KIT | KIT-Bibliothek | Impressum | Datenschutz

Ambulatory sleep scoring using accelerometers—distinguishing between nonwear and sleep/wake states

Barouni, Amna; Ottenbacher, Jörg; Schneider, Johannes 1; Feige, Bernd; Riemann, Dieter; Herlan, Anne; El Hardouz, Driss 2; McLennan, Darren
1 FZI Forschungszentrum Informatik (FZI)
2 Institut für Technik der Informationsverarbeitung (ITIV), Karlsruher Institut für Technologie (KIT)

Abstract:

Background. Differentiating nonwear time from sleep and wake times is essential forthe estimation of sleep duration based on actigraphy data. To efficiently analyze large-scale data sets, an automatic method of identifying these three different states is re-quired. Therefore, we developed a classification algorithm to determine nonwear, sleepand wake periods from accelerometer data. Our work aimed to (I) develop a new patternrecognition algorithm for identifying nonwear periods from actigraphy data based onthe influence of respiration rate on the power spectrum of the acceleration signal andimplement it in an automatic classification algorithm for nonwear/sleep/wake states;(II) address motion artifacts that occur during nonwear periods and are known to causemisclassification of these periods; (III) adjust the algorithm depending on the sensorposition (wrist, chest); and (IV) validate the algorithm on both healthy individuals andpatients with sleep disorders.
Methods. The study involved 98 participants who wore wrist and chest accelerationsensors for one day of measurements. They spent one night in the sleep laboratoryand continued to wear the sensors outside of the laboratory for the remainder of theday. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000105991
Veröffentlicht am 21.02.2020
Originalveröffentlichung
DOI: 10.7717/peerj.8284
Scopus
Zitationen: 21
Web of Science
Zitationen: 18
Dimensions
Zitationen: 25
Cover der Publikation
Zugehörige Institution(en) am KIT Universität Karlsruhe (TH) – Einrichtungen in Verbindung mit der Universität (Einrichtungen in Verbindung mit der Universität)
FZI Forschungszentrum Informatik (FZI)
Institut für Technik der Informationsverarbeitung (ITIV)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2020
Sprache Englisch
Identifikator ISSN: 2167-8359
KITopen-ID: 1000105991
Erschienen in PeerJ
Verlag PeerJ
Band 8
Seiten Art. Nr.: e8284
Vorab online veröffentlicht am 02.01.2020
Schlagwörter Acceleration, Accelerometry, Sleep/Wake, Sleep scoring, Non-Wear detection, Ambulatory assessment, Nonwear
Nachgewiesen in Scopus
Web of Science
Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page