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This paper presents a deep learning algorithm for tomographic reconstruction

(GANrec). The algorithm uses a generative adversarial network (GAN) to solve

the inverse of the Radon transform directly. It works for independent sinograms

without additional training steps. The GAN has been developed to fit the input

sinogram with the model sinogram generated from the predicted reconstruction.

Good quality reconstructions can be obtained during the minimization of the

fitting errors. The reconstruction is a self-training procedure based on the

physics model, instead of on training data. The algorithm showed significant

improvements in the reconstruction accuracy, especially for missing-wedge

tomography acquired at less than 180� rotational range. It was also validated

by reconstructing a missing-wedge X-ray ptychographic tomography (PXCT)

data set of a macroporous zeolite particle, for which only 51 projections over

70� could be collected. The GANrec recovered the 3D pore structure with

reasonable quality for further analysis. This reconstruction concept can work

universally for most of the ill-posed inverse problems if the forward model is

well defined, such as phase retrieval of in-line phase-contrast imaging.

1. Introduction

Tomographic imaging is becoming a common tool for many

different X-ray imaging techniques at synchrotron light

sources, such as transmission X-ray microscopy (TXM), X-ray

fluorescence (XRF) imaging and X-ray ptychography (Dierolf

et al., 2010; Mino et al., 2018). Tomographic reconstruction is

a key procedure to assign the scanning signal from different

angles to the internal structure of the objects. The mathema-

tical theory of tomographic reconstruction has been well

developed for more than half a century (Landis & Keane,

2010). However, the development of reconstruction algo-

rithms is still a challenge due to possible imperfections in the

measurement data. This is particularly the case for synchro-

tron radiation applications, as the instrumental setup and data

quality vary greatly between different beamlines. Pre-proces-

sing of the experimental data is always necessary and

advanced development of reconstruction algorithms is also

essential for some extreme cases, such as missing-wedge

tomography. For example, X-ray microscopy is often applied

in two dimensions to measure functional materials, e.g. cata-

lysts under specific gas and temperature conditions (de Smit

et al., 2008; Grunwaldt & Schroer, 2010). Such experiments

can provide a great deal of information on sample composi-
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tion, structure and stability, but require the use of dedicated

sample environments (in situ cells). However, extending such

studies to 3D tomography inevitably blocks sample visibility

across a 180� rotation range, due to eclipsing of the incoming

X-rays by the in situ cell body, leading to missing-wedge

artefacts. This issue has not been adequately resolved, and

in situ nano-tomography studies therefore remain challenging.

The reconstruction of missing-wedge tomography suffers

from strong artefacts that generate erroneous structures of the

object. These artefacts can be reduced from pre-processing of

the sinogram (Kudo & Saito, 1991; Huang et al., 2017), during

reconstruction (Kupsch et al., 2016), or post-processing of the

reconstruction. Pre-processing often involves filling in the

missing projections of the sinogram. However, this comes with

the risk of producing even more additional artefacts because

there are not enough constraints on the missing data. On the

other hand, post-processing can be used to correct the strip

artefacts of the reconstruction but it cannot recover the

missing structure of the object.

A safe and efficient alternative to these methods is to

recover the missing-wedge information directly during

reconstruction. According to the analytical reconstruction

theories, the missing wedge leads to missing information in

Fourier space. A reconstruction algorithm cannot recover this

information with direct inversion, but reconstruction algo-

rithms based on global optimization make it possible. When

we forward project the reconstructions with missing-angle

artefacts, there will also be artefacts and errors in the

projected sinograms. The reconstruction artefacts can be

corrected during the process of minimizing the errors between

the projected and input sinograms. Traditional optimization

algorithms are ineffective for this case because the constraints

on the missing angles are much weaker than for the scanned

angles. The iterations accumulate the errors from this unba-

lanced constraint, causing a local minimum in the convergence

of the reconstruction process. Thus, possible routes to mitigate

these errors using traditional optimization algorithms are

challenging.

Deep neural networks (DNNs) have shown potential

improvements for X-ray image processing in recent years

(Yang et al., 2017, 2018), and have also been developed for

tomographic reconstructions. The image-to-image models of

convolutional neural networks (CNNs) were previously used

as a post-processing method for limited-data tomography

(Pelt et al., 2018; Pelt & Batenburg, 2013; Hammernik et al.,

2017; Zhang et al., 2016). These are typical supervised learning

routines, for which training data are needed. The CNNs were

also coupled with filtered back projection (FBP), resulting

in an iterative reconstruction algorithm (Jin et al., 2017).

Recently, a direct tomographic reconstruction using DNN

has been developed (Zhu et al., 2018). These reports all

showed improvements for missing-wedge reconstruction using

the DNN.

A generative adversarial network (GAN) couples two

different networks, a generator and a discriminator, to

produce the image as the training target (Goodfellow et al.,

2014). The generator is a network that translates the random

initialized noise signal or specific input signal to be the

candidate image. The discriminator is a CNN classifier that

evaluates how close the candidate image is to the target image.

The discriminator can evaluate the image quality with better

accuracy than typical cost function approaches because it is a

feature-based analysis. It can fit the reconstruction to the

target image with good accuracy in the standards of image

quality, which is not possible to evaluate by any single

criterion. GANs are popular for generating target images with

expected shapes and styles using supervised learning routines

(Isola et al., 2017). They were previously applied to sinogram

completion for limited-angle tomography (Yoo et al., 2019;

Li et al., 2019). However, these methods follow the supervised

learning workflow and therefore it is difficult to define a

sufficient training data set, given that synchrotron tomography

studies are performed on a highly diverse range of measure-

ment objects and have strong variations in data quality.

In this paper, we present a tomographic reconstruction

technique based on a GAN (GANrec). It can directly recon-

struct the sinogram to be the final reconstruction, without

the additional training procedures required by other deep

learning approaches. The algorithm first transforms the sino-

gram to a candidate reconstruction with the generator of the

GAN. We then use the Radon transform (Barrett, 1984) to get

a model sinogram from this candidate reconstruction. The

model sinogram is compared with the input sinogram by the

discriminator of the GAN. A good-quality reconstruction

can be obtained when the model sinogram is very close to

the input sinogram after several iterations. We evaluated the

GANrec with missing-wedge tomographic projections of a

3D phantom object, showing better accuracy of reconstruction

than traditional algorithms. The GANrec was able to recon-

struct the projections of up to 60� missing angles without any

visible artefacts and noise, for which the traditional algorithms

failed to get a reasonable result. We further validated the

GANrec with a real X-ray ptychographic tomography (PXCT)

measurement of a zeolite particle deposited on a MEMS chip

(Weissenberger et al., 2019), developed as part of a dedicated

sample environment for in situ ptychography studies (Fam

et al., 2019). Only 51 projections in 70� were scanned due to

the geometric limitations of the setup and time constraints.

The GANrec reconstructed the image with sufficient quality

for quantitative analysis. The effectiveness of the GANrec

for mitigating missing-wedge artefacts synergizes with new

applications of PXCT in dedicated sample environments

(in situ cells) where the full angular range of 180� is not

accessible.

2. Method

We developed the GANrec by integrating the Radon trans-

form in the conditional GAN (Isola et al., 2017). We designed

a special generator (G) to transform the sinogram to a

reconstruction, which is not possible with the typical U-net

(Ronneberger et al., 2015). We used a typical CNN classifier

as the discriminator (D). The generator transforms the input

sinogram as a candidate reconstruction. A model sinogram
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is then generated from the candidate reconstruction by the

Radon transform. The discriminator compares the model

sinogram with the input sinogram and provides feedback to

the generator as to whether the reconstruction is accurate or

not. By repeating this for many iterations, the weights of the

generator are fitted to transform the input sinogram to match

the correct reconstruction (Fig. 1).

2.1. Objective

The overall objective of the GANrec can be expressed as

GðxÞ
�
¼ arg min

G
max

D
LrGANðG;DÞ þ �LL1ðGÞ: ð1Þ

Here, G(x)* is the candidate reconstruction generated from

the input sinogram x. The reconstruction process, which can

also be considered as the training process, is done while G tries

to minimize the objective against an adversarial D that tries to

maximize it.

LrGAN is the loss of the GANrec. We use the sigmoid cross

entropy loss function (Isola et al., 2017) to calculate it:

LrGANðG;DÞ ¼ Ex½log SðDðxÞÞ� þ Ex½logð1�SðDðx;RðGðxÞÞÞÞÞ�:

ð2Þ

Here E½:::�, S( . . . ) and R( . . . ) denote the cross entropy

operator, the sigmoid operator and the Radon transform,

respectively.

In addition to the GANrec loss, we also use a penalized L1

loss �LL1 to help the convergence,

LL1ðGÞ ¼ jjx� RðGðxÞÞjj: ð3Þ

2.2. Architecture of the networks

We use a mixing architecture for the generator (G) (Fig. 2).

It starts with four fully connected layers, followed by nine

convolutional layers. The input sinogram is first transformed

into a 1D array. The fully connected layers convert this 1D

array to the data domain as the target reconstruction. The

converted 1D array is then transformed back to a 2D image.

The convolutional layers process this 2D image to find the

best-fitting features of the target reconstruction and generate

the final image as the candidate reconstruction.

The sinogram-to-reconstruction transformation can be

done directly with a single fully connected layer (Paschalis

et al., 2004). The accuracy can be improved by increasing the

numbers of layers and nodes, but these numbers are limited

by the available computational power. In addition, the fully

connected layer connects each pixel to each node of the layer,

which requires a huge number of weights. Noise and artefacts

can easily be generated due to the difficulty of fitting these

randomly initialized weights. The convolutional layer requires

a much smaller number of weights than the fully connected

layer for the image process. We use the convolutional layers to

refine the reconstruction further to give the final candidate

reconstruction.

The typical generators for image-to-image translation

models of GANs use the encoder–decoder network (Pathak

et al., 2016; Wang & Gupta, 2016; Johnson et al., 2016; Yoo

et al., 2016; Zhao et al., 2016), or its improved version ‘U-Net’

(Ronneberger et al., 2015; Isola et al., 2017). These do not work

for the sinogram-to-reconstruction transformation since the

input and output images are not in the same domain.
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Figure 1
The flowchart of the GANrec algorithm. The input of the GANrec is
the sinogram to be reconstructed. The sinogram is transformed into a
candidate reconstruction by the generator of the GAN algorithm. The
candidate reconstruction is projected to a model sinogram by the Radon
transform. The model sinogram is compared with the input sinogram
by the discriminator of the GAN. A GAN loss is obtained from this
comparison. The weights of the generator and discriminator of the GAN
are updated by optimizing the GAN loss.

Figure 2
The network architectures of the generator and the discriminator. The
generator is formed with four fully connected layers and nine
convolutional layers. The discriminator is formed with four convolutional
layers. The Softplus activation function (Nwankpa et al., 2018) is used to
connect the fully connected layers. The ReLU activation function
(rectified linear unit; Xu et al., 2015) is used to connect the convolutional
layers.



We designed the discriminator including four convolutional

layers with strides of factor two. The input images of the

discriminator are the model sinogram and the input sinogram.

The architecture of the discriminator is very similar to the

typical CNN classifier. It extracts feature pools of the input

image in four scales while downsampling the image with the

strides of the convolutional layers. The difference from the

typical classifier is that we do not use a fully connected layer

at the end. The output of the network is the 1D array of the

feature pool from the last convolutional layer.

2.3. Normalization and optimization

The network changes the input data to a different range.

The input and output for both the generator and discriminator

all need to be normalized. We did the normalization in two

steps, I1 = I � I=�ðIÞ and I2 = [I1 � min(I1)]/[max(I1) �

min(I1)]. This procedure ensures that the input and output of

the networks are always in a comparable range for the

convergence of the optimization process. These normalization

steps were applied to the input sinogram, the reconstruction

from the generator, and the model sinogram, as shown in

Fig. 1.

We also used a layer normalization for each layer of the

network (Lei Ba et al., 2016), which helped to speed up the

convergence and improve the accuracy of the final results in

our tests.

We used the standard optimization routine of the GAN for

the G and D (Goodfellow et al., 2014) for the objective func-

tion [equation (1)]. In a different approach from the standard

routine, we used the Adam optimizer for both G loss and D

loss (Kingma & Ba, 2015), which showed the best convergence

and stability for our application.

3. Results

3.1. Evaluation of the GANrec with synthetic data

We evaluated the performance of the GANrec algorithm

with a simulation phantom, extracted from the 3D structure

of a shale sample (Fig. 3, top left). The original data were

collected in TomoBank (Carlo et al., 2018) and were measured

with microCT on the TOMCAT beamline of the Swiss Light

Source (Paul Scherrer Institut, Villigen, Switzerland). We first

used Tomopy (Gürsoy et al., 2014) to make the reconstruction

for the original data. The simulation phantom was then

extracted by doing segmentation for the original reconstruc-

tion with a deep learning method (Shashank Kaira et al.,

2018). We used this simulation phantom to generate seven

groups of tomographic projections with scanning angles of

0–180�, 0–170�, . . . , 0–120�, with one projection per degree.

We reconstructed these tomographic projections with the

GANrec algorithm and compared the result with those of two

other algorithms: the Fourier grid reconstruction algorithm

(Gridrec) of Tomopy (Gürsoy et al., 2014) and the maximum-

likelihood expectation maximization algorithm (MLEM) of

Astra (Pelt et al., 2016).

The middle row of Fig. 3 shows the sample slices of the

reconstructions for the 0–120� projections. The GANrec

algorithm reconstructed the object with high accuracy. The

traditional algorithms (Gridrec and MLEM) show very strong

noise and the overall structure deformed as expected. We

plotted the structural similarity index map (SSIM) of the

reconstructions compared with the objective image (Fig. 4).

The reconstructions of the GANrec algorithm showed a very

high SSIM value (>0.98) even with a 30� or 60� missing wedge,

with no significant quality loss when missing up to 60�

projections. Only a few tiny spots had a low SSIM value (the

blue spots in Fig. 4 first row). These spots are randomly

distributed and have a negligible influence on the 3D analysis.

The traditional algorithms, Gridrec and MLEM, showed the

typical missing and deformed structures expected from a

missing-wedge reconstruction.

We then plotted the mean SSIM (MSSIM) of all 128 slices

for the 3D shale sample (Fig. 5). The GANrec showed a

consistent improvement in the reconstruction quality

compared with the MLEM and Gridrec algorithms. The

Gridrec had a very low MSSIM (0.45 to 0.26) because of the

noise outside the object. The MLEM can remove noise outside

the object and had less noise on the structure of the object,

so a better MSSIM value was obtained (0.93 to 0.75). The

MSSIM decreases consistently for both Gridrec and MLEM

when the scanning angle is reduced. The GANrec recon-

struction always showed better quality results in these tests

(MSSIM 0.98 to 0.97). The standard deviation (Std) changes

randomly for different runs of the reconstruction. For

instance, the 0–150� case showed a lower MSSIM than the

0–120� case and a higher Std (MSSIM 0.967 versus 0.973, Std

0.037 versus 0.008). The GANrec algorithm did not show an

obvious tendency for quality reduction when the scanning

angle was reduced from the full angle to 120�. This indicates

that the tomographic reconstruction quality is not strictly

limited by the scanning angle when it exceeds specific angles.

We therefore further examined extreme cases of missing

angles, discovering that the GANrec failed for the case of up

to 120� (0–60�) missing. However, we do not claim this is the

absolute limit, which is highly dependant on the data condi-

tions, such as the complexity of the pattern, the number of

projections and the size of the objective image.

3.2. A missing-wedge ptycho-tomographic reconstruction

Further application of the GANrec to the reconstruction of

empirical data was then demonstrated on a missing-wedge

ptychographic tomography image series. The zeolite sample

investigated here constitutes a suitable case study for missing-

wedge tomography reconstruction due to its small size and

easily identifiable interior macropore features (Kahnt et al.,

2019). Due to placement on a MEMS chip within the in situ

sample-holder cell, the zeolite was only accessible from a

range of �35�, leading to a significant missing wedge of 110�.

Only 51 projections were recorded for the sample, which is

regarded as heavy undersampling.
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PXCT measurements were performed on the nanoprobe

endstation of beamline P06 at the synchrotron light source

PETRA III at DESY (Hamburg, Germany) using the

ptychographic nanoanalytical microscope (PtyNAMi)
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Figure 4
The structure similarity index map (SSIM) of the reconstructions
compared with ground truth. A higher SSIM value (red) indicates better
reconstruction accuracy.

Figure 5
The mean SSIM (MSSIM) of the reconstructions compared with the
original object. These MSSIM values were calculated from 128 slices
of the 3D object. We compared the MSSIM for GANrec, MLEM and
Gridrec from full-angle scanning (0–180�) to (0–120�).

Figure 3
The 3D phantom for the evaluation (top left) and three reconstructions compared with the object of the ground truth (middle row). The plot in the top
right shows the profiles along the yellow dashed line. The 3D phantom is extracted from a real micro-CT measurement of a shale sample. Its size is
160 � 256 � 256 pixels. We simulated the sinogram from 120 projections within a limited angular range of 0–120�, i.e. 1� steps, and reconstructed with the
GANrec, Gridrec and MLEM algorithms, respectively. The pixel value range of the images is scaled to 0–1 for comparison. The brightness and contrast
of the Gridrec and MLEM results are optimized to show the best structure of the object. The bottom row shows enlargements of the areas outlined in red
in the respective images in the middle row.



(Schroer et al., 2017; Schroer et al., 2019). Measurement

parameters were detailed in previous work (Fam et al., 2019)

and are summarized here. An incident X-ray beam of 9 keV

was focused using Fresnel zone plates (125 mm aperture,

70 nm outer width) to a spot size of 60 nm. The sample was

positioned 0.6 mm downstream from the focal point, leading

to an effective beam spot size of 2 mm. The sample was

measured in a 12 � 12 grid (144 scan points) with a 333 nm

step size and an exposure time of 500 ms per point, leading to

a scan time of approximately 6 min per projection. Far-field

diffraction patterns were recorded using an EIGER X 4M

detector (DECTRIS Ltd, Switzerland) positioned 3.470 m

downstream of the sample.

The sample was a single zeolite particle with diameter of

ca 2–4 mm, containing a system of approximately spherical

macropores up to ca 600 nm diameter, the preparation and

characterization of which have been described in the literature

(Machoke et al., 2015). The sample itself was placed on a

‘Wildfire’ MEMS chip (DENSsolutions, Delft, The Nether-

lands) using focused ion beam (FIB) micromanipulation with

a SCIOS Dual-beam FIB (FEI, USA), performed at DESY

Nanolab (Hamburg, Germany). The MEMS chip was placed

in a sample-holder cell designed for in situ ptychography and

PXCT measurements, described in previous work (Fam et al.,

2019). Here, the sample-holder cell was operated under

ambient gas and temperature conditions, therefore ptycho-

graphic measurements were performed ex situ. Due to the cell

design and steel frame, which permit accurate temperature

control and gas-tight operating conditions, PXCT measure-

ments are currently possible with geometric limitations from

�35� (fully assembled cell) to�65� rotation (partly assembled

cell) and a corresponding missing wedge of 110 to 50�. Here,

ptychographic projections were obtained as described above

across an angular range of�35� in 1.4� steps, leading to a total

of 51 projections.

The extreme data-acquisition conditions result in the failure

of traditional reconstruction algorithms to produce an

acceptable result (Fig. 6). The GANrec successfully recon-

structed the overall structure of the particle, allowing the

macroporous interior to be segmented by simple thresholding.

The resulting 3D reconstructions from the GANrec algorithm

are shown in Fig. 7. The interior macroporous structure of the

particle is a close match to electron microscopy images

recorded during preparation and to previous results of elec-

tron nanotomography and PXCT with a full 180� rotational

range (Machoke et al., 2015; Weissenberger et al., 2019).

4. Discussion and future work

As shown in the above results, the GANrec algorithm can

learn from the physics model, the Radon transform, to predict

the inversion with very good accuracy. Model-based learning is

more flexible for applying deep learning to physics problems,

especially during data processing of experimental measure-
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Figure 6
Comparison of tomographic reconstructions for one slice of the zeolite
particle. The image in the top left is the ptychographic reconstruction of
one angle. The solid red line marks the slice used for the bottom
sinogram. The dashed black line marks the region of the tomographic
reconstruction in Fig. 7. The four images on the right are the tomographic
reconstructions for the sinogram on the left. GANrec reconstructed the
image without significant artefacts and deformation compared with the
results from FBP, PML hybrid and SART.

Figure 7
A 3D reconstruction of the zeolite particle using GANrec.



ments. The preparation of the training data was always a big

obstacle for these applications. Our current development of

the GANrec does not require any training data but has the

advantage of the deep learning method. The complexity of the

networks offers a higher chance of finding solutions for ill-

posed inverse problems than traditional methods. The results

of both simulations and experiments showed that the GANrec

can reconstruct extreme missing-wedge data with high quality,

which traditional algorithms cannot do effectively.

GANrec is an iterative reconstruction method. It requires

much more computational power than traditional algorithms.

We tested it on a node of a GPU cluster with four NVIDIA

Tesla P100 processors. We distributed the computing of the

generator and discriminator on two GPUs. If the reconstruc-

tion object is continuous along the rotation axis, we can

reconstruct the first slice with several iterations (	1000–2000)

and use the weights of that reconstruction as the initial weights

for the remaining slices. Once the weights of the networks are

initialized properly, a small number of iterations (<100) are

enough for a good-quality reconstruction. In our computing

setup, GANrec took 	0.07 s for each iteration with an image

size of 256 � 256 pixels.

GANrec has the advantage of excellent accuracy in the

specific situation of extremely undersampled data. However,

its speed is not competitive compared with traditional algo-

rithms. It can be considered as an alternative method in cases

where a complete data set cannot be measured, such as the

presented limited-angle tomography, and traditional recon-

struction algorithms suffer greatly from the missing data. As

the hardware and software for deep neural networks are

improving rapidly, GANrec will have broader applications in

the future. The code of the GANrec will be made available in

the xlearn toolbox on github in the near future (https://

github.com/tomography/xlearn.git).

The success of GANrec in producing reasonable 3D

reconstructions from missing-wedge data synergizes strongly

with the in situ sample cells developed previously for use on

beamline P06. To perform ptychography or PXCT under

controlled gas and temperature conditions, a certain amount

of physical infrastructure will always be necessary, introducing

geometric limitations. Providing methods to mitigate these

limitations, such as the GANrec, will help to enable successful

in situ PXCT studies, which are currently rare in the literature.

The framework we have developed for the GANrec can be

easily adapted to other inverse problems. One only needs to

replace the Radon transform of equations (2) and (3) with the

corresponding forward model. For instance, we replaced the

Radon transform with Fresnel diffraction propagation to build

the phaseGAN, which works with good accuracy for phase

retrieval in near-field X-ray imaging. Based on this idea, we

are further developing a platform that solves ill-posed inverse

problems of X-ray imaging.

5. Conclusion

We developed and implemented the GANrec algorithm for

tomographic reconstruction, and validated it using synthetic

and real measurement data. This development shows that the

GAN is capable of learning the mapping of image transfor-

mation directly from the physics model, rather than from the

training data sets of the traditional supervised learning

approach. Evaluations with synthetic data showed significant

improvements in the reconstruction accuracy using the

GANrec for missing-wedge tomography. Artefact-free

reconstruction can be obtained for missing wedges up to 60�

with the GANrec. The algorithm was further applied to an

experimentally acquired missing-wedge ptychography image

series of a macroporous zeolite, placed within an in situ sample

holder. A good-quality reconstruction was made by the

GANrec even though the tomographic data only had 51

projections recorded over an arc of 70�. Our framework of the

GANrec is also suitable for other ill-posed inverse problems if

the forward physics model is available.
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Wiljes, P., Brückner, D., Kahnt, M., Wittwer, F., Grote, L., Koziej,
D., Garrevoet, J. & Falkenberg, G. (2019). Proc. SPIE, 11112,
111120D.

Shashank Kaira, C., Yang, X., De Andrade, V., De Carlo, F., Scullin,
W., Gursoy, D. & Chawla, N. (2018). Mater. Charact. 142, 203–
210.

Smit, E. de, Swart, I., Creemer, J. F., Hoveling, G. H., Gilles, M. K.,
Tyliszczak, T., Kooyman, P. J., Zandbergen, H. W., Morin, C.,
Weckhuysen, B. M. & de Groot, F. M. F. (2008). Nature, 456, 222–
225.

Wang, X. & Gupta, A. (2016). arXiv:1603.05631.
Weissenberger, T., Leonhardt, R., Apeleo Zubiri, B., Pitı́nová-
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