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1 Introduction

After the Higgs boson discovery by the ATLAS and CMS collaborations in 2012, the study

of Higgs boson properties has become one of the major research avenues in particle physics.

Since the mass of the Higgs boson has already been precisely measured [1], all couplings

between the Higgs boson and other Standard Model (SM) particles can be accurately

predicted. Nevertheless, these couplings can be modified by New Physics that lies beyond

the SM. Hence, actual measurements of those couplings can provide important constraints

on many extensions of the SM.

The Higgs boson decay into a pair of b-quarks is the most common decay channel of the

Higgs boson and it is essential to many New Physics searches. Indeed, it plays a particularly

important role when considering rare Higgs boson production modes, which benefit from the

large H → bb̄ branching fraction. Although such measurements are often very challenging,

due to overwhelming QCD backgrounds, the H → bb̄ decay has already been observed by

both ATLAS and CMS [2, 3]. The upcoming years of data taking at the Large Hadron

Collider (LHC) will allow for further exploration and use of this Higgs boson decay channel.

In order to fully utilise the data collected at the LHC, a good theoretical understanding

of the H → bb̄ process is required. The next-to-leading order (NLO) QCD corrections have

been available for a long time [4–9]. Currently, corrections to the total decay width are

known up to O(α4
s) in the limit of massless b-quarks [10]. Mass effects at O(α2

s) have been

estimated using a large momentum expansion [11]. Furthermore, the impact of a separate

class of corrections from diagrams arising at O(α2
s) which involve the top-quark Yukawa

coupling has been calculated in the limit of a large top-quark mass [12, 13] as well as for

general values of the masses [14]. Recently, a set of two-loop master integrals required

for mixed QCD-electroweak corrections has been computed [15]. In the limit of massless

b-quarks a number of fully differential next-to-next-to-leading order (NNLO) calculations

of the H → bb̄ decay have been presented [16–19] with first N3LO QCD results appearing

recently [20]. The b-quark mass effects for differential observables have been studied at

NNLO QCD in ref. [21].

In this paper, we present an independent calculation of the b-quark mass effects in the

H → bb̄ decay at NNLO QCD. Although we believe such a calculation is interesting in

its own right and serves as a useful check of the results presented in ref. [21], it is also an

essential step towards studying mass effects in associated Higgs production with a vector

boson, pp → HV → bb̄V . NNLO QCD corrections to this process have already been

studied in the limit of massless b-quarks [18, 19, 22], and large effects, related to radiative
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corrections, have been reported. The impact of the b-quark mass may be sizeable in certain

regions of the phase space. Higher-order effects in that process have also been investigated

using parton showers [23–25]. Another contribution to the Higgs decay width at NNLO

is mediated by top-quark loops. In the context of differential distributions, it has been

discussed in ref. [18] and subsequently investigated in ref. [14]. A consistent treatment of

these contributions requires keeping the b-quark mass finite [18].

We work within the nested soft-collinear subtraction scheme [18, 26–28], which is an

extension of the original sector-improved residue subtraction scheme [29–32]. To incorpo-

rate the b-quark masses into the calculation, we rely on the treatment of massive particles

outlined in ref. [31].

The paper is organised as follows. In section 2 we introduce the notation and discuss the

main steps of the subtraction scheme. We also describe the infrared (IR) poles appearing in

virtual amplitudes and touch upon the relation between the pole and MS Yukawa couplings.

In section 3 and section 4 we review the NLO QCD calculation of the H → bb̄ decay and

present our calculation of the NNLO corrections, including the treatment of the top-quark

induced corrections. Finally, in section 5, we thoroughly test our predictions against results

available in the literature. We summarise our findings in section 6. The appendices contain

a number of expressions used throughout our calculation.

2 General considerations

We are interested in decays of a scalar Higgs boson into a pair of b-quarks. Our goal

is to treat b-quarks as massive particles throughout the calculation and achieve NNLO

accuracy in perturbative QCD while working within the nested soft-collinear subtraction

scheme [18, 26–28].

2.1 Notation

We start with a short introduction that will set the stage for our calculation. We consider

the Higgs boson decaying into a pair of b-quarks

H(q1) −→ b(q2) + b̄(q3) , (2.1)

with q 2
1 = M 2

H and q 2
2 = q 2

3 = m 2
b . The leading order (LO) partial decay width of the

Higgs boson into a pair of b-quarks is

ΓLO =
1

2MH

∫
dΦbb̄(q1)|M(0)

bb̄
|2 , (2.2)

where dΦbb̄(q1) is the two-particle phase-space volume element for the production of two

b-quarks with total momentum q1, and |M(0)

bb̄
|2 is the squared tree-level matrix element.

For brevity, we list only final-state particles in the sub- and superscripts, since the initial

state is always an on-shell Higgs boson at rest. Upon integration we obtain

ΓLO =
Nc

16π
y2
bMHβ

3 , (2.3)

– 2 –



J
H
E
P
0
1
(
2
0
2
0
)
1
8
9

where Nc = 3 is the number of colours, β =
√

1− 4m2
b/M

2
H and yb stands for the b-quark

Yukawa coupling, yb = mb(2
√

2GF )1/2.

The Higgs boson decay width into b-quarks receives radiative corrections that can

be systematically calculated in perturbative QCD. We use the following notation for the

perturbative expansion of the width

Γbb̄ = Γbb̄LO

[
1 +

(αs
π

)
γbb̄1 +

(αs
π

)2
γbb̄2 +O(α3

s)

]
. (2.4)

In eq. (2.4), αs is the MS QCD strong coupling constant defined in a theory with nf = nl+1

quark flavours, where nl is the number of massless flavours.

It is useful to define a shorthand notation that denotes an integral over the Lorentz-

invariant phase space of particles involved in a particular (sub)process. Similar to the

notation in ref. [26], we define

FLM (bb̄X) = dΦbb̄X(q1)|M(0)

bb̄X
|2Fkin(bb̄X) , (2.5)

where bb̄X denotes the constituents of the final state of a considered subprocess, dΦbb̄X(q1)

and |M(0)

bb̄X
|2 stand for the Lorentz-invariant phase-space measure and the squared ampli-

tude of the H → bb̄X process, respectively. The momentum q1 refers to the initial state

Higgs boson, while Fkin is an infrared-safe observable that depends on the kinematical

configuration of the particles involved in the process. We will use the notation

〈A〉 =

∫
dΦA (2.6)

to denote the integration of some quantity A over the phase space, dΦ.

2.2 Outline of the subtraction scheme

One of the challenges in higher-order QCD calculations is the appearance of infrared singu-

larities when massless particles become soft or collinear. Dimensional regularisation [33–37]

can be used to regulate these singularities which show up as poles in the dimensional regu-

larisation parameter ε = (4−d)/2 in both real and virtual amplitudes. For an infrared-safe

observable these poles cancel between real and virtual corrections and collinear factorisa-

tion contributions once the loop and phase-space integrals over the singular regions are

performed [38, 39]. The observables depend on the momenta of the real emission partons

so that numerical integration of the phase-space integrals is desirable from the standpoint

of flexibility and often also required due to the complexity of the observable, which may

involve, e.g., complicated kinematic constraints and jet algorithms.

It follows from the factorisation theorems of QCD that the integrand of the cross-

section, i.e., the combination of squared matrix elements and phase-space measure, scales

as E−1+aε
i dEi in soft limits and as θ−1+bε

ij dθij in collinear limits of massless partons, where

Ei is the energy of the soft parton, θij is the angle between the collinear partons and

a, b ∈ R. Thus, ε acts as a regulator for logarithmic divergences in the real-emission phase-

space integrals. For the numerical integration it is necessary to explicitly extract and cancel
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the poles in ε−1 and to regulate the integrals in such a way that the expansion in ε can be

performed at the integrand level.

A number of methods have been developed to accomplish that. Here, we follow the

nested soft-collinear subtraction scheme [18, 26–28] which is closely related to the sector-

improved residue subtraction scheme [29–32]. As with all subtraction schemes, the general

idea is to introduce subtraction terms for each singular limit which regulate the inte-

grand and to add back these subtraction terms integrated over the unresolved phase space.

Schematically, for an integral of a function F over the phase space, we write

〈F 〉 = 〈F −OF 〉+ 〈OF 〉 , (2.7)

where O is an operator which extracts the asymptotic behaviour of F and the phase space

in a singular limit. The term 〈OF 〉, which is integrated over the unresolved phase space in d

dimensions, then carries explicit poles in ε−1, while the regulated term 〈F−OF 〉 is expanded

in ε at the integrand level. We apply eq. (2.7) recursively to regulate all singular limits.

The nested soft-collinear subtraction scheme consists of the following steps.

1. Introduce subtraction terms for the soft limits. At NNLO this involves up to two

single-soft limits and the double-soft limit.

2. Introduce a partition of unity for the phase space that isolates the collinear limits,

1 =
∑
{p}w{p}, where the sum runs over the sets of partons that can produce collinear

singularities and the functions w{p} go to zero whenever two partons which are not

in p become collinear, thereby regulating integrand in that limit.

3. In each collinear partition, choose a suitable phase-space parametrisation in terms of

angles and energies of the partons that can become unresolved.

4. Use sector decomposition [40–42] to map all singularities to the boundaries of the

region of integration so that the singularities can be easily extracted upon using

eq. (2.7). In order to generate the limits of the matrix elements, we use the standard

QCD factorisation formulae for the soft and collinear limits. All necessary expressions

up to NNLO can be found, e.g., in the appendices of ref. [31].

The H → bb̄ process with massive b-quarks is particularly simple in this context since there

are no triple- or double-collinear limits that involve b-quarks so that step 2 can be avoided.

Moreover, by choosing an appropriate phase-space parametrisation in step 3, the sector

decomposition of step 4 only yields a single collinear subsector.

The calculation will be subdivided into pieces so that the cancellation of ε−1 poles

can be shown without making reference to the explicit form of the matrix elements. In

particular, we will organise the contributions into sets according to the multiplicity of the

resolved final state and the loop order of the matrix elements. By combining this with a

suitable phase-space parametrisation which decouples the integrations over the unresolved

and resolved parts of phase space, we demonstrate pole cancellation for each phase-space

point of the resolved configuration separately. In sections 3 and 4 we explain the application

of this scheme to the H → bb̄ process in greater detail.

– 4 –
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2.3 IR poles of virtual amplitudes

The one- and two-loop virtual amplitudes that we encounter in an NNLO calculation

feature ultraviolet (UV) divergences that can be removed using a suitable renormalisation

procedure. We employ a hybrid scheme in which we renormalise quark and gluon fields, the

quark masses and the Yukawa coupling in an on-shell scheme, while we use the MS scheme

for the strong coupling. The details of our renormalisation choice are described in section A.

At this point, the renormalised amplitudes are free of UV divergences. Nevertheless,

they still contain poles in ε−1 which are of IR origin. These poles can be predicted from

general considerations [43–51]. They factorise in the form

|M〉 = Z|F〉 , (2.8)

where |M〉 is the UV-renormalised amplitude, Z is an operator in colour space which

contains poles in ε−1 and |F〉 is a finite remainder which does not contain any poles.

Expanding all pieces in the strong coupling, we find

|M〉 = |M(0)〉+
αs
4π

(
Z(1)|M(0)〉+ |F (1)〉

)
+
(αs

4π

)2 (
Z(2)|M(0)〉+ Z(1)|F (1)〉+ |F (2)〉

)
. (2.9)

Note that this notation leaves all powers of the strong coupling related to real emissions

implicit inside the amplitudes. On the one hand, we can use eq. (2.9) as a prediction in

order to check the ε−1 poles of the UV-renormalised amplitudes. On the other hand, we

can also use eq. (2.9) to define the finite remainders, i.e.

|F (0)〉 = |M(0)〉 , (2.10)

|F (1)〉 = |M(1)〉 − Z(1)|M(0)〉 , (2.11)

|F (2)〉 = |M(2)〉 − Z(1)|F (1)〉 − Z(2)|M(0)〉 , (2.12)

and express all formulae in terms of these. This is useful for showing pole cancellation since

it allows us to make the pole terms explicit without specifying the matrix elements that

they multiply. The pole terms are multiplied by lower order quantities, as expected. Note

that we only include the ε−1 poles in the definition of the Z operator, cf. refs. [46, 51].

In general, Z is an operator acting on vectors in colour space, which expresses non-

trivial correlations between different colour configurations [51, 52]. However, in our case,

the coefficients can be expressed in terms of simple colour factors since we only require

virtual amplitudes with up to three coloured particles (H → bb̄ and H → bb̄g). The

expansion coefficients Z
(k)

bb̄
for the H → bb̄ process are given by

Z
(1)

bb̄
=

1

2ε
(CFγ

(0)
cusp,Q(v23) + 2γ

(0)
Q ) , (2.13)

Z
(2)

bb̄
=

1

8ε2
(CFγ

(0)
cusp,Q(v23) + 2γ

(0)
Q )(CFγ

(0)
cusp,Q(v23) + 2γ

(0)
Q − 2β0(nl))

+
1

4ε
(CFγ

(1)
cusp,Q(v23) + 2γ

(1)
Q ) +

1

2ε
(CFγ

(0)
cusp,Q(v23) + 2γ

(0)
Q )β0,Q ln

(
µ2
R

m2
b

)
, (2.14)
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where γ
(i)
cusp and γ

(0)
cusp,Q(v23) are the massless and massive cusp anomalous dimensions,

v23 =
√

1−m4
b/(q2 · q3)2, β0(nl) is the zeroth-order coefficient of the QCD β-function with

nl massless flavours, β0(nl) = 11
3 CA −

4
3TFnl and β0,Q = −4

3TF . The γ
(i)
Q denote the

expansion coefficients of the anomalous dimensions of the massive quark and µR is the

renormalisation scale. We collect the necessary formulae in section B.1. For the H → bb̄g

process, where we only need the one-loop amplitude, we find

Z
(1)

bb̄g
=

1

4ε2
(−CAγ(0)

cusp) +
1

2ε

[
γ(0)
g + 2γ

(0)
Q +

(
CF −

CA
2

)
γ

(0)
cusp,Q(v23) (2.15)

−CA
2
γ(0)

cusp

(
ln

(
mbµR

2(q2 · q4)

)
+ ln

(
mbµR

2(q3 · q4)

)
+ 2iπ

)]
.

The gluon anomalous dimension γ
(0)
g is also given in section B.1.

2.4 Phase-space parametrisation

In this section we outline the parametrisation of the real-emission phase space that we em-

ploy throughout the calculation. NNLO corrections to Higgs decays involve contributions

with up to two real emissions accompanying the Born process. In our case, the Born pro-

cess consists of the Higgs boson decaying into massive b-quarks (H → bb̄) and we include

final states with one additional gluon (H → bb̄g) as well as two additional massless partons

(H → bb̄gg or H → bb̄qq̄).1

The guiding principle behind the construction outlined in this section is, first, to

explicitly parametrise the energies and angles that are responsible for the soft and collinear

singularities and, second, to decouple the real-emission phase space from the phase space

of the reduced process once a parton becomes unresolved. We note that we work in the

Higgs boson rest frame throughout the paper.

The phase-space measure for an emission of a single massless parton in d = 4 − 2ε

space-time dimensions reads

[dqi] = (µ2
R)εSε

dd−1qi
(2π)d−1(2Ei)

, (2.16)

where we denote the parton momentum by qi and its energy by Ei. Note that we also

include a global factor (µ2
R)εSε that originates from the strong coupling renormalisation,

see discussion below eq. (A.9). We do not introduce an upper bound on the energy of

the emitted gluon since it naturally appears due to the energy-momentum conserving δ-

function once the measure in eq. (2.16) is considered as a part of a specific process.

Single-emission phase space. We start with the process

H(q1) −→ b(q2) + b̄(q3) + g(q4) , (2.17)

and discuss its phase-space parametrisation.

1The H → bb̄bb̄ contribution is finite. Thus, it can be integrated using standard techniques and we do

not discuss it here.
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The phase-space measure reads∫
dΦbb̄g(q1) =

∫
[dq4]

∫
dΦbb̄(q1 − q4)

= (µ2
R)εSε

∫
dd−2q̂4

2(2π)d−1

∫
dE4(E4)d−3

∫
dΦbb̄(q1 − q4), (2.18)

where dΦbb̄(Q) stands for the Born phase space of the two b-quarks with total momentum

Q, and q̂4 determines the direction of the gluon momentum,

q̂µ4 = qµ4 /E4 . (2.19)

We further parametrise the gluon energy as

E4 = Emax ξ1, (2.20)

with Emax = 1
2β

2MH and β =
√

1− 4m2
b/M

2
H . This finally leads us to

∫
dΦbb̄g(q1) = 21−2εE2

max

(
µ2
R

E2
max

)ε
Sε

∫
dΩ

(2−2ε)
4

2(2π)3−2ε

×
∫ 1

0

dη

(η(1− η))ε

∫ 1

0
dξ1ξ

1−2ε
1

∫
dΦbb̄(q1 − q4) . (2.21)

The dΩ4 element denotes the angular integral over the direction of q̂4. The remaining

angular integrals can be performed using∫
dΩ(a) =

2πa/2

Γ(a/2)
. (2.22)

For a single gluon emission, the only unresolved limit is the single-soft one, i.e. ξ1 → 0.

Obviously, this removes q4 from the overall momentum conservation and the integration

over the unresolved phase space of q4 decouples from the Born phase space. Thus, in that

limit we just replace
∫

dΦbb̄(q1 − q4) by
∫

dΦbb̄(q1) in eq. (2.21).

Double-emission phase space. We now focus on the parametrisation of the H → bb̄gg

phase space. Note that, since we consider b-quarks to be massive, there are no singularities

associated with kinematic configurations where gluons become collinear to b-quarks. There-

fore, we do not need to partition the phase space into subsectors, which are usually neces-

sary to disentangle the collinear singularities. Instead, we work with a global parametrisa-

tion. In this section we focus on the two-gluon emission case since the parametrisation of the

qq̄ emission phase space is nearly identical. We comment on the differences where necessary.

We consider the process

H(q1) −→ b(q2) + b̄(q3) + g(q4) + g(q5) . (2.23)

– 7 –



J
H
E
P
0
1
(
2
0
2
0
)
1
8
9

We denote the sum of the gluon momenta by q45 = q4 + q5. The phase space measure then

reads ∫
dΦbb̄gg(q1) =

∫
[dq4]

∫
[dq5]

∫
dΦbb̄(q1 − q45)

= (µ2
R)2εS2

ε

∫
dd−2q̂4

2(2π)d−1

∫
dd−2q̂5

2(2π)d−1

×
∫

dE4(E4)d−3

∫
dE5(E5)d−3

∫
dΦbb̄(q1 − q45), (2.24)

where the vectors q̂4 and q̂5 determine the directions of the two gluons and the limits of

the energy integrals are so that the whole phase space is covered.

It is convenient to introduce an energy ordering among the gluons by partitioning the

phase space via

1 = Θ(E4 − E5) + Θ(E5 − E4) (2.25)

which leads to the split∫
dΦbb̄gg(q1) =

∫
dΦE4>E5

bb̄gg
(q1) +

∫
dΦE5>E4

bb̄gg
(q1) . (2.26)

Throughout the article, we describe calculations only for the region with E4 > E5; the

other region can easily be covered by performing the same steps with the gluon momenta

swapped, q4 ↔ q5.2 Hence, we parametrise the gluon energies as [32]

E4 = E45,max ξ1

(
1− ξ2

2

)
, E5 = E45,max ξ1

ξ2

2
, (2.27)

where E45,max is to be chosen such that the integration ranges ξ1 ∈ [0, 1] and ξ2 ∈ [0, 1]

span the whole phase space. Using momentum conservation and considering a configuration

where the two b-quarks are produced at threshold, we obtain

E45,max =
MHβ

2

1 +
√

1− β2q̄2
45

, (2.28)

where q̄45 = q45/q
0
45, which is only a light-like momentum when q5 is soft or q4 and q5

are collinear. In this way, we effectively parametrise the sum of the gluon energies (ξ1 =

E45/E45,max) and their ratio (ξ2 = 2E5/E45).

We also explicitly parametrise the angle θ45 between the two gluons as follows

η =
1

2
(1− cos θ45) . (2.29)

The first step in the phase-space construction is to choose a direction for q̂4. Here,

we explicitly parametrise angle θ4 between the emission and the ẑ-axis. Next, we fix the

2Note that thanks to the symmetry between the gluons we have
∫

dΦbb̄gg(q1) = 2
∫

dΦE4>E5

bb̄gg
(q1). How-

ever when considering a qq̄ emission such a simplification may only be used if the symmetry q ↔ q̄ also

holds for the observable under consideration. Otherwise the two parts of the phase space, introduced in

eq. (2.26), have to be considered separately.
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direction of q̂5 relative to q̂4 using the angle θ45 between them and the angle φ which is the

azimuthal angle of q̂5 around the direction of q̂4. Given the directions q̂4 and q̂5 as well as

ξ2, we calculate the vector q̄45 via

q̄45 =

(
1− ξ2

2

)
q̂4 +

ξ2

2
q̂5 . (2.30)

This is sufficient to use eq. (2.28) in order to calculate the upper bound on the energy and

from that also the individual energies E4 and E5, which fully determines q4 and q5. Then

we generate a Born phase-space configuration with invariant mass Q2 = (q1 − q45)2 in its

rest frame; this is a back-to-back configuration of the two b-quarks. Finally, we boost the

Born configuration to have total momentum Q = q1 − q45 in the Higgs rest frame in order

to restore momentum conservation. The corresponding phase-space measure reads∫
dΦE4>E5

bb̄gg
(q1) = 22ε−2(µ2

R)2εS2
ε

×
∫

dΩ
(2−2ε)
4

2(2π)3−2ε

∫ π

0
dθ4(sin θ4)1−2ε

∫
dΩ

(1−2ε)
5

2(2π)3−2ε

∫ 1

0

dη

ηε(1− η)ε

∫ π

0
dφ(sinφ)−2ε

×
∫ 1

0
dξ1

∫ 1

0
dξ2E

4−4ε
45,maxξ

3−4ε
1 ξ1−2ε

2 (2− ξ2)1−2ε

∫
dΦbb̄(q1 − q45) . (2.31)

The unparametrised angles in dΩ4 and dΩ5 can be integrated in the end using eq. (2.22).

The parametrisation shown in eq. (2.31) achieves the desired decoupling of the emission

phase space in unresolved limits. In the collinear (η → 0) and single-soft (ξ2 → 0) limits the

energy bound E45,max simplifies to Emax = 1
2β

2MH and becomes independent of η and ξ2.

In the single-soft limit the momentum q5 decouples from the energy-momentum conserving

δ-function and the integrations over η and ξ2 decouple from the resolved phase space. In the

collinear limit the momentum conservation depends only on the sum of momenta q45, which

is the on-shell momentum of the massless parent parton of the splitting and is independent

of ξ2. Again, the integrations over η and ξ2 decouple from the resolved phase space. Note

that the collinear and the single-soft limits both yield the same resolved configuration. Fur-

thermore, in the double-soft limit, both gluons decouple from the momentum conservation

and the integrals over ξ1, ξ2 and η can be carried out for a fixed Born configuration.

2.5 Pole vs. MS Yukawa coupling

Already in the first calculation of the radiative corrections to the Higgs boson decay rate

to fermions discussed in ref. [4], it has been recognised that the result expressed in terms

of the on-shell Yukawa coupling contains large logarithms in the limit mb/MH � 1. It has

also been shown there that these large logarithms can be avoided by reexpressing the result

in terms of the MS Yukawa coupling evaluated at the renormalisation scale µ = MH .

The Yukawa coupling in the MS scheme yb(µ) is related to the MS mass mb(µ) via

yb(µ) = (2
√

2GF )1/2mb(µ) , (2.32)

where µ is the renormalisation scale. Thus, the relation between the on-shell and MS

Yukawa couplings can be deduced from the corresponding relation between the masses,
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which we need up to O
(
α2
s

)
[53, 54]. It reads

y2
b = y2

b(µ)

[
1 +

(
αs(µ)

π

)
r1(mb, µ) +

(
αs(µ)

π

)2

r2(mb, µ) +O(α3
s)

]
, (2.33)

where the coefficients ri(mb, µ) are presented in section B.2.

Note that we only reexpress the overall Yukawa coupling in this way, but we keep the

mass dependence of the matrix elements and kinematical invariants in terms of the pole

mass, similar to ref. [21].

The total decay width and its expansion coefficients computed with the MS Yukawa

coupling are denoted with a bar, i.e.

Γ
bb̄

= Γ
bb̄
LO

[
1 +

(αs
π

)
γbb̄1 +

(αs
π

)2
γbb̄2 +O(α3

s)

]
, (2.34)

where the expansion coefficients in the two schemes are related by

γbb̄1 = γbb̄1 + r1 , (2.35)

γbb̄2 = γbb̄2 + r1γ
bb̄
1 + r2 . (2.36)

As discussed before, the large logarithmic corrections to the total decay width can

be mitigated by reexpressing the result in terms of the running MS mass of the b-quark.

However, in a fully differential calculation these logarithms partially enter through cor-

rections related to real emissions. In this case, they arise during phase-space integration

of the emission. A priori, since the mass of the b-quark is small compared to the Higgs

mass, one could be worried about possible numerical instabilities when working with a fully

differential calculation. However, it turns out that in our implementation they do not pose

serious numerical problems.

3 H → bb̄ decay at NLO

In this section we briefly describe the calculation of the NLO QCD corrections to the

H → bb̄ decay with massive b-quarks. Although such a calculation is straightforward, we

find it useful to review it in order to clarify our notation and conventions. At this order of

perturbation theory we need to consider real (R) and virtual corrections (V).

Nowadays the fully differential treatment of this decay mode can easily be obtained

using the FKS [55, 56] or Catani-Seymour [52, 57, 58] subtraction schemes. At NLO, our

approach is essentially equivalent to the FKS subtraction method.

3.1 Real contribution

At NLO we consider one real emission in addition to the Born process, which means that

we need to integrate the function

FLM (bb̄g) = dΦbb̄g(q1)|M(0)

bb̄g
|2Fkin(bb̄g) , (3.1)
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over the bb̄g phase space. This integral is divergent in four dimensions, due to the soft sin-

gularity of the gluon. However, there are no collinear singularities since they are regulated

by the b-quark mass.

We define a projection operator that allows us to extract the soft divergence and to

regulate the limit. Given a quantity A that depends on the momenta, we define a projection

operator for the soft limit of momentum q4 as

S4A = lim
ξ1→0

A , (3.2)

where ξ1 refers to the parametrisation of eq. (2.21). We define the operator to act on all

quantities to the right of the S4 symbol, extracting the leading asymptotic behaviour in ξ1

of the quantity A if the actual limit does not exist.

Denoting the identity operation by I, we can immediately write

FLM (bb̄g) = (I − S4)FLM (bb̄g) + S4FLM (bb̄g) , (3.3)

where the first term is now regularised in the soft limit and can be integrated in four

dimensions. The soft singularity is exposed in the second term in eq. (3.3), which therefore

needs to be evaluated in d dimensions. Once the soft limit is taken, the only remaining

dependence on ξ1 in S4FLM (bb̄g) is the leading behaviour ξ−1−2ε
1 . Thus, the ξ1 integration

becomes trivial and the soft singularity manifests itself as an explicit ε−1 pole.

In order to show pole cancellation pointwise in the Born phase space, we split the real

emission contribution into two parts. The finite contribution is given by

2MH 〈dΓF
R(bb̄g)〉 = 〈(I − S4)FLM (bb̄g)〉

=
〈
FLM (bb̄g) + g2

sCF

(
S(0)

22,4 − 2S(0)
23,4 + S(0)

33,4

)
S4[dq4]FLM (bb̄)

〉
. (3.4)

Here, we use the factorisation formula for the soft limit as discussed in section C.2, where

also the eikonal factors S(0)
ij,k are defined. Moreover, we have the unresolved contribution,

which contains the integrated subtraction term and reads

2MH 〈dΓU
R(bb̄g)〉 = 〈S4FLM (bb̄g)〉

= −
〈
g2
sCF

(
S(0)

22,int − 2S(0)
23,int + S(0)

33,int

)
FLM (bb̄)

〉
, (3.5)

with the integrated eikonal factors S(0)
ij,int given in section D.2. Here, the integral over the

unresolved phase space of the gluon was performed and we are only left with the phase-

space integral over the underlying Born process.

3.2 Virtual contribution

For the virtual contribution, the phase-space integration is the same as that for the Born

process, but we need to consider a one-loop virtual amplitude. Although this amplitude

has an ε−1 pole, the singular part can be written as a product of a tree-level matrix element

and a kinematics-dependent coefficient, as indicated in section 2.3. We have

2 Re〈M(0)

bb̄
|M(1)

bb̄
〉 = 2 Re〈M(0)

bb̄
|F (1)

bb̄
〉+ 2 Re(Z

(1)

bb̄
)〈M(0)

bb̄
|M(0)

bb̄
〉 , (3.6)
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where the term with the Z operator contains an explicit ε−1 pole, while the second term

is finite. As a shorthand we introduce

F fin
LV (bb̄) = dΦbb̄(q1)

(αs
4π

)
2 Re〈M(0)

bb̄
|F (1)

bb̄
〉Fkin(bb̄) . (3.7)

Accordingly, we define two contributions to the virtual correction: the virtual finite

contribution

2MH 〈dΓF
V(bb̄)〉 = 〈F fin

LV (bb̄)〉 (3.8)

and the virtual unresolved contribution

2MH 〈dΓU
V(bb̄)〉 =

〈(αs
4π

)
2 Re(Z

(1)

bb̄
)FLM (bb̄)

〉
. (3.9)

The expansion coefficients of the Z operator are given in eq. (2.13).

3.3 Pole cancellation

At this point we can combine all contributions that enter the NLO calculation. We remind

the reader that the dΓF
R(bb̄g) and dΓF

V(bb̄) terms are free of ε−1 poles, while the dΓU
R(bb̄g)

and dΓU
V(bb̄) terms feature ε−1 poles.

Expanding the explicit results for the real unresolved contribution from eq. (3.5) up

to O
(
ε−1
)

we find

2MH 〈dΓU
R(bb̄g)〉 =

1

ε

[(αs
4π

)
4CF

[
1 +

1 + β2

2β
log

(
1− β
1 + β

)]
〈FLM (bb̄)〉

]
+O

(
ε0
)
. (3.10)

Analogously, the virtual unresolved contribution, defined in eq. (3.9), yields

2MH 〈dΓU
V(bb̄)〉 = −1

ε

[(αs
4π

)
4CF

[
1 +

1 + β2

2β
log

(
1− β
1 + β

)]
〈FLM (bb̄)〉

]
. (3.11)

Note that the constant term in ε is absent since our definition of the Z operator of eq. (2.8)

includes only ε−1 poles.

Obviously, the poles of the two contributions cancel. A crucial part of the argument

is to notice that the dΓU
R(bb̄g) part, after integrating out the real emission, is a function

of a Born-like phase-space configuration, as is the dΓU
V(bb̄) contribution. This allows us

to demonstrate the pole cancellation for any point of the dΦbb̄ phase space and without

specifying the explicit form of the LO matrix element.

4 H → bb̄ decay at NNLO

We now consider the NNLO QCD corrections to the H → bb̄ process keeping the full

dependence on the b-quark mass. To this end, we need to consider several contributions

including

• the double-real contribution (RR) — where the leading-order decay is accompanied

by an emission of a pair of massless partons (H → bb̄gg and H → bb̄qq̄) or an

additional pair of b-quarks (H → bb̄bb̄);
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• the real-virtual contribution (RV) — where we consider one-loop virtual corrections

to the process H → bb̄g;

• the double-virtual contribution (VV) — where we consider two-loop virtual correc-

tions to the Born process H → bb̄.

Except for the H → bb̄bb̄ subprocess, all these contributions are divergent in four dimen-

sions, due to soft and collinear singularities. For that reason, we follow the general method

recapitulated in section 2.2 and adopt a subtraction scheme that allows us to regulate all

singular limits and treat the divergent integrals analytically in d = 4− 2ε dimensions.

Apart from these divergent contributions we distinguish the subprocess H → bb̄bb̄

which enters the calculation at O
(
α2
s

)
. Indeed, this subprocess is finite in four dimensions

because of the non-zero b-quark mass. Hence, it does not require any regularisation. It

is calculated by directly integrating the squared tree-level amplitude over the phase space

dΦbb̄bb̄. In our implementation we use the sequential algorithm [59] to generate kinematic

configurations and the phase-space measure.

Finally, a distinct class of corrections to the H → bb̄ decay that appears at second

order of perturbation theory is related to Feynman diagrams where the H → bb̄ or H → bb̄g

transition is induced by the Higgs boson coupling to gluons via a top-quark loop. This

contribution is finite on its own and, hence, can be studied separately — we defer the

discussion of these top-quark mediated corrections to section 4.5.

All tree-level amplitudes that we use in this paper are calculated using the spinor-

helicity formalism.3 The treatment of massive external particles follows along the lines of

appendix A of ref. [61]. The one-loop amplitudes are calculated using a combination of

Passarino-Veltman reduction [62], to express them through one-loop scalar integrals, and

spinor-helicity techniques, to treat spinor structures appearing in the amplitudes. The

one-loop scalar integrals are evaluated using the library QCDLoop [63, 64]. We assemble

the two-loop using the two-loop scalar heavy-quark form factor from ref. [65]; equivalent

results can be obtained using the expressions from ref. [66]. The form factor is expressed

in terms of harmonic polylogarithms [67], which we evaluate using HPLOG [68].

It is useful to stress that we show cancellation of all ε−1 poles without referring to the

specific form of the matrix elements. The expressions for all amplitudes are only needed

to calculate finite corrections to the considered process and, hence, we restrict ourselves to

the construction of only four-dimensional matrix elements.

4.1 Double-real contribution

In this section we only focus on the H → bb̄gg and H → bb̄qq̄ subprocesses. The H → bb̄bb̄

process is completely finite on its own and does not require any regularisation procedure.

For the record we write

2MH 〈dΓbb̄bb̄〉 = 〈FLM (bb̄bb̄)〉 , (4.1)

where the shorthand FLM (bb̄bb̄) is introduced in eq. (2.5).

3For a review, see e.g. ref. [60].
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Thanks to the non-zero b-quark mass, the singularity structure of the double-real

contribution is simple. Indeed, we only need to take into account three possible limits:

• the soft limit (S5) — where the energy of one of the partons vanishes, i.e. ξ2 → 0;

• the double-soft limit(S45) — where the energies of both additional partons vanish at

a similar rate, i.e. ξ1 → 0;

• the collinear limit (C45) — where the momenta of the two additional partons become

collinear to each other, i.e. η → 0.

The variables ξ1, ξ2 and η refer to the parametrisation introduced in eq. (2.31).

We define projection operators that allow us to extract divergences in each of the

singular regions. Given a quantity A which depends on the momenta of the b-quarks and

gluons, we define the action of the projection operators as follows

S45A = lim
ξ1→0

A , S5A = lim
ξ2→0

A , C45A = lim
η→0

A . (4.2)

Again, we note that taking limits in eq. (4.2) should be understood as extracting the most

singular part of the quantity A in a particular limit whenever the limit in the conventional

sense does not exist.

With these operators, we construct a nested subtraction formula which extracts all

singularities of the double-real contribution,

FLM (bb̄gg) = (I − S45)FLM (bb̄gg) + S45FLM (bb̄gg)

= (I − S5)(I − S45)FLM (bb̄gg) + S5(I − S45)FLM (bb̄gg) + S45FLM (bb̄gg)

= (I − S5)(I − S45)(I − C45)FLM (bb̄gg) + S5(I − S45)(I − C45)FLM (bb̄gg)

+ (I − S5)(I − S45)C45FLM (bb̄gg) + S5(I − S45)C45FLM (bb̄gg)

+ S45FLM (bb̄gg) . (4.3)

To derive eq. (4.3), we start by regularising the double-soft singularity (S45), followed

by further regularisation of the single-soft limit (S5). In the last step we introduce a

subtraction term for the collinear singularity (C45). Moreover, as these operators commute

with each other [26], we have a freedom to choose which limit to take first. Note that in

eq. (4.3) we start with the collinear limit, where appropriate, having in mind the simplicity

of the corresponding factorisation formulae.

We subdivide eq. (4.3) into separate contributions according to the final state multi-

plicity. This allows us to discuss pole cancellation for each of these contributions separately.

The first term on the right-hand side of eq. (4.3) represents the fully regulated double-

real contribution. Therefore, it can be evaluated in four dimensions using standard numer-

ical techniques. We write

2MH 〈dΓF
RR(bb̄gg)〉 = 〈(I − S5)(I − S45)(I − C45)FLM (bb̄gg)〉 , (4.4)

and similarly for the qq̄ emission

2MH 〈dΓF
RR(bb̄qq̄)〉 = nl 〈(I − S45)(I − C45)FLM (bb̄qq̄)〉+ (q ↔ q̄) , (4.5)
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where nl is the number of massless quark flavours and the last term corresponds to the

phase-space region with E5 > E4. Note that in case of the qq̄ emission we do not subtract

the single-soft limit (S5) since this limit is not singular in case of a g → qq̄ splitting. The

explicit form of the subtraction terms generated by the limit operators can be constructed

using the factorisation formulae collected in section C.

The next three terms on the right-hand side of eq. (4.3) are regulated in the double-soft

limit, but they are evaluated in at least one of the other two limits (C45 or S5). As this leaves

one of the real emissions unresolved, we call this contribution single-unresolved. Since we

perform the integral over [dq5] analytically, we do not need to further regulate the S5 and

C45 limits. Thus, we rearrange these terms such that for the gluon emissions they read

2MH dΓSU
RR(bb̄gg) =

〈(
S5(I − S45)(I − C45) + (I − S5)(I − S45)C45

+ S5(I − S45)C45

)
FLM (bb̄gg)

〉
=
〈(
S5(I − S45) + (I − S45)C45 − S5(I − S45)C45

)
FLM (bb̄gg)

〉
=
〈
g2
s

(
P(0)
gg,int − P

(0),soft
gg,int + CA(S(0)

24,int + S(0)
34,int − S

(0)
23,int)

−CF (S(0)
22,int − 2S(0)

23,int + S(0)
33,int)

)
(ξ1/2)−2ε(I − S4)FLM (bb̄g)

〉
. (4.6)

For the qq̄ emission, we obtain

2MH 〈dΓSU
RR(bb̄qq̄)〉 = 2nl 〈(I − S45)C45FLM (bb̄qq̄)〉

= 2nl

〈
g2
sP

(0)
qq̄,int(ξ1/2)−2ε(I − S4)FLM (bb̄g)

〉
, (4.7)

where we use the fact that in the collinear limit any infrared-safe observable must be sym-

metric under q ↔ q̄, which leads to the factor 2 in eq. (4.7). To get from the first to the

second lines of eqs. (4.6) and (4.7), we use the factorisation formulae given in section C and

integrate them over the unresolved phase space [dq5], which yields the integrated splitting

functions P(0)
ij,int and the integrated eikonal factors S(0)

ij,int. Their calculation is described

given in section D. The soft-regulated matrix element (I − S4)FLM (bb̄g) has the same form

as the real finite contribution at NLO, eq. (3.4).

Finally, the last term in eq. (4.3) is evaluated in the double-soft limit. In this case,

both partons are unresolved and we call this contribution double-unresolved. We find

2MH 〈dΓDU
RR(bb̄gg)〉 = 〈S45FLM (bb̄gg)〉

=
〈
g4
sDSoft

(0)
gg,int(q2, q3)FLM (bb̄)

〉
, (4.8)

2MH 〈dΓDU
RR(bb̄qq̄)〉 = 2nl 〈S45FLM (bb̄qq̄)〉

= 2nl

〈
g4
sDSoft

(0)
qq̄,int(q2, q3)FLM (bb̄)

〉
. (4.9)

The double-soft emissions decouple from the hard process and the whole term can be writ-

ten as a product of the double-soft function and the Born matrix element. After performing

the integration over the momenta of the soft partons, we denote the integrated double-soft

function as DSoft
(0)
ij,int(q2, q3). Details of this calculation are presented in section D.4.
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4.2 Real-virtual contribution

We need to consider the H → bb̄g amplitude at one-loop level and integrate its product

with the tree-level amplitude for the H → bb̄g process over the phase space dΦbb̄g. In the

following, we use the shorthand

FLV (bb̄g) = dΦbb̄g(q1)
(αs

4π

)
2 Re〈M(0)

bb̄g
|M(1)

bb̄g
〉Fkin(bb̄g) . (4.10)

As for the real contribution at NLO, we regulate the soft singularity using the soft

limit operator S4 defined in eq. (3.2) and find

FLV (bb̄g) = (I − S4)FLV (bb̄g) + S4FLV (bb̄g) . (4.11)

We split the one-loop amplitude into a singular part, containing all ε−1 poles from loop

integrals, and a finite remainder, see section 2.3. We write

2 Re〈M(0)

bb̄g
|M(1)

bb̄g
〉 = 2 Re(Z

(1)

bb̄g
)〈M(0)

bb̄g
|M(0)

bb̄g
〉+ 2 Re〈M(0)

bb̄g
|F (1)

bb̄g
〉 , (4.12)

where the coefficient of the Z operator is given in eq. (2.15) and the second term contains

the finite remainder of the one-loop amplitude defined in eq. (2.10).

In total, we split the calculation into four contributions, which need to be combined

with the corresponding terms from the double-real and double-virtual contributions to

show pole cancellation. The first one is given by the soft-regulated terms containing the

finite remainder of the H → bb̄g matrix element. It is free of ε−1 poles and thus we refer

to it as the real-virtual finite contribution. It reads

2MH 〈dΓF
RV〉 = 〈(I − S4)F fin

LV (bb̄g)〉

=
〈
F fin
LV (bb̄g)

+ g2
sCF (S(0)

22,4 − 2S(0)
23,4 + S(0)

33,4) (4.13)

×
(
S4[dq4]F fin

LV (bb̄) +
(αs

4π

) [
R(1)

23,4 + Z
(1)
A + Z(1)

αs

]
ε0
S4[dq4]FLM (bb̄)

)〉
,

where the necessary formulae for the factorisation of the one-loop matrix element in the

soft limit are given in section C and the renormalisation constants ZA and Zαs are given

in section A. The notation [. . .]ε0 indicates that the O
(
ε0
)

term of the expression between

the brackets should be taken. We use F fin
LV (bb̄g) in analogy to the definition in eq. (3.7).

The corresponding term containing the soft-regulated Z operator for the H → bb̄g

process is called real-virtual single-unresolved contribution and is given by

2MH 〈dΓSU
RV〉 =

〈(αs
4π

)
(I − S4) 2 Re(Z

(1)

bb̄g
)FLM (bb̄g)

〉
=
〈(αs

4π

)
2 Re(Z

(1)

bb̄g
)FLM (bb̄g)

+ g2
s

(αs
4π

)
CF (S(0)

22,4 − 2S(0)
23,4 + S(0)

33,4)

×
([
R(1)

23,4 + Z(1)
αs

+ Z
(1)
A

]
poles

+ 2 Re(Z
(1)

bb̄
)

)
S4[dq4]FLM (bb̄)

〉
, (4.14)

where the subscript “poles” refers to taking only the pole terms up to O
(
ε−1
)

into account.

– 16 –



J
H
E
P
0
1
(
2
0
2
0
)
1
8
9

The remaining two contributions are evaluated in the soft limit and are integrated

over the unresolved phase space [dq4]. The integrated subtraction term containing the

finite remainder carries the superscript FR and reads

2MH 〈dΓFR
RV〉 = 〈S4F

fin
LV (bb̄g)〉

= −
〈
g2
sCF

(
S(0)

22,int − 2S(0)
23,int + S(0)

33,int

)
F fin
LV (bb̄)

〉
. (4.15)

Again, the S(0)
ij,int correspond to integrated eikonal factors discussed in section D.2.

Finally, the contribution containing the soft limit of the Z operator integrated over

the unresolved phase space is referred to as the real-virtual double-unresolved contribution.

We obtain

2MH 〈dΓDU
RV 〉 =

〈(αs
4π

)
S4 2 Re(Z

(1)

bb̄g
)FLM (bb̄g)

〉
=
〈
g2
s

(αs
4π

)
CF

(
R(1)

int −
[
Z(1)
αs

+ Z
(1)
A + 2 Re(Z

(1)

bb̄
)
]

× (S(0)
22,int − 2S(0)

23,int + S(0)
33,int)

)
FLM (bb̄)

〉
. (4.16)

The integrated one-loop soft function R(1)
int is defined and calculated in section D.3.

4.3 Double-virtual contribution

For the H → bb̄ process, the virtual corrections are described by a single form factor,

|Mbb̄〉 = Fs(M
2
H ,m

2
b , µ

2
R)|M(0)

bb̄
〉 . (4.17)

In eq. (4.17), |M(0)

bb̄
〉 is the tree-level H → bb̄ amplitude, and Fs is the scalar heavy-quark

form factor, which can be computed perturbatively as

Fs(M
2
H ,m

2
b , µ

2
R) = 1 +

(
αs(µ

2
R)

4π

)
F (1)
s (M2

H ,m
2
b , µ

2
R)

+

(
αs(µ

2
R)

4π

)2

F (2)
s (M2

H ,m
2
b , µ

2
R) +O

(
α3
s

)
. (4.18)

The expansion coefficients F
(k)
s depend on Higgs and b-quark masses, the renormalisation

scale µR and the regulator ε. The two-loop heavy-quark form factor was computed in

ref. [66] up to ε0 terms and to higher orders in ε in refs. [69] and [65]. In our calculation

we use the results of ref. [65].

We again use the Z operator to split the double-virtual correction into divergent

terms, that contain all ε−1 poles, and a finite remainder. In this case, given the func-

tions F
(1)
s (M2

H ,m
2
b , µ

2
R) and F

(2)
s (M2

H ,m
2
b , µ

2
R) we reconstruct the finite remainders |F (1)

bb̄
〉

and |F (2)

bb̄
〉 using the definition in eq. (2.10). We also checked that all ε−1 poles of the form

factor are in agreement with the Z operator prediction of eqs. (2.13) and (2.14). The finite

double-virtual contribution reads

2MH 〈dΓF
VV(bb̄)〉 =

〈(αs
4π

)2
dΦbb̄

[
2 Re〈M(0)

bb̄
|F (2)

bb̄
〉+ 〈F (1)

bb̄
|F (1)

bb̄
〉
]
Fkin(bb̄)

〉
. (4.19)
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Furthermore, we distinguish two contributions that contain all ε−1 poles. First, we

have a term that is proportional to the finite remainder of the one-loop H → bb̄ matrix

element. It is given by

2MH 〈dΓFR
VV〉 =

〈(αs
4π

)
2 Re(Z

(1)

bb̄
)F fin

LV (bb̄)
〉
. (4.20)

The other contribution containing ε−1 poles comes with the Born H → bb̄ matrix element;

it reads

2MH 〈dΓDU
VV〉 =

〈(αs
4π

)2
(

2 Re(Z
(2)

bb̄
) + Z

(1)

bb̄

†
Z

(1)

bb̄

)
FLM (bb̄)

〉
. (4.21)

The expansion coefficients of the Z operator are given in eqs. (2.13) and (2.14).

4.4 Pole cancellation

After collecting formulae for all NNLO contributions in the preceeding subsections, we

demonstrate pole cancellation. We begin by considering dΓFR = dΓFR
RV + dΓFR

VV. From the

real-virtual contribution, eq. (4.15), we obtain the pole term

2MH 〈dΓFR
RV(bb̄g)〉 =

1

ε

[(αs
4π

)
4CF

[
1 +

1 + β2

2β
log

(
1− β
1 + β

)]
〈F fin

LV (bb̄)〉
]

+O
(
ε0
)
, (4.22)

and the explicit expansion of the double-virtual contribution, eq. (4.20), yields

2MH 〈dΓFR
VV(bb̄)〉 = −1

ε

[(αs
4π

)
4CF

[
1 +

1 + β2

2β
log

(
1− β
1 + β

)]
〈F fin

LV (bb̄)〉
]
, (4.23)

which obviously cancels in the sum with eq. (4.22).

For the single-unresolved contribution we have dΓSU = dΓSU
RR + dΓSU

RV. The double-real

contribution, eqs. (4.6) and (4.7), has an expansion which can be cast into the form

2MH 〈dΓSU
RR(bb̄gg + bb̄qq̄)〉

=

〈(αs
4π

)[2CA
ε2

+
1

ε

[
4CF + β0(nl) +

CA − 2CF
v23

log

(
1 + v23

1− v23

)
(4.24)

+ 2CA log

(
mbµR

2(q2 · q4)

)
+ 2CA log

(
mbµR

2(q3 · q4)

)]]
(I − S4)FLM (bb̄g)

〉
+O

(
ε0
)
.

A similar expansion holds for the real-virtual single-unresolved contribution, eq. (4.14),

2MH 〈dΓSU
RV(bb̄g)〉

=

〈(αs
4π

)[
−2CA

ε2
− 1

ε

[
4CF + β0(nl) +

CA − 2CF
v23

log

(
1 + v23

1− v23

)

+ 2CA log

(
mbµR

2(q2 · q4)

)
+ 2CA log

(
mbµR

2(q3 · q4)

)]]
(I − S4)FLM (bb̄g)

〉
. (4.25)

As before, the poles of the two contributions cancel.
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CDU,(−3)
CFCA

CDU,(−2)
CFCA

CDU,(−2)

C2
F

CDU,(−2)
CF TFnl

CDU,(−1)
CFCA

CDU,(−1)

C2
F

CDU,(−1)
CF TFnl

CDU,(−1)
CF TF

RR −22.11 −279.75 +244.32 +14.74 −1777.55 +2672.58 +185.77 0

RV +22.11 +320.28 −488.64 −29.47 +1732.44 −2672.58 −161.20 +257.20

VV 0 −40.53 +244.32 +14.74 +45.11 0 −24.56 −257.20

Sum 10−13 10−10 10−8 10−11 10−6 10−6 10−5 0

Rel. canc. 10−14 10−13 10−11 10−13 10−10 10−9 10−7 0

Table 1. Numerical values of the pole coefficients of the double-unresolved term as defined in

eq. (4.27). The numerical values correspond to mb = 4.78 GeV, MH = 125.09 GeV and the

renormalisation scale is µR = 3MH . Each column corresponds to a particular colour structure of a

given ε pole. The three rows correspond to the double-real, real-virtual, and double-virtual contri-

butions. In the last two rows, we report the absolute and relative level of cancellation after adding

up RR + RV + VV contributions. The last row is normalised to the largest value of each column.

Finally, we turn to the double-unresolved contribution, given by dΓDU = dΓDU
RR +

dΓDU
RV +dΓDU

VV. The real-virtual and double-virtual contributions are known analytically, but

we only have numerical results for the double-real contribution at our disposal. Therefore,

we demonstrate pole cancellation numerically. We write the pole terms as

〈dΓDU〉 =
(αs

4π

)2
[
CDU,(−3)

ε3
+
CDU,(−2)

ε2
+
CDU,(−1)

ε

]
〈FLM (bb̄)〉+O

(
ε0
)
, (4.26)

and further subdivide the pole coefficients according to colour factors,

CDU,(k) = CFCA CDU,(k)
CFCA

+ C 2
F C

DU,(k)

C2
F

+ CFTFnl C
DU,(k)
CFTFnl

+ CFTF CDU,(k)
CFTF

. (4.27)

We list numerical values for these pole coefficients in table 1. The pole cancellation reported

in the last row occurs to at least 7 to 8 significant digits which proves pole cancellation in

the double-unresolved term.

4.5 Top-quark contribution to the H → bb̄ decay

An additional contribution that enters the H → bb̄ decay process at O(α2
s) is related to

diagrams where the Higgs boson couples to two gluons via a top-quark loop and the final

state b-quarks are generated by a gluon splitting. The corresponding diagrams are shown

in figures 1a and 1b and their contributions to the decay rate are separately finite. This

contribution to the total H → bb̄ width has been computed in refs. [12, 13] as an expansion

in powers of xt = (M2
H/m

2
t ). An exact result, incorporated into a fully differential calcu-

lation, has been recently published in ref. [14]. At the level of the total decay width, the

differences between the approximate and the exact results are very small for realistic Higgs

and top-quark masses. Since we aim at testing our calculation against results reported in

ref. [21], we will use the result of ref. [12] to include the top-quark contribution.

Note that this contribution should naively scale with one power of yb and one power

of yt, hence we refer to this as the ybyt contribution. However, the amplitudes of figure 1

can interfere with the respective Born amplitudes only if a helicity flip occurs on one of
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(a) Two-loop H → bb̄ diagram. (b) One-loop H → bb̄g diagram.

Figure 1. The top-Yukawa contributions to the H → bb̄ and H → bb̄g amplitudes. The solid thick

lines represent a top quark while the thin solid lines denote the external b-quarks.

the b-quark lines. This mechanism provides an additional power of mb. Moreover, the top-

quark loop leads to a suppression factor of 1/mt, which makes the overall scaling of the ybyt
contribution similar to all other terms, i.e. proportional to a square of the b-quark mass.

We write the ybyt contribution to the total decay width as [12]

Γybyt = ΓLO

(αs
π

)2
γybyt2 , (4.28)

where

γybyt2 = β−3
(
fS,02 + xtf

S,1
2 + x 2

t f
S,2
2 + x 3

t f
S,3
2 +O(x 4

t )
)

(4.29)

and the coefficients fS,k2 are given in eq. (2) of ref. [12]. The factor of β−3 appears since

the normalisation factor in eq. (4.28) involves the LO width for the massive b-quarks, in

contrast to ref. [12].

Since the contribution in eq. (4.28) starts only at O(α2
s), changes due to decoupling,

eq. (A.12), or due to translating the on-shell Yukawa coupling to the MS scheme, eq. (2.33),

are of higher order in αs and are discarded.

The real-virtual amplitude related to the diagram in figure 1b is computed using the

same techniques as the remaining one-loop amplitudes. The double-virtual amplitude of

figure 1a is obtained from the result of ref. [12], see eq. (4.28), by subtracting the integrated

real-virtual contribution of figure 1b.

5 Results

In this section, we summarise our calculation and present results for the total decay width

of the H → bb̄ decay and a selection of jet rates. We compare these predictions to results

already available in the literature. The main goal is to scrutinise our calculation as much

as possible to ensure its correctness.

The value of the strong coupling is set to αs(MZ) = 0.1181 with MZ =

91.1876 GeV [59]. The evolution is performed at two-loop order with five active flavours

using the package RunDec [70, 71]. We use a value for the Higgs boson mass of

MH = 125.09 GeV [1]. As a starting point for the b-quark mass, we use mb(µ = mb) =

4.18 GeV [59]. From this we calculate the pole mass mb = 4.78 GeV, using the two-loop

matching formula at a matching scale of µ = mb(mb) implemented in the package RunDec.
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For the value of the Fermi constant we use GF = 1.166378× 10−5 GeV−2 [59]. The central

renormalisation scale is taken to be equal to the mass of the Higgs boson, µR = MH , and

for the scale uncertainty estimation we vary it by a factor of 1/2 and 2.

5.1 Overview of the calculation

We combine all contributions discussed in sections 3 and 4 to obtain the full NLO and

NNLO results. At leading order in QCD we have

2MH 〈dΓbb̄LO〉 = 〈FLM (bb̄)〉 . (5.1)

At NLO we combine real and virtual corrections

〈dΓbb̄δNLO〉 = 〈dΓR〉+ 〈dΓV〉 , (5.2)

which contain finite and unresolved parts as discussed in section 3. The situation is slightly

more complicated at NNLO where there are more ingredients entering the final result. The

result reads

〈dΓbb̄δNNLO〉 = 〈dΓVV〉+ 〈dΓRV〉+ 〈dΓRR〉+ 〈dΓbb̄bb̄〉+ 〈dΓybyt
bb̄
〉 . (5.3)

The double-virtual, real-virtual and double-real contributions consist of finite, single- and

double-unresolved parts as outlined in section 4.

5.2 Total width of the H → bb̄ decay at NNLO

We start by considering the total width of the decay H → bb̄; this implies using Fkin(bb̄X) =

1. We first present the results using the on-shell Yukawa coupling to compare the NNLO

decay width to a result in the large Higgs mass limit from ref. [11]. Afterwards, we present

the results expressed in terms of the MS Yukawa coupling.

Total width using the on-shell Yukawa coupling. We compare our results for the

total decay width, eq. (2.4), to the predictions of ref. [11], which has been obtained as

an expansion in m2
b/M

2
H . This result was derived for the scenario of a decay of a heavy

scalar boson into a pair of top quarks. Nevertheless, it can immediately be translated

into the H → bb̄ decay rate if we neglect the top-loop mediated contribution, discussed

in section 4.5. Since the results of ref. [11] are presented in terms of the on-shell Yukawa

coupling, we perform the comparison in this scheme.

To scrutinise our results, we split the NLO and NNLO coefficients into independent

colour structures

γbb̄1 = CFγ
CF
1 , (5.4)

γbb̄2 = C2
Fγ

C2
F

2 + CFCAγ
CFCA
2 + CFTFnlγ

CFTFnl
2 + CFTFγ

CFTF
2 . (5.5)

Our findings are summarised in table 2. The first row lists predictions of ref. [11] which are

compared to our predictions in the second row. We see a remarkable consistency between

the two; the discrepancies are at most at the level of our numerical errors. This good
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γCF
1 γ

C2
F

2 γCFCA
2 γCFTFnl

2 γCFTF
2

ref. [11] −7.446648 +19.4192 −53.5558 +18.6286 +14.7946

Our res. −7.446648(7) +19.4199(10) −53.5557(20) +18.6283(2) +14.7945(1)

Table 2. The results for the NLO and NNLO coefficients of the total decay width split into

independent colour structures. The renormalisation scale is set to µR = MH . The uncertainties

quoted for our results correspond to errors from numerical integration. We note that the results do

not include the ybyt contribution.

agreement is related to the smallness of the expansion parameter in case of a Higgs decay

to b-quarks, (m2
b/M

2
H) ≈ 0.00146.

Note that the numerical values of the NNLO coefficients are much larger than those of

the NLO coefficients. Since this is only partially compensated by the additional power of

the strong coupling, (αs/π), the NNLO correction in this scheme still amounts to a sizeable

change of the total decay width. This behaviour is closely related to large quasi-collinear

logarithms, L = log(mb/MH), discussed in section 2.5. As already indicated, this issue can

be mitigated by reexpressing the results in terms of the MS Yukawa coupling.

Total width using the MS Yukawa coupling. We now express the total decay width

in terms of the MS coupling, as defined in eq. (2.34). We use mb(µ = mb) = 4.18 GeV as

an input parameter [59] and evolve the MS mass with the RunDec package [70, 71]. We

obtain

mb

(
1

2
MH

)
= 2.9814 GeV , mb(MH) = 2.8095 GeV , mb(2MH) = 2.6641 GeV . (5.6)

The evolution is performed with nf = 5 active flavours at two-loop order. We use these

values to evaluate the MS Yukawa coupling. The NLO and NNLO coefficients together

with a prediction for a total decay width are presented in table 3. We first discuss the

results without the top-quark contribution, described in section 4.5. For comparison, we

also include the NLO and NNLO coefficients obtained analytically in the limit of massless

b-quarks given in ref. [72].

We see a reasonably good perturbative convergence of the predictions for the total

decay width, Γ
bb̄

. At the central scale, the NNLO corrections change the NLO result by

a few percent and the NNLO prediction stays within the NLO scale uncertainties. Since

the large quasi-collinear logarithms are removed by switching to the MS Yukawa coupling,

the mass corrections are not large. The difference between the NNLO coefficient of the

massless and massive predictions is at the level of about 4% at the central scale, µR = MH .

Nevertheless, the fully massive treatment of b-quarks is desirable because the cor-

rections related to the top-quark Yukawa coupling cannot be incorporated into a fully

differential calculation with massless b-quarks [18]. Furthermore, it is also important to

study the impact of mass effects on the kinematical distributions related to H → bb̄ decay.

Total decay width including the top-quark contribution. Finally, we incorporate

the top-quark contribution into our predictions, according to the discussion presented in
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µR
1
2MH MH 2MH

γbb̄1 (our res.) +3.023597(10) +5.796203(15) +8.568783(11)

γbb̄1 (Ref. [21]) +3.024 +5.798 +8.569

γbb̄1 (Ref. [72], mb = 0) +2.8941 +5.6667 +8.4393

γbb̄2 (our res., w/o ybyt) −3.2466(31) +30.4376(33) +79.1755(38)

γbb̄2 (our res., with ybyt) +3.7123(31) +37.3965(33) +86.1345(38)

γbb̄2 (Ref. [21], with ybyt) +3.685 +37.371 +86.112

γbb̄2 (Ref. [72], mb = 0) −3.8368 +29.1467 +77.1844

Γ
bb̄
LO [MeV] +2.17005 +1.92702 +1.73274

Γ
bb̄
NLO [MeV] +2.43161 +2.32781 +2.21731

Γ
bb̄
NNLO [MeV] (w/o ybyt) +2.42041(1) +2.40333(1) +2.36344(1)

Γ
bb̄
NNLO [MeV] (with ybyt) +2.44441(1) +2.42059(1) +2.37628(1)

Table 3. The results for the LO, NLO and NNLO total decay width. The total width is calculated

using our results for the expansion coefficients, γbb̄1 and γbb̄2 . For comparison we include correspond-

ing results from ref. [21]. We also provide results in the limit of massless b-quarks from ref. [72],

which do not contain the ybyt contribution. The uncertainties quoted for our results correspond to

errors from numerical integration.

section 4.5. We set the top-quark pole mass to mt = 173.34 GeV [21]. The NNLO coefficient

corresponding to top-quark induced contribution, eq. (4.29), is then γybyt2 = 6.95895 and is

independent of the renormalisation scale. Our predictions are included in table 3.

We see that inclusion of the ybyt contribution increases the total width by about 1.7%

at the central renormalisation scale. A major part of this correction, about 85%, comes

from the real-virtual diagrams of the ybyt contribution, see figure 1b.

Comparing our results for the NLO and NNLO coefficients of the total width to those

given in ref. [21], we find excellent agreement at NLO. The NNLO coefficients agree at the

level of at least 0.7% for µR = MH/2 and at the sub-permill level for the other scales. Note

that for γbb̄2 (µR = MH/2) there are large cancellations when converting from the on-shell

to the MS-scheme Yukawa coupling.

5.3 Jet rates for H → bb̄ at NNLO

We now turn to a discussion of jet rates which provides another stress test of our calculation.

We employ the Durham jet algorithm [73] with the default recombination scheme of the

parton momenta, k(ij) = ki+kj . We use the FastJet [74] implementation. We consider two

cases of the clustering sequence with ycut = 0.01 and ycut = 0.05, to facilitate a numerical

comparison against ref. [21].

Similar to eq. (2.34), we define an expansion of the differential quantities as

Γ
bb̄

(obs) = Γ
bb̄
LO

[
γbb̄0 (obs) +

(αs
π

)
γbb̄1 (obs) +

(αs
π

)2
γbb̄2 (obs) +O(α3

s)

]
, (5.7)
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ycut = 0.01 ycut = 0.05

µR
1
2
MH MH 2MH

1
2
MH MH 2MH

γbb̄
1 (2jet) −5.0559(1) −2.2832(1) +0.4894(1) +0.2903(1) +3.0629(1) +5.8355(1)

γbb̄
1 (2jet) (Ref. [21]) −5.055 −2.282 +0.490 +0.291 +3.063 +5.836

γbb̄
2 (2jet) (w/o ybyt) −60.50(3) −70.68(1) −65.83(2) −25.42(1) −6.59(1) +27.31(1)

γbb̄
2 (2jet) (with ybyt) −56.40(3) −66.58(1) −61.73(2) −19.52(1) −0.69(1) +33.21(1)

γbb̄
2 (2jet) (Ref. [21]) −56.351 −66.532 −61.658 −19.496 −0.650 +33.250

γbb̄
1 (3jet) +8.0794(1) +8.0794(1) +8.0794(1) +2.7333(1) +2.7333(1) +2.7333(1)

γbb̄
1 (3jet) (Ref. [21]) +8.079 +8.079 +8.079 +2.733 +2.733 +2.733

γbb̄
2 (3jet) (w/o ybyt) +34.09(3) +77.96(1) +121.84(2) +21.25(1) +36.09(1) +50.94(1)

γbb̄
2 (3jet) (with ybyt) +36.95(3) +80.82(1) +124.70(2) +22.30(1) +37.15(1) +51.99(1)

γbb̄
2 (3jet) (Ref. [21]) +36.873 +80.741 +124.609 +22.256 +37.096 +51.937

γbb̄
2 (4jet) +23.164(1) +23.163(1) +23.163(1) +0.9323(1) +0.9322(1) +0.9322(1)

γbb̄
2 (4jet) (Ref. [21]) +23.163 +23.163 +23.163 +0.926 +0.926 +0.926

Table 4. The jet rates expansion coefficients γbb̄i (obs) as defined in eq. (5.7) and computed using

the Durham clustering algorithm with ycut = 0.01 and ycut = 0.05 for various choices of the renor-

malisation scale. Whenever necessary, we report results without and with top-quark contributions.

where “obs” denotes a generic observable and the MS quantities are related to their coun-

terparts in the pole scheme via

γbb̄0 (obs) = γbb̄0 (obs) , (5.8)

γbb̄1 (obs) = γbb̄1 (obs) + r1γ
bb̄
0 (obs) , (5.9)

γbb̄2 (obs) = γbb̄2 (obs) + r1γ
bb̄
1 (obs) + r2γ

bb̄
0 (obs) . (5.10)

Note that the sum of expansion coefficients of all relevant jet multiplicities, γbb̄i (njet), yields

the expansion coefficient of the total decay width γbb̄i .

We keep using the setup presented in section 5.2 and report results for the two-, three-

and four-jet rates in table 4. We present these results with and without top-quark contri-

butions whenever relevant, i.e. for the two- and three-jet rate NNLO coefficients. We see

that the NLO coefficient of the three-jet rate and the NNLO coefficient of the four-jet rate

are scale-independent since they involve only tree-level subprocesses. We also observe a mi-

gration of events from higher to lower jet multiplicities when jet-cut parameter is increased.

For the NLO and NNLO coefficients of the jet rates we see agreement between our result

and that of ref. [21] at the level of 0.1% to 0.2% for all quantities considered for ycut = 0.01.

Similar agreement is observed for ycut = 0.05 with the exception of γbb̄2 (2jet, µR = MH),

which however suffers from large cancellations in the course of the on-shell to MS-scheme

conversion, and the four-jet rates.

Finally, in table 5 we present the total jet rates for the central choice of the renormal-

isation scale, µR = MH . We see a clear hierarchy of the jet rates, with the two-jet rate

being the largest and the four-jet rate the smallest for both clustering parameters. This is

more pronounced for the larger jet cut, ycut = 0.05, as expected.
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ycut 0.01 0.05

Γ
bb̄

(2jet) [MeV] 1.60395(4) 2.13710(2)

Γ
bb̄

(3jet) [MeV] 0.75917(4) 0.28118(2)

Γ
bb̄

(4jet) [MeV] 0.05747 0.0023

Table 5. The total jet rates at NNLO for µR = MH using the Durham clustering algorithm with

ycut = 0.01 and ycut = 0.05, including the ybyt contribution.

To conclude, we note that the main objective of this section was to put our NNLO

calculation under a thorough examination. We performed a series of comparisons of our

calculation against various results available in the literature. The positive outcome of these

checks assures us of the validity of our approach.

6 Conclusions

In this paper, we presented an independent calculation of the NNLO QCD corrections to

the Higgs boson decay into massive b-quarks. We worked in the framework of the nested

soft-collinear subtraction scheme introduced in refs. [18, 26–28].

A complete discussion of all necessary NNLO contributions was presented in section 4.

In particular, we demonstrated cancellation of all ε−1 poles, related to soft and collinear

singularities of QCD amplitudes. The cancellation was obtained pointwise in phase space,

without referring to a specific form of the matrix elements. Furthermore, a full treatment

of the b-quark mass allowed for an inclusion of the additional contribution which originates

from a direct interaction of top quarks with the Higgs boson, at a differential level.

Our fully differential calculation was implemented in a computer program. We carefully

tested it by performing a number of cross-checks with results available in the literature both

for the total decay width [11, 21] and jet rates [21].

We note that the calculation presented in this paper is an important step towards a

broader phenomenological goal, namely, combining a description of Higgs boson production

with its decay into massive b-quarks. In the context of associated Higgs production, where

large radiative corrections for important observables have been reported [18, 19, 22], a

thorough study of b-quark mass effects is an interesting topic for future research.
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A Renormalisation

The subtraction scheme that we apply in this calculation is formulated in terms of UV-

renormalised amplitudes. Here, we describe the renormalisation prescriptions used in our

calculation.

We employ a hybrid scheme in which we renormalise the quark and gluon fields, the

quark masses and the Yukawa coupling in an on-shell scheme, whereas we use the MS

scheme with five active flavours for the strong coupling constant. We write

αs,b = (µ2
R)εSεZαsαs , ψ0

b =
√
Zψψb , G0,a

µ =
√
ZAG

a
µ , m0

b = Zmmb , y0
b = Zmyb ,

(A.1)

where Sε = (4π)−ε exp(εγE).4 Due to the choice to enforce the relation yb = mb(2
√

2GF )1/2,

through the renormalisation condition of the Yukawa coupling, the mass and Yukawa cou-

pling share the same renormalisation constant. The remaining renormalisation constants

(for the massless quarks, ghosts and the gauge parameter) do not explicitly appear in our

calculation. The renormalisation of the strong coupling constant requires [75, 76]

Zαs = 1 +
αs
4π
Z(1)
αs

+O
(
α2
s

)
= 1− αs

4π

β0(nl + 1)

ε
+O

(
α2
s

)
, (A.2)

with β0(nl + 1) = 11
3 CA −

4
3TF (nl + 1). The mass and field renormalisation constants for

the massive quark, Zψ and Zm, are given by [77]

Zm = 1 +
αs,b
4π

Z(1)
m +

(αs,b
4π

)2
Z(2)
m +O

(
α3
s,b

)
(A.3)

= 1 +
αs,b
4π

(m2)−εS−1
ε CF

(
−3

ε
− 4− ε

(
8 +

3

2
ζ2

))
+
(αs,b

4π

)2
(m2)−2εS−2

ε

[
C2
F

(
9

2ε2
+

45

4ε
+

199

8
+

(
−51

2
+ 48 ln(2)

)
ζ2 − 12ζ3

)
+ CACF

(
− 11

2ε2
− 91

4ε
− 605

8
+

(
5

2
− 24 ln(2)

)
ζ2 + 6ζ3

)
+CFTF

(
2

ε2
+

7

ε
+

69

2
− 14ζ2

)
+ CFTFnl

(
2

ε2
+

7

ε
+

45

2
+ 10ζ2

)]
+O

(
α3
s,b

)
,

Zψ = 1 +
αs,b
4π

Z
(1)
ψ +

(αs,b
4π

)2
Z

(2)
ψ +O

(
α3
s,b

)
(A.4)

= 1 +
αs,b
4π

(m2)−εS−1
ε CF

(
−3

ε
− 4− ε

(
8 +

3

2
ζ2

))
+
(αs,b

4π

)2
(m2)−2εS−2

ε

[
C2
F

(
9

2ε2
+

51

4ε
+

433

8
+

(
−147

2
+ 96 ln(2)

)
ζ2 − 24ζ3

)
+ CACF

(
− 11

2ε2
− 101

4ε
− 803

8
+

(
49

2
− 48 ln(2)

)
ζ2 + 12ζ3

)
+CFTF

(
4

ε2
+

19

3ε
+

1139

18
− 28ζ2

)
+ CFTFnl

(
2

ε2
+

9

ε
+

59

2
+ 10ζ2

)]
+O

(
α3
s,b

)
.

4This agrees with the renormalisation scheme in [65], but differs from [66] where a different choice for the

renormalisation of the strong coupling is used. Both schemes yield the same result for physical observables,

but differ by terms proportional to ζ2 in IR-divergent intermediate steps; this difference has already been

discussed in ref. [21].
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The gluon field renormalisation constant is non-vanishing in the on-shell scheme due to

heavy-quark loops and reads [78, 79]

ZA = 1 +
αs,b
4π

Z
(1)
A +O

(
α2
s,b

)
= 1 +

αs,b
4π

β0,Q

ε

(
µ2
R

m2
b

)ε
Γ(1 + ε)eεγE +O

(
α2
s,b

)
, (A.5)

with β0,Q = −4
3TF .

For single-virtual and double-virtual amplitudes of the H → bb̄ process we start with

the unrenormalised amplitude calculated from all one-particle-irreducible Feynman dia-

grams. Expanded in terms of the bare strong coupling, we have

|M̂bb̄〉 = |M̂(0)

bb̄
〉+

αs,b
4π
|M̂(1)

bb̄
〉+

(αs,b
4π

)2
|M̂(2)

bb̄
〉+O

(
α3
s,b

)
(A.6)

and together with the LSZ factors we obtain the renormalised amplitude as

|Mbb̄〉 = ZmZψ|M̂bb̄〉+
(αs,b

4π

)2
Z(1)
m |Ĉ

(1)

m,bb̄
〉+O

(
α3
s,b

)
= |M̂(0)

bb̄
〉+

αs
4π

(µ2
R)εSε

[
|M̂(1)

bb̄
〉+ |M̂(0)

bb̄
〉(Z(1)

m + Z
(1)
ψ )
]

+
(αs

4π

)2 [
(µ2
R)εSεZ

(1)
αs

(
|M̂(1)

bb̄
〉+ |M̂(0)

bb̄
〉(Z(1)

m + Z
(1)
ψ )
)

+ (µ2
R)2εS2

ε

(
|M̂(2)

bb̄
〉+ (Z(1)

m + Z
(1)
ψ )|M̂(1)

bb̄
〉

+(Z(2)
m + Z(1)

m Z
(1)
ψ + Z

(2)
ψ )|M̂(0)

bb̄
〉+ Z(1)

m |Ĉ
(1)

m,bb̄
〉
)]

+O
(
α3
s

)
= |M(0)

bb̄
〉+

αs
4π
|M(1)

bb̄
〉+

(αs
4π

)2
|M(2)

bb̄
〉+O

(
α3
s

)
. (A.7)

Here, |Ĉ(1)

m,bb̄
〉 denotes the amplitude of the mass counterterm diagrams and |M(k)

bb̄
〉 denotes

the renormalised amplitude of order αks .

In contrast to the Born process, the real-emission amplitude for H → bb̄g starts at

O (αs), which means that coupling renormalisation already affects the one-loop correction.

In accordance with eq. (2.9) we leave powers of the strong coupling constant related to

real emissions implicit in the amplitude and write the perturbative expansion of the bare

H → bb̄g amplitude as

|M̂bb̄g〉 = |M̂(0)

bb̄g
〉+

αs,b
4π
|M̂(1)

bb̄g
〉+O

(
α3
s,b

)
, (A.8)

In analogy to eq. (A.7), the H → bb̄g process is renormalised via

|Mbb̄g〉 = ZmZψ
√
ZA|M̂bb̄g〉+

αs,b
4π

Z(1)
m |Ĉ

(1)

m,bb̄g
〉+O

(
α3
s,b

)
= (µ2

R)εSε|M̂(0)

bb̄g
〉+

αs
4π

[
(µ2
R)εSεZ

(1)
αs
|M̂(0)

bb̄g
〉

+ (µ2
R)2εS2

ε

(
|M̂(1)

bb̄g
〉+

(
Z

(1)
A

2
+ Z(1)

m + Z
(1)
ψ

)
|M̂(0)

bb̄g
〉+ Z(1)

m |Ĉ
(1)

m,bb̄g
〉

)]
+O

(
α3
s

)
= (µ2

R)εSε

(
|M(0)

bb̄g
〉+

αs
4π
|M(1)

bb̄g
〉
)

+O
(
α3
s

)
. (A.9)
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Note that for the expansion of the renormalised amplitude, we pull out a global factor of

(µ2
R)εSε and we move it to the normalisation of the phase-space measure, see eq. (2.16).

Analogously, the renormalised double-real amplitudes are written as

|Mbb̄gg〉 = (µ2
R)2εS2

ε |M
(0)

bb̄gg
〉+O

(
α3
s

)
, (A.10)

|Mbb̄qq̄〉 = (µ2
R)2εS2

ε |M
(0)

bb̄qq̄
〉+O

(
α3
s

)
. (A.11)

Both for the calculation of the amplitudes and the application of the subtraction

scheme, we choose to work in a theory with nf = nl + 1 active flavours. This amounts

to renormalising the strong coupling with β0(nl + 1) and the gluon field with a non-trivial

renormalisation constant (
√
ZA 6= 1). This procedure takes care of insertions of heavy-

quark loops on gluon into propagators and external gluon legs.

A possible alternative [31] is to formulate the subtraction scheme in a theory where

the strong coupling evolves with nl active flavours. If we calculate the amplitudes in

the renormalisation scheme with nl + 1 active flavours described above, we can use the

decoupling relation [80–86]

α(nl)
s = ζαsα

(nl+1)
s (A.12)

to absorb the effects of the heavy-quark loops into the running of αs. We stress that in

this case, the higher-order terms in ε of the decoupling constant ζαs need to be taken into

account. To O (αs) we need [87]

ζαs = 1 +
α

(nl)
s

4π

β0,Q

ε

[(
µ2
R

m2
b

)ε
Γ(1 + ε)eεγE − 1

]
+O

(
(α(nl)

s )2
)
. (A.13)

The subtraction scheme then operates on amplitudes in a theory with nl active flavours.

Finally, after all IR poles cancel we can use eq. (A.12) in the opposite direction to go back

to the theory with nl + 1 active flavours. The results of this procedure are identical to the

results obtained when working with nl+1 active flavours throughout the whole calculation.

B Useful formulae

For the convenience of the reader, in this appendix, we collect useful formulae that are

available in the literature and are used in our calculation.

B.1 Anomalous dimensions for IR factorisation

Below, we give explicit expressions for the anomalous dimensions that appear in the Z

operator. All of these coefficients were taken from ref. [31]; they can further be traced to

refs. [46, 51].

We write an expansion of the anomalous dimensions in terms of the strong coupling

constant,

γi(αs) =

∞∑
n=0

γ
(n)
i

(αs
4π

)n+1
, (B.1)

where i stands for the type of the anomalous dimension. We report formulae for the massless

and massive cusp anomalous dimensions, heavy-quark and gluon anomalous dimensions.
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The expansion coefficients of the massless cusp anomalous dimension are given by

γ(0)
cusp = 4 , γ(1)

cusp =

(
268

9
− 4

3
π2

)
CA −

80

9
TFnl , (B.2)

with nl being a number of massless quark flavours. For the cusp anomalous dimension of

massive emitters the expansion coefficients depend on

vij =

√
1−

m2
im

2
j

(qi · qj)2
(B.3)

and read

γ
(0)
cusp,Q(v) = γ(0)

cusp

1

v

[
1

2
ln

(
1 + v

1− v

)
− iπ

]
, (B.4)

γ
(1)
cusp,Q(v) = γ(1)

cusp

1

v

[
1

2
ln

(
1 + v

1− v

)
− iπ

]
+ 8CA

{
ζ3 −

5

6
π2 +

1

4
ln2

(
1 + v

1− v

)
+

1

v2

[
1

24
ln3

(
1 + v

1− v

)
+ ln

(
1 + v

1− v

)(
1

2
Li2

(
1− v
1 + v

)
− 5π2

12

)
+Li3

(
1− v
1 + v

)
− ζ3

]
+

1

v

[
5

6
π2 +

5

12
π2 ln

(
1 + v

1− v

)
− 1

4
ln2

(
1 + v

1− v

)
− ln

(
2v

1 + v

)
ln

(
1 + v

1− v

)
− 1

24
ln3

(
1 + v

1− v

)
+ Li2

(
1− v
1 + v

)]
+ iπ

{
1

v2

[
π2

6
− 1

4
ln2

(
1 + v

1− v

)
− Li2

(
1− v
1 + v

)]
+

1

v

[
−π

2

6
+ 2 ln

(
2v

1 + v

)
+ ln

(
1 + v

1− v

)
+

1

4
ln2

(
1 + v

1− v

)]
− ln

(
1 + v

1− v

)}}
(B.5)

Furthermore, the heavy-quark anomalous dimensions are

γ
(0)
Q = −2CF , γ

(1)
Q = CFCA

(
2

3
π2 − 98

9
− 4ζ3

)
+

40

9
CFTFnl , (B.6)

while for gluons we have

γ(0)
g = −β0(nl) = −11

3
CA +

4

3
TFnl . (B.7)

B.2 Coefficients for on-shell to MS-scheme conversion

The coefficients for the conversion relation between the on-shell and MS Yukawa coupling,

defined in eq. (2.33), are given by [21, 88]

r1 = −2d1 , r2 = 3d 2
1 − 2d2 , (B.8)
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and

d1(mb, µ) = −CF
(

1 +
3

4
L

)
, (B.9)

d2(mb, µ) = C2
F

[
7

128
− 3

4
ζ3 + 3 ln(2)ζ2 −

15

8
ζ2 +

21

32
L+

9

32
L2

]
(B.10)

+ CACF

[
−1111

384
+

3

8
ζ3 +

1

2
ζ2 −

3

2
ln(2)ζ2 −

185

96
L− 11

32
L2

]
+ CFTFnl

[
71

96
+

1

2
ζ2 +

13

24
L+

1

8
L2

]
+ CFTF

[
143

96
− ζ2 +

13

24
L+

1

8
L2

]
,

with the abbreviation L = ln
(
µ2/m2

b

)
.

C Factorisation formulae

Here, we collect the factorisation formulae which are necessary to evaluate the singular

limits of the squared matrix elements. We specialise to the H → bb̄g, H → bb̄gg and

H → bb̄qq̄ processes. For a useful collection of factorisation formulae for general NNLO

QCD processes, we refer the reader to ref. [31].

C.1 Single-collinear factorisation

In order to discuss the single-collinear limit of the H → bb̄gg and H → bb̄qq̄ matrix element,

we have to define a perpendicular direction kµ⊥ which determines how the collinear limit is

approached. We choose

kµ⊥ = lim
η→0

q̂5 − q̂4

‖q̂5 − q̂4‖
, (C.1)

where η refers to the phase-space parametrisation in eq. (2.31). Then the factorisation

formula in the single-collinear limit reads

C45|M(0)

bb̄ij
|2 =

g2
s

(q4 · q5)
〈M(0)

bb̄g,µ
|P(0),µν
ij (z, k⊥; ε)|M(0)

bb̄g,ν
〉 , (C.2)

where ij stands for either the gg or qq̄ channel and |M(0)

bb̄g,ν
〉 is the spin-correlated H → bb̄g

amplitude with the gluon polarisation vector removed, i.e.

|M(0)

bb̄g
〉 = (εµ(q4, λ))∗|M(0)

bb̄g,µ
〉 . (C.3)

The splitting functions P(0),µν
ij carry Lorentz indices which are contracted with the corre-

sponding index of the gluon. For the gg and qq̄ channels they read

P(0),µν
gg (z, k⊥; ε) = 2CA

[
−gµν

(
z

1− z
+

1− z
z

)
− 2(1− ε)z(1− z)

kµ⊥k
ν
⊥

k 2
⊥

]
, (C.4)

P(0),µν
qq̄ (z, k⊥; ε) = TF

[
−gµν + 4z(1− z)

kµ⊥k
ν
⊥

k 2
⊥

]
, (C.5)
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with

z =
E4

E4 + E5
= 1− ξ2

2
. (C.6)

As the factorisation formula above indicates, we have to evaluate spin-correlated matrix

elements. In the term where they are contracted with the metric tensor gµν , the result

corresponds to an uncorrelated matrix element via the polarisation sum. This leads to

〈M(0)

bb̄g,µ
|(−gµν)|M(0)

bb̄g,ν
〉 = |M(0)

bb̄g
|2 . (C.7)

For four-dimensional matrix elements, the product kµ⊥|M
(0)

bb̄g,ν
〉 can be linked to helicity

amplitudes using the fact that the perpendicular vector kµ⊥ may be decomposed as

kµ⊥ = −
∑
λ

(ε(q4, λ) · k⊥)(εµ(q4, λ))∗ . (C.8)

This is true since, by construction, kµ⊥ lies in the plane perpendicular to the momentum of

a gluon, q4, which is spanned by the polarisation vectors εµ(q4, λ).

C.2 Single-soft factorisation (tree-level)

In the single-soft limits, the factorisation formulae for the H → bb̄g and H → bb̄gg squared

matrix elements are given by

S4|M(0)

bb̄g
|2 = −g 2

s CF

(
S(0)

22,4 − 2S(0)
23,4 + S(0)

33,4

)
|M(0)

bb̄
|2 , (C.9)

S5|M(0)

bb̄gg
|2 = −g 2

s

[
CF

(
S(0)

22,5 − 2S(0)
23,5 + S(0)

33,5

)
− CA

(
S(0)

24,5 + S(0)
34,5 − S

(0)
23,5

) ]
|M(0)

bb̄g
|2 , (C.10)

where S(0)
ij,k is the usual tree-level eikonal factor

S(0)
ij,k =

(qi · qj)
(qi · qk)(qj · qk)

. (C.11)

C.3 Single-soft factorisation (one-loop)

The soft limit of the one-loop amplitudes with massive quarks has been studied in refs. [89,

90]. In our case, it can be written as

S4 2 Re〈M(0)

bb̄g
|M(1)

bb̄g
〉 = −g 2

s CF

(
S(0)

22,4 − 2S(0)
23,4 + S(0)

33,4

)
×
[
2 Re〈M(0)

bb̄
|M(1)

bb̄
〉+

(
R(1)

23,4 + Z(1)
αs

+ Z
(1)
A

)
|M(0)

bb̄
|2
]
, (C.12)

where in the second line we single out the contribution that comes from the renormalisa-

tion procedure, i.e. it involves terms resulting from the strong-coupling renormalisation,

Z
(1)
αs , as well as a term from the gluon wave-function renormalisation, Z

(1)
A , see section A.

Furthermore, the functions R(1)
ij,4 denote the one-loop eikonal factor that can be expanded

in an ε series as

R(1)
ij,4 = 4CA

(
1

2
µ2
RS

(0)
ij,4

)ε 1∑
k=−2

εkRk(qi, qj ; q4) , (C.13)
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where functions Rk(qi, qj ; q4) have been calculated in ref. [90], and further simplified in

ref. [91]. In our case we use the formulae from eq. (4) of ref. [91]; we emphasise that the

expressions therein correspond to the unrenormalised one-loop soft-gluon current. This

is particularly convenient, since we perform the renormalisation in a hybrid scheme, as

outlined in section A.

Finally, we note that, for our calculation, we split the one-loop matrix elements in the

factorisation formula, eq. (C.12), into finite terms and terms containing poles in ε−1 using

the Z operator. This is reflected in eqs. (4.13) and (4.14).

C.4 Double-soft factorisation

The relevant factorisation formulae for amplitudes that involve massive particles can be

obtained from refs. [30, 92], see also ref. [31]. In general, the double-soft limit requires

single- and double-eikonal factors and colour-correlated matrix elements. For the H → bb̄gg

and H → bb̄qq̄ matrix elements, the colour-correlated matrix elements can be expressed

explicitly through SU(3) colour factors so that we arrive at

S45|M(0)

bb̄ij
|2 = g 4

s DSoft
(0)
ij (q2, q3; q4, q5)|M(0)

bb̄
|2 , (C.14)

where DSoft
(0)
ij (q2, q3; q4, q5) denotes the double-soft functions for the partons ij ∈ {gg, qq̄}.

They are given by

DSoft(0)
gg (q2, q3; q4, q5) = C2

F

(
S(0)

22,4 − 2S(0)
23,4 + S(0)

33,4

)(
S(0)

22,5 − 2S(0)
23,5 + S(0)

33,5

)
− CACF

(
Sgg22,45 − S

gg
23,45 − S

gg
32,45 + Sgg33,45

)
, (C.15)

DSoft
(0)
qq̄ (q2, q3; q4, q5) = CFTF

(
Sqq̄22,45 − S

qq̄
23,45 − S

qq̄
32,45 + Sqq̄33,45

)
, (C.16)

where S(0)
ij,k is the usual single-eikonal factor, defined in eq. (C.11), and Sggij,45 and Sqq̄ij,45 are

the double-eikonal factors. For the gg emission case, we have

Sggij,45 = S(m=0)
ij,45 +m 2

i S
(m 6=0)
ij,45 +m 2

j S
(m 6=0)
ji,45 , (C.17)

where [92]

S(m=0)
ij,45 =

(1− ε)
(q4 · q5)2

(qi · q4)(qj · q5) + (qi · q5)(qj · q4)

(qi · q45)(qj · q45)

− 1

2

(qi · qj)
(qi · q4)(qj · q4)

(qi · qj)
(qi · q5)(qj · q5)

[
2− (qi · q4)(qj · q5) + (qi · q5)(qj · q4)

(qi · q45)(qj · q45)

]
+

1

(q4 · q5)

[
(qi · qj)

(qi · q4)(qj · q5)
+

(qi · qj)
(qi · q5)(qj · q4)

− (qi · qj)
(qi · q45)(qj · q45)

(
2 +

[(qi · q4)(qj · q5) + (qi · q5)(qj · q4)]2

2(qi · q4)(qj · q5)(qi · q5)(qj · q4)

)]
(C.18)

and [30]

S(m 6=0)
ij,45 = − 1

4(qi · q4)(qi · q5)(q4 · q5)
+

1

2

(qi · qj)
(qi · q4)(qi · q5)(qj · q4)(qj · q5)

(qj · q45)

(qi · q45)

− 1

2

1

(q4 · q5)(qi · q45)(qj · q45)

(
(qj · q4)2

(qi · q4)(qj · q5)
+

(qj · q5)2

(qi · q5)(qj · q4)

)
. (C.19)
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In eqs. (C.18) and (C.19) the shorthand q45 = (q4 + q5) is used. For the case of a soft qq̄

pair emission, the double-eikonal factor is given by [92]

Sqq̄ij,45 =
1

(q4 · q5)2

(qi · q4)(qj · q5) + (qi · q5)(qj · q4)− (qi · qj)(q4 · q5)

(qi · q45)(qj · q45)
. (C.20)

In the strongly-ordered double-soft limit, S5S45, where we take both ξ1 → 0 and

ξ2 → 0, the double-soft function simplifies to

S5DSoft(0)
gg (q2, q3; q4, q5) = C2

F

(
S(0)

22,4 − 2S(0)
23,4 + S(0)

33,4

)(
S(0)

22,5 − 2S(0)
23,5 + S(0)

33,5

)
(C.21)

+ CFCA

(
S(0)

22,4 − 2S(0)
23,4 + S(0)

33,4

)(
S(0)

23,5 − S
(0)
24,5 − S

(0)
34,5

)
.

The corresponding limit for the case of qq̄ emission is regular.

Moreover, we need the double-soft single-collinear limit, S45C45, which can be obtained

by taking the collinear limit of the double-soft function. However, a simpler expression

arises if we use an iterated factorisation formula, taking first the collinear (q4 ‖ q5) and

then the soft limit of the parent parton of the splitting (q0
45 → 0). We obtain

S45C45|M(0)

bb̄ij
|2 =

g4
s

(q4 · q5)
P(0),µν
ij CF

(
S(0)

22,(45),µν − 2S(0)
23,(45),µν + S(0)

33,(45),µν

)
|M(0)

bb̄
|2 ,

(C.22)

where we use the shorthand notation

S(0)
ij,(45),µν =

qi,µ qj,ν
(qi · q45)(q45 · qj)

. (C.23)

D Integrated subtraction terms

In this section we report formulae for integrated subtraction terms that we use throughout

the calculation. For the convenience of the reader, we also include results available in the

literature.

D.1 Single-collinear subtraction terms

The relevant factorisation formula for the single-collinear limit is given in eq. (C.2). For

the integrated subtraction terms, we integrate the splitting function over the unresolved

phase space in d dimensions.

We recall that the splitting functions in eqs. (C.4) and (C.5) contain a term

proportional to kµ⊥k
ν
⊥/k

2
⊥ which is contracted with the spin-correlated matrix element

〈M(0)

bb̄g,µ
|M(0)

bb̄g,ν
〉. In contrast to the single-collinear subtraction terms, where the spin

correlations are required to make the subtraction local, the integrated subtraction term

can be averaged over the azimuthal directions of momentum q5. The reduced matrix ele-

ment depends only on the sum of momenta, q45 = (q4 + q5), which is independent of the

azimuthal direction of q5. Therefore, the integral over dΩ
(2−2ε)
5 decouples and yields(∫

dΩ
(2−2ε)
5

)−1 ∫
dΩ

(2−2ε)
5

kµ⊥k
ν
⊥

k 2
⊥

=
1

2(1− ε)

[
gµν − nµn̄ν + n̄µnν

(n · n̄)

]
, (D.1)
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with n̄µ = nν and nµ = qµ4 /q
0
4 in the collinear limit. To derive this result, we use the

fact that the right-hand side of eq. (D.1) is invariant under rotations in the (2 − 2ε)-

dimensional sphere, that it has to be orthogonal to qµ4 and that by definition the time

components (µ = 0 and ν = 0) need to vanish [31]. Note that, due to the Ward identity

qµ4 |M
(0)

bb̄g,µ
〉 = 0, the nµn̄ν and n̄µnν terms in eq. (D.1) drop out when contracted with the

spin-correlated squared matrix elements.5

This means that after azimuthal averaging and using eq. (C.7) we replace

kµ⊥k
ν
⊥

k 2
⊥
〈M(0)

bb̄g,µ
|M(0)

bb̄g,ν
〉 −→ − 1

2(1− ε)
|M(0)

bb̄g
|2 . (D.2)

As a result the factorisation formula of eq. (C.2) simplifies to

C45|M(0)

bb̄ij
|2 =

g2
s

(q4 · q5)
〈P(0)

ij (z; ε)〉|M(0)

bb̄g
|2 , (D.3)

where 〈P(0)
ij (z; ε)〉 are the azimuthally averaged splitting functions and read

〈P(0)
gg (z; ε)〉 = 2CA

[
z

1− z
+

1− z
z

+ z(1− z)

]
, (D.4)

〈P(0)
qq̄ (z; ε)〉 = TF

[
1− 2z(1− z)

1− ε

]
. (D.5)

To obtain the integrated collinear subtraction term, we perform the integral over the

unresolved phase space, [dq5], using the parametrisation of eq. (2.31) in the collinear limit.

We arrive at

C45

∫
dΦE4>E5

bb̄gg
(q1)|M(0)

bb̄ij
|2 = g2

sP
(0)
ij,int

∫
dΦbb̄g(q1) (ξ1/2)−2ε|M(0)

bb̄g
|2 , (D.6)

with the integrated splitting function P(0)
ij,int defined as

P(0)
ij,int =(µ2

R)εSεE
2−2ε
max

(
ξ1

2

)2∫ dΩ
(2−2ε)
5

2(2π)3−2ε

∫ 1

0

dη

ηε

∫ 1

0
dξ2(ξ2(2−ξ2))1−2ε

〈P(0)
ij

(
1− ξ2

2 ;ε
)
〉

(q4 ·q5)

=
1

2
(µ2
R)εSεE

−2ε
max

∫
dΩ

(2−2ε)
5

2(2π)3−2ε

∫ 1

0

dη

η1+ε

∫ 1

0
dξ2(ξ2(2−ξ2))−2ε〈P(0)

ij

(
1− ξ2

2
;ε

)
〉. (D.7)

To perform the integral in eq. (D.7) we use the fact that the integrand is symmetric

under ξ2 ↔ (2−ξ2) exchange and hence we can extend the integration region to 0 < ξ2 < 2

at the cost of introducing a factor of 1/2. Then we obtain

P(0)
gg,int =

(
µ2
R

16E2
max

)ε
CA

(4π)2

6(2− 3ε)

ε2
eεγEΓ2(2− 2ε)

Γ(4− 4ε)Γ(1− ε)
, (D.8)

P(0)
qq̄,int =

(
µ2
R

16E2
max

)ε
TF

(4π)2

ε(10− 8ε)− 4

ε

eεγEΓ(1− 2ε)Γ(2− 2ε)

Γ(4− 4ε)Γ(2− ε)
. (D.9)

5Note that this argument is not necessarily valid if more that one gluon is spin-correlated in the reduced

amplitude.
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In the case of P(0)
gg,int, it is necessary to also calculate the integrated splitting function in

the ξ2 → 0 limit. We find

P(0),soft
gg,int =

(
µ2
R

4E2
max

)ε
CA

(4π)2

2

ε2
eεγE

Γ(1− ε)
. (D.10)

D.2 Single-soft subtraction terms (tree-level)

When considering a single-soft emission of a gluon with momentum qk that involves par-

tons with momenta qi and qj , we encounter the tree-level eikonal factor S(0)
ij,k, defined in

eq. (C.11). In the following we will use the notation

q̂µ =
qµ

q0
(D.11)

to denote a momentum rescaled by its energy component.

The soft function is integrated over the unresolved phase space using the parametrisa-

tion in eq. (2.21), where the Born phase space decouples in the soft limit. Thus, the gluon

energy is unconstrained unless we insert some bound by hand. For simplicity, we keep the

integration domain of ξ1 unchanged, which corresponds to an upper limit of the energy of

Emax. We arrive at

S(0)
ij,int =

∫
[dq4]S(0)

ij,4

=

(
µ2
R

E2
max

)ε
Sε

∫ 1

0

dξ1

ξ1+2ε
1

∫
dΩ

(3−2ε)
4

2(2π)3−2ε

(qi · qj)
(qi · q̂4)(q̂4 · qj)

=

(
µ2
R

E2
max

)ε
Sε

[
− 1

2ε

] ∫
dΩ

(3−2ε)
4

2(2π)3−2ε

(qi · qj)
(qi · q̂4)(q̂4 · qj)

, (D.12)

where the pole in the last line arises from performing the energy integral. We are left with

angular integrals only, for which we write∫
dΩ

(3−2ε)
4

(qi · qj)
(qi · q̂4)(q̂4 · qj)

=

∫
dΩ

(1−2ε)
4

∫
d(cos θ)dφ(sin θ sinφ)−2ε (qi · qj)

(qi · q̂4)(q̂4 · qj)

=
Γ(1− ε)

(4π)εΓ(1− 2ε)
(2π)I(qi, qj) . (D.13)

Here, we introduce the auxiliary function

I(qi, qj) =

∫
d(cos θ)

∫
dφ

π
(sin θ sinφ)−2ε (qi · qj)

(qi · q̂4)(q̂4 · qj)
. (D.14)

We write it as a Laurent series in ε, i.e.

I(qi, qj) =
2∑

k=−1

εkI(k)(qi, qj) +O(ε3) , (D.15)

where the coefficients I(k)(qi, qj) depend on the momenta qi and qj , in particular on whether

they are massless or massive. All necessary coefficients for the single-soft integrated sub-

traction terms, except for the O
(
ε2
)

terms, have been obtained in ref. [93], see appendix A
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therein. For completeness, we collect below the formulae for those I(k)(qi, qj) which are

relevant to our calculation.

We write the full integrated single-soft eikonal factor as

S(0)
ij,int = − 1

(4π)2

1

ε

eεγEΓ(1− ε)
Γ(1− 2ε)

(
µ2
R

4E2
max

)ε
I(qi, qj) . (D.16)

We have to distinguish the case where the emitters are two massive particles, which we

denote by a subscript MM, and the case where emitter i is massive and emitter j is

massless, which we denote by M0. For our calculation, we need the coefficients I
(k)
MM(qi, qj)

and I
(k)
M0(qi, qj) for k ∈ {−1, 0, 1} when the directions of the momenta qi and qj are arbitrary.

Moreover, we need I
(k)
MM(qi, qj) for k ∈ {−1, 0, 1, 2} in two special cases: for the case where

the two momenta are equal, qi = qj and for the case where qi and qj are in a back-to-back

configuration.

Two massive emitters. The reported formulae correspond to the result outlined in

eqs. (A.41) to (A.51) of ref. [93]. We consider two time-like momenta q 2
i = m 2

i and

q 2
j = m 2

j . With the definition of vij from eq. (B.3) and the notation

~u =
~qi
Ei

, and ~w =
~qj
Ej

, (D.17)

we introduce the shorthand notations

A2 = (~u · ~u) + (~w · ~w)− 2(~u · ~w) , X1 = (~u · ~u)− (~u · ~w) ,

B2 = (~u · ~u)(~w · ~w)− (~u · ~w)2 , X2 = (~w · ~w)− (~u · ~w) . (D.18)

Furthermore, we need the following arguments

z+ = A+
√
A2 −B2 , z1 =

√
X 2

1 +B2 −X1 ,

z− = A−
√
A2 −B2 , z2 =

√
X 2

2 +B2 +X2 , (D.19)

which will be used in the function

K(z) = −2Li2

(
2z−(z+ − z)

(z+ − z−)(z− + z)

)
− 2Li2

(
−2z+(z− + z)

(z+ − z−)(z+ − z)

)
− 1

2
log2

(
(z − z−)(z+ − z)

(z + z−)(z+ + z)

)
. (D.20)

With these abbreviations, the coefficients of the massive-massive angular integral read

I
(−1)
MM (qi, qj) = 0 , (D.21)

I
(0)
MM(qi, qj) =

1

vij
log

(
1 + vij
1− vij

)
, (D.22)

I
(1)
MM(qi, qj) =

1− (~u · ~w)√
A2 −B2

(K(z2)−K(z1)) . (D.23)
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One massive and one massless emitter. The reported formulae correspond to the

result outlined in eqs. (A.22) to (A.24) of ref. [93]. We consider one time-like momentum

q 2
i = mi

2 and one light-like momentum q 2
j = 0. We define the symbol

κ =

√
1−

m 2
i

E 2
i

. (D.24)

Then the coefficients of the massive-massless angular integral are

I
(−1)
M0 (qi, qj) = −1 , (D.25)

I
(0)
M0(qi, qj) = log

(
(q̂i · q̂j)2

(q̂i · q̂i)

)
, (D.26)

I
(1)
M0(qi, qj) = −2

{
1

4
log2

(
1− κ
1 + κ

)
+ log

(
(q̂i · q̂j)
1 + κ

)
log

(
(q̂i · q̂j)
1− κ

)
+Li2

(
1− (q̂i · q̂j)

1 + κ

)
+ Li2

(
1− (q̂i · q̂j)

1− κ

)}
. (D.27)

Two massive back-to-back emitters. We consider the special case of two massive

emitters with the same mass, q 2
i = m2 and q 2

j = m2, arranged in a back-to-back configu-

ration, ~qi = −~qj . We then have Ei = Ej = MH/2 and, therefore, κ = β. The expansion

coefficients are given by

I
(−1)
MM,b2b(qi, qj) = 0 , (D.28)

I
(0)
MM,b2b(qi, qj) = −1 + β2

β
log

(
1− β
1 + β

)
, (D.29)

I
(1)
MM,b2b(qi, qj) =

1 + β2

β

{
Li2

(
2β

1 + β

)
− Li2

(
− 2β

1− β

)}
, (D.30)

I
(2)
MM,b2b(qi, qj) =

1 + β2

β

{
−1

3
log3

(
1− β
1 + β

)
+ 2Li3

(
2β

1 + β

)
− 2Li3

(
− 2β

1− β

)
− log

(
1− β
1 + β

)[
Li2

(
2β

1 + β

)
+ Li2

(
− 2β

1− β

)]}
, (D.31)

where the subscript “b2b” indicates a back-to-back configuration of the emitters. Formulae

for I
(k)
MM,b2b for k ∈ {−1, 0, 1} can be obtained from eqs. (D.21) to (D.23) by taking the

relevant limit. The formula for I
(2)
MM,b2b was calculated independently; this O(ε2) term is

needed in the soft limit of the real-virtual contribution.

Self-correlated massive emitter. We consider the special case of a self-correlated mas-

sive emitter, i = j, for a time-like momentum qi with q 2
i = m2. Then we have

I
(−1)
MM (qi, qi) = 0 , (D.32)

I
(0)
MM(qi, qi) = 2 , (D.33)

I
(1)
MM(qi, qi) = −2

κ
log

(
1− κ
1 + κ

)
, (D.34)

I
(2)
MM(qi, qi) =

2

κ

{
Li2

(
2κ

1 + κ

)
− Li2

(
− 2κ

1− κ

)}
. (D.35)

The O
(
ε2
)

term was calculated independently.
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D.3 Single-soft subtraction terms (one-loop)

We consider the soft limit of the one-loop H → bb̄g amplitude which is given in eq. (C.12).

This factorisation involves both tree-level and one-loop soft functions. The integration of

the tree-level eikonal factors is discussed in section D.2, while in this section we focus on the

integration of those terms in the one-loop soft function of eq. (C.12) which contain R(1)
ij,4.

We integrate the one-loop eikonal factors over the soft-gluon phase space, i.e.

R(1)
int = −

∫
[dq4]

(
S(0)

22,4 − 2S(0)
23,4 + S(0)

33,4

)
R(1)

23,4 , (D.36)

where S(0)
ij,4 and R(1)

23,4 are defined in eqs. (C.11) and (C.13), respectively. Since only R(1)
23,4

appears, we restrict ourselves to the case of two emitters with the same non-vanishing mass

in a back-to-back configuration.

The soft-gluon phase space is parametrised using eq. (2.21). Note that even though

the soft-gluon momentum factorises from the energy-momentum conserving δ-function, we

restrict ourselves to the same integration region as stated in eq. (2.21); this is in accordance

with the choice made for the integrated tree-level eikonal factor. The only non-trivial

integral is the integration over the angle θ between the momentum of the soft gluon q4 and

the b-quark momentum qi. We reexpress this angle in terms of the variable λ = cos θ and use

the symmetry under λ→ −λ to restrict the domain of integration to λ ∈ [0, 1]. We arrive at∫
[dq4] =

µ2ε
RSεE

2−2ε
max

(2π)3−2ε

∫
dΩ

(2−2ε)
4

∫ 1

0
dξ ξ1−2ε

∫ 1

0
dλ (1− λ2)−ε . (D.37)

The energy dependence factorises from the integrand, which means that the integral over

dξ can be solved trivially. The angular integral dΩ
(2−2ε)
4 is performed using eq. (2.22).

The expressions for the expansion coefficients Rk(qi, qj ; q4) in ref. [91] are given in

terms of the variables

αi =
m2
i

2

(qj · q4)

(qi · q4)(qi · qj)
=

(1− β2)(1 + βλ)

2(1 + β2)(1− βλ)
, (D.38)

αj =
m2
j

2

(qi · q4)

(qj · q4)(qi · qj)
=

(1− β2)(1− βλ)

2(1 + β2)(1 + βλ)
, (D.39)

and contain at most classical polylogarithms with arguments composed of these variables.

We rewrite those special functions in terms of iterated integrals of argument λ over the

alphabet
dλ

λ
,

dλ

1 + λ
,

dλ

1− λ
,

dλ

1 + βλ
,

dλ

1− βλ
. (D.40)

As the rational coefficients in front of the iterated integrals also only contain these letters,

the integration over λ can again be performed in terms of iterated integrals over the

same alphabet. These iterated integrals are then evaluated at 1 and we rewrite them

in terms of harmonic polylogarithms [67] of argument β with up to weight four. All

manipulations of the iterated integrals are performed with the Mathematica package

HarmonicSums [67, 94–103].
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Note that the term R(1)
int is again a Laurent series in ε. Therefore, we write

R(1)
int =

4CA
(4π)2

(
µ2
R

4E2
max

)2ε 0∑
k=−3

R(1,k)
int (β) εk . (D.41)

The expansion coefficients R(1,k)
int for mb = 4.78 GeV and MH = 125.09 GeV evaluate to

R(1,−3)
int (β) = 5.52628705137596 ,

R(1,−2)
int (β) = 35.3923534452863 ,

R(1,−1)
int (β) = 111.992677970445 ,

R(1,0)
int (β) = 245.654621810082 . (D.42)

The analytical expressions can be found in computer-readable form in the supplementary

material of this article.

D.4 Double-soft subtraction terms

For the integrated subtraction terms of the double-real contribution we have to integrate

the double-soft function, discussed in section C.4, over the unresolved phase space in d

dimensions. We define the integrated double-soft function as

DSoft
(0)
ij,int(q2, q3) =

∫
[dq4][dq5] DSoft

(0)
ij (q2, q3; q4, q5) . (D.43)

We use the phase-space parametrisation outlined in eq. (2.31), taking into account that

the gluon momenta decouple from the overall energy-momentum conserving δ-function.

Note that the decoupling of soft particles means that, in principle, their energies are un-

bounded unless we introduce some constraint by hand. For simplicity, we choose to keep

the bound that explicitly appears in the formulation of the phase-space measure, i.e. we

keep E45,max unchanged while the dξ1 dξ2 integration region still covers the unit square.

It is particularly useful to keep the Born configuration fixed so that the b-quark points

along the ẑ-axis, i.e.

q2 =
1

2
MH

(
t̂µ + βẑµ

)
and q3 =

1

2
MH

(
t̂µ − βẑµ

)
, (D.44)

where t̂µ and ẑµ are unit vectors along time and ẑ axes, respectively. After expressing the

integrand using the phase-space parametrisation, the ξ1 dependence factorises and can be

integrated analytically. The remaining integrals are performed numerically.

The integrands of eq. (D.43) are still divergent in the strongly-ordered (S5) and

collinear (C45) limits. These divergences can be handled using the endpoint subtraction

method, as discussed in section 2.2. We write

S45 = (I − S5)(I − C45)S45 + (I − S5)C45S45 + S5(I − C45)S45 + S5C45S45 . (D.45)

Note that the regularisation in the strongly-ordered limit applies only to the gg emission

case of eq. (C.15). The relevant subtraction terms in eq. (D.45) are constructed using the

factorisation formulae from section C.
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k = −3 k = −2 k = −1 k = 0

C
(k)
gg,CACF

−22.105148(3) −120.8071(1) −337.441(1) −613.869(4)

C
(k)

gg,C2
F

— +244.3194(4) +915.818(2) +984.741(6)

C
(k)
qq̄,CFTF

— +7.368385(3) +39.9006(1) +124.966(1)

Table 6. Coefficients of the ε expansion of the integrated double-soft function for gg channel (first

two rows), and the qq̄ channel (the last row). We use mb = 4.78 GeV and MH = 125.09 GeV.

The integrated double-soft function can be written as a Laurent series, i.e.

DSoft
(0)
ij,int(q2, q3) =

1

(4π)4

(
µ2
R

E2
max

)2ε 0∑
k=−3

C
(k)
ij ε

k . (D.46)

Note that the highest pole that occurs in the gg channel is ε−3. This arises from taking

all singular limits in the integrand, i.e. the strongly-ordered, collinear and the double-soft

limits. In the qq̄ case we only have an ε−2 pole since the strongly-ordered soft limit, S5, is

regular. Furthermore, we split the C
(k)
ij coefficients into separate colour structures,

C(k)
gg = CACF C

(k)
gg,CACF

+ C 2
F C

(k)

gg,C2
F
, (D.47)

C
(k)
qq̄ = CFTF C

(k)
qq̄,CFTF

. (D.48)

We present numerical values for the integrated double-soft function coefficients, evaluated

for mb = 4.78 GeV and MH = 125.09 GeV, in table 6.
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[97] J. Blümlein, Structural relations of harmonic sums and Mellin transforms up to weight

w = 5, Comput. Phys. Commun. 180 (2009) 2218 [arXiv:0901.3106] [INSPIRE].
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