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The description of material failure as an energy minimization problem, i.e., the Francfort–Marigo model, has been studied
widely in recent years. The approximation of the crack surface as a phase field, i.e., smeared interface, enjoys great popularity,
as it allows describing fracture as a set of partial differential equations. In numerical homogenization, FFT-based solution
methods have been established over the past two decades. Their purpose is to compute the overall response of a heterogeneous
microstruture w.r.t. a macroscopic loading and can be applied to a variety of nonlinear materials. The benefits lie in a fast
implementation and the possibility to use image data like CT-scans as input without further need for meshing. Based on the
results of the master thesis of the first author, we investigate phase field crack propagation on heterogeneous microstructures
using FFT-based solvers.
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1 Introduction

Sudden failure of material often leads to a collapse of constructive structures and can therefore have immense consequences.
Hence, fracture and damage mechanics are of high research interest. The Francfort-Marigo model of brittle fracture, a vari-
ational reformulation of Griffith’s original fracture theory, enjoys great popularity. Its numerical treatment by smearing the
crack path by a phase field has been discussed in many previous works, see for instance [1]. The phase field regularized model
is prescribed by finding critical points (u, d) of the energy functional

F (u, d) =

∫

Y

[k0 + (1− k0)(1− d)2]∇su : C : ∇su+Gc

[
d2

4η
+ η‖∇d‖2

]
dx. (1)

Here, ∇su denotes the symmetrized gradient of the (periodic) displacement field u, d is the (periodic) damage variable, C is
the fourth-order stiffness tensor, k0 is the remaining stiffness, Gc is the critical energy release rate and η denotes the phase
field parameter. In this proceeding, we investigate solving the phase field problem with an FFT-based fast gradient solver on
a periodic, heterogeneous microstructure.

2 Solution method

We solve for critical points (u, d) of F using a gradient scheme [2] for each variable, keeping the respective other variable
frozen. Assuming the variables u and d are elements of certain Hilbert spaces U and V , the partial gradients GRADu and
GRADd are defined in terms of

〈GRADuf(u, d
∗), v〉U = Df(u, d∗)[v], u, v ∈ U, d∗ fixed,

〈GRADdf(u
∗, d), s〉V = Df(u∗, d)[s], d, s ∈ V, u∗ fixed.

We solve for the damage variable by a standard gradient descent scheme and for the displacement field by the heavy ball
method, see [3]. The abstract algorithm is given by Algorithm 1. δ is a carefully chosen parameter between 0 and 1 and, hu
and hd are the associated step sizes for u and d, respectively. The equations where discretized by trigonometric collocation,
see [4].
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2 of 2 Section 3: Damage and fracture mechanics

Algorithm 1 Coupled heavy ball method

1: Fix initial guess (u0, d0)
2: n← 0, k ← 0, u−1 = u0

3: while u not converged do
4: while d not converged do
5: dk+1 = dk − hdGRADdF (u

n, dk)
6: k ← k + 1
7: end while
8: un+1 = un − hnuGRADuF (u

n, dk) + δn(un − un−1)
9: n← n+ 1

10: end while
11: return (un, dk)

3 Numerical Results

We apply the model to a fiber reinforced composite with a fiber volume percentage of 10, see Fig. 1(a). The microstructure
was generated using a sequential addition and migration algorithm, see [5] and discretized by 2563 voxels. The fibers are of
equal length with aspect ratio 20 and isotropic orientation distribution. We assume the matrix material to behave according
to the phase field model with elastic constants E = 3.45GPa, ν = 0.39 and critical energy release rate Gc = 3.19N/mm,
whereas the fibers behave purely elastic with E = 72GPa and ν = 0.22. We apply a load in x-direction by increasing the
mean value E = Exxex ⊗ ex of the strain field ∇su linearly. The macroscopic stress vs strain relation is shown in Fig. 1(c).
The stress increases monotonically until a critical value. Then it is reduced within one computational step to a value depending
on the remaining stiffness k0. The resulting crack surface is shown in Fig. 1(b). It is on average perpendicular to the tensile
direction, taking locally a shortest path around the fibers. Effects like fiber pullout and matrix failure are visible.
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(c) Stress vs. strain

Fig. 1: Microstructure, crack surface and stress strain relation for fiber reinforced composite

4 Conclusion
We presented an accelerated gradient descent scheme to solve the phase field fracture problem on a heterogeneous microstruc-
ture. The fully coupled, implicit implementation ensures the handling of a large NDOF within reasonable computation time.
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