KIT | KIT-Bibliothek | Impressum | Datenschutz

Wann zeigt auch der letzte Würfel eine Sechs?

Henze, Norbert

Abstract:

n nicht unterscheidbare ideale Würfel werden gleichzeitig geworfen. Diejenigen von ihnen, die eine Sechs zeigen, werden beiseite gelegt, und die übrigen Würfel werden erneut geworfen. Wiederum werden diejenigen Würfel, die eine Sechs zeigen, beiseite gelegt, und die restlichen Würfel werden geworfen. Dieser stochastische Vorgang wird so lange fortgesetzt, bis auch der letzte Würfel eine Sechs gezeigt hat. Die Zufallsgröße X_n bezeichne die Anzahl der dazu benötigten Würfe. In diesem Video werden die Verteilung und der Erwartungswert von X_n hergeleitet. Die zentrale Idee besteht darin, die Würfel gedanklich zu unterscheiden. Damit wird klar, dass die Zufallsgröße X_n das Maximum von Wartezeiten auf Erfolg in n unabhängigen Bernoulli-Ketten beschreibt. Um eine einfache Formel für den Erwartungswert von X_n zu erhalten, benötigt man die sich direkt aus der Definition der Binomialkoeffizienten ergebende allgemeine binomische Formel.


Zugehörige Institution(en) am KIT Institut für Stochastik (STOCH)
Publikationstyp Audio & Video
Publikationsdatum 10.02.2020
Erstellungsdatum 05.02.2020
Sprache Deutsch
DOI 10.5445/DIVA/2020-106
Identifikator KITopen-ID: 1000117270
Lizenz Creative Commons Namensnennung – Nicht kommerziell 4.0 International
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page