Kuhn
[Kuh62], who argues that scientific progress can be broken up into four distinct phases.
In the first phase of pre-paradigmatic science, which only occurs once, a vast number
of different approaches is developed concurrently. Once the research community agrees
on a common methodology, terminology, and on an appropriate approach to address
the problem, it enters the phase of normal science. Here, research is guided by a
central paradigm that allows an in-depth confrontation with the problem at hand and
yields a productive period of incremental improvements. The phase of normal science
continues until either more and more problems with the current paradigm start to build
up or a revolutionary discovery is made that cannot be reconciled with the current
paradigm, which throws science into a crisis period. This then marks the beginning
of the phase of revolutionary science, in which a reexamination of the foundations of
the field may culminate in a paradigm shift: A new paradigm supersedes the old one.
Afterwards, the scientific community returns to the phase of normal science under the
new paradigm.

The Iterative Improvement (IIP) Paradigm. If we look at the partitioning
problem from the perspective of the (V)LSI design community, the stage of pre-
paradigmatic science starts with the early studies on circuit partitioning in the
1960s (see, e.g., the first surveys of Kodres [Kod72] and Donath [Don88]). With the
seminal work of Kernighan and Lin [KL70] on graph partitioning, the extension to
hypergraph partitioning by Schweikert and Kernighan [SK72], and the introduction of
the linear-time FM algorithm [FM82] then followed a phase of normal science, in which
flat, single-level algorithms were continuously developed and successively improved.
Although several constructive techniques [HK91a; CHK92; HMV92; HK92b] were
proposed until 1995, the literature was mostly dominated by iterative improvement
algorithms for several reasons [AK95c, p.16]. Perhaps most importantly, the idea
of successively improving a starting solution by moving vertices across the partition
boundary is very intuitive and often leads to algorithms that are relatively simple to
describe and to implement (although, as we will see in the following sections, the devil
is in the details). Furthermore, IIP algorithms are largely independent of the objective
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function to be optimized and allow for the integration of additional constraints such
as fixed vertices [CL98]. Due to their simplicity, they are also reasonably fast, which
permits the use of repeated executions to get the best out of several solutions, and
the application as local search algorithms in more advanced metaheuristics such
as evolutionary algorithms. Lastly, due to their iterative nature, they allow for a
controllable trade-off between solution quality and running time [CL98].
After the introduction of the FM algorithm [FM82], academic research mostly

focused on improving its erratic behavior [NOP87; SC88; CW91]. The inherent
shortsightedness when choosing the next vertex move and the lack of an advanced tie-
breaking scheme for vertices that yield the same improvement, made multiple restarts
inevitable in order to achieve good solution quality [HK97; HB97]. Enhancements
then focused on strategies that improved the tie-breaking scheme [Kri84; HHK95a;
DD96a], relaxed the locking mechanism [DA94; Hof94; CCH98] or the feasibility
constraint for intermediate solutions [DT97], improved locality by encouraging tightly
connected clusters of vertices to move together [DD96b; Con+97a], or embedded the
FM algorithm into metaheuristics [KGV83; SR89a; SR89b; BM94; BM98; AV00].
Furthermore, the initial bipartitioning approach was extended to k-way partitioning in
various ways [San89; CSZ97a; CL98]. While for graphs every move of a boundary node
has an immediate effect on the edges in the cut-set, single vertex moves in hypergraphs
may not affect the cut-set at all, because large hyperedges are likely to have more than
one pin in multiple blocks of the partition. This, in turn, motivated several algorithms
that work on other hypergraph representations such as the dual hypergraph [CLS94]
(nets of the hypergraph correspond to vertices in the dual, and for each vertex v of the
original hypergraph a net with pins I(v) is added to the dual) or the net intersection
graph [Kah89] (nets of the hypergraph correspond to nodes in the graph and there is
an edge between two nodes if the corresponding nets share a vertex).

A Paradigm Shift Towards Two-Level Algorithms. The observed performance
deterioration of FM-based algorithms for large hypergraphs [HHK95b], as well as
for instances with large net sizes [KK99] or small vertex degrees [GB83; Bui+87;
Bui+89][Len90, p. 273][Çat99, p.15] then marked the beginning of a crisis, which lead
to a paradigm shift towards two-level approaches. By creating a coarse representation
of the input hypergraph through the contraction of highly-connected vertices, these
algorithms increase its density and significantly reduce both the exposed hyperedge
weight [IKS75] as well as the sizes of the hyperedges [Saa95]. This significantly reduces
the complexity of the search space. Increased density and smaller net sizes furthermore
allow move-based IIP algorithms to explore the search space more effectively and
increase their ability to escape from local optima, while the reduction in exposed hyper-
edge weight makes it easier to compute an initial partition with good quality [Kar03,
p. 146]. In the two-level setting, an initial solution is first computed and improved on
the coarse instance, and, after projecting the solution back to the input hypergraph,
then refined once again on the original instance.

The Multi-Level Revolution. “A breakthrough in min-cut partitioning came in
1997 when [19] [i.e., [Kar+97a]] and [2] [i.e., [AHK97]] validated the multilevel partition-
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ing paradigm for hypergraphs with their highly successful implementations” [CKM00a].
The multi-level scheme [BS93; BJ93; CS93; HB95; HL95] thus constitutes a revo-
lutionary invention that, within only a couple of years, completely superseded the
two-level approach. By allowing the coarsening process to proceed more slowly, the
multi-level approach creates a hierarchy of successively coarser hypergraphs. During
uncoarsening, this then allows refinement algorithms to operate on multiple scales of
the partitioning problem. On the coarsest levels, single-vertex moves correspond to the
movement of entire clusters of vertices of the input hypergraph and therefore allow for
rather global optimizations, whereas refinement on finer levels of the hierarchy gives
an increasingly more local view for more and more fine-grained improvements. “This
permits the refinement algorithm to avoid bad local minima (“basins of attraction”)
via large steps at high levels, and also find a good final solution via refinement at
the low levels” [Alp96, p. 179], making the multi-level paradigm highly effective for
computing high-quality partitions of very large hypergraphs.

Chapter Overview. In the following, we will trace the lineage of ideas through
almost 50 years of hypergraph partitioning history, starting with the Kernighan-
Lin [KL70] and Fidducia-Mattheyses [FM82] algorithms in Sections 3.1 and 3.2 –
variations of which are still employed in even the most sophisticated hypergraph parti-
tioning systems today. Section 3.3 then covers the era of flat partitioning algorithms,
before we turn to two- and multi-level algorithms in Section 3.4. Due to the large
number of competing approaches that have been developed over time, Section 3.5 then
presents a taxonomy of the state-of-the-art HGP systems that are still in use today,
before we summarize the findings and extract some guiding principles for effective
hypergraph partitioning algorithms in Section 3.6.

Disclaimer. The body of literature on hypergraph partitioning is immense, which
is why we restrict ourselves to techniques that have been explicitly proposed for
the standard hypergraph partitioning problem formulation as defined in Section 2.2,
and omit contributions that are exclusively devised for partitioning VLSI circuits
or FPGAs [NOP87; SC88; CH90; CMR90; Hul90; Hul91; Hag+92; YCL92; KBK93;
RS93; WK93; Cho+94; Hag+94; KBZ94; KZB94; SK94; HK95; KB95; KAS97; LW98;
CL99; EHS99; CL00b; CLW00; CWC01; CW02a; CW02b; WS02; CW03; Wu+03]
and are therefore not applicable to the general setting. Furthermore, the presentation
of related work differs from overview articles and surveys [Kod72; Don88; AK95c;
MWW95; Joh96; Lie97; Kah98; CC00; KAV04; PM07; Kuc08; Bul+16], as well
as related work sections of HGP-related dissertations [Alp96; Çat99; Lim00; Tri06;
Lot16] in that we present a historical overview instead of an aggregation of similar
concepts and techniques, since we believe that the historic perspective makes the
scientific evolution of the field more comprehensible. Additionally, we refrain from
reporting the conclusions of experimental evaluations regarding the comparisons of
different algorithms, since most experiments were only performed on small, restricted
benchmark sets and thus should be taken with a grain of salt. Lastly, we note that
although this chapter presents a substantial amount of HGP-related research, we
cannot claim it to be exhaustive.
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Tabular Summaries. The algorithms discussed in this chapter are summarized
in several tables. Table 3.1 on page 63 gives an overview over the flat, single-level
algorithms presented in Section 3.3. Table 3.2 on page 88 then covers the two-level
approaches, while Table 3.3 on page 89 summarizes the multi-level algorithms presented
in Section 3.4.

3.1 The Kernighan-Lin (KL) Algorithm

In their seminal paper, Kernighan and Lin [KL70] describe what is now known as the
first good heuristic for the graph bisection problem [AK95c]. The key observation
underlying the KL algorithm forms the basis for most of today’s iterative improvement
heuristics.
Central Idea. After initially partitioning an unweighted graph into two subsets of
equal size, some vertices are assigned to the wrong side of the bisection Π2 = {V1, V2}.
If it was possible to identify these subsets X ⊂ V1, Y ⊂ V2 of wrongly assigned
vertices, then interchanging X and Y would transform the current solution to the
optimal bisection Π∗2 = {V ∗1 , V ∗2 }, with V ∗1 := (V1 \ X) ∪ Y and V ∗2 := (V2 \ Y ) ∪
X. Unfortunately, the problem of identifying X and Y is as hard as the initial
graph bisection problem [KL70], which is why KL-type algorithms try to find good
approximations of these subsets that improve the current solution.
Gain. Changes in solution quality are captured by the gain g(u) of moving a
node u from its current block A to the other block B: g(u) := ω({(u, v) | v ∈
Γ(u) ∩ B}) − ω({(u, v) | v ∈ Γ(u) ∩ A}). The first term hereby corresponds to the
weight of those incident edges that become internal after the move, while the second
term accounts for the edges that become part of the cut-set. Thus, a node v ∈ A
that is more strongly connected to the nodes in B than to those in A has a positive
gain and can therefore be considered a good candidate for a move. Since the KL
algorithm is aimed at improving bisections (i.e., perfectly balanced bipartitions), it
is necessary to move a node from B to A each time a node is moved from A to B.
The gain of swapping two nodes u ∈ A, v ∈ B thus changes the solution quality by
g(u, v) := g(u) + g(v)− 2 ω({(u, v) | u ∈ Γ(v)}).
Algorithm Outline. A pseudocode description is shown in Algorithm 3.1. Given
an initial bisection, the algorithm proceeds in a series of passes. Each pass tries to
determine a sequence of pairwise swaps that improves the current solution. To avoid
thrashing, every node is allowed to be swapped exactly once per pass. Thus at the
beginning of each pass all nodes are marked as unlocked. The algorithm then searches
for the pair of unlocked nodes u ∈ V1 and v ∈ V2 with the highest gain (i.e., the largest
decrease or smallest increase in solution cost). This pair along with the corresponding
gain value is added to a sequence of temporary swaps and both nodes become locked
so that they are not considered in the remaining steps of the pass. The swap is then
simulated by updating the gain values of all unlocked neighbors of u and v accordingly,
and the search process continues until all nodes are locked. At this point, the algorithm
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Algorithm 3.1 : Kernighan-Lin Iterative Improvement for Graph Bisections
Input : Graph G = (V,E, c, ω)
Input : Bisection Π2 = {V1, V2}
Require : |V1| = |V2| ∧ c 7→ 1 //Algorithm assumes bisection of unweighted nodes

1 do //Perform series of passes
2 compute initial gains // for all vertex pairs (u ∈ V1, v ∈ V2)
3 while not all vertices locked do //Locking mechanism prevents thrashing
4 find (u ∈ V1, v ∈ V2) with highest gain g(u, v) //Gain can be negative
5 swap(u, v) //Temporarily switch blocks
6 lock(u), lock(v) //Each node is only allowed to move once
7 update gain values of unlocked neighbors // to reflect the swap
8 choose j to maximize gmax :=

∑j
i=1 g(ui, vi) //Find best sequence of swaps

9 if gmax > 0 then // Improvement found
10 X :=

⋃j
i=1{ui}, Y :=

⋃j
i=1{vi} // Sets of nodes to be swapped

11 V1 := (V1 \X) ∪ Y , V2 := (V2 \ Y ) ∪X // Swap nodes to improve quality
12 unlock all nodes
13 while gmax > 0 //Ensure strictly increasing solution quality

Output : Improved bisection Π2 = {V1, V2}

has completely exchanged both blocks of the bisection and thus the final cut size
corresponds to the solution quality of the initial bisection. In order to find the subset
of swaps with maximum improvement, the sequence of temporary swaps is traversed
and the smallest index j such that the partial sum gmax :=

∑j
i=1 g(ui, vi) is maximum,

is computed. If gmax > 0, the solution quality is improved by exchanging the subsets
X :=

⋃j
i=1{ui} and Y :=

⋃j
i=1{vi}. The improved bisection is then used as a starting

partition for the next pass. Otherwise, if gmax = 0, the algorithm terminates because
the current partition constitutes a local minimum.

During a pass, the algorithm does not stop when a single pair of nodes yields a
negative improvement. By temporarily worsening the solution quality, the KL
algorithm is therefore able to climb out of local minima to some extent. At the
same time, it ensures a strict increase in solution quality between passes, because
swaps are only executed at the end of a pass if the overall gain is positive. Thus
between passes, it can still be seen to act greedily.

Running Time Complexity. Consider a graph G = (V,E) with |E| = m edges
and n = 2t nodes that is partitioned into Π2 = {V1, V2} with |V1| = |V2| = t. In the
following, we reiterate Dutt’s analysis [Dut93] of the KL algorithm and consider a single
pass of the algorithm. Using an adjacency matrix as graph data structure, calculating
the initial gain values for all nodes can be done in Θ(n2) time. In order to select the
next pair to be exchanged, Kernighan and Lin [KL70] propose to sort the unlocked
nodes of each block by their gain values. In iteration k, this takes Θ((t− k) log(t− k))
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time. Afterwards, the sorted lists are scanned to find the next pair to be exchanged.
While this takes O(t2) time in the worst case, Kernighan and Lin [KL70] assume that
in practice only a few node-pairs have to be considered and thus conclude that this
step takes Θ(t− k) time in iteration k. After tentatively swapping the node-pair, the
gain values of the remaining unlocked nodes are updated in Θ(t − k) time. Thus,
summing over all t = n/2 iterations yields a running time complexity of Θ(n2 logn)
per pass, since determining the subsets X and Y to be exchanged at the end of each
pass can be done in Θ(n) time. However, since in the worst case all node-pairs have to
be scanned in order to find the next pair to be swapped, the worst case running time
is actually O(n3). By using a neighborhood search technique to limit the number of
scanned node-pairs and by using balanced binary search trees to store and maintain
the gain values Dutt [Dut93] improved the running time to O(mmax(logn,∆v)) per
pass. While in theory up to m passes can be necessary to converge to a local optimum
for unweighted graphs [AK95c], empirical evidence indicates that, given a good initial
bisection, a small constant number of passes suffices [KL70; DK85; Dut93].

Extensions. The KL algorithm can be extended in several ways. Kernighan and
Lin [KL70] proposed extensions to deal with unequally sized bipartitions, weighted
nodes, and the refinement of k-way partitions.

A graph initially partitioned into two blocks of unequal size n1 and n2 can be refined
by restricting the number of pairs to be exchanged per pass to min(n1, n2). If the
graph should contain at least n1 nodes in one and at most n2 nodes in the other block,
n2−n1 unconnected dummy vertices are added to V1. After running the KL algorithm
on the modified graph, the dummy nodes can be discarded.

To incorporate node weights, each node v with a weight of c(v) > 1 is replaced with
a clique of c(v) nodes connected by edges with a sufficiently high edge weight such
that they won’t be cut during the execution of the algorithm.
While the original algorithm is defined to improve bisections, it can also be used

to refine a given k-way partition by repeatedly running it on all pairs of blocks (i, j),
where either block i or j has changed since the pair was last considered.

Furthermore, it can be easily adapted to work with fixed vertices (i.e, vertices
that are preassigned to a specific block [Alp+99]) by marking them as locked at the
beginning of each pass such that they will not be considered for swaps [Len90, p. 264].
Schweikert and Kernighan [SK72] extended the KL algorithm to work with hypergraphs
and the improvements proposed by Dutt [Dut93] for graphs are conjectured to also
apply to hypergraph partitioning [HHK95a; Alp96].

Limitations. Due to the fact that the algorithm is designed for bisections, the
extensions for bipartitions of variable size are somewhat limited. For example, the
algorithm is not able to prefer more balanced to less balanced partitions with the
same cut [Len90, p. 265]. Moreover, the solution to handle weighted vertices is not
deemed viable for most partitioning problems due to the increased graph size [Len90,
p. 265] and the fact that some clique vertices might still end up in different blocks of
the bisection [BS11, p. 45]. The main disadvantage of the KL heuristic, however, is
its computational complexity, which is why most graph and hypergraph partitioning
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algorithms use some variation of the linear time algorithm proposed by Fiduccia and
Mattheyses [FM82], which we describe next.

3.2 The Fiduccia-Mattheyses (FM) Algorithm

While the KL algorithm was the first successful partitioning heuristic, the FM algo-
rithm [FM82] forms the basis for a wide range of bipartitioning algorithms [HB97],
and is employed almost universally in GP and HGP implementations [CS03, p. 80].
Being specifically designed for hypergraph partitioning, it builds on the KL extension
of Schweikert and Kernighan [SK72]. Similar to KL, the FM algorithm performs a
series of passes that iteratively improve solution quality, while temporarily allowing to
worsen the partitioning objective within a pass. However, instead of swapping pairs
of vertices, it only moves one vertex at a time. This allows the algorithm to handle
nonuniform vertex weights and bipartitions with a certain imbalance between the
weight of both blocks. Furthermore, and more importantly, Fiduccia and Mattheyses
[FM82] show that their algorithm permits an implementation that takes O(p) time
per pass by carefully analyzing the effects of a vertex move on the gains of neighboring
vertices and by using bucket priority queues to manage vertex gains.

Before discussing algorithmic details, we first generalize the concept of move gains
from graphs to hypergraphs along the lines of Schweikert and Kernighan [SK72] and
introduce the notion of balance used in the original FM algorithm.
FM Move Gain. While for graphs every incident edge of a node contributes to the
gain either positively (in case it is a cut edge) or negatively (in case it is an internal
edge), the situation is different for hypergraphs. Since nets can connect an arbitrary
number of vertices, the contribution of a net e ∈ I(v) to the gain of a vertex v now
depends on the actual block assignment of all pins of e. More precisely, the gain g(v)
of moving a vertex v ∈ V0 to block V1 of the bipartition Π2 = (V0, V1) is defined as:

g(v) := ω({e ∈ I(v)|Φ(e, V1) = |e| − 1})− ω({e ∈ I|Φ(e, V0) = |e|}). (3.1)

Only if v is the last pin of e that still resides in block V0 will its move remove e from
the cut-set. Similarly, if e has no pins in block V1, the movement of v will make e a
cut-net. In all other situations, incident nets do not contribute to the gain of vertex v.
Balanced Bipartitions. In order to deal with weighted vertices, a bipartition
Π2 = (V0, V1) is considered a valid solution if c(V0)/c(V ) ≈ r for some specified
parameter 0 < r < 1. Since equality cannot be guaranteed in general, a deviation
by the maximum vertex weight is allowed in both directions and thus a partition is
considered balanced if

r · c(V )−max
v∈V

c(v) ≤ c(V0) ≤ r · c(V ) + max
v∈V

c(v). (3.2)

Algorithm Outline. Given an initial bipartition Π2 = (V0, V1), each pass of the
FM algorithm proceeds similarly to the KL algorithm. After initially computing the
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gains of all vertex moves, the algorithm repeatedly selects the move with the highest
gain, temporarily moves the vertex to the opposite block where it is locked to prevent
thrashing, and updates the gains of neighboring vertices to reflect the changes. This
process continues until every vertex is locked, and the best solution encountered during
the pass is used as input for the next pass.
However, since the FM algorithm employs vertex moves instead of pairwise swaps

and furthermore accounts for vertex weights, selecting the vertex with the highest
gain differs from the KL algorithm. In order to determine whether to move a vertex
from block V0 to block V1 or vice versa, the moves yielding the highest gains for both
directions have to be compared. Unless all vertices in one block are locked, there
always exists a vertex that can be moved from block V0 to block V1 and one vertex that
can be moved in the opposite direction. Furthermore, by the definition of the balance
constraint, at least one of these two moves is always feasible. If exactly one move
is feasible, this move is chosen. In case both moves are feasible, the FM algorithm
prioritizes moves by their gains and performs the one with higher gain, breaking ties
in favor of the move that yields the better balance. If only one side contains unlocked
vertices, but the highest-gain move would violate the balance constraint, it is discarded
and the vertex is locked into its current block.

By using this move selection strategy, the FM algorithm does not require the initial
input partition to be balanced – one of the blocks can even be initially empty. In case
the balance constraint is violated, the algorithm automatically establishes balance by
iteratively moving the highest gain vertex from the overloaded to the underloaded
block.

Maintaining Move Gains. Having observed that hypergraphs derived from VLSI
circuits are sparse [CKM00d; PM07] and that hyperedge weights are limited to small
constant values [Len90, p. 268], Fiduccia and Mattheyses [FM82] exploit the fact
that the move gain of any vertex can be bounded from above and from below by
the maximum vertex degree ∆v times the maximum hyperedge weight ωmax by using
two bucket priority queues (one for each block) to maintain all move gains in sorted
order. Figure 3.1 depicts their original implementation. Let pmax := ∆v · ωmax be
the maximum gain. An array of length 2 · pmax + 1 is used to represent all possible
gain values in the range [−pmax, . . . ,+pmax] and each cell i stores a pointer to a
doubly-linked list that contains all unlocked vertices having gain i. Additionally, an
array of size n is used to store a pointer to the gain element associated with each vertex.
It is easy to see that it takes constant time to insert a vertex into its gain bucket. Since
removing a vertex can also be done in constant time, updating the gain of a vertex
is a constant-time operation. In order to retrieve a vertex with maximum gain, an
additional pointer is used to index the highest-gain bucket that is not empty. During
insertions, this pointer can easily be updated if the newly inserted vertex happens to
have a larger gain. If, during a max-gain lookup, the corresponding bucket is found to
be empty, it is necessary to linearly search downwards for the next nonempty bucket.
If hyperedge weights can be arbitrarily large, more sophisticated bucket priority

queue implementations are necessary to keep memory consumption low and to speed
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Figure 3.1: The gain bucket list priority queue used in the FM algorithm [FM82].

up the running time for locating the second-highest nonempty gain bucket. Papa and
Markov [PM07], for example, propose to replace the bucket array with a combination
of a search tree and a hash table.

Running Time Complexity. Initially computing all move gains and inserting
them into the corresponding bucket priority queues can be done in O(p) time by
iterating over all nets. After each move, it is necessary to update the gain values of all
neighboring vertices. If this is done naively, the FM algorithm would have to perform
O(p2) gain (re-)computations per pass. However, Fiduccia and Mattheyses [FM82]
show that by using delta-gain updates (that only account for the gain changes), a
constant number of gain updates is required per net in one pass, and that each of
these updates takes O(|e|) time. Since each bucket priority queue gain update can be
done in constant time, all gain updates performed in a pass therefore take O(p) time
in total. Finally, we have to account for the movements of the max-gain pointers that
are used to find the next move. The total time to search down for a non-empty bucket
is O(p), since each of the O(p) gain updates changes the max-gain pointer by at most
ωmax and thus the total number of decrements cannot exceed O(∆vωmax + p ωmax),
which is O(p) if ωmax ∈ O(1) for sparse hypergraphs.

Note that it is actually not possible to update the gain of a vertex in constant
time by solely using the data structure depicted in Figure 3.1. In order to be
able to apply delta-gain updates, it is necessary to retrieve the current gain of a
vertex. However, since this is not an O(1) time operation in this bucket queue
implementation, another data structure, e.g. an additional array of size n can be
used to explicitly store the absolute gain value for each vertex.
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Early Experimental Results. Fiduccia and Mattheyses [FM82] only report results
regarding the running time of their algorithm and note the effectiveness of the delta-
gain update technique. Dunlop and Kernighan [DK85] compare the KL extension of
Schweikert and Kernighan [SK72] to the FM algorithm and show that FM is significantly
faster, while producing solutions of comparable quality in most cases. Goldberg and
Burstein [GB83] compare the number of passes that each of the algorithms needs until
it arrives at a local minimum and show that FM requires slightly more passes than
the KL algorithm. This fact is also noted by Lengauer [Len90, p. 268].

Implementation Details. While a high-level description of the FM algorithm is
straightforward, there are several ambiguities and implicit design descisions that need to
be addressed in an actual implementation, some of which can have a significant impact
on partitioning quality [Cal+99; CKM00b]. Being an iterative improvement algorithm,
the FM heuristic needs an initial partition as a starting point. In the original imple-
mentation, a random partition was used for that purpose [FM82]. Hauck and Borriello
[HB97] compared random initial partitions to more sophisticated approaches based
of breadth-first (BFS) and depth-first searches (DFS), spectral partitioning [HK92b],
and seeded initialization [WC89], in which a slightly modified version of the FM
algorithm is used to grow one block of the bipartition around a randomly selected
seed vertex. In their experiments, none of these techniques consistently outperformed
random initialization. Hauck and Borriello [HB97] conjecture that this is due to the
fact that these “smarter” initial partitioning algorithms tend to produce solutions of
less variance and thus easily trap the algorithm in a local optimum. Especially in a
setting where multiple runs are performed, initial solutions of high variance allow FM
to explore the solution space more effectively.

An implicit design decision which is shown to have a significant impact on solution
quality relates to the management of the bucket queues [PM07]. In the implementation
of Fiduccia and Mattheyses [FM82], doubly-linked lists are used to represent a bucket
and the gain array stores pointers to the heads of these lists. Whenever the gain of
a vertex is updated, it is removed from its current bucket and inserted at the head
of the new bucket. Furthermore, when selecting the next move, the implementation
chooses the vertex at the head of the max-gain bucket. Thus, the gain buckets are
managed in a last-in first-out (LIFO), stack-like manner. The implications of this
design decision are not discussed by Fiduccia and Mattheyses [FM82]. Realizing that
a popular FM implementation [San89] actually selected vertices uniformly at random
from the max-gain bucket, Hagen et al. [HHK95a; HHK97] examined the impact of
this decision by comparing LIFO bucket management with random selection, and
an implementation that managed the buckets in a first-in first-out (FIFO) manner
(by additionally maintaining a pointer to the tail of each bucket list). Since LIFO
significantly outperformed both random and FIFO, implementations at that time
almost universally adopted the LIFO scheme [Cal+99]. Intuitively, this effect can
be explained by the fact that LIFO bucket management encourages a more localized
search, because neighbors of a moved vertex are placed at the heads of the gain buckets
and thus are more likely to be moved next. This increases the probability that tightly
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connected clusters of vertices are moved together, since the LIFO scheme implicitly
prefers moves in a certain area around the cut, which is not the case for FIFO or
random [HHK95a; HB97].

Caldwell et al. [Cal+99; CKM99a; CKM99b; CKM00b] further analyze the gain
update process. After a vertex is moved, the gains of all pins of incident nets
potentially have to be updated. They note that while the method originally proposed by
Fiduccia and Mattheyses [FM82] has the side effect of skipping all zero-gain delta gain
updates, their algorithm is specific to both the net-cut objective and to bipartitioning.
Straightforward implementations therefore may compute gain contributions in different
ways that implicitly could lead to delta gains of zero. In this case, a zero-gain update
would remove a vertex from its current position and insert it at the head of the same
gain bucket. In their experiments using a LIFO FM implementation, performing
zero-gain updates lead to significantly worse solutions. Recently, Kim and Yoon
[KY15] proposed a further optimization (VLIFO) that handles gain updates differently
depending on the sign of the update. If the gain delta is positive, the corresponding
vertex is added to the head of the list, whereas updates that decrease the gain cause
insertions at the tail. While they report an improvement over plain LIFO for flat FM,
the experiments were performed on small and outdated [Alp98; Ady+04] ACM/SIGDA
benchmark instances [RB87] (dating back to the late 1980s), so it remains unclear
whether these results generalize to modern implementations.

Caldwell et al. [Cal+99; CKM99a; CKM99b] further show that some implementation
details even affect each other and thus easily yield misleading conclusions. When
selecting the next move to be performed from the max-gain buckets of both priority
queues, the original FM algorithm chooses the one that produces a more balanced
partition. Caldwell et al. [Cal+99; CKM99b; CKM00b] evaluate three different
strategies, namely towards (i.e., perform the move in the same direction as the move
before), away (prefer the move in the opposite direction), and block 0 (always choose
the move to block 0). When the algorithm performed zero delta-gain updates, biasing
towards block 0 gave significantly worse results than the towards strategy. However,
when skipping zero delta-gain updates, there was no significant difference between
towards and block 0. This effect was much less visible in a multi-level setting than when
FM was used directly on the input hypergraph. This shows that stronger partitioning
heuristics may actually hide the fact that the underlying flat partitioning engine is
implemented badly [CKM00b].

A final tie-breaking decision is to be made when selecting the best partition at the
end of a pass, since multiple solutions might yield the same improvement. While this
is not specified by Fiduccia and Mattheyses [FM82] it is possible to use the first or
last solution encountered, or the one that yields best balance [CKM00b]. While all of
the previously mentioned implementation details have some effect on the partitioning
results, there exist other optimizations that do not affect the solution quality such as
the gain update procedure of Papa and Markov [PM07] that exploits special cases for
the cut-net metric and bipartitioning to speed up delta-gain updates.
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Figure 3.2: Motivation for higher level gains. Moving either v1 or v2 to the
opposite block V1 has an immediate gain of zero. However after moving v1, net e1
can be removed from the cut-set by additionally moving vertex v3, while several
more moves would necessary to remove net e2.

3.3 Single-Level Partitioning beyond KL/FM

Simulated Annealing. The concept of simulated annealing (SA) [KGV83] is in-
spired by the annealing process in metallurgy (i.e., the controlled heating and cooling
of metals to change their structural properties). In its basic form, a SA-based partition-
ing algorithm performs random vertex moves. If the new solution is better than the
previous one, it is accepted immediately. However, worse solutions are also accepted
with a certain, continuously decreasing, probability in order to be able to escape from
local minima. This slowly decreasing probability hereby corresponds to the cooling
process in the physical annealing process. Johnson, Aragon, McGeoch, and Schevon
[Joh+89] compared the performance of SA and the KL algorithm, and concluded that
neither algorithm consistently outperformed the other. However, the running times of
SA were considerably longer, which is why the technique is not considered practical
for hypergraph partitioning [AK95c].
LA`-FM. Two years after the introduction of the FM algorithm, Krishnamurthy
[Kri84] noted that moving vertices solely based on their immediate cut-size improvement
leads to somewhat erratic behavior, since quite often several moves have the same
direct effect, but significantly different ramifications for future moves. An example of
such a situation is shown in Figure 3.2. Krishnamurthy [Kri84] therefore equipped
the FM algorithm with the capability to look a fixed number ` of moves ahead. To
capture how tightly a net is connected to a block of the bipartition, he introduced
the concept of binding numbers. The binding number βA(e) of a net e with respect to
block A is defined as

βA(e) :=
{
|AF ∩ e|, if |AL ∩ e| = 0
∞, if |AL ∩ e| > 0,

(3.3)

where AF is the set of free (i.e., not yet moved) vertices and AL is the set of locked
(i.e., already moved) vertices in block A. Since each vertex is only allowed to be moved
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once per pass, the binding number of a net e becomes infinity as soon as one of its
pins is locked in the corresponding block – indicating that e will be connected to the
block for the remainder of the pass. Given a bipartition Π = {A,B} of a hypergraph
H = (V,E) with unit net weights, the ith level gain gi(v) of a vertex v ∈ A is defined
as

gi(v) := |{e ∈ I(v) | βA(e) = i ∧ βB(e) > 0}|
− |{e ∈ I(v) | βA(e) > 0 ∧ βB(e) = i− 1}|,

(3.4)

for 1 ≤ i ≤ ∆e. The first level gain exactly corresponds to the original FM gain. For
higher levels i > 1, the first term counts the nets e whose binding number becomes
βA(e) = i − 1 after the move, while the second term accounts for those nets whose
binding number increases from βB(e) = i− 1 to βB(e) = i due to the move. Instead
of maintaining only a single gain value per vertex, the LA`-FM algorithm with a
look-ahead of ` maintains a gain vector of length ` per vertex, where the ith entry
corresponds to the ith level gain. Gain vectors are then compared lexicographically
in order to determine the next vertex to move. Thus, higher-level gains allow the
algorithm to distinguish vertex-moves whose first level gains are equal. Krishnamurthy
[Kri84] proposed to choose the look-ahead value ` depending on the properties of
the hypergraph. More precisely, assuming that the (2∆v + 1)` possible gain vector
values are uniformly distributed over the n vertices, the highest-gain bucket is likely to
contain only one vertex if ` ≈ logn/ log(2∆v + 1). Using an `-dimensional bucket data
structure, the LA`-FM algorithm can be implemented such that each pass takes O(`p)
time. Note that while Krishnamurthy [Kri84] specified that random tie-breaking is
used if both the move from block A to block B and the move from block B to block
A are feasible and have the same gain, the decision which vertex to choose if the
max-gain bucket contains more than one vertex was not specified.

Interestingly, Krishnamurthy [Kri84] also proposes an optimization for the FM
algorithm which, to the best of our knowledge, has gone largely unnoticed: If the
algorithm keeps track of the number of locked nets (i.e., nets with a locked pin
in each of the two blocks), then an FM pass can be terminated as soon as the
number of locked nets is larger than the size of the currently best cut-set. Once
a net becomes locked, it cannot be removed from the cut-set in the remainder of
the pass. Thus, no subsequent vertex move will ever yield a smaller cut.

k-LA`-FM. Until the work of Sanchis [San86; San89], k-way partitions were com-
puted via recursive bipartitioning and then optionally refined by repeatedly applying a
two-way iterative improvement algorithm on pairs of adjacent blocks. As was already
noted by Kernighan and Lin [KL70], recursive bipartitioning has the problem that a
good solution for the first bipartition divides the instance into two densely connected
blocks and thus makes it more difficult to find small cuts later on. Sanchis [San86;
San89] furthermore points out that while pairwise refinements can be employed success-
fully for graph partitioning, the technique is unlikely to be promising when optimizing
the cut-net metric in hypergraphs, since removing a net from the cut between a pair
of blocks does not necessarily improve the cut-net objective in the original k-way
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partition. She therefore generalizes Krishnamurthy’s level gain concept [Kri84] from
two-way to multiple-way partitioning and proposes the first direct k-way refinement
algorithm. Her k-LA`-FM algorithm maintains k(k−1) gain bucket structures (one for
each possible move direction) and an additional binary heap to locate the vertex move
with highest gain in O(log k) time. By analyzing the `-dimensional gain bucket data
structure proposed by Krishnamurthy [Kri84] more carefully, Sanchis first shows that
the complexity of the LA`-FM algorithm is actually O(`p(∆v + `)) and then devises
an improved, more space-efficient bucket structure that allows her k-way extension to
take O(`pk(log k + ∆v`)) time per pass using a look-ahead value of `. The evaluation
on randomly generated hypergraphs with different net-size distributions shows that
the optimal look-ahead level increases with increasing number of blocks as well as with
larger net sizes, and decreases with increasing vertex degree. The experimental insights
are complemented with a probabilistic analysis to determine the optimal look-ahead
based on the vertex-degree and net size distributions of the input hypergraph. In
her experiments, k-LA`-FM performed better than recursive bipartitioning if a look-
ahead ` > 1 was used. Without look-ahead capabilities, the direct k-way partitioning
algorithm was not able to consistently outperform the recursive approach.

AlgI. While previous approaches worked directly on the input hypergraph, Kahng
[Kah89] proposes an O(m2) time algorithm that instead partitions its net intersection
graph using random longest BFS paths. The partition of the net intersection graph
then induces a partial bipartition of the input hypergraph, which is completed using a
winner-loser heuristic [HNS82].

EV/BIPART. Motivated by successes of evolution-based approaches to solve com-
binatorial optimization problems, Saab and Rao [SR89b] present the first evolutionary
algorithm for solving a k-way multi-objective, multi-constraint hypergraph partitioning
problem. Since the algorithm only works with one individual, it does not use any
recombination operators. Instead, the solution initially generated via bin packing is
evolved using a non-greedy randomized algorithm that moves vertices to different
blocks if their gain is greater than some random value and the move does not violate
the balance constraint. In subsequent work [SR89a; SR90], this algorithm is specialized
for the case of hypergraph bipartitioning. The initial partition is generated by scanning
the vertices in decreasing order of weight and putting the current vertex in the smaller
block. Afterwards, a perturbation function first visits all vertices again in order of
decreasing weight and compares the gain g(v) of moving vertex v to the opposite block
to a random integer r in the interval [p, 0]. If g(v) > r, the move is added to a set
of temporary moves, and the gains of all neighboring vertices are updated. Once all
vertices are visited, the algorithm computes a subset of the temporary moves that
improves the balance of the bipartition. The tuning parameter p is initially set to −1
and decremented if an iteration does not yield an improvement.

RCut1.0. In algorithms based on the FM paradigm, it is up to the user to specify the
allowed imbalance between blocks. Since in practice this imbalance is small, FM-type
algorithms tend to compute partitions with blocks of comparable sizes. However, since
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hypergraphs derived from VLSI circuits exhibit a certain clustering structure, forcing
block sizes to be balanced may lead to solutions with considerably larger cuts than
some more imbalanced partitions. Wei and Cheng [WC89; WC91] therefore relax the
balance constraint and propose the ratio cut objective for bipartitioning that captures
both the size of the cut-set and the balance between the blocks. The ratio cut is defined
as the bipartition Π = (A,B) that generates the minimum ratio between the size of the
cut-set and the product of the block weights (c(A) · c(B)). Since the cut-net objective
appears in the numerator while the denominator favors balanced partitions, the ratio
cut objective favors “natural” (in contrast to artificially sized) bipartitions [HK92b].
Noting that finding the ratio cut in a hypergraph is NP-complete, Wei and Cheng
[WC89; WC91] adapt the FM algorithm to optimize the objective. The initial partition
is generated by growing blocks from two random seed nodes using the ratio values to
prioritize vertices. This solution is then first optimized using a modified FM algorithm
that only allows vertex moves in one direction. Afterwards, the full FM algorithm is
used to make further improvements.

MCPG. While k-LA`-FM [San86; San89] locks a vertex after it is moved for the
first time, Vijayan [Vij90] presents a modification that allows every vertex to be moved
to each part exactly once before it becomes locked. The algorithm thus has a larger
search space at the cost of a higher running time complexity. However, since an
experimental evaluation of the newly proposed locking scheme is missing, its benefits
remain unclear.

WHB. Kamidoi, Wakabayashi, Miyao, and Yoshida [Kam+91] address a weakness of
Kahng’s AlgI partitioning algorithm [Kah89], namely the fact that the net intersection
graph is missing information about vertex weights. This leads to the problem that the
balance constraint can only be accounted for in the completion phase (i.e, after most
vertices are already assigned to one of the two blocks), which often yields imbalanced
and thus infeasible solutions. They therefore propose the WHB algorithm, which
instead of the net intersection graph, works on the star-expansion of the hypergraph.
Since this graph contains nodes for both vertices and nets of the hypergraph, WHB
is able to account for vertex weights already during the computation of the partial
bipartition and therefore always produces feasible solutions.

EIG1/EIG-IG/IG-Match. Hagen and Kahng [HK91a] were the first to adopt the
spectral graph partitioning technique popularized by Donath and Hoffman [DH72;
DH73] and Fiedler [Fie75a] to hypergraph bipartitioning for ratio-cut optimization.
The EIG1 algorithm of Hagen and Kahng [HK91a] transforms the hypergraph into
a graph Gx using the clique-expansion with uniform edge weight 1/(|e| − 1) for a
hyperedge e of size |e|. After computing the second smallest eigenvector of the
Laplacian matrix, the algorithm sorts the vector entries and chooses the splitting rank
r that yields the best ratio-cut (using the previously ignored vertex weights). Vertices
with rank > r are then assigned to one block; vertices with rank ≤ r are assigned to
the other block. In subsequent works [HK91b; HK92b], Hagen and Kahng extended
the approach to use the net intersection graph Gn instead of the clique-expansion Gx.
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A heuristic is then used to complete the partial bipartition of the vertex set induced by
the partition of Gn. Later, Cong et al. [CHK92] replaced this heuristic by formulating
the optimal completion of the bipartition as a minimum vertex cover problem on a
bipartite graph derived from Gn.

NETPART. The NETPART algorithm of Hadley, Mark, and Vannelli [HMV92]
generalizes the eigenvector technique to k-way hypergraph partitioning optimizing
the cut-net metric. Here, the hypergraph is first transformed into a graph using the
clique-net model together with an edge weighting scheme that tightly underestimates
the number of cut-nets in any k-way partition of the hypergraph. Then, the eigenvector
approach of Barnes [Bar82] is used to compute an initial partition of the clique graph.
Lastly, the induced hypergraph partition is refined using the k-LA`-FM algorithm of
Sachnis [San86; San89] with a look-ahead of ` = 1. Since large hyperedges cause large
cliques, nets larger than 20 pins are removed from the hypergraph before spectral
partitioning, and re-inserted before direct k-way refinement.

SA-TS/EIG-TS. Areibi and Vannelli [AV93a; AV93c; AV00] explore the effective-
ness of combining tabu search [Glo89; Glo90] with simulated annealing [AV93c], and
with Sanchis’ k-LA`-FM algorithm [AV93a]. Tabu search in a sense generalizes the
locking mechanism used in KL/FM-type algorithms. Instead of allowing each vertex
to be moved at most once in each pass, the tabu approach maintains a list of the t
most recent moves. Vertices on the tabu list are disallowed to be moved again to avoid
cycling, unless the move meets a predefined aspiration criterion (e.g., it improves the
currently best solution), in which case the tabu list is disregarded.

[PP93]. Park and Park [PP93] propose an alternative objective function that, similar
to the ratio cut, combines cut-size reduction and balancing of block weights into a
single objective. However, while the motivation behind ratio cut is to form “natural”
bipartitions, the objective function of Park and Park [PP93] is intended to allow FM-
based algorithms to always move the highest-gain vertex (which could be prohibited
by the balance constraint in traditional FM). The new objective function is defined as
cut(Π) + r · bal(Π), where bal(Π) :=

∑
1≤i<j≤k |c(Vi)− c(Vj)| measures the imbalance

between pairs of blocks, and the balancing factor r controls the importance of balance
relative to cut-size. The combined objective function is integrated into the k-way
framework of Sanchis [San86; San89] (without look-ahead) and takes O(k(p + n2))
time per pass. A similar concept is proposed by Kim et al. [KLK93] to improve the
imbalance of k-way partitions for hypergraphs with a high variance in vertex weights.

KP. Chan et al. [CSZ93; CSZ94] generalize the spectral 2-way partitioning approach
of Hagen and Kahng [HK91a] along with the ratio-cut objective to k-way partitioning.
The k-way generalization of the ratio cut is termed scaled cost. After transforming
the hypergraph into the clique expansion Gx (hyperedges larger than 99 pins are
ignored) and computing the k smallest eigenvectors, a clustering heuristic is used
to infer the final k-way partition from an embedding of the nodes of Gx into a k-
dimensional subspace defined by the eigenvectors. The heuristic clustering algorithm
takes O(nk2 + nk logn) time.
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KC/AGG. Alpert and Kahng [AK93] then extend the approach of Chan et al.
[CSZ93; CSZ94] by proposing a new weighting scheme for the graph edges of the
clique expansion and employing two simpler algorithms (KC and AGG) to cluster the
points in the k-dimensional embedding. Instead of using an edge weight of 1/(|e| − 1)
for a clique edge corresponding to a hyperedge of size |e|, they use a uniform weight
of 4/(|e|(|e| − 1)). Using this model, any cut net of a bipartition makes an expected
contribution of 1 to the objective function. After computing the embedding, a minimum
diameter clustering is computed using either the cluster-growing KC algorithm [Gon85]
in time O(n log k) or the cluster merging, agglomerative AGG algorithm in time O(n2).

k-LA`-FM. Four years after generalizing the LA`-FM algorithm [Kri84] to k-way
partitioning, Sanchis [San93] revisits k-LA`-FM and adapts it to work with both
the connectivity metric (λ − 1) and the λ(λ − 1)/2 metric. While one pass of the
algorithm takes O(p(∆e + kl)(log k + ∆v`)) time for optimizing the former, one pass
optimizing the latter takes O(p(∆e + k`+ k2)(log k+ ∆v`)) time. Experimenting with
the look-ahead parameter `, Sanchis notes that improvements using higher-level gains
(i.e., ` > 1) were not as large as for cut-net optimization.

DLA. Hoffmann [Hof94] addresses the problem that only allowing a vertex to be
moved once during an FM pass may artificially constrain the search space. His dynamic
locking algorithm (DLA) therefore allows each node to move back and forth between
the blocks of a bipartition Π = (A,B) a certain, fixed number of times. As in the FM
algorithm, a vertex v is locked after it is moved from block A to block B. However,
after the move, DLA unlocks all previously locked neighbors Γ(v) which are still in
block A. Thus, these vertices get another chance of moving back to block B.

PLM/PFM. The locking issue is also addressed independently by Daşdan and
Aykanat [DA94; DA96; DA97]. The proposed PLM and PFM algorithms are extensions
of Sanchis’ k-LA`-FM algorithm (for ` = 1) and are based on the results of Daşdan’s
master thesis [Das93]. In the Partitioning by Locked Moves (PLM) algorithm, each
FM-pass is divided into a number N of phases. Within a phase, each vertex is only
allowed to be moved once. However, all vertices are unlocked again at the beginning
of the next phase. Similar to the FM algorithm, the final block of each vertex is
determined at the end of a pass. Partitioning by Free Moves (PFM) goes one step
further and completely discards the locking mechanism. Instead, the concept of move
mobility is used to decide which vertex is moved next. The mobility of a vertex
hereby captures both the gain of the move and the number of times the vertex has
already been moved. It increases with increasing gain and decreases as the move
count gets larger. Both algorithms start from a random k-way partition and use the
LIFO tie-breaking strategy if a gain bucket contains more than one vertex. While the
running time per pass is O(Npk(k +Gmax)) for PLM, the PFM algorithm takes time
O(pk + k2s+ f(k2 + k∆v∆es)), where s is a scale factor used to scale the mobility
values in the gain bucket data structure and f is the number of moves per pass.

GRCA. Bui and Moon [BM94; BM98] present a steady-state memetic algorithm
(i.e., genetic/evolutionary algorithms combined with local search [Kim+11]) for ratio
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cut bipartitioning, which uses a weak variation of the FM algorithm [FM82] as local
search engine to improve offspring solutions created via crossover or mutation. To
improve the performance of the crossover operation, a preprocessing step optionally
re-indexes the vertices by the visiting order of a weighted depth first search on the
clique expansion of the hypergraph (hyperedges larger than 20 pins are ignored).
SFC. Alpert and Kahng [AK94c; AK95a] revisit the problem of computing k-way
partitions optimizing the scaled cost objective using spectral techniques and propose
a restricted partitioning formulation. It is solved by computing a 1-dimensional
ordering of the vertices in the k-dimensional embedding using a space-filling curves
approach. The restricted formulation (called DP-RP) hereby forces each block of the
k-way partition to be a contiguous subset of the ordering and is solved via dynamic
programming.
WINDOW. In subsequent works, Alpert and Kahng [AK94a; AK94b; AK96]
propose a general framework to construct vertex orderings that preserve the structure
of the hypergraph (i.e., strongly connected vertices should be close to each other in
the ordering) without the use of spectral techniques. The algorithm uses an attraction
function which can be instantiated to optimize several objectives (e.g., scaled cost)
together with a sliding window technique which ensures that yet unordered vertices
are mainly “attracted” by the most recently ordered vertices. Already ordered vertices
outside the window only exert an attraction that decreases proportionally with their
distance to the end of the window. To create k-way partitions optimizing scaled cost,
the DP-RP approach is then used to split the ordering into k contiguous subsets/blocks.
PARABOLI. Riess, Doll, and Johannes [RDJ94] propose the PARABOLI algorithm
for optimizing the cut-net and the ratio cut metrics. It transforms the partitioning
problem into a linear programming problem on the Laplacian matrix of the clique
expansion of the hypergraph, which is then solved using the GordianL [SDJ91]
algorithm.
KDualPartFM. Cong et al. [CLS94; CLS96] follow up on the work of Cong et al.
[CHK92] and propose a k-way partitioning algorithm that optimizes the cut-net metric
by partitioning a new type of dual hypergraph. The new representation is a hybrid
between the net intersection graph and the dual netlist hypergraph, where a threshold
parameter is used to determine when hyperedge-nodes are connected via hyperedges
instead of clique edges. This hybrid hypergraph is initially partitioned using both a
greedy and a random initial partitioning algorithm and further refined using k-LA`-FM
with ` = 1. The solution of the net partition is then transferred back to a partial
vertex partition. The set of vertices that could not be assigned to a specific block
(because incident nets were in different blocks in the net partitioning solution) are
optimally distributed to the k blocks of the vertex partition by solving a flow problem
on a specifically constructed assignment network. Finally, the now complete vertex
partition is refined once again using the Sanchis’ k-way FM algorithm.
FBB. Yang and Wong [YW94; YW96; YW08] were the first to employ repeated, in-
cremental max-flow min-cut computations as a heuristic to find ε-balanced hypergraph
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bipartitions. Their Flow-Balanced-Bipartitioning (FBB) algorithm first transforms the
hypergraph into a flow network as proposed by Lawler [Law73]. Then, two vertices are
chosen uniformly at random to act as source and sink nodes, and an augmenting path
algorithm is used to compute a maximum flow. Let A be the set of all vertices that are
reachable from the source node via an augmenting path. Then (A,B), with B = V \A
comprises a bipartition of the hypergraph. If A violates the balance constraint, all
nodes of B along with one additional, randomly chosen node v ∈ A (the piercing node)
are contracted into the sink node and an incremental max-flow computation is used to
compute a new bipartition. Including v in the contraction allows FBB to compute a
different cut with a larger block B. This process is then repeated until the algorithm
finds a feasible bipartition.

PANZA. Solution quality and running time of FBB are improved by the PANZA
algorithm of Li et al. [LLC95], which implements max-flow computations on the star-
expansion of the hypergraph and introduces advanced, eigenvector-based heuristics to
select source and sink, as well as piercing nodes.

MELO. Building on the results of Alpert and Kahng [AK94c; AK95a] and Chan
et al. [CSZ93; CSZ94], Alpert et al. [AKY99], and Alpert and Yao [AY94; AY95]
propose the multiple eigenvector linear ordering (MELO) heuristic for scaled cost
k-way partitioning that uses as many eigenvectors as computationally possible to get
a better approximation of the partitioning problem. The d distinct eigenvectors are
then heuristically combined into a single vertex ordering, which is split into a k-way
partition using the DP-RP approach [AK94c; AK95a]. The running time of MELO is
O(dn2), where d is the number of eigenvectors used for partitioning.

LIFO-LA`-FM. Hagen et al. [HHK95a; HHK97] revisit the FM algorithm [FM82]
along with the look-ahead extension of Krishnamurthy [Kri84] and the k-way gener-
alization of Sanchis [San86; San89]. They note that while Fiduccia and Mattheyses
[FM82] used a LIFO tie-breaking scheme for vertices within the same gain bucket,
the original implementations of Krishnamurthy [Kri84] and Sanchis [San86; San89]
selected a vertex uniformly at random in case of ties. Comparing both approaches
experimentally with a FIFO strategy reveals that FIFO is considerably worse than
random, which in turn is outperformed by LIFO selection. Hagen et al. [HHK95a;
HHK97] explain this result by the observation that a LIFO scheme leads to a more
localized search in a certain area around the cut. Their experiments furthermore show
that the choice of the tie-breaking scheme has a greater effect on solution quality
than using higher-level gains, since LIFO-FM performed significantly better than
FIFO/Random-FM using look-aheads of ` = {2, 3, 4}. Lastly, they propose an exten-
sion to Krishnamurthy’s gain formulation that prefers to move vertices incident to
loose nets (i.e., nets that contain at least one locked pin in one of the two blocks).
More precisely, the gain formulation shown in Equation 3.4 is extended by adding
the term |{e ∈ I(v) | 0 < βA(e) < ∞∧ βB(e) = ∞}| for all look-ahead levels ` > 1.
While the first level therefore still corresponds to the actual FM gain, higher-levels
prefer moves towards blocks containing locked vertices. This ensures that in case of
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ties those moves are preferred that prevent nets from being locked in the cut-set for
the remainder of the pass.

GFM. Noting that FM is highly sensitive with regard to the initial bipartition,
Liu, Huang, and Cheng [Liu+95c] propose to compute the initial solution by solving
an unconstrained integer mathematical program using a gradient descent approach
instead of using randomly generated bipartitions.

LSMC. The work of Fukunaga, J.-H.Huang, and Kahng [FJK96] is also motivated
by the high quality variance of solutions computed by the FM algorithm. However,
instead of using more advanced initial partitioning techniques, they embed FM into a
metaheuristic that works similar to simulated annealing. Their LSMC algorithm starts
with a random bipartition which is refined using the FM algorithm until no further
improvement is found. Then, a “kick move” is used to perturb the current solution
into a new starting partition for FM. If the refined partition is better than the solution
before applying the kick move, it is accepted as starting point for the next iteration.
Otherwise it is rejected with a certain probability. This process is repeated for a
predefined number of iterations and the best solution encountered is returned as the
final bipartition. The authors evaluate several possible perturbation strategies out of
which the “clustering kick move” performed best. The intuition behind this approach
is that tightly connected clusters of vertices are likely to trap the FM algorithm in
the current local minimum. This strategy therefore grows two clusters of equal size
around two randomly chosen border vertices using breadth-first search and then swaps
the clustered vertices to create a perturbed solution.

PROP. Dutt and Deng [DD96a] note that even Krishnamurthy’s look-ahead ex-
tension [Kri84] of the FM algorithm is not able to accurately predict the future
implications of a vertex move on its incident nets. They therefore propose a proba-
bilistic gain formulation (PROP) that additionally associates a probability p(v) that
it will actually be moved during a pass (i.e., it is part of the sequence of moves that
leads to the best solution encountered) with each vertex v. In an iterative fashion,
these probabilities are used to compute more accurate vertex gains, which in turn
are used to compute more accurate probabilities. After a few cycles, the final gain
values will then be used in the FM algorithm. Since computing and maintaining the
probabilities is more expensive than using plain FM gains, the running time of PROP
becomes O(p2/m logn).

CLIP/CDIP. Furthermore, Dutt and Deng [DD96b; DD96c; DD02] observe that
since hypergraphs derived from VLSI circuits contain many highly connected clusters
of vertices with various densities, random initial bipartitions are likely to have clusters
spanning the cut-set (i.e., vertices of the cluster are contained in both blocks of the
bipartition). To improve solution quality, it is therefore necessary to “push” these
clusters into one of the two blocks. However, since several vertices of different clusters
may have the same gain, both FM and LA`-FM cannot distinguish between clusters
and thus are likely to work on several clusters simultaneously. Moreover, a cluster
is easily locked into the cut-set (i.e., nodes of the cluster are locked in both blocks),
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because FM-type algorithms move vertices in both directions. Dutt and Deng [DD96b;
DD96c; DD02] therefore propose a framework that implicitly favors moves which help
to push one cluster at a time out of the cut-set. To do so, their cluster-oriented iterative
improvement partitioner (CLIP) dynamically increases the weights of nets incident
to recently moved vertices. The key idea is to divide the original gain formulation
into two components: initial gain and delta gain. The initial gain corresponds to the
gain computed at the beginning of a pass. The delta gain refers to the gain updates
each vertex is subjected to due to the movement of neighboring vertices. CLIP uses
the initial gains to insert all vertices in the corresponding bucket data structures.
Before starting an improvement pass, all gains are then reset to zero by concatenating
the linked lists of all gain buckets in decreasing order and inserting this list into the
zero-gain bucket. Then, the algorithm proceeds as usual, i.e., it removes the vertex
with the highest gain, moves it to the opposite block, and updates the gains of all
neighboring vertices. However, since those gains have been reset to zero, CLIP thus
implicitly prioritizes neighbors of the just moved vertex – forcing the FM algorithm to
work in a localized area of the cut-set.

While the CLIP approach thus encourages moves of clustered vertices, it is not able
to detect whenever a cluster is completely removed from the cut-set and the removal
of a new cluster should start. This shortcoming is addressed with the cluster-detecting
iterative-improvement partitioning (CDIP) heuristic, which tracks gains of previously
moved vertices and considers a cluster to be removed from the cut-set if the overall
improvement stagnates for more then δ moves, where δ is a tuning parameter. After
reversing those moves, CDIP then uses the total gain (i.e., initial plus delta gain) to
determine a new start vertex for removing the next cluster. Furthermore, unlike at
the beginning of a CLIP pass, it only selectively resets the gain values to zero such
that information from the previously removed cluster is retained. For each free vertex,
this is done by keeping negative gains induced by nets containing locked pins in the
same block as the vertex, since these nets indicate that the vertex may belong to an
already moved cluster and therefore should remain in its current block. Since both
cluster-aware approaches need an underlying IIP engine, the authors propose the usage
of FM [FM82], LA`-FM [Kri84], and PROP [DD96a] in combination with CLIP and
CDIP.

LSR. The work of Cong, Li, Lim, Shibuya, and Xu [Con+97a; Con+97b] is based on
Lim’s master thesis [Lim97] and similarly to CLIP tries to remove clusters of vertices
from the cut-set using a modified FM algorithm. However, instead of increasing
locality by splitting the vertex gain into two components, their loose net removal
(LR) algorithm intentionally increases the gains of neighbors of a moved vertex which
are incident to loose nets. More precisely, for each loose net, the algorithm increases
the gains of free pins in the unlocked block such that they are more likely to be
moved next. This additional gain is added on top of the traditional FM gain, and is
devised such that it favors small nets, strong connectivity to the locked block and
weak connectivity to the unlocked block. LR therefore tries to (i) prevent loose nets
from becoming locked into the cut-set, and (ii) to push them into the block where they
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already have locked pins. Additionally, LR is combined with the stable net transition
(SNT) algorithm of Shibuya, Nitta, and Kawamura [SNK95] into the LSR algorithm.
Instead of restarting LR with a new initial partition after it arrives at a local minimum,
LSR compares the cut-set of the final bipartition with the initial cut-set before LR
refinement to identify stable nets (i.e., nets that remained cut throughout the run).
Then, it randomly chooses a stable net and moves all of its pins into the smaller
block – effectively removing it from the cut-set. This process is repeated until a fixed
percentage of stable nets is removed, or, since each vertex is only allowed to be moved
once, no further moves are possible. SNT thus sufficiently perturbs the current solution
to allow the LR algorithm to climb out of its current local minimum, and, at the same
time, is faster than repeatedly restarting LR from a new random partition.

ASFM. Buntine, Su, Newton, and Mayer [Bun+97] experimentally analyze a LIFO-
FM implementation which starts from a random bipartition. They note that while the
first few passes rapidly improve the solution quality, later passes merely correspond to
local restarts of the algorithm which yield only minor quality improvements. Motivated
by this observation, they propose an adaptive stochastic variant of FM which performs
only four full passes and then switches to a combination of shortened passes (that
do not move every vertex) and stochastic passes (that reject moves with a certain
probability). Furthermore, this variant is embedded into a wrapper that tracks quality
improvements over multiple runs, and terminates a pass if it did not sufficiently
improve the solution quality compared to the previous runs.

PROP-REX. Most IIP algorithms address the balance constraint by disallowing
moves that would yield infeasible solutions. Motivated by the fact that this approach
biases the search against moving heavy vertices, Dutt and Theny [DT97] propose a
relaxation process that allows a temporary violation of the balance constraint. Their
algorithm combines the probabilistic vertex gain approach of PROP [DD96a] with a
look-ahead for future violations, and a weighted benefits function that favors high-gain
violating moves if it is likely that the violation can be accounted for by moving vertices
in the opposite direction.

[BBR97]. Battiti et al. [BBR97] propose a series of greedy construction algorithms
that use different gain notions for assigning a vertex to a block of a bipartition. While
none of the schemes alone was able to consistently outperform the FM algorithm,
using the best scheme to construct an initial partition for FM was seen as a viable
alternative to using random initial bipartitions.

FBB. Liu and Wong [LW98] revisit the FBB algorithm and extend it to solve a VLSI
circuit-specific multi-way partitioning problem. Although this algorithm is not directly
applicable to k-way hypergraph partitioning, we explicitly mention this work because
it also contains two improvements for FBB. First, Liu and Wong [LW98] propose the
improved flow model described in Section 4.7.2, which distinguishes between two-pin
and multi-pin nets. Second, instead of using the partition induced by the max-flow
computation, they propose a greedy heuristic that searches for the most desirable
min-cut, which is defined as the min-cut that yields blocks with a size close to the
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maximum allowed imbalance. This reduces the number of iterations in FBB and, since
each iteration increases the cut-size, also improves solution quality.

DEEP/VAR–PROP. With DEEP-PROP, Dutt and Theny [DT98] and Dutt,
Arslan, and Theny [DAT99] extend PROP to not only account for the future effects of
a vertex move on incident nets (first-order information) but also to take into account
the implications that uncutting an incident net e has on nets adjacent to e (second-
order information). The memory consumption of DEEP-PROP is O(m∆v∆e) and the
running time is O(n∆v∆

2
e logn) = O(p3/m2 logn), where ∆v = p/n is the average

vertex degree and ∆e = p/m is the average hyperedge size. The authors therefore also
propose a lower-complexity version named VAR-PROP which in general follows similar
ideas, but retains the running time complexity of PROP, which is O(n∆v∆e logn) =
O(p2/m logn). While these complexities are feasible for partitioning hypergraphs
derived from VLSI circuits for which both ∆v and ∆e are small constants, they become
prohibitive for general hypergraphs.

MMP. Noting that the balance constraint often obstructs the movement of heavy
vertices in the FM algorithm, Cherng et al. [CCH98] propose an iterative improvement
algorithm that temporarily relaxes the balance constraint and renders FM’s locking
mechanism unnecessary. The algorithm works in passes, where each pass is divided into
a forward and a backwards moving phase. The former only moves vertices from block
V0 to block V1. The latter starts from the best solution seen so far and moves vertices
in the opposite direction until further moves would violate the balance constraint. The
best among all feasible partitions then forms the initial solution for the next pass.

K-PM/LR. Although the idea to refine a k-way partition by repeatedly applying a
2-way local search algorithm on pairs of blocks was already proposed by Kernighan
and Lin [KL70] in 1970, it was only put into practice 28 years later by Cong and Lim
[CL98]. They note that while direct k-way partitioning benefits from a more global
view and larger search spaces (by being able to consider all k blocks simultaneously),
relatively little progress was made to improve direct k-way algorithms like Sanchis’
k-LA`-FM [San86; San89; San93]. The lack of research in this direction is justified
with the recurring observation that k-LA`-FM is susceptible to being trapped in a
far-from-optimal local minima, because the large number of potential moves and move
directions make the algorithm prone to making wrong decisions.

Interestingly, Buntine et al. [Bun+97] give another explanation for the observed
performance difference between 2-way and k-way FM, which has gone largely
unnoticed. They note that “for k-way partitioning with k greater than 2, the final
state in the pass is not a mirror of the initial state, so as the pass proceeds, the
states just drift away from the initial state and a second local move is not created
at the end of the pass.” Thus, while near the end of a pass, 2-way FM again only
makes local changes to the solution it started with, its k-way counterpart can be
arbitrarily far away from the initial solution.

However, computing a k-way partition via recursive bipartitioning has several draw-
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backs as well: Vertices can only move between the blocks of the current subhypergraph
(i.e., RB has only a partial view of the whole partitioning problem) and for deeper
levels of the hierarchy it becomes increasingly harder to find small cuts, since 2-way
FM divides the instance into two densely connected blocks at each level. Cong and
Lim [CL98] therefore introduce the K-PM/LR algorithm, which first computes an
initial k-way partition via recursive bipartitioning using the LR algorithm [Con+97a;
Con+97b; Lim97], and then employs the FM algorithm [FM82] on pairs of adjacent
blocks. Blocks are paired based on the improvement achieved in previous passes, and
the algorithm stops as soon as a pass refining all possible pairs of blocks did not yield
an improvement.

IDP. While previous work was mostly concerned with iterative improvement and
spectral or flow-based algorithms, the iterative deletion algorithm of Madden [Mad99]
utilizes an entirely different paradigm, which he describes as follows: “Iterative
improvement algorithms pursue moves that appear the ‘best’, while iterative deletion
algorithms eliminate moves that appear the ‘worst’ ”. Instead of starting with a valid
k-way partition, his algorithm starts with a redundant assignment (i.e., each vertex
is assigned to every block) and then iteratively removes individual assignments in a
greedy manner such that the number of cut hyperedges is reduced until it arrives at a
feasible solution.

To the best of our knowledge, Madden [Mad99] was the first to use both uniform
and varying hyperedge weights in his experiments. While LIFO-FM performed
better than IDP for uniformly weighted nets, its solution quality for hypergraphs
with weighted hyperedges degraded substantially. Madden explains this behavior
with the fact that the recommended LIFO tie-breaking (which is intended to
increase localization) has almost no effect in this case, since the net weights
increase the range of possible vertex gains such that there are extremely few ties
in the max-gain buckets, rendering LIFO tie-breaking superfluous.

[Are99]. Areibi [Are99] evaluates the use of the greedy random adaptive search
(GRASP) procedure [FR89] for k-way hypergraph partitioning. Each GRASP iteration
consists of a construction phase, in which an initial k-way partition is constructed
based on a simple, randomized greedy algorithm, and a local improvement phase which
uses the k-LA`-FM algorithm to refine the solution.

Branch-and-Bound. Caldwell, Kahng, and Markov [CKM99d; CKM00e] quantify
the suboptimality of solutions computed by FM-based algorithms under tight balance
constraints for small instances with a large variance of vertex weights by comparing
them with the optimal bipartitions computed by a branch-and-bound as well as an
exhaustive enumeration algorithm. The latter is based on Gray code enumeration.
It starts with all vertices assigned to block zero, and then reassigns one node at a
time. The former uses a hybrid hypergraph representation which allows to speed-up
the algorithm by exploiting inevitable cuts caused by hyperedges of size two. An
inevitable cut is hereby induced by an unassigned vertex v and its already assigned
neighbors in the two blocks to which v is only connected via regular graph edges. No
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matter to which block the vertex will be assigned, the connections to the opposite
block will induce additional cut edges. This fact can be used to compute improved
lower-bounds on the solution quality and thus to speed up the branch-and-bound
algorithm. Furthermore, following Ihler et al. [IWW93], three-pin hyperedges are
represented as appropriately weighted cliques in order to increase the number of
two-pin nets.

An interesting observation of Caldwell et al. [CKM99d; CKM00e] is that for
hypergraphs with large variance in vertex weights and partitioning problems
with tight balance constraints, the instances become more difficult for FM-based
algorithms, because “1) the FM algorithm may never reach the feasible part of
the solution space (especially if it has trouble finding an initial balance-feasible
solution) and 2) even a relative scarcity of feasible moves (from any given feasible
solution) can make the algorithm more susceptible to being trapped in a bad
local minimum” [CKM00e, p. 1305]. In such situations, the assignment of heavy
vertices is even likely to be only determined by the initial partitioning algorithm
and may never be changed during refinement, because the corresponding vertex
moves are never feasible. This is a problem, because almost all move-based
partitioning algorithms were originally proposed for, and almost exclusively
evaluated on, hypergraphs with unweighted vertices.

VRW. Caldwell, Kahng, and Markov [CKM99c] and Alpert, Caldwell, Kahng, and
Markov [Alp+00] were the first to study the FM algorithm in the presence of fixed
vertices (i.e., some vertices are already assigned to a block of the bipartition before
partitioning and are not allowed to be moved during the partitioning process). Their
experiments indicate that while full FM passes are necessary to achieve high solution
quality for classical hypergraph partitioning, it is possible to limit the number of
moves to a certain fraction of the vertex set (for all passes except the first) in the
presence of fixed vertices and still achieve very good solutions. With VRW, Caldwell
et al. [CKM00c] then propose new techniques for FM-based partitioning that are able
to actively exploit the presence of fixed vertices and, at the same time, also perform
well in their absence. Instead of using random bipartitions as initial solutions, their
algorithm uses a “very illegal” initial partitioning algorithm (VILE), which puts all
free (i.e., not fixed) vertices into one block. This initial solution is then refined with a
modified FM algorithm, which relaxes the feasibility constraint of temporary solutions
by accepting all moves that do not increase the violation of the balance constraint.
Furthermore, at the beginning of a pass, (i) vertex gains are computed in random
order, and (ii) neighbors of fixed vertices are moved to the heads of their respective
LIFO gain buckets by “wiggling” fixed vertices back and forth between the two blocks.
This allows these vertices to move to the block of their fixed neighbor already in the
beginning of a pass.

CLIP2/LIFO2. Observing that previous partitioning heuristics were mostly pro-
posed for and evaluated on hypergraphs with unit vertex weights (with the notable
exception of PROP-REX [DT97]), Caldwell, Kahng, and Markov [CKM00d] inves-
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tigate the performance deterioration of FM and CLIP implementations for more
recent benchmark hypergraphs with non-uniformly weighted vertices. They note that
mostly instances from the ACM/SIGDA benchmark set [RB87; Brg93] were used
whenever previous work experimented with vertex-weighted hypergraphs. However,
vertex-weights of those instances are actually nearly uniform. In contrast, the more
recent ISPD98 benchmark set [Alp98] contains hypergraphs with large variations in
vertex weights (with vertices whose weight is larger than 10% of the total weight of
the hypergraph).

They also note that while ACM/SIGDA hypergraphs only contain low-degree
vertices (with up to 10 incident hyperedges) but have large nets (with more than
1000 pins), the ISPD98 benchmark hypergraphs (which are still in use today) have
“node degrees in the several hundreds; however, [...] no large nets” [CKM00d]. In
fact, more than half of the nets of ISPD98 hypergraphs are actually graph edges.

Using these instances, they demonstrate two effects that cause FM/CLIP implemen-
tations to perform badly in the presence of vertex weights. First, the strategy of
FM-based algorithms to only allow moves that do not violate the balance constraint
leads to the problem that nodes heavier than the balance tolerance are never allowed
to be moved. Thus, if the initial partition happens to choose a wrong assignment
for heavy nodes, the local search algorithm will never be able to recover from this
misassignment. Second, they describe the corking effect: Since previous work was
mainly driven by the development and tuning of heuristics for partitioning unweighted
hypergraphs, typical implementations only looked at the first vertex in the highest
gain bucket and skipped the entire bucket, if moving this vertex was not feasible. In
the presence of vertex weights this is especially bad for CLIP-based heuristics, since
CLIP puts all vertices into the zero-gain bucket at the beginning of a pass and the
node at the head of this bucket is likely to be a high-degree (and also heavy) vertex. If
this vertex cannot be moved, it thus acts as a cork that clogs the bucket queue. While
the obvious mitigation for the second issue is to look beyond the first move, Caldwell
et al. [CKM00d] also propose to perform a single LIFO-FM pass before employing
CLIP. In order to address the first problem, they suggest to temporarily relax the
balance constraint by calling the local search procedure multiple times. While for the
first call the balance constraint is modified such that every vertex is movable, it is
subsequently tightened in later calls, ensuring that the final partition is feasible with
regard to the original balance constraint.

Shrink-PROP. Revisiting PROP, Dutt and Deng [DD99; DD00] show that whenever
the first pin of a net is moved, PROP either does not adjust its removal probability at
all or actually decreases it. This has the side effect that the vertex gains of its remaining
free pins are not updated appropriately. They therefore propose the SHRINK-PROP
algorithm as an enhancement of PROP which amplifies vertex gains whenever a free
cut-net (i.e., a net whose pins have not yet moved) becomes loose. Since this only
entails a minor modification of the PROP algorithm, SHRINK-PROP retains the same
asymptotic complexity.
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[YC00]. Yarack and Carletta [YC00] experimentally analyze the PFM algorithm
of Daşdan and Aykanat [DA94; DA96; DA97] and show that its increased running
time is due to the fact that in each pass of the algorithm many vertices move multiple
times. However, since the major cut-size reduction mainly happens in the first few
passes, they adapt PFM to allow vertices to move more freely at the beginning than
at the end of a pass, and significantly reduce the vertex mobility for all passes except
the first.

SDP. Choi and Ye [CY00] propose a semidefinite programming (SDP) approach to
computing bisections that works on the clique-expansion. While generating solutions
of reasonable quality, the running time of their algorithm is prohibitively long.

MDC-RS. Areibi [Are00b] proposes an extension of k-LA`-FM that first relaxes
the balance constraint by a factor of δ. After all nodes are moved, it then creates a
feasible solution by greedily moving vertices from overloaded to underloaded blocks.
Furthermore, after arriving at a local minimum, the algorithm performs a series of
moves that again worsen solution quality in order to allow the next FM pass to explore
a different part of the search space. In a subsequent work, this algorithm is then
embedded into an evolutionary framework [Are00a].

NGSP. Zhao [Zha00], Tao [Tao02], and Zhao, Tao, and Zhao [ZTZ02] extend the
LSR algorithm of Cong et al. [Con+97a; Con+97b] from 2-way to k-way partitioning
and propose a minor modification to the gain formulation of LR such that it is able to
distinguish between internal nets and nets that are part of the cut-set.

WalkPart. Ramani and Markov [RM03] adapt the biased random walk heuristic
of the WalkSAT Boolean Satisfiability solver to hypergraph bipartitioning. Their
WalkPart algorithm first randomly selects a net from the cut-set and then either
chooses a random pin with probability p, or, with probability 1 − p, the pin v that
minimizes a normalized scoring function. For each net e ∈ I(v), the score measures
the number of moves required to remove e from the cut-set given the fact that v is
moved, and is normalized with the size of e. The score of a vertex v then is the sum
of the normalized scores of its incident nets e ∈ I(v). Since WalkPart appears to have
different local minima than the FM algorithm, the authors propose a hybrid strategy
that first runs FM and then applies the WalkPart heuristic to lead FM out of the
current local minimum.

LFM. Kim, Kim, and Moon [KKM04] generalize the concept of lock gains [KM04]
from graphs to hypergraphs and propose an FM variant (LFM), which uses the new
gain formulation to select the next vertex move. Traditional FM gains are only
employed for tie-breaking. By taking the number of locked and free pins of hyperedges
into account, the lock gain concept tries to incorporate information about previous
vertex moves into the move selection process. In order to further improve solution
quality, LFM is then embedded into a simple steady-state evolutionary algorithm.

[Arm+10]. Armstrong et al. [Arm+10] propose a shared-memory memetic algorithm
that performs crossover, mutation, and local search on multiple individuals in parallel
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by assigning a fraction of the total population to each core. To exploit the local
solution space, the algorithm employs either FM or k-LA`-FM.
Hyper-PuLP. In his master thesis, Buurlage [Buu16] generalizes the Partitioning
using Label Propagation (PuLP) graph partitioning algorithm [SMR14] to hypergraph
partitioning with the intention to create a “reasonable [sic] good partitioning that is not
necessarily of highest quality” [Buu16, p. 51], but still better than e.g. a simple zero-
cost partitioning scheme such as a cyclic distribution of vertices to blocks [Buu16, p.
64]. The algorithm works directly on the input hypergraph and the label propagation
procedure is adapted such that the number of differently labeled pins in all hyperedges
is minimized. This is achieved by defining a weighting function for connections to
neighboring vertices that (i) prefers not to introduce new labels to a net, (ii) prefers
labels that occur often within a net, and (iii) refrains from choosing a label that only
few pins of the hyperedge have in common.
SHP. With the introduction of two-level and multi-level algorithms (which will be
discussed in the following section), HGP-related research mostly shifted away from
flat partitioning. However, with SHP, Kabiljo et al. [Kab+17] recently proposed a
distributed-memory algorithm that again directly operates on the input hypergraph.
Starting from a random initial partition, the algorithm performs a number of iterations
that move vertices between blocks in order to improve solution quality. In each
iteration, SHP first computes the move that yields the highest gain for every vertex
and records the number of vertices that would like to move from bock Vi to block Vj
in a k × k matrix S. Then, the move probability pi,j for actually moving a vertex
v ∈ Vi to block Vj is calculated as min(Si,j , Sj,i)/Si,j for all pairs of blocks. This
ensures that, in expectation, the same number of vertices are moved in both directions.
Finally, the algorithm draws a random number r from the interval [0, 1] for each
vertex v ∈ Vi and performs the move to block Vj if r < pi,j and g(v) > 0. While
the general structure of SHP is inspired by the KL algorithm [KL70; SK72], the key
difference is the objective function used in the optimization. Noting that directly
optimizing objectives such as the connectivity metric can easily trap heuristics in local
minima, Kabiljo et al. [Kab+17] suggest to optimize probabilistic fanout. The objective
is motivated by an application in which hypergraph vertices represent data items,
hyperedges represent queries, and each query requires one of its data items only with
certain fixed probability p. Thus, for a given k-way partition Π = {V1, . . . , Vk}, the
probability that a hyperedge e with Φ(e, Vi) pins in block Vi needs one of those pins
is 1− (1− p)Φ(e,Vi). The p-fanout of a hyperedge is then defined as the sum of these
probabilities over all k blocks, and the objective is to optimize the average p-fanout of
all hyperedges. Assuming a constant number of iterations, the algorithm is shown to
run in O(kp) time. In order to cope with partitioning instances for which k = Ω(n),
the authors also propose a recursive bisection variant (SHP-2) by constraining the
possible move targets for each vertex at each level. An implementation of SHP-2 in
the Apache Giraph [Mal+10; Fou] framework is publicly available.
HYPE. Recently, Mayer et al. [May+18] generalized the neighborhood expansion
heuristic originally proposed by Zhang, Wei, Liu, Tang, and Li [Zha+17] for graph
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edge partitioning to k-way hypergraph partitioning. Their HYPE algorithm computes
a k-way partition by repeatedly growing one block Vi at a time. The growing process
starts from a random seed vertex. In order to determine the next vertex v to be
added to block Vi, HYPE maintains a set Fi of s neighboring fringe vertices. It then
successively adds the fringe vertex with smallest external neighbors score dext to
Vi, chooses r new candidate vertices to be added to the fringe, and takes the best
s− 1 + r fringe candidates as the new fringe. Fringe candidates are also chosen based
on external neighbors score, which for a given vertex v is defined as dext := |Γ(v) \ Fi|.
By preferring vertices with small dext score (i.e., vertices with a large number of
neighbors already contained in Fi ∪ Vi), HYPE tries to preserve structural locality
while growing each block. Since updating the fringe can be expensive due to the
potentially large neighborhood induced by large hyperedges, Mayer et al. [May+18]
propose three optimizations to make fringe updates efficient: (i) hyperedges incident
to fringe vertices are traversed in increasing order of their size (since good fringe
candidates should have low external degree), (ii) the number r of fringe candidates
is limited to r = 2, and (iii) dext is only computed once per vertex and then cached.
While the worst case complexity of HYPE is O(m logm+ nm), the authors note that
in practice the observed running time complexity is O(m logm+n), due to a constant
set of r = 2 fringe candidates and a constant fringe set size of s = 10.

Table 3.1: Overview of flat, single-level partitioning algorithms. We differenti-
ate between iterative improvement (IIP) algorithms, spectral partitioning (SP),
growing heuristics (Grow), flow-based approaches (Flow), and mathematical pro-
gramming (MP), as well as metaheuristics such as evolutionary algorithms (EA),
simulated annealing (SA), and tabu search (TS). ID denotes the iterative deletion
algorithm. We furthermore distinguish between bipartitioning (B), recursive
bipartitioning (RB), and direct k-way partitioning (K) algorithms.

Algorithm Mode Objective Type Page
KL B fc(Π) IIP 38
FM B fc(Π) IIP 41
[KGV83] B fc(Π) IIP 46
LA`-FM B fc(Π) IIP 46
k-LA`-FM K fc(Π) IIP 47
AlgI B fc(Π) Grow 48
EV K fc(Π) EA 48
BIPART B fc(Π) EA 48
RCut1.0 B frc(Π) IIP 48
MCPG K fc(Π), fs(Π) IIP 49
WHB B fc(Π) Grow 49
EIG1 B frc(Π) SP 49
EIG1-IG B frc(Π) SP 49
IG-Match B frc(Π) SP 49

Continued on next page
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Table 3.1 – Continued from previous page
Algorithm Mode Objective Type Page
NETPART K fc(Π) SP 50
SA-TS K fc(Π) SA+TS 50
EIG-TS K fc(Π) IIP+TS 50
[PP93] K fc(Π) IIP 50
KP K fsc(Π) SP 50
KC/AGG K fsc(Π) SP 51
k-LA`-FM K fλ(Π) IIP 51
DLA B fc(Π) IIP 51
PLM/PFM K fc(Π) IIP 51
GRCA B frc(Π) EA 51
SFC K fsc(Π) SP 52
WINDOW K fsc(Π) SP 52
PARABOLI B fc(Π), frc(Π) MP 52
KDualPartFM K fc(Π) IIP 52
FBB B fc(Π) Flow 52
PANZA B fc(Π) Flow/SP 53
MELO K fsc(Π) SP 53
LIFO-LA`-FM B fc(Π) IIP 53
GFM K fc(Π) IIP 54
LSMC B fc(Π) SA+IIP 54
PROP B fc(Π) IIP 54
CLIP/CDIP B fc(Π) IIP 54
LSR B fc(Π) IIP 55
ASFM B fc(Π) IIP 56
PROP-REX B fc(Π) IIP 56
DEEP/VAR-PROP B fc(Π) IIP 57
MMP B fc(Π) IIP 57
K-PM/LR K fc(Π), fλ(Π) IIP 57
IDP K fc(Π) ID 58
[Are99] K fc(Π) GRASP+IIP 58
VRW B fc(Π) IIP 59
CLIP2/LIFO2 B fc(Π) IIP 59
SHRINK-PROP B fc(Π) IIP 60
[CY00] B fc(Π) MP 61
MDC-RS K fc(Π) IIP 61
NGSP K fc(Π) IIP 61
WalkPart B fc(Π) IIP 61
LFM B fc(Π) IIP 61
Hyper-PuLP K fλ(Π) IIP 62
SHP RB/K fanout IIP 62

Continued on next page
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Table 3.1 – Continued from previous page
Algorithm Mode Objective Type Page
HYPE K fλ(Π) Grow 62

3.4 From Two-Level To Multi-Level Partitioning

[IKS75]. Only three years after the adaptation of the KL algorithm to hypergraph
partitioning through Schweikert and Kernighan [SK72], Ishiga et al. [IKS75] proposed
the first two-level algorithm. The algorithm first computes a size-constrained clustering
using a cluster-growing technique that favors the formation of highly connected
clusters, where connectivity between a set C of vertices is defined as f(C) := 1 −
cut(C, V \C)/

∑
v∈C d(v). The algorithm thus builds internally densely and externally

sparsely connected clusters. After clustering, the clusters are contracted and the
coarse hypergraph is initially partitioned and subsequently refined using the KL
algorithm. Their implementation is furthermore able to compute k-way partitions via
recursive bipartitioning and ensures feasible solutions by re-balancing both clustered
and unclustered vertices. Ishiga et al. [IKS75] observe that clustering significantly
reduces the number of nets of the coarser hypergraph, which makes the partitioning
problem simpler. Moreover, they note that moving clusters instead of single vertices
gives the KL algorithm a more global view on the partitioning problem.

The work of Ishiga et al. [IKS75] thus already addresses the main problems of flat
partitioning algorithms well before the more advanced flat techniques presented
in the previous section were developed. While many of those algorithms tried
to integrate some notion of foresight and locality into the partitioning process
using advanced tie-breaking schemes or gain definitions, the clustering-based
preprocessing technique of Ishiga et al. [IKS75] in a sense presaged the successes
of the two- and multi-level algorithms developed in the 1990s.

dKLFM. Analyzing the performance of the FM algorithm for hypergraphs H with
varying network ratios r(H) := (p −m)/n experimentally, Goldberg and Burstein
[GB83] show that FM performs poorly for ratios less than 3 and nearly optimally for
ratios larger than 5. They note that instances derived from VLSI circuits have ratios
in the range of 1.9 < r(H) < 2.5 and therefore propose a matching-based two-level
technique, with the intention to create coarser hypergraphs with increased ratio r(H).
The algorithm first computes and contracts a matching, then computes a random
bipartition of the coarse hypergraph, and uses the FM algorithm to refine the solution.
Following ideas suggested by Goldberg and Gardner [GG83], however, the algorithm
does not stop after projecting the coarse solution back to the original instance, since
coarsening might have contracted edges that should have been part of the cut-set.
Instead, it bipartitions each of the two blocks again, computes and contracts matchings
in all four blocks, and then performs another round of FM refinement in order to
account for accidentally contracted cut-edges during the first bipartition.
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In a sense, Goldberg and Burstein [GB83] discovered a shortcoming of FM that
also has gone largely unnoticed by researchers working on flat partitioning at
that time. The network ratio parameter r is closely related to the average vertex
degree ∆v. In case of small vertex degrees and in the absence of net-weights,
many vertices are likely to have similar gains – rendering KL/FM ineffective. Bui
et al. [Bui+87; Bui+89] also point out that iterative improvement algorithms
perform better as the average degree of the graph increases. Lengauer [Len90,
p. 273] conjectures that for instances with large minimum vertex degree or for
dense instances, few local minima exist that are not global minima.

STABLE. Noting that there is no constant factor error bound on the cut-size
generated by maximum matching-based approaches, Cheng and Wei [WC90; CW91]
use recursive ratio cut bipartitioning to identify “natural” clustering structures in
the hypergraph. Cluster sizes are constrained by forcing the algorithm to divide the
hypergraph in a fixed number of clusters. After forming a coarse hypergraph by
contracting each cluster into a single vertex, an initial bipartition is refined using
the FM algorithm. Then, contraction is undone and FM is applied again on the
original hypergraph. The authors note that this approach greatly reduces the standard
deviation of solution quality compared to using FM directly on the input hypergraph
and to using a maximum matching-based coarsening scheme [Bui+89].

PD. Since IIP algorithms easily become trapped in local minima, and due to the
fact that this effect becomes even worse in the case of direct k-way partitioning
because of the increased search space, the direct k-way primal-dual (PD) algorithm
of Yeh, Cheng, and Lin [YCL91a; YCL91b; YCL94; YCL95] also employs the ratio
cut-based bipartitioning algorithm of Cheng and Wei [WC90; CW91] for clustering
the hypergraph before partitioning. The novelty of PD, however, is a refinement
algorithm that alternately uses two kinds of passes. While a primal pass uses a
k-way extension of the traditional FM algorithm that moves single vertices, a dual
pass employs a modified FM algorithm that uses a net-based move model, which
allows moving multiple vertices at once to directly remove nets from the cut-set with
one move operation. Since gain updates in this model entail gain updates for both
neighbors and neighbors of neighbors of moved nets, the complexity of a dual pass
becomes O(mk∆2

e∆2
v). Therefore hyperedges with a size larger than a fixed threshold

are ignored in the dual passes in order to control the running time.

[HK92a]. Hagen and Kahng [HK92a] propose a two-level algorithm that tries to use
as much global structural information as possible during the coarsening phase. Their
O(n3) time RW-ST clustering algorithm first finds cycles in a random walk of the
hypergraph, uses the cycle information to compute a “sameness” score for all pairs of
vertices, and then clusters vertices with non-zero sameness values. The FM algorithm
is used to refine the initial partition of the coarse hypergraph, which in turn is then
used as a starting solution for another FM pass on the original hypergraph.
A similar idea is used in the work of Alpert and Kahng [AK93], who employ the

spectral AGG clustering algorithm briefly described in the previous section not only

66



3.4 From Two-Level To Multi-Level Partitioning

for flat k-way partitioning, but also use the clustering of the geometrically embedded
vertices in a two-level algorithm that uses FM as iterative improvement engine.
HGCEP. The hierarchical gradual constraint enforcing partitioning (HGCEP) al-
gorithm of Shin and Kim [SK93] uses a clustering technique that iteratively merges
vertices with high closeness score. Two vertices or clusters are said to be close to
each other if they have many nets in common. More precisely, the closeness of two
vertices/clusters u and v is defined as

closeness(u,v) := |{I(v) ∩ I(u)}|/min(I(v), I(u))− α(c(u) + c(v))/c, (3.5)

where c is the average cluster weight and α is a tuning parameter. The second term
is hereby used to prefer the formation of balanced clusters. The clustered vertices
are then contracted to form the coarse hypergraph, and a random initial partition is
refined using a local search algorithm that only performs feasible vertex moves from
the heavier to the lighter block in decreasing order of their gain. Additionally, Shin
and Kim [SK93] account for the fact that the coarse hypergraph has varying vertex
weights, by first using a relaxed balance constraint, which is then iteratively tightened
after each pass (hence the name gradual constraint enforcing partitioning). This gives
the algorithm more flexibility to move heavier vertices in early passes, while still
ensuring feasibility at the final pass. The clustering, initial partitioning, refinement
process is repeated multiple times and the best partition is again refined using the
uncontracted original hypergraph. In a later work, Kim, Kim, and Shin [KKS96]
improve the HGCEP algorithm by slightly modifying the closeness function and
introducing an additional refinement algorithm that is used to improve the clustering.
Cluster refinement is done by moving vertices from larger to smaller clusters such that
the cut-size between the pair of clusters is reduced, while at the same time producing
more balanced clusters.
FMC. Cong and Smith [CS93] propose one of the first multi-level HGP algorithms.
The entire algorithm works on the clique expansion Gx of the hypergraph, in which
nets with |e| > 5 are ignored during construction in order to reduce the size of Gx.
In the coarsening phase, a clustering algorithm finds cliques of size r0 and r0 + 1 in
Gx, where r0 is an approximation of the size of the largest clique in the graph. The
identified cliques are contracted if the cluster density (i.e., the ratio between the total
weight of all edges within the cluster and the number of all possible edges

(
c
2
)
) is

above a threshold and the resulting cluster does not violate predefined bounds on
cluster size and weight. The density threshold is used to prevent cliques introduced
by multi-pin nets from automatically being recognized as a cluster. Afterwards, r0 is
recomputed for the clustered graph and the process repeats until a sufficient number
of clusters is found. In a post-processing step, yet unclustered nodes are contracted
using a matching-based algorithm. After computing and refining an initial solution
using the FM algorithm [FM82], the clustering is not reversed completely in one step.
Instead, clusters are uncontracted along the clustering hierarchy and an FM-based
refinement algorithm is employed (i) to improve the balance between blocks and (ii)
to improve solution quality on each unclustering level.
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[Yan+94]. The two-level algorithm of Yang et al. [Yan+94] uses the RW-ST clus-
tering algorithm of Hagen and Kahng [HK92a] as a preprocessing step. The initial
bipartition is then computed using a greedy growing strategy that starts with only
one seed vertex in one block and all other vertices in the other block, and then repeat-
edly moves neighboring vertices from the larger to the smaller block in the order of
decreasing gain. During this process, the algorithm keeps track of a certain number of
local minima – all of which will then be used as a starting solution for refinement. The
proposed refinement algorithm follows the FM paradigm with an additional restriction
that only allows neighboring vertices of moved vertices to change blocks. The best
of all refined initial solutions is then projected back to the original hypergraph and
refined once again using the same algorithm.

BISECT. The BISECT algorithm of Saab [Saa95] identifies and contracts clusters
within a modified FM algorithm. The key idea behind BISECT is that vertices “that
are densely connected tend to stay together after a pass of an iterative algorithm if
they were initially together in the same subset of the bisection” [Saa95]. BISECT
starts with a random initial partition and performs several bipartition-and-coarsen
phases as long as an improvement is found or contractions are possible. In each phase,
a modified FM algorithm first only moves vertices in one direction until all nodes are
locked or a stopping criterion applies (forward phase). Then, free vertices are moved in
the opposite direction to restore balance (re-balance phase). This process is repeated
until all vertices are locked. Afterwards, groups of neighboring vertices which moved
together in a forward or re-balance phase are contracted. Following the author, we will
refer to this type of coarsening algorithm as bisect-and-compact (BC). The idea here is
similar to the motivation of the LIFO bucket management strategy proposed by Hagen
et al. [HHK95a] and the CLIP heuristic of Dutt and Deng [DD96b], in that vertices
that are part of a move sequence from one block to the other block may constitute a
natural cluster.

While the main motivation for previous two-phase approaches was to reduce the
size of the partitioning problem and to increase the average vertex degree in order
to reduce the erratic behavior FM-type algorithms, Saab [Saa95] was probably the
first to point out an additional advantage of coarsening the hypergraph, namely
the reduction of hyperedge sizes. Large cut-nets with many pins in both blocks of
the bipartition are difficult to remove from the cut-set using vertex-move-based
IIP algorithms. However, the coarsening process will make such nets successively
smaller, and thus successively easier to remove. Furthermore, Saab [Saa95] also
observes that contracting large clusters of vertices at once may be too aggressive
and prevent refinement algorithms from finding good solutions. This especially
affects rather dense instances, in which clustering algorithms are susceptible to
creating wrong clusters, i.e., groups of vertices that should not all be contained
in one block of the bipartition.

Strawman. Hauck and Borriello [HB95; HB97] present a comprehensive evaluation
of many bipartitioning techniques existing at that time and combine the best of
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them into the multi-level algorithm Strawman [Hau95]. For the coarsening phase,
they evaluate a random clustering approach inspired by Bui et al. [Bui+89], the K-L
clustering method of Garbers, Prömel, and Steger [GPS90], the bandwidth clustering
algorithm of Roy and Sechen [RS93], along with a new connectivity clustering algorithm
based on the work of Schuler and Ulrich [SU72]. We briefly explain the latter only,
since it performed best in the experimental evaluation. The connectivity clustering
algorithm visits all nodes in random order and clusters each vertex u with the neighbor
v ∈ Γ(u) with the highest connectivity score

con(u, v) := 1
c(u) · c(v)

ψ(u, v)
(d(u)− ψ(u, v)) · (d(v)− ψ(u, v)) , (3.6)

where ψ(u, v) :=
∑
e∈{I(u)∩I(v)}

1
|e|−1 is the rating function used in the bandwidth

clustering algorithm of Roy and Sechen [RS93]. Thus, while the bandwidth in the
numerator favors vertex pairs that have a large number of small nets in common, the
denominator favors the formation of small clusters and merging vertex pairs that are
strongly connected to each other.
The coarsest hypergraph is then initially partitioned using a random initialization

algorithm that first permutes all vertices and then finds the split into two blocks that
gives the best balance. This technique performed better than the seeded initialization
technique of Wei and Cheng [WC89], a simple BFS- and a DFS-based growing algorithm,
and the spectral partitioning algorithms EIG1 [HK91a] and EIG-IG [HK92a]. In the
refinement phase, the initial bipartition is then refined using a modified version of
LIFO LA3-FM [Kri84], which allows higher order gains for hyperedges that are not part
of the cut-set. This refinement algorithm performed better than the primal/dual FM
algorithm of Yeh et al. [YCL91a; YCL94]. Finally, Hauck and Borriello [HB95; HB97]
evaluate four uncoarsening strategies (i) no uncoarsening, (ii) complete uncoarsening
as in the previous two-level approaches, (iii) multi-level uncoarsening as used by Cong
and Smith [CS93], and (iv) multi-level cut-net uncoarsening, which only uncontracts
border vertices on each level. While multi-level approaches performed significantly
better than no uncoarsening and complete uncoarsening, the experiments did not
yield conclusive results on whether option (iii) or option (iv) should be preferred. The
authors decided to use option (iii) in Strawman.

CMM. Cherng and Chen [CC96] use the ratio cut partitioning algorithm of Wei
and Cheng [WC89] to compute a clustering and then employ a slightly simpler version
of their MMP algorithm [CCH98], which has already been described in the previous
section, to compute multiple bipartitions of the coarse hypergraph. The best solution
is then transferred back and used as initial partition for a final refinement pass on the
original hypergraph.

[AV96]. Areibi and Vannelli [AV96] propose a clustering algorithm that sequentially
grows clusters around high-degree vertices by merging strongly connected neighbors
to the respective seed vertex. The coarse solution is then initially partitioned using a
GRASP [FR89] heuristic and refined using a simple dynamic hill climbing algorithm.

69



3 A Brief History of Hypergraph Partitioning

After transferring the solution back to the original hypergraph, another local search
algorithm is used to refine the partition. In their experiments, the k-LA`-FM algorithm
of Sanchis [San89], a simple genetic algorithm, and a tabu search approach [AV93b]
were used to perform the final refinement.

GMetis. Alpert, Hagen, and Kahng [AHK96] evaluate the use of the multi-level
graph partitioning system METIS [KK95c] as a hypergraph partitioning algorithm.
Before partitioning, the hypergraph is converted into a graph using a randomized
clique-expansion technique that for each net e adds a unit weight edge between 5|e|
random pairs of vertices (and ignores nets larger than 50 pins). METIS is configured
to use a heavy-edge matching technique during coarsening, greedy graph growing for
initial partitioning, and a modified version of the FM algorithm that is started with
all boundary vertices [HL95; WCE95]. In order to make the approach more stable,
METIS is embedded into a simple genetic algorithm, hence the name GMetis.

MKP. Chan, Schlag, and Zien [CSZ96a; CSZ96b; CSZ99] present a k-way multi-
level spectral hypergraph partitioning algorithm for scaled-cost optimization that is
able to handle arbitrary vertex weights. In contrast to previous spectral partitioning
approaches which addressed vertex weights only when splitting the sorted eigenvec-
tor [HK91a], their algorithm directly incorporates weight information into the spectral
partitioning process via a modified Laplacian. While coarsening and spectral initial
partitioning are performed on the clique expansion Gx, the refinement algorithm
directly works on the hypergraph. The coarsening algorithm is similar to the heavy
edge matching algorithm of METIS [KK95a; KK98a]: Edges are visited in decreasing
order of their weight and contracted if one of the endpoints has not yet been clustered.
This process then continues until n/2 edges were merged or no more contractions are
possible. For refinement, the authors repeatedly apply the RCut1.0 algorithm [WC89]
on pairs of blocks.

MLH. In a follow-up work, Chan et al. [CSZ97a; CSZ97b] propose another k-way
multi-level algorithm that combines spectral partitioning with iterative improvement
algorithms. In MLH, the star-expansion is used as graph model for heavy-edge
matching-based coarsening and spectral partitioning. The algorithm is special for three
reasons: First, it uses a new k-way FM variant, which conceptually lies somewhere
between Sanchis’ k-LA`-FM algorithm [San89] and the pairwise FM approach of
Kernighan and Lin [KL70] that was put into practice by Cong and Lim [CL98]. While
the former has to deal with k(k − 1) possible move directions simultaneously and the
latter applies pairwise refinement to all k(k − 1)/2 pairs of blocks sequentially, the
rotary KLFM algorithm of Chan et al. [CSZ97a; CSZ97b] considers 2(k − 1) possible
move directions at each step. This is done by choosing each block in turn as the move
target and only allowing vertices to move from all other blocks to the target bock and
from the target block to all other blocks. Second, spectral information is not only
used to create initial partitions, but also employed in the rotary FM algorithm to
influence the direction of vertex moves (similar to CLIP encouraging moves in the
same direction), to break ties for vertices with same FM gain, and as a mechanism to
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escape from local minima. Third, while previous spectral/IIP hybrid algorithms use a
single spectral solution as starting partition for refinement, MLH creates and refines
multiple spectral k-way partitions. This approach is motivated by the observation
that the spectral solution is far away from the original problem because of (i) the
hypergraph-to-graph conversion, (ii) solving a relaxed problem for spectral partitioning,
and (iii) because of multi-level coarsening.

CAMS. In contrast to previous two-level approaches that use dedicated clustering
algorithms to coarsen the input hypergraph, Hagen and Kahng [HK97] propose a
technique that derives the clustering directly from a certain number of FM-based
partitioning solutions. Their clustered adaptive multistart (CAMS) approach starts
with a set of t random solutions and works in a series of two-level FM iterations. Each
iteration first coarsens the input hypergraph by contracting all vertices that were in
the same block in all t previous bipartitions. Then, t new bipartitions are created by
computing t initial random partitions of the coarse hypergraph which are then refined
on the coarse and on the fine level via FM local search. These t new solutions are
used in the coarsening process of the next iteration. This process continues until two
successive iterations did not yield an improvement.

MLc/MLf . Motivated by the success of the multi-level paradigm for graph parti-
tioning in the scientific computing community [HL95; KK95b], Alpert et al. [AHK97;
AHK98] propose the MLc and MLf hypergraph partitioning algorithms. They note
that multi-level schemes offer several advantages over two-level approaches: In a
two-level scheme, a single clustering phase can lead to hypergraphs that are too coarse
– limiting the potential of refinement algorithms to improve the solution. Furthermore,
multi-level approaches can be very efficient, since local search algorithms already start
with high quality solutions and therefore only need very few passes to converge to
a local optimum at each level. Lastly, performing local search at multiple levels of
the hierarchy has the benefit that bad local minima can be avoided at the coarser
levels (because multiple vertices of the input hypergraph are moved at once), while
optimization on the first levels of the hierarchy still allows for fine-grained optimization.
Their coarsening algorithm follows similar ideas as the heavy edge matching al-

gorithm of Karypis and Kumar [KK95b]. However, the key difference to previous
multi-level graph and hypergraph partitioning algorithms is a more fine-grained control
over the number of hierarchy levels. Instead of computing maximal matchings, ML’s
coarsening algorithm only matches a fraction of vertices at each level (controlled by
a matching ratio parameter r). This is motivated by the observation that a larger
number of levels gives the refinement algorithm more opportunities to improve the
solution, while at the same time, the number of passes at each level is likely to be lower
because of the smaller differences between successive levels. The matching algorithm
visits all vertices in random order. For each vertex u, it tries to find the unmatched
vertex v that maximizes the connectivity score

con(u, v) := 1
c(u) · c(v)

∑
e∈{I(u)∩I(v)}

1
|e|
, (3.7)
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where the first factor prevents vertex weights in coarser levels from becoming too
imbalanced while the second factor prefers vertices connected via a large number of
small hyperedges. At each level, the matching algorithm stops as soon as no more
matchings are possible or r|V i| vertices are matched, where |V i| is the number of
vertices on the current level i. While this coarsening scheme is employed in both MLc
and MLf , MLc uses the CLIP [DD96b] algorithm in the refinement phase and thus
is restricted to bipartitioning, whereas MLf is a direct 4-way partitioning algorithm
that employs 4-LA1-FM [San93] as local search algorithm to optimize the SOED
metric. Alpert [Alp96, p. 198] notes that the current limitation to 4-way partitioning
is because of the performance issues of k-LA`-FM [San93] due to the large number of
O(k2) possible move directions.

hMETIS-R. The multi-level hypergraph partitioning system hMETIS, proposed
by Karypis et al. [Kar+97a; Kar+97b; Kar+99] in 1997, is one of the best-known
HGP systems and is still widely used today. Since the initial version uses recursive
bipartitioning to compute k-way partitions, it will be referred to as hMETIS-R
throughout this dissertation.
The coarsening schemes employed in hMETIS-R are motivated by the observation

that a good coarsening algorithm should (i) create small hypergraphs such that a good
bipartition of the coarsest hypergraph is not significantly worse than a bipartition of
the input hypergraph, and (ii) successively reduce the sizes of the hyperedges since
move-based refinement algorithms perform better if most hyperedges are small. The
edge coarsening (EC) algorithm visits each vertex in random order, and for each vertex
u chooses the unmatched neighbor u ∈ Γ(v) as contraction partner that maximizes

con(u, v) :=
∑

e∈{I(u)∩I(v)}

ω(e)
|e| − 1 . (3.8)

Thus, the algorithm prefers to contract vertices that are connected by a large number
of small, heavy hyperedges.

The authors note that limiting contractions to heavy-edge maximal matchings has
the drawback that only nets of size two (i.e., graph edges) can be removed from
the hypergraph. Thus, the total hyperedge weight only decreases slowly during the
coarsening process. They therefore propose the hyperedge coarsening (HEC) as well as
the modified hyperedge coarsening (MHEC) algorithm, both of which first compute
an independent set of hyperedges and then contract their pins. At each coarsening
level, the nets are first sorted non-increasingly by weight, and, for nets with the same
weight, non-decreasingly by size. Then, both algorithms select an independent set
of hyperedges by visiting the nets in the given order, thereby implicitly preferring
heavy nets of small size. Afterwards, the pins of all hyperedges contained in the
independent set are contracted. The difference between HEC and MHEC is that the
latter additionally employs a post-processing step which, for each hyperedge, contracts
all pins that do not belong to any already contracted hyperedge. This leads to more
balanced vertex weights and decreases hyperedge sizes more rapidly.
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The initial partitioning phase either computes a random balanced bipartition or
uses a BFS-based growing algorithm to compute an initial solution. In contrast to
other multi-level algorithms, hMETIS-R not only propagates the best but all initial
partitions to the uncoarsening phase. At each level, all solutions that are 10% worse
than the best bipartition are then successively dropped. This approach is motivated by
the fact that the cut-size of the coarse hypergraph is only an inaccurate representation
of the cut-size of the input hypergraph. Thus, refining many alternative solutions at
the coarser levels possibly allows to improve the solution of the final partition.

During the uncoarsening phase, hMETIS-R employs one of four different refinement
schemes. It is possible to use the traditional FM algorithm [FM82], or an early-exit
variant (FM-EE) that terminates each pass if moving one percent of the vertices did
not improve the cut. Furthermore, it contains a greedy hyperedge refinement (HER)
algorithm that removes hyperedges from the cut-set by moving sets of vertices at once.
Lastly, it is possible to use HER followed by FM.
The greedy hyperedge refinement algorithm follows similar ideas as the dual FM

algorithm of Yeh et al. [YCL91a; YCL94], i.e., hyperedges are removed from the
cut-set in one step by moving all corresponding pins at once. However, in contrast
to dual FM, HER is a plain greedy algorithm that trades the ability to escape from
local optima for an improved running time. Each hyperedge is visited once in random
order and all of its pins are moved from one block to the other block if the overall
improvement is strictly positive.

Additionally, hMETIS-R employs a multiphase refinement technique. After comput-
ing a bipartition using the standard multi-level paradigm, it uses V -cycles to further
improve the solution. Each V -cycle consists of a restricted coarsening phase (in which
only vertices belonging to the same block are allowed to be contracted), which is
followed by another uncoarsening/refinement phase. Restricted coarsening hereby
ensures that the given partition of the input hypergraph can be used as a feasible
initial partition of the coarsest hypergraph. While V -cycles always perform a complete
pass through the multi-level hierarchy, v-cycles only uncoarsen half of the hierarchy
levels and then immediately switch to another coarsening phase. This ensures that
only the best solution is improved during the rather expensive refinement passes of
the final uncoarsening levels. Figure 3.3 visualizes the different multiphase refinement
schemes.
MLAF. Wichlund and Aas [WA98] propose an extension of the ML algorithm of
Alpert et al. [AHK97; AHK98] that incorporates information about solutions generated
in previous executions into the partitioning process, and uses an adaptive scheme to
control the number of uncoarsening levels. ML’s coarsening algorithm is modified to
contract vertices u and v ∈ Γ(u) with the highest connectivity score

con(u, v) := 1
c(u) · c(v)

∑
e∈{I(u)∩I(v)}

exp(−γf(e))
|e|

, (3.9)

where the edge-frequency f(e) corresponds to the number of times net e appears in
the cut-set of the h best solutions so far, and γ is a damping factor. This connectivity
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Figure 3.3: Illustration of V -cycles (left), v-cycles (middle), and vV -cycles
(right). Black lines indicate operations on the unpartitioned hypergraph, while
orange lines are used to incidate operations on the partitioned hypergraph. When
coarsening an already partitioned hypergraph, only vertices within the same block
are allowed to be contracted in order to ensure non-decreasing solution quality.

score favors vertex pairs that are connected by low-frequency hyperedges, since nets
with high edge-frequency are more likely to be part of the cut-set of high quality
solutions.

Note that this approach differs from hMETIS-R’s multiphase refinement in that
vertices from opposite blocks are explicitly allowed to be contracted. Therefore,
it is necessary to compute new bipartitions in the initial partitioning phase as
the solution from the previous iteration cannot be used as an initial partition for
the current multi-level iteration.

Instead of uncontracting all vertices of a level in the uncoarsening phase, MLAF only
uncontracts a fraction α of all contracted vertices of the current level, preferring those
with the lowest connectivity score. The value of α hereby depends on the number
of refinement passes during the last t uncoarsening levels and is chosen such that an
uncoarsening step provides sufficient opportunities for FM to improve the solution.
The adaptive uncoarsening scheme thus allows for a more fine-grained optimization
compared to standard multi-level approaches.

TLP. With the two level partitioning (TLP) algorithm, Cherng, Chen, Tsai, and
Ho [Che+99] propose a two-level approach that, similar to the CMM algorithm of
Cherng and Chen [CC96], uses the MMP partitioning algorithm [CCH98] to compute
a bipartition of the coarse hypergraph and to further refine the projected solution on
the input hypergraph. However, while the clustering phase of CMM was only based on
ratio cut partitioning [WC89], the TLP algorithm employs a hybrid clustering scheme
that combines ratio cut bipartitioning with a merging phase that contracts highly
connected pairs of vertices.

hMETIS-K. Karypis and Kumar [KK98c; KK99; KK00] note that direct k-way
partitioning can have several advantages over recursive bipartitioning. First, the latter
does not allow to directly optimize “global” objectives such as cut-net or connectivity,

74



3.4 From Two-Level To Multi-Level Partitioning

because these objectives affect all k blocks simultaneously. Second, direct k-way
algorithms are able to enforce tighter balance constraints while still being able to
sufficiently explore the search space of feasible solutions, whereas RB-based algorithms
need to adaptively adjust their imbalance ratios at each bisection step in order to
guarantee the desired final imbalance. Third, it is known that having to partition
hypergraphs into two blocks of roughly equal size at each recursion level restricts the
search space [ST97].
Karypis and Kumar [KK98c; KK99; KK00] therefore extend the hMETIS system

with a direct k-way multi-level partitioning algorithm, which we will refer to as
hMETIS-K in this dissertation. The hMETIS-K algorithm uses a variation of the
edge-coarsening (EC) scheme called FirstChoice (FC), because the authors observed
that by employing heavy-edge maximal matchings, the EC algorithm is likely to destroy
natural clustering structures present in hypergraphs derived from VLSI circuits. The
FC scheme therefore lifts the restriction that a vertex is only allowed to be matched
with another unmatched neighbor. Instead, vertices are allowed to form arbitrarily-
sized clusters. In order to ensure sufficiently many levels in the hierarchy, the FC
algorithm is stopped at each level as soon as the number of vertices of the current
hypergraph has been reduced by a predefined factor. The coarsening phase stops once
the smallest hypergraph consists of 100k vertices. This bound is chosen in order to
be able to compute balanced k-way partitions during the initial partitioning phase.
While previous multi-level algorithms used rather simple initial partitioning schemes,
hMETIS-K employs hMETIS-R (itself a multi-level partitioner) as initial partitioning
algorithm.

Instead of using a powerful k-way local search algorithm such as k-LA`-FM [San86]
as refinement engine in the uncoarsening phase, Karypis and Kumar [KK98c; KK99;
KK00] propose a simple greedy algorithm that completely gives up the ability to escape
from local optima. This decision is motivated by the high complexity of FM-type
direct k-way algorithms and the fact that algorithms such as k-LA`-FM [San86] easily
get trapped in local optima in a single-level context. Furthermore, the ability of FM to
escape from local minima via negative gain moves is mainly seen as a means to move
clusters of vertices across the cut and deemed less important in the multi-level context,
since the movement of a coarse vertex in the lower levels of the hierarchy already
corresponds to the movement of an entire subset of vertices of the input hypergraph.
The proposed greedy k-way refinement algorithm (GkR) instead performs a number of
iterations over a random permutation of the vertex set and moves boundary vertices
to the adjacent block that yields the highest (strictly positive) gain. Thus, in each
iteration, the greedy algorithm only considers a single move direction (out of all k − 1
possible directions) for each vertex.

PaToH. Until 1999, research on hypergraph partitioning algorithms was almost
exclusively motivated by VLSI design applications. Çatalyürek and Aykanat [ÇA99]
then showed that the total communication volume of parallel matrix-vector product
computations can be minimized by distributing the rows/columns of the matrix
according to a connectivity-optimized k-way hypergraph partition. With PaToH
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(Partitioning Tool for Hypergraphs), they therefore proposed the first HGP system
which is motivated by an application from the scientific computing community.

During the coarsening phase, PaToH either employs Heavy Connectivity Matching
(HCM) or Heavy Connectivity Clustering (HCC). The HCM algorithm in general
works similar to the HEM algorithm employed e.g. in hMETIS-R. However, instead of
using the edge weights of an implicit clique expansion to determine which vertices are
matched together, the contraction partner of a vertex u is chosen to be the neighboring
vertex v ∈ Γ(u) with the largest number of shared nets, i.e., the connectivity between
two vertices is defined as

con(u, v) :=
∑

e∈{I(v)∩I(u)}

ω(e). (3.10)

Similar to hMETIS-K’s first choice algorithm, the HCC algorithm does not restrict
contractions to pairs of vertices and instead allows each unclustered vertex to also
join an already existing cluster of vertices. The rating function of HCM is adapted to
work with groups of clustered vertices. More precisely, a vertex u is contracted with
either a singleton cluster (i.e., a yet unclustered vertex) or the multi-vertex cluster
Cv ∈ Γ(u) that maximizes

con(u,Cv) :=
∑
e∈{I(u)∩I(Cv)} ω(e)
c(u) + c(Cv)

, (3.11)

where the denominator is used to prevent the formation of heavy clusters/vertices
on the coarser levels. By favoring contraction between vertices with a large number
of shared nets, both HCC and HCM try to combine rows of the matrix with similar
sparsity patterns (assuming a column-net model). In order to speed-up HCC, nets
larger than 4∆e are ignored in the current bipartitioning step, where ∆e is the average
net size of the current hypergraph.

Once the hypergraph is small enough (e.g, n ≤ 100), a greedy hypergraph growing
(GHG) algorithm is used in the initial partitioning phase to compute an initial
bipartition. The GHG algorithm is a straightforward generalization of the GGGP
algorithm used in the graph partitioner METIS [KK95c]. All vertices except a randomly
chosen seed vertex are put in one block of the bipartition, while the seed vertex remains
in the opposite block. Then, vertices are moved to the block of the seed vertex in the
order of their FM gains until the balance constraint is satisfied.
The best out of several solutions generated by the GHG algorithm is then refined

during the uncoarsening phase using a boundary FM (B-FM) algorithm that only
moves boundary vertices from the overloaded to the underloaded block. Similar to
the early-exit FM algorithm employed in hMETIS-R [Kar+97a; Kar+97b; Kar+99] a
B-FM pass is terminated when no feasible move remains or the last max(50, 0.001ni)
moves did not yield an improvement, where ni is the number of vertices of the
hypergraph at level i of the multi-level hierarchy. Furthermore, the number of B-FM
passes per level is restricted to two [Çat99].
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CRC. With CRC, Saab [Saa99; Saa02] adapts the BISECT algorithm to ratio
cut bipartitioning. CRC also employs the bisect-and-compact (BC) paradigm that
intertwines clustering with a modified two-phase FM algorithm to identify and contract
natural clusters of vertices.
PART. One year after the proposal of CRC, Saab [Saa00a; Saa00b] extends the
BC-scheme to a multi-level approach. Instead of only computing one clustering like
CRC or BISECT, the PART algorithm creates a multi-level hierarchy of partitioned
solutions. Furthermore, the two-phase FM algorithm is enhanced with techniques
similar to the loose net removal (LR) and the stable net transition (SNT) algorithms
of Cong et al. [Con+97a; Con+97b].
MLPart. Caldwell et al. [CKM00c] note that nontrivial interactions between dif-
ferent algorithmic components, as well as the lack of experimental evidence and
documentation of the improvements incorporated into a framework since its initial
release, complicate a faithful re-implementation of complex HGP algorithms such as
hMETIS [Kar+97a; Kar+97b; KK98c; Kar+99; KK99; KK00]. They therefore propose
their own multi-level bipartitioning algorithm MLPart that, at least to some extent, is
deemed simpler to describe and to implement. During the coarsening phase, MLPart
employs a modified edge-coarsening (EC) algorithm that measures the connectivity
between two vertices u and v ∈ Γ(u) as

con(u, v) = 1
c(u) + c(v)

∑
e∈{I(u)∩I(v)}

{
2 if |e| = 2
1 else

. (3.12)

While the first factor is used to balance vertex weights, the second fator captures the
number of pins that would be removed from the hypergraph if u and v are contracted.
Coarsening stops as soon as the number of vertices is reduced to 200. Then, a

randomized engineering method (REM) is used to compute an initial bipartition. The
REM algorithm assigns vertices to blocks in decreasing order of their weights and uses
a biased random selection scheme to determine the target block of a vertex. After all
vertices are assigned, the initial bipartition is refined using the CLIP algorithm [DD96b].
Since computing a feasible initial partition can be difficult for hypergraphs with a
large variation in vertex weights and small imbalance parameter ε, MLPart performs
two calls to the initial partitioning algorithm. In the first call, the balance constraint
is relaxed to twice the largest vertex weight, which ensures that all nodes are able to
move. This partition is then used as initial solution for the second call, in which the
original balance constraint is used to ensure a feasible solution.
Since CLIP [DD96b] is slower than LIFO-FM [HHK95a], only the latter is used in

the uncoarsening phase to further refine the partition. The final bipartition is then
improved using a single V -cycle. The coarsening phase of the V-cycle employs another
modified version of the EC scheme that uses hMETIS-R’s connectivity score [Kar+97a;
Kar+97b; Kar+99] scaled with penalty term of 1/

√
c(u) + c(v) to discourage merging

large clusters. Furthermore, it enforces hard constraints on the maximum cluster size
at each coarsening level.
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It is probably obvious that even though MLPart is intended to be “easy to
describe and implement [...]” [CKM00c] a brief description of the algorithm (and
even the original description in the paper) is still not enough to allow researchers
to re-implement the algorithm. This again supports our claim that for effective
research on hypergraph partitioning algorithms, it is vital to make the original
implementations open-source.

CoMHP. Ouyang, Toulouse, Thulasiraman, Glover, and Deogun [Ouy+00] propose
a parallel HGP algorithm that exploits the multi-level paradigm in a very different
fashion and uses cooperative search to exchange information about the current solutions
between processors. Apart from working in parallel, a key difference of CoMHP to
other multi-level algorithms is the way the hierarchy is built. While traditionally
matching- and clustering-based coarsening algorithms are used, level i in the hierarchy
of CoMHP is created by partitioning the input hypergraph into k = n/2i blocks
using hMETIS-K and contracting the resulting partition. Thus, while in a traditional
multi-level hierarchy all vertices of coarse hypergraph Hi are composites of vertices of
hypergraph Hi−1, this does not have to be the case in CoMHP. After coarsening, each
level is iteratively partitioned by a dedicated processor using random initial partitions
which are refined with k-LA`-FM [San86] and PLM [DA94]. Since solutions from one
level can not trivially be projected to solutions of a different level, complex operators
are necessary to transfer partitions between processors/levels.

LR/ESC-PM. Unlike most multi-level algorithms which settled for coarsening
algorithms that only rely on local connectivity information, the edge-separability-
based clustering (ESC) algorithm of Cong and Lim [CL00a; CL04] incorporates
more global connectivity information into the clustering decisions by taking into
account all paths between vertices in the clique expansion Gx of the input hypergraph.
Given an edge e = (u, v) of Gx, they define the edge-separability of e as the value of
the minimum (u, v)-cut in Gx. Since computing the edge separability for all graph
edges is prohibitively expensive, they instead get a tight lower bound by using the
CAPFOREST subroutine of the MINCUT algorithm of Nagamochi and Ibaraki [NI92].
The coarsening process is then guided by these edge-separability estimates – preferably
contracting hard-to-separate vertices. After coarsening, the LR algorithm [Con+97a]
is used to compute an initial k-way partition, which is refined in the uncoarsening
phase using the K-PM algorithm [CL98] that works on pairs of blocks.

MLP. Motivated by the successes of multi-level algorithms, Cherng and Chen [CC03]
combine the ideas of CMM [CC96] and TLP [CC96] into the multi-level bipartitioning
algorithm MLP. While the paper lacks a detailed algorithmic description of the two
employed coarsening schemes, the initial partitioning phase uses random partitioning,
and the MMP [CCH98] algorithm is used to improve the solution in the uncoarsening
phase.

Parkway 1.0. Except for the parallel cooperative search algorithm of Ouyang et al.
[Ouy+00] which partitions multiple levels of the hierarchy using different processors, no
actual parallel multi-level hypergraph partitioning algorithm that employs parallelism
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within the different stages of the multi-level approach existed until 2004. Although
considered preliminary work [Tri06, p. 12] the Parkway 1.0 algorithm of Trifunović
and Knottenbelt [TK04c] can therefore be seen as the first parallel HGP algorithm.
The input hypergraph is distributed among t processing elements (PEs) by assigning
each PE a contiguous subset of n/t vertices along with all hyperedges that are incident
to a vertex of that subset (i.e., hyperedges are replicated across PEs). The FC
algorithm [KK00] is executed in parallel on all PEs using

con(u, v) :=
∑

e∈{I(u)∩I(v)}

ω(e) (3.13)

as the connectivity score [Tri06, p. 108]. However, only vertices local to each PE
are allowed to be clustered together. This is done since the algorithm was designed
to partition matrices with a distinctive lower-triangular structure for parallel sparse
matrix-vector multiplication, and it was assumed (and experimentally validated) that
enough strongly connected vertices are local to each PE to sufficiently coarsen the
hypergraph. Contraction is also done in parallel by exchanging the clustering informa-
tion in a round-robin fashion and using a hash function to assign the responsibility to
contract vertices within a specific hyperedge to exactly one PE. Once the hypergraph is
small enough to fit onto one machine, a single PE computes an initial k-way partition
using hMETIS-K [KK98c; KK99; KK00]. During the uncoarsening phase, each PE is
responsible for the vertices of k/t blocks and the corresponding incident hyperedges.
Blocks are refined using the FM algorithm [FM82] if k = 2t, or hMETIS-K’s greedy
refinement [KK98c; KK99; KK00] if k > 2t. In case k = t, PEs form pairs and only
one of them refines the induced bipartition using the FM algorithm [FM82].
Parkway 2.0. With version 2.0, Trifunović and Knottenbelt [TK04a; TK04b] im-
prove Parkway such that it does not rely on structural properties of the input hyper-
graph during coarsening and such that the parallel k-way greedy refinement algorithm
becomes both more scalable and able to effectively maintain the balance constraint.

In Parkway 2.0, each of the t PE stores n/t vertices and m/t nets. At the beginning
of each coarsening step, an all-to-all communication is used to distribute vertices such
that all nets local to each PE are complete, i.e., contain all their pins. Then, each
PE locally employs the FC algorithm to compute a clustering. Since this process
may cluster local vertices with vertices residing on different PEs, a two-staged process
involving two all-to-all communication phases is used to communicate and coordinate
non-local clustering decisions such that an upper bound on the maximum allowed
coarse vertex weight is satisfied. This is different from Parkway 1.0, in which only
local vertices were allowed to be clustered together. Furthermore, connection strength
between two vertices u and v is measured as

con(u, v) := 1
c(u) + c(v)

∑
e∈{I(u)∩I(v)}

ω(e)
|e| − 1 (3.14)

in version 2.0 [Tri06, p. 144]. After performing all local contractions, load balancing
for the next coarsening step is achieved by distributing responsibilities for parallel
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hyperedge removal evenly among the processors and redistributing coarse vertices such
that each PE again starts with ni/t vertices in the subsequent coarsening step, where
ni is the number of (coarse) vertices at level i.
Once the hypergraph is small enough, each PE computes multiple initial k-way

partitions using hMETIS-K as partitioning algorithm. The best partition is then
improved in the refinement phase using a modified parallel version of hMETIS-K’s
GkR algorithm. The reason for parallelizing the greedy algorithm instead of a more
sophisticated FM-based algorithm is that the latter needs priority queues and gain
updates, which would generate a high communication volume in a distributed setting.
In the parallel version of GkR, each PE computes the best feasible move for each local
vertex and sends the sets Uij of vertex moves with positive gain for moving from block
i to block j to a root PE, which then determines which moves can be made without
violating the balance constraint. In order to prevent move conflicts (i.e., moves in
opposite directions that, while individually having a positive gain, yield a non-positive
gain if both are performed) each refinement pass is further divided into two stages.
The first stage only performs moves from higher to lower block numbers, the second
stage considers only moves from lower to higher block numbers. Once a vertex is
moved in either of the two stages, it becomes locked and is not allowed to be moved
again during the current pass.

TPART. Saab’s TPART algorithm [Saa04] is an advanced version of PART [Saa00a;
Saa00b]. Similar to PART, TPART starts with a random initial bipartition, which
is continuously refined using the bisect-and-compact approach (first introduced in
the 2-level BISECT algorithm [Saa95]). The main difference between TPART and
its predecessor is an improved refinement algorithm (called ALG2) that uses a Tabu
Search approach to overcome the limitations of KL/FM-type algorithms that only
allow each vertex to move at most once in a pass. To this end, ALG2 incorporates rules
that both dynamically unlock locked vertices and allow the movement of high-gain
locked vertices under certain conditions.

GA-GC-DHC. Areibi and Yang [AY04] investigate several ways to transform a
simple genetic algorithm into a memetic algorithm using different techniques for local
search. The best performing one, called GA-GC-DHC, is a memetic two-level algorithm
that uses a not further specified clustering algorithm as a preprocessing step to coarsen
the hypergraph. The initial population of GA-GC-DHC contains both random solutions
as well as “good” solutions generated using the GRASP heuristic [FR89]. Individuals
are refined using both the k-LA`-FM and the MDC-RS algorithm [Are00b], which
temporarily relaxes the balance constraint.

MSN. In order to optimize the total message latency of parallel matrix vector
multiplications, Uçar and Aykanat [UA04] propose a communication hypergraph model,
in which vertices represent primitive communication operations and nets represent
processors. Hypergraphs resulting from this model thus have only very few albeit
large nets (m ≤ 128 in their experimental evaluation). Noting that the performance of
recursive bisection-based algorithms degrades for hypergraphs consisting of mostly large
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nets, Uçar and Aykanat [UA04] propose the MSN direct k-way multi-level hypergraph
partitioner, which, to the best of our knowledge, is the only multi-level algorithm that
uses Sanchis’ k-LA`-FM [San89] in the refinement phase. In the coarsening phase,
MSN uses a scaled heavy connectivity matching (SHCM) algorithm, which visits all
vertices in random order and for each unmatched vertex u chooses the unmatched
neighbor v ∈ Γ(u) as contraction partner that maximizes

con(u, v) := |{I(u) ∩ I(v)}|
d(u) + d(v)− |{I(u) ∩ I(v)}| . (3.15)

The SCH connectivity score thus prefers to merge pairs of vertices that have a large
number of neighbors in common [Uça99, p. 39]. The coarsest hypergraph is initially
partitioned using a simple, not further specified, application-specific constructive
algorithm.

Mondriaan 1.01. The Mondriaan software package proposed by Vastenhouw and
Bisseling [VB05] is designed to partition rectangular sparse matrices for parallel sparse
matrix-vector multiplications and contains a recursive bisection-based multi-level
hypergraph partitioning algorithm. Although the name refers to the entire matrix
partitioning framework, throughout this dissertation we will use it to denote the HGP
algorithm. In the coarsening phase, vertices are visited in order of decreasing degree
and PaToH’s heavy connectivity matching scheme [ÇA99] (using the connectivity score
shown in Eq. 3.10) is used to find the contraction partners of unmatched vertices.
Once the hypergraph is small enough, eight random bipartitions are constructed and
refined using the FM algorithm [FM82]. The best initial partition is then again refined
during the uncoarsening phase using the FM algorithm [FM82].

Zoltan. The distributed hypergraph partitioning algorithm proposed by Devine, Bo-
man, Heaphy, Bisseling, and Çatalyürek [Dev+06] is implemented in the Zoltan toolkit
for load balancing and data distribution [Dev+02; Dev+09; Bom+12a]. Although
Zoltan’s native hypergraph partitioner is actually called PHG (Parallel HyperGraph
partitioner), the name of the toolkit is commonly used as a synonym, which is
why we also use the name Zoltan to refer to the partitioner. Zoltan differs from
Parkway [TK04a; TK04b] in a number of ways. While Parkway uses direct k-way
partitioning, Zoltan employs multi-level recursive bipartitioning. Furthermore, in
Parkway [TK04a; TK04b], the input hypergraph is distributed one-dimensionally by
assigning a contiguous subset of the vertex set to each PE and replicating the pins of
incident hyperedges among the processors. Thus, each PE has complete information
regarding its local vertices and incident nets. In Zoltan, each processor only has partial
information about some vertices and some nets of the hypergraph, because it adopts
a two-dimensional data distribution scheme by dividing the row-net incidence matrix
of the hypergraph along both rows and columns onto the PEs (assuming that all PEs
are conceptually arranged in a grid). This has the benefit of reducing the memory
footprint on each PE (since no data is replicated) and allows most communication
operations to be done either vertically or horizontally.
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In the coarsening phase, a parallel version of HCM is employed that works in multiple
rounds. In each round the globally best matching partner for a set of randomly selected,
unmatched vertices at each PE is chosen collectively – employing several horizontal
and vertical communication phases. Once the hypergraph is small enough, it is
replicated to all PEs and a randomized greedy algorithm is used to compute an initial
bipartition. The globally best solution is then chosen for the refinement phase. Unlike
Parkway, which parallelizes hMETIS-K’s simple greedy k-way refinement algorithm
(GkR) [KK98c; KK99; KK00], the algorithm of Devine et al. [Dev+06] employs a
parallel, two-phase version of the FM algorithm [FM82] to improve the solution. In
each phase, vertices are only moved in one direction by a set of dedicated PEs to
prevent moves from adversely affecting each other. Since Zoltan is based on recursive
bipartitioning, the hypergraph is split into two subsets (one for each block) after
computing the first bipartition, and each block is reassigned onto a separate subset
of PEs, which then independently bipartition the subhypergraphs in parallel. This
scheme continues until the final k-way partition is computed.

ParPaToH. The master’s thesis of Karaca [Kar06] presents an unfinished attempt
at creating a distributed hypergraph partitioner based on PaToH [ÇA99], which is
restricted to computing k-way partitions using t = k PEs, where k = 2i and i is even.
Similar to Zoltan, the algorithm uses a two-dimensional data distribution scheme
such that each PE only has partial information about some vertices and nets of the
hypergraph. During the coarsening phase, the HCM algorithm is first executed on the
local hypergraph and local rating decisions are communicated and updated among
all PEs owning the same vertices. The final rating result is then redistributed to all
involved PEs, and vertices are contracted according to the final matching decisions.
Afterwards, subsets of the local vertex sets are exchanged with different PEs to get a
more global view on the structure of the hypergraph. After coarsening, the coarsest
hypergraph is redistributed to all PEs and then recursively bipartitioned in parallel
in a similar fashion as in Zoltan. During uncoarsening, the crossover operations are
successively reversed, and a communication-intensive pairwise FM-based refinement
scheme is executed in parallel among all PEs that share the same vertex set.

NaturalPART. Li and Behjat [LB06a] propose a clustering algorithm that is used
as a preprocessing phase before a partition is computed using hMETIS-R. The key
idea of the algorithm is to identify and to contract natural clusters. The algorithm first
orders the vertices in ascending order of either vertex degree or number of neighbors
and then consecutively considers each vertex in the ordering as a potential cluster seed
s. Neighboring vertices v ∈ Γ(s) are considered as potential clustering candidates for s.
Then, a bipartition Π = (A,B) is formed, where A := {s∪Γ(s)} and B := {Γ(A) \A}
(i.e., block B contains all vertices that are directly connected to but not contained in
block A). In order to remove all vertices from A that are more strongly connected
to vertices in B and therefore should not be part of the cluster around s, a modified
FM algorithm is used to move all vertices with positive gain from A to B. Vertices
that remain in A after the FM algorithm terminates then form a cluster. The process
then continues with another, yet unclustered seed vertex. Once all vertices have been
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visited, all clusters are contracted and the coarsened hypergraph is used as input
for hMETIS-R. In subsequent works [LB06b; LBK07], the clustering algorithm is
extended to also take into account the number of nets that are removed during cluster
formation.

Mondriaan 2.0. In his master thesis, Leeuwen [Lee06] evaluates difference scaling
factors to be used in combination with Mondriaan’s default connectivity score (shown
in Eq. 3.10) to account for variations in both vertex weights and net sizes. As a
result of his work, scaling the connectivity score between two vertices u and v with
1/min(d(u), d(v)) and additionally scaling the weight of each net e ∈ {I(u) ∩ I(v)} by
1/|e| became the new default in version 2.0 of Mondriaan.1 While inversely scaling
with the size of nets is a commonly used technique employed by many algorithms,
the degree-based scaling factor additionally prefers to merge vertices for which the
incident nets of one are a subset of the incident nets of the other [Lee06, p. 24].

Fixed Vertex Support for Zoltan. In order to minimize both communication vol-
ume and migration costs of moving data in adaptive scientific computations, Çatalyürek,
Boman, Devine, Bozdag, Heaphy, and Riesen [Çat+07; Çat+09] propose a new hyper-
graph partitioning model in which fixed vertices and additional nets are used to model
the data migration. To be able to partition these models in a distributed setting, the
Zoltan hypergraph partitioner is extended to handle fixed vertices. During coarsening,
vertices fixed to different blocks are not allowed to be matched. If one of the con-
tracted vertices is fixed to a particular block, the resulting coarse vertex is fixed to the
block as well. During initial partitioning, the randomized greedy hypergraph growing
algorithm ensures that fixed vertices stay assigned to their respective block. During
refinement, fixed vertices are not allowed to be moved to different blocks. Since Zoltan
employs recursive bipartitioning to compute k-way partitions, fixed vertex information
is incorporated into the bipartitioning process by assigning vertices originally fixed to
blocks 1 ≤ i ≤ k/2 to block 1, and the remaining vertices originally fixed to blocks
k/2 < i ≤ k to block 2. This scheme then continues recursively.

kPaToH. Aykanat et al. [ACU08] state that partitioning problems involving multiple
constraints or fixed vertices should be solved using a direct k-way approach. For multi-
constraint partitioning, RB-based approaches (such as Zoltan and PaToH) are said to
have problems computing feasible partitions for hypergraphs with large variations in
vertex weights, while for partitioning hypergraphs with fixed vertices, the procedure
described in the previous paragraph is said to restrict the search space of possible
fixed vertex assignments. Aykanat et al. [ACU08] therefore propose the multi-level
direct k-way algorithm kPaToH. During coarsening, it uses PaToH’s HCM algorithm
and disallows any contractions of pairs of fixed vertices. Before initially partitioning
the coarsest hypergraph using PaToH, all fixed vertices are temporarily removed.
Afterwards, the fixed vertices are then optimally assigned to the blocks of the k-way
partition by solving a maximum-weighted bipartite graph matching problem whose

1https://git.science.uu.nl/R.H.Bisseling/mondriaan/blob/master/docs/USERS_GUIDE.html
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solution defines a relabeling of the free vertices to the fixed vertex blocks that minimizes
the connectivity metric.
During uncoarsening, kPaToH employs a modified version of the greedy k-way

refinement algorithm employed in hMETIS-K, which allows each non-fixed boundary
vertex to be moved a certain number of times during each refinement pass.

Parkway 2.1. In the journal version of earlier work [TK04a; TK04b], Trifunović
and Knottenbelt [TK08] give a more detailed description of version 2.0 and extend it to
also include parallel multi-phase refinement, which, however, differs in two major ways
from the scheme employed in hMETIS-R. First, unlike the V - and v-cycles employed in
hMETIS-R, Parkway’s multi-phase refinement does not ensure non-decreasing solution
quality, because the previous solution is only respected during the restricted coarsening
phase. Once the hypergraph is small enough, a new initial k-way partition is computed
using the coarsened hypergraph as input. Second, this technique is employed at each
level of the hierarchy during the uncoarsening phase, slowing down the algorithm by
an order of magnitude.

onmetisHP. Noting that the modeling flexibility of hypergraphs comes at the cost
of inherently more complicated algorithms and increased running times when compared
to graph-based approaches, Kayaaslan, Pinar, Çatalyürek, and Aykanat [Kay+10;
Kay+11; Kay+12] try to find a trade-off by solving the hypergraph partitioning problem
through graph partitioning on the net intersection graph Gn. However, unlike Kahng
[Kah89] (AlgI), Cong et al. [CHK92] (IG-Match), and Cong et al. [CLS94; CLS96]
(KDualPartFM), who use graph partitioning by edge separator (GPES) followed
by a post-processing phase to complete the induced partial hypergraph partitions,
Kayaaslan et al. [Kay+10; Kay+11; Kay+12] propose a post-processing-free approach
based on recursive bipartitioning and graph partitioning by vertex separator (GPVS).
By using an approximate weighting scheme for the nodes in Gn, their algorithm is
able to capture the balance constraint on the hypergraph partition to some extent.
Furthermore, sophisticated node-removal and node-splitting techniques allow for both
cut-net and connectivity optimization. The ONMETIS ordering code of METIS [Kar13]
is adapted and modified for implementing the GPVS-based hypergraph partitioning
approach. Since onmetisHP cannot guarantee feasible solutions in general, it is mainly
interesting for applications in which the notion of imbalance is not well-defined [Kay13,
p.65].

UMPa. Motivated by the 10th DIMACS Implementation Challenge on Graph
Partitioning and Clustering [Bad+13], Çatalyürek et al. [Çat+12b; Çat+15] propose
UMPa, a direct k-way, multi-objective, multi-level hypergraph partitioning algorithm
that uses a directed hypergraph model to minimize the maximum communication
volume. During coarsening, UMPa uses the FC algorithm. The coarsest graph is
then partitioned using PaToH as initial partitioning engine, and the initial solution
is further refined using a modified version of kPaToH’s multi-move greedy k-way
refinement algorithm, which also takes into account two other communication cost
metrics via a tie-breaking scheme.
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[Çat+12a]. Çatalyürek et al. [Çat+12a] present three different, shared-memory
parallel clustering algorithms that can be used in the coarsening phase of multi-level
HGP algorithms. While the first one is a straight-forward parallelization of the HCM
algorithm using atomic locks as synchronization mechanism, the second one performs
HCM in parallel and uses a conflict resolution scheme to resolve cases in which vertices
ended up having multiple matching partners. The third algorithm is a straight-forward
locking-based parallelization of HCC.

INR/IVR. Deveci, Kaya, and Çatalyürek [DKÇ13] investigate different hypergraph
sparsification techniques which can be used in a preprocessing phase to speed up the
partitioning process. While identical net removal (INR) is commonly used in the
coarsening phase (e.g., in PaToH [ÇA99] and Zoltan [Dev+06]), identical-vertex (IVR)
and similar net removal (SNR) have not been studied in the partitioning context.
Instead of employing the commonly used approach of fingerprinting, sorting and
scanning [Ash95], Deveci et al. [DKÇ13] propose a O(p)-time hashing-based algorithm
which can be used for both identical-net and identical-vertex removal. Similar nets
are detected using an approach based on min-hash fingerprints [Bro97]. While INR
and IVR gave a speedup of 1.18-3.3 and slightly improved solution quality on average,
SNR only resulted in a slight additional improvement in running time and reduced
the solution quality.

Mondriaan 4.0. Fagginger Auer and Bisseling [FB14] revisit Mondriaan’s matching-
based coarsening algorithm and propose an improved version that increases the
matching quality by employing the 1

2 -approximation PGA' algorithm of Drake and
Hougardy [DH03a; DH03b], and using a modified tie-breaking rule that prefers low-
degree vertices. They furthermore present two approaches to speed up the matching
computation for hypergraphs with large nets by approximating {I(u) ∩ I(v)} when
trying to find a matching partner v ∈ Γ(u) for an unmatched vertex u.

FEHG. The Feature Extraction Hypergraph Partitioning (FEHG) algorithm pro-
posed by Lotfifar and Johnson [LJ15; LJ16] tries to integrate both local and global
structural information of the hypergraph into the coarsening process by transferring
ideas from rough set theory [Paw92] to hypergraph partitioning. The algorithm first
computes a clustering of the hyperedges. Less important nets are then discarded
by representing each cluster using only a single net. The clustering is computed by
identifying connected components in a hyperedge connectivity graph. It contains a
node for each hyperedge, and two nodes are connected if the corresponding hyper-
edges e1 and e1 are similar, where similarity is defined as having a Jaccard index
J(e1, e2) := |e1 ∩ e2|/|e1 ∪ e2| (which is appropriately scaled to account for hyperedge
weights) above a certain threshold s. The algorithm then computes equivalence classes
of vertices that are indiscernible with regard to the hyperedge clustering (i.e., they
belong to the same clusters). Since the equivalence classes are computed with regard to
the entire clustering, they therefore provide some information about the global struc-
ture of the hypergraph. Vertices within the same equivalence class are then matched
with their most similar neighbor (again using a weighted version of the Jaccard index
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as similarity measure), and the contracted matching forms the hypergraph for the
next coarsening level. Once the hypergraph is small enough, three different algorithms
(random partitioning, a growing technique, and an FM-based partitioning approach)
are used to compute an initial partition, which is then refined using the boundary FM
algorithm in the uncoarsening phase.

Mondriaan 4.2. In his master thesis, Oort [Oor17] proposes five improvements to
the Mondriaan system: (i) An improved implementation of a non-recursive, three-way
quick-sort, (ii) an improved gain bucket structure that uses an array instead of a linked
list to represent the gain buckets, (iii) an improvement in the implementation of the
PGA' algorithm for marking matched vertices, (iv) an algorithm that searches for
bipartitions with a cut-size of zero by computing connected components and solving a
variant of the subset sum problem, and (v) two algorithms that improve the balance
of an existing bipartition by moving those pins of cut-nets that do not have an effect
on solution quality. Furthermore, a variation of Mondriaan’s coarsening scheme is
proposed that allows the contraction of clusters instead of pairs of vertices. Most of
these improvements seem to have been integrated into version 4.2 of Mondriaan.2

Zoltan-AlgD. Similar to FEHG, the work of Shaydulin and Safro [SS18b; SS18a]
and Shaydulin, Safro, and Chen [SSC19] is also motivated by the idea of improving
the coarsening phase by incorporating global information into the matching process.
The authors extend Zoltan’s HCM-based coarsening algorithm to penalize cutting
hyperedges that contain similar vertices. This is done by introducing a new vertex-
similarity measure called algebraic distance for hypergraphs that takes into account
distant neighborhoods of vertices, and considers two vertices to be similar if they have
similar neighborhoods. The similarity information is incorporated into the coarsening
process by scaling the weight of each net with the ratio between the computed algebraic
weight of the net, and the average algebraic weight of all nets. The algebraic weight of
a net is hereby defined as the inverse of the distance between the two pins of the net
that are farthest apart from each other with regard to the algebraic distance. Thus,
structural information about the hypergraph is passed to Zoltan’s HCM coarsening
algorithm indirectly via the modified hyperedge weights. The initial partitioning and
uncoarsening phase of Zoltan-AlgD are the same as in Zoltan.

[PS19]. Recently, Preen and Smith [PS18; PS19] used the hypergraph partitioning
framework developed in this dissertation to evaluate the usage of evolutionary algo-
rithms as initial partitioning engines in the context of less coarsened hypergraphs. The
work is motivated by the fact that all multi-level HGP systems stop the coarsening pro-
cess at some experimentally-derived predefined threshold. The authors instead propose
an adaptive coarsening scheme that stops the coarsening process once contractions
start to reduce the number of pins significantly. The idea is to find a “tipping point
at the best balance between maximal information content and maximal hypergraph
compression” [PS19]. Since the coarsest hypergraphs produced by this adaptive scheme
are significantly larger then what traditional initial partitioning heuristics are tuned

2http://www.staff.science.uu.nl/~bisse101/Mondriaan/

86

http://www.staff.science.uu.nl/~bisse101/Mondriaan/


3.4 From Two-Level To Multi-Level Partitioning

for, EA-based partitioning techniques are shown to be able to explore the larger search
spaces more effectively at the cost of an approximately ten-fold increase in running
time.

ReBaHFC. Gottesbüren, Hamann, and Wagner [GHW19a; GHW19b] recently
generalized the FlowCutter graph bipartitioning algorithm [HS18a] to the Hyper-
FlowCutter algorithm for hypergraph bipartitioning. It uses a series of incremental
max-flow min-cut computations (emulating Dinic’s max-flow algorithm [Din70] di-
rectly on the hypergraph using an approach first proposed by Pistorius and Minoux
[PM03]) to optimize balance and cut size in the Pareto sense (similar to FBB [YW94;
YW96; YW08]). The proposed ReBaHFC algorithm then uses HyperFlowCutter as
a refinement/post-processing algorithm to improve hypergraph bipartitions initially
computed via PaToH.
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Table 3.2: Overview of two-level hypergraph partitioning algorithms. We distinguish between bipartitioning (B),
recursive bipartitioning (RB), and direct k-way partitioning (K) algorithms.

Algorithm Page Reference Clustering Partitioning Mode Objective
[IKS75] 65 [IKS75] Connectivity Clustering KL K fs(Π)
dKLFM 65 [GB83] Matching FM B fc(Π)
STABLE 66 [WC90; CW91] Ratio Cut Ratio Cut FM B fc(Π)

PD 66 [YCL91a; YCL94] Ratio Cut Primal/Dual FM K
fc(Π)
fs(Π)

[HK92a] 66 [HK92a] RW-ST FM B fc(Π)
[AK93] 66 [AK93] AGG FM B fc(Π)
HGCEP 67 [SK93; KKS96] Closeness Clustering GCEP K fc(Π)
[Yan+94] 68 [Yan+94] RW-ST Unnamed B frc(Π)
BISECT 68 [Saa95] BC 2-phase FM B fc(Π)
CMM 69 [CC96] Ratio Cut MMP B fc(Π)

[HK97] 71 [HK97] CAMS FM B
frc(Π)
fc(Π)

TLP 74 [Che+99] Hybrid Ratio Cut MMP B fc(Π)
CRC 77 [Saa99; Saa02] BC 2-phase FM B frc(Π)

GA-GC-DHC 80 [AY04] Unknown MDC-RS
k-LA`-FM, K fc(Π)

NaturalPart 82 [LB06a] FM-based hMETIS-R RB fc(Π)
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Table 3.3: Overview of multi-level hypergraph partitioning algorithms. We distinguish between bipartitioning
(B), recursive bipartitioning (RB), and direct k-way partitioning (K) algorithms. Algorithms marked with † are
distributed/parallel.

Algorithm Page Coarsening Initial Partitioning Refinement Mode Objective

FMC 67 Cliques (Gx) Random FM B
fc(Π)
frc(Π),

Strawman 68 Connectivity Random LA3-FM B fc(Π)
GMetis 70 HEM GGGP B-FM B fc(Π)
MKP 70 HEM (Gx) KP RCut1.0 K fsc(Π)
MLH 70 HEM (G∗) Spectral (G∗) Rotary KLFM K fc(Π)

MLc/MLf 71 HEM Random
k-LA1-FM
CLIP, B/K3

fs(Π)
fc(Π),

hMETIS-R 72
MHEC
HEC,
EC,

BFS
Random,

HER
FM-EE,
FM,

RB fc(Π)

MLAF 73 HEM Random FM B fc(Π)

hMETIS-K 74 FC hMETIS-R GkR K
fs(Π)
fc(Π),

PaToH 75 HCC
HCM, GHG B-FM RB

fλ(Π)
fc(Π),

PART 77 BC Random 2-phase FM B fc(Π)

MLPart 77 EC
PinEC, REM+CLIP LIFO-FM B fc(Π)

CoMHP 78 hMETIS-K hMETIS-K
Random,

PLM
k-LA`-FM, K fc(Π)

LR/ESC-PM 78 ESC LR K-PM K
fs(Π)
fc(Π),

Continued on next page
3Only supported for k = 4.
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Table 3.3 – Continued from previous page

Algorithm Page Coarsening Initial Partitioning Refinement Mode Objective
MLP 78 Unknown Random MMP B fc(Π)

Parkway 1.0† 78 FC hMETIS-K FM
GkR, K fλ(Π)

Parkway 2.0† 79 FC hMETIS-K GkR K fλ(Π)
TPART 80 BC Random ALG2 B fc(Π)
MSN 80 SHCM Constructive k-LA`-FM K fλ(Π)
Mondriaan 1.01 81 HCM Random FM RB fλ(Π)
Zoltan† 81 HCM Random 2-phase FM RB fλ(Π)
ParPaToH† 82 HCM PaToH Pairwise FM K fλ(Π)
kPaToH 83 HCM PaToH Multi-Move GkR K fλ(Π)
Mondriaan 2.0 83 HCM Random FM RB fλ(Π)
Parkway 2.1† 84 FC hMETIS-K GkR K fλ(Π)

onmetisHP 84 ONMETIS ONMETIS ONMETIS RB
fλ(Π)
fc(Π),

UMPa 84 FC PaToH Multi-Move GkR K fλ(Π)
Mondriaan 4.0 85 PGA' Random FM RB fλ(Π)

FEHG 85 RSC
Linear
FM-based,
Random,

B-FM RB fλ(Π)

Mondriaan 4.2 86 PGA' Random FM RB fλ(Π)
Zoltan-AlgD 86 AlgD-HCM Random 2-phase FM RB fc(Π)

ReBaHFC 87 PaToH PaToH HyperFlowCutter
PaToH, B fc(Π)
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3.5 A Taxonomy Of State-Of-The-Art HGP Systems

As we have seen over the course of this chapter, a large number of hypergraph parti-
tioning algorithms and systems has been proposed since the seminal work of Kernighan
and Lin [KL70]. However, “although hypergraph partitioning is widely used in both
academia and industry, the number of publicly available tools is limited” [ACU08].
This section therefore is intended to give a brief overview about today’s landscape of
HGP tools for solving general hypergraph partitioning problems. Furthermore, we
highlight the fact that many implementations have undergone significant changes and
improvements since their initial publication.

The Current Tool Landscape. Table 3.4 shows a taxonomy of all state-of-the-art
HGP algorithms and gives an overview over algorithmic design decisions, as well as
supported features and objective functions. We use G#-marks to indicate that, because
of the close relationship between the sum-of-external-degrees objective fs(Π) and the
connectivity objective fλ(Π), one metric can be implicitly targeted by optimizing the
other.4 Note that only hMETIS supports both RB-based and direct k-way partitioning
and thus is the only direct k-way partitioning algorithm that is able to optimize the
cut-net metric fc(Π). All other direct approaches target the connectivity metric.

Implementation Complexity. Caldwell et al. [CKM00c] already noted in the
year 2000 that a “lack of documented key implementation details in the literature
[...], and the implementation complexity of hMETIS techniques, may be factors
contributing to the lack of integration of hMETIS-quality partitioning methods in the
VLSI community.” Since then, the discrepancy between the initial implementations
described in the literature – which were already “almost never described in sufficient
detail for others to reproduce results” [CKM99b] – and the current versions, has only
gotten larger. As of 2019, the latest version of hMETIS (version 2.0pre1, released in
May 2007) has been improved in several major ways. The change history5 states that
the current version e.g. now contains new coarsening schemes that improve the solution
quality, better refinement algorithms for hypergraphs with non-unit vertex weights,
a KPM-based k-way refinement algorithm, and a new way how to use the V -cycle
refinement. However, there is no experimental evidence that shows the effectiveness of
these improvements.

While the initial release of PaToH contained one matching-based and one clustering-
based coarsening algorithm, a single initial partitioning, and a single refinement
algorithm, the current version (v3.2) includes 17 different coarsening algorithms,
13 initial partitioning algorithms, 12 refinement algorithms, and a vast number of
additional tuning parameters [ÇA11a], most of which are scarcely documented in
the user manual [ÇA11b]. In order not to force the algorithm configuration onto the

4SHP optimizes fanout, which is closely releated to both connectivity and SOED optimization.
5Available online at http://glaros.dtc.umn.edu/gkhome/metis/hmetis/changes
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Table 3.4: Taxonomy of today’s hypergraph partitioning tools.
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user, PaToH provides three different presets (default, speed, quality). However, the
configurations employed in the presets are not documented in the manual. Given the
fact that both PaToH and hMETIS – still the most commonly used HGP systems
– are closed source, and the fact that evaluations of the improvements are missing,
researchers wanting to compare their algorithms are thus best advised to use the
configurations provided by the current releases. Although the discrepancy is more
severe for closed-source tools, it also affects open-source implementations. For Zoltan,
the “basic algorithm remains the same, though several improvements have been
made over the years” [RB12], while several of Mondriaan’s improvements are only
documented in master’s theses [Lee06; Oor17]. SHP, on the other hand, is only released
as a patch to the Apache Giraph [Fou] framework and has “neither configuration files
and parameters, nor scripts, execution instructions, or documentations” [May+18],
which makes it almost impossible to reproduce the results.
A Note Of Caution. Differences between versions, however, are not the only
problems encountered when working with HGP systems. Even if parameter presets
are used, special care has to be taken when configuring the algorithms for different
objective functions. This is particularly true for the recursive bipartitioning algorithm
hMETIS-R. As we will see in Section 4.2, in RB-based HGP algorithms it is necessary
to employ cut-net splitting for connectivity/SOED optimization, and cut-net removal
for cut-net optimization. The decision which technique is applied, however, is not
automatically coupled with the respective objective function in hMETIS-R. Thus,
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without explicitly setting the reconst parameter [KK98b] to enforce cut-net splitting,
solution quality for SOED optimization may degrade significantly. Furthermore, for
historic reasons, hMETIS-R uses a different notion of imbalance. An imbalance value
of 5, for example, allows each block to weigh between 0.45 · c(V ) and 0.55 · c(V ), which
corresponds to an allowed imbalance of ε = 0.1 in our problem definition. Moreover,
this imbalance is applied at each bipartitioning step. Thus, the largest block in a
8-way partition for example in this case is allowed to weigh up to 0.553 · c(V ). In the
now standard HGP formulation, this in turn corresponds to an allowed imbalance of
ε = 0.331.

When using Mondriaan as a hypergraph partitioner, “[p]roviding the vertex weights
is essential, because otherwise Mondriaan will by default weigh all the columns by the
number of nonzeroes contained in them, which will lead to unbalanced hypergraph
partitions.”6

3.6 Epilogue – Lessons Learned

Having discussed the main contributions of roughly 50 years of hypergraph partitioning
research, we end this journey by summarizing the findings and extracting some guiding
principles for effective hypergraph partitioning algorithms. Although flat hypergraph
partitioning has recently again gained interest in the area of fast social network
partitioning [Kab+17; May+18], multi-level algorithms still dominate the high-quality
regime. We therefore first turn to the three phases of the multi-level paradigm before
discussing the different approaches to compute k-way partitions.

3.6.1 The Coarsening Phase

While coarsening is mostly said to successively approximate the problem, Walshaw
[Wal03] highlights the fact that it also filters the search space by restricting the
solutions that can be visited during refinement: “In other words, by filtering a large
amount of irrelevant detail from the solution space (in particular the higher cost
solutions which are not close to local optima), the multilevel component allows the
refinement algorithm to find regions of the solution space where the objective function
has a low average value (e.g. broad valleys)” [Wal03, p. 74].

In the coarsening phase, highly-connected vertices are identified and contracted to
create successively coarser hypergraphs. While for graphs local connectivity between
two vertices u and v is captured by the weight of the corresponding edge (u, v), the
situation is different for hypergraphs. Since hyperedges can have an arbitrary number
of pins, two vertices may be connected by several, differently-sized nets. This offers
more room for different notions of connectivity (incorporating information about both
net weights and net sizes) and explains the variety of rating functions proposed in the
literature.

6https://www.staff.science.uu.nl/~bisse101/Mondriaan/Docs/HYPERGRAPH.html
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However, there exist some underlying design goals that are addressed by all coarsen-
ing algorithms: (1) Coarse hypergraphs should remain structurally similar to the input
hypergraph (i.e., retain its important features [Wal03]) to allow initial partitioning
algorithms to compute high-quality solutions such that a partition of the coarsest level
is not significantly worse than a partition obtained on the input hypergraph [Kar02;
Kar03]. (2) In order to improve the ability of move-based local search algorithms
to escape from local optima, coarsening should successively reduce the size of the
nets, since IIP refinement algorithms are more effective for hypergraphs with small
hyperedges [KK99]. (3) Coarsening should reduce the exposed hyperedge weight and
remove as many hyperedges as possible that can potentially be cut. Since single-vertex
hyperedges cannot be cut and are therefore removed from the hypergraph, this reduces
the search space of good solutions and thus leads to simpler instances for initial
partitioning [Kar02; Kar03]. (4) The coarsening algorithm should create smaller
instances such that solutions of the coarse hypergraphs induce feasible solutions on
the input instance [Wal03]. (5) Moreover, the cost of the coarse solution should be
the same as the cost of the induced solution on the original hypergraph, in order to
ensure that coarsening truly acts as a search space filter by restricting the solutions
that can be visited by the refinement algorithm [Wal03]. Furthermore, Hauck and
Borriello [HB97] note that (6) a good coarsening algorithm should increase the degrees
of coarse vertices to improve the performance of IIP algorithms, which are known
to be ineffective for hypergraphs with small vertex degrees [GB83]. Caldwell et al.
[CKM00e] additionally highlight the fact that (7) vertex weights of coarser hypergraphs
should be balanced, because most move-based algorithms are ill-suited for hypergraphs
with large variance in vertex weights (especially for partitioning problems with small
imbalance). Lastly, Alpert et al. [AHK97; AHK98] emphasize that (8) the depth of
the multi-level hierarchy represents a trade-off between solution quality and running
time.

It is interesting to note that while both matching and clustering algorithms
were already employed in some of the first multi-level algorithms for hypergraph
partitioning [HB95; AHK97], multi-level graph partitioning algorithms mostly
relied on the former [KK95a; KK98a] until the partitioning of scale-free networks
with highly irregular structure became a focus of investigation [MSS14; MSS16].
Before that, GP mainly targeted instances with rather regular structure, such as
graphs derived from finite element meshes. Thus, while the idea of employing
clustering algorithms for coarsening is relatively new in the field of graph parti-
tioning, its effectiveness for irregular problems has already been well understood
in the hypergraph partitioning community.

3.6.2 Initial Partitioning and Refinement

Since the coarsest hypergraph is only a rough approximation of the original hypergraph,
computing exact solutions in the initial partitioning phase does not result in significant
gains [BS11, p. 71] and the best solution on the coarsest hypergraph does not necessarily

94



3.6 Epilogue – Lessons Learned

translate to the best solution on the input hypergraph. Therefore, existing partitioning
systems employ a variety of simple algorithms to compute an initial solution and leave
further optimization to the refinement phase.

“Even though sophisticated refinement algorithms can be integrated into the multi-
level scheme, we note that current multilevel implementations seem to favor simpler
refinement algorithms that possess significantly shorter run-times” [Tri06, p. 75]. While
shorter running times are certainly a reason to favor simple algorithms over the more
sophisticated flat approaches presented in Section 3.3, we believe the main reason to be
a different one: Coarsening algorithms strive to create instances for which KL/FM-type
algorithms are known to be effective (i.e., hypergraphs with large minimum vertex
degree [Len90, p. 273][Bui+87; Bui+89] and small nets [Kar03, p. 147]). Furthermore,
refinement works at multiple levels of granularity during the uncoarsening phase and
thus allows to effectively move clusters of vertices at once on coarser levels, while still
ensuring fine-grained optimizations on finer levels. Therefore, the multi-level paradigm
implicitly addresses the main shortcomings of move-based KL/FM-type algorithms.

3.6.3 Computing k-way Partitions

Multi-way partitions can either be computed via recursive bipartitioning (RB) or direct
k-way partitioning. To this day, it remains controversial which approach should be
preferred in practice [CL98; ACU08; KB18], because both approaches come with their
own problems. The RB-approach acts greedily and lacks global information. As already
noted by Kernighan and Lin [KL70], a good solution for the first bipartition divides the
hypergraph into two densely connected blocks and thus makes it more difficult to find
smaller cuts in later levels of the partition tree. Thus, high-quality solutions on the
first recursion levels do not necessarily translate to high-quality k-way partitions. In
fact, it has been shown by Simon and Teng [ST97] that RB can produce partitions that
are very far away from optimal in the worst case. Additionally, RB-based algorithms
are unable to accept less attractive solutions at early bipartitioning steps that would
lead to net savings later on [HL93]. Furthermore, the performance of RB degrades for
hypergraphs with large nets [UA04], since it becomes difficult for move-based local
search algorithms to find meaningful moves that improve solution quality, because large
nets are likely to have many pins in both blocks of the bipartition (especially in the
first couple of bipartitions). In order to compute feasible solutions under tight balance
constraints, RB-based algorithms need to adaptively adjust their imbalance ratios at
each bipartitioning step, which can become problematic when partitioning hypergraphs
with a large variance in vertex weights [ACU08]. Furthermore, the RB paradigm is not
considered appropriate for variations of the standard hypergraph partitioning problem
(e.g., multiple constraints, multiple objectives, or fixed vertices) [KK99; ACU08].
Moreover, objectives functions such as the connectivity metric fλ(Π) that take into
account the connectivity of cut-nets can only be optimized implicitly using the RB-
approach by splitting cut-nets after each bipartition [ÇA99]. This in turn restricts the
search space because connections to vertices in other blocks are ignored [Das93, p. 39].

Despite these shortcomings, the RB-approach is widely used in practice [Kar+97a;
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ÇA99; VB05; Dev+06; Kab+17] because of its computational simplicity and cost-
effectiveness [CL98]. Furthermore, direct k-way refinement algorithms [San89] are
considered highly susceptible to becoming trapped in local minima that are far away
from being optimal [Lim00, p. 39][CL98; KK99; Are01]. Due to the large number of
potential move candidates and the k(k − 1) possible move directions, they are prone
to making wrong decisions [Lim00, p. 40]. Furthermore, direct k-way algorithms are
considered “complex to describe and to implement” [BS11, p. 72]. While they seem
beneficial for optimizing metrics such as the connectivity objective fλ(Π), optimizing
the cut-net objective fc(Π) becomes more difficult in a direct k-way setting, especially
for hypergraphs with large nets, in which case the gain of moving a single vertex to
another block is likely to be zero [MP14], because large hyperedges tend to connect
multiple blocks. Lastly, Buntine et al. [Bun+97] noticed a subtle but significant
difference between 2-way and k-way KL/FM-type algorithms: In 2-way partitioning,
the final state of a pass is a mirror of the initial state, since on termination of a pass
the algorithm has swapped both blocks (assuming all vertices are moved). Thus both
at the beginning and at the end of a pass, a 2-way algorithm makes local changes to the
starting solution, whereas for k-way partitioning, “the states just drift away from the
initial state and a second local move is not created at the end of the pass” [Bun+97].
While 2-way algorithms thus first walk away from the initial solution and then return
at the end of a pass, k-way algorithms can easily get lost in the search space.
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4Chapter 4

n-Level Hypergraph Partitioning

“All parts should go together without forcing. You must remember that the
parts you are reassembling were disassembled by you. Therefore, if you can’t
get them together again, there must be a reason. By all means, do not use a
hammer.”

— IBM Maintenance Manual, 1925

In this chapter, we present the algorithmic contributions that form the core of
the n-level hypergraph partitioning framework KaHyPar (Karlsruhe Hypergraph
Partitioning). The chapter is based on four conference publications [Sch+16a;
Akh+17a; HS17a; HSS18a] and one journal paper [HSS19a].

Historical Perspective. The original idea of generalizing the n-level approach
from graph partitioning [OS10a; OS10b] to hypergraph partitioning came from Peter
Sanders. The bachelor thesis of Florian Ziegler [Zie12] can be seen as the starting point
of his group’s interest in hypergraph partitioning. The thesis was jointly supervised
by Peter Sanders, Vitaly Osipov, and Christian Schulz, and presents an approach to
hypergraph bipartitioning that contracts one hyperedge in each level of the hierarchy.
However, this system was two orders of magnitude slower than hMETIS and unable
to compute solutions of higher quality, prompting the decision to start from scratch.
Joint work of the author of this dissertation with Vitali Henne, Henning Meyerhenke,
Peter Sanders, and Christian Schulz lead to the second attempt – a direct k-way
n-level hypergraph partitioner that contracted pairs of vertices [Hen+15a]. Despite
several interesting ideas (e.g., a refinement algorithm based on size-constrained label
propagation that was developed as part of Vitali Henne’s master thesis [Hen15a]) and
the best quality in the majority of experiments, the algorithm was unable to improve
on the state of the art consistently in terms of the time/quality trade-off.
However, we learned from that paper that recursive bipartitioning can be ad-

vantageous and thus decided to first focus on a highly optimized n-level recursive
bipartitioning algorithm for cut-net optimization, which was presented in a conference
publication [Sch+16a] and a technical report [Sch+15a] jointly published with Vitali
Henne, Tobias Heuer, Henning Meyerhenke, Peter Sanders, and Christian Schulz.
Following the success of this recursive bipartitioning algorithm, we then turned to
connectivity optimization and developed a direct k-way partitioning algorithm. It
employs locality-sensitive hashing (LSH) techniques in a preprocessing step to cluster
(and contract) vertices with similar neighborhoods, uses the recursive bipartitioning al-
gorithm as initial partitioning engine, and is the first multi-level algorithm to efficiently
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implement the powerful FM-based local search heuristic for the complex k-way case.
The corresponding paper was jointly published with Yaroslav Akhremtsev, Tobias
Heuer, and Peter Sanders [Akh+17a]. In subsequent works, this algorithm was then
enhanced with an improved coarsening scheme that incorporates global information
about the community structure of the hypergraph into the coarsening process [HS17a],
and with a refinement framework based on max-flow min-cut computations. The for-
mer was jointly published with Tobias Heuer [HS17a]. The latter was jointly published
with Peter Sanders and Tobias Heuer in a technical report [HSS18b], a conference
paper [HSS18a], and a journal paper [HSS19a].

n-Level Partitioning. Reviewing the historical development of hypergraph parti-
tioning algorithms revealed that several authors had already established the connection
between the number of hierarchy levels and the trade-off between solution quality
and running time. Saab [Saa95] states that “compaction should proceed slowly in
order to achieve high quality solutions”. This observation was also made by Alpert
et al. [AHK97] who note that “slower coarsening reduces the differences between
successively coarser netlists Hi and Hi+1 which implies that iterative refinement of
Hi will take fewer passes to converge” and that “more levels allow more opportunities
to refine the current solution at the various levels” [AHK98]. Furthermore, Alpert
[Alp96, p. 198] explicitly states that improved solution quality comes “at a significant
cost in CPU time” – a fact that was also observed by Karypis [Kar03, p. 139] during
the development of hMETIS. The hypergraph partitioning framework presented in
this chapter essentially shows how to evade this trade-off completely by going to the
extreme case of (nearly) n levels. By engineering the algorithms used in both the
coarsening and the refinement phase, and devising lazy-evaluation techniques and
sophisticated caching mechanisms, we reduce the running time by more than two
orders of magnitude compared to a naïve adaptation of the n-level approach used in
KaSPar [OS10a; OS10b] for ordinary graph partitioning.

Chapter Overview. This chapter integrates all aforementioned publications in a
consistent manner and extends the presentation in several ways. We start by describing
our “semi-dynamic” hypergraph data structure in Section 4.1. It is semi-dynamic in
that we are only concerned with efficient vertex and hyperedge deletions and the reversal
of these operations, and do not consider insertions of additional vertices or nets. The
data structure described in this dissertation is a more space efficient version of the data
structure presented in the conference paper [Sch+16a], and therefore differs in the way
contractions and uncontractions are performed. In Section 4.2, we discuss our approach
to computing k-way partitions via recursive bipartitioning and the peculiarities that
need to be addressed for cut-net and connectivity optimization. Section 4.3 then
presents the employed preprocessing techniques, namely the LSH-based sparsification
algorithm and the community-aware coarsening scheme. Afterwards, we address each
of the three phases of the multi-level paradigm. Section 4.4 describes two different
n-level coarsening schemes and discusses our implementation of parallel net detection.
Afterwards, we briefly describe our portfolio-based approach to initial partitioning in
Section 4.5. Section 4.6 then presents our localized 2-way and k-way FM-based local
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search algorithms for optimizing both the cut-net metric and the connectivity metric.
For k-way partitioning, the section extends previous work [Akh+17a] in two ways.
First, we additionally discuss gain computation and delta-gain updates for cut-net
optimization. Second, we prove the correctness of the delta-gain update procedures
for both objective functions. Section 4.7 presents our flow-based refinement framework
that uses max-flow computations on pairs of blocks to improve the solution quality of
k-way partitions. In Section 4.8, we then define the two main framework configurations
used in this work – the recursive bipartitioning algorithm rKaHyPar and the direct
k-way partitioner kKaHyPar – before we extensively evaluate different aspects of the
algorithms experimentally in Section 4.9. Section 4.10 then concludes this chapter.

References and Attributions. All aforementioned publications (Refs. [Sch+16a;
Akh+17a; HS17a; HSS18a; HSS19a]) were almost entirely written by the author of
this dissertation. A notable exception is the description of the sparsification algo-
rithm [Akh+17a], which was jointly written with Yaroslav Akhremtsev. Peter Sanders
was involved in the editing of all publications and provided many helpful remarks and
comments to improve the presentation of the results. Henning Meyerhenke and Chris-
tian Schulz were involved in the editing process of Ref. [Sch+16a]. Since the following
sections contain text passages from all publications in verbatim, we briefly outline the
corresponding references and attribute ideas that were not our own. Section 4.1 and
Section 4.2 are based on one conference paper [Sch+16a]. The sparsification algorithm
described in Section 4.3.1 was designed by Yaroslav Akhremtsev, Peter Sanders, and
the author of this dissertation, and is published in a conference paper [Akh+17a].
The implementation was done by Yaroslav Akhremtsev. Both text and pseudocode
were rewritten significantly by the author of this dissertation to improve clarity. Sec-
tion 4.3.2 is based on the corresponding conference paper [HS17a]. The implementation
was largely done by Tobias Heuer who at the time worked as a student assistant for the
author. Section 4.4 is based on two conference papers [Sch+16a; Akh+17a]. However,
we provide additional insights into the rating function used to evaluate potential
contractions and its effects on the coarsening algorithms. Section 4.5 is based on the
same two conference papers as Section 4.4. The initial partitioning algorithms were
implemented by Tobias Heuer as part of his bachelor thesis [Heu15a]. The thesis was
supervised by us and contains detailed descriptions of the algorithms and an extensive
experimental evaluation. Section 4.6 is based on two conference publications [Sch+16a;
Akh+17a], while Section 4.7 contains large parts of a journal paper [HSS19a] and
the corresponding conference publication [HSS18a]. The idea of generalizing the flow-
based refinement framework of the graph partitioner KaFFPa [SS11] to hypergraph
partitioning initially came from Peter Sanders. The implementation was done by
Tobias Heuer as part of his master thesis [Heu18a], which was supervised by us. The
experimental evaluations presented in Section 4.9.2 and Section 4.9.7 contain text
passages from Ref. [HS17a] and Ref. [HSS19a], respectively.
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Figure 4.1: Example of a contraction operation. The hypergraph H is depicted
on the left, the corresponding bipartite graph representation is shown in the
middle, and the adjacency data structure is shown on the right. The contraction
leads to an edge deletion operation for net 0 and a relink operation for net 1.
Element E[2] is a sentinel element used during uncontractions.

4.1 The Hypergraph Data Structure

Conceptual Overview. Conceptually, we represent the hypergraph H as an undi-
rected bipartite graph G = (V ∪̇E,F ). The vertices and nets of H form the vertex set.
For each net e incident to a vertex v, we add an edge (e, v) to the graph. The edge
set F is thus defined as F := {(e, v) | e ∈ E ∧ v ∈ e}. When contracting a vertex pair
(u, v), we mark the corresponding node v as deleted. The edges (v, e) incident to v
are treated as follows: If G already contains an edge (u, e), then net e contained both
u and v before the contraction. In this case, we simply delete the edge (v, e) from G.
Otherwise, net e only contained v. We therefore have to relink the edge (v, e) to u.

Data Structure. We use a combination of an adjacency list and a modified adjacency
array to represent G. An example is shown in Figure 4.1. The adjacency list is used
to store the incident nets of each vertex (i.e., the edges leaving nodes v ∈ V in the
bipartite graph representation), while the adjacency array stores the pins of each
net (i.e., edges leaving nodes v ∈ E in G). This representation is motivated by the
observations that – after contracting a vertex pair (u, v) – (i) the degree d(u) of
representative u is non-decreasing (ignoring the removal of single-vertex nets), and (ii)
the sizes |e| of incident nets e ∈ I(u) are non-increasing. To index into the adjacency
array A, we use an offset array E that stores the starting positions of the entries in
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4.1 The Hypergraph Data Structure

Algorithm 4.1 : Contract representative u with contraction partner v.
Input : Vertex pair (u, v) to be contracted

1 M := {u, v} //Memento to remember contraction
2 c(u) := c(u) + c(v) //Update weight of representative u
3 foreach e ∈ I(v) do // Iterate over all incident nets of v
4 τ := l := E[e].f + E[e].s− 1 //Last pin slot of net e
5 for i := E[e].f ; i ≤ l; ++i do // Iterate over all pins of net e
6 if A[i] = v then //Find position of v ...
7 swap(A[i], A[l]); −−i // ... and move v to the last pin slot
8 else if A[i] = u then τ := i // Search for u and remember its position
9 if τ = l then //Net e does not contain u; relink operation

10 A[l] := u //Re-use slot of v in net e for u
11 V [u].append(e) //Add e to the adjacency list of u
12 else //Net e contains both u and v ; delete operation
13 −−E[e].s //Cut off v

14 V [v].disable() //Remove v from the hypergraph
Output : Contraction mementoM

A (E[·].f) and the size of each net |e| (E[·].s). Thus, pins of a net e are accessible as
A[E[e].f ], ..., A[E[e].f +E[e].s−1], while nets incident to a vertex v are accessed using
array V that stores a pointer for each vertex to a vector containing the corresponding
incident nets.
Contraction. Contracting a vertex pair (u, v) ∈ H works as follows: For each net
e ∈ I(v) we have to determine if the corresponding edge (v, e) ∈ G can simply be
deleted or if a relink operation is necessary. This can be done with one iteration
over the pins of e. During this iteration, we swap v with the last pin of e located at
position A[E[e].f +E[e].s− 1], and additionally search for vertex u. If we find u, then
there is no need to perform a relink operation and we can remove v from e by simply
decrementing E[e].s. If u was not found, we have to relink e to u. A relink operation
adds the undirected edge (u, e) to G. To achieve this in our data structure, we have
to add e to the set of incident nets of u, and make u a pin of net e. The latter can be
accomplished by reusing the pin slot of v: After the iteration over the pins of e, v is
the last entry in the subarray of e. Setting A[E[e].f + E[e].s− 1] := u therefore adds
u to the pins of e and simultaneously removes v. The former is done by appending e
to the adjacency list of vertex u. Algorithm 4.1 gives the corresponding pseudocode.
In order to be able to reverse contractions, we remember each contracted vertex pair
in a mementoM.
Uncontraction. A pseudocode description of the uncontraction operation can be
found in Algorithm 4.2. After re-enabling vertex v and resetting the weight of the
representative vertex u, we first mark all incident nets I(v) as relevant for the current
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Algorithm 4.2 : Revert the contraction of vertices u and v.
Input : Contraction MementoM = {u, v}

1 V [M.v].enable() //Add vertex v to the hypergraph
2 c(M.u) := c(M.u)− c(M.v) //Reset weight of representative vertex u
3 b = [b0, . . . , bm−1] := [false, . . . ,false] //Bitset
4 foreach e ∈ V [M.v] do b[e] := true //Mark all incident nets of v
5 s := |V [M.u]| //The number of nets incident to vertex u
6 for i := 0; i < s; ++i do // Iterate over all nets e ∈ I(u)
7 e := V [M.u][i] //The ith net e incident to vertex u
8 if b[e] then //Was net e incident to v before contraction?
9 // In this case we have to revert either a delete or a relink operation.

10 x := E[e].f + E[e].s //One past the last pin of net e
11 if x 6= E[e+ 1].f ∧ A[x] =M.v then //Revert delete operation
12 // E[e+1].f always exists because of a sentinel element at position E[m]
13 ++E[e].s //Revert the cut-off of v
14 else //Revert relink operation: e ∈ I(v) ∧ e /∈ I(u) before contraction
15 swap(V [M.u][i], V [M.u][s− 1]) // Swap e to the end of u’s adjacency list
16 V [M.u].pop() //Remove the last entry (i.e., net e) from u’s adjacency list
17 −−i; −−s //Update loop variables
18 for j := E[e].f ; j < E[e].f + E[e].s; ++j do // Iterate over pins p ∈ e
19 if A[j] =M.u then A[j] :=M.v; break //Reset the re-used pin slot

uncontraction using a bit vector b. We then iterate over all nets e ∈ I(u) of the
representative u. If net e is also incident to the re-enabled vertex v (i.e., b[e] = true), it
is necessary to revert either a delete or a relink operation. It is possible to distinguish
between both cases by peeking one element past the slot of the last pin of e (see line 11
in Algorithm 4.2). If the pin located at this position is v and we are still in the pin
range of net e (i.e., the current size of e is smaller than its original size), we have to
revert a delete operation. Otherwise a relink operation needs to be reverted. Deletions
can be reversed by simply increasing E[e].s for the corresponding nets. To reverse a
relink operation, we remove e from the adjacency list of vertex u, and reset the pin
slot of e containing u back to v.

Difference to the Conference Version. The data structure presented in the
conference paper [Sch+16a] is a generalization of the graph data structure used in
KaSPar [OS10a]. It used a single adjacency array, which is divided into two offset
arrays and an incidence array. The offset arrays are used to access the incident
nets of each vertex and the pins of each net within the incidence array. Figure 4.2
shows an example of the old data structure for the hypergraph and the contraction
operation depicted in Figure 4.1. While delete operations were handled the same
way as described above, relink operations were handled differently. Since this data
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Figure 4.2: The hypergraph data structure used in the conference pa-
per [Sch+16a] is a generalization of the graph data structure used in KaS-
Par [OS10a] (adapted from [Sch+16a]).

structure used the incidence array A to store both incident nets of vertices and pins of
nets, the subarray of representative u had to be copied to the end of A every time
I(v) \ I(u) 6= ∅. While the induced space overhead was deemed acceptable in the case
of graph partitioning [OS10a], skewed degree distributions and large hyperedges can
lead to excessive memory consumption for hypergraphs, which is why we propose the
hybrid data structure described in this section.

4.2 Computing k-way Partitions via Recursive
Bipartitioning

Motivation. As we have seen in Section 3.6.3, the question whether or not to
prefer direct k-way partitioning over recursive bipartitioning is still unresolved. Our
first partitioning algorithm [Sch+16a] used recursive bipartitioning to optimize the
cut-net metric, before we turned to direct k-way partitioning optimizing both the cut-
net [HSS18a; HSS19a] and the connectivity metric [Akh+17a; HS17a; HSS18a; HSS19a].
In the following, we therefore describe our approach for recursive bipartitioning. The
general framework is outlined in Algorithm 4.3.

Recursive Bipartitioning. If k is a power of two, the final k-way partition is
obtained by first computing a bipartition of the initial hypergraph and then recursing
on each block. Hence, it takes log2(k) such phases until the hypergraph is partitioned
into k blocks. If k is not a power of two, the approach has to be adapted to produce
appropriately-sized partitions. Our algorithm uses the following technique to compute
a k-way partition via recursive bipartitioning for arbitrary values of k: We compute
a 2-way partition of the hypergraph such that one block has a maximum weight of
(1+ε′)dbk/2c/k ·c(V )e and the other block has a maximum weight of (1+ε′)ddk/2e/k ·
c(V )e, where ε′ is a suitable adjusted imbalance parameter that ensures that the final
k-way partition is ε-balanced. The former block is then partitioned recursively into
k′ := bk/2c blocks, while the latter is partitioned into k′ := dk/2e blocks.
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4 n-Level Hypergraph Partitioning

Adaptive Imbalance. If the initial imbalance parameter ε was to be used in each
bipartitioning step, the weight of the largest block Vmax could be larger than the
maximum allowed block weight Lmax, which is why it is necessary to restrict the
allowed imbalance at each bipartition. In the graph partitioning framework KaHIP,
which uses recursive bipartitioning during initial partitioning, this is achieved by
using a restricted imbalance of ε′ = 0.01 for each 2-way partition in order to be “not
too far away from the default value of 3% imbalance” [Sch13b, p. 49]. Since a fixed
parameter may unnecessarily restrict the search space, we choose ε′ adaptively for each
bipartition, depending on the initial imbalance parameter ε and the target number of
blocks k. Our approach is summarized in the following lemma:

Lemma 4.1 (Adaptive Imbalance for Recursive Bipartitioning [Sch+16a])
Let H0 and H1 be the hypergraphs induced by a bipartition Π = {V0, V1} of an
unweighted hypergraph H = (V,E, c, ω) for which we want to compute an ε-balanced
k-way partition. Using an adaptive imbalance parameter

ε′ :=
(

(1 + ε) k
′ · c(V )
k · c(Vi)

) 1
dlog2(k′)e

− 1

to compute a k′-way partition (with k′ ≥ 2) of hypergraph H0/H1 via recursive
bipartitioning ensures that the final k-way partition of H is ε-balanced.

When computing the very first bipartition for a k-way partition, we set H0 := H,
k′ := k and therefore ε′ := (1 + ε)(1/dlog2(k)e) − 1.

Proof. To show that using ε′ at each bipartition ensures an ε-balanced k-way partition,
we use a maximum block weight L′max := (1 + ε) c(V )

k ≤ Lmax. If the weight of each of
the k′ blocks of the k′-way partition is below L′max, then the final k-way partition of
H is ε-balanced. To ensure this, we have to determine the maximum possible weight
one of these blocks can have. Because Hi is split at each bipartitioning step such that
one block can be further divided into bk′/2c blocks while the other is further split into
dk′/2e blocks, the vertices of at least two blocks in the final k′-way partition have to
be part of dlog2(k′)e bipartitions. Let Vmax be such a block and assume without loss
of generality that at each bipartitioning step, block Vmax has the maximum possible
weight. Using the initial imbalance parameter ε at each bipartitioning step would
therefore result in a final block weight of

c(Vmax) := (1 + ε)dlog2(k′)e c(Vi)
k′

. (4.1)

To ensure that the original k-way partition of H is ε-balanced, we have to choose ε in
Eq. 4.1 such that c(Vmax) ≤ L′max. Thus, when recursively partitioning a hypergraph
Hi with weight c(Vi) into k′ blocks, we choose a new imbalance parameter ε′ as follows:
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Algorithm 4.3 : n-Level Recursive Bipartitioning (adapted from [Sch+16a])
Input : Hypergraph H = (V,E) and imbalance parameter ε
Input : Partitioning objective O
Input : Lowest block number kl and highest block number kh

1 Function partition(H, ε,O, kl, kh)
2 k = kh − kl + 1 //Partition H into k blocks with block numbers kl, ..., kh
3 Πk := ∅ //The final k-way partition
4 if kl = kh then Πk := V ; return Πk //Base case
5 ε′ := calculate according to Lemma 4.1 //Adaptive imbalance calculation
6 while H is not small enough do //n-Level Coarsening, described in Section 4.4
7 (u, v) := arg maxu∈V score(u) //Choose vertex pair with highest rating

H := contract(H,u, v) //H := H \ {v}
8 Π2 = (V0, V1) := bipartition(H, ε′) // Initial Partitioning, described in Section 4.5
9 while H is not completely uncoarsened do //Uncoarsening/Refinement

10 (H,Π2, u, v) := uncontract(H,Π2) //Uncontract vertex pair (u, v)
11 (H,Π2) := refine(H,Π2, u, v, ε

′) //Refinement (Section 4.6 and Section 4.7)
12 if O = fc(Π) then //Cut-Net Optimization ; remove cut-nets
13 // Recurse on section hypergraphs
14 Πk := Πk ∪ partition(H × V0, ε,O, kl, kl + bk/2c − 1)
15 Πk := Πk ∪ partition(H × V1, ε,O, kl + bk/2c, kh)
16 else if O = fλ(Π) then //Connectivity Optimization ; split cut-nets
17 // Recurse on subhypergraphs
18 Πk := Πk ∪ partition(HV0 , ε,O, kl, kl + bk/2c − 1)
19 Πk := Πk ∪ partition(HV1 , ε,O, kl + bk/2c, kh)
20 return Πk

Output : ε-balanced k-way partition Πk = {V1, . . . , Vk}

(1 + ε′)dlog2(k′)e c(Vi)
k′
≤ L′max := (1 + ε)c(V )

k

⇒ ε′ ≤
(

(1 + ε)k
′ c(V )
k c(Vi)

) 1
dlog2(k′)e

− 1.
(4.2)
�

Note that for weighted hypergraphs, the desired imbalance ε (and thus the restricted
imbalance ε′) may not always be achievable (e.g., because of some very heavy vertices).
This leads to imbalanced blocks already at early levels of the bipartitioning process.
In order to be robust in these cases, we ensure that the adaptive imbalance parameter
ε′ is between zero and a maximum imbalance value ε′max, which is set to 0.99 in our
implementation.
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4 n-Level Hypergraph Partitioning

Cut-Net Splitting and Cut-Net Removal. Depending on the objective function
O to be optimized, cut-nets need to be treated differently when recursing on the two
hypergraphs induced by a bipartition Π = {V0, V1}. For cut-net optimization, we
recurse on the section hypergraphs H × V0 and H × V1. These section hypergraphs
do not contain the cut-nets, because these nets will always be cut nets in the final
k-way partition, and already contribute ω(e) to the total cut size [ÇA11b]. This
simultaneously reduces the number of nets as well as their average size in each section
hypergraph, without affecting the partitioning objective. For connectivity optimization,
however, all following bipartitions can further increase the connectivity λ of the cut
nets. Therefore, it is necessary to recurse on the subhypergraphs HV0 and HV1 , in
which each cut-net e is split into two nets e0 = e∩ V0 and e1 = e∩ V1. Single-pin nets
can be discarded in this process, as they cannot be cut in further bipartitioning steps.

4.3 The Preprocessing Phase

Before starting the n-level partitioning process, we sparsify hypergraphs with large
nets, and infer information about the community structure to guide the coarsening
process. Section 4.3.1 describes our pin sparsification algorithm. Community detection
is discussed in Section 4.3.2.

4.3.1 Pin Sparsification via Locality-Sensitive Hashing

Motivation. Algorithms employed in each phase of the multi-level framework often
perform computations on the vertices and their set of neighbors (e.g., to find the
“best” contraction partner u ∈ Γ(v) for vertex v during coarsening). For a given vertex
v, this requires iterating over the set of all pins p ∈ e of all incident nets e ∈ I(v).
Especially for hypergraphs with many large nets, these calculations can therefore
have a significant impact on the overall running time of the respective algorithm. To
alleviate this impact, we employ a pin sparsifier as a preprocessing technique that
clusters (and contracts) vertices with similar neighborhoods and thus reduces the
average hyperedge size.

Central Idea. We consider two vertices u and v to be similar, if they share many
nets, i.e., if their sets of incident nets I(u) and I(v) have a relatively large intersection.
Similarity is measured using the Jaccard coefficient J(A,B) = |A∩B|/|A∪B|, for finite
sets A and B. In the following, we will use J(u, v) to denote the Jaccard coefficient of
the incident nets of two vertices u and v, i.e., J(u, v) = |I(u) ∩ I(v)|/|I(u) ∪ I(v)|. The
corresponding distance metric then is D(u, v) = 1− J(u, v) [Cha02]. Since calculating
these distances/similarities for every pair of vertices would lead to a quadratic-time
algorithm, we instead use the locality-sensitive hashing (LSH) technique [IM98; GIM99]
to identify sets of similar vertices that are “close” to each other with respect to D(·, ·).
Similar vertices are then contracted to reduce the number of pins in the hypergraph.
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Locality-Sensitive Hashing (LSH). The key idea of the LSH approach is to hash
elements in such a way that the probability for “close” elements to have equal hash
values is high, while the probability for “distant” elements to have equal hash values
is low. For the Jaccard distance D(·, ·), the following family of hash functions (called
min-hash) is known to be locality-sensitive: H = {hσ(X) = min{σ(x)|x ∈ X|σ ∈ Σ}},
where X ⊆ U is a finite set of elements from a finite universe U , and σ is a random
permutation from the set Σ of all random permutations of U [Bro97; Bro+97]. It
can be proven that Pr[hσ(A) = hσ(B)] = J(A,B) [AI08; LK10], i.e., the larger the
distance, the smaller the collision probability [GIM99]. For an excellent introduction
to min-hashing and the locality-sensitive hashing technique, we refer the reader to the
work of Leskovec, Rajaraman, and Ullman [LRU14].

Min-Hash Fingerprints. Instead of maintaining all permutations of the set E of
hyperedges, we use a set Σ′ of hash functions of the form h(x) = ax+b mod P [Bro+00]
to simulate the effect of a random permutation σ, i.e., our min-hash family of hash
functions becomes H′ = {h(v) = min{h(e)|e ∈ I(v)}|h ∈ Σ′}. A min-hash fingerprint
for vertex v is then defined as gi(v) = (h1(v), h2(v), · · · , hi(v)), where each hash
function hj is chosen uniformly at random from H′. In our sparsification algorithm,
vertices with the same fingerprint will be put in the same cluster, and we consider
two fingerprints to be equal if and only if all i hash values are equal.
Since the fingerprints are used to approximate the distances between vertices, the

size of the fingerprint (i.e., the number i of min-hashes) affects the probability that
vertices are put into the same cluster [LRU14]. By increasing the number of hashes,
we decrease the probability that “distant” vertices have the same fingerprint. In fact,
this probability decreases exponentially with the size of the fingerprint, since all hash
functions are chosen independently and therefore it follows that

Pr[gi(x) = gi(y)] = Pr[
∧

j=1,...,i
hj(x) = hj(y)] =

∏
j=1,...,i

Pr[hj(x) = hj(y)]

= Pr[h(x) = h(y)]i = Pr[g1(x) = g1(y)]i,
(4.3)

given that all i hash functions h(·) are chosen uniformly at random from H′. However,
at the same time, increasing the size of the fingerprint also decreases the probability of
“close” vertices ending up in the same cluster. To avoid this problem, we calculate up
to l fingerprints for each vertex. Quality and running time of our algorithm therefore
depend on the choice of parameters i and l. Since the distance between vertices varies
in different parts of a hypergraph, we choose both parameters adaptively.

Related Approaches. The LSH technique is also used by Deveci et al. [DKÇ13] as a
sparsification heuristic to identify “similar” nets. While their similar net removal (SNR)
algorithm is also based on computing fingerprints consisting of several min-hashes (i.e.,
by hashing the pins of the hyperedges), it differs from our approach in that only a
single, fixed-size fingerprint is used in the similarity estimation, while our adaptive
clustering algorithm uses up to l fingerprints, and dynamically adapts their sizes.
Furthermore, while the contraction of similar vertices in our case is straight-forward,
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Algorithm 4.4 : Adaptive Hash Table Construction using LSH-based Fingerprints
Input : The input hypergraph H = (V,E)
Input : The set A of active, i.e., unclustered vertices

1 Function IdentifySimilarVertices(H,A)
2 i := 1 // Size of fingerprint gi(·), i.e., the number of min-hashes used
3 T := {} //Final hash table to represent the resulting clusters
4 A′ := A //Currently active vertices
5 Tprev := {} //Temporary hash table for adaptive construction of T
6 while A′ 6= ∅ ∧ i ≤ hmax do // Successively increase the fingerprint sizes
7 Tcur := {} //Temporary hash table for adaptive construction of T
8 foreach v ∈ A′ do //Find similar vertices using fingerprint gi(·)
9 Tcur.insert(gi(v), v) // Insert v into Tcur using gi(v) as key

10 foreach v ∈ A′ do //Evaluate the sets of similar vertices induced by gi(·)
11 Bcur[v] := {u ∈ Tcur : gi(u) = gi(v)} // Similar vertices w.r.t. gi(·)
12 Bprev[v] := {u ∈ Tprev : gi−1(u) = gi−1(v)}// Similar vertices w.r.t. gi−1(·)
13 if i ≥ hmin then //Vertices u ∈ Bcur[v] are similar enough
14 if |Bprev[v]| = |Bcur[v]| ∨ |Bcur[v]| ≤ cmax then //Explained in the text
15 foreach u ∈ Bcur[v] do
16 A′ := A′ \ {u} //Omit vertices from the remaining passes
17 T.insert(gi(v), u) //Add set of vertices similar to v to result

18 i := i+ 1 // Increase size of fingerprint for next iteration
19 swap (Tcur, Tprev) //Remember current clustering decisions for next iteration

Output : Hash table T consisting of buckets B of “similar” vertices.

it is not obvious how to choose the pin set of a representative net (which combines
several similar, but not identical nets into a single one), such that the negative effect
on solution quality is minimized.

Identifying Similar Vertices. In Algorithm 4.4 we show how to adaptively com-
pute fingerprints of increasing size to incrementally identify small (i.e., ≤ cmax) sets of
similar vertices. The actual clustering algorithm that uses this information will be
described in the following paragraph. The LSH-based algorithm works in passes. In
pass i, fingerprints gi(·) of size i are used to hash similar vertices into the same bucket
of a hash table Tcur. In order to decrease the probability that “distant” vertices end
up in the same bucket, we only consider vertices to be truly similar if the fingerprint
size is at least hmin. In case the resulting bucket contains at most cmax similar vertices
(i.e., it is not larger than our cluster size threshold), or the bucket size did not change
in the current pass, we consider the set of similar vertices a candidate set for the
clustering algorithm and ignore it in future passes. The algorithm proceeds until either
no active vertices remain or the size of the fingerprints becomes larger than hmax.
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Algorithm 4.5 : LSH-based Clustering for Pin Sparsification
Input : The input hypergraph H = (V,E)

1 Function LSHClustering(H)
2 C = [v1, . . . , vn] := [v1, . . . , vn] // Initially, each vertex is in its own cluster
3 M = {} //Maps cluster number to set of vertices contained in cluster
4 A := V // Initially all vertices are active
5 j := 1 // Iteration counter for ...
6 while A 6= ∅ ∧ j ≤ l do // ... performing similarity detection up to l times
7 Tj := IdentifySimilarVertices(H,A) // See Algorithm 4.4
8 foreach v ∈ A do //Visit all active vertices ...
9 Bv := {u ∈ Tj : gj(u) = gj(v)} //Bucket of vertices similar to v

10 foreach u ∈ Bv do // ... and cluster those similar to v
11 if |M [C[v]]| < cmax then //Cluster of v is not too large
12 C[u] := C[v] //Add u to the cluster of v
13 M.insert(C[v], u) // Insert u into M using C[v] as key
14 Bv := Bv \ {u} //Remove u, since it has been clustered

15 if |M [C[v]]| ≥ cmin then //Cluster is large enough
16 foreach u ∈M [C[v]] do A := A \ {u} //; deactivate vertices

17 j := j + 1
Output : C contains the cluster number of each vertex.

Adaptive LSH Clustering. The clustering algorithm described in Algorithm 4.5
works in passes and maintains a set of active (i.e., unclustered) vertices. In the
beginning, all vertices are marked as active. Each pass j then starts by identifying sets
of similar vertices using the min-hash fingerprint gj(·) as described in Algorithm 4.4.
These sets are stored in a hash table Tj . Let Bv denote the set/bucket of Tj that
contains all vertices u which are similar to vertex v, i.e., ∀u ∈ Bv : gj(v) = gj(u). In
order to guarantee O(1) expected time for insertions and deletions, each bucket Bv is
itself represented by a hash table. Each active vertex v is then clustered with similar
vertices from Bv as long as the size of the resulting cluster is less than cmax. If the size
is at least cmin, all clustered vertices become inactive and do not participate in the
next pass. By bounding cluster sizes from below by cmin and from above by cmax, we
enforce the formation of reasonably balanced clusters in order to allow the partitioning
algorithm to compute feasible solutions of high quality. The clustering algorithms
stops as soon as the number of resulting clusters is less than n/2 or the maximum
number l passes is exceeded. Each cluster is then contracted to a single vertex.

The running time of the algorithm is dominated by the time it takes to identify sets
of similar vertices. Each hash table Tj can be computed in time O(hmax ·

∑
v∈V d(v)) =

O(hmax · p). Since we perform similarity detection at most l times, the total running
time of the adaptive LSH-based clustering algorithm therefore is O(l · hmax · p).
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4.3.2 Detecting Community Structure To Improve Coarsening

Motivation. As we have learned in Section 3.6.1, the goal of the coarsening phase
is to create successively smaller but structurally similar approximations of the input
hypergraph in which both the exposed hyperedge weight as well as the sizes of the
hyperedges are successively reduced. This is commonly done by using rating functions
to identify and contract highly connected vertices that share a large number of heavy
nets with small size, and by allowing the formation of vertex clusters instead of
enforcing matchings, since their maximality constraint can destroy some naturally
existing clustering structures in the hypergraph [Kar03] (see Figure 4.3 (a)–(c) for an
example). Furthermore, the algorithms ensure that the distribution of vertex weights
does not become too imbalanced at the coarsest level, since this limits the number
of feasible initial partitions satisfying the balance constraint. This is done by either
enforcing an upper bound on the vertex weight or by integrating a penalty factor into
the rating function that discourages the formation of heavy vertices.
However, since coarsening decisions are only based on local information, several

situations can arise in which the naturally existing structure within the hypergraph
is obscured: If multiple neighbors have the same rating score, coarsening algorithms
employ different tie-breaking strategies such as randomly choosing one of them or
giving preference to vertices that have not yet been clustered [Kar03; Akh+17a]
(see Figure 4.3 (d),(e)). Furthermore, a restriction on the maximum allowed vertex
weight can lead to situations in which the highest-rated contractions are forbidden
by the weight constraint and the coarsening algorithm has to contract vertices with
lower rating score (Figure 4.3 (f)). Situations like these arise because all coarsening
algorithms are guided by local, greedy decisions based on rating functions that solely
consider the weights and sizes of nets connecting candidate vertices and therefore lack
a global view of the clustering problem. If information about the community structure
were to be known before the coarsening process, these cases could have been prevented
explicitly. We therefore propose an approach to combine a global view on the problem
with local coarsening decisions.

Community Detection via Modularity Maximization. Community detection
tries to extract an underlying structure from a graph by dividing its nodes into disjoint
subgraphs (communities) such that connections are dense within subgraphs but sparse
between them [Sch07; For10]. Different quality functions are used to judge the goodness
of a division into communities. Among those, the most popular quality function is
the modularity measure of Newman and Girvan [NG04]. It compares the observed
fraction of edges within a community with the expected fraction of edges if edges
were placed using a random edge distribution that preserves the degree distribution
of the graph [FH16]. More formally, given a graph G and disjoint communities
C = {C1, . . . , Cx}, modularity is defined as:

Q := 1
2m

∑
ij

[
Aij −

kikj
2m

]
δ(Ci, Cj), (4.4)
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(g) community detection

(e) prefer unclustered

(b) obscured clusters
{u, v}

E

(d) random tie-breaking

n1
u v

(a) input

E

(f) heavy neighbors

(c) maximal matching

E

E

Figure 4.3: (a) Hypergraph with 10 vertices and 13 nets. Nets containing only
two vertices are shown as graph edges. By cutting net n1, the hypergraph can be
partitioned into two balanced blocks. (b) Contracting vertex pair (u, v) obscures
the naturally existing clustering structure and the cut of size 1. (c)–(f) Properties
of coarsening algorithms that lead to the contraction of (u, v): (c) Coarsening
based on maximal matchings. (d) Random tie-breaking among all neighbors
with same rating score. (e) Preferring unclustered vertices to break ties. (f)
Contraction partners with highest rating score are already too heavy. (g) Our
approach: Restrict contractions to vertex pairs within the same community. This
prevents the contraction of (u, v) in all aforementioned cases (source: [HS17a]).

where Aij is the entry of the adjacency matrix A representing edge (i, j),m = 1
2
∑
ij Aij

is the number of edges in the graph, ki is the degree of node i, Ci is the community of
vertex i, and δ is the Kronecker delta. Note that this can be generalized to weighted
graphs: Aij represents the weight of edge (i, j), ki =

∑
j Aij is the weighted degree

of node i and m = 1
2
∑
ij Aij is the sum of all edge weights [New04]. Modularity

optimization is known to be NP-hard [Bra+08], but several efficient heuristics exist.
Furthermore, there exist several definitions of modularity adapted specifically to
bipartite graphs [Bar07; GSA07; SW09; Mur10]. However, we do not consider these
definitions in this work, since they do not translate into fast algorithms and therefore
only scale to small bipartite graphs [Mur10]. We therefore use the definition shown
in Eq. 4.4. We note that there also exist techniques to detect communities in k-
partite, k-uniform hypergraphs. In these approaches, hypergraphs are projected to
k bipartite graphs and bipartite modularity measures are used to detect community
structures [NO09].
The Louvain Algorithm. A fast and widely used algorithm to detect community
structure in graphs via modularity maximization is the Louvain method introduced
by Blondel et al. [Blo+08]: Initially, each node is assigned to a community of its own.
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Then, the algorithm proceeds in two phases that are repeated iteratively. In the first
phase, nodes are repeatedly assigned to the neighboring community that maximizes
the increase in modularity. This local, greedy optimization stops when no further
increase is possible. In the second phase, the graph is coarsened according to the
community structure discovered in the first phase by contracting each community
into a single node. Then, the process starts again on the coarsened graph and is
repeated until the maximum modularity is achieved. The communities of the coarsest
graph determine the community structure of the input graph. The algorithm has low
computational complexity and is thus suitable for large graphs [LF09; For10].

Community-aware Coarsening Framework. Our framework consists of two
phases. First, a (graph-based) community detection algorithm is used to partition
the vertices of the hypergraph into a set C = {C1, . . . , Cx} of internally densely and
externally sparsely connected communities. The actual number of communities |C| is
determined by the community detection algorithm. Then, a hypergraph coarsening
algorithm is applied on each community Ci independently. This can be accomplished
by modifying the algorithm to only contract vertices within the same community
by restricting potential contraction partners of a given a vertex u ∈ Ci to Γ(u) ∩ Ci.
By preventing inter-community contractions, the coarsening algorithm maintains the
structural similarity discovered by the community detection algorithm, while still
allowing local, intra-community decisions to be based on HGP-specific rating functions.
Note that this framework is independent of the algorithms used for community detection
and coarsening. In the following, we describe our instantiation, which performs
community detection via modularity maximization using the Louvain method, and
uses one of the coarsening algorithms described in Section 4.4.

Graph-based Hypergraph Representation. In order to employ the Louvain
method as community detection algorithm, a suitable graph-based representation
of the hypergraph has to be chosen. As described in Section 2.1, the two common
models are the clique and the bipartite/star representation. Several issues make the
clique representation unsuitable for our purpose: Inserting

(|e|
2
)
graph edges into the

clique graph for every net e destroys the natural sparsity of the hypergraph [AK95c]
and therefore may be prohibitively costly in terms of both space and running time.
This is important since hypergraphs arising in partitioning problems are typically
sparse [Dev+06]. Thus, for sparse instances the number of edges in the clique
representation can be as high as O(n2). Furthermore and more importantly, this
exaggerates the importance of nets with more than two pins [SK72], since large nets
automatically imply a high density in the clique representation. We therefore use the
bipartite representation, which allows us to encode any hypergraph in O(p) space. In
the following, we refer to the graph nodes representing the vertices of the hypergraph
as V -nodes and to the nodes representing the nets as E-nodes (see Figure 4.4 for an
example).
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Hypernodes
(V -nodes)

Hyperedges
(E-nodes)

|V | � |E|

δ � 1

|V | ' |E|

δ ≈ 1

|V | � |E|

δ � 1

Figure 4.4: Bipartite graph-based representations of hypergraphs of varying
edge density δ. For hypergraphs with δ � 1, the bipartite graph consists of many
V -nodes with low average degree and fewer E-nodes with high average degree
(left). If δ ≈ 1, the number of V - and E-nodes and their average degrees are
roughly equal (middle). Hypergraphs with high ratio δ � 1 lead to bipartite
representations with fewer V -nodes with high average degree and many E-nodes
with low average degree (right) (adapted from [HS17a]).

Schweikert and Kernighan [SK72], who were the first to use a hypergraph model
in the context of circuit partitioning, describe the shortcomings of the clique-net
model as follows: “The exaggeration grows rapidly as the number of elements
increases; for example, the cost of dividing an 11-element net ranges between 10
and 30 edge cuts, when physically only one wire needs to be cut. Such a grossly
disproportionate weighting of an 11-element net, compared with two-element
nets, almost insures that all its attached elements will be in one package of the
partition - unfortunately ‘dragging their tentacles behind them’.”

Modeling Peculiarities. By performing community detection on the bipartite
graph representation we receive a community partition of both the vertices and the
nets of the hypergraph, since both are represented as (V,E)-nodes in the graph.
However, we are only interested in the community structure of the vertices. Therefore
we have to take structural properties of the hypergraphs into account. More specifically,
we have to consider the edge density [DW19]:

δ := d(v)
|e|

= p/n

p/m
= m

n
, (4.5)

where d(v) is the average vertex degree and |e| is the average net size. If δ ≈ 1, the
number of V -nodes is roughly equal to the number of E-nodes and d(v) ' |e|. If
δ � 1 then there are more E-nodes than V -nodes and d(v) � |e|, whereas if δ � 1
the opposite is the case (see Figure 4.4). In case the hypergraph exhibits a low edge
density and therefore a large average net size, special care has to be taken in order
to ensure that the community structure is not exclusively shaped by the high-degree
E-nodes. Similarly, the large number of E-nodes can lead to a community structure
that is dominated by the nets of the hypergraph in case δ � 1. Hypergraphs with
ratio δ ≈ 1 do not pose a problem, since the number of V -nodes and E-nodes as well
as their degrees are balanced. We account for these structural differences by encoding

113



4 n-Level Hypergraph Partitioning

additional information about the hypergraph structure into the weights of the bipartite
graph edges.

Weighting Graph Edges. We propose three different weights for the edges (v, e)
between V -nodes v ∈ V and E-nodes e ∈ E as shown in Eq. 4.6. The first scheme
uses uniform edge weights as a baseline. Giving each edge an equal weight is expected
to provide good clustering results for hypergraphs with δ ≈ 1, since for these instances
the number of V - and E-nodes as well as their degrees are roughly comparable. The
second and third schemes account for the skew in low- and high-density hypergraphs.
The weighting function ωe assigns each edge a weight which is inversely proportional to
the size of the net, i.e., smaller nets get a higher influence on the community structure
than larger nets. If many small nets are contained within a community, the coarsening
algorithm can successively reduce their size and eventually remove them from the
hypergraph. Furthermore, this ensures that high-degree E-nodes (i.e., large nets) do
not dominate the community structure by attracting too many V -nodes. This edge
weight only affects the clustering decisions of V -nodes, since from the perspective of
E-nodes each outgoing edge still has uniform weight 1/|e|. In order to also influence the
clustering decision of E-nodes, the third weighting function ωde additionally integrates
the hypernode degree into the edge weight. Strengthening the connection between
E-nodes and high-degree V -nodes facilitates the formation of communities around
high-degree vertices in the hypergraph. Note that it is possible to efficiently choose
an appropriate weighting scheme at runtime by calculating the edge density of the
hypergraph according to Eq. 4.5 and modifying the edge weights appropriately.

ω(v, e) := 1 ωe(v, e) := 1
|e|

ωde(v, e) := d(v)
|e|

(4.6)

4.4 The Coarsening Phase

Motivation. Multi-level coarsening algorithms either compute matchings [AHK98;
Kar+99; VB05; Dev+06] or clusterings [HB97; ÇA99; KK00; TK04a] on each level of
the coarsening hierarchy using different rating functions to determine the vertices to
be matched or clustered together. The contracted vertices then form the vertex set of
the coarser hypergraph on the next level. In contrast, n-level partitioning algorithms
like the graph partitioner KaSPar [OS10a] create a hierarchy of (nearly) n levels by
removing only a single vertex between two levels, which completely obviates the need
for employing matching or clustering algorithms in the coarsening phase. In this
section, we generalize KaSPar’s coarsening approach to hypergraphs and overcome its
main bottlenecks by introducing a lazy evaluation technique. Furthermore, we propose
a simpler n-level coarsening algorithm that retains the solution quality of the KaSPar
approach.

Rating Function. Our algorithms adopt the heavy-edge rating function also used
by hMETIS [Kar+99], Parkway [TK08], and PaToH [ÇA11b], which prefers vertex
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pairs (u, v) that have a large number of heavy nets with small size in common:

con(u, v) := γ(u, v) ·
∑

e∈{I(v)∩I(u)}

ω(e)
|e| − 1 , (4.7)

where γ(u, v) is an optional penalty factor inversely proportional to the product of the
vertex weights c(v) and c(u) to keep the distribution of vertex weights in the coarse
hypergraphs reasonably uniform. This is also done in the matching-based coarsening
algorithm of MLc for similar reasons [AHK97; AHK98]. The following lemma shows
that when the heavy-edge rating function with γ(u, v) = 1/(c(u) · c(v)) is used to
coarsen graphs, the rating scores for each node form a non-increasing sequence.

Lemma 4.2 (Non-Increasing Rating Scores for Graph Contractions)
Let G = (V,E, c, ω) be a graph and let

con(u, v) := 1
c(u) · c(v) ·

∑
e∈{I(v)∩I(u)}

ω(e)
|e| − 1 = 1

c(u) · c(v) ·
∑

e∈{I(v)∩I(u)}

ω(e)

be the rating function used to evaluate the importance of contractions. Then contracting
a pair of adjacent nodes (u, v) (i.e., an edge e ∈ E) never increases the rating scores
of neighboring nodes in Γ(u) ∪ Γ(v).

Proof. It suffices to consider the graph shown in Figure 4.5, since a contraction only
affects neighboring nodes. Furthermore, the only effects of a contraction are (i) the
increase of the node weight of the representative u by the weight of the contraction
partner v, and (ii) the introduction of parallel edges if neighbors are adjacent to both u
and v. Assume without loss of generality that the weight of edge e = (v1, v2) is larger
than ω(a), ω(b), and ω(c) = maxvi∈Γ(v3)\{v1,v2} ω(v3, vi) so that vertex pair (v1, v2)
will be contracted first, and let all nodes have unit weight. The rating score of vertex
v3 is determined by the maximum weight of its incident edges. If ω(c) > ω(a) and
ω(c) > ω(b), then v3 initially chooses v4 as contraction partner. Moreover, this choice
(and thus the rating score) remains unaffected by the contraction of nodes v1 and v2,
since (ω(a) + ω(b))/2 < ω(c). Similarly, if either ω(a) or ω(b) (or both) are larger
than ω(c), v3 initially chooses the node connected via the edge arg max(ω(a), ω(b)) as
contraction partner. After contraction, the contraction partner is then updated to
{v1, v2} if (ω(a) +ω(b))/2 > ω(c). Otherwise, v4 becomes the new contraction partner.
In this case, however, max((ω(a) + ω(b))/2, ω(c)) ≤ max(ω(a), ω(b)) by definition.
Similar arguments hold for the cases in which either ω(a) or ω(b) (or both) are equal
to ω(c). �

Figure 4.6 however shows that Lemma 4.2 does not generalize to hypergraphs.

Detecting Single-Vertex Nets and Parallel Nets. The contraction of a vertex
pair (u, v) can lead to parallel nets (i.e., nets that contain exactly the same vertices)
and single-vertex nets in I(u). In order to reduce the running time of the coarsening
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a
⇒
acon(v3, v1) = ω(a)

con(v3, v4) = ω(c)
con(v3, v2) = ω(b) con(v3, {v1, v2}) = ω(a)+ω(b)

2

con(v3, v4) = ω(c)

a

b c

v1

v2 v3 v4 {v1, v2}
{a, b} c

v3 v4

Figure 4.5: Visualization for the proof of Lemma 4.2 assuming unit node
weights. The weight of edge (v1, v2) is larger than ω(a), ω(b), and ω(c) =
maxvi∈Γ(v3)\{v1,v2} ω(v3, vi).

a
⇒
a

{v1, v2}
con(v3, {v1, v2}) = 1

4
con(v3, v4) = 1

2

v3

v4

v1

v2

v3

v4

con(v3, v1) = 1
3

con(v3, v2) = 1
3

con(v3, v4) = 1
3

Figure 4.6: Counterexample of Lemma 4.2 for hypergraphs.

algorithms, we continuously detect and remove these nets from the hypergraph. Single-
vertex nets are easily identified, because |e| = 1. In case of parallel nets, we remove all
but one from H. The weight of the remaining net e is set to the sum of the weights of
the nets that were parallel to e. Efficient parallel net detection is discussed in detail
in Section 4.4.3.

4.4.1 n-Level Hypergraph Coarsening

Algorithm Outline. In the following, we describe the generalization of KaSPar’s
coarsening algorithm [OS10a] to hypergraphs. At the beginning of the coarsening
phase, we compute the ratings con(u, v) for each vertex u and all eligible neighbors
v ∈ Γ(u). To avoid imbalanced inputs for the initial partitioning phase, a contraction
is only deemed eligible if c(u) + c(v) ≤ κ, where κ := s · d c(V )

t·k e is the maximum
allowed vertex weight. Parameter s is used to favor the contraction of highly connected
vertices, while parameter t is used to control the size of the coarsest hypergraph. Since
the initial partitioning algorithm has to compute a k-way partition, the number of
vertices in the coarsest hypergraph should be a function of k [KK99].

For each vertex, we then insert the pair (u, v) with the highest rating (ties are
broken randomly) into an addressable priority queue (PQ) using the rating score as
key. This allows us to efficiently choose the best-rated vertex pair that should be
contracted next, and provides a “global” view on high-rated contraction opportunities.
The algorithm then iteratively removes and contracts the pair (u, v) with the highest

116



4.4 The Coarsening Phase

score until the number of vertices drops below t · k or no eligible vertex is left.
After each contraction, we have to update the PQ such that it reflects the structural

changes induced by the contraction. This is done in three steps: First, we compute
a new eligible contraction partner v′ for the representative vertex u and insert the
new pair (u, v′) into the PQ. Second, we delete the entry of v from the PQ, since
the contraction removed v from the hypergraph. Third, we recompute the ratings
for all neighbors Γ(u) of representative u and update the PQ accordingly, since the
contraction may have influenced/invalidated some of the ratings scores.

Lazy Update Strategy. While this algorithm is adequate for ordinary graph
partitioning [OS10a], its running time can easily become prohibitive when coarsening
hypergraphs, because even a single large hyperedge can significantly increase the size of
the neighborhood Γ(v) of a vertex v. Continuously re-rating these neighbors therefore
becomes the most expensive part of the algorithm, since each rating computation
involves an iteration over all pins of all nets incident to the respective vertex.

To improve the running time in these cases, we developed a variation of the re-rating
procedure described above. Our lazy strategy does not re-rate any vertices immediately
after contracting a vertex pair (u, v). Instead, all neighbors Γ(u) of the representative
u are marked as invalid after the contraction. If, during coarsening, the PQ returns
an invalid vertex, we recompute its rating and update the priority queue accordingly.
The advanced update strategy thus delays updates of the rating scores until an invalid
vertex reaches the top of the priority queue. Given Lemma 4.2, it therefore holds that,
for graphs, the lazy re-rating approach produces the same “quality” as a coarsening
algorithm that always re-rates all neighbors of the contracted vertex pair, because
rating scores never increase and thus the partial order of all contractions in the priority
queue is never violated by delaying an update. Although this is not the case for
hypergraphs in general, we will show in Section 4.9.4 that the lazy strategy is still
effective for hypergraph coarsening.

Our extensive literature research, performed as preparation for the brief history
of hypergraph partitioning presented in Chapter 3, revealed that a similar
algorithm (named best choice) was independently proposed by Alpert, Kahng,
Nam, Reda, and Villarrubia [Alp+05; Alp+06] as a clustering technique for
hierarchical VLSI placement, i.e., the task to assign circuit components to exact
locations within the chip area. While this approach was implemented in many
placement tools [LBR07], it went unnoticed in both the graph and the hypergraph
partitioning community.

4.4.2 Simple and Fast Greedy Coarsening

Motivation. The two general bottlenecks of the coarsening algorithm described in
the previous section are (i) the use of a priority queue to determine which vertex
pair to contract next, and (ii) the (lazy) recalculation of rating scores for neighboring
vertices after each contraction. In the following, we present a much simpler coarsening
algorithm that eliminates both bottlenecks without affecting the overall solution
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quality [Akh+17a]. It is motivated by the observation that although the lazy-update
strategy weakened the order of contractions to some extent, it had no significant effect
on partitioning quality. Our simple and fast greedy algorithm therefore gives up the
global ordering of contractions entirely to further speed up the coarsening phase.
Algorithm Outline. In general, our algorithm is very similar to the First Choice
(FC) algorithm employed in hMETIS-K [KK00]. It works in multiple passes. At the
beginning of each pass, we create a random permutation of the current vertex set. For
each vertex u, we then determine its contraction partner v and immediately contract
(u, v) on the fly. Thus, v will be removed from the hypergraph and will not be visited
in this or any future passes over the vertex set. Instead of penalizing the formation
of heavy vertices (i.e., here, we set the penalty parameter γ(u, v) to 1), we employ a
tie-breaking mechanism to avoid imbalanced inputs for the initial partitioning phase:
For each vertex u, we favor a contraction partner v that has not yet taken part in any
contractions during the pass. To speed up the coarsening process in the presence of
large nets, we do not evaluate the rating function for nets larger than ι vertices. As in
the previous algorithm, we also impose a maximum vertex weight and prevent vertices
heavier than κ to be contracted further. A pass ends as soon as every vertex in the
random permutation was considered either as representative or as contraction partner.
Then, a new pass is started by creating a new random permutation of the remaining
vertices. Similar to the algorithm presented in the previous section, the coarsening
process is stopped as soon as the number of vertices drops below t · k or no eligible
vertex is left.
ADifferent View on Coarsening. The key difference to FC and related coarsening
algorithms lies in the way contractions are handled. While traditional algorithms
first compute a matching/clustering on each level and then use it to create a coarse
hypergraph for the next level, we rate and contract one vertex at the same time,
i.e., after finding the contraction partner v ∈ Γ(u) for a vertex u, we immediately
contract (u, v). Thus, while in FC clustering decisions are made for all vertices of
the current level at once, and more importantly independently of one another, our
n-level greedy coarsening algorithm adaptively adjusts every contraction decision to
the current structure of the hypergraph induced by all previous contractions.

Note that this difference also holds true for the PQ-based coarsening algorithm
described in the previous section. However, while the greedy algorithm only has
a local view, the PQ-based algorithm is able to always perform the next “globally”
best contraction.

4.4.3 Engineering Parallel Net Detection
Algorithm Outline. Parallel nets are detected using an algorithm similar to the one
proposed by Hendrickson and Rothberg [HR98], which identifies nodes with identical
structure in a graph. For each net e ∈ I(u) we create a fingerprint fe, such that
parallel nets have equal fingerprints. These fingerprints are then sorted and a final
scan identifies parallel nets: Since nets with unequal fingerprints cannot be parallel by
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definition, we have to perform pairwise comparisons of the pin sets only for those nets
with same fingerprint and size.1

Engineering Aspects. Removing parallel nets does not affect partitioning quality.
Instead, it is intended to speed up all phases of the multi-level framework. Therefore,
it is necessary to make this operation as efficient as possible, because – having fast
coarsening algorithms at hand – it can easily become the new bottleneck during
coarsening. We therefore improve the algorithm described above in two ways:
In order to keep the number of pairwise pin set comparisons as low as possible,

the fingerprint function should produce few false positives, i.e., equal fingerprints
for nets that are not actually parallel. Deveci et al. [DKÇ13] evaluate different
fingerprint functions and conclude that f2

e :=
∑
v∈e v

2 performed best. While early
versions of our algorithm used f⊕e :=

(⊕
v∈e v

)
⊕ x as fingerprint, for some seed x, our

evaluation showed that f⊕e creates a significant number of false-positives [Akh+17a].2
We therefore adopt f2

e :=
∑
v∈e v

2 in our algorithm.3
While recomputing fingerprints is feasible in traditional multi-level approaches, it

becomes expensive in the n-level setting. Instead of calculating the fingerprints for
each net e ∈ I(u) from scratch after each contraction operation, we therefore exploit
the fact that the fingerprint function f2

e is both associative and commutative. When
constructing the hypergraph data structure we compute the initial fingerprints for each
net once. After each contraction, we then update the fingerprints of nets e ∈ I(u) as
follows, distinguishing three cases: In case net e was only incident to representative u
before the contraction, the fingerprint remains valid since these nets remain unchanged.
If net e contained both u and v before the contraction, we have to remove v from the
fingerprint: f2

e := f2
e − v2. If net e was only incident to v but not to u before the

contraction, we have to add u to the fingerprint f2
e := f2

e + u2 in addition to removing
v, since it is incident to u after the contraction.

4.5 Portfolio-Based Initial Partitioning

If configured to compute k-way partitions using recursive bipartitioning as described
in Section 4.2, KaHyPar uses a portfolio of several algorithms to compute an initial
solution. Each algorithm is run several times using different random seeds. The
actual number of repetitions as well as the portfolio composition depends on the
framework configuration. The partition with the best solution quality and lowest
imbalance is used as initial partition and projected back to the original hypergraph.
In case all partitions are imbalanced, we choose the partition with smallest imbalance.
The portfolio approach increases diversification and produces better results than

1We also tried the hashing-based approach proposed by Deveci et al. [DKÇ13]. However, on average,
it did not perform better than the sorting approach.

2⊕ is the bitwise XOR
3In general, permutation checking could be done by using random hash functions or an approach that
constructs polynomials from the pin sets of two potentially parallel nets (see, e.g., Ref. [HS18b]).
In our case, however, the simple approach described above performed sufficiently well.

119



4 n-Level Hypergraph Partitioning

single initial partitioning algorithms alone [Heu15a]. In the following, we give a brief
overview of the algorithms employed in our initial partitioning portfolio and refer
to the corresponding bachelor thesis [Heu15a] for a more detailed description and
evaluation.

Random & BFS-based Partitioning. Random partitioning randomly assigns
vertices to one of the two blocks, provided that the assignment does not violate the
balance constraint. In case of a violation, the vertex in question is assigned to the
opposite block. If both assignments would lead to overloaded blocks, the vertex is
randomly assigned to one of the blocks. Breadth-First-Search (BFS) partitioning
starts with a randomly chosen vertex and performs a BFS traversal of the hypergraph
until the weight of all discovered vertices would exceed the balance constraint. The
vertices visited during the traversal constitute the first block V0, all remaining vertices
constitute the second block V1.

Greedy Hypergraph Growing (GHG). Furthermore, we use different variations
of the GHG algorithm proposed by Çatalyürek and Aykanat [ÇA99]. Unlike the
original algorithm, which grows a cluster around a randomly selected seed vertex,
our versions first compute two pseudo-peripheral vertices as follows: Starting from
a random vertex, we perform a BFS. The last vertex visited serves as the starting
vertex for the next BFS. This vertex and the last vertex visited by the second BFS
are supposed to be ”far” away from each other. Therefore, one is used as the seed
vertex for block V0, the other for block V1. For each block, we maintain a PQ that
stores the neighboring vertices of the growing cluster according to a score function.
The algorithm then iteratively selects the vertex with the highest gain from one of
the PQs, moves the vertex to the corresponding block, and then updates the scores of
neighboring vertices. As with most move-based algorithms, each vertex is only allowed
to be moved once. We use the FM gain (see Eq. 3.1), as well as the max-pin and
max-net gain definitions (which are also used in PaToH [ÇA11b]) as score functions.
The FM gain prefers to move vertices that decrease the cut-size. However, a net e
incident to an unassigned vertex v only contributes positively to the gain of vertex v
if Φ(e, V0/1) = |e| − 1, i.e., if v is the only pin of e that is not yet assigned to block
V0 or V1. Otherwise the gain contribution of net e is zero. The max-pin gain uses
the number of pins p ∈ e of incident nets e ∈ I(v) that are already assigned to the
target block as a measure on how tightly connected v is to the target block (i.e.,
gmax-pin(v) := |{p ∈ e | e ∈ I(v) ∧ p ∈ V0/1}|) whereas the max-net gain counts the
weights of all nets connected to the target block (i.e., the gain of assigning vertex v to
block Vi is defined as gmax-net(v) :=

∑
e∈E′ ω(e), where E′ := {e ∈ I(v) | Φ(e, Vi) > 0}).

Using max-pin or max-net gains, incident nets are more likely to contribute positively
to the gain of a vertex. Our GHG variants also differ in the way the clusters are grown.
The global strategy always moves the vertex with the highest score of both PQs to
the corresponding block, whereas the sequential approach first grows block V0 and
then block V1. The round-robin technique grows both blocks simultaneously. In total,
the initial partitioning portfolio therefore contains nine different initial partitioning
algorithms based on GHG.
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Size-Constrained Label Propagation. The last algorithm is based on the adap-
tation of size-constrained label propagation (SCLaP) [MSS14; MSS16] to HGP local
search. The SCLaP-based refinement algorithm was initially proposed in the master
thesis of Vitali Henne [Hen15a], which we supervised. Each vertex has a label repre-
senting its block. Initially all labels are empty, i.e., all vertices are unassigned. The
algorithm starts by searching two pseudo peripheral vertices via BFS as described
above. One vertex and τ of its neighbors then get label V0, while the other vertex
and τ of its neighbors get label V1. The algorithm then works in rounds until it has
converged, i.e., no empty labels remain. In each round, the vertices are visited in
random order and each vertex u is assigned the label of the neighbor v ∈ Γ(u) that
results in the highest FM gain, provided that the resulting cluster does not become
overloaded. Ties are broken randomly. Once the algorithm has converged, vertices
with the same label then become a block of the bipartition. The tuning parameter
τ is used to prevent labels from disappearing over the course of the algorithm, and,
based on experimental results [Heu15a], is set to τ = 5 in our implementation.
Direct k-way Partitioning. KaHyPar contains k-way generalizations for all initial
partitioning algorithms presented in the previous paragraphs, which, however, are not
used for n-level direct k-way partitioning. Instead, we employ our n-level recursive
bipartitioning algorithm to compute an initial k-way partition, since it has been
shown to perform considerably better than using direct k-way initial partitioning
algorithms [Heu15a]. This observation is in line with early experimental results on
k-way multi-level graph partitioning [Kar96, p. 42] and the fact that most direct k-way
multi-level partitioning algorithms employ (multi-level) initial partitioning algorithms
that use recursive bipartitioning [KK00; ACU08; Sch13b; Çat+15].

4.6 Localized 2-way and k-way FM Local Search

Overview. We now turn to our local improvement algorithms. Both 2-way and
k-way local search follow the FM paradigm [FM82] and are further inspired by the
algorithm used in KaSPar [OS10a; OS10b]. A key difference to the traditional FM
algorithm is the way a local search pass is started: Instead of initializing the algorithm
with all vertices or all border vertices, we perform a highly localized search starting only
with the representative and the just uncontracted vertex. The search then gradually
expands around this vertex pair by successively considering neighboring vertices.
Our 2-way local search algorithm optimizing the cut-net metric fc(Π) is described
in Section 4.6.1. It is also used to implicitly optimize the connectivity metric fλ(Π)
when KaHyPar is configured to use recursive bipartitioning. In this case, we employ
cut-net splitting instead of cut-net removal at each bipartitioning step as described
in Section 4.2. In Section 4.6.2, we then describe our k-way local search algorithm.
Unlike in the case of 2-way partitioning, objective-specific gain computations and
delta-gain updates are necessary to permit the algorithm to optimize both objectives.
Traditional multi-level FM implementations as well as KaSPar always compute the
gain of each vertex from scratch at each level of the hierarchy. During an FM pass,
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these values are then either kept up-to-date by delta-gain updates [ÇA99; PM07] or
recomputed whenever necessary [Sch13b]. Since our algorithms start around only
two vertices, many gain values would never be used during a local search pass. In
Section 4.6.3, we therefore propose a gain caching technique that ensures that the
gain of a vertex move is calculated at most once during all local searches along the
n-level hierarchy. Since local search is done after each uncontraction, it is necessary to
limit the number of vertex moves in each pass, because otherwise the n-level approach
could lead to a quadratic number of local search steps in total. In Section 4.6.4, we
therefore present two stopping rules that terminate the iterative improvement process
before all vertices have been moved. Finally, we briefly discuss implementation details
in Section 4.6.5.
Motivation. The benefits of localization are visualized in Figure 4.7, which shows
a 4-way partition in which all border vertices have negative gains (−), and only few
positive gain (+) vertices exist further away from the border. Traditional local search
algorithms are initialized with all border vertices (left). Thus, it is unlikely that once
the positive gain moves are encountered, they still yield an overall improvement in
solution quality, because the search already progressed too far away from the solution
quality of the starting partition. In this case, an FM-style algorithm would rollback
all moves – including those with positive gain. If local search is started with only a
small set of border vertices (in our case exactly two), it explicitly works in a small area
of the cut-set and is thus more likely to retain the positive-gain moves.

Simple techniques (such as LIFO tie-breaking) and more advanced approaches such
as CLIP/CDIP [DD96b; DD96c; DD02] implicitly enforce localization effects by trying
to move clusters of (close) vertices together. However, since they are initialized with
all border vertices, the distribution of move gains may still prevent the desired effect.
The KaSPar approach [OS10a; OS10b] on the other hand (which has also motivated
the localized local search algorithm of KaFFPa [SS11]) explicitly restricts the search
space to small areas of the cut-set.

4.6.1 2-way Localized FM Refinement
Algorithm Outline. We use two PQs to maintain the possible moves for all vertices
– one for each block. At the beginning of a local search pass, both queues are empty
and disabled. A disabled PQ will not be considered when searching for the next
move with the highest gain. All vertices are labeled inactive and unmarked. Only
unmarked vertices are allowed to become active. To start the local search phase after
each uncontraction, we activate the representative and the just uncontracted vertex
if they are border vertices. Otherwise, no local search phase is started. Activating a
vertex v currently assigned to block Vi means that we calculate the FM gain gj(v)
for moving v to the other block Vj ∈ B(v) \ {Vi} and insert v into the corresponding
queue Pj using gj(v) as key. Recall that for a vertex v ∈ Vi the FM gain is defined as

gj(v) :=
∑
e∈I(v)

{ω(e) | Φ(e, Vj) = |e| − 1} −
∑
e∈I(v)

{ω(e) | Φ(e, Vi) = |e|}, (4.8)
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Figure 4.7: Benefits of localization. Minus marks represent negative gain moves,
plus marks represent positive gain moves (based on [Sch13b, Figure 4.8]). If the
local search algorithm is initialized with all border vertices (left), it is unlikely to
find and retain the improvements possible by moving the positive-gain vertices.
When starting the search with a small set of vertices (right), the algorithm is
more likely to be able to exploit the positive-gain moves to improve the solution.

since a net e ∈ I(v) only contributes +ω(e) to the gain of a vertex v ∈ Vi, if v is the
last pin in block Vi that is moved to block Vj . Similarly, net e has a gain contribution
of −ω(e) if all of its pins are assigned to block Vi.
After insertion, PQs corresponding to underloaded blocks become enabled. Since

a move to an overloaded block will never be feasible, any queue corresponding to
an overloaded block is left disabled. Similarly to the original FM algorithm, we
relax the definition of overloaded blocks to account for variations in vertex weights.
Here, we consider a block to be overloaded if it deviates from the maximum allowed
block weight by more than than the weight of the currently heaviest vertex (i.e.,
if c(Vi) > Lmax + maxv∈V c(v)). The algorithm then repeatedly queries only the
non-empty, enabled queues to find the move with the highest gain gj(v), breaking
ties arbitrarily. Vertex v is then moved to block Vj and labeled inactive and marked.
We then update all neighbors Γ(v) of v as follows: All previously inactive neighbors
are activated as described above. Neighbors that have become internal are labeled
inactive and the corresponding moves are deleted from the PQs. Finally, we perform
delta-gain updates for all moves of the remaining active border vertices in Γ(v): If
the move changed the gain contribution of a net e ∈ I(v), we account for that change
by incrementing/decrementing the gains of the corresponding moves by ω(e) using
the delta-gain-update algorithm of Papa and Markov [PM07]. Once all neighbors are
updated, local search continues until either no non-empty, enabled PQ remains or
the stopping rule mandates the termination of the current pass. After local search is
stopped, we reverse all moves until we arrive at the lowest cut state reached during the
search that fulfills the balance constraint. All vertices become unmarked and inactive
and the algorithm is then repeated until no further improvement is achieved.

Locked Nets. To further decrease the running time, we exclude nets from gain
updates that cannot be removed from the cut in the current local search pass. A net is
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Figure 4.8: Different approaches to FM-based direct k-way refinement. Each
triangle represents a priority queue associated with the corresponding block. Note
that all variants except the KaSPar and KaFFPa schemes use “from” priority
queues, i.e., vertex moves are stored in the PQs associated with the current block
of the vertex. In KaSPar, a move from block Vi to block Vj is stored in the PQ
associated with Vj , while KaFFPa uses a single PQ to store the highest-gain move
for each vertex.

locked in the bipartition once it has at least one marked pin in each of the two blocks.
In this case, it is not possible to remove such a net from the cut by moving any of
the remaining movable pins to another block. Thus, it is not necessary to perform
any further delta-gain updates for locked nets, since their contribution to the gain
values of their pins does not change any more. This observation was first described by
Krishnamurthy [Kri84]. We integrate locking of nets into our algorithm by labeling
each net during a local search pass. Initially, all nets are labeled free. Once the first
pin of a net is moved, the net becomes loose. It now has a pin in one block that
cannot be moved again. Further moves to this block do not change the label of the
net. As soon as another pin is moved to the other block, the net is labeled locked and
is excluded from future delta-gain updates.

4.6.2 k-way Localized FM Refinement

Motivation. As we have seen in Chapter 3, there is a large design space for k-way
refinement algorithms. On one extreme, there is the single-level k-LA`-FM algorithm of
Sanchis [San89; San93] which maintains k(k− 1) priority queues (one for each possible
move direction). To the best of our knowledge, a multi-level version of k-LA`-FM has
only been implemented in the MSN partitioner [UA04] to optimize the total message
latency of parallel matrix vector multiplications by partitioning hypergraphs with
very few (i.e. ≤ 128) nets. In general, it is considered to be too slow to be practical
and known to produce worse solutions than competing approaches in the single-level
context, because it is more easily trapped in local minima [Wan+00; TK04a]. On
the other extreme, these problems motivate current multi-level HGP systems [KK00;
ACU08; TK08; Çat+12b] to entirely forgo FM-based direct k-way refinement and
to instead rely on weaker greedy local search algorithms that cannot escape from
local optima. In between these two extremes, there is the rotary KLFM algorithm
of Chan et al. [CSZ97a; CSZ97b] and the K-PM approach of Cong and Lim [CL98].
Rotary KLFM uses 2(k − 1) PQs and in each round only allows moves between a
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target block Vi and all other blocks Π \ {Vi}, while K-PM only uses two PQs and
iteratively improves the k-way partition by moving vertices between all k(k−1)/2 pairs
of blocks. Furthermore, for graph partitioning there exists the KaSPar [OS10a; OS10b]
method that uses k PQs (one for each block), and the k-way local search technique of
KaFFPa [SS11] that uses a single priority queue which only stores the highest-gain
move for every vertex. Figure 4.8 outlines the different PQ-based approaches. Note
that in the figure, each triangle corresponds to a priority queue. Our algorithm is
based on the refinement scheme used in KaSPar (i.e., we use k priority queues and
each PQ stores the vertex moves to that particular block), since k-LA`-FM is not
deemed practical, both rotary KLFM and K-PM only have a restricted view on the
k-way partition, and the KaFFPa approach makes it necessary to recompute gains
after each move in order to identify those with highest gain.

Differences to the 2-way Algorithm. In general, the k-way refinement algorithm
follows the same outline as the 2-way algorithm described in the previous section.
We therefore focus on the differences to the 2-way algorithm before describing the
gain computation and delta-gain update techniques for k-way connectivity and cut-
net optimization. We only consider moving a vertex v ∈ Vi to adjacent blocks
B(v) \ {Vi} rather than calculating and maintaining gains for moves to all k blocks.
This simultaneously reduces the memory requirements and restricts the search space
of the algorithm to moves that are more likely to improve the solution. Thus, the
k PQs require O(k|VB |) space in total, where VB is the set of border vertices. In
the bipartitioning setting, our refinement algorithm is able to implicitly rebalance an
infeasible solution, since a priority queue is disabled once the corresponding block
becomes overloaded. Thus, in this case, the algorithm only moves vertices from the
overloaded to the underloaded block. This, however, does not apply to the k-way
setting. The fact that a PQ corresponding to an overloaded block is disabled does
not automatically force the algorithm to move vertices out of the overloaded block,
since other moves from/to other blocks may be preferred due to having a larger gain.
Therefore, we do not relax the definition of overloaded blocks in our k-way algorithm.
Instead, a PQ is disabled as soon as the weight of the corresponding block becomes
larger than or equal to Lmax, and we only perform vertex moves if they are feasible
with regard to the original balance constraint. Otherwise they are skipped and the
corresponding vertices are locked into their current blocks, since moving them would
lead to imbalanced and thus infeasible solutions. After moving a vertex v, we remove
all other moves of v from the PQs, because we only allow each vertex to be moved at
most once during each pass. Furthermore, in order to speed up local search in the
presence of large nets, we do not activate vertices that are only incident to nets with
|e| ≥ 1 000, as it is unlikely that such a vertex entails a positive-gain move.

Connectivity Metric: Gain Computation & Delta-Gain Updates. When
activating a vertex v ∈ Vi, we calculate the gain gj(v) for moving v to all adjacent
blocks Vj ∈ B(v) \ {Vi}, and insert v into the corresponding queues Pj using gj(v) as
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Algorithm 4.6 : Delta-Gains for Connectivity Metric (adapted from [Akh+17a])
Input : Vertex v that was moved from block Vfrom to Vto

1 Function DeltaGainUpdate(v, Vfrom, Vto)
2 foreach e ∈ I(v) do // Iterate over all incident nets ...
3 if Φ(e, Vfrom) > 1 ∨ Φ(e, Vto) > 2 then continue //Gain remains unaffected
4 foreach u ∈ e \ {v} do // ... and consider each pin
5 if u is marked then continue // Skip marked vertices
6 if Φ(e, Vfrom) = 0 then //Connectivity of net e decreased
7 if @ n ∈ I(u) : Φ(n, Vfrom) > 0 then //u is not adj. to Vfrom anymore
8 Pfrom.remove(u)
9 B(u) := B(u) \ {Vfrom}

10 else Pfrom.update(u,−ω(e)) //u remains adjacent to Vfrom
11 if Φ(e, Vto) = 1 then //Connectivity of net e increased
12 if Vto /∈ B(u) then //u was not adjacent to Vto
13 Pto.insert(u, gto(u))
14 else Pto.update(u, ω(e)) //u was already adjacent to Vto
15 Vu := current block of vertex u
16 if Vu = Vfrom ∧ Φ(e, Vfrom) = 1 then //Moving u will decrease λ(e)
17 foreach Vi ∈ B(u) \ {Vu} do Pi.update(u, ω(e))
18 else if Vu = Vto ∧Φ(e, Vto) = 2 then //Move can’t decrease λ(e) anymore
19 foreach Vi ∈ B(u) \ {Vu} do Pi.update(u,−ω(e))
20 if Vto /∈ B(u) then B(u) := B(u) ∪ {Vto} //Update adjacent blocks

Output : The gains for all moves of all neighbors Γ(v) are updated.

key. For connectivity optimization, the gain gj(v) is defined as

gj(v) :=
∑
e∈I(v)

{ω(e) | Φ(e, Vi) = 1} −
∑
e∈I(v)

{ω(e) | Φ(e, Vj) = 0}. (4.9)

The first term sums the weights of all nets for which v is the only pin left in block
Vi. For these nets, it is possible to reduce the connectivity by moving v to another
block Vj ∈ B(v). The second term accounts for the fact that although block Vj may
be adjacent to v, it may not be in the connectivity set Λ(e) of net e. In this case the
gain contribution of net e is either zero if Φ(e, Vi) = 1, or −ω(e) if Φ(e, Vi) > 1.

After moving a vertex v, we perform delta-gain updates for all moves of the remaining
active border vertices in Γ(v). If the move changed the gain contribution of a
net e ∈ I(v), we account for that change by increasing/decreasing the gains of
the corresponding moves by ω(e). Moving a vertex v can furthermore change the
connectivity λ of a net e ∈ I(v), which in turn can affect the set of adjacent blocks
B(·) for each neighbor in Γ(v). The delta-gain-update algorithm takes these changes
into account by inserting moves to new adjacent blocks into the PQs and removing

126



4.6 Localized 2-way and k-way FM Local Search

;
Vfrom

Vto

Vfrom

Vto

;
Vfrom

Vto

Vfrom

Vto

Figure 4.9: Visualization of the situations that yield a change in the gain
contribution of a net e ∈ I(v) after moving vertex v for connectivity optimization.
After moving the white vertex, the gains of the red vertices change. Cases (i) and
(ii) of the proof of Theorem 4.3 are shown on the left. Cases (iii) and (iv) are
shown on the right.

moves to blocks that are not adjacent anymore. A pseudocode description of the
delta-gain-update process for connectivity optimization can be found in Algorithm 4.6.

Theorem 4.3 (Correctness of Connectivity Delta-Gain Updates)
Let v be the vertex that was moved from block Vfrom to block Vto. After performing
delta-gain updates as described in Algorithm 4.6, all vertex moves have gain gj(·).

Proof. To prove the correctness of Algorithm 4.6, we show how the move of v from
block Vfrom to block Vto affects the move-gains of other vertices. By the gain definition
shown in Eq. 4.9, only incident nets contribute to the move-gains of a vertex. Therefore,
it follows that (i) only the gains of neighbors u ∈ Γ(v) are potentially affected by the
move of vertex v from block Vfrom to block Vto, and (ii) only nets e ∈ I(u) ∩ I(v) can
change the gain of a vertex u ∈ Γ(v) – all other nets have no effect. In the following,
we call such nets critical.

For a given vertex move, the gain contribution of a net e depends on the number of
pins Φ(e, Vfrom) of e in the current block Vfrom of the vertex, and the number of pins
Φ(e, Vto) in the target block Vto of the move. For each net e ∈ I(v) (and thus also for
critical nets), the move of v decreases Φ(e, Vfrom) by one, and increases Φ(e, Vto) by
one. Thus, the gain contribution of a critical net can only change if one of its pins is
moved out of blocks Vfrom or Vto, or into blocks Vfrom and Vto.

Let u ∈ Γ(v) be a neighbor of v, let e be a critical net, and let gj(u) be the old gain
(before the move of v) of moving u from its current block Vi to block Vj ∈ B(u) \ {Vi}.
Given Eq. 4.9, we distinguish the following four cases (visualized in Figure 4.9):

(i) If v was moved out of u’s block (i.e., u ∈ Vfrom), the gain contribution of net e
only changes if Φ(e, Vfrom) decreases from 2 to 1, since it is not possible that
Φ(e, Vfrom) decreases from 1 to 0 (because u is still in block Vfrom). Before the
move, net e thus contributed 0 to the gains of moving u to adjacent blocks
Vj ∈ B(u) \ {Vfrom}, because u was not the only pin of e in block Vfrom. Since
after the move Φ(e, Vfrom) = 1, net e now contributes +ω(e) to the gains of
moving u to adjacent blocks B(u) \ {Vfrom}, because u now is the only pin of e
in block Vfrom. Thus, gj(u) = gj(u) + ω(e) (Alg. 4.6, line 16).
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(ii) If v was moved to the block of u (i.e., u ∈ Vto), the gain contribution of net
e only changes if Φ(e, Vto) increases from 1 to 2, since it is not possible that
Φ(e, Vto) increases from 0 to 1 (because u was already in block Vto before the
move). Before the move, net e thus contributed +ω(e) to the gains of moving u
to adjacent blocks Vj ∈ B(u)\{Vto}, because u was the only pin of e in block Vto.
Since after the move Φ(e, Vto) = 2, net e now contributes 0 to the gains of moving
u to adjacent blocks Vj ∈ B(u) \ {Vto}, because moving u now does not remove
block Vto from the connectivity set Λ(e) of net e. Thus, gj(u) = gj(u) − ω(e)
(line 18).

Otherwise, u is neither in block Vfrom nor in block Vto. In this case, the gain
contribution of net e only changes if its connectivity λ(e) increases and/or decreases
as the result of the move.
(iii) The former happens if the number of pins Φ(e, Vto) increases from 0 to 1, since

it is not possible that Φ(e, Vfrom) increases from 0 to 1. Before the move, net e
thus contributed −ω(e) to the gain of moving u to block Vto, because Vto was
not in the connectivity set Λ(e) of e. Since after the move Φ(e, Vto) = 1, net e
now contributes 0 to the gain of moving u to block Vto, because v now connects
e to block Vto. Thus, gto(u) = gto(u) + ω(e) (line 11).

(iv) The latter happens if the number of pins Φ(e, Vfrom) decreases from 1 to 0, since
it is not possible that Φ(e, Vto) decreases from 1 to 0. Before the move, net e
thus contributed 0 to the gain of moving u to block Vfrom, because Vfrom was
in the connectivity set of e. Since after the move Φ(e, Vfrom) = 0, net e now
contributes −ω(e) to the gain of moving u to block Vfrom, because v was the last
pin of e in block Vfrom. Thus, gfrom(u) = gfrom(u)− ω(e) (line 6).

Note that gain updates are restricted to unmarked vertices, as each vertex is only
allowed to be moved once in each pass and a vertex becomes marked after it is moved.
The case distinctions in line 7 and line 12 follow from the fact that we only allow
vertices to move to adjacent blocks. Thus, instead of decreasing the gain by ω(e), we
remove the move to block Vfrom if vertex u is not adjacent to block Vfrom anymore
after the move of v. Similarly, if Vto /∈ B(u) before the move, we have to calculate the
gain of this new move from scratch, since it was not allowed before the move of v. �

Cut-Net Metric: Gain Computation & Delta-Gain Updates. The FM gain
definition for 2-way partitioning shown in Eq. 4.8 generalizes naturally to k-way
partitioning optimizing the cut-net metric fc(Π). The only difference to bipartitioning
is that vertices can now be moved to more than one adjacent block. Thus, only if all
but one pin of a net e reside in the same block Vj (i.e., Φ(e, Vj) = |e| − 1 ; λ(e) = 2),
it contributes +ω(e) to the gain of moving the pin p /∈ Vj to block Vj . Similarly, only
a net e with Φ(e, Vi) = |e| contributes −ω(e) to the move-gains of its pins. It follows
that if a net e connects more than two blocks (i.e., λ(e) > 2), its gain contribution is
always zero, because no single vertex move can remove e from the cut-set.

After moving a vertex v, we perform delta-gain updates for all moves of the remain-
ing active border vertices in Γ(v). Similar to the delta-gain update procedure for
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Algorithm 4.7 : Delta-Gains for Cut-Net Optimization
Input : Vertex v that was moved from block Vfrom to Vto

1 Function DeltaGainUpdate(v, Vfrom, Vto)
2 foreach e ∈ I(v) do // Iterate over all incident nets ...
3 foreach u ∈ e \ {v} do // ... and consider each pin
4 if u is marked then continue // Skip marked vertices
5 if Φ(e, Vfrom) = 0 ∧ @ n ∈ I(u) : Φ(n, Vfrom) > 0 then
6 // Connectivity of net e decreased ...
7 Pfrom.remove(u) // ... and u is not adjacent to Vfrom anymore
8 B(u) := B(u) \ {Vfrom}
9 if Φ(e, Vto) = 1 ∧ Vto 6∈ B(u) then //Connectivity λ(e) increased ...

10 // ... and u was not adjacent to block Vto before the move
11 Pto.insert(u, gto(u))
12 if Φ(e, Vfrom) = |e| − 1 then //Moving v added net e to the cut-set
13 foreach Vi ∈ B(u) \ {Vfrom} do Pi.update(u, ω(e))
14 if Φ(e, Vto) = |e| then //Moving v removed net e from the cut-set
15 foreach Vi ∈ B(u) \ {Vto} do Pi.update(u,−ω(e))
16 Vu := current block of vertex u
17 if Vu 6= Vto ∧ Φ(e, Vto) = |e| − 1 then
18 // Moving u to block Vto removes net e from the cut-set
19 Pto.update(u, ω(e))
20 if Vu 6= Vfrom ∧ Φ(e, Vfrom) = |e| − 2 then
21 // Moving u to Vfrom does not remove net e from the cut-set anymore
22 Pfrom.update(u,−ω(e))
23 if Vto 6∈ B(u) then B(u) := B(u) ∪ {Vto} //Update adjacent blocks

Output : The gains for all moves of all neighbors Γ(v) are updated.

connectivity optimization, we have to account for all changes of the gain contributions
of all nets e ∈ I(v), and also address possible changes in the corresponding connectivity
sets Λ(e). A pseudocode description of the delta-gain-update procedure for cut-net
optimization is given in Algorithm 4.7. Figure 4.10 depicts the different situations
that yield connectivity and gain changes.

Theorem 4.4 (Correctness of Cut-Net Delta-Gain Updates)
Let v be the vertex that was moved from block Vfrom to block Vto. After performing
delta-gain updates as described in Algorithm 4.7, all vertex moves have gain gj(·).

Proof. The proof follows similar arguments as the proof of the delta-gain update
procedure for connectivity optimization in Theorem 4.3. We show how the move of v
from block Vfrom to block Vto affects the move gains of other vertices.
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Figure 4.10: Visualization of the situations that yield changes in the gain
contribution of a net e ∈ I(v) after moving vertex v for cut-net optimization.
After moving the white vertex, the gains of the red vertices change.

Recall, that the gain of moving a vertex u ∈ Vi to an adjacent block Vj ∈ B(u)\{Vi}
for cut-net optimization is defined as

gj(u) :=
∑
e∈I(v)

{ω(e) | Φ(e, Vj) = |e| − 1} −
∑
e∈I(v)

{ω(e) | Φ(e, Vi) = |e|}. (4.10)

Thus, moving v only affects the gains of neighboring vertices u ∈ Γ(v) and only nets
e ∈ I(v) ∩ I(u) can change the gain of a vertex u ∈ Γ(v) – all other nets have no effect.
In the following we again call such nets critical.
Let u ∈ Γ(v) be a neighbor of v, e be a critical net, and let gj(u) be the old gain

(before the move of v) of moving u from its current block Vi to block Vj ∈ B(u) \ {Vi}.
We distinguish the following four cases (visualized in Figure 4.10):

(i) If v was moved out of u’s block (i.e., u ∈ Vfrom ), the gain contribution of net
e only changes if the number of pins Φ(e, Vfrom) decreases from |e| to |e| − 1.
Before the move, net e thus contributed −ω(e) to the gains of moving u to all
adjacent blocks Vj ∈ B(u)\{Vfrom}, because it was an internal net of block Vfrom.
Since the move of v made e a cut-net, net e now contributes 0 to the gains of
all moves to adjacent blocks Vj ∈ B(u) \ {Vfrom}. Thus, gj(u) = gj(u) + ω(e)
(line 12).

(ii) If v was moved to u’s block (i.e., u ∈ Vto ), the gain contribution of net e only
changes if the number of pins Φ(e, Vto) increases from |e| − 1 to |e|. Since e
was a cut-net before the move, it contributed 0 to the gains of moving u to all
adjacent blocks Vj ∈ B(u) \ {Vto}. Since the move of v removed net e from the
cut-set, it now contributes −ω(e) to the gains of all moves to adjacent blocks
Vj ∈ B(u) \ {Vto}. Thus, gj(u) = gj(u)− ω(e) (line 14).

Otherwise, u is neither in block Vfrom nor in block Vto. In this case, the gain
contribution of net e only changes if e could have been removed from the cut-set before
the move or can be removed from the cut-set after the move.
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(iii) The former happens if the number of pins Φ(e, Vfrom) in block Vfrom decreases
from |e| − 1 to |e| − 2. Before the move of v, net e could have been removed from
the cut-set by moving u to block Vfrom. The gain contribution of net e therefore
changes from +ω(e) to 0, because after the move there exist two pins (u and v)
outside of Vfrom. Thus, gfrom(u) = gfrom(u)− ω(e) (line 20).

(iv) The latter happens if the number of pins Φ(e, Vto) in block Vto increases from
|e| − 2 to |e| − 1. After the move, λ(e) = 2 and vertex u is the only pin that
is not in block Vto. The gain contribution of net e therefore changes from 0 to
+ω(e), because e can now be removed from the cut-set by moving u to block Vto.
Thus, gto(u) = gto(u) + ω(e) (line 17).

Note that gain updates are restricted to unmarked vertices, since each vertex is
only allowed to be moved once in each pass, and a vertex becomes marked after it is
moved. The case distinctions in line 5 and line 9 follow from the fact that we only
allow vertices to move to adjacent blocks. Thus, we remove the move to block Vfrom
if vertex u is not adjacent to block Vfrom anymore after the move of v. Similarly, if
Vto /∈ B(u) before the move, we calculate the gain of this new move from scratch, since
it was not allowed before the move of v. �

Excluding Nets from Delta-Gain Updates. To further reduce the running time
of the delta-gain algorithms, we exclude nets from the update procedure if their
contribution to the gain values of their pins cannot change. For cut-net optimization,
this is done by generalizing the locked nets technique described in the previous section
to k-way partitioning. For connectivity optimization, the key observation is that after
moving a vertex v to a block Vto, this block remains connected to all nets e ∈ I(v)
during this local search pass, because v is not allowed to be moved again. In this case
we say that block Vto ∈ Λ(e) has become unremovable for net e. Using the following
lemma, we exclude nets e ∈ I(v) from delta-gain updates after moving a vertex v from
Vfrom to Vto if both blocks {Vfrom, Vto} ∈ Λ(e) are marked as unremovable:

Lemma 4.5 (Excluding Nets from Delta-Gain Updates)
Let v be the vertex that was moved from Vfrom to Vto. If both blocks are marked as
unremovable in the connectivity set Λ(e) of a net e ∈ I(v), net e does not change its
gain contribution for any of its pins if the connectivity metric is optimized.

Proof. In the proof of Theorem 4.3, we have seen that the gain contribution of a net
e ∈ I(v) only changes in four different cases. In the following, we show that none of
these apply if both Vfrom and Vto are marked as unremovable in Λ(e).

Let u ∈ Γ(v) be a neighbor of v, and let e be a net in I(v) ∩ I(u).
(i) If v was moved out of u’s block (i.e., u ∈ Vfrom), the gain contribution of net e

only changes if Φ(e, Vfrom) decreases from 2 to 1. However, since Vfrom is marked
as unremovable, vertex u was moved to Vfrom during the current local search
and is thus not allowed to be moved again. Since u is the only pin left in Vfrom,
the gain contribution of net e therefore does not change.
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(ii) If v was moved to u’s block (i.e., u ∈ Vto), the gain contribution of net e only
changes if Φ(e, Vto) increases from 1 to 2. However, since Vto is already marked
as unremovable, u was moved to Vto during the current local search and is thus
not allowed to be moved again. Since u was the only pin in Vto affected by the
move, the gain contribution of net e therefore does not change.

Otherwise, u is neither in block Vfrom nor in block Vto. In this case, the gain
contribution of net e only changes if its connectivity λ(e) (iii) increases and/or (iv)
decreases as the result of the move. However, since both Vfrom and Vto are marked as
unremovable, the move cannot change λ(e). �

Exclusion from delta gain updates is integrated into our algorithm by labeling the
blocks of the connectivity sets Λ(·). Initially each block is labeled removable. After a
vertex v is moved, the label of the target block Vto is set to unremovable for all nets
e ∈ I(v). If a vertex cannot be moved because the move would violate the balance
constraint, its block becomes unremovable for all nets e ∈ I(v). Nets in which both the
source and the target block of the current move are unremovable are then excluded
from the gain update process.

4.6.3 Caching Gain Values
We now outline the details of the gain cache for both 2-way and k-way refinement.
Gain Cache for 2-way Refinement. We use an array ρ = [v1, . . . , vn] to store the
cache entries. Let ρ[v] denote the cache entry for vertex v. After initial partitioning,
the gain cache is empty. If a vertex becomes activated during a local search pass, we
check whether or not its gain is already cached. If it is cached, the cached value is used
for activation. Otherwise, we calculate the gain according to Eq. 4.8, insert it into the
cache and activate the vertex. After moving a vertex v with gain gj(v) to block Vj ,
its cache value is set to ρ[v] := −gj(v). The delta-gain updates of its neighbors Γ(v)
are then also applied to the corresponding cache entries. Thus, the gain cache always
reflects the current state of the hypergraph. Since our algorithm performs a rollback
operation at the end of a local search pass that undoes vertex moves, we also have
to undo delta-gain updates applied on the cache. This can be done by additionally
maintaining a rollback delta-gain cache that stores the negated delta-gain updates for
each vertex. During rollback, this delta cache is then used to restore the gain cache to
a valid state.

Each time a local search is started with an uncontracted vertex pair (u, v), we have
to account for the fact that the uncontraction potentially affected ρ[u]. A simple
variant of the caching algorithm just invalidates the corresponding cache entry and
re-calculates the gain. Since v did not exist on coarser levels of the hierarchy, its
gain must also be computed from scratch. For 2-way refinement, we instead use a
more sophisticated variant that is able to update ρ[u] based on information gathered
during the uncontraction and that further infers ρ[v] from ρ[u]. After uncontraction,
we initially set ρ[v] := ρ[u]. Both cache entries are then updated by examining each
net e ∈ I(u). We have to distinguish three cases (see Figure 4.11 for an example):
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Figure 4.11: Example of an uncontraction operation that affects the cached
gain value ρ[u] of the representative u. Since nets {e2, e4} /∈ I(u) after the
uncontraction, they no longer contribute −ω(e2) resp. +ω(e4) to the gain of u.
Similarly, moving u to V1 now does not remove e3 from the cut anymore because
of v. Its contribution to ρ[u] therefore becomes zero (source: [Sch+16a]).

(i) After uncontraction, u is not incident to net e anymore. If e was a cut net that
could have been removed from the cut by moving u to the other block, ρ[u] has
to be decremented by ω(e) (see net e4 in Fig. 4.11). Similarly, if e was an internal
net, moving u would have made it a cut net. In this case, ρ[u] is incremented by
ω(e) (see net e2 in Fig. 4.11).

(ii) After uncontraction, e contains both u and v. Let Vu be the block of vertex u
(and thus also the block of vertex v). If Φ(e, Vu) = 2, the net cannot be removed
from the cut anymore by moving either u or v. We therefore have to decrement
both ρ[u] and ρ[v] by ω(e) (see net e3 in Fig. 4.11).

(iii) Finally, we have to account for nets to which v is not incident (nets e1 and
e5 in Fig. 4.11). If such a net e can be removed from the cut by moving u, it
contributes ω(e) to ρ[u]. We therefore have to decrement ρ[v] by ω(e) to account
for the fact that e /∈ I(v). Similarly, if moving u makes e a cut net, we have to
increment ρ[v] accordingly.

Gain Data Structure for k-way Refinement. In order to generalize the 2-way
gain cache to k-way partitioning, a redesign of the data structure is necessary. Since in
the 2-way setting there is only one possible move for each vertex (i.e., moving it to the
other block of the bipartition), a simple array is enough to store the gain values. When
performing k-way local search, each vertex can potentially be moved to k − 1 different
blocks. We therefore use a modified version of a folklore data structure to store sparse
sets (see, e.g., Ref. [BT93]), i.e., sets, where the number of contained elements is small
compared to the size of the universe. An example is shown in Figure 4.12. For each
border vertex v ∈ Vi, this data structure uses two arrays D and S to store the set
of adjacent blocks B(v) \ {Vi} along with corresponding gain values for moving v to
these blocks in O(k) space. A new block Vj can be added to B(v) in O(1) time by
setting D[size] := Vj , S[j] := 〈size, gj(v)〉, and incrementing size. A block Vj can
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Figure 4.12: Gain cache data structure for k-way refinement that permits
insertions, deletions, and gain updates in constant time, as well as iteration over
the set of adjacent blocks in time Θ(B(·)).

be removed from B(v) by overwriting its entry in D with the last element contained in
D and updating the S entry of that element to point to the new position. Afterwards,
the S entry of Vj is cleared and size is decremented. Using D, it is possible to iterate
over B(v) in time Θ(|B(v)|). Furthermore, a specific cache entry can be updated in
O(1) time by updating S.

Gain Cache for k-way Refinement. Let ρv[j] denote the cache entry for vertex
v and adjacent block Vj ∈ B(v). After initial partitioning, we initialize the gain cache
with all possible moves of all vertices of the coarsest hypergraph. Each time a local
search is started with an uncontracted vertex pair (u, v), we invalidate and recompute
their corresponding cache entries. This is necessary since v did not exist on previous
levels of the hierarchy and since the uncontraction potentially affected both B(u) and
the corresponding gain values.4 If a vertex becomes activated during a local search
pass, the cached gain values are used for activation. After moving a vertex v with gain
gj(v) from block Vfrom to block Vto, its cache value is updated as follows: First, we
remove the entry of ρv[to], since v ∈ Vto after the move and we only cache gain values
for moves to adjacent blocks B(v) \ {Vto}. If v remains connected to Vfrom, we set
ρv[from] := −ρv[to]. The update of the remaining blocks in B′(v) := B(v)\{Vfrom, Vto}
then depends on the objective function.

For connectivity optimization, we have to distinguish two cases for each net e ∈ I(v):
If v was the only pin in Vfrom and Φ(e, Vto) 6= 1 after the move, then moving v to a block
Vj ∈ B′(v) would have decreased λ(e). We thus have to decrement the corresponding
cache entries by ω(e). Similarly, if v was not the only pin in Vfrom and Φ(e, Vto) = 1
after the move, then moving v to a block Vj ∈ B′(v) in future local search passes will
decrease λ(e). The respective cache entries are therefore incremented by ω(e). Note
that we do not have to increment the entry of ρv[from], since it is already up to date.
For cut-net optimization, we have to distinguish two different cases for each net

4We also tried a version that – similar to 2-way gain caching – updates the cache entries of u based
on the information gathered during uncontraction and then infers the cache entries of v from
those of u. However, recomputation turned out to be faster, since updating and inferring the
cache values is significantly more complicated.
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e ∈ I(v): If e was an internal net before the move (i.e., Φ(e, Vfrom) = |e|), it is now
a cut net, because v was moved to Vto. Therefore, we have to increment the cache
entries of adjacent blocks in B′(v) by ω(e), because performing these moves will not
change the cut state of net e. Similarly, if the move removed e from the cut-set, the
cache entries of blocks B′(v) have to be decremented by ω(e), since moving v out of
Vto would make e a cut net again.
After updating the cache entries of the moved vertex, delta-gain updates of the

neighbors Γ(v) are then also applied to the corresponding cache entries. Thus the
gain cache always reflects the current state of the hypergraph. Similarly to the 2-way
case, we additionally maintain a rollback delta cache that stores the negated delta-gain
updates for each vertex as well as the corresponding add/remove operation for B(·) in
order to be able to restore the gain cache to a valid state during rollback.

4.6.4 Restricting the Search Space via Stopping Rules

Motivation. Unlike multi-level partitioning algorithms, which can afford to spend
linear time in refinement heuristics at each hierarchy level, the number of local search
steps needs to be limited in the n-level setting. Otherwise the n-level approach
could lead to O(n2) local search steps in total, if refinement is executed after every
uncontraction. We therefore use two stopping rules that terminate a local search pass
well before every vertex is moved once.

Simple, Static Stopping Rule. During a local search pass, our static stopping
rule monitors the improvement in both solution quality and partition balance and
stops the pass once a constant number of i moves neither improved the objective nor
the current imbalance.

Adaptive Stopping Rule. The adaptive stopping criterion is a slightly modified
version of the stopping rule proposed by Osipov and Sanders [OS10a; OS10b] for
n-level graph partitioning. The key idea is to make the decision when to stop the
current local search pass dependent on the past history of the search. For this purpose,
Osipov and Sanders [OS10a; OS10b] model the gain values in each step as identically
distributed, independent random variables whose expectation µ and variance σ2 is
obtained from the previously observed p steps. They show that it is unlikely that
local search can still give an improvement if p > σ2/4µ2, where µ is the average gain
since the last improvement, and σ2 is the variance observed throughout the current
local search. We integrate a slightly refined version of this adaptive stopping criterion
into our algorithm: On each level, local search performs at least logn steps after an
improvement is found and continues as long as µ > 0. If µ is still 0 after logn steps,
local search is stopped. This prevents the algorithm from getting stuck with zero-gain
moves, which is likely for hypergraphs that contain many large nets. Otherwise (i.e.,
if µ 6= 0) we evaluate the equation and act accordingly.
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4.6.5 Implementation Details

Priority Queue Data Structures. We provide both a binary heap-based priority
queue and a bucket priority queue. In accordance with the observations described in
Section 3.2, the bucket PQ uses a LIFO tie-breaking scheme. Since the coarsening
process increases both vertex degrees and – due to parallel net removal – hyperedge
weights, the gain span of the bucket PQ becomes [−∆v · ωmax, . . . ,+∆v · ωmax].
Following Papa and Markov [PM07], we enhance the bucket queue data structure with
a binary search tree that stores pointers to non-empty gain buckets in order to be able
to find both the highest and the second-highest non-empty gain bucket in constant
time. Therefore, the time to insert or delete a gain element becomes logarithmic in
the number of non-empty gain buckets. We will evaluate the effects of both data
structures in the n-level context in Section 4.9.

Identifying Border Vertices. In both the 2-way and the k-way algorithm, it is
necessary to be able to distinguish border vertices from internal vertices efficiently.
We therefore maintain the number of incident cut-nets |{e ∈ I(v)|λ(e) > 1}| for
each vertex v, which allows us to identify border vertices in constant time. These
values are initialized once at the end of the initial partitioning phase, and then
maintained throughout the uncoarsening/refinement process, i.e., they are updated
during uncontractions, and whenever an incident net is added to or removed from the
cut-set during refinement.

4.7 Network Flow-Based Refinement

Motivation. Move-based local search algorithms are known to be prone to get
stuck in local optima when used directly on the input hypergraph [KK99; KK00].
The multi-level paradigm helps to some extent, since it allows a more global view
of the problem at the coarse levels and a very fine-grained view at the fine levels
of the hierarchy. However, the performance of move-based approaches degrades for
hypergraphs with large hyperedges. In these cases, it is difficult to find meaningful
vertex moves that improve the solution quality because large hyperedges are likely
to have many vertices in multiple blocks [UA04]. Thus, the gain of moving a single
vertex to another block is likely to be zero [MP14].

While finding balanced minimum cuts in hypergraphs is NP-hard, a minimum cut
separating two vertices can be found in polynomial time using network flow algorithms
and the max-flow min-cut theorem [GT86]. Flow algorithms find an optimal min-cut
and do not suffer the drawbacks of move-based approaches. However, with a few
notable exceptions [LR04; AL08; SS11], they were long overlooked as heuristics for
balanced partitioning due to their high complexity [YW96; LW98]. Sanders and
Schulz [SS11] present a max-flow-based improvement algorithm for graph partitioning
which is integrated into the multi-level partitioner KaFFPa and computes high-quality
solutions. Motivated by their results, we generalize the max-flow min-cut refinement
framework of KaFFPa from graphs to hypergraphs.
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Overview. In Section 4.7.1, we first review the KaFFPa approach, identify short-
comings of its flow network model that restrict the search space of feasible solutions,
and propose a modification to overcome these limitations. Section 4.7.2 then explains
how hypergraphs are transformed into flow networks and presents a technique to
reduce the size of the resulting hypergraph flow network. Section 4.7.3 shows how this
network can be used to construct a flow problem such that the min-cut induced by a
max-flow computation between a pair of blocks improves either the cut-net or connec-
tivity objective of a k-way partition. In addition, we show how the modification of
KaFFPa’s flow network can be generalized to hypergraphs by exploiting the structure
of hypergraph flow networks. Finally, we briefly discuss implementation details and
techniques to improve the running time in Section 4.7.4.

4.7.1 Improved Flow-Based Refinement for Graph Partitioning

The KaFFPa Framework. Given an ε-balanced k-way partition Πk = {V1, . . . , Vk}
of a graph G = (V,E, c, ω), KaFFPa’s flow-based refinement algorithm works on pairs
(Vi, Vj) of adjacent blocks. To coordinate these refinements, the authors propose an
active block scheduling algorithm, which schedules blocks adjacent in the quotient
graph Q as long as their participation in a pairwise refinement step improves solution
quality or imbalance.
The basic idea is to build a flow network N based on the induced subgraph G[B],

where B ⊆ {Vi, Vj} is a set of nodes around the cut of the bipartition Π2 := {Vi, Vj}.
The size of B is controlled by an imbalance factor ε′ := αε, where α is a scaling
parameter that is chosen adaptively depending on the result of the min-cut computation.
If the heuristic found an ε-balanced partition using ε′, the cut is accepted and α
is increased to min(2α, α′) where α′ is a predefined upper bound. Otherwise it is
decreased to max(α2 , 1). This scheme continues until a maximum number of rounds is
reached or a feasible partition that did not improve the cut is found.

In each round, the corridor B := Bi∪Bj is constructed by performing two restricted
breadth-first searches (BFS). The first BFS is done in the induced subgraph G[Vi].
It is initialized with the boundary nodes of Vi and stops if c(Bi) would exceed
(1 + ε′)d c(V )

k e − c(Vj). The second BFS constructs Bj in an analogous fashion using
G[Vj ]. Let B� := {u ∈ B | ∃(u, v) ∈ E : v /∈ B} be the border of B. Then N is
constructed by connecting all border nodes B� ∩ Vi of G[B] to an additional source
node s and all border nodes B� ∩ Vj to an additional sink node t using directed edges
with an edge weight of ∞. By connecting s and t to the respective border nodes, it
is ensured that edges incident to border nodes, but not contained in G[B], cannot
become cut edges. All edges of G[B] use the corresponding edge weights of G as
capacities. An example is shown in Figure 4.13. For α = 1, the size of B ensures that
N has the cut property, i.e., each (s , t )-min-cut in N yields a possibly smaller cut in G
that is feasible with respect to the original balance constraint of the k-way partition.
For larger values of α, this does not have to be the case.
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Figure 4.13: The input graph is shown on the left. Colors are used to distinguish
non-cut border edges (red), cut border edges (blue), and peripheral edges (orange).
In the KaFFPa flow network shown in the middle, green edges cannot be removed
from the cut by moving border nodes from Vi to Vj because they are locked in
block Vi. Furthermore, nodes incident to peripheral edges are locked in their block,
because they are connected to s or t via infinite-capacity edges. Our improved
flow network is shown on the right. All nodes of G[B] are movable. Note that
the blue edges account for cut border edges (source: [HSS19a]).

Most Balanced Minimum Cuts. After computing a max-flow in N , the algorithm
tries to find a min-cut with better balance. This is done by exploiting the fact that one
(s , t )-max-flow contains information about all (s , t )-min-cuts [PQ80]. More precisely,
the algorithm uses the 1–1 correspondence between (s , t)-min-cuts and closed sets
containing s in the Picard-Queyranne-DAG Ds,t of the residual graph Nf [PQ80].
First, Ds,t is constructed by contracting each strongly connected component of the
residual graph. Then the following heuristic (called most balanced minimum cuts)
is repeated several times using different random seeds: Closed sets containing s are
computed by sweeping through the nodes of Ds,t in reverse topological order (e.g.
computed using a randomized DFS). Each closed set induces a differently balanced
min-cut and the one with the best balance (with respect to the original balance
constraint) is used to improve the cut and/or balance between blocks Vi and Vj .

Improving the Flow Network. In the following we distinguish between peripheral
edges E∼ := {(u, v) ∈ E : u ∈ B� ∧ v /∈ Π2} and border edges E↔ := {(u, v) ∈ E :
u ∈ B� ∧ v ∈ Π2 \ B}. By connecting the source s to all nodes S = B� ∩ Vi and
all nodes T = B� ∩ Vj to the sink t using directed edges with infinite capacity, the
KaFFPa network ensures that the max-flow computation does not affect border nodes
and thus neither peripheral nor border edges. However, this unnecessarily restricts
the search space of feasible solutions. Since border nodes B� are directly connected
to either s or t via infinite capacity edges, every min-cut (S,B \ S) will have S ⊆ S
and T ⊆ B \ S. The KaFFPa model therefore prevents (i) all min-cuts in which any
non-cut border edge becomes part of the cut-set, (ii) all cut border edges from being
removed from the cut-set, and (iii) all border nodes incident to peripheral but not
to border edges from changing their block (see Figure 4.13 for an example). This
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restricts the space of possible solutions, since the corridor B was computed such that
even a min-cut along either side of the border would result in a feasible cut in G.
Thus, ideally, all vertices v ∈ B should be able to change their block as a result of
the (s , t )-max-flow computation in N – not only vertices v ∈ B \B�. This limitation
becomes increasingly relevant for graphs with high average node degrees as well as for
partitioning problems with small imbalance ε, since high-degree nodes u are likely to
have some neighbors Γ(u) /∈ G[B] (i.e., some of their incident edges are either border
or peripheral edges) and tight balance constraints enforce small B-corridors.

We overcome these restrictions by treating border nodes differently. Since peripheral
edges are cut edges in the k-way partition of G that are not affected if incident
border nodes u ∈ G[B] change their block (i.e., they will remain cut edges in G),
border nodes only incident to peripheral edges are neither connected to s nor t .
Furthermore, instead of using infinite capacity edges to connect the source or the sink
to the remaining border nodes, we use the sum of the actual edge weights of incident
border edges as capacities. More precisely, s is connected to border nodes u ∈ B�

using an edge (s , u) with capacity c(s , u) :=
∑

(Γ(u)\B)∩Vi
ω(u, v) and u is connected

to t using an edge (u, t ) with capacity c(u, t ) :=
∑

(Γ(u)\B)∩Vj
ω(u, v) (see Figure 4.13

for an example). Since it is now possible for a max-flow computation to saturate
border edges, we get a flow network that (i) does not lock any node u ∈ G[B] in its
block and (ii) correctly models the impact of the max-flow min-cut computation on
the solution quality of the k-way partition of G.

4.7.2 Hypergraph Max-Flow Min-Cut Refinement

In the following, we generalize the KaFFPa algorithm to hypergraph partitioning. We
first show how hypergraph flow networks N are constructed in general and introduce a
technique to reduce their size by removing low-degree vertices. Given a k-way partition
Πk = {V1, . . . , Vk} of a hypergraph H, a pair of blocks (Vi, Vj) adjacent in the quotient
graph Q, and a corridor B, Section 4.7.3 then explains how N is used to build a flow
problem F based on the subhypergraph HB = (VB , EB). By connecting the source
node s and the sink node t to specific nodes of the flow network, F is constructed such
that an (s , t)-max-flow computation optimizing the cut-net metric in the bipartition
Π2 = (Vi, Vj) of HB improves either the cut-net metric fc(Π) or the connectivity
metric fλ(Π) in the k-way partition of H. Section 4.7.4 then discusses the integration
into KaHyPar and introduces several techniques to speed up flow-based refinement.
A pseudocode description of the entire flow-based refinement framework is given in
Algorithm 4.8.

From Hypergraphs to Flow Networks. Given a hypergraph H = (V,E, c, ω)
and two distinct vertices s and t , we first reduce the problem of finding an (s , t)-
min-cut in H to the problem of finding a minimum-weight (s , t)-node-separator in
the star-expansion G∗, where each star-node e has weight c(e) = ω(e) and all other
nodes v have a weight of infinity [HM85]. This network is then transformed into the
edge-capacitated flow network N = (V, E , c) of Lawler [Law73] as follows: V contains
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Algorithm 4.8 : k-way Flow-Based Refinement Framework (adapted from [HSS19a])
Input : Hypergraph H
Input : k-way partition Πk = {V1, . . . , Vk}
Input : Imbalance parameter ε.

1 Algorithm MaxFlowMinCutRefinement(H, ε,Πk)
2 Q := QuotientGraph(H,Πk)
3 while ∃ active blocks ∈ Q do // In the beginning all blocks are active
4 foreach {(Vi, Vj) ∈ Q | Vi ∨ Vj is active} do //Choose a pair of blocks
5 Πold := Πbest := {Vi, Vj} ⊆ Πk //Extract bipartition to be improved
6 εold := εbest := imbalance(Πk) // Imbalance of current k-way partition
7 α := α′ //Use large B-corridor for first iteration
8 do //Adaptive flow iterations
9 B := computeB-Corridor(H,Πbest, αε) //As described in Section 4.7.1

10 HB := SubHypergraph(H,B) //Create subhypergraph
11 NB := FlowNetwork(HB) //As described in Section 4.7.2
12 F := FlowProblem(NB) //As described in Section 4.7.3
13 f := maxFlow(F) //Compute maximum flow on F
14 Πf := mostBalancedMinCut(f,F) //As in Section 4.7.1 & 4.7.2
15 εf := imbalance(Πf ∪Πk \Πold) // Imbalance of new k-way partition
16 if (cut(Πf ) < cut(Πbest) ∧ εf ≤ ε) ∨ εf < εbest then //Better solution
17 α := min(2α, α′), Πbest := Πf , εbest := εf //Update α, Πbest, εbest

18 else α := α
2 //Decrease size of B-corridor in next iteration

19 while α ≥ 1
20 if Πbest 6= Πold then // Improvement found
21 Πk := Πbest ∪Πk \Πold //Replace Πold with Πbest
22 activateForNextRound(Vi, Vj) //Reactivate blocks for next round

23 return Πk

Output : Improved ε-balanced k-way partition Πk = {V1, . . . , Vk}

all non-star nodes v. For each star-node e, add two bridging nodes e′ and e′′ to V
and a bridging edge (e′, e′′) with capacity c(e′, e′′) = c(e) to E . For each neighbor
u ∈ Γ(e), add two edges (u, e′) and (e′′, u) with infinite capacity to E . The size of
this network can be reduced by distinguishing between star-nodes corresponding to
multi-pin nets and those corresponding to two-pin nets in H. In the flow network of
Liu and Wong [LW98] the former are transformed as described above, while the latter
(i.e., star-nodes e with |Γ(e)| = |{u, v}| = 2) are replaced with two edges (u, v) and
(v, u) with capacity c(e). For each such star-node, this decreases the network size by
two nodes and three edges. Figure 4.14 shows both networks as well as ours, which we
describe in the following.
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Figure 4.14: Unweighted hypergraph H with overlayed star-expansion G∗ and
illustration of the hypergraph flow networks. Thin, directed edges have infinite
capacity, thick edges have unit capacity. Differences between the networks are
highlighted in red: Special treatment of two-pin nets in the network of Liu and
Wong [LW98], removal of low-degree vertices in our network (source: [HSS19a]).

Removing Low-Degree Vertices. We further decrease the network size by using
the observation that the (s , t)-node-separator in G∗ has to be a subset of the star-
nodes, since all other nodes have infinite capacity. Thus, it is possible to replace
any infinite-capacity node by adding a clique between all adjacent star-nodes without
affecting the separator. The key observation now is that an infinite-capacity node v
with degree d(v) induces 2d(v) edges in the Lawler network [Law73], while a clique
between star-nodes induces d(v)(d(v)− 1) edges. For non-star nodes v with d(v) ≤ 3,
it therefore holds that d(v)(d(v)−1) ≤ 2d(v). We therefore remove all infinite-capacity
nodes v corresponding to hypernodes with d(v) ≤ 3 that are not incident to any
two-pin nets by adding a clique between all star-nodes Γ(v). In case v was either
source or sink, we create a multi-source multi-sink problem by adding the star-nodes
Γ(v) to the set of sources resp. sinks [FF62]. We then apply the transformation of Liu
and Wong [LW98].
Reconstructing Min-Cuts. After computing an (s , t )-max-flow f in the Lawler or
Liu-Wong network, an (s , t )-min-cut of H can then be computed using a BFS in the
residual graph Nf starting from s [Law73]. Let S be the set of nodes corresponding
to vertices of H reached by the BFS. Then (S, V \ S) is an (s , t)-min-cut. Since our
network does not contain low degree vertices, we use the following lemma to compute
an (s , t)-min-cut of H:

Lemma 4.6 (Min-Cut Reconstruction Via Bridging Nodes)
Let f be a maximum (s , t)-flow in the Lawler network N = (V, E) of a hypergraph
H = (V,E) and (S,V \ S) be the corresponding (s , t)-min-cut in N . Then for each
node v ∈ S ∩V , the residual graph Nf = (Vf , Ef ) contains at least one path 〈s , . . . , e′′〉
to a bridging node e′′ of a net e ∈ I(v). Thus (A, V \ A) is an (s , t)-min-cut of H,
where A := {v | ∃e ∈ E : v ∈ e ∧ 〈s , . . . , e′′〉 in Nf}.
Proof. Since v ∈ S, there has to be some path s  v in Nf . By definition of the flow
network, this path can either be of the form P1 = 〈s , . . . , e′′, v〉 or P2 = 〈s , . . . , e′, v〉
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B� := { } inner border nodes
B� := { } outer border nodes
B∼ := { } peripheral nodes
E� := { } inner nets
E� := { } outer nets
E↔ := { } border nets
E∼ := { } peripheral nets
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Figure 4.15: Vertex and net classification of Section 4.7.3 (source: [HSS19a]).

for some bridging nodes e′, e′′ corresponding to nets e ∈ I(v). In the former case
we are done, since e′′ ∈ P1. In the latter case the existence of edge (e′, v) ∈ Ef
implies that there is a positive flow f(v, e′) > 0 over edge (v, e′) ∈ E . Due to flow
conservation, there exists at least one edge (e′′, v) ∈ E with f(e′′, v) > 0, which implies
that (v, e′′) ∈ Ef . Hence, we can extend the path P2 to 〈s , . . . , e′, v, e′′〉. �

Furthermore, this allows us to employ the most balanced minimum cut heuristic as
described in Section 4.7.1. By the definition of closed sets it follows that if a bridging
node e′′ is contained in a closed set C, then all nodes v ∈ Γ(e′′) (corresponding to
vertices of H) are also contained in C. Thus, we can use the respective bridging nodes
e′′ as representatives of removed low-degree vertices.

4.7.3 Constructing the Hypergraph Flow Problem
Let HB = (VB , EB) be the subhypergraph of H = (V,E) that is induced by a corridor
B computed in the bipartition Π2 = (Vi, Vj). In the following, we distinguish between
the set of inner border nodes B� := {v ∈ VB | ∃e ∈ E : {u, v} ⊆ e ∧ u /∈ VB}, the
set of outer border nodes B� := {u ∈ Π2 \ VB | ∃e ∈ E : {u, v} ⊆ e ∧ v ∈ VB} and
the set of peripheral nodes B∼ := {u /∈ Π2 | ∃e ∈ E : {u, v} ⊆ e ∧ v ∈ VB}. Similarly,
we now distinguish between outer nets E� := {e ∈ E : e ∩ VB = ∅} with no pins
inside HB, inner nets E� := {e ∈ E : e ∩ VB = e} with all pins inside HB, the set
of border nets E↔B := {e ∈ E | e ∈ I(B�) ∩ I(B�)}, and the set of peripheral nets
E∼ := {e ∈ E : e ∈ I(B�) ∩ I(V \Π2)}. A visualization of these definitions is shown
in Figure 4.15.
A hypergraph flow problem F consists of a flow network NB = (VB , EB) derived

from HB and two additional nodes s and t that are connected to some nodes v ∈ VB .
It has the cut property if the max-flow induced min-cut bipartition Πf of HB does
not worsen the partitioning objective in H. For both the cut-net and the connectivity
objective, it thus has to hold that fc(Πf ) ≤ fc(Π2), since fλ(Π) = fc(Π) for bipartitions.
While outer nets are not affected by a max-flow computation, the max-flow min-cut
theorem [FF56] ensures the cut property for all inner nets. Peripheral and border nets
however require special attention. Since these nets are only partially contained in HB
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and NB , they will remain connected to all blocks Λ(e)\{Vi, Vj} regardless of the result
of the max-flow computation. It is therefore necessary to “encode” information about
peripheral and border nets into the flow problem. For simplicity, we first discuss how
this is done using the traditional KaFFPa approach described in Section 4.7.1 and then
show how the improved flow model can be generalized from graphs to hypergraphs.

Cut-Net Optimization. In graph partitioning, peripheral edges are not part of the
induced subgraph G[B] and thus not contained in the resulting flow network since they
have no influence on the edge-cut of the bipartition Π2. In hypergraph partitioning
however, peripheral nets e ∈ E∼ are partially contained in the subhypergraph HB.
Since Λ(e) \ Π2 6= ∅ for these nets, a max-flow min-cut computation in the flow
network of HB cannot remove them from the cut-set of the k-way partition Πk. To
account for that fact, we remove all peripheral nets from HB before constructing
the hypergraph flow network NB. Border nets e ∈ E↔ on the other hand remain
connected to the blocks of their outer border nodes in Π2. A special case unique
to hypergraphs are border nets e that are connected to both Vi and Vj by some
outer border nodes B� ∩ e. As with peripheral nets, a max-flow computation in
the flow network of HB will not be able to remove these nets (i.e., border nets
e ∈ E↔ : Φ(e, Vi \Bi) ≥ 1 ∧ Φ(e, Vj \Bj) ≥ 1) from the cut, since they are locked in
the cut-set of Π2. We therefore remove them from HB along with the peripheral nets
before constructing the flow network NB. To account for the remaining border nets
that are only connected to either Vi or Vj , we generalize the KaFFPa approach by
connecting s to all nodes S = B� ∩ Vi if Φ(e, Vi \Bi) ≥ 1 and all nodes T = B� ∩ Vj
to t if Φ(e, Vj \Bj) ≥ 1 using directed edges with infinite capacity.

Connectivity Optimization. While border nets are treated the same way as for
cut-net optimization, we do not remove peripheral nets e ∈ E∼ from HB before
constructing the flow network NB when optimizing the connectivity metric. Since
these nets are partially contained in HB , a max-flow min-cut computation in NB can
remove them from the cut-set of Π2. This decreases the connectivity λ(e) and thus
improves the overall solution quality fλ(Πk) of the k-way partition.

Improving the Model. We exploit the structure of hypergraph flow networks such
that (s , t)-max-flow computations can also cut through non-cut border nets. The
limitation of the original KaFFPa model becomes increasingly relevant for hypergraph
partitioning as large nets are likely to be only partially contained in HB and thus likely
to be border nets. Instead of directly connecting s and t to inner border nodes B� as
described above and thus preventing all min-cuts in which these nodes switch blocks,
we conceptually extend HB to contain all outer border nodes B� and the remaining
border nets E↔B . The resulting hypergraph is H←B = (VB ∪B�, {e ∈ E | e∩ VB 6= ∅}).

The key insight now is that by using the flow network of H←B and connecting s resp.
t to the outer border nodes B� ∩ Vi resp. B� ∩ Vj , we get a flow problem that does
not lock any node v ∈ VB in its block, since none of them is directly connected to
either s or t . Due to the max-flow min-cut theorem [FF56], this flow problem has the
cut property, since all border nets of HB are now internal nets and all external border
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Figure 4.16: Comparison of the KaFFPa [SS11] flow problem FG and our flow
problem FH for bipartitioning. For clarity, the zoomed in view is based on the
Lawler network (source: [HSS19a]).

nodes B� are locked inside their block. However, it is not necessary to use H←B instead
of HB to achieve this result. For all v ∈ B� the flow network of H←B contains paths
〈s , v, e′〉 and 〈e′′, v, t〉 that only involve infinite-capacity edges. Therefore, we can
remove all nodes v ∈ B� by directly connecting s and t to the corresponding bridging
nodes e′, e′′ via infinite-capacity edges without affecting the maximal flow [FF62]. More
precisely, in the flow problem FH , we connect s to all bridging nodes e′ corresponding
to border nets e ∈ E↔B : e ⊂ B� ∩ Vi and all bridging nodes e′′ corresponding to
border nets e ∈ E↔B : e ⊂ B� ∩ Vj to t using directed, infinite-capacity edges.

Single-Pin Border Nets. Border nets with |e ∩ B�| = 1 can furthermore be
modeled more efficiently. For such a net e, the flow problem contains paths of the
form 〈s , e′, e′′, v〉 or 〈v, e′, e′′, t〉 which can be replaced by paths of the form 〈s , e′, v〉 or
〈v, e′′, t〉 with c(e′, v) = ω(e) resp.c(v, e′′) = ω(e). In both cases we can thus remove
one bridging node and two infinite-capacity edges. A comparison of the original
KaFFPa flow problem FG and our improved version FH is shown in Figure 4.16.

4.7.4 Implementation Details

Since we perform n-level partitioning, our FM-based local search algorithms are
executed each time a vertex is uncontracted. To prevent expensive recalculations, we
therefore use the caching techniques described in Section 4.6.3. In order to combine
our flow-based refinement framework with FM local search, we not only perform the
moves induced by the max-flow min-cut computation but also update the FM gain
cache accordingly. Since it is not feasible to execute our flow algorithm on every
level of the n-level hierarchy, we use an exponentially spaced approach that performs
flow-based refinements after uncontracting i = 2j vertices for j ∈ N+. This way, the
algorithm is executed more often on smaller flow problems than on larger ones. To
further improve the running time, we introduce the following speedup techniques: (i)
We modify active block scheduling such that after the first round the algorithm is
only executed on a pair of blocks if at least one execution using these blocks led to an
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improvement on previous levels. (ii) We skip flow-based refinement if the cut between
two adjacent blocks is less than ten on all levels except the finest. (iii) We stop resizing
the B-corridor if the current cut did not improve the previous best solution.

4.8 Framework Configuration – rKaHyPar and
kKaHyPar

We provide two different framework configurations – one for recursive bipartitioning
(rKaHyPar) and one for direct k-way partitioning (kKaHyPar).5 In the following, we
briefly outline the corresponding parameter settings.
Common Parameters. Both algorithms have several configuration parameters in
common. Pin sparsification is enabled for hypergraphs with median net size |ẽ| ≥ 28.
The minimum cluster size for sparsification cmin is set to two and the maximum cluster
size cmax is set to ten. The minimum fingerprint size hmin for which two vertices are
considered to be similar is set to ten. The maximum fingerprint size hmax is set to
100. The number of passes l is set to five.6

For community detection, the edge weighting scheme is chosen dynamically at
runtime depending on the edge density δ of the hypergraph. If δ ≥ 0.75, uniform edge
weights are used, otherwise we use ωde(v, e). Furthermore, we restrict the Louvain
algorithm to perform at most 100 iterations on each level and stop the first phase of
the algorithm if the improvement in modularity is below 0.0001.

For flow-based refinement, we use our flow network and the proposed flow model FH .
The flow problems are solved using the highly-tuned incremental breadth-first search
(IBFS) algorithm [Gol+11], which performed best in preliminary experiments [Heu18a].
The maximum scaling parameter α′ that controls the size of the B corridor is set to 16.
All three speedup techniques described in Section 4.7.4 are enabled by default. Unless
stated otherwise, pin sparsification, community detection, and flow-based refinements
are enabled in the following experiments.
rKaHyPar. Our recursive bipartitioning configuration uses cut-net splitting when
configured to optimize the connectivity metric fλ(Π) and cut-net removal for fc(Π)-
optimization (see Section 4.2). It uses the n-level coarsening algorithm described
in Section 4.4.1 with the lazy re-rating strategy and a penalty factor γ(u, v) :=
1/(c(v) · c(u)). The coarsening process is stopped as soon as the number of vertices
drops below 320 (i.e., t = 160) or no eligible vertex is left. The scaling factor s
for the maximum allowed vertex weight during coarsening is set to 3.25. Once the
hypergraph is small enough, the portfolio-based approach described in Section 4.5 is
used to compute an initial bipartition. Localized local search is performed using the
2-way FM algorithm described in Section 4.6. The algorithm uses the simple stopping
rule to restrict the search space and stops after i = 350 moves neither improved the
objective nor the current imbalance.

5The corresponding configurations are publicly available at: http://kahypar.org/
6These parameters were chosen based on preliminary experiments done by Yaroslav Akhremtsev.
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kKaHyPar. Our direct k-way configuration uses the simple and fast greedy coars-
ening algorithm described in Section 4.4.2. The threshold parameter ι for evaluating
the rating function is set to ι = 1000. The scaling factor s for the maximum allowed
vertex weight during coarsening is set to 1, and the coarsening process is stopped once
the number of vertices drops below 160 · k (i.e., t = 160) or no eligible vertex is left.
For initial partitioning, the k-way configuration uses rKaHyPar with the following
parameters: We use the simple and fast greedy coarsening algorithm, s and γ are
set to 1, and the initial partitioning coarsening process continues until the number
of vertices drops below 300 (i.e., t = 150). Initial bipartitions are computed using
the portfolio approach. For refinement during initial partitioning, the 2-way localized
local search algorithm uses the simple stopping rule and stops after i = 50 moves
neither improved the cut nor the current imbalance. After computing the initial k-way
partition using this rKaHyPar configuration, the partition is further refined using the
localized k-way local search algorithm described in Section 4.6.2. The search space is
restricted using the adaptive stopping rule.

4.9 Experimental Evaluation

Outline. We now evaluate the different components that make up the direct k-
way and the recursive bipartitioning algorithms, starting with the pin sparsifier in
Section 4.9.1 and the community aware coarsening framework in Section 4.9.2. Since
both techniques were developed for direct k-way partitioning, their usefulness in
a recursive bipartitioning setting was not studied in the corresponding conference
publications [Akh+17a; HS17a]. In Section 4.9.3, we therefore evaluate both techniques
in the context of rKaHyPar. Furthermore, since rKaHyPar uses the PQ-based n-level
coarsening algorithm, Section 4.9.4 investigates the effects of using the lazy re-rating
approach instead of the traditional re-rating strategy.
We then turn to the refinement phase. In Section 4.9.5, we explore the question

whether or not LIFO bucket priority queues still play an important role for FM-based
local search algorithms in the n-level setting. Section 4.9.6 then illustrates that both
the caching of gain values and the restriction of the search space are essential in order
to achieve reasonable running times for n-level FM-based refinement heuristics. In
Section 4.9.7, we examine different aspects of the flow-based refinement framework.
Section 4.9.8 then concludes the experimental evaluation by analyzing the effectiveness
of community-aware coarsening and flow-based refinement when compared to weaker
but faster framework configurations.
With one exception, all experiments presented in this section were redone from

scratch for this dissertation in order to get a consistent overview. The experimental
results used to demonstrate the effects of the different flow networks and max-flow
algorithms in Section 4.9.7 are re-used from the corresponding publications [HSS18a;
HSS19a], because they were done in isolation and are thus independent of the overall
framework configuration.
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Figure 4.17: Speedup of kKaHyPar using the pin sparsifier over a configuration
without sparsification (left). Effects of sparsification on solution quality (right).
Experiments are performed on benchmark set B.

4.9.1 Effects of Pin Sparsification

Motivation. The pin sparsifier presented in Section 4.3.1 is intended to improve
the running time for hypergraphs with large nets. At the time of publication of
the corresponding conference paper [Akh+17a], KaHyPar did not yet include the
community-aware coarsening scheme as well as the flow-based refinement framework.
Furthermore, the benchmark set at that time did not include instances from the DAC
2012 Routability-Driven Placement Contest [Vis+12] and was missing primal and dual
SAT instances [MP14]. Moreover, the decision when to activate the sparsifier was
based on experiments using the entire benchmark set available at that time. In order
to show that the parameter choice is still reasonable for the KaHyPar configurations
used in this dissertation, we therefore re-evaluate the decision to activate the pin
sparsifier for hypergraphs with median net size |ẽ| ≥ 28 on benchmark set B. The
experiments use kKaHyPar to optimize the connectivity metric fλ(Π).

Results. The results are shown in Figure 4.17. For small median net sizes, the
preprocessing still results in a slight slowdown of the partitioning process. The
effect is less pronounced than in Ref. [Akh+17a], because both community detection
and flow-based refinement increase the running time of the algorithm. However, for
hypergraphs with larger median net sizes, the sparsifier still speeds up the partitioning
process. We additionally see that the impact on solution quality is negligible, and
thus conclude that given the current framework configuration, enabling the sparsifier
for all hypergraphs with median net size |ẽ| ≥ 28 is still a sensible choice. For more
details on sparsification, we refer to the dissertation of Yaroslav Akhremtsev [Akh19].

4.9.2 Insights into Community-Aware Coarsening

Motivation. Since the flow-based refinement algorithm did not yet exist at the time
when the community-aware coarsening framework was published, we re-evaluate the
decisions made in Ref. [HS17a] for kKaHyPar on benchmark set B, again optimizing the
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Table 4.1: Edge density classification of the hypergraphs in benchmark set B.

Benchmark Suite ISPD98 DAC2012 SuiteSparse SAT14
Literal Primal Dual

Edge Density δ ≈ 1 ≈ 1 {�,≈,�} 1 � 1 � 1 � 1

connectivity objective fλ(Π). For the following experiments, we divide the hypergraphs
of set B into three edge density classes (see Table 4.1). The class δ � 1 is comprised
of all hypergraphs with δ < 0.75. Hypergraphs with 0.75 ≤ δ ≤ 1.25 form class
δ ≈ 1, while hypergraph with δ > 1.25 are assigned to class δ � 1. While VLSI
hypergraphs have |V | ' |E| and therefore d ' 1 [CL04; PM07], SAT hypergraphs
exhibit different densities. A primal (or literal) hypergraph of a SAT formula with n
variables and m ∈ O(n) clauses has edge density δ � 1, while its dual representation
has δ � 1. Instances derived from sparse matrices cover all three cases. While it is
known that VLSI circuits and complex networks like web graphs and social networks
have a naturally existing clustering structure [DD96b; FH16], recent work [AGL12;
GL16] suggests the same for industrial SAT instances.

Evaluation of Edge Weighting Schemes. Figure 4.18 summarizes the results of
our experiments using different edge weights for the bipartite graph edges as described
in Section 4.3.2. For each edge density class, a box plot shows the improvement of
kKaHyPar using the community aware-coarsening framework with the corresponding
edge weighting scheme over kKaHyPar without community-aware coarsening. The plots
show the improvements in average solution quality for the initial partitions (computed
by the initial partitioning algorithm) as well as the improvement in average and best
solution quality of the final k-way partitions (after uncoarsening and refinement).

Using uniform edge weights for low density hypergraphs worsens the solution quality.
However, although the initial solutions are significantly worse in this case, the best
solutions are only 1.87% worse on average than those of kKaHyPar without community
detection. This shows the strength of the n-level approach combined with strong
refinement heuristics. Weighting schemes that encode structural information about the
hypergraph into the edge weights perform significantly better. Both ωe and ωde ensure
that the community structure of the bipartite graph is not dominated by high-degree
E-nodes (large nets) by incorporating the net sizes into the edge weights. However, we
can see that ωde is more stable than ωe. Its mean improvement is close to the median,
always above zero, and always above the mean improvement of ωe, which shows that
additionally strengthening the connection between E-nodes and high-degree V -nodes
indeed has a positive impact on solution quality. For hypergraphs with edge density
δ ≈ 1 uniform edge weights perform best. If the density of the hypergraph is large,
all three schemes give comparable results. This can be explained by the fact that if
δ � 1, most nets are small. This translates to “small stars” in the bipartite graph (or
even paths for nets with |e| = 2), which do not distort the community structure of
V -nodes. Based on these results, we retain the configuration described in Section 4.8.
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Figure 4.18: Comparing the improvement of kKaHyPar using community-aware
coarsening with the different edge weighting schemes presented in Section 4.3.2 over
kKaHyPar without community detection. Diamonds show the mean improvement.
Experiments are performed on benchmark set B.

Table 4.2: Percentage improvement of kKaHyPar with community-aware coars-
ening over kKaHyPar without community detection. kKaHyPar uses ω(v, e) for
hypergraphs with medium and high density, and ωde(v, e) for hypergraphs with
low edge density. Experiments are performed on benchmark set B.
Improvement VLSI Sparse Matrices SAT14
(%) DAC ISPD All Web/Social7 Primal Literal Dual
Initial 20.34 13.97 4.05 26.18 23.73 34.20 12.16
Best 3.07 0.79 0.82 4.56 1.62 3.11 0.90
Average 3.70 1.23 1.16 6.55 3.16 4.84 1.50
Worst 3.92 1.77 1.60 8.57 5.50 7.16 1.92

Impact on Solution Quality and Running Time. Table 4.2 as well as Fig-
ure 4.19 and Figure 4.20 show the overall effects of community-aware coarsening on

7The class ’Web/Social’ contains the hypergraphs derived from the following matrices of web graphs
and social networks: cnr-2000, NotreDame_actors, Stanford, and webbase-1M.
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Figure 4.19: Performance profiles for kKaHyPar with and without (−CAC)
community-aware coarsening optimizing fλ(Π) on benchmark set B.
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Figure 4.20: Running times of kKaHyPar with and without (−CAC) community-
aware coarsening for connectivity optimization on benchmark set B.

kKaHyPar. As can be seen in Table 4.2, using information about the community
structure of the hypergraph during coarsening significantly improves the solution
quality of the initial k-way partitions on all benchmark sets. The improvements in
average and best solution quality indicate that the community-aware configuration
is indeed able to compute better solutions than configuration without community
detection. Furthermore, the fact that the quality of the worst solutions is also improved
shows that community-aware coarsening improves the partitioner’s robustness.
Looking at Figure 4.19, we see that the initial solutions of kKaHyPar are better

than those of kKaHyPar-CAC (without community-detection) for more than 80% of
all instances, and that the solution quality of the final k-way partitions is better for
almost 70% of all instances.
Figure 4.20 shows that the running time of kKaHyPar is only slightly larger than

that of kKaHyPar−CAC. Finally, we would like to point out the fact that given the
similar results presented in the corresponding conference paper [HS17a] for a KaHyPar
configuration without flow-based refinement, we can conclude that both the flow-based
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Figure 4.21: Running times of different rKaHyPar configurations with / without
community-aware coarsening (+/−CAC) and pin sparsification (+/−S). The
geometric mean running time per pin is shown below each box plot. Experiments
are performed on benchmark set B.

refinement framework and the community-aware coarsening scheme are orthogonal
improvements to the multi-level paradigm, as none can compensate for the other.

4.9.3 rKaHyPar with Pin Sparsification and Community Detection

Motivation. After publishing the recursive bipartitioning algorithm for cut-net
optimization [Sch+16a], we turned to direct k-way partitioning and connectivity
optimization. Thus, improvements such as the pin sparsifier presented in Section 4.3.1
and the community-aware coarsening framework presented in Section 4.3.2 have not
yet been considered in the recursive bipartitioning setting. In this section, we therefore
evaluate the effects of both techniques on rKaHyPar. The following experiments
were performed on benchmark set B, optimizing the cut-net metric fc(Π). Both pin
sparsification and community detection algorithms are configured as described in
Section 4.8. Sparsification is performed once before partitioning, while community
detection is done at every bipartitioning step.

Experimental Results. Figure 4.21 and Figure 4.22 summarize the experimental
results. Configurations of rKaHyPar with/without pin sparsification are referred
to as +/−S, configurations with/without community-aware coarsening are referred
to as +/−CAC. Enabling pin sparsification speeds up the algorithm by a factor of
1.13, while community-aware coarsening increases the running time by a factor of
1.22. When enabling both preprocessing techniques, we thus increase the running
time only by a factor of 1.07. Similar to the experimental results of kKaHyPar, the
performance profiles in Figure 4.22 show that sparsification does not negatively affect
solution quality for recursive bipartitioning, while community-aware coarsening slightly
improves the quality of the computed partitions. The overall performance difference
between rKaHyPar (i.e., configuration +S+CAC) and the old configuration used in
Ref. [Sch+16a] (i.e., −S−CAC) is statistically significant (p = 0.0013).
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Figure 4.22: Performance profiles of different rKaHyPar configuration with /
without community-aware coarsening (+/−CAC) and pin sparsification (+/−S).
The plot on the right shows the old configuration (−S−CAC) and the configuration
of rKaHyPar (+S+CAC). Experiments are performed on benchmark set B.

It is interesting to note that the improvement is less pronounced for recursive
bipartitioning than for direct k-way partitioning. On the one hand, this could be
attributed to the fact that preventing “bad” contractions is more important for
the latter, because in a direct k-way setting, the initial partitioning algorithm
has to compute a k-way partition, whereas in the former it is only necessary to
compute 2-way partitions. Thus, several contractions that might be “bad” for
k-way partitioning, may not have an equally severe impact on the quality of a
2-way partition. On the other hand, the problems of recursive bipartitioning
discussed in Section 3.6.3 might also come into play.

4.9.4 Effects of the Lazy Update Strategy for Coarsening

Motivation. In Section 4.4.1, we proposed a lazy updating strategy for PQ-based
n-level coarsening. In this section, we analyze its effect on both running time and
solution quality. We use rKaHyPar to optimize the connectivity metric fλ(Π) on
benchmark set D. Since our focus is on coarsening, the preprocessing techniques
(community detection and pin sparsification) are disabled in the experiments.

Experimental Results. Figure 4.23 (left) shows the running times of the coarsening,
initial partitioning, and refinement phase of rKaHyPar using both the full and the lazy
re-rating strategy for coarsening. Using the lazy re-rating strategy reduces the median
running time of the coarsening phase by an order of magnitude, while improvements
of up to three orders of magnitude are possible for some extreme cases. The running
times of the initial partitioning and refinement phase remain unaffected. Looking at
solution quality in Figure 4.23 (right), we see that the difference in quality is small.
Only for two out of the 175 benchmark instances, the quality difference exceeds a factor
of 1.05. A Wilcoxon signed-rank test reveals that the performance difference between
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Figure 4.23: Breakdown of the running times of rKaHyPar using either the
full or the lazy re-rating strategy (left) and the resulting solution quality (right).
Experiments are performed on benchmark set D.
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Figure 4.24: Progression of the highest rating scores during one 2-way parti-
tioning run of two hypergraphs using either the full or the lazy re-rating strategy
with rKaHyPar.

the full and the lazy re-rating strategy is not statistically significant (p = 0.0935).
Figure 4.24 visualizes the progression of the highest-rated contractions for both the
traditional full re-rating strategy and the lazy approach on two hypergraphs. The
visualization is inspired by the work of Alpert et al. [Alp+05]. We see that despite
not being identical, the rating scores of the lazy scheme progress in a similar fashion
as those of the full re-rating approach. Furthermore, the examples indicate that the
hyperedge sizes indeed affect the scores. For the VLSI hypergraph ibm10 (right), which
has a median net size of 2, the sequence of rating scores of the lazy strategy deviates
only slightly from the sequence of the traditional approach, whereas the deviation is
more pronounced for SPM hypergraph vibrobox (left) with a median net size of 24.

153



4 n-Level Hypergraph Partitioning

1

10

100

T
im

e
pe

r
pi

n
(µ
s)

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac

ti
on

of
in

st
an

ce
s

Binary Heap

Bucket

Binary Heap Bucket
PQ data structure

1.000 1.025 1.050 1.075 1.100
Quality relative to best

Figure 4.25: Comparing the running times of the refinement phase (left) and the
solution quality (right) of kKaHyPar using different priority queue data structures.
Experiments are performed on benchmark set D.

4.9.5 Effects of Priority Queue Data Structures

Motivation. Historically, many partitioning algorithms used some variation of
the bucket priority queue data structure proposed by Fiduccia and Mattheyses
[FM82]. However, recent multi-level partitioning algorithms like KaSPar [OS10a]
and KaHIP [SS13] instead employ binary heap-based implementations. In order to
study the differences in running time and solution quality in the n-level HGP setting,
we partitioned the hypergraphs of benchmark set D with kKaHyPar (optimizing the
connectivity metric) – using either the LIFO bucket queue data structure described in
Section 4.6.5 or our own binary heap implementation. In the following experiments,
flow-based refinement is disabled because we are only interested in the effects on
localized FM local search.

Experimental Results. Figure 4.25 summarizes the results. Looking at the running
times of the refinement phase, we see that the binary heap implementation is slightly
faster than the bucket-based priority queue. Furthermore, there is no statistically
significant difference in solution quality between both approaches (p = 0.3874). Only
for one out of 175 instances, the performance of the kKaHyPar using binary heaps is
worse by a factor of τ = 1.104.

By using the multi-level paradigm and by removing parallel nets, both vertex
degrees and hyperedge weights increase during the coarsening phase. This, in turn,
increases the range of possible gain values during refinement and results in very few
ties in the max-gain bucket, which – similar to what Madden [Mad99] observed for
flat partitioning of hypergraphs with varying hyperedge weights — renders LIFO tie-
breaking superfluous. Additionally, both the multi-level approach and our technique
of only starting local search passes around the just uncontracted vertex pair, already
enforce localization. We therefore conclude that the benefits of LIFO bucket queues
are outweighed by the n-level (and most likely also the standard multi-level) approach.
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Figure 4.26: Comparing the running times of the refinement phase of kKaHyPar
(baseline) with a configuration that uses the simple stopping rule (−AS), and
a configuration that additionally disables gain caching (−AS−C) (left). The
corresponding performance profiles are shown in the plot on the right. Experiments
are performed on benchmark set D.

4.9.6 Effects of Search Space Restrictions and Caching

Motivation. In the following, we briefly show the effects of gain caching (described
in Section 4.6.3) and search space restriction using the stopping rules presented in
Section 4.6.4. The experiments are performed on benchmark set D using kKaHyPar for
connectivity optimization. Flow-based refinement is disabled to highlight the running
time differences for our localized local search algorithms. When using the simple
stopping rule (−AS), the maximum number of fruitless moves is set to i = 350, which
was the best value in the parameter tuning experiments presented in Ref. [Sch+16a].

Experimental Results. Figure 4.26 (left) shows the running times of the refinement
phase for the different configurations. We see that switching from the adaptive to
the simple stopping rule (−AS) increases the running time of the refinement phase
by more than an order of magnitude. Additionally disabling gain caching (−AS−C)
further increases the average running time by roughly a factor of two. As can be seen
in the performance profile plot in Figure 4.26 (right), the additional running time
spent in the local searches yields better solutions than using the adaptive stopping
rule. While this performance difference is statistically significant (p < 2.23× 10−16),
our default kKaHyPar configuration uses the adaptive stopping rule in favor of the
smaller running times. Figure 4.27 visualizes the local search steps of both the simple
and the adaptive stopping rule when partitioning the VLSI hypergraph ibm09 and
the primal SAT hypergraph atco_enc2_opt_05_21 into k = 8 blocks (i.e., each figure
shows all local search steps performed along the entire n-level hierarchy). While the
adaptive stopping rule terminates passes early, the simple stopping rule permits much
longer search passes in which solution quality degrades far from the quality of the
starting partitions. Thus, in total, it performs significantly more moves.
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Table 4.3: Characteristics of benchmark set B. We use x to denote the mean
vertex degrees and net sizes, and x̃ to denote the median vertex degrees and net
sizes.

ISPD98 DAC2012 SuiteSparse SAT14
Literal Primal Dual

avg. d(v) 4.2 3.3 25.1 8.2 16.3 2.6
avg. d̃(v) 3.7 3.2 23.2 4.0 8.3 2.3
avg. |e| 3.9 3.4 26.8 2.6 2.6 16.3
avg. |̃e| 2.1 2.0 24.4 2.3 2.3 8.3

4.9.7 Insights into Network Flow-Based Refinement

Motivation. In the following, we examine the different hypergraph flow networks
presented in Section 4.7.2 and evaluate their effects on the running times of max-flow
algorithms. We show that using our improved flow model FH instead of KaFFPa’s flow
model FG yields solutions of higher quality for both graph and hypergraph partitioning.
Furthermore, we provide insights into the configuration of the flow-based refinement
framework, and demonstrate the effects of the proposed speedup heuristics. In a
final evaluation, we then show to what extent using flow-based refinements on top of
localized FM local search improves the performance of rKaHyPar and kKaHyPar for
both cut-net and connectivity optimization. We would like to note that the evaluation
of kKaHyPar for cut-net optimization and the evaluation of rKaHyPar (using both
community detection and pin sparsification) for both metrics is new and thus not
contained in any of the related publications [HSS18a; HSS18b; HSS19a].

156



4.9 Experimental Evaluation

Flow Network Evaluation. To analyze the effects of the different hypergraph flow
networks, we compute five bipartitions for each hypergraph of benchmark set B with
kKaHyPar (without flow-based refinement) using different seeds. Characteristics of
the hypergraphs are shown in Table 4.3. The bipartitions are then used to generate
hypergraph flow networks for a corridor of size |B| = 25 000 hypernodes around the
cut. Figure 4.28 (top) summarizes the sizes of the respective flow networks in terms of
number of nodes |V| and number of edges |E| for each instance class. We consider the
Lawler network NL, the Liu-Wong network NW , and our network NOur. Furthermore,
we show results for N 1

Our which exploits the fact that the flow problems are based on
subhypergraphs HB by additionally modeling single-pin border nets more efficiently
as described in Section 4.7.3. We see that the flow networks of primal and literal
SAT instances are the largest in terms of both numbers of nodes and edges. High
average vertex degrees combined with low average net sizes lead to subhypergraphs
HB containing many small nets, which then induce many nodes and (infinite-capacity)
edges. Dual instances with low average degree and large average net size on the other
hand lead to smaller flow networks. For VLSI instances (DAC, ISPD) both average
degrees and average net sizes are low, while for SPM hypergraphs the opposite is the
case. This explains why SPM flow networks have significantly more edges, despite the
number of nodes being comparable in both classes.
As expected, the Lawler network NL induces the biggest flow problems. Looking

at the Liu-Wong network NW , we can see that distinguishing between graph edges
and nets with |e| ≥ 3 pins has an effect for all hypergraphs with many small nets (i.e.,
DAC, ISPD, Primal, Literal). While this technique alone does not improve dual SAT
instances, we see that the combination of the Liu-Wong approach and the removal
of low degree hypernodes in NOur, reduces the size of the networks for all instance
classes except SPM. Both techniques only have a limited effect on these instances,
since both hypernode degrees and net sizes are large on average.

Using N 1
Our further reduces the network sizes significantly. As expected, the reduc-

tion in numbers of nodes and edges is most pronounced for instances with low average
net sizes because these instances are likely to contain many single-pin border nets.

Flow Algorithm Evaluation. To further see how these reductions in network size
translate to improved running times of max-flow algorithms, we use these networks to
create flow problems using our flow model FH and compute min-cuts using two highly
tuned max-flow algorithms, namely the BK-algorithm [BK04] and the incremental
breadth-first search (IBFS) algorithm [Gol+11]. These algorithms were chosen because
they performed best in the preliminary experiments performed by Tobias Heuer as
part of his master thesis [Heu18a]. We compare the speedups of these algorithms
when executed on NW , NOur, and N 1

Our to the execution on the Lawler network
NL in Figure 4.28 (bottom). Both algorithms benefit from improved flow network
models on all instance classes except SPM, and the speedups directly correlate with
the reductions in network size. SPM hypergraphs have high average vertex degrees
and large average net sizes. In this case, the optimizations only have a very limited
effect since they target small nets and low degree vertices. While NW significantly
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Figure 4.28: Top: Size of the flow networks when using the Lawler network NL,
the Liu-Wong network NW and our network NOur. Network N 1

Our additionally
models single-pin border nets more efficiently. The dashed line indicates 25 000
nodes. Bottom: Speedup of BK [BK04] and IBFS [Gol+11] max-flow algorithms
over the execution on the Lawler network NL. The flow networks are derived
from the hypergraphs of benchmark set B (adapted from [HSS19a]).

reduces the running times for Primal and Literal instances, NOur additionally leads
to a speedup for Dual instances. By additionally considering single-pin border nets,
N 1

Our results in an average speedup between 1.52 and 2.21 (except for SPM instances).
Since IBFS performed better than the BK algorithm in the master thesis of Tobias
Heuer [Heu18a], the final framework configuration uses N 1

Our as flow network and the
IBFS algorithm for max-flow computations.
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Table 4.4: Comparing KaFFPa’s flow model FG with our model FH as described
in Section 4.7.3. The table shows the average improvement of FH over FG (in
percent) on benchmark sets D and F.

Hypergraphs (Set D) Graphs (Set F)
α′ ε = 1% ε = 3% ε = 5% ε = 1% ε = 3% ε = 5%
1 7.6 8.1 7.7 4.7 4.9 4.8
2 7.5 6.7 4.9 4.6 4.1 3.6
4 6.7 4.0 2.8 4.2 3.2 2.5
8 4.9 2.3 1.5 3.7 2.3 1.9

16 3.2 1.4 1.3 3.0 1.8 1.6

Flow Model Evaluation. We now compare KaFFPa’s flow model FG to our model
FH described in Section 4.7.3. The experiments summarized in Table 4.4 were
performed using benchmark sets D and F. To focus on the impact of the models on
solution quality, we deactivated KaHyPar’s FM local search algorithms and only use
flow-based refinement without the most balanced minimum cut heuristic. The results
confirm our hypothesis that FG restricts the space of possible solutions. For all flow
problem sizes and all imbalances tested, FH yields better solution quality. As expected,
the effects are most pronounced for small flow problems and small imbalances where
many vertices are likely to be border nodes. Since these nodes are locked inside their
respective block in FG, they prevent all non-cut border nets from becoming part of
the cut-set. Our model, on the other hand, allows all min-cuts that yield a feasible
solution for the original partitioning problem. The fact that this effect also occurs for
the graphs of set F indicates that our model can also be effective for traditional graph
partitioning.8 Furthermore, we see that the effect is more pronounced for hypergraphs
than for graphs, which can be explained by the fact that larger net sizes are likely to
induce more border nodes.9

Configuring the Algorithm. We now evaluate different configurations of the
refinement framework for connectivity optimization on benchmark set D. In the
following, kKaHyPar without flow-based refinement is used as a reference and referred
to as (−F,−M,+LS), since it neither uses (F)lows nor the (M)ost balanced minimum
cut heuristic and only refines partitions using the FM (L)ocal (S)earch algorithm.
This basic configuration is then successively extended with specific components. The
results of our experiments are summarized in Table 4.5 for increasing scaling parameter
α′.10 In configuration Constant128 all components are enabled (+F,+M,+LS) and

8In Ref. [HSS19a], we integrate our improved flow model into KaFFPa and show that it indeed
improves the overall performance of the graph partitioning system.

9The results of set F differ from the results presented in Ref. [HSS18a], because community
detection [HS17a] was disabled in the corresponding experiments. Here, community detection is
enabled for both the experiments on set D and on set F.

10Preliminary experiments showed that using values larger than 16 for scaling parameter α′ did not
yield any significant quality improvement that would offset the increased running time.
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Table 4.5: Quality and running times for different configurations and increasing
α′. Column Avg(%) reports the quality improvement relative to the reference
configuration (−F,−M,+LS). Experiments are performed on benchmark set D.

(+F,−M,−LS) (+F,+M,−LS) (+F,−M,+LS) (+F,+M,+LS) Constant128
α′ Avg(%) t (s) Avg(%) t (s) Avg(%) t (s) Avg(%) t (s) Avg(%) t (s)
1 −6.44 9.34 −6.01 9.90 0.29 12.06 0.29 12.32 0.62 49.83
2 −3.64 10.29 −2.53 11.05 0.59 12.66 0.74 13.08 1.18 76.53
4 −2.07 12.15 −0.49 13.09 0.93 13.82 1.22 14.50 1.69 125.34
8 −1.08 15.64 0.78 16.97 1.23 16.06 1.67 17.27 2.20 222.94

16 −0.32 22.52 1.61 24.74 1.58 20.60 2.16 22.65 2.74 428.39
Ref. (−F,−M,+LS) 6373.88 13.73

flow-based refinements are performed every 128 uncontractions. It is used as a reference
point for the quality achievable using flow-based refinement. In all configurations, the
speedup heuristics described in Section 4.7.4 are enabled.

The results indicate that only using flow-based refinement (+F,−M,−LS) is inferior
to FM local search in regard to both running time and solution quality. Although the
quality improves with increasing flow problem size (i.e., increasing α′), the average
connectivity is still worse than the reference configuration. Enabling the most bal-
anced minimum cut heuristic improves partitioning quality, especially as α increases.
Configuration (+F,+M,−LS) performs better than the basic configuration for α′ ≥ 8.
By combining flows with the FM algorithm (+F,−M,+LS) we get a configuration that
improves upon the baseline even for small flow problems. However, comparing this
variant with (+F,+M,−LS) for α′ = 16, we see that using large flow problems together
with the most balanced minimum cut heuristic yields solutions of comparable quality.
Enabling all components (+F,+M,+LS) and using large flow problems performs best.
Furthermore, we see that enabling FM local search slightly improves the running time
for α′ = 16. This can be explained by the fact that the FM algorithm already produces
good cuts between the blocks such that fewer rounds of pairwise flow refinements
are necessary to improve the solution. Comparing configuration (+F,+M,+LS) with
Constant128 shows that performing flows more often further improves solution
quality at the cost of slowing down the algorithm by more than an order of magnitude.

Effects of Speedup Heuristics. The effects of the three speedup heuristics pre-
sented in Section 4.7.4 are shown in Table 4.6. In the experiments performed on set
B (again optimizing connectivity), we start with a kKaHyPar configuration with all
heuristics disabled (−S1−S2−S3), and then successively enable the heuristics one by
one. Only executing pairwise flow refinements on blocks that lead to an improvement
on previous levels (S1) reduces the running time of flow-based refinement by a factor of
1.18, while skipping flows in case of small cuts (S2) results in a further speedup of 1.14.
By additionally stopping the resizing of the flow problem as early as possible (S3),
we decrease the running time of flow-based improvement by a factor of 1.71 in total,
while still computing solutions of comparable quality, which is why the framework is
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Table 4.6: Comparison of solution quality (average and minimum fλ(Π)) and
running time of kKaHyPar using the speedup heuristics. Column trefinement (s)
refers to the running time of the refinement phase, column ttotal (s) to the total
partitioning time. Experiments are performed on benchmark set B.

Configuration Avg. Min. trefinement (s) ttotal (s)
−S1−S2−S3 6858.9 6640.1 41.6 69.8
+S1−S2−S3 6863.3 6643.9 35.1 60.8
+S1+S2−S3 6864.2 6646.3 30.7 55.2
+S1+S2+S3 6864.5 6645.0 24.3 47.2

configured to employ all heuristics by default.

Effects on Solution Quality and Running Time. Having configured the flow-
based refinement framework, we now evaluate its effects on rKaHyPar and kKaHyPar
for both cut-net and connectivity optimization. In both cases, the −F variants only
differ from the reference configurations described in Section 4.8 in that the flow-based
refinement framework is disabled.
Figure 4.29 summarizes the experiments performed on benchmark set B. For both

metrics, both kKaHyPar and rKaHyPar significantly outperform their non flow-based
counterparts. kKaHyPar computed the best solutions for 97.5% of all instances for
cut-net optimization and for 97.6% of all instances for connectivity optimization.
Furthermore, its solutions are at most a factor of 1.034 worse than the solutions of
kKaHyPar−F for cut-net optimization, and at most a factor of 1.026 for connectivity
optimization. For rKaHyPar, the effect of flow-based refinements is slightly less
pronounced. When optimizing the cut-net metric, it computes the best solutions for
72.1% of all instances, when optimizing connectivity its solutions are better on 72.5%
of all instances.
Looking at Table 4.7, we see that whereas kKaHyPar is more than 2% better on

average than kKaHyPar−F for both objectives, the solutions of rKaHyPar are only
around 0.6% better on average than those of rKaHyPar−F. A Wilcoxon signed rank
test however reveals that the difference in solution quality is statistically significant
in all cases (p < 2.22 × 10−16). The smaller overall improvements for rKaHyPar
can be partially explained by some of the problems of the RB-approach discussed
in Section 3.6.3: In recursive bipartitioning-based algorithms, a good solution for
the first bipartition divides the instance into two densely connected blocks and thus
makes it more difficult for further 2-way partitions to find small cuts. Thus, improved
solutions on the first recursion levels do not necessarily translate to overall improved
k-way partitions [ST97]. Furthermore, once a net is cut for the first time in one of the
bipartitions, it will remain a cut net for the rest of the partitioning process, since it is
not possible to remove it from the cut-set in the following bipartitions.
Comparing the running times of configurations using the flow-based refinement

framework with those that only use localized FM local search, we see that flows increase
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Figure 4.29: Performance profiles of rKaHyPar and kKaHyPar with and without
(−F) flow-based refinement optimizing fc(Π) and fλ(Π) on benchmark set B.

Table 4.7: Quality improvements (average and minimum fλ(Π) and fc(Π)) and
running times of kKaHyPar and rKaHyPar compared to corresponding configura-
tions without flow-based refinements (−F) on benchmark set B.

Objective Algorithm Avg. Min. t (s)

fλ(Π)

kKaHyPar−F 7030.9 6786.7 24.9
kKaHyPar 2.4 % 2.1 % 47.2
rKaHyPar−F 7018.8 6810.3 61.2
rKaHyPar 0.7 % 0.6 % 68.5

fc(Π)

kKaHyPar−F 6130.0 5908.5 28.6
kKaHyPar 2.3 % 2.0 % 57.2
rKaHyPar−F 6085.4 5898.8 54.3
rKaHyPar 0.6 % 0.5 % 60.9
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the running time of kKaHyPar roughly by a factor of two, whereas the running time of
rKaHyPar only increases by a factor of around 1.2. This can be explained by the fact
that while flow-based refinement works on all pairs of blocks adjacent in the quotient
graph in the direct k-way setting, only two blocks are refined during bipartitioning.

4.9.8 Effectiveness Tests

Motivation. The community-aware coarsening scheme presented in Section 4.3.2
and the flow-based refinement framework presented in Section 4.7 improve solution
quality at the cost of an increased running time. In order to evaluate the relative
importance of these two algorithmic components, we perform additional effectiveness
tests on benchmark set B for both cut-net and connectivity optimization. In these tests,
we start with the rKaHyPar and kKaHyPar configurations described in Section 4.8
and successively remove flow-based refinement and the community-aware coarsening
scheme – yielding successively weaker variants of the respective configurations. In
the figures referenced in this section, we use rKaHyPar resp. kKaHyPar to denote
the strongest configurations. The removal of the flow-based refinement framework is
indicated with suffix −F, the additional removal of community-aware coarsening is
indicated with suffix −F−CAC.

Virtual Instances. Since weaker configurations run faster, we create a setting in
which each configuration has approximately the same amount of time to compute a
k-way partition. More precisely, we use the concept of virtual instances introduced
by Akhremtsev, Sanders, and Schulz [ASS17] to allow the faster configuration to
perform additional repetitions. Given the results of r repetitions of two algorithm
configurations A and B for one instance I, i.e., a k-way partition of a hypergraph
H, a virtual instance is computed as follows: First, we choose one repetition of both
algorithms uniformly at random. Let tA1 and tB1 be the running times of configuration
A and configuration B for that particular repetition, and assume without loss of
generality that tA1 ≥ tB1 . We now sample additional repetitions for algorithm B
(without replacement) until the total running time of all sampled repetitions exceeds
tA1 , i.e., if the last sample tB` of algorithm B would exceed tA1 , it is accepted with
probability p = (tA1 −

∑
i≤i<` t

B
i )/tB` . It has been shown that using this approach, the

expected running time of the sampled repetitions of configuration B is the same as the
running time of a single repetition of configuration A [Akh19, Thm. 4.1]. The solution
quality of configuration A then corresponds to the quality of the single repetition,
while the quality of configuration B is the best result of all sampled repetitions. For
each of the 1148 actual instances, we perform 10 repetitions per configuration. Similar
to Ref. [Akh19], these data are then used to create 100 virtual instances for each
of the 1148 actual instances – resulting in a total of 114 800 virtual instances per
configuration.11

11Only for very few instances, slightly more than 10 repetitions would have been needed for the faster
configuration. In these cases, we restrict the results of the faster configuration to the best of the
10 repetitions, since the impact of those instances on the overall result is considered negligible.
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Figure 4.30: Running times of rKaHyPar and kKaHyPar configurations for
effectiveness tests. The geometric mean running times per pin are shown below
each box plot. Experiments are performed on benchmark set B.

rKaHyPar. Looking at the results of the effectiveness tests on virtual instances in
Figure 4.31, we see that using flow-based refinement pays off for both cut-net and
connectivity optimization, as weaker configurations, i.e., rKaHyPar−F (without flows)
and rKaHyPar−F−CAC (without flows, without community-aware coarsening) do
not perform better when given the same amount of time. However, in a configuration
without flows (i.e., rKaHyPar−F) the benefits of community-detection can be offset
for cut-net optimization by performing more runs using the weakest configuration
(i.e., rKaHyPar−F−CAC). For connectivity optimization, both configurations produce
comparable results given the same amount of time. However, looking at the running
times of all configurations in Figure 4.30 (top) and the performance profiles of the
best solutions on the actual instances in Figure 4.33, we see that the larger running
times of more advanced configurations translate into solutions of higher quality, if
every algorithm is executed the same number of times.
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kKaHyPar. The results of the effectiveness tests on virtual instances for kKaHyPar
are shown in Figure 4.32. In contrast to recursive bipartitioning, advanced configu-
rations are always more effective than weaker configurations. Neither kKaHyPar−F
nor kKaHyPar−F−CAC is able to outperform the respective stronger configuration if
given the same amount of time – both for cut-net as well as connectivity optimization –
even though the running time difference between the configurations is more pronounced
than for rKaHyPar (see Figure 4.30 bottom). These results substantiate the significant
performance differences shown in the performance profiles of the best solutions on the
actual instances in Figure 4.34.

The results of the effectiveness tests for recursive bipartitioning reflect the
results presented in Section 4.9.3 (where we first looked at the effects of pin
sparsification and community detection on a rKaHyPar configuration that used
flow-based refinements) and Section 4.9.7 (where we evaluated the flow-based
refinement framework for rKaHyPar). The observed effects could thus be yet
another indicator that the problems of recursive bipartitioning discussed in
Section 3.6.3 indeed are relevant in practice. However, this requires a more
in-depth experimental analysis.
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Figure 4.31: Effectiveness tests on benchmark set B for different rKaHyPar con-
figurations using virtual instances. Legend: rKaHyPar (baseline), rKaHyPar−F
(without flow-based refinement), rKaHyPar−F−CAC (without flow-based refine-
ment & without community-aware coarsening).
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Figure 4.32: Effectiveness tests on benchmark set B for different kKaHyPar con-
figurations using virtual instances. Legend: kKaHyPar (baseline), kKaHyPar−F
(without flow-based refinement), kKaHyPar−F−CAC (without flow-based refine-
ment & without community-aware coarsening).
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Figure 4.33: Performance profiles of different rKaHyPar configurations using
actual instances. Legend: rKaHyPar (baseline), rKaHyPar−F (without flow-
based refinement), rKaHyPar−F−CAC (without flow-based refinement & without
community-aware coarsening). Experiments are performed on benchmark set B.
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Figure 4.34: Performance profiles of different kKaHyPar configurations using
actual instances. Legend: kKaHyPar (baseline), kKaHyPar−F (without flow-
based refinement), kKaHyPar−F−CAC (without flow-based refinement & without
community-aware coarsening). Experiments are performed on benchmark set B.
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4.10 Concluding Remarks

In this chapter, we presented the different algorithmic components of our hypergraph
partitioning framework KaHyPar in a consistent manner by combining and extending
the work presented in four conference publications [Sch+16a; Akh+17a; HS17a;
HSS18a] and one journal paper [HSS19a]. The central idea underlying KaHyPar is
to explicitly evade the trade-off between solution quality and running time inherent
in the number of hierarchy levels created by multi-level heuristics. Instead of using
an approximately logarithmic number of levels like traditional algorithms, we go to
the extreme case of (nearly) n levels. We presented a hypergraph data structure
and two coarsening algorithms that are specifically engineered to fit this approach.
To speed up partitioning in the presence of many large hyperedges, we proposed an
efficient pin sparsifier based on locality sensitive hashing. Furthermore, we showed
that traditional coarsening algorithms lack a global view of the hypergraph. Since they
are solely guided by local, greedy decisions, they are prone to perform contractions
that obscure naturally existing structure. We therefore presented an approach which
incorporates global information about the community structure into the coarsening
process. Community detection is performed via modularity maximization using the
Louvain algorithm on the bipartite graph representation of the hypergraph.

After describing our portfolio-based approach to initial partitioning, we then turned
to the refinement phase and presented three local improvement schemes. The first two
algorithms are based on the Fiduccia-Mattheyses (FM) heuristic [FM82], but perform
a highly localized search that starts with only two vertices and then gradually expands
by successively considering their neighbors. One algorithm is specifically tailored to
improving two-way partitions (i.e., partitions consisting of k = 2 blocks) and can
therefore be used in a setting where k-way partitions are computed via recursive
bipartitioning. The other algorithm has a more global view and is able to directly
improve k-way partitions by moving vertices between all k blocks. The third algorithm
generalizes and improves the flow-based refinement framework of the KaFFPa [SS11]
and uses max-flow computations on pairs of blocks to refine k-way partitions.
The experimental evaluation presented in this chapter deliberately omitted com-

parisons to other partitioning systems in order to focus on the framework itself.
We demonstrated the effects of different key techniques such as pin sparsification,
community-aware coarsening, and flow-based refinement. Furthermore, we addressed
open questions that were not (or only very briefly) considered in any of the publi-
cations such as the effects of sparsification and community detection in a recursive
bipartitioning setting, the effectiveness of the lazy re-rating strategy for PQ-based
n-level coarsening, as well as the effects of priority queue data structures, caching and
search space restrictions on localized FM-based local search algorithms.
The resulting configurations for recursive bipartitioning (rKaHyPar) and direct

k-way partitioning (kKaHyPar) are specifically tailored to high-quality partitioning
and engineered to overcome the bottlenecks of straightforward n-level partitioning
algorithms that would be adequate for graph partitioning (i.e., KaSPar [OS10a; Osi14]).
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5Chapter 5

Memetic n-Level Hypergraph
Partitioning

“If superior creatures from space ever visit earth, the first question they will
ask, in order to assess the level of our civilization, is: ‘Have they discovered
evolution yet?’”

— Richard Dawkins, The Selfish Gene

Motivation. The intuition behind the multi-level approach is that a good partition
at one level of the hierarchy will also be a good partition on the next finer level. Hence,
depending on the definition of the neighborhood, local search algorithms are able to
explore local solution spaces very effectively in this setting. However, they are also
prone to get stuck in local optima [KK99]. The multi-level paradigm helps to some
extent, since local search has a more global view of the problem at the coarse levels
and a very fine-grained view at the fine levels of the multi-level hierarchy. In addition,
as with many other metaheuristics, multi-level HGP gives better results if several
repeated runs are made with some measures taken to diversify the search.
Still, even a large number of repeated executions can only scratch the surface of

the huge space of possible partitionings. In order to explore the global solution space
extensively, more sophisticated metaheuristics are needed. Several genetic and memetic
hypergraph partitioning algorithms have already been proposed in the literature [BM94;
Are00a; AY04; KKM04; Arm+10]. However, none of them is considered to be truly
competitive with state-of-the-art tools [CKL03]. We believe that this is due to the
fact that all of them employ flat (i.e., non multi-level) partitioning algorithms to drive
the exploitation of the local solution space. In this chapter, we therefore integrate
the n-level hypergraph partitioning framework presented in the previous chapter with
a genetic algorithm and thus develop the first multi-level memetic algorithm for the
hypergraph partitioning problem.

References. This chapter is based on a technical report [ASS18b] and a conference
paper jointly published with Robin Andre and Christian Schulz [ASS18a]. The paper
was mainly written by the author of this dissertation, with editing by Christian
Schulz. Large parts of this chapter were copied verbatim from the paper. The initial
implementation of the evolutionary framework was done by Robin Andre as part of
his bachelor thesis [And17a], which was supervised by us. This implementation was
then improved and integrated into the KaHyPar framework by the author of this
dissertation. The experimental evaluation presented in Section 5.4 contains some
experimental results of Ref. [HSS19a].
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5.1 Overview

We start by explaining the components of our memetic n-level hypergraph partitioning
algorithm. Given a hypergraph H and a time limit t, the algorithm starts by creating
an initial population of P individuals, which correspond to ε-balanced k-way partitions
of H. The population size |P| is determined dynamically by first measuring the
time tI spent to create one individual. Then, P is chosen such that the time to
create |P| individuals is a certain percentage η of the total running time t: |P| :=
max(3,min(50, η · (t/tI))), where η is a tuning parameter. The lower bound on
the population size is chosen to ensure a certain minimum of diversity, while the
upper bound is used to ensure convergence. In contrast to previous approaches [Hul90;
BM94; Are00a; KKM04; Arm+10], the population is not filled with randomly generated
individuals, but high-quality solutions computed by KaHyPar.
To judge the fitness of an individual we use the connectivity fλ(Π) or the cut-

net metric fc(Π) of its partition Π. The initial population is evolved over several
generational cycles using the steady-state paradigm [De 06], i.e., only one offspring
is created per generation. The two-point and multi-point recombination operators
described in Section 5.2 improve the average quality of the population by effectively
combining different solutions to the HGP problem.
In order to sufficiently explore the global search space and to prevent premature

convergence, it is important to keep the population diverse [Bäc96]. This becomes even
more relevant in our case, since with KaHyPar we use powerful heuristics to exploit
the local solution space. Previous work on evolutionary algorithms for HGP [Hul90;
BM94; AY04; KKM04; Arm+10] used simple mutations that change the block of each
vertex uniformly at random with a small probability. In contrast to these simple,
problem agnostic operators, Section 5.3 presents mutation operators based on V-
cycles [Wal04] that exploit knowledge of the problem domain and create offspring
solutions in the vicinity of the current population. Furthermore, in Section 5.3 we
propose a replacement strategy which considers fitness and similarity to determine
the individual to be evicted from the population.

5.2 Recombination Operators

The evolutionary algorithms for HGP presented in Chapter 3 use simple multi-point
crossover operators which split the parent partitions into several parts and then
combine these parts to form new offspring (see Figure 5.1 (a)). Since these operators
do not take the structure of the hypergraph into account, offspring solutions may have
considerably worse fitness than their parents. By generalizing the recombine operator
framework of KaFFPaE [SS12] from graphs to hypergraphs, the two-point recombine
operator described in this section assures that the fitness of the offspring is at least as
good as the best of both parents. The edge frequency-based multi-point recombination
operator described afterwards gives up this property, but still generates good offspring.
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(a) simple 2-point crossover (b) multi-level recombine

;
P1

P2

o

Figure 5.1: (a) Traditional, problem agnostic crossover operation to combine
parent partitions P1 and P2 to offspring o. (b) Recombination using modified multi-
level coarsening to combine two partitions (dashed red line and solid green line).
Each cut net e remains in the coarse hypergraph and maintains its connectivity
λ(e) regarding both partitions (source: [ASS18a]).

Two-Point Recombination. The operator starts with selecting parents for re-
combination using binary tournament selection (without replacement) [BT96]. Two
individuals I1 and I2 are chosen uniformly at random from P and the individual with
better fitness (i.e., lower fc(Π)/fλ(Π) objective) becomes the first parent P1. This
process is then repeated to determine the second parent P2. A tournament size of two
is chosen to keep the selection pressure low and to avoid premature convergence, since
all individuals already constitute high-quality solutions. Both individuals/partitions
are then used as input of a modified n-level partitioning scheme as follows:
During coarsening, two vertices u and v are only allowed to be contracted if both

parents agree on the block assignment of both vertices, i.e., if b1[u] = b1[v]∧b2[u] = b2[v].
This is a generalization from multi-level evolutionary GP (i.e., the work of Sanders and
Schulz [SS12]), where edges running between two blocks are not eligible for contraction
and therefore remain in the graph. In other words, our generalization allows two vertices
of the same cut net to be contracted as long as the input individuals agree that they
belong to the same block. For HGP, this restriction ensures that cut nets e remain in the
coarsened hypergraph and maintain their connectivity λ(e) regarding both partitions.
This modification is important for the optimization objective, because it allows us to
use the partition of the better parent as initial partition of the offspring. Since we can
skip the initial partitioning phase and therefore do not need a sufficiently large number
of vertices in the coarsest hypergraph to compute a good initial partition [KK99], we
alter the stopping criterion of the coarsening phase such that it stops when no more
contractions are possible. Apart from altering the contraction mechanism and the
stopping criterion no modifications of the coarsening algorithms are performed.

The high-quality solution of the coarsest hypergraph contains two different classes of
vertices: Those for which both parent partitions agree on a block assignment and those
for which they do not (see Figure 5.1 (b) for an example). During the uncoarsening
phase, refinement algorithms can then use this initial partitioning to (i) exchange good
parts of the solution on the coarse levels by moving few vertices and (ii) to find the
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best block assignment for those vertices, for which the parent partitions disagreed.
Since KaHyPar’s refinement algorithms guarantee non-decreasing solution quality, the
fitness of offspring solutions generated using this kind of recombination is always at
least as good as the better of both parents.

Edge-Frequency Multi-Recombination. The operator described previously is
restricted to recombine p = 2 partitions to improved offspring of non-decreasing
quality. Sanders and Schulz [SS12] specifically restrict their operators to this case,
arguing that in the course of the algorithm a series of two-point recombine operations
to some extent emulates a multi-point recombination. Here, we present a multi-
point recombine operation to partially evaluate this hypothesis in the experimental
evaluation. The recombine operator uses the concept of (hyper)edge frequency [WA98]
to pass information about the cut nets of the t best individuals in the population
on to new offspring. The frequency f(e) of a net e hereby refers to the number of
times it appears in the cut in the t best solutions: f(e) := |{I ∈ t | λ(e) > 1}|. We
use t = d

√
|P|e, which is a common value in evolutionary algorithms [Del+11]. The

multi-recombine operator then uses this information to create a new individual in
the following way. The coarsening algorithm is modified to prefer to contract vertex
pairs (u, v) which share a large number of small, low-frequency nets. This is achieved
by replacing the standard heavy-edge rating function of KaHyPar with the rating
function [WA98] shown in Eq. 5.1:

r(u, v) := 1
c(v) · c(u)

∑
e∈{I(v)∩I(u)}

exp(−ζf(e))
|e|

. (5.1)

This rating function disfavors the contraction of vertex pairs incident to cut nets
with high frequency, because these nets are likely to appear in the cut of high-quality
solutions. The tuning parameter ζ is used as a damping factor. After coarsening stops,
KaHyPar’s initial partitioning algorithms are used to compute an initial partition
of the coarsest hypergraph, which is then refined during the uncoarsening and local
search phase.

5.3 Mutation Operations and Diversification

Mutation Operators. We define two mutation operators based on V-cycles [Wal04].
Both operators are applied to a random individual I of the population. The V-cycle
technique reuses an already computed partition as input for the n-level approach
and iterates coarsening and local search phases several times using different seeds for
randomization. This approach has been applied successfully as mutation operator in
evolutionary GP [SS12], therefore we also adopt it for HGP. During coarsening, the
quality of the solution is maintained by only contracting vertex pairs (u, v) belonging
to the same block (i.e., b[u] = b[v]). By distinguishing two possibilities for initial
partitioning, we define two different mutation operators: The first one uses the current
partition of the individual as initial partition of the coarsest hypergraph and guarantees
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non-decreasing solution quality. The second one employs KaHyPar’s portfolio of initial
partitioning algorithms to compute a new solution for the coarsest hypergraph. During
uncoarsening, local search algorithms improve the solution quality and thereby further
mutate the individual. Since the second operator computes a new initial partition
which might be different from the original partition of I, the fitness of offspring
generated by this operator can be worse than the fitness of I.

Replacement Strategy. All recombination and mutation operators create one new
offspring o. In order to keep the population diverse, we evict the individual most
similar to the offspring among all individuals whose fitness is equal to or worse than o.
Previous work on bipartitioning [BM94; KKM04] used the Hamming distance as a
metric to measure the similarity between partitions. We propose a more sophisticated
similarity measure that takes into account the connectivity λ(e) of each cut net e.
For each individual, we compute the multi-set D := {(e,m(e)) : e ∈ E}, where
m(e) := λ(e)− 1 is the multiplicity (i.e., number of occurrences) of e. Thus, each cut
net e is represented λ(e)− 1 times in D. The difference of two individuals I1 and I2 is
then computed as d(I1, I2) := |D1 	D2|, where 	 is the symmetric difference.

5.4 Experimental Evaluation

Motivation. The purpose of the experimental evaluation presented in this section
is twofold. We first evaluate the impact of the different algorithmic components
of our memetic algorithm and compare the best configurations with the repeated
execution of two KaHyPar configurations. For historic reasons (i.e., the memetic
algorithm [ASS18a] was published and developed concurrently to the flow-based
refinement framework [HSS18a]), these experiments were done without the use of
flow-based refinements. In a second evaluation, we therefore analyze the effects of
additionally using the flow-based refinement framework in the memetic algorithm in
order to exploit the local solution space. The experiments presented in this section
are a combination of results from Ref. [ASS18a] and Ref. [HSS19a].

Setup and Methodology. The algorithmic components of the memetic algorithm
are evaluated on the 25 hypergraphs of benchmark set D, while the comparison
with repeated KaHyPar executions and the additional experiments with flow-based
refinement are done using the 100 hypergraphs of benchmark set C. In all experiments,
we optimize the connectivity metric fλ(Π). For experiments on benchmark set D, each
configuration is given two hours time per test instance to compute one solution, and
we perform five repetitions with different seeds for each test instance and algorithm
configuration. Furthermore, we restrict these experiments to partitioning into k = 32
blocks with an imbalance of ε = 0.03. For experiments on benchmark set C, we
partition the hypergraphs into k ∈ {2, 4, 8, 16, 32, 64, 128} blocks, and each algorithm
is given eight hours time per test instance. We again perform five repetitions with
different seeds for each test instance and algorithm. Due to the large amount of
computing time necessary to perform these experiments, we always partition 16
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Figure 5.2: Influence of the algorithmic components of our memetic algorithm.
Experiments are performed on benchmark set D with k = 32.

instances in parallel on a single compute node.1

Influence of Algorithmic Components. All memetic configurations are based
on kKaHyPar without flow-based refinement and determine their population size
P dynamically such that η = 15% of the total time is spent to create the initial
population. According to the results of Wichlund and Aas [WA98], the damping
factor ζ used for edge frequency calculations is set to ζ = 0.5 (see Eq. 5.1). We use
a naming scheme to refer to different configurations of the memetic algorithm. All
configuration names start with MA followed by abbreviations for the added recombine
and mutation operations (multiple abbreviations are used to add multiple operations).
Abbreviation +C refers to using two-point recombine operations, +ER refers to using
multi-recombine operations, and finally +M0.1/0.5 adds mutation operations with a
mutation chance of 10 (resp. 50) percent. Whenever a mutation operation is performed,
both operators have a 50 percent change of being chosen.

Figure 5.2 compares the different MA configurations. Of all configurations, MA+ER,
which relies only on multi-point recombine operations, performs worst. Comparing
its performance with MA+C (which uses only two-point recombine operations), we
can see that it is indeed beneficial to guarantee non-decreasing solution quality for
combine operations. However, combining both recombination operators results in a
performance similar to MA+C+M0.1. This can be explained by the fact that multi-
recombines also act as mutation operator in that they do not guarantee non-decreasing
quality. Due to the fact that the strong n-level local search engine kKaHyPar computes
high-quality solutions, we see that a significant amount of mutations is necessary
to ensure diversity in the population. While MA+C+M0.1 (10% mutation chance
performed best for evolutionary graph partitioning in [SS12]) performs equally well

1Compared to partitioning a single instance on a single node, we did not observe considerably
different results.
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Figure 5.3: Convergence plots for all instances and for different values of k.
Experiments are performed on benchmark set C.

as MA+C+ER, increasing the mutation rate to 50% (MA+C+M0.5) improves the
overall performance of the algorithm. Moreover, we see that using both recombination
operators and mutations (MA+C+ER+M0.5) also performs well. Since MA+C+M0.5
and MA+C+ER+M0.5 show the best convergence behavior, we restrict ourselves to
these configurations for the remaining experiments.

Comparison with kKaHyPar. We now compare the two best-performing MA
configurations with repeated executions of two kKaHyPar configurations. The first
configuration corresponds to the kKaHyPar variant described in Section 4.8 (without
flow-based refinement). Since it is known that global search strategies are more effective
than plain restarts [SS11], we augment the first configuration with V-cycles (in a
similar fashion as the first mutation operator) using a maximum number of 100 V-cycle
iterations per partitioner call. This enhanced version of kKaHyPar constitutes the
second configuration and is referred to as kKaHyParV. While both non-evolutionary
algorithms repeatedly partition each instance until the time limit is reached, the
memetic algorithms evolve a population of solutions. Figure 5.3 and Table 5.1 compare
the performance of the memetic algorithms with repeated executions of the plain
KaHyPar configurations. When looking at convergence plots, note that kKaHyParV
starts later than all other algorithms and has an initial better solution quality. This is
due to the fact it uses up to 100 V-cycles before reporting the first solution.

177



5 Memetic n-Level Hypergraph Partitioning

Table 5.1: Improvement in solution quality (in %) of the two best perform-
ing memetic configurations over both kKaHyPar and the V-cycling version
kKaHyParV. Experiments are performed on benchmark set C.

kKaHyPar vs. MA kKaHyParV vs. MA
k +C+M0.5 +C+ER+M0.5 +C+M0.5 +C+ER+M0.5

all 3.2 3.3 2.2 2.3
2 0.9 0.9 0.3 0.4
4 1.3 1.4 0.8 1.0
8 2.6 2.8 1.8 2.0
16 3.4 3.5 2.4 2.5
32 4.2 4.4 3.1 3.4
64 4.7 4.8 3.4 3.5
128 5.2 5.2 3.6 3.6

The improvements of the memetic algorithms increase with increasing k. This
is expected as the search space of possible partitionings increases with the number
of blocks. Looking at Table 5.1, we see that both memetic algorithms on average
outperform kKaHyPar, culminating in an improvement of 5.2% for k = 128. Fur-
thermore, both MA+C+M0.5 and MA+C+ER+M0.5 are able to improve upon the
new V-cycling version kKaHyParV for all values of k and perform 3% better on
average than kKaHyParV for k ≥ 32. While the difference in solution quality between
both memetic algorithms is small on average, a Wilcoxon matched pairs signed rank
test reveals that the improved solution quality of MA+C+ER+M0.5 is statistically
significant (p = 0.0027).

Effects of Flow-Based Refinement. Figure 5.4 summarizes the result of ad-
ditionally enabling the flow-based refinement framework (+F) for configuration
MA+C+ER+M0.5. Since using flow-based refinement increases the running time
of kKaHyPar approximately by a factor of two, MA+C+ER+M0.5+F spends more
time on improving individual solutions of the population than MA+C+ER+M0.5.
Nevertheless, we can see in both the convergence plot and the performance profile
that using stronger refinement algorithms to exploit the local solution space improves
the overall solution quality. While the average improvement is small, the performance
difference is statistically significant (p < 2.22× 1016). The default configuration of the
memetic algorithm therefore always uses the flow-based refinement framework.
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Figure 5.4: Convergence plot (left) and performance profile (right) comparing
the performance of the memetic algorithm with and without flow-based refinement.
Experiments are performed on benchmark set C.
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6Chapter 6

Experimental Evaluation –
Comparison to Other Systems

“There is a disappointing lack of data comparing partitioning algorithms.”
— William E. Donath [Don88]

Motivation. The quote of Donath shown above dates back to the year 1988 when
multi-level partitioning algorithms were yet to be invented. It was picked up again
by Hauck and Borriello [HB97] in 1997, who note that it “still holds true, with many
approaches but few overall comparisons”. Although the development of new HGP tools
has somewhat slowed down after the year 2000, there are still at least ten hypergraph
partitioning systems available today (see Section 3.5) – and we still lack an extensive
experimental evaluation.

In this dissertation, we so far have only compared different KaHyPar configurations
to each other and thus still owe the reader a comparison to the state of the art. The
goal of this chapter therefore is to take the next step in addressing the problem stated
by Donath by performing an extensive experimental evaluation using the benchmark
sets described in Section 2.6.1. After discussing our reasoning for choosing a set of
seven state-of-the-art HGP algorithms as competitors in Section 6.1, we compare the
performance of rKaHyPar and kKaHyPar for cut-net and connectivity optimization
with those systems in Section 6.2 – both in terms of solution quality and running
time. As we will see, the differences in running time between the algorithms can be
up to several orders of magnitude. In Section 6.3, we therefore evaluate a subset of
the best performing algorithms in a setting where each algorithm is given the same
– large – amount of time to compute a solution for each instance. Furthermore, we
use this section to demonstrate the effectiveness of our memetic algorithm presented
in Chapter 5. Since the experiments in Section 6.2 and Section 6.3 use benchmark
hypergraphs that were also used during the development of KaHyPar, we use the graph
edge partitioning problem (which can be solved via hypergraph partitioning) as a case
study in Section 6.4 to demonstrate the performance of KaHyPar on hypergraphs
that were never used during its development – again considering all seven other HGP
algorithms. Finally, in Section 6.5, we evaluate our algorithms in the context of
traditional graph partitioning – comparing them with the current best sequential
graph partitioning algorithm KaFFPa [SS11].

References. This chapter contains experimental results and text passages from
several publications. More precisely, Section 6.1 is based on Refs. [Sch+16a; HSS19a].
Section 6.2 is based on Ref. [HSS19a] and Section 6.3 expands on the experimental
evaluation presented in Ref. [ASS18a]. The case study on edge partitioning is based
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on a conference paper [Sch+19a] and a technical report [Sch+18a] jointly written and
published with Christian Schulz, Daniel Seemaier, and Darren Strash. Parts of these
two publications were copied verbatim. Parts of the graph partitioning experiments
presented in Section 6.5 were taken from Ref. [HSS19a]. In all cases, the experimental
evaluation was done by the author of this dissertation. Note that at the beginning of
each of the following sections, we precisely state which data was taken from previous
publications and which experiments were done exclusively for this dissertation.

6.1 Partitioning Systems

Hypergraph Partitioning Algorithms. We compare different KaHyPar configu-
rations to the k-way (hMETIS-K) and recursive bisection variants (hMETIS-R) of
hMETIS 2.0 (p1) [Kar19], PaToH 3.2 [Çat19] using both the default (PaToH-D) and
the quality preset (PaToH-Q), Zoltan-AlgD [Sha19], Mondriaan version 4.2.1 [Bis+19],
and HYPE [ME19]. We choose these tools for the following reasons: PaToH produces
better quality than Zoltan’s native parallel hypergraph partitioner (PHG) in sequential
mode [Dev+06; Bom+12b]. Parkway does not run in sequential mode and was found
to be comparable to Zoltan’s PHG in sequential mode [Dev+06]. The algebraic
distance-based coarsening algorithm of Zoltan-AlgD has been shown to improve the
performance of Zoltan’s PHG in sequential mode for the cut-net metric [SS18b; SS18a;
SSC19]. Furthermore, Zoltan-AlgD also performed better than Zoltan for connectivity
optimization in Ref. [Sch+19a]. MLPart is restricted to bipartitioning [CKM00c;
CRX03] and was outperformed by both hMETIS [PM06] and PaToH [Çat]. ReBaHFC
is also restricted to bipartitioning and does not perform better than KaHyPar for
ε > 0 [GHW19a; GHW19b]. The performance of SHP is deemed comparable to
the performance of Zoltan and Mondriaan [Kab+17]. UMPa does not improve on
PaToH when optimizing single objective functions that do not benefit from the directed
hypergraph model [Çat+15]. Furthermore, kPaToH [ACU08] did not perform better
than PaToH in preliminary experiments [Akh+17a]. Lastly, HYPE so far has only
been evaluated on four hypergraphs and only been compared to hMETIS-R [May+18].

Graph Partitioning Algorithms. For graph partitioning, we restrict the experi-
mental comparisons to the Karlsruhe Fast Flow Partitioner (KaFFPa) [SS11] from the
multi-level graph partitioning framework KaHIP [SS13]. KaFFPa has been shown to
perform better than competing graph partitioning algorithms such as METIS [KK98a],
SCOTCH [Pel19], or DibaP [Mey08]. In the experiments, we use both the strong
(KaFFPa-Strong) and the strongsocial (KaFFPa-StrongS) configurations. The for-
mer is designed for high-quality partitions of mesh graphs, while the latter is targeted
at partitioning complex networks such as web graphs and social networks.

A Note on Algorithm Configuration. Almost all partitioning systems have a
considerable number of tuning parameters and configurable subroutines, many of
which interact in nontrivial ways. We therefore refrain from tuning these systems
ourselves and instead use the configurations provided by the authors, which have been
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shown to work well in the corresponding publications.
However, special care has to be taken when using hMETIS. The system does not

permit direct optimization of the connectivity metric fλ(Π). Instead, it optimizes
the sum-of-external-degrees (SOED) metric fs(Π), which is closely related to the
connectivity metric, since fλ(Π) = fs(Π)− fc(Π) for hypergraphs with unit net weights
(i.e., each cut-net contributes λ times its weight to the objective). In all experiments
that use the connectivity metric as optimization objective, we therefore set both
hMETIS variants to optimize fs(Π) and then calculate fλ(Π) accordingly. This
approach is also used by the authors of hMETIS-K [KK99]. Furthermore, when using
hMETIS-R for SOED optimization, we explicitly set the reconst parameter to force
cut-net splitting as proposed by Karypis and Kumar [KK98b]. When optimizing the
cut-net metric fc(Π), the parameter is omitted to allow the partitioner to perform
cut-net removal.
As we have discussed in Section 3.5, hMETIS-R defines the maximum allowed

imbalance differently [Kar+99]. We therefore translate our imbalance parameter ε to
ε′ as described in Eq. (6.1) such that it matches our balance constraint after log2(k)
bipartitions:

ε′ := 100 ·

((1 + ε)
d c(V )

k e
c(V )

) 1
dlog2(k)e

− 0.5

 . (6.1)

We would like to mention that – with the notable exception of Trifunović
[Tri06, p. 149] – this approach is largely ignored in the hypergraph partitioning
community (even in the original hMETIS-K paper [KK99]). We consider this to be
problematic, since – as we will see in this chapter – in most of our experiments this
hMETIS-R configuration always produces balanced partitions and outperforms
its direct k-way counterpart.

For Zoltan-AlgD, we set the parameter phg_edge_size_threshold to 1.0 in order to
prevent the algorithm from removing hyperedges whose number of pins divided by the
number of vertices in the hypergraph exceeds this threshold.1

Dealing with Imbalanced Partitions. In previous publications, a partition of
an instance was considered to be infeasible if the average imbalance (averaged over
all repetitions) was above the predefined imbalance parameter ε. Here, we follow a
different approach: We discard all runs that produced an imbalanced solution and only
report an instance as infeasible, if all runs produced imbalanced partitions. Hence, the
results presented in this section differ from the results of the respective publications.

6.2 Experimental Results

In this section, we compare rKaHyPar and kKaHyPar to the state-of-the-art HGP
systems on benchmark set A for connectivity as well as cut-net optimization.

1This was also suggested in a personal correspondence with Ruslan Shaydulin.
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Methodology. The evaluation uses experimental results on benchmark set A from
previous publications [HS17a; HSS19a]. More precisely, we use the partitioning
results of hMETIS-R, hMETIS-K, PaToH-D, PaToH-Q, and HYPE for connectivity
optimization. For cut-net optimization, we use the results of hMETIS-R, hMETIS-K,
PaToH-D, and PaToH-Q (HYPE does not allow optimizing the cut-net metric). All
comparisons involving benchmark set A are therefore based on 3 222 instances, since
194 out of all 3 416 instances were already excluded in Ref. [HS17a] because either
PaToH-Q could not allocate enough memory or other partitioners did not finish in
time. For all algorithms except HYPE, the experimental data contain the computed
cut/connectivity values, imbalances, and running times per instance for ten repetitions
with different seeds. For HYPE, the data contain the results of one iteration using
the default preset (which is not randomized and was also used in the experiments
of Mayer et al. [May+18]), since employing randomization did not improve solution
quality in our preliminary experiments presented in Ref. [HSS19a]. Each partitioner
had a time limit of eight hours per instance and seed.

Experiments involving rKaHyPar, kKaHyPar, Zoltan-AlgD, and Mondriaan are new
and were done on the same system used in the experiments presented in Refs. [HS17a;
HSS19a] (see Section 2.6.2).2 For all experiments, we use the same number of repetitions
and the same time limit of eight hours.

6.2.1 Solution Quality
Connectivity Optimization. Figure 6.1 (left) summarizes the results for con-
nectivity optimization. The performance profile plot shows that both KaHyPar
configurations outperform the competing algorithms. The direct k-way algorithm
kKaHyPar computes the best partitions for 62.4% of all benchmark instances. The
recursive bipartitioning-based algorithm rKaHyPar computes the best solutions for
28.3% of all instances. Furthermore, the solution quality of both algorithms is within
a factor of 1.1 of the best algorithm in more than 90% of all cases. As can be seen in
Table 6.1, the performance difference between all algorithms is statistically significant
for all pairwise comparisons except PaToH-Q and hMETIS-K, and PaToH-D and
Mondriaan.
Comparing the performance profiles of PaToH-Q with the performance profile of

Mondriaan, we can see that PaToH-Q performs better than the most recent version
of Mondriaan on our benchmark set. Given the fact that the performance difference
of PaToH-D and Mondriaan is not statistically significant, this confirms the results
of previous studies that suggested that Mondriaan’s hypergraph partitioner can be
seen as being inferior to PaToH [Riy03; Bis+12] (at least when using the quality
preset). Moreover, we note that HYPE (the only non-multi-level algorithm) performs
considerably worse than the multi-level systems. This echoes the intuition that by
providing a more global view of the partitioning problem on coarser levels, multi-
level approaches enable local search algorithms to explore local solution spaces very

2We perform new experiments for Zoltan-AlgD, because previous experiments were done with an
earlier version of the algorithm that was missing some significant performance improvements.
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Figure 6.1: Performance profiles comparing kKaHyPar and rKaHyPar with
other partitioners for connectivity (left) and cut-net optimization (right).

effectively. While the performance profile of hMETIS-R is within a factor of 1.1 of the
best algorithm for more than 77% of all instances, there are some instances for which
it performs significantly worse than the best. Although less solutions of PaToH-Q
and PaToH-D are within a factor 1.1 from the best, the performance profiles indicate
that the worst quality ratios of PaToH-Q and PaToH-D are smaller than those of
hMETIS-R. Note that the same effect is also visible when comparing Zoltan-AlgD
with PaToH-D or Mondriaan.

Looking at infeasible solutions, we see that Zoltan-AlgD computes imbalanced
solutions for around 3% of all instances and that around 14% of all partitions computed
by hMETIS-K are imbalanced. The fact that hMETIS-K often produces imbalanced
partitions was also observed in the graph partitioning experiments of Schulz [Sch13b,
p. 128]. A possible explanation for this behavior could be the fact that, according
to the related publications [KK98c; KK99; KK00], hMETIS-K does not limit the
maximal vertex weight during the coarsening phase (neither indirectly via a penalty
factor in the rating function nor directly via hard weight constraints). This, in turn,
could lead to many heavy vertices at the coarser levels of the hierarchy, which makes
it harder for the initial partitioning algorithms to compute balanced partitions.
In Figure 6.2 (left) and Figure 6.3 (left), we compare each KaHyPar configuration

individually to all other partitioning systems, since in the plot shown in Figure 6.1
(left) the performance ratios of kKaHyPar and rKaHyPar affect each other. We see
that in this setting, the performance difference to the other algorithms is even more
pronounced. kKaHyPar and rKaHyPar now compute the best solutions for 72.7%
(resp. 54.1%) of all instances, and the solution quality is within a factor of 1.1 of the
best algorithm for 96.1% (resp. 94.5%) of all instances.

Figure 6.4 shows the performance profiles for individual instance classes. We see that
kKaHyPar performs best across all classes. Furthermore, the plots show that hMETIS
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Figure 6.2: Performance profiles comparing kKaHyPar with other partitioners
for connectivity optimization (left) and cut-net optimization (right).

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac

ti
on

of
in

st
an

ce
s Connectivity Optimization

1 1.05 1.1 1.5 2
Quality relative to best
rKaHyPar
hMETIS-R
hMETIS-K
PaToH-Q

PaToH-D
Zoltan-AlgD
Mondriaan
HYPE

10 100 7

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac

ti
on

of
in

st
an

ce
s Cut-Net Optimization

1 1.05 1.1 1.5 2
Quality relative to best
rKaHyPar
hMETIS-R
hMETIS-K
PaToH-Q

PaToH-D
Zoltan-AlgD
Mondriaan

10 100 7

Figure 6.3: Performance profiles comparing rKaHyPar with other partitioners
for connectivity optimization (left) and cut-net optimization (right).

– which stems from the area of VLSI design and was extensively tuned and evaluated
on the ISPD98 benchmark set – indeed performs better on hypergraphs derived from
VLSI circuits (DAC2012 and ISPD98) than on other instance classes. The same
observation can be made for PaToH, which was designed for partitioning hypergraphs
derived from sparse matrices (SPM), and to some extent also for Mondriaan (also
designed for matrix partitioning). Additionally, we see that for more than 30% of
all SAT dual instances, all partitioners except kKaHyPar and rKaHyPar compute
partitions that are more than a factor of 1.1 worse than the best solution.
Looking at the results for specific values of k in Figure 6.5, we see that for k = 2,

rKaHyPar computes the best solutions for slightly more instances than kKaHyPar.
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Table 6.1: Results of the significance tests for all pairwise algorithm comparisons
(p-values) for connectivity optimization. The value 0 is used to denote results
that were below machine precision.

(a) (b) (c) (d) (e) (f) (g) (h) (i)

(a) kKaHyPar - 0 0 0 0 0 0 0 0
(b) rKaHyPar 0 - 0 0 0 0 0 0 0
(c) hMETIS-R 0 0 - 0 0 0 0 0 0
(d) hMETIS-K 0 0 0 - 0.0451 0 0 0 0
(e) PaToH-Q 0 0 0 0.0451 - 0 0 0 0
(f) PaToH-D 0 0 0 0 0 - 0 0.233 0
(g) Zoltan-AlgD 0 0 0 0 0 0 - 0 0
(h) Mondriaan 0 0 0 0 0 0.233 0 - 0
(i) HYPE 0 0 0 0 0 0 0 0 -

Table 6.2: Results of the significance tests for all pairwise algorithm comparisons
(p-values) for cut-net optimization. The value 0 is used to denote results that
were below machine precision.

(a) (b) (c) (d) (e) (f) (g) (h)
(a) kKaHyPar - 9.26× 10−12 0 0 0 0 0 0
(b) rKaHyPar 9.26× 10−12 - 0 0 0 0 0 0
(c) hMETIS-R 0 0 - 0 0 0 0 0
(d) hMETIS-K 0 0 0 - 1.51× 10−10 0 3.8× 10−9 0
(e) PaToH-Q 0 0 0 1.51× 10−10 - 0 0 0
(f) PaToH-D 0 0 0 0 0 - 0 1.51× 10−10

(g) Zoltan-AlgD 0 0 0 3.8× 10−9 0 0 - 0
(h) Mondriaan 0 0 0 0 0 1.51× 10−10 0 -

This could be due to the fact that it uses the simple stopping rule for FM-based
refinement and thus performs more local search operations. With increasing k, however,
kKaHyPar performs better. Also note that, with increasing k, the performance
difference between the algorithms becomes more pronounced. Already for k ≥ 4, out
of all competing systems, only hMETIS is able to compute the best solution for more
than 10% of all instances. The fact that the performance of rKaHyPar decreases with
increasing k could be seen as an indication that the theoretical problems of recursive
bipartitioning-based algorithms discussed in Section 3.6.3 indeed occur in practice.
Çatalyürek et al. [Çat+15] observed that the partitioning quality of Zoltan deteriorates
as k increases and attributed this effect to its simplified refinement algorithm. The
figure shows the same effect for Zoltan-AlgD, which only differs from Zoltan in that it
uses algebraic distance-based coarsening.

So far, we compared the performance of all algorithms relative to the performance of
the respective best algorithm. In Figure 6.6 and Figure 6.7 we assess the performance of
kKaHyPar and rKaHyPar relative to each of the competing state-of-the-art algorithms
individually. We see that both configurations outperform the other partitioning
systems in pairwise comparisons. Furthermore, looking at Figure 6.6 (top left), we see
that kKaHyPar performs better than rKaHyPar for connectivity optimization.
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Cut-Net Optimization. Note that in the following evaluation we exclude HYPE,
because it is designed to optimize the connectivity metric and does not support cut-net
optimization. The experimental results summarized in Figure 6.1 (right) yield similar
conclusions as for connectivity optimization. kKaHyPar computes the best partitions
for 56.1% of all instances. Furthermore, its solution quality is within a factor of 1.1 of
the best algorithm in 92.9% of all cases. In the case of rKaHyPar, the corresponding
percentages are 32.5% and 91.2%, respectively. Table 6.2 shows that for cut-net
optimization, the performance difference between all pairs of algorithms is considered
statistically significant.

The individual comparisons of each KaHyPar configuration with all other partitioning
systems shown in Figure 6.2 (right) and Figure 6.3 (right) also reveal similar results as
for connectivity optimization. However, we note that the performance of kKaHyPar
slightly decreases (compared to connectivity optimization).

Looking at the performance profiles for different instance classes shown in Figure 6.8,
we see that the rKaHyPar performs slightly worse on DAC2012 instances for cut-net
optimization than for connectivity optimization (compare Figure 6.4). Furthermore,
we would like to point out the fact that the solution quality of rKaHyPar is comparable
to the solution quality of kKaHyPar for dual SAT instances (which was not the case for
connectivity optimization). This could be explained by the fact that these instances
have many low degree vertices and many large hyperedges. For such hypergraphs,
optimizing the cut-net metric via direct k-way partitioning is difficult: If large nets
have multiple pins in several blocks of the k-way partition, FM-based algorithms are
less likely to find meaningful moves, because the gain of moving a single vertex to
another block is likely to be zero. Moreover, the effects of the flow-based refinement
framework are also limited for cut-net optimization in the direct k-way setting, since
improving the cut around two blocks of the k-way partition does not necessarily yield
an overall improvement in the k-way partition.
The performance profiles for different values of k shown in Figure 6.9 again yield

similar conclusions as the performance profiles for connectivity optimization shown in
Figure 6.5. The same is true for the individual pairwise comparisons of kKaHyPar and
rKaHyPar with the other partitioning systems shown in Figure 6.10 and Figure 6.11,
which confirm that both configurations perform better than each individual competitor.
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Figure 6.4: Performance profiles for connectivity optimization comparing both
KaHyPar configurations with the other partitioners for different instances classes.
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Figure 6.5: Performance profiles for connectivity optimization comparing both
KaHyPar configurations with the other partitioners for different values of k.
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Figure 6.6: Performance profiles for connectivity optimization comparing
kKaHyPar with every algorithm individually.
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Figure 6.7: Performance profiles for connectivity optimization comparing
rKaHyPar with every algorithm individually.
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Figure 6.8: Performance profiles for cut-net optimization comparing both KaHy-
Par configurations with the other partitioners for different instance classes.
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Figure 6.9: Performance profiles for cut-net optimization comparing both KaHy-
Par configurations with the other partitioners for different values of k.
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Figure 6.10: Performance profiles for cut-net optimization comparing kKaHyPar
with every algorithm individually.
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Figure 6.11: Performance profiles for cut-net optimization comparing rKaHyPar
with every algorithm individually.
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Figure 6.12: Running times of kKaHyPar, rKaHyPar, and other partitioners
for connectivity optimization (left) and cut-net optimization (right).

6.2.2 Running Time

We now turn our attention to the running times for connectivity and cut-net opti-
mization. Note that the running time plots presented in this section show instances
that could not be partitioned above the vertical line labeled “NA”. In the case of
kKaHyPar and rKaHyPar, these instances could not be partitioned within the given
time limit. HYPE reported an invalid connectivity value for one instance, while
Mondriaan aborted partitioning for 6 instances in total.

Connectivity Optimization. The running times of all algorithms for connectivity
optimization are shown in Figure 6.12 (left). We see that although being based
on the n-level paradigm and employing more complex techniques such as sparsifica-
tion, community-aware coarsening, and flow-based refinements, the running times
of kKaHyPar and rKaHyPar are comparable to the running times of both hMETIS
configurations and to the running times of Zoltan-AlgD. Out of all 3 222 instances,
rKaHyPar could not finish within the time limit in 32 cases and kKaHyPar in 2 cases.
HYPE reported an invalid connectivity value for one instance and Mondriaan aborted
partitioning for 3 instances. Note that for both PaToH-Q and PaToH-D, as well as for
Mondriaan and HYPE, the median running time is more than an order of magnitude
smaller than the median running times of the other multi-level systems.

Looking at the running times for specific instance classes in Figure 6.13, we see that
these observations hold for each individual class. Additionally, we see that kKaHyPar
is slightly faster on average than rKaHyPar. Figure 6.14 shows the running times for
specific values of k. While the running times increase for all multi-level algorithms as
k increases, we see that the running time of HYPE is independent of k.

Cut-Net Optimization. The running times for cut-net optimization are summa-
rized in Figure 6.12 (right) for all instances. Figure 6.15 and Figure 6.16 show the
running times for individual instance classes and different values of k, respectively. We
can see that the running times of rKaHyPar and kKaHyPar are again comparable to
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the running times of hMETIS-R, hMETIS-K, and Zoltan-AlgD on average. However,
the number of instances that could not be partitioned within the given time limit
of eight hours increases to 52 instances for kKaHyPar, while rKaHyPar could not
partition 30 instances. We note that PaToH-Q, PaToH-D, and Mondriaan are again
an order of magnitude faster than the other partitioners.
Looking at the running times per instance class in Figure 6.15, we observe that

most timeouts of the KaHyPar configurations occur for dual SAT instances. Since
kKaHyPar was able to partition these instances within the time limit for connectivity
optimization (see Figure 6.13), this could be seen as an indication that the direct
k-way FM-based refinement algorithm has problems finding meaningful moves when
optimizing the cut-net metric on hypergraphs with many large nets.

6.2.3 The Time/Quality Trade-Off
The previous section showed that KaHyPar computes superior solutions for most
instances; however at the cost of higher running times than, for example, PaToH.
Figure 6.17 concisely summarizes the trade-off between solution quality and running
time for connectivity (top) and cut-net optimization (bottom) on a per-instance basis.
The plots show the running time of each algorithm relative to the running time of
kKaHyPar on the x-axis and the solution quality relative to kKaHyPar on the y-axis.
Note that the plot only shows instances that could be partitioned by all algorithms.
Since we plot (kKaHyPar/Algorithm)−1 on the y-axis, points above zero correspond
to instances where the solution of the respective partitioner was better than the
solution of kKaHyPar, while for points below zero kKaHyPar produced solutions of
higher quality. A point in the first quadrant therefore represents an instance for which
an algorithm computed a solution of higher quality in less time. The x-axis uses a
log-scale, while the y-axis uses a cube root scale to reduce right skewness. Imbalanced
and thus infeasible solutions are plotted at the y position labeled with “imb”.

For both connectivity and cut-net optimization, kKaHyPar seems to be the method
of choice for high-quality partitioning, while rKaHyPar can be seen as a viable
alternative (e.g. for partitioning hypergraphs with many large nets when optimizing
the cut-net metric fc(Π)). Moreover, kKaHyPar performs better than hMETIS-R,
hMETIS-K, and Zoltan-AlgD – computing solutions of higher quality in a comparable
amount of time for most instances. If running time is more important than solution
quality, both PaToH-D and PaToH-Q currently seem to be the method of choice, as
both perform better than Mondriaan. At the cost of considerably worse solutions,
the flat partitioning algorithm HYPE can be even faster than PaToH for connectivity
optimization.
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Figure 6.13: Comparing the running times of all algorithms for connectivity
optimization for different instance classes.
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Figure 6.14: Comparing the running times of all algorithms for connectivity
optimization for different values of k.
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Figure 6.15: Comparing the running times of all algorithms for cut-net opti-
mization for different instance classes.
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Figure 6.16: Comparing the running times of all algorithms for cut-net opti-
mization for different values of k.
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Figure 6.17: Visualization of the trade-off between running time and solution
quality for connectivity optimization (top) and cut-net optimization (bottom).
The values of all algorithms are relative to kKaHyPar.
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6.3 Effectiveness Tests using Repeated Executions

Motivation. In the experiments presented in the previous section, each partitioning
algorithm was executed the same number of times for each instance (i.e., ten times
with different random seeds). However, we have seen that the difference in running
time between algorithms can be up to three orders of magnitude. In this section, we
therefore investigate the partitioning performance in a setting, where each algorithm
is given the same fairly large amount of time to partition each instance – thus trying
to answer the question whether multiple repetitions of a very fast algorithm can yield
similar or even better results than few repetitions of a slower, more advanced algorithm.
Furthermore, this evaluation is relevant for tasks such as application-specific integrated
circuit (ASIC) design, where one “can afford to allow the partitioner to run for hours
or days, since it will take weeks to create the final implementation” [HB95].

Methodology. This section uses experimental results from Ref. [ASS18a] and
Ref. [HSS19a]. In both publications, the 100 hypergraphs of benchmark set C were
partitioned into k ∈ {2, 4, 8, 16, 32, 64, 128} blocks with an imbalance of ε = 0.03. The
connectivity metric fλ(Π) was used as optimization objective. For each hypergraph
H and each value of k, every partitioning algorithm was given eight hours time to
compute a solution. We performed five repetitions with different seeds for each test
instance and algorithm. Due to the large amount of computing time necessary to
perform these experiments, we always partitioned 16 instances in parallel on a single
node of the compute cluster.3 We use the partitioning results of PaToH-D, hMETIS-R,
and hMETIS-K from Ref. [ASS18a]. In addition, we use the results of PaToH-Q
(which was not evaluated in Ref. [ASS18a]), and the memetic algorithm presented in
the Section 5.4 (i.e., configuration MA+C+ER+M0.5+F) from Ref. [HSS19a]. For
simplicity, we refer to the memetic algorithm as kKaHyPar-E in this section. We
perform new experiments for kKaHyPar and rKaHyPar using the same system and the
same experimental setup. While all non-evolutionary algorithms repeatedly partition
each instance until the time limit is reached, kKaHyPar-E evolves a population of
solutions.

Experimental Evaluation. In the previous section, we saw that for a small set of
instances, hMETIS computes solutions that are significantly worse than the solutions
of the respective best algorithm. Since these solutions significantly skew the geometric
mean and therefore would yield misleading conclusions, we employ performance profiles
instead of showing the evolution of solution quality over time using convergence plots
(as in Section 5.4).

The experimental results are summarized in Figure 6.18. The performance profile
plot on the left is based on the best solutions computed by all algorithms after
eight hours of continuous partitioning. We see that by using the memetic framework
described in Chapter 5, kKaHyPar-E is able to effectively explore the global solution

3Compared to partitioning a single instance on a single node, we did not observe considerably
different results.
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Figure 6.18: Performance profile comparing kKaHyPar, rKaHyPar, and
kKaHyPar-E with other partitioners on benchmark set C. The left plot uses
the best result that each system computed after partitioning each instance for
eight hours. The right plot compares the very first results of kKaHyPar and
rKaHypar (reported during the eight hour time period) to the best results pro-
duced by the other algorithms.

space – computing the best partitions for 94.6% of all instances while never being a
factor of 1.045 worse than the best algorithm. However, even in this setting (and even
competing with kKaHyPar-E), kKaHyPar computes the best solutions for 18.4% and
rKaHyPar for 13.9% of all instances.

Furthermore, we observe that – when given a relatively large time limit for repeated
executions with different seeds – the best solutions found by PaToH-Q seem to
compare favorably with the best solutions of hMETIS-R and hMETIS-K. Note that
this observation is also reflected in the results of the significance tests reported in
Table 6.3. Only the difference between the solutions of hMETIS-R and hMETIS-K,
hMETIS-R and PaToH-Q, and the solutions of hMETIS-K and PaToH-Q are not
considered to be statistically significant. Hence, the results clearly indicate that it
does not suffice to use the best solutions of repeated executions of a faster partitioner
to achieve the same solution quality as kKaHyPar, rKaHyPar, or kKaHyPar-E.
In Figure 6.18 (right), we strengthen this argument for kKaHyPar by comparing

the best solutions found by the competing algorithms while repeatedly partitioning
each instance five times for eight hours to the solutions of only five single partitioning
calls to kKaHyPar and rKaHyPar (i.e., the first results reported for each instance
and seed during the eight hour time period). We see that, in this setting, the solution
quality of PaToH-Q and hMETIS-R becomes comparable to the quality of rKaHyPar,
while kKaHyPar still performs better than the other partitioning systems – computing
the best solutions for around 50% of all benchmark instances. The results of the
significance tests presented in Table 6.4 show that the performance difference between
kKaHyPar and the other partitioners is still statistically significant. Note that we did
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Table 6.3: Results of the significance tests for all pairwise algorithm comparisons
(p-values) on benchmark set C. The value 0 is used to denote results that were
below machine precision.

(a) (b) (c) (d) (e) (f) (g)

(a) kKaHyPar - 0 0 0 0 0 0
(b) rKaHyPar 0 - 0 0 0 0 0
(c) kKaHyPar-E 0 0 - 0 0 0 0
(d) hMETIS-R 0 0 0 - 0.608 0.882 0
(e) hMETIS-K 0 0 0 0.608 - 0.608 0
(f) PaToH-Q 0 0 0 0.882 0.608 - 0
(g) PaToH-D 0 0 0 0 0 0 -

Table 6.4: Results of the significance tests for all pairwise algorithm comparisons
(p-values) on benchmark set C using only the very first results of kKaHyPar
and rKaHyPar. The value 0 is used to denote results that were below machine
precision.

(a) (b) (c) (d) (e) (f)

(a) kKaHyPar - 0 0 0 0 0
(b) rKaHyPar 0 - 1 1 1 0
(c) hMETIS-R 0 1 - 0.418 1 0
(d) hMETIS-K 0 1 0.418 - 0.603 0
(e) PaToH-Q 0 1 1 0.603 - 0
(f) PaToH-D 0 0 0 0 0 -

not include kKaHyPar-E in this plot, because it has to create an initial population
before performing recombination or mutation operations and thus takes considerably
more time than kKaHyPar or rKaHyPar to report the first results.

6.4 Case Study: Graph Edge Partitioning

Motivation. Traditional (node-based) graph partitioning has been essential for
making efficient distributed graph algorithms in the Think-Like-A-Vertex model
of computation [MWM15]. In this model, node-centric operations are performed
in parallel by mapping nodes to processing elements (PEs) and executing node
computations in parallel. Nearly all algorithms in this model require information
to be communicated between neighbors – which results in network communication
if stored on different PEs – and therefore high-quality graph partitioning directly
translates into less communication and faster overall running time. However, node-
centric computations have serious shortcomings on power-law graphs, which have a
skewed degree distribution. In such networks, the overall running time is negatively
affected by very high-degree nodes, which can result in more communication steps. To
combat these effects, Gonzalez et al. [Gon+12] introduced edge-centric computations,
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Figure 6.19: Computing an edge partition via hypergraph partitioning as pro-
posed by Li et al. [Li+17]. After transforming the graph into a hypergraph
and computing a connectivity-optimized hypergraph partition, the hypergraph
solution induces a partition of the edge set of the graph.

which duplicate node-centric computations across edges to reduce communication
overhead. In this model, edge partitioning – partitioning the edge set of a graph
into roughly equally-sized blocks – must be used to reduce the overall running time.
However, like node-based partitioning, edge partitioning is NP-hard [BLV14]. Since
the problem can be solved directly via hypergraph partitioning, we use it as a case
study to demonstrate the performance of KaHyPar on instances that were never used
during the development or the tuning of the framework’s algorithmic components.

The Edge Partitioning Problem. Let G = (V,E, c, ω) be an undirected, weighted
graph. Similar to the node partitioning problem, the edge partitioning problem asks
for blocks of edges E1, . . . , Ek that partition E, i.e., E1 ∪ · · · ∪ Ek = E, Ei 6= ∅
for 1 ≤ i ≤ k, and Ei ∩ Ej = ∅ for i 6= j. The balance constraint demands that
∀i ∈ {1..k} : ω(Ei) ≤ (1 + ε)dω(E)

k e. The objective is to minimize the vertex cut∑
v∈V |V C(v)| − 1 where V C(v) := {i : I(v) ∩ Ei 6= ∅}. Intuitively, the objective

expresses the number of required replicas of nodes: If a node v has to be copied to each
block that has edges incident to v, the number of replicas of that node is |V C(v)| − 1.
Li, Geda, Hayes, Chen, Chaudhari, Zhang, and Szegedy [Li+17] noted that an

edge partition of a graph G can be computed by transforming G into a hypergraph
H, partitioning H into k blocks while optimizing the connectivity metric fλ(Π), and
then using the hypergraph partition to infer an edge partition of G. The hypergraph
contains a vertex for each graph edge e ∈ E, and a hyperedge for each graph node
v ∈ V , which contains the graph edges to which the corresponding node is incident.
An example of this approach is shown in Figure 6.19.

Methodology. In our conference paper [Sch+19a], we present a fast parallel auxiliary
graph construction algorithm in the distributed setting, that – combined with advanced
parallel node partitioning algorithms – yields high-quality edge partitions in a scalable
way. For this dissertation, we restrict our focus to the part of the experimental
evaluation presented in the paper that investigates the usage of sequential hypergraph
partitioning algorithms to solve the edge partitioning problem directly. For additional
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Figure 6.20: Comparing the results of all algorithms for the edge partitioning
experiments on benchmark set E: solution quality (left) and running time (right).

comparisons with approaches based on partitioning auxiliary graphs and with dedicated
edge partitioning algorithms, we refer the reader to the conference publication.

In the following experimental evaluation, we compare both kKaHyPar and rKaHyPar
to hMETIS-R, hMETIS-K, PaToH-D, PaToH-Q, Zoltan-AlgD, Mondriaan, and HYPE.
The experiments are performed on benchmark set E. We use an imbalance of ε = 0.03
and partition each hypergraph into k ∈ {2, 4, 8, 16, 32, 64, 128} blocks. For each
instance and each algorithm (except HYPE), we perform five repetitions with different
seeds. As before, for HYPE, we report the results of one iteration using the default
configuration, since employing randomization did not improve solution quality [HSS19a].
We use the results of hMETIS-R, hMETIS-K, PaToH-D, and Zoltan-Alg-D reported
in the conference paper [Sch+19a] and perform new experiments for kKaHyPar and
rKaHyPar, as well as for PaToH-Q, HYPE and Mondriaan (which were not evaluated
in the paper).

Experimental Evaluation. The results of our experiments are summarized in
Figure 6.20 and Figure 6.21. Considering the performance profile plot in Figure 6.20
(left), we see that out of all partitioning algorithms kKaHyPar again performs best –
computing the best edge partitions on 73.3% of all benchmark instances. It is followed
by rKaHyPar which computes the best solutions on 30.1% of all instances. kKaHyPar
is never more than a factor of 1.24 worse than the best algorithm; rKaHyPar never
more than a factor of 1.29. As can be seen in Figure 6.21, if each configuration is
compared individually to all other partitioning systems, kKaHyPar computes the
best solutions on 83.8%, and rKaHyPar on 68.9% of all instances. Interestingly, and
in contrast to the results presented in Section 6.2, hMETIS-K performs better than
hMETIS-R in this case study. This could be seen as an indication that, whenever
hMETIS-K is able to compute feasible solutions, its performance could be comparable
to that of hMETIS-R.
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Figure 6.21: Results of the edge partitioning experiments on benchmark set E –
comparing both KaHyPar configurations individually to the other partitioners.

Table 6.5: Results of the significance tests for all pairwise algorithm comparisons
(p-values) for the edge partitioning experiments on benchmark set E. The value 0
is used to denote results that were below machine precision.

(a) (b) (c) (d) (e) (f) (g) (h) (i)
(a) kKaHyPar - 0.0135 0 0 0 0 0 0 0
(b) rKaHyPar 0.0135 - 0 7.93× 10−10 0 0 0 0 0
(c) hMETIS-R 0 0 - 0.01 0.46 0 0 0 0
(d) hMETIS-K 0 7.93× 10−10 0.01 - 0.000249 0 0 0 0
(e) PaToH-Q 0 0 0.46 0.000249 - 8.88× 10−16 0 0 0
(f) PaToH-D 0 0 0 0 8.88× 10−16 - 0.778 0.000351 0
(g) Zoltan-AlgD 0 0 0 0 0 0.778 - 0.000663 0
(h) Mondriaan 0 0 0 0 0 0.000351 0.000663 - 1.33× 10−15

(i) HYPE 0 0 0 0 0 0 0 1.33× 10−15 -

Table 6.5 summarizes the results of the pairwise significance tests. We note that
indeed the performance difference between hMETIS-R and hMETIS-K is not statisti-
cally significant, as is the difference between hMETIS-R and PaToH-Q. However, the
difference between hMETIS-K and PaToH-Q is statistically significant. Additionally,
we see that given our significance level of α = 0.01, there is no statistically significant
performance difference between kKaHyPar and rKaHyPar for this benchmark set.
Figure 6.20 (right) shows that the running times of both KaHyPar configurations are
again comparable to that of hMETIS-K, hMETIS-R, and Zoltan-AlgD. As before,
both PaToH configurations, as well as HYPE and Mondriaan are considerably faster
than the other partitioning tools.

Concluding Remarks. The experimental results yield similar conclusions than the
experiments on benchmark set A. Since benchmark set E was not used during the
development of KaHyPar, this provides further evidence of our claim that KaHyPar
can be seen as the new state of the art for high-quality hypergraph partitioning.
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6.5 Case Study: Traditional Graph Partitioning

Motivation. Since hypergraph partitioning is a generalization of graph partitioning,
we now compare kKaHyPar and rKaHyPar to the graph partitioner KaFFPa in order
to evaluate how good our algorithms perform for traditional graph partitioning tasks.

Methodology. In this section, we use benchmark set F (consisting of web graphs
and social networks) and benchmark set G (graphs used in the 10th DIMACS Imple-
mentation Challenge on Graph Partitioning and Graph Clustering [Bad+13]). We
refer to Section 2.6.1 for more details on both benchmark sets. For benchmark set F,
we use the experimental results from Ref. [HSS19a] for kKaHyPar, KaFFPa-StrongS,
and KaFFPa-StrongS* (a modified version that uses our improvements to KaFFPa’s
flow network as described in Section 4.7.1). Every graph was partitioned ten times
with different seeds into k ∈ {2, 4, 8, 16, 32, 64, 128} blocks at an imbalance of ε = 0.03.
We perform additional experiments for rKaHyPar using the same setup and the same
machine. In order to be consistent with the experiments presented in the previous
sections, we impose a time limit of eight hours per instance for each algorithm.
The experiments on benchmark set G are new. We use the same values of k that

have been used in the DIMACS challenge. Each instance is partitioned ten times
with different seeds at an imbalance of ε = 0.03. For this benchmark set, we compute
partitions using rKaHyPar, kKaHyPar, KaFFPa-Strong, KaFFPa-Strong* (using our
improved flow network), and KaFFPa-StrongS*. As in the previous experiments, we
set the time limit to eight hours per instance for each algorithm.

Effects of the Improved Flow Network. Before comparing KaFFPa with KaHy-
Par, we show that our improvements to KaFFPa’s flow network as described in
Section 4.7.1 indeed improve the performance of the graph partitioner. Figure 6.22
(left) compares KaFFPa-StrongS to our modified variant KaFFPA-StrongS* on the
web graphs and social networks of benchmark set F, while Figure 6.22 (right) compares
KaFFPa-Strong to our modified variant KaFFPa-Strong* on the DIMACS graphs
of benchmark set G. We see that – in both settings – our improved variants often
compute solutions of higher quality than the current version of KaFFPa. While this
improvement is considered statistically significant (p = 1.09 × 10−7 on benchmark
set F, p = 4.27× 10−7 on benchmark set G), the performance profiles show that the
difference in solution quality is within a few percent for almost all instances. This is
expected, since all KaFFPa configurations use sophisticated FM-based local search
algorithms in addition to the flow-based refinement algorithm. The running times
shown in Figure 6.23 reveal that our improved versions are only marginally slower
than the current version of KaFFPa. We therefore restrict the following evaluation to
KaFFPa-Strong* and KaFFPa-StrongS*.

Comparison with KaHyPar – Complex Networks. The experimental results
for the web graphs and social networks of benchmark set F are summarized in
Figure 6.24 and Figure 6.25. We restrict the comparison to KaFFPa-StrongS*, since
the strongsocial configuration is specifically designed for these types of graphs.
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Figure 6.22: Performance profiles comparing KaFFPa-StrongS and KaFFPa-
Strong with the variants that use our improved flow network (-Strong* and
-StrongS*) on benchmark set F (left) and benchmark set G (right).
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Figure 6.23: Comparing the running times of KaFFPa-StrongS and KaFFPa-
Strong with the variants that use our improved flow network (-Strong* and
-StrongS*) on benchmark set F (left) and benchmark set G (right).

Considering the performance profiles in Figure 6.24 (left), we see that kKaHyPar
computes the best solutions for 57.8% of all instances (i.e., in 85 of 147 cases). It is
followed by KaFFPa-StrongS* (31.9%), and rKaHyPar (12.2%). Figure 6.25 compares
kKaHyPar and rKaHyPar individually to KaFFPa-StrongS*. We see that kKaHyPar
computes the best solutions for more than 60% of all instances and is never more than
a factor of 1.18 worse than KaFFPa-StrongS*. However, while kKaHyPar performs
slightly better than KaFFPa-StrongS*, rKaHyPar is inferior to the graph partitioner.
The results of the significance tests presented in Table 6.6 seem to validate these
observations. Figure 6.24 (right) shows that KaHyPar is slightly faster on average
than KaFFPa-StrongS*, which could not partition 7 instances within the time limit.
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Figure 6.24: Comparing the results of kKaHyPar and rKaHyPar to KaFFPa-
StrongS* on benchmark set F: solution quality (left) and running time (right).
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Figure 6.25: Performance profiles comparing kKaHyPar and rKaHyPar individ-
ually to KaFFPa-StrongS* on benchmark set F.

Comparison with KaHyPar – DIMACS Graphs. The results for benchmark
set G are summarized in Figure 6.26 and Figure 6.27. The performance profiles
depicted in Figure 6.26 (left) show that none of the algorithms were able to partition
all instances – either because the partitioners could not finish within the time limit
of eight hours, or because they could not allocate enough memory to perform the
partitioning. Note that only rKaHyPar was able to compute partitions for more than
80% of all instances. KaFFPa-StrongS* computes the best solutions for 36.5% of all
instances (i.e., in 31 out of the 85 cases), KaFFPa-Strong* for 32.9% of all instances,
kKaHyPar and rKaHyPar compute the best solutions in 21.2% (resp. 9.4%) of all
cases. Furthermore, we see that partitions of KaFFPa-Strong* are at most a factor of
1.05 worse than the partitions computed by the best algorithm. Figure 6.27 compares
both KaHyPar configurations individually to the KaFFPa configurations. We see
that while the performance of kKaHyPar is comparable to the performance of both
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Table 6.6: Results of the significance tests for all pairwise algorithm comparisons
(p-values) for the graph partitioning experiments on benchmark set F.

(a) (b) (c)

(a) kKaHyPar - 4.73× 10−13 0.000188
(b) rKaHyPar 4.73× 10−13 - 0.000267
(c) KaFFPa-StrongS* 0.000188 0.000267 -
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Figure 6.26: Comparing the results of kKaHyPar and rKaHyPar to KaFFPa-
Strong* and KaFFPa-StrongS* on benchmark set G: solution quality (left) and
running time (right).

KaFFPa configurations, rKaHyPar can be seen as inferior to the graph partitioning
algorithms. Indeed, the results of the significance tests on the 56 instances that
could be partitioned by all algorithms, shown in Table 6.7, only reveal a statistically
significant difference between the solution quality of kKaHyPar and rKaHyPar, as
well as between rKaHyPar and both KaFFPa configurations. Looking at Figure 6.26
(right), we see that the running times of all algorithms are comparable.

Concluding Remarks. Given these results, we conclude that kKaHyPar is also
effective in the context of graph partitioning. In a comparison with the strongest
KaFFPa configurations, it computes solutions of slightly higher quality for complex
networks, and solutions of similar quality for the DIMACS graphs in a comparable
amount of time.
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Table 6.7: Results of the significance tests for all pairwise algorithm comparisons
(p-values) for the graph partitioning experiments on benchmark set G.

(a) (b) (c) (d)

(a) kKaHyPar - 6.04× 10−5 0.0634 0.0634
(b) rKaHyPar 6.04× 10−5 - 4.67× 10−9 5.59× 10−10

(c) KaFFPa-Strong* 0.0634 4.67× 10−9 - 0.661
(d) KaFFPa-StrongS* 0.0634 5.59× 10−10 0.661 -
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Figure 6.27: Performance profiles comparing kKaHyPar and rKaHyPar individ-
ually with KaFFPa-Strong* and KaFFPa-StrongS* on benchmark set G.
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7Chapter 7

Conclusion

“There is no real ending. It’s just the place where you stop the story.”
— Frank Herbert, California State College, Fullerton Interview (1969)

Having arrived at the final chapter of this dissertation, we briefly summarize the
results in Section 7.1 and elaborate on possibilities for future work in Section 7.2.

7.1 Summary

With this dissertation, we presented several improvements to the multi-level paradigm
for solving balanced hypergraph partitioning problems. After providing a compre-
hensive survey of almost 50 years of hypergraph partitioning history, we showed that
the trade-off between solution quality and running time, inherent in the number of
hierarchy levels, can be evaded by adopting an n-level approach and removing only
a single vertex in every level. This was made feasible by specifically tailoring the
hypergraph data structure, as well as the coarsening and refinement algorithms, to the
n-level paradigm and by developing and adopting lazy-evaluation techniques, caching
mechanisms, and early termination criteria to speed up the partitioning process. Com-
pared to a naïve adaptation of the n-level approach used in KaSPar for traditional
graph partitioning, our engineered hypergraph partitioning algorithms are more than
two orders of magnitude faster.

Especially for hypergraphs with many large hyperedges, computations on the set of
neighbors of a given vertex, which require iterating over all pins p ∈ e of all incident
nets e ∈ I(v) of a vertex v, can have a significant impact on the overall running time
of a partitioning algorithm. To alleviate this impact, we proposed a pin sparsifier
based on locality-sensitive hashing that identifies and contracts vertices with similar
neighborhoods in a preprocessing phase prior to partitioning – reducing the number
of pins and thus the average hyperedge size.
Moreover, we showed that traditional coarsening algorithms can be improved by

incorporating global information about the community structure of the hypergraph
into the coarsening process. Community detection is performed via modularity
maximization using the Louvain algorithm on the bipartite graph representation. This
approach is made suitable for a wide spectrum of instances by appropriately weighting
the edges of the bipartite graph based on the edge density of the hypergraph.
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7 Conclusion

In order to increase diversification during the initial partitioning phase, we presented
a portfolio approach based on a large number of simple initial partitioning algorithms
including random and BFS-based assignment, size-constrained label propagation, as
well as several variants of greedy hypergraph growing.

To further improve the quality of the initial solution in the refinement phase, we
presented two FM-based local search algorithms that perform a highly localized,
gradually expanding search around a single uncontracted vertex pair. One algorithm
is specifically tailored to the refinement of 2-way partitions and thus intended to be
used in a recursive bipartitioning setting. The other algorithm represents the first
FM-style direct k-way refinement heuristic that can be efficiently employed in the
multi-level context. Additionally, we generalized the flow-based refinement framework
of the graph partitioner KaFFPa from graphs to hypergraphs, identified shortcomings
of the flow model employed in KaFFPa that unnecessarily restrict feasible solutions,
and introduced an improved model that overcomes these limitations.

In order to explore the global solution space of possible partitions more extensively
than using repeated runs with different seeds, we additionally embedded our algorithms
into an evolutionary framework and presented the first memetic multi-level hypergraph
partitioning algorithm.

All algorithmic contributions of this dissertation are made publicly available through
the open-source Karlsruhe Hypergraph Partitioning (KaHyPar) system. KaHyPar
supports both direct k-way partitioning and recursive bipartitioning, and is able to
optimize the cut-net metric as well as the connectivity metric. Furthermore, it is
designed as an extensible framework to foster the research and development of new
partitioning heuristics. Since its release, it has already been employed in several
research efforts [AH19; GLA19; Got19; Jal19b; Net19; PS19; Sch+19a; SSS19b] and
has also attracted attention from industry.

Experiments demonstrating the effects of the different algorithmic components that
make up KaHyPar were discussed in Chapter 4 and Chapter 5. In Chapter 6, we
then presented a comprehensive experimental evaluation comparing the recursive
bipartitioning algorithm rKaHyPar and the direct k-way algorithm kKaHyPar to the
state-of-the-art hypergraph partitioning algorithms hMETIS-R, hMETIS-K, PaToH-D,
PaToH-Q, Mondriaan, Zoltan-AlgD, and HYPE. We demonstrated that both KaHyPar
configurations compute better solutions than all competing systems for both the cut-
net metric and the connectivity metric on a wide range of benchmark hypergraphs.
Although our system is based on the n-level paradigm and employs more complex
techniques such as sparsification, community detection, and flow-based refinements,
it was shown to be faster than Zoltan-AlgD and to have a running time comparable
to that of hMETIS-R and hMETIS-K. It can thus be regarded as the new method
of choice for computing high-quality solutions for hypergraph partitioning problems.
In addition, our experimental study revealed that if speed is more important than
solution quality, PaToH still provides the best time/quality trade-off of all tested
algorithms – performing better than Mondriaan and HYPE.
In a setting where all algorithms were given the same fairly large amount of time

to find a better partition through multiple runs, we were able to demonstrate that
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our memetic algorithm effectively explores the global solution space – substantially
outperforming the other competitors as well as the non-evolutionary KaHyPar config-
urations. Moreover, we showed that even if we compare single partitioning calls of
kKaHyPar to the best solutions reported by competing algorithms after repeatedly
partitioning each instance for several hours, kKaHyPar still performs better than its
competitors. This highlights the fact that our improvements cannot simply be offset
by repeatedly running a faster, simpler algorithm for a large amount of time. In a
final evaluation, we demonstrated that KaHyPar is also effective for traditional graph
partitioning tasks – computing slightly better solutions than our improved version of
the current best system KaFFPa for complex networks and solutions of similar quality
for the graphs of the 10th DIMACS implementation challenge in a comparable amount
of time.
A result that presented itself in all experiments is the observation that – while

outperforming competing algorithms by a significant margin – rKaHyPar seems to
be inferior to kKaHyPar in general. Given that both algorithms employ the same or
similar advanced techniques, this could be seen as supporting evidence for preferring
direct k-way partitioning over recursive bipartitioning when aiming for high-quality
solutions. Still, our experiments indicated that rKaHyPar can be of use for partitioning
problems involving hypergraphs with many large nets, or on systems with a limited
amount of main memory.

7.2 Outlook

Although the story of this dissertation ends with this section, there is indeed no real
ending for research on hypergraph partitioning algorithms, which is why we would
like to highlight several opportunities for future work.
As we have seen in Chapter 6, computing solutions of very high quality currently

comes at the cost of considerably larger running times. Thus, parallelization is an
important issue. Shared-memory algorithms for community detection already exist
in the literature [SM16]. The community-aware coarsening approach presented in
this dissertation restricts contractions to vertices within the same community. This
already yields a promising path for coarse-grained, inter-community parallelization
of the coarsening algorithms we presented. While the initial partitioning of the
coarsest instance can be done independently in parallel, parallelizing the n-level
FM-based local search algorithms or the flow-based refinement framework may pose
a greater challenge, though the techniques proposed by Akhremtsev et al. [ASS17]
for shared-memory graph partitioning constitute a viable starting point. However,
parallelization should not be restricted to the shared-memory setting. Our experimental
evaluation of distributed hypergraph partitioning algorithms in the context of graph
edge partitioning [Sch+19a] revealed that while HGP algorithms outperform auxiliary-
graph-based graph partitioning approaches in the sequential setting, the opposite
currently seems to be the case in the distributed setting. This encourages further
research into distributed hypergraph partitioning algorithms.
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By incorporating global information about the community structure into the coars-
ening process, we prevented coarsening algorithms from performing contractions that
potentially obscure naturally existing clustering structure. A recently published tech-
nical report by Sybrandt et al. [SSS19b] proposes to capture structural properties of
the input hypergraph via graph embeddings computed on the bipartite hypergraph
representation. This information is then used to prioritize the contraction of similar
vertices (i.e., vertices with similar latent features). While the approach is currently
too slow to be efficiently used in practice, the experimental results suggest that for
small values of k, the embedding-based approach can lead to a significant improvement
in solution quality. Hence, engineering this method to become feasible in terms of
running time and making it more robust for larger values of k would be an interesting
direction for future work.

Our historical overview of the field revealed that the research community (including
us) mainly focused on unweighted benchmark instances. However, as shown by
Caldwell et al. [CKM00d], the performance of move-based refinement heuristics can in
some cases deteriorate significantly in the presence of non-uniformly weighted vertices.
While multi-level algorithms in general try to keep vertex weights reasonably balanced
during the coarsening phase, current measures may not be enough to allow standard
initial partitioning algorithms to compute good, feasible starting solutions. Thus,
integrating bin packing approaches into the portfolio of initial partitioning algorithms
and augmenting refinement algorithms with additional rebalancing heuristics seems
to be a promising approach to make multi-level systems more robust in practice.
Moreover, our own work on community-aware coarsening also focused on hypergraphs
with uniform net and vertex weights. In an upcoming bachelor thesis, we will therefore
revisit weighted hypergraphs and study the robustness of preprocessing, coarsening,
initial partitioning, and refinement algorithms for these instances.

Finally, with the increasing interest in distributed graph and hypergraph processing
systems [Mal+10; Gon+12; Gon+14; HC14; HC15; HZY15; Jia+18; Hei+19], the
trade-off between solution quality and running time/scalability currently seems to be
explored almost exclusively with a focus on the latter by using rather simple hashing-
based techniques or (hyper)graph growing heuristics [MS15; Pet+15; Zha+17; May+18;
Han+19]. However, the experimental evaluation presented here, as well as our work
on graph edge partitioning [Sch+19a], indicated that the increased partitioning speed
of algorithms such as HYPE [May+18] or its graph-based predecessor NE [Zha+17]
comes at the cost of a considerable decrease in solution quality. Thus, while this
dissertation focused on computing high-quality partitions in a reasonable amount of
time, a promising direction of future work is to shift the focus towards high-speed
HGP systems with reasonable quality.
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