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Abstract
This paper concerns the inverse scattering problem to reconstruct a locally 
perturbed periodic surface. Different from scattering problems with quasi-
periodic incident fields and periodic surfaces, the scattered fields are no 
longer quasi-periodic. Thus the classical method for quasi-periodic scattering 
problems no longer works. The method based on the Floquet–Bloch transform 
provides an efficient numerical algorithm to solve the direct scattering 
problem, and a possibility to reconstruct both the unknown periodic part and 
the unknown local perturbation from the near-field data.

By transforming the original scattering problem into one defined in an 
infinite rectangle, the information of the surface is included in the coefficients. 
The numerical scheme contains two steps. The first step is to obtain an initial 
guess from a sampling method. The second step is to reconstruct the surface. 
As is proved in the paper, for some incident fields, the corresponding scattered 
fields carry little information of the perturbation. In this case, we use these 
scattered fields to reconstruct the periodic surface. Then we could apply 
the data that carries more information of the perturbation to reconstruct the 
local perturbation. The Newton-CG method is applied to solve the associated 
optimization problems. Numerical examples are given at the end of this paper 
to show the efficiency of our numerical method.
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1. Introduction

In this paper, we introduce a numerical method for the inverse scattering problem from a 
locally perturbed periodic surface. Both the periodic part and the local perturbation of the 
surface are unknown. The aim is to reconstruct both of them from the near-field measurement 
data.

Since the periodic surface is perturbed, the classical framework for the quasi-periodic scat-
tering problems (i.e. quasi-periodic incident fields with periodic domains) no longer works. 
An efficient way to solve these problems is the Floquet–Bloch transform. With the help of this 
Fourier-like transform, the original problem, which is defined in a 2D unbounded domain, can 
be written into a new one defined in a 3D bounded domain. This method has been applied to 
perturbed periodic structures in [3] and waveguide problems in [7]. For scattering problems 
with non-periodic incident fields and periodic surfaces, we refer to [11, 12, 14]. For problems 
with locally perturbed periodic surfaces, see [10, 13]. In the paper [17], a high order numerical 
method has been proposed based on the Floquet–Bloch transform and this method is used in 
this paper to produce the measured data.

The work in this paper is an extension of joint work of the second author with Prof Armin 
Lechleiter in [15]. In that paper, the periodic surface is assumed to be known. A numerical 
method has been proposed to discover both the location and the shape of a local perturbation. 
The sampling method introduced by Ito et al (see [8]) was extended to find out the location, 
and a Newton-CG method was applied to reconstruct the shape. However, the setting in this 
paper is more difficult, i.e. the periodic surface is no longer known. Thus we have to find the 
perturbation on an unknown periodic surface, and also reconstruct both the periodic surface 
and the perturbation. In this case, the sampling method in [15] does not work any more, which 
makes the problem much more challenging.

In this paper, we develop a numerical method for the inverse problem. The first task is 
to find out the location of both the periodic surface and the perturbation. Since the previous 
sampling method does not work, we apply the algorithm introduced in [16], which is a fast 
imaging method to reconstruct rough surfaces. The algorithm provides a rough guess of the 
locally perturbed surface, thus we could estimate the vertical location of the whole surface, 
and also figure out the location of the perturbation from a relatively large domain. Then we 
apply the Newton’s method to reconstruct the shapes of both the periodic surface and the 
local perturbation. The reconstruction contains two steps. The first step is to reconstruct 
the periodic surface. It is proved that for certain incident fields, the measured data does 
contain very little information of the local perturbation. Thus in this case, the measured scat-
tered field could be adopted to reconstruct the periodic surface. Based on the former approx-
imation of the periodic surface, we apply the method in [15] to recover the local perturbation.

The rest of this paper is organized as follows. In section 2, we recall the mathematical model 
of the direct scattering problem and the Floquet–Bloch transform based formulation. In sec-
tion  3, the estimation is considered for the difference between the scattered fields with and 
without perturbation. The inverse problem is formulated in section 4, and the Fréchet derivative 
and its adjoint operator are studied. In section 5, we conclude the algorithm for inverse prob-
lems, including the sampling method for the initial guess and the iterative method for the further 
reconstruction. In section 6, we present three numerical results obtained from our algorithm.
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2. Direct scattering problem

2.1. Mathematical model

Given a bounded 2π-periodic function ζ, it defines a periodic surface

Γ := {(x1, ζ(x1)) : x1 ∈ R} .

Let the function p  be a compactly supported perturbation. For simplicity, suppose 
supp( p) ⊂ (−π,π) + 2πJ , where J ∈ Z is an integer. Let ζp := ζ + p be the perturbed func-
tion and define

Γp := {(x1, ζp(x1)) : x1 ∈ R} .

The domain above Γ and above Γp are set to be Ω and Ωp, respectively.

Remark 1. For simplicity, all the theoretical arguments in sections  2–4 are proved in 
the case that J  =  0. These results can be easily extended to any J ∈ Z with the translation 
x �→ x − 2πJ .

In this paper, we assume that the surface Γp is sound-soft. Given an incident field ui that 
satisfies ∆ui + k2ui = 0 in R2, it propagates onto Γp and then generates the scattered field us 
(or equivalently, the total field u = ui + us). For the mathematical model we refer to figure 1. 
First, u satisfies

∆u + k2u = 0 in Ωp. (1)

Second, as the surface Γp is sound-soft,

u = 0 on Γp. (2)

Moreover, the scattered field us is propagating upwards. The upward propagation radiation 
condition (UPRC) is typically written as a double layer potential, see [5], and an alternative 
definition was introduced in [2, 1]. Let H be a real number that is larger than ‖ζ‖∞ and ‖ζp‖∞, 
then the UPRC is written as

us(x1, x2) =
1

2π

∫

R
eiξx1+i

√
k2−ξ2 (x2−H)ûs(ξ, H)dξ, x2 � H,

where ûs(ξ, H) is the Fourier transform of us(x1, H). Define the Dirichlet-to-Neumann map 
T+ by

(
T+ϕ

)
(x1) =

i
2π

∫

R

√
k2 − ξ2 eiξx1 ϕ̂(ξ)dξ, ϕ =

1
2π

∫

R
eiξx1 ϕ̂(ξ)dξ.

Let ΓH := {(x1, H) : x1 ∈ R} , then the UPRC is equivalent to

∂u
∂x2

(x1, H) = T+
[
u
∣∣
ΓH

]
+ f on ΓH , where f =

∂ui

∂x2
(x1, H)− T+

(
ui
∣∣
ΓH

)
.

 (3)
Define the domain Ω p

H := R× (−∞, H) ∩ Ωp and we consider the problem (1)–(3) in a 
weighted Sobolev space H1

r (Ω
p
H), where the space H1

r (Ω
p
H) is defined by

H1
r (Ω

p
H) :=

{
ϕ ∈ D′(Ω p

H) : (1 + |x|2)r/2ϕ ∈ H1(Ω p
H)
}

. (4)

H̃1
r (Ω

p
H) is the subspace of H1

r (Ω
p
H) such that all the elements vanish on Γp. Similarly, we can 

define the weighted spaces H1/2
r (ΓH) and H−1/2

r (ΓH). From [1], the operator T+ is bounded 
and continuous from H1/2

r (ΓH) to H−1/2
r (ΓH) for all |r| < 1.

X Liu and R Zhang Inverse Problems 35 (2019) 114003
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The weak formulation of the scattering problem (1)–(3)is to find u ∈ H̃1
r (Ω

p
H) such that

∫

Ω p
H

[
∇u · ∇v − k2uv

]
dx −

∫

ΓH

T+
(

u
∣∣
ΓH

)
vds =

∫

ΓH

f vds (5)

for all v ∈ H̃1
r (Ω

p
H) with compact support in Ω p

H . The unique solvability of the variational 
problem (5) has been proved in [1].

Theorem 2. Given an incident field ui such that f ∈ H−1/2
r (ΓH) with |r| < 1, then the vari-

ational problem (5) has a unique solution u ∈ H̃1
r (Ω

p
H).

Remark 3. Although the unique solvability is proved for bounded surfaces, in this paper, 
the functions ζ and ζp are assumed to be at least Lipschitz continuous.

2.2. Floquet–Bloch transform

During the numerical process of the inverse problem, a Floquet–Bloch transform based 
numerical method is applied to solve the direct scattering problem. Thus in this section, 
we give a brief introduction to this method. Let h and H be two real numbers such that 
h < min{ζ, ζp} < max{ζ, ζp} < H and define D := R× (h, H). Define the periodic cell W 
and its dual-cell W∗ by

W = (−π,π], W∗ = (−1/2, 1/2].

Then let D2π = D ∩ W × R, Γ2π
h = W × {h} and Γ2π

H = W × {H}. Define the Bloch trans-
form with period 2π in D by

JDϕ(α, x) =
∑
j∈Z

ϕ

(
x +

(
2πj
0

))
e2iπjα.

The function space Hr
0(W

∗; Hs
α(D

2π)) is the closure of C∞
0 (W∗ × D2π) with the following 

norm for r ∈ N:

‖ϕ‖Hr
0(WΛ∗ ;Hs

α(D2π)) =




r∑
γ=0

∫

W∗
‖∂γ

αψ(α, ·)‖2
Hs

α(D2π)




1/2

.

This definition can be extended to all r � 0 by interpolation between Hilbert spaces and to 
r ∈ R by duality arguments. The following property of the Bloch transform has been investi-
gated in [13].

Theorem 4. The Bloch transform is an isomorphism between Hs
r(D) and Hr

0(W
∗; Hs

α(D
2π)). 

Further, when s  =  r  =  0, JD is an isometry with the inverse

Figure 1. Mathematical model for the scattering problem.
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(J−1
D ϕ)

(
x +

(
2πj
0

))
=

∫

W∗
ϕ(α, x)e2iπjαdα, x ∈ D2π , (6)

and the inverse transform equals to the adjoint operator of JD.

Now we apply the Floquet–Bloch transform to the scattering problem (5). Following [13], 
the first task is to transform the original problem, which is defined in the  non-periodic domain 
Ω p

H, to a problem defined in a periodic domain. In this paper, D is the periodic domain. Let 
H0 be a real number that lies in the interval (min{ζ, ζp}, H) and define the following two dif-
feomorphisms for x ∈ Ω p

H0
:

Φζ : x �→
(

x1, x2 +
(x2 − H0)

3

(h − H0)3 (ζ(x1)− h)
)

; Φζp : x �→
(

x1, x2 +
(x2 − H0)

3

(h − H0)3 (ζp(x1)− h)
)

.

Then extend them by the identity operator for x2 � H0. As supp(ζp − ζ) ⊂ W , 
supp(Φζ − Φζp) ⊂ D2π.

Let uD = u ◦ Φζp, it can be easily checked that uD satisfies the following variational 
equation:

∫

D

[
Aζp∇uD · ∇vD − k2cζp uDvD

]
dx −

∫

ΓH

T+
(

uD
∣∣
ΓH

)
vDds =

∫

ΓH

f vDds,

 (7)
for all vD = v ◦ Φζp ∈ H̃1(D), where

Aζp(x) =
∣∣det∇Φζp(x)

∣∣
[(
∇Φζp(x)

)−1
((

∇Φζp(x)
)−1

)�
]
∈ L∞(D,R2×2);

cζp(x) =
∣∣det∇Φζp(x)

∣∣ ∈ L∞(D).

We define the matrix Aζ and cζ  by Φζ in a similar way, i.e.

Aζ(x) = |det∇Φζ(x)|
[
(∇Φζ(x))

−1
(
(∇Φζ(x))

−1
)�

]
∈ L∞(D,R2×2);

cζ(x) = |det∇Φζ(x)| ∈ L∞(D).

As supp(Φζ − Φζp) ⊂ D2π, the supports of both Aζp − Aζ  and cζp − cζ are subsets of D2π. Let 
w := JDuD, then it satisfies
∫

W∗
aα(w(α, ·), z(α, ·))dα+ b(J−1

Ω w,J−1
Ω z) =

∫

W∗

∫

Γ2π
H

F(α, ·)z(α, ·)dαds,

 

(8)

where

aα(u, v) =
∫

Ω2π
H

[
Aζ∇u · ∇v − k2cζuv

]
dx −

∫

Γ2π
H

(
T+
α u

)
vds;

b(u, v) =
∫

Ω2π
H

[
(Aζp − Aζ)∇u · ∇v − k2(cζp − cζ)uv

]
dx;

F(α, ·) = ∂(JΩui)(α, ·)
∂x2

− T+
α (JΩui)(α, ·);

T+
α ϕ = i

∑
j∈Z

√
k2 − |j − α|2ϕ̂( j)ei( j−α)x1 , ϕ =

∑
j∈Z

ϕ̂( j)ei( j−α)x1 .

X Liu and R Zhang Inverse Problems 35 (2019) 114003
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Following the arguments in [10, 13], it is easy to prove that when the functions ζ and 
ζp are Lipschitz continuous, the variational problem (8) is equivalent to (5). When (5) has 
a unique solution of H̃1

r (Ω
p
H) for some |r| < 1, the problem (8) has a unique solution in 

Hr
0(W

∗; H̃1
α(D

2π)). Moreover, if the incident field ui ∈ H2
r (Ω

p
H) and the surfaces are C2,1, then 

the solution belongs to the space Hr
0(W

∗; H̃2
α(D

2π)). In [13], a convergent numerical method 
based on (8) has been proposed for the numerical solution, and a high order method has been 
proposed in [17].

Remark 5. The information on the periodic function ζ is included in Aζ and cζ , and the 
information of p  is included in Aζp  and cζp. During the iteration process, when ζ and p  are 
updated, the matrices Aζ , Ap and the functions cζ , cp are also updated. Thus we do not need 
to change the meshes during this process.

3. Approximation of the scattering problems with periodic surfaces

This section considers the difference between the scattered fields with and without a local 
perturbation. Let u0 be the total field corresponding to the same incident field ui and periodic 
surface Γ, then u0 satisfies the variational equation:

∫

ΩH

[
∇u0 · ∇v − k2u0v

]
dx −

∫

ΓH

T+
(

u0
∣∣
ΓH

)
vds =

∫

ΓH

f vds.

From theorem 2, if f ∈ H−1/2
r (ΓH) for some |r| < 1, then the solution u0 ∈ H̃1

r (ΩH). In this 
paper, we assume that r ∈ (0, 1). As u0 ∈ H1

r (ΩH), there exists a constant C that does not 
depend on u0 and x1 such that

|u0(x1, x2)| � C(1 + x2
1)

−r/2−1/4.

We apply the translation to the first variable, i.e. to replace x1 by x1 + 2πL  for some 
L ∈ Z \ {0}, and let ui

L(x1, x2) := ui(x1 + 2πL, x2) be the incident field. As the surface is 
2π-periodic, the total field with the incident field ui

L, denoted by uL
0, is actually the function 

u0(x1 + 2πL, x2). uL
0 satisfies the following variational equation

∫

ΩH

[
∇uL

0 · ∇v − k2uL
0v
]

dx −
∫

ΓH

T+
(

uL
0

∣∣
ΓH

)
vds =

∫

ΓH

fLvds

with fL(x1, x2) := f (x1 + 2πL, x2) on ΓH. As

|u0(x1 + 2πL, x2)| � C|2πL|−r−1/2, (x1, x2) ∈ Ω2π
H ,

the following estimate holds:
∣∣uL

0(x1, x2)
∣∣ � C|2πL|−r−1/2, (x1, x2) ∈ Ω2π

H .

Let uL be the solution of (5) with f  replaced by f L. Similar to the previous section, we can 
define a diffeomorphism Φp that maps Ω p

H to ΩH and Φp − I2 is supported in ΩH ∩ W × R. Let 
uL

T := uL ◦ Φp, it is easily checked that uL
T  satisfies

∫

ΩH

[
Ap∇uL

T · ∇v − k2cpuL
Tv
]

dx −
∫

ΓH

T+
(

uL
T

∣∣
ΓH

)
vds =

∫

ΓH

fLvds, (9)

X Liu and R Zhang Inverse Problems 35 (2019) 114003
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where

Ap(x) = |det∇Φp(x)|
[
(∇Φp(x))

−1
(
(∇Φp(x))

−1
)�

]
∈ L∞(D,R2×2);

cp(x) = |det∇Φp(x)| ∈ L∞(D).

Moreover, supp(Ap − I2), supp(cp − 1) ⊂ ΩH ∩ W × R(:= Ω2π
H ). Then the difference 

uL
d := uL

T − uL
0  satisfies the following variational equation, i.e.
∫

ΩH

[
Ap∇uL

d · ∇v − k2cpuL
dv
]
−

∫

ΓH

T+
(

uL
d

∣∣
ΓH

)
vds = b̃(uL

0 , v) (10)

for any v ∈ H1(ΩH) with compact support, where

b̃(uL
0 , v) =

∫

Ω2π
H

[
(I2 − Ap)∇uL

0 · ∇v − k2(1 − cp)uL
0v
]

dx. (11)

Here b̃(·, ·) can be viewed as a bounded sesquilinear form satisfying
∣∣∣b̃(u, v)

∣∣∣ � C‖u‖H1(Ω2π
H )‖v‖H1(Ω2π

H ),

where C is a constant depending only on ζ and ζp. Thus the right hand side of (10) satisfies
∣∣∣b̃(uL

0 , v)
∣∣∣ � C

∥∥uL
0

∥∥
H1(Ω2π

H )
‖v‖H1(Ω2π

H ) � C|2πL|−r−1/2‖v‖H1(ΩH).

From the equivalence between (5) and (7), the equation (10) is uniquely solvable in H1(ΩH) 
when the right hand side is an antilinear functional on H1(ΩH). Thus

∥∥uL
T − uL

0

∥∥
H1(ΩH)

� C|2πL|−r−1/2.

Based on the above analysis, the total field uL
0 is a good approximation of uL

T  if L is suf-
ficiently large. Particularly, let σ be the noise level of the inverse problem and suppose that 
L ∈ Z has a large enough absolute value such that C|2πL|−r−1/2 < δ, then uL

T  could be treated 
as the ‘exact solution’ of the non-perturbed periodic surface with the incident field uL

T . Let

ũL
T(x1, x2) := uL

T(x1 − 2πL, x2),

then ũL
T  is a good approximation of u0. In this case, the solution ũL

T  could be applied to recon-
struct the periodic surface in the inverse problem.

4. Inverse problem and the Newton-CG method

The inverse problem is to reconstruct the unknown function ζp from the measurement Cauchy 
data U on a horizontal line ΓH. Here U is defined as

U := (us, ∂νus)
∣∣
ΓH

+ σ(us, ∂νus)
∣∣
ΓH

, (12)

where σ is some noise added to the measurement data.
Further, ζ ∈ C2,1(R) is supposed to be a 2π-periodic function and p ∈ C2,1(R) is supposed 

to be a function that is compactly supported in W + 2πJ  for some J ∈ Z.

Remark 6. For the inverse problem, J is an unknown integer and one task is to find out the 
exact value of J. As explained later, the integer J could be obtained by a sampling method (see 
[16]). In this section, we treat it as a known one. For any J �= 0, we can simply apply the trans-

X Liu and R Zhang Inverse Problems 35 (2019) 114003



8

lation x �→ x − 2πJ  to move the perturbation to the center of the domain. Thus for simplicity, 
we still assume that J  =  0 in this section.

Define the spaces

X := {ζ ∈ C2,1(R) : ζ is 2π − periodic};

Y := { p ∈ C2,1(R) : supp( p) ⊂ W}.

In the following, we assume that (ζ, p) ∈ X × Y  and ζp := ζ + p. The inverse problem is to 
find out (ζ, p) ∈ X × Y  such that the near-field Cauchy data corresponding to (ζ, p) is the best 
approximation of U.

4.1. Scattering operator and its properties with respect to rough surfaces

We recall the inverse scattering problems from rough surfaces introduced in [4]. Let BC1,1(R) 
be the space of bounded, Lipschitz continuous function. Suppose f ∈ BC1,1(R) and the sur-
face Γf  is defined by f . We can also define the domain Ωf  by the domain above Γf , and Ω f

H by 
the domain between Γf  and ΓH, where H is a real number that is larger than ‖f‖∞. Given an 
incident field ui, we define the following scattering operator

S : BC1,1(R) → L2(ΓH)

f �→ us
∣∣
ΓH

.

Then the inverse problem can be written as an optimization problem, i.e. to find 
f ∈ BC1,1(R) such that

‖S( f )− U‖2
L2(ΓH)

= min
f∗∈BC1,1(R)

‖S( f ∗)− U‖2
L2(ΓH)

. (13)

Let

F( f ) := ‖S( f )− U‖2
L2(ΓH)

, (14)

then the inverse problem is to find out the minimizer of the functional F in the domain 
BC1,1(R). To solve the minimization problem, we have to study the properties of the scatter-
ing operator S first.

Theorem 7. The operator S is differentiable, and its derivative DS is represented as

DS : BC1,1(R) → L2(ΓH) (15)

h �→ u′
∣∣
ΓH

, (16)

where u′ ∈ H1
r (Ω

f
H) satisfies

∆u′ + k2u′ = 0 in Ω f
H; (17)

u′ = − ∂u
∂x2

h on Γf ; (18)

∂u′

∂x2
= T+u′ on ΓH . (19)

Here u is the total field of the scattering problem (1)–(3).
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For the proof of this theorem we refer to [4, 9].
In order to use the Newton’s method, we also need the adjoint operator of the Fréchet 

derivative DS, which is explained in the following theorem.

Theorem 8. The adjoint operator of DS( f ), denoted by [DS( f )]∗ is given by

[DS( f )]∗ ϕ = −Re
[
∂u
∂ν

∂z
∂ν

]
ν2, (20)

where ν  is the normal derivative upwards, u is the total field and z satisfies

∆z + k2z = 0 in Ω f
H; (21)

z = 0 on Γf ; (22)

∂z
∂x2

− T+z = ϕ on ΓH . (23)

Remark 9. During the iteration steps, the problems (17)–(19) and (21)–(23) will be solved 
several times. We can always apply the method introduced in section 2.2 to transform the 
problems first into the one defined in the unbounded rectangle D by the transform Φζp, and 
then apply the Floquet–Bloch transform to obtain the new problem defined in the bounded 
domain W∗ × D2π. For details of the solution of (21)–(23) we refer to remark 12 in [15].

4.2. Discretization for locally perturbed periodic surfaces

First, the functions ζ and p  are approximated by the linear combination of linearly indepen-
dent functions. Let {ϕ1,ϕ2, . . . ,ϕM} be a set of linearly independent functions in the space 
X and {ψ1,ψ2, . . . ,ψN} be a set of linearly independent functions in the space Y. Define the 
finite-dimensional subspaces of X and Y by:

XM := span{ϕ1, . . . ,ϕM} ⊂ X and YN := span{ψ1, . . . ,ψN} ⊂ Y .

For the coefficients CM = (cM
1 , . . . , cM

M) ∈ RM  and DN = (dN
1 , . . . , dN

N ) ∈ RN , then the ele-
ments ζM ∈ XM  and pN ∈ YN  could be written as

ζM(t) =
M∑

m=1

cM
mϕm(t), pN(t) =

N∑
n=1

dN
n ψn(t).

For the function ζ ∈ X, there is a CM ∈ RM such that ζM  is the approximation in XM of ζ. The 
argument also holds for pN ∈ YN  and p ∈ Y .

Define the operators A and B by

A : RM → XM

CM �→ ζM
;

B : RN → YN

DN �→ pN ,

then the operator P can be defined as

P : RM × RN → L2(ΓH)(
CM , DN) �→ S ◦

(
A(CM) + B(DN)

)
,

which maps the coefficients of both the periodic function and the local perturbation to the scat-
tered field. Further, we can define a functional F in the finite dimensional space RM × RN  by
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F(CM , DN) := ‖P(CM , DN)− U‖2
L2(ΓH)

. (24)

The inverse problem can be reformulated by the following finite dimensional problem:
Discrete inverse problem: find (CM , DN) ∈ RM × RN  such that

F(CM , DN) = min
(CM

∗ ,DN
∗)∈RM×RN

F(CM
∗ , DN

∗ ). (25)

We apply the Newton-CG method to solve the discretized inverse problem. The linearized 
equation is

P(CM , DN) + (DP)(CM , DN)(δCM , δDN) = U, (26)

where δCM = (δcM
1 , . . . , δcM

M) ∈ RM and δDN = (δdN
1 , . . . , δdN

N ) ∈ RN, (DP)(CM , DN) is the 
Fréchet derivative of P at (CM , DN). Define

MA(CM)(δCM) := (DP)(CM , DN)(δCM , 0);

MB(DN)(δDN) := (DP)(CM , DN)(0, δDN),

then the linearized equation is written as

P(CM , DN) + MA(CM)(δCM) + MB(DN)(δDN) = U. (27)

First, we have to calculate the derivative of P. As an operator defined in the finite dimen-
sional space RM × RN , from direct calculation,

∂P
∂cM

m
= (DS)(A(CM) + B(DN))ϕm;

∂P
∂dN

n
= (DS)(A(CM) + B(DN))ψn.

Thus

MA(CM)(δCM) =

M∑
m=1

δcM
m

∂P
∂cM

m
= (DS)(A(CM) + B(DN))

[
M∑

m=1

δcM
mϕm

]
;

MB(DN)(δDN) =

N∑
n=1

δdN
n
∂P
∂dN

n
= (DS)(A(CM) + B(DN))

[
N∑

n=1

δdN
n ψn

]
.

Given any δCM ∈ RM and ϕ ∈ L2(ΓH),
(
δCM , M∗

A(C
M)ϕ

)
=

(
(MA)(CM)(δCM),ϕ

)

=

(
(DS)(A(CM) + B(DN))

[
M∑

m=1

δcM
mϕm

]
,ϕ

)

=

M∑
m=1

δcM
m

(
ϕm,

[
(DS)(A(CM) + B(DN))

]∗
ϕ
)

.

Let Q =
[
(DS)(A(CM) + B(DN))

]∗
, then
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M∗
A(C

M)ϕ = ((ϕ1, Qϕ), . . . , (ϕM , Qϕ)) . (28)

Similarly, we can also get

M∗
B(D

N)ϕ = ((ψ1, Qϕ), . . . , (ψN , Qϕ)) . (29)

In the numerical implementation, we solve the discrete inverse problem separately, i.e. first 
fix DN  and solve the minimization problem (25) to find out the solution CM. Then we fix CM 
and solve the problem with respect to DN .

To solve the minimization problems we apply the Newton-CG method. To minimize the 
function F(CM , DN) with fixed DN , we apply the following Newton-CG method.

Algorithm 1. Newton-CG method—part I.

Input: Data U; ε > 0; j   =  0; fixed DN ∈ RN .

Initialization: CM
0 ∈ RM.

1: while ‖P(CM
j , DN)− U‖L2(ΓH) > ε1‖U‖L2(ΓH) do

2:    CGNE iteration scheme to solve MA(CM
j )(H

M) = U − P(CM
j , DN)

3:    CM
j+1 = CM

j + HM;
4:    j   =  j   +  1;
5: end while

Similarly, we can also minimize the function F(CM , DN) with fixed CM by the following 
algorithm:

Algorithm 2. Newton-CG method—part II.

Input: Data U; ε > 0; j   =  0; fixed CM ∈ RM.

Initialization: DN
0 ∈ RN .

1: while ‖P(CM , DN
j )− U‖L2(ΓH) > ε2‖U‖L2(ΓH) do

2:    CGNE iteration scheme to solve MB(DN
j )(H

N) = U − P(CM , DN
j )

3:    DN
j+1 = DN

j + HN ;
4:    j   =  j   +  1;
5: end while

Note that the method to solve the equations  MA(CM
j )(H

M) = U − P(CM
j , DN) and 

MB(DN
j )(H

N) = U − P(CM , DN
j ) numerically, we adopt the CGNE iteration algorithm, for 

details we refer to algorithm 7.1, [6].
In the rest of this paper, we choose nonlinear independent functions in X and Y as follows. 

For the space X, we use M (M  =  2m  +  1 for some m ∈ N) trigonometrical functions, i.e.

ϕ0(t) = 1; ϕj(t) = cos( jt); ϕj+m(t) = sin( jt), j = 1, 2, . . . , m.

For the space Y, the quartic spline functions are adopted (see remark 4.1, [18]). For the posi-
tive integer N, let h = 2R/(M + 5) and tj   =  (j   +  2)h  −  R, then the spline function is defined 
by ψj(t) = ψ((t − tj)/h) for j = 1, 2, . . . , N, where

ψ(t) :=
k+1∑
�=0

(−1) j

k!

(
k + 1
�

)(
t +

k + 1
2

− j
)k

+

,
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where zk
+ = zk for z � 0 and equals to 0 when z  <  0. The parameters are chosen as R  =  4 and 

k  =  4.

Thus let a vector CM
j =

(
c0

j , c1
j , . . . , cm

j , cm+1
j , . . . , c2m

j

)
, the periodic surface is defined by 

the function

ζ(t) =
M∑
�=0

c�j ϕ�(t) = c0
j +

m∑
�=1

c�j cos(�t) +
m∑

�=1

c�+m
j sin(�t).

Similarly, if DN
j =

(
d1

j , d2
j , . . . , dN

j

)
, the local perturbation is defined by

p(t) =
N∑

�=1

d�
j ψ�(t).

5. Numerical implementation

5.1. Sampling method

In this section, we use the sampling method introduced in [16] to give an initial guess of 
the perturbed periodic surface, especially for the first term c0

0 of CM
0  and the integer J of the 

perturbation.
Suppose that the location y  of an incident point source ui(x,y ) is on a horizontal line 

ΓH := {(x1, H) : x1 ∈ R} above the surface, we measure the Cauchy data (us, ∂νus) gener-
ated by the point source and the perturbed periodic surface on ΓH. Here, ∂νus denotes the 
normal derivative of us on ΓH with the direction (0, 1).

With the help of the fundamental solution to the two-dimensional Helmholtz equation given 
by

Φk(x, y) :=
i
4

H(1)
0 (k|x − y|), x �= y,

we introduce the following imaging function

I(z) =
∫

ΓH

∣∣∣∣
∫

ΓH

(
∂ν(x)us(x, y)Φk(x, z)− us(x, y)∂ν(x)Φk(x, z)

)
ds(x)

− i
4π

∫

S−
eikx̂·(y′−z′)ds(x̂)

∣∣∣∣∣
2

ds(y),
 

(30)

where y′ = (y1,−y2) and z′ = (z1,−z2). From the analysis in [16], we can expect that the 
imaging function I(z) takes a large value when z ∈ Γp and decays as z is away from Γp. In this 
way, we give an initial guess of the perturbed surface.

In the numerical computation, we choose 2P  +  1 incident point sources which are located 
at yj = ( jhinc, H), j = −P, ..., 0, ...P, here hinc is a fixed interval between two adjacent points. 
The measurement line ΓH is truncated to be ΓH,A := {x ∈ ΓH : |x1| < A} which will be dis-
cretized uniformly into 2Q subintervals so the step size is hmea = A/Q. In addition, the lower-
half circle S− in the second integral in (30) will also be uniformly discretized into R grids 
with the step size ∆θ = π/R. Then for each sampling point z we get the following discrete 
form of (30)
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IA(z) =
P∑

j=−P

∣∣∣∣∣hmea

2Q∑
i=0

(
∂ν(x)us(xi, yj)Φk(xi, z)− us(xi, yj)∂ν(x)Φk(xi, z)

)

− i∆θ

4π

R∑
k=0

eikdk·(y′j −z′)

∣∣∣∣∣
2

.

 

(31)

Here, the measurement points are denoted by xi = (−A + ih, H), i = 0, 1, ..., 2Q, and the nor-
mal directions are denoted by dk = (sin(−π + k∆θ), cos(−π + k∆θ)), k = 0, 1, ..., R.

Suppose the sampling area is a rectangle denoted by [a, b]× [c, d]. We set the numbers of 
sampling points in x1-direction and x2-direction to be M1 and M2, respectively. Then by (31), 
we get the indicator matrix {IA(zij)}M1×M2

. For each j th-row of this matrix, we figure out the 
element with the largest value IA and denote the corresponding index by maxj . The initial 
guess for the first term c0

0 of CM
0  can be deduced by the following formula

c0
0 = c + (d − c)

1
M1M2

j=M1∑
j=1

maxj. (32)

5.2. Iteration method

From the last subsection, we find out the exact value of the integer J. By translation on the 
first variable, i.e. to let x1 be replaced with x1 + 2πJ , the perturbation is moved to W. Thus 
we could simply set J  =  0 in this section. We present the iteration method to reconstruct the 
periodic function ζ and the compactly supported function p  in this section.

From section 3, for an incident field ui ∈ H1
r (Ω

p
H) with some r ∈ (0, 1), the measured data UL 

with the incident field ui(·+ 2πL, ·) for L ∈ Z \ {0} could be applied to reconstruct the periodic 
function ζ. The measured data with incident field ui, denoted by U0, is then applied to reconstruct 
the local perturbation p . So we conclude the algorithm for the inverse scattering problem.

Algorithm 3. Numerical method for the inverse problem.

Input: Cauchy data (us
j , ∂νus

j ) generated by point sources located at xj ;
Given: Domain D, M is a regular mesh for D.

   1.  Decide J and c0
0 from the sampling method. Move the perturbation to the center by 

x1 �→ x1 − 2πJ .

     Generate the measured date U0 and UL with incident fields ui(x1, x2) and ui(x1 + 2πL, x2).

     Set the initial guess: CM
0 := (c0

0, 0, . . . , 0), DN
0 = 0.

   2. Solve the minimization problem for the fixed DN
0  by algorithm 1:

                F(CM , DN
0 ) = ‖P(CM , DN

0 )− UL‖ → min .
   3. Solving the minimization problem for the fixed C by algorithm 2:

                F(CM , DN) = ‖P(CM , DN)− U0‖ → min .

Then (CM , DN) is the final result of the numerical scheme.
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6. Numerical results

In this section, we present three examples for our numerical method. We define two different 
periodic surfaces and local perturbations:

ζ1(t) = 1.5 +
sin t
24

− cos 2t
16

;

ζ2(t) = 1.5 +
cos t

8
;

ζ3(t) =





1.35, 2π/3 � |t| � π;
1.65, |t| � π/3;
linear, otherwise.

p1(t) = 0.000 25((t + 6π)2 − 9)3 sin

(
π(t + 3)

3

)
X[−3−6π,3−6π](t);

p2(t) = −1 + cos t
8

X[−3+4π,3+4π](t);

p3(t) =




0, 2π/3 � |t| � π;
−0.3, |t| � π/3;
linear, otherwise.

We apply algorithm 3 to the following three examples (see figure 2):

Example 1. The periodic surface Γ is defined by ζ1 and the local perturbation is defined 
by p 1.

Example 2. The periodic surface Γ is defined by ζ2 and the local perturbation is defined 
by p 2.

Example 3. The periodic surface Γ is defined by ζ3 and the local perturbation is defined by 
p 3. Note that in this example, both the periodic surface and the local perturbation are piece-
wise linear.

For both incident point sources and Herglotz wave functions, the measurement data are 
collected on ΓA,H with A = 25π, H = 3 and it is divided into 2Q  =  1500 subintervals with 
the step length hmea = π/300. Let us be the exact data (either the scattered field or its normal 
derivative) on ΓA,H, then the measured data is defined as:

Umeas := us + σmax(us)randn,

where σ = 5% is the noise level and randn presents random numbers from the standard nor-
mal distribution.

6.1. Sampling method

For the sampling method, we choose the sampling area to be a rectangle as 
[−20π, 20π]× [1.2, 1.9]. The number of sampling points in x1-direction and x2-direction are 
set to be M1  =  1600 and M2  =  400, respectively. For the first surface, we put 41 incident point 
sources at yj = ( jπ, 3) with j = −20,−19, . . . , 20. For the second and third surfaces, we put 
21 incident point sources at yj = (2jπ, 3) with j = −10,−9, . . . , 10. The wavenumber is cho-
sen to be k  =  3 for both examples.
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Use the indicator function introduced in (31), we can get a rough reconstruction of the 
original perturbed periodic surfaces in figures 3 and 4. In each figure, we first present the 
profile of the original surface. Then the reconstructed result is given directly by the indicator 

-28 -26 -24 -22 -20 -18 -16 -14 -12 -10
1.3

1.4

1.5

1.6

1.7

1.8

4 6 8 10 12 14 16 18 20
1.3

1.4

1.5

1.6

1.7

-8 -6 -4 -2 0 2 4 6 8
1.3

1.4

1.5

1.6

1.7

(c)(b)(a)

Figure 2. (a) The first surface; (b) the second surface; (c) the third surface.
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Figure 3. (a) The first surface; (b) and (c) the reconstructions.
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function IA(z). Finally, in order to give the initail guess of c0
0 and the integer J of the perturba-

tion, we try to find out the points zmax which get the largest value IA(z) in each vertical line and 
plot them in the last position of each figure.

By the end of the sampling step, we determine the values of J and c0
0. Roughly speak-

ing, J represents the location of the perturbation while c0
0 gives the vertical location of the 

periodic surface. From figures 3–5, the locations of the perturbations are easily obtained, i.e. 
J  =  −3 for example 1, J  =  2 for example 2 and J  =  0 for example 3. The initial guess of c0

0 is 
computed due to (32). By straightforward calculations, we get c0

0 = 1.4987, c0
0 = 1.5216 and 
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1.8

1.9
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Figure 4. (a) The first surface; (b) and (c) the reconstructions.
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c0
0 = 1.5296. All of these two results are very good approximations of the constant terms of 
ζ1, ζ2 and ζ3.

6.2. Newton’s method

For the Newton’s method, the Herglotz wave function is applied as the incident field (see 
figure 6), i.e.

ui(x1, x2) =

∫ π/2

−π/2
exp (ik(x1 sin t − x2 cos t)) g(t)dt,

-60 -40 -20 0 20 40 60
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1.5

1.6

1.7

1.8

1.9
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(b)
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Figure 5. (a) The first surface; (b) and (c) the reconstructions.
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where

g(t) = 212t6(1 − t)6X[0,1](t).

Remark 10. We could not use the point source as the incident fields since the fundamental 

solution Φ(x, y) = i
4 H(1)

0 (k|x − y|) belongs to the space H1
r (Ω

p
H) only if r  <  0. From [13], the 

direct solver introduced in section 2.2 does not converge.

The incident field ui ∈ H1
r (Ω

p
H) for any r ∈ (0, 1). Let L  =  4, then we use two incident 

fields ui and ui
L := ui(·+ 2πL, ·). Let us and us

L be the scattered fields corresponding to the 
incident fields ui and ui

L, and u, uL be the corresponding total fields. From the estimation in 
section 3, the error between uL

T := u ◦ Φp and uL
0, which is the total field with incident field ui

L 
and the periodic surface, is bounded by:

∥∥uL
T − uL

0

∥∥
H1(ΩH)

� C|8π|−r−1/2 � 0.008C.

Figure 6. Real- and imaginary-part of the incident field ui.
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Figure 7. Example 1. Left: reconstruction of ζ1; right: reconstruction of p 1. Black 
dotted curves: exact values; red curves: reconstructions.

X Liu and R Zhang Inverse Problems 35 (2019) 114003



19

Note that the noise level is σ = 5%, uL
T  could be treated as a good approximation of uL

0 
although the constant C is unknown.

The parameters in the Newton-CG algorithm are chosen as follows:

h = 1.5, M = 9, N = 8, ε1 = 0.05, ε2 = 0.08.

We apply algorithm 3 to reconstruct the perturbation with the known values J and c0
0 from 

the sampling method. The reconstructions for examples 1–3 are shown in figures 7–9, respec-
tively. From the left pictures of the three figures, the periodic surfaces are well reconstructed; 
based on the results for the periodic surfaces, we can also reconstruct the local perturbations 
very well. However, due to the error from the direct solver, we have to use finer meshes 
to produce measured data for example 3. Note that as Newton-type methods converge very 
fast when the initial value is given close enough to a local minimum, a good choice of the 
initial guess plays an important role in the numerical scheme. With the help of the sampling 
method, we are able to find a good enough initial guess for the periodic surface. With a good 
enough approximation of the first element c0

0 in CM
0 , we have already known the location of 
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Figure 8. Example 2. Left: reconstruction of ζ2; right: reconstruction of p 2. Black 
dotted curves: exact values; red curves: reconstructions.
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Figure 9. Example 3. Left: reconstruction of ζ3; right: reconstruction of p 3. Black 
dotted curves: exact values; red curves: reconstructions.
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the periodic surface, then Newton-CG method converges when both the periodic surface and 
the local perturbation have relatively small oscillations.
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