KIT | KIT-Bibliothek | Impressum | Datenschutz

Quartz Cementation in Polycrystalline Sandstone: Insights From Phase‐Field Simulations

Prajapati, Nishant; Abad Gonzalez, Andres; Selzer, Michael; Nestler, Britta; Busch, Benjamin; Hilgers, Christoph

Present work investigates the dynamics of polycrystalline quartz cement growth in sandstone using a multiphase‐field model. First, the model parameters corresponding to common reservoir temperature and pressure conditions were determined. A parameter related to growth kinetics was ascertained through undisturbed cement growth simulations to aptly capture the known faceting‐dependent growth behavior of quartz. Unrestricted growth simulations for different grain sizes, number of subgrains, and their crystallographic orientations revealed that (I) the model successfully recovers the tendency of quartz cements to grow at a faster overall rate on a coarse grain as compared to finer one and (II) the impact of crystallographic orientations of individual subgrains in polycrystalline grains on cement volume increases with increasing number of subgrains. For applying the model to realistic multigrain systems, we generated digital grain packs through a systematic procedure. These packs fairly represent natural sandstone in terms of grain shapes, sizes, and depositional porosity. The simulated textures in these packs resemble natural samples in terms of crystal morphologies and pore geometries. ... mehr

Open Access Logo

Zugehörige Institution(en) am KIT Institut für Angewandte Geowissenschaften (AGW)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 02.2020
Sprache Englisch
Identifikator ISSN: 2169-9313, 2169-9356
KITopen-ID: 1000117458
Erschienen in Journal of geophysical research / Solid earth
Verlag Wiley
Band 125
Heft 2
Vorab online veröffentlicht am 15.02.2020
Nachgewiesen in Scopus
Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page