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Abstract

The manufacturing process of Sheet Molding Compounds (SMC) induces a re-

orientation of fibers during the flow, which influences local properties and is of

interest for structural computations. Typically, the reorientation is described

with an evolution equation for the second order fiber orientation tensor, which

requires a closure approximation and multiple empirical parameters to describe

long fibers. However, CT scans of SMC microstructures show that fiber bundles

stay mostly intact during molding. Treating hundreds of fibers in such a bundle

as one instance enables direct simulation on component scale. This work pro-

poses a direct simulation approach, in which bundle segments experience Stokes’

drag forces and opposing forces are applied to the fluid field. The method is ap-

plied to specimens with a double-curved geometry and compared to CT scans.

The Direct Bundle Simulation provides increased accuracy of fiber orientations

and enables prediction of fiber-matrix separation with affordable computational

effort at component scale.
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1. Introduction1

Sheet Molding Compound (SMC) is a composite material with thermoset ma-2

trix material and discontinuous glass or carbon reinforcement fibers. SMC com-3

pression molding is an economic process to mass produce complex parts with4

considerably higher fiber lengths compared to injection molding. Typical parts5

include automotive body panels due to high surface qualities and in-mold coat-6

ing capability.7

The mechanical properties of SMC depend on local fiber orientation and fiber8

volume fraction, which can change significantly during flow. However, these9

properties are difficult to determine after molding, and predicting these proper-10

ties in the early development process can reduce expensive corrections of mold11

design. Additionally, utilization of process induced fiber orientations improves12

the predictive quality of structural simulations [1].13

The production of SMC typically starts with the production of semi-finished14

sheets on an SMC line. The first step is the application of resin to a carrier15

foil. Chopped fibers fall on this carrier foil in a random transversely isotropic16

orientation. Afterwards, a second carrier foil is placed on top of the first carrier17

foil and both of them run through sets of rolls that ensure proper impregnation18

of the fibers. Then, the material is coiled and stored. The viscosity increases in19

a maturing process. After maturing, the foils are removed and the material can20

be cut and stacked to an initial charge for molding. This initial charge has room21

temperature and is placed into a mold at elevated temperature (≈ 150 ◦C). The22

mold is closed and SMC flows with its fibers in a complex shape. The mold can23

be opened after a few minutes of curing and the final part is released.24

SMC rheology was first described with generalized Hele-Shaw type models treat-25

ing SMC as a one-phase material [2]. Barone and Caulk [3] developed a model26

with lubrication layers at the mold and a central plug flow. This approach was27

extended by several authors [4–7].28

Fiber reorientation is typically modeled based on fiber orientation tensors in-29
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troduced by Advani and Tucker [8] as30

A =

∫
S

p⊗ p Ψ(p) dp (1)

and31

A =

∫
S

p⊗ p⊗ p⊗ p Ψ(p) dp. (2)

Here, p describes a fiber direction and dp is the surface element on a unit sphere32

S := {p ∈ R3 : ‖p‖ = 1}. These fiber orientation tensors A and A represent the33

second and fourth moment of the fiber orientation distribution function Ψ(p)34

and thus are a statistical representation of the microstructure. The evolution35

of the second order fiber orientation tensor Ȧ is often described with equations36

that are based on Jeffery’s pioneering work [9]. Assuming that fibers have a37

large aspect ratio, his result may be written as38

Ȧ =∇∇∇v ·A + A · (∇∇∇v)> − A :
(
∇∇∇v + (∇∇∇v)>

)
(3)

for a given velocity gradient ∇∇∇v. Several empirical modifications have been39

introduced to his work to account for fiber interactions [10], experimentally40

observed orientation delays [11] and anisotropic diffusivity [12]. These models41

require a closure of the fourth order fiber orientation tensor A, which can be42

expressed as an approximation only. Additionally, these models require the fiber43

length to be much shorter than structural features of the part (scale separation),44

which does not hold in a lot of cases for SMC.45

As an alternative to these statistical descriptions, several authors have developed46

models for single flexible fibers based on inextensible threads [13], bead chains47

[14] and linked rigid bodies [15–18]. Typically, these models use lubrication48

theory and contact formulations to model fiber-fiber interactions [19, 20] as well49

as hydrodynamic drag forces to describe the long range interaction between fluid50

and fiber [21, 22]. Two-way coupling using a field of body forces was presented51

by Lindström and Uesaka [23, 24] to conserve momentum in the direct bundle52

simulation. However, they utilize the drag of prolate spheroids, which leads to53

a total drag force on a fiber that depends on discretization [25]. Direct models54
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have been utilized in representative volume elements to determine rheological55

properties [26, 27], contact properties in microstructures [28] and parameters56

of macroscopic fiber orientation models [21]. This approach of “computational57

rheometry” has also been applied to SMC represented as a planar network of58

fiber bundles that interact through local shear forces at contact points [29–31].59

The application of direct fiber simulations at the component scale has been60

reported only scarcely due to the sheer number of fibers and a reduced number61

of fibers is typically computed. A bead chain model was used by Kuhn et al.62

[32] and constrained beams were suggested by Hayashi et al. [33] at this scale.63

A commercial tool utilizing direct fiber simulation is 3D TIMON by TORAY64

Engineering. However, the tool neglects anisotropy and two-way coupling, as it65

is run after the determination of the flow field. Additionally, it does not include66

any interactions between fibers and it seems to use only a small subset of test67

fibers.68

The evolution of the fiber microstructure is a complex phenomenon. However,69

CT scans in this work show that most fiber bundles in the core of a part stay70

intact during SMC molding, while few bundles at the mold surface are disen-71

tangled. This observation is also reported in literature [34–37]. This behavior72

allows at least in some flow situations the simplifying assumption to treat hun-73

dreds of fibers as one bundle instance. This drastically reduces computational74

costs compared to direct fiber simulations, while improving disadvantages of75

approaches based on fiber orientation tensors. Hence, the compression mold-76

ing process of a full component with thousands of bundles is demonstrated in77

this contribution. Two-way coupling is achieved using a similar approach to78

Lindström and Uesaka [23] and results in anisotropic material flow.79

2. Direct Bundle Simulation80

The fundamental idea of Direct Bundle Simulation is the full description of fiber81

bundles as a chain of one-dimensional finite elements that experience hydrody-82

namic drag forces of the surrounding flow. Bundles are represented as truss83
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elements that transfer tensile load, but do not transfer bending torque due to84

an assumed thread-like nature of the bundle mechanics. Bundle elements may85

collide with walls or each other. Thus, the direct simulation eliminates the need86

of empirical interaction parameters in common fiber orientation models such as87

the Folgar-Tucker constant [10]. Further, this approach allows for the simula-88

tion of fiber-matrix separation, as bundles move independently from the matrix89

material flow.90

2.1. Matrix model91

The matrix material is subjected to large deformations when it fills the cavity.92

Thus, the flow of matrix material during molding is described in a Eulerian93

framework and interacts with the molds through contacts in a Coupled Eulerian-94

Lagrangian approach [38]. An operator split is utilized to solve the conservation95

of mass96

∂ρ

∂t
+∇∇∇ · (ρv) = 0 (4)

with mass density ρ and fluid velocity v as well as the conservation of momentum97

∂ρv

∂t
+∇∇∇ · (ρv ⊗ v) =∇∇∇ · σσσ + fh (5)

with the stress tensor σσσ and a point-wise body force field imposed by bundles98

fh. Such a point-wise body force field was also applied by Lindström et al. [39]99

to model fiber-fluid coupling.100

The conservation equations are split into a Lagrangian step containing only101

source terms102

∂ρ

∂t

∣∣∣∣
L

= 0 (6)

∂ρv

∂t

∣∣∣∣
L

=∇∇∇ · σσσ + fh (7)

and a Eulerian step containing the convective terms103
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∂ρ

∂t

∣∣∣∣
E

+∇∇∇ · (ρv) = 0 (8)

∂ρv

∂t

∣∣∣∣
E

+∇∇∇ · (ρv ⊗ v) = 0. (9)

The first step is solved analogously to standard Lagrangian procedure on a104

deforming mesh. In the second step, the deformed mesh is moved back to its105

original position and the solution variables are updated using a second order106

advection transport algorithm [40].107

The problem is closed with a constitutive model that relates stress to the defor-108

mation rate. The stress tensor may be decomposed to a spherical part σσσ◦ and109

deviatoric part σσσ′ according to110

σσσ = σσσ◦ + σσσ′. (10)

Then, the spherical relation is expressed using an equation of state as111

σσσ◦ = ρ0c
2
0

(
1− ρ0

ρ

)
I, (11)

where ρ0 denotes the mass density of the matrix at rest, c0 describes the speed112

of sound, and I is the second order identity tensor. The deviatoric relation is113

expressed as isotropic Newtonian viscous behavior114

σσσ′ = ηγ̇̇γ̇γ (12)

with the deviatoric engineering shear strain rate γ̇̇γ̇γ and the dynamic shear vis-115

cosity η.116

If fiber bundles are neglected, the interaction term fh vanishes and the model117

describes homogeneous isotropic Newtonian flow of the matrix material in the118

mold. However, fiber bundles move with the flow and the presence of fiber119

bundles subjects the matrix to an additional force. The determination and120

application of this contribution to the conservation of momentum is described121

in the next two sections.122
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2.2. Hydrodynamic interaction123

Stokes’ law describes the total hydrodynamic drag force on a sphere with radius124

R̂ as125

Fd = 6πηR̂∆v, (13)

where the relative velocity ∆v = v − v0 describes the difference between the126

velocity of the surrounding viscous fluid v and the velocity of the suspended127

sphere itself v0.128

For incompressible Newtonian flows with negligible inertia, the absolute hydro-129

dynamic resistance is proportional to ηR ‖∆v‖, independent of the actual shape130

of a suspended rigid body [41]. Thus, an equivalent radius R̂ = kdR may be used131

for shapes different from spheres, where kd describes a dimensionless correction132

coefficient and R is a typical linear dimension of the shape, e.g. the cylinder133

radius. The drag force is always opposing the direction of the relative velocity.134

Contrary to spheres, cylinders also create lift if they are subjected to a flow with135

an orientation angle φ. Thus, a second analogous coefficient is used to describe136

lift forces. These lift forces act perpendicular to the relative velocity in direction137

q and are computed using a coefficient kl. In this section, both coefficients are138

computed for a range of aspect ratios and orientation angles. The coefficients139

are interpolated using a fitting function that is later used to efficiently compute140

hydrodynamic forces on bundle segments in the Direct Bundle Simulation.141

Multiple cylindrical segments are chained together to represent a bundle, as142

illustrated in Figure 1. Thus, only forces at the lateral bundle surface A con-143

tribute to the total hydrodynamic drag and lift. The ends of the bundle are144

neglected, as the surface is small compared to the lateral surface. Let p be145

the direction of a cylinder positioned at x0 ∈ Ω ⊂ R3, then any point of the146

cylinder can be described as r = rer + ψeψ + ζp, where {er, eψ,p} describes147

the local cylinder coordinate system. With this parametrization, the lateral148

cylinder surface is defined as149

A :=
{

(r, ψ, ζ) ∈ R3 | r = R, 0 < ψ < 2π, 0 < ζ < L
}
, (14)

7



p

xj

S

L

A
xi

vi
d
ij

Figure 1: A bundle segment of length L and direction p is placed in a mesh. The velocity of

one exemplary element in the neighborhood S is shown with its current velocity vi.

where R is the cylinder radius and L is the length of a bundle segment. The150

total hydrodynamic force exerted on the cylinder can be determined using an151

integral over the lateral surface A as152

Fh =

∫
A

σσσ · n dA (15)

with surface normal n.153

To obtain this resistance force for cylinder aspect ratios and orientation angles154

of interests, a parametric numerical study is performed. A cylinder with radius155

R = 0.5 mm and aspect ratio rp ∈ {1, 2, 3, 5, 8, 13, 25} is placed in the center of a156

cube of fluid Ω with edge length 50 mm. A uniform inlet velocity v∞ = 1 mm s−1157

is applied at xmin and a zero-pressure outlet is applied at xmax. A slip condition158

with no flux perpendicular to the wall is applied to all other four faces of the159

cube. At the cylinder surface, a no-slip condition is applied. For each aspect160

ratio, the orientation angle φ, which describes the angle between the velocity161
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direction v∞ = v∞ex and the cylinder axis p, is varied and a Finite Element162

Analysis is performed to solve the incompressible steady Stokes flow problem163

0 =∇∇∇ ·
(
−pI + η

[
∇∇∇v + (∇∇∇v)

>
])

(16)

0 =∇∇∇ · v. (17)

After computing the velocity field for each configuration, the first and second164

components of Eq. (15) are used in combination with Eq. (13) to compute the165

coefficients166

kd =
1

6πηRv∞

∫
A

σσσx · n dA (18)

and167

kl =
1

6πηRv∞

∫
A

σσσy · n dA (19)

from the vertical and horizontal surface stress components σσσx and σσσy.168

Figure 2 illustrates computed results for different aspect ratios and orientations169

as points. Additionally, two fits have been determined as170

kd(rp, φ) = 1− α(rp − 1) cos(2φ) + β(rp − 1) (20)

and171

kl(rp, φ) = α(rp − 1) sin(2φ) (21)

with α = 0.09 and β = 0.3125.172

The fitted Eq. (20) and Eq. (21) are plotted as solid lines in Figure 2. For aspect173

ratio rp = 1, the drag is similar to a sphere with kd(1, φ) ≈ 1 and kl(1, φ) ≈ 0.174

For other aspect ratios, the drag increases in a cosine-shape with orientations175

closer to φ = 90◦ and with increasing aspect ratios. The lift force peaks, as176

expected, at φ = 45◦ and follows a sine-shape with an amplitude increasing177

with the aspect ratio.178

Subsequently, it is assumed that micro-scale hydrodynamic effects of the veloc-179

ity field are included in drag force and lift force. Therefore, bundle segments180
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Figure 2: Dimensionless drag coefficient kd and lift coefficient kl from computation (dots) and

fit according to Eq. (20) and Eq. (21). An orientation angle φ = 90◦ means that the cylinder

is placed perpendicular to the flow direction and induces maximum drag, while φ = 0◦ refers

to a cylinder aligned with the velocity v∞.

experience only resulting forces and the computation does not need to account181

for velocity gradients that occur at the subgrid micro-scale.182

The surrounding fluid field is computed with a mesh-based approach in this183

work. Hence, the relative velocity ∆v for drag computation has to be deter-184

mined from nearby matrix elements, as illustrated in Figure 1. The search185

radius for nearby elements is set to the length of a bundle segment L which186

leads to the definition of the neighborhood of bundle segment j as S := {i ∈ N |187

0 < ‖xi − xj‖ < L}. Using this neighborhood definition, the relative velocity is188

computed by a Gaussian weighting approach as189

∆vj =
∑
i∈S

wij
Wj

(vi − vj) (22)

with Gaussian weighting factors190

wij = exp

(
−9

2

d2ij
L2

)
(23)

and Wj =
∑
i∈S wij . The Gaussian weights depend on the distance of a bundle191

center to a neighboring element dij . The total hydrodynamic force on a bundle192
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segment j with aspect ratio r
(j)
p is computed as193

F
(j)
h = 6πηR

(
kd(r(j)p , φ)∆v + kl(r

(j)
p , φ) ‖∆v‖q

)
(24)

utilizing the orientation angle194

φ = arccos

(
∆v · p
‖∆v‖

)
. (25)

The direction of q is computed from a projection as195

q = −sgn(p ·∆v)[[p− (p · [[∆v]]) [[∆v]]]] (26)

Here, p is a unit vector and the operator [[·]] computes a unit vector in the196

direction of its input and is defined as [[·]] = (·)/‖·‖.197

After computation of drag forces, the same weights wij are used to apply an198

opposing force to each mesh element i ∈ S. The contribution of each bundle j199

to the coupling body force in element i is expressed as200

f
(ij)
h = − 1

Vi

wij
Wj

F
(j)
h (27)

with the volume Vi of the i-th element. The total body force field fh is then201

obtained by summing over contributions from all bundles in each element.202

2.3. Interaction between fiber bundles203

Fiber bundles may collide with mold walls, other bundles or themselves. The204

collision is treated with a kinematic contact constraint normal to the collision di-205

rection utilizing Abaqus’ built-in general contact algorithm. All artificial damp-206

ing parameters are set to zero, because the fluid interaction provides sufficient207

damping. The tangential friction between fiber bundles is neglected for now,208

which is a significant simplification. The implication of this simplification is209

discussed in more detail in Section 5.210

2.4. Implementation211

The described model is implemented in Abaqus explicit using several subrou-212

tines. A VUFIELD subroutine is called at each node to copy node velocities213
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and positions to field variables. The field variables are then interpolated at each214

integration point by a VUSDFLD subroutine and copied to global arrays. The215

main task of drag force computation is then treated in a VDLOAD subroutine.216

Eq. (22) is used to compute the relative velocity at each bundle segment, which217

is then used to compute drag forces based on Eq. (24) utilizing the coefficients218

in Eq. (20) and Eq. (21). An opposing force is saved for all neighboring Eule-219

rian elements i ∈ S. Subsequently, Eulerian elements are subjected to a body220

force field fh computed from the stored drag force and its volume according to221

Eq. (27).222

2.5. Verification223

The motion of a single bundle in shear flow is simulated in order to verify the224

model. The fiber bundle has a length of 25 mm and is subjected to a shear rate225

γ̇ = 10 s−1. The domain for this simulation is226

Ω =
{
x ∈ R3 | −C < (x2, x3) < C,−2C < x1 < 2C

}
(28)

with C = 20 mm. The bundle is placed at the center, discretized with ten227

segments and positioned vertically, so that the initial orientation is θ = 0.228

Figure 3 shows bundle position and velocity in x-direction shortly after starting229

the simulation. The contour plot of the horizontal velocity component depicted230

in Figure 3 indicates the two-way coupled nature of the presented approach.231

Although the bundle is flexible, it behaves like a rigid body until alignment232

with the flow due to the positive normal stress in the direction of the bundle233

axis.234

A reference solution for this test case is given by Jeffery’s equation for a single235

ellipsoid without buoyancy and inertia [9, 42] in the 2D case as236

dθ

dt
=
γ̇

2
(1 + ξ cos 2θ) . (29)

Bretherton [43] showed that this equation is also valid for shapes other than237

ellipsoids, if an equivalent aspect ratio re is used in the shape factor ξ = (r2e −238
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80 mm

40
m

m

θ

Figure 3: The contour plot shows a fiber bundle discretized with ten segments in a shear

flow. The color codes indicate the velocity in x-direction (dark red is 200 mm s−1, dark blue

is −200 mm s−1). The fluctuations at both ends show how the two-way coupling influences

the macroscopic velocity field.

1)/(r2e + 1). Such equivalent aspect ratios can be determined from the work of239

Goldsmith and Mason [42] or Cox [44], who suggested the empirical formula240

re = 1.24
rp√
ln rp

(30)

to determine the equivalent aspect ratio re from a cylinder aspect ratio rp.241

Figure 4 compares the orientation evolution of the Direct Bundle Simulation242

with ten truss elements and two truss elements to the solution of Eq. (29). The243

simulation is in good agreement with the reference solution for both discretiza-244

tions. Additionally, a bundle with a bundle aspect ratio rp = 25 is placed 90◦245

to the flow under the same conditions as in the parameter identification (see246

section 2.2) and meshed with one and ten segments. The resulting drag force247

normalized with 6πηRv∞ is 9.31 and 9.55, respectively. This is close to each248

other, but slightly smaller than the drag coefficient shown in Figure 2, because249

the averaged velocity around the bundle is smaller than the nominal velocity250

far away. Anyway, the orientation result and the total drag indicate that bun-251

dle motion is generally only slightly affected by discretization. However, the252

effect on the flow field changes and the approach is not entirely independent of253

discretization, as one chooses which effects are included in the drag coefficients254

and which are resolved on the mesh by setting the bundle segment length.255
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Figure 4: Comparison of bundle orientation angle computed from Direct Bundle Simulation

and Jeffery’s equation.

There is a small difference between simulation and analytical solution at the256

almost horizontal state in Figure 4. At this point, torque induced by friction257

at the lateral surface dominates bundle motion. In SMC, bundles are heavily258

confined by other bundles and the mold. It is assumed that the torque that259

spins a free bundle in a dilute situation is small compared to the confinement260

effects and it is therefore neglected here.261

3. Application at component scale262

3.1. Molding trials263

In this work, a structural SMC based on an UPPH resin system with a com-264

position shown in Table 1 is used. This two-step curing resin was developed265

to improve co-molding with unidirectional carbon fiber patches due to a higher266

viscosity in the B-stage [45].267

The specimen under investigation is a hat profile with outer dimensions 120 mm268

x 94 mm and a final thickness of 2 mm. Two variants are molded: Variant269
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Table 1: Composition of UPPH Sheet Molding Compound

Component Trade name Quantity

UPPH resin Daron ZW 14141 100 parts

Flow aid BYK 9085 2 parts

Impregnation aid BYK 9076 3 parts

Deaeration aid BYK A-530 0.5 parts

Inhibitor pBQ 0.3 parts

Peroxide Trignox 117 1 part

Isocyanate Lupranat M20R 24.2 parts

Glass fiber Multistar 272 4800 80 23 vol%

”S” (split configuration) consists of two SMC stacks (”S1” and ”S2”) with di-270

mensions 80 mm x 30 mm x 5.3 mm that are manually placed in the mold as271

illustrated in Figure 5 with dotted outlines. This split stack allows the inves-272

tigation of weld line formation during the flow. The second variant ”A” uses273

an asymmetric placement of a single stack with dimensions 80 mm x 60 mm x274

5.3 mm and enables a longer flow path. The mold is heated to 145 ◦C and closed275

with a hydraulic press. The maximum press force was limited to 50 kN.276

3.2. CT Analysis277

The molded samples were analyzed by volumetric imaging using an Yxlon X-ray278

CT system with a Perkin Elmer flat panel Y.XRD1620 detector and a reflection279

tube by Comet. The detector has a resolution of 2048× 2048 pixels and a pixel280

pitch of 200 µm. Acceleration voltage, current, exposure time and frame binning281

were set to 150 kV, 0.05 mA, 1000 ms and 2, respectively. A 16-bit volumetric282

image gray scale image is reconstructed based on 2400 projections over 360◦283

and the Feldkamp, Davis and Kress (FDK) algorithm [46]. The voxel size of the284

resulting volumetric image is 68.7 µm.285
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Figure 5: The molded part has outer dimensions 120 mm x 94 mm. For the split stack configu-

ration, two SMC stacks ”S1” and ”S2” are placed at the light gray areas with dotted outlines.

For the asymmetric configuration, a single stack (”A”) is placed on one side of the mold.

3.3. Compression Molding Simulation286

The molding process is simulated using Abaqus explicit utilizing the Coupled287

Lagrangian Eulerian (CEL) feature. In this method, operator splitting is applied288

to divide the momentum equation in a Langrangian step and a subsequent289

Eulerian step for material transport, as explained in Section 2.1. The fluid phase290

is represented by an element-wise material volume fraction and an immersive291

boundary is reconstructed at each step for interactions with the molds [38].292

Fiber bundles interact with the SMC phase exclusively through the subroutines293

described in Section 2.4.294

The total part volume is 25 410 mm3, which leads to a bundle volume of 5844 mm3
295

at the given nominal fiber volume fraction. The roving used for SMC produc-296

tion is a 4800 Tex multi-end roving with 80 strands and fiber diameter of 14 µm.297

Hence, each bundle is comprised of approximately 200 fibers, which leads to298

a total amount of 7600 bundles with 25 mm length in the part. The initial299

microstructure for the simulation is generated by sampling bundle directions300

16



randomly from a uniform planar-isotropic fiber orientation distribution. The301

bundles are then randomly shifted such that at least one node remains in the302

stack volume. This way, a statistically uniform fiber volume fraction is achieved303

in the stack region. Each bundle is discretized with ten linear truss elements304

and all elements outside the stack are cut, similar to the physical process, in305

which the stack is cut from an SMC sheet.306

Additionally, Eulerian elements are used to represent the molding domain. Only307

those Eulerian elements occupied by initial stack positions are initially filled with308

material. Both mold halfs are represented by rigid shell elements. They interact309

with the SMC paste through hydrodynamic friction310

τττ = −λ
(
‖vrel‖
v0

)m−1
vrel (31)

with a friction coefficient λ, a reference velocity v0, a power law coefficient m311

and the relative velocity in the contact plane vrel. This formulation is quite312

common and physically motivated by a resin-rich lubrication layer near the hot313

mold [6, 47]. Parameters are estimated from a similar material system [48] and314

listed in Table 2.315

The explicit time integration requires an extremely small time increment due to316

the high resin viscosity. The mass of the entire model was therefore scaled by317

a factor κm to improve the time increment, while ensuring that kinetic energy318

remains negligible small compared to the external work. The viscosity domi-319

nated time step scales linearly with density. Additional simulation parameters320

are listed in Table 2.321

While the lower mold is constrained at a fixed position, the upper mold is322

closed with the profiles given in Figure 6. These profiles are an idealization323

to save computational time during the initial forming process, before the flow324

of material starts. There is some variation in the experimental profiles, which325

can be attributed partly to a non-uniform thickness of SMC sheets and to the326

reaction time of the press control unit. The simulation stops after a complete327

fill with the final part height and does not include the subsequent holding and328
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Table 2: Simulation Parameters

Property Symbol Value

Resin viscosity η 1× 105 Pa s

Resin mass density ρr 1900 kg m−3

Resin speed of sound c0 1000 m s−1

Bundle elastic modulus E 73 GPa

Bundle density ρb 2600 kg m−3

Bundle radius R 0.1 mm

Bundle segment length L 2.5 mm

Mold friction coefficient λ 1× 106 N s m−3

Mold friction exponent m 0.6

Reference velocity v0 0.001 m s−1

Mass scaling factor κm 1× 106

Time step ∆t 3× 10−4 s

curing process. The computational time for the simulation is approximately 22329

hours on a single workstation with a Intel Xeon E5 2667V2 CPU.330

A conventional simulation utilizing fiber orientation tensors and Jeffery’s equa-331

tion is used to compare the Direct Bundle Simulation to the macroscopic orien-332

tation model given in Eq. (3). A VUMAT subroutine with six state variables333

and an IBOF closure approach [49] for the fourth order fiber orientation tensor334

A was implemented to compute fiber orientations instead of the bundle motion.335

In this conventional approach, no two-way coupling was included. The initial336

fiber orientation is described by a planar isotropic fiber orientation tensor and337

all other conditions remain unchanged.338

4. Results339

Figure 7 provides an overview on the compression molding process simulation340

for the split stack configuration ”S”. The initial mold gap at t = 0 s is 20 mm341
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Figure 6: Distance between upper and lower mold during the flowing phase of SMC. Six parts

of the split configuration ”S” were produced and are shown with solid gray lines. Four parts

of the asymmetric configuration ”A” were produced and are shown with dashed gray lines.

Additionally, the idealized mold profiles for simulations are shown in solid black and dashed

black for the ”S” and ”A” configuration, respectively.

and the upper mold is just not touching the SMC stacks. Closing the mold with342

the high initial closing speed deforms the stacks, but does not start material343

flow. During forming, the two-way coupled approach pulls the stack sideways344

in the hat-shaped mold. This can be observed by the lateral deformation of the345

stack tips depicted at t = 2 s in Figure 7. The mold gap is reduced to the initial346

stack height of 5.3 mm after approximately two seconds. From there on, flow347

dominates the mold filling process and fiber bundles are carried with the SMC348

until the final part thickness of 2 mm is reached.349

4.1. Orientation and separation effects350

Figure 8 shows slices through the midplane of the upper and lower planar re-351

gions of the scanned part in split stack configuration. Additional slices through352

thickness are provided in Figure A.14 in the appendix. The white strands repre-353

sent fiber bundles, which remain in their bundled structure even for the applied354
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t =0 s

t =2 s

t =4 s

Figure 7: Snapshots of the molding process for the split stack configuration ”S”. The com-

pression molding process starts with a deformation of the two initial stacks. Subsequently, the

SMC is forced to flow until the part reaches its final thickness of 2 mm. The Direct Bundle

Simulation approach lets bundles deform and flow with the matrix material while enforcing

two-way coupling. Therefore, the flow is naturally anisotropic and depends on the current

bundle configuration.

high degree of deformation. The weld line features a severe fiber-matrix sepa-355

ration and only a small amount of fiber bundles bridges the gap in this zone.356

The inner slice in Figure 8 even shows some pores. Regions close to the mold357

boundaries and the weld line show a bundle alignment parallel to the boundary.358

Bundles perpendicular to the boundary are likely pulled out of this region by359

forces acting over the entire length of the bundle and parallel bundles remain360

close to the boundaries. Regions farther away from boundaries show a regular361

random in-plane orientation.362

The Direct Bundle Simulation result is sliced in the same planes and the result363

is depicted in Figure 9. The simulation results show a slightly larger area of364
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10 mm

x2

x1

Figure 8: Slices through the upper and lower planar regions of the CT Scan.Fiber bundles

stay intact during molding and fiber-matrix separation can be observed at the weld line. The

weld line region includes pores (marked with red circles) close to the origin of the coordinate

system.

fiber-matrix separation and no bundles bridge the resin-rich weld line. Similar365

to the CT-scan, boundary regions show a predominant orientation parallel to366

the boundaries.367

For a quantitative comparison of the Direct Bundle Simulation to a simulation368

based on fiber orientation tensors and the CT scans, bundle orientations are369

evaluated on a uniform 12 x 16 x 4 grid of sub-volumes. The discrete second-370

order fiber orientation tensor for each of the sub-volumes is computed as371

A =
1

N

N∑
i=1

pi ⊗ pi (32)

with N being the number of truss elements in the sub-volume.372

The slices of the CT scan shown in Figure 8 are analyzed in 2D using Orien-373

tationJ [50], such that a major direction is assigned to each 10x10 pixel area.374

Then the same discrete fiber orientation tensor definition given in Eq. (32)375

and the same 12 x 16 grid is used to represent the orientation state as tensor376

components.377
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10 mm

x2

x1

Figure 9: Slices through the planar regions of the Direct Bundle Simulation result. Each gray

cylinder represents a bundle segment consisting of 200 individual fibers. The weld line at the

center is matrix rich and no bundles gap the this region. Bundles close to the boundaries

show a reduced fiber volume fraction and more bundles oriented parallel to the boundary.

A comparison of the Direct Bundle Simulation approach, CT scan and the con-378

ventional fiber orientation model is depicted in Figure 10 for the split stack379

configuration. The A11-component of the CT-analysis features three signifi-380

cantly higher oriented vertical stripes at both ends of the mold and the weld381

line. Conversely, the A22-component of the CT-analysis indicates a dominant382

orientation in horizontal direction at the top and bottom mold boundaries with383

lower values at the vertical mold boundaries to the left and right of the figure.384

The corresponding Direct Bundle Simulation is able to reproduce these three385

stripes of higher vertical orientation at the correct positions. Characteristic gra-386

dients and the level of orientation is predicted well. The conventional approach387

using fiber orientation tensors and Jeffery’s equation does not account for the388

constraints at mold walls and shows a homogeneous orientation distribution. In389

homogeneous regions, such as the inner slice with some distance to the weld390

line, Jeffery’s equation leads to a reasonable prediction of the orientation state.391

The Direct Bundle Simulation limits any bundle orientation normal to the392
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Figure 10: Comparison of Direct Bundle Simulation results with CT Analysis and fiber orien-

tation tensor based computation utilizing Jeffery’s equation for the split stack configuration.

The first row shows orientation tensor component A11 which indicates vertical fiber orienta-

tion in this representation. The second row shows the A22-component representing horizontal

fiber orientation. The third row shows the A33-component representing fiber orientation nor-

mal to the observation plane. The orientation analysis of the CT image slices is limited to

two dimensions. Thus, the central image in the third row shows a high resolution CT scan of

the region indicated in the illustration above. The magnified view reveals a dominant in-plane

orientation of bundles.
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molds, because bundle segments cannot be physically arranged in normal di-393

rection in the constrained mold gap. Thus, the A33-component is small in the394

planar regions of the part. An investigation of a magnified CT Scan with higher395

resolution confirms that fiber bundles at the weld line are primarily oriented396

in-plane. The computation based on fiber orientation tensors shows a dominant397

normal component of fiber orientation at the weld line.398

Figure 11 is analogous to Figure 10, but describes the evaluation of the asym-399

metric stack configuration with a maximum flow path of 60 mm in x2-direction.400

This configuration confirms observations of the previous case with significantly401

higher orientations parallel to mold walls that are not described by tensor based402

theory. Despite a longer flow path, the magnitude of re-orientation is similar to403

the split stack configuration due to a similar stretch in x2-direction (50% initial404

mold coverage each).405

4.2. Bundle curvature406

The curvature of bundles is evaluated as407

κ =
2

L
tan

(
1

2
arccos

(
[[p(j)]] · [[p(k)]]

))
(33)

at each node connecting two neighboring bundles j and k. A contour plot of the408

curvature for the split stack configuration is plotted in Figure 12. It shows that409

the largest curvatures occur at corners and close to the weld line. The curvature410

at the weld line originates probably from a flow in x1 direction compressing411

bundles to a zig-zag shape. The curvature in the CT scan is obtained only412

for the central region in order to have sufficient resolution for tracking bundle413

curvature [51].414

The projection of curvature values on the x1 direction is plotted in Figure 13.415

The maximal values of the CT scan agree well with the maximal curvatures416

computed from the direct bundle simulation. The mean curvature of the CT417

scan is higher in this representation, but this is likely influenced by the lower418

values outside the center region which are not taken into account for the CT419
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Direct Bundle Simulation - A11 CT Scan - A11 Jeffery’s equation - A11

Direct Bundle Simulation - A22 CT Scan - A22 Jeffery’s equation - A22

Direct Bundle Simulation - A33 Jeffery’s equation - A33
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Figure 11: Comparison of Direct Bundle Simulation results with CT Analysis and fiber ori-

entation tensor based computation utilizing Jeffery’s equation for the asymmetric stack con-

figuration. Refer to Figure 10 for a detailed explanation of the layout.

25



−60 −40 −20 0 20 40 60

−50

−25

0

25

50

x2 in mm

x
1

in
m

m

Curvature κ in mm−1

0

0.2

0.4

0.6

0.8

1

Figure 12: Simulation results of bundle curvature. The highest values occur at the corners of

the mold and at the weld line. The parts three dimensional shape is visible in this plot due to

the bending of bundles at curvatures of the geometry. High resolution CT data for curvatures

is obtained for the central area marked with a black rectangle.

data. It should be mentioned that simulated curvature might depend on the420

segment length of bundles.421

5. Discussion422

5.1. Simplifications and Limitations423

The entire flow of material is assumed to be isothermal in this work. This424

assumption is quite common for the bulk material of SMC, as the time scale of425

thermal diffusivity in SMC is large compared to the time it takes the material426

to flow (less than 5 s). Consequently, curing during the flow is also neglected.427

The heating and curing of bulk material is a relevant process in the subsequent428

holding phase though, which takes approximately 2 min.429

The matrix is treated as a purely viscous Newtonian fluid, because shear thin-430

ning behavior of the matrix system is currently not available. Typically, SMC431

matrix is described with a non-Newtonian power law model [6, 7, 52], which432
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Figure 13: Curvatures projected to the x2 axis.

has certainly an influence on the necessary compression force. However, the433

method is by no means limited to Newtonian viscosity. The characterization434

can be performed in a standard rheometer without fibers and does not require435

complex in-mold measurements.436

Fiber bundles are represented with truss elements which neglect bending stiff-437

ness and transfer tension only. This is based on the assumption that bundles438

have much higher bending compliance compared to a homogeneous cylinder.439

Bending and tension are likely decoupled at the meso-scale, as individual fila-440

ments may slide in relative motion. However, modeling the complex mechanics441

of a bundle and its sizing as a truss is a simplification in the present model. Truss442

elements imply a cylindrical shape for collisions in the current implementation.443

This is a simplification, because bundles in the actual process are mostly flat.444

Further work is required to investigate the effect of bundle shape on resulting445

micro structures. Additionally, short range hydrodynamic interactions (lubri-446

cation forces) between bundles are neglected. These interaction forces occur if447

bundles come in close contact and matrix material is sheared in the small gap448

between them.449

27



An a priori estimate for the number of contacts per bundle segment is given as450

Nc = 4f

(
2

π

L

2R
Φ1 + Φ2 + 1

)
(34)

with the orientation functions Φ1 = Φ2 = 2/π for a 2D random fiber distribu-451

tion and volume fraction f [53]. This estimate predicts about 6.2 contacts per452

bundle segment, which makes the incorporation of short-range hydrodynamics453

necessary for the correct prediction of compression forces. An evaluation of the454

direct bundle simulation leads to an average of 4.6 to 5.0 contacts per bundle455

(see appendix Appendix B). This evaluation is in good agreement with the es-456

timate given in equation (34). An additional challenge in modeling lubrication457

is the increasing sheared area due to flattening bundles [35]. The introduction of458

lubrication effects and corresponding experimental investigations with pressure459

sensors will be addressed by the authors in future work.460

5.2. Comparison of Direct Bundle Simulation to the State of the Art461

The Direct Bundle Simulation is able to predict fiber-matrix separation effects462

at the weld line and thus enables a better description of structural weak spots463

in such areas. The simulated matrix-rich region is slightly larger than in the464

investigated sample. This might be caused either by the experimental setup,465

because the part was compressed further than the nominal thickness, or by the466

simplifications of the model (bundle shape and friction).467

The presented approach is a natural access to modeling anisotropic flow. Other468

simulations based on fiber orientation tensors may incorporate the fourth order469

fiber orientation tensor to describe the fourth order viscosity tensor. However,470

the fourth order orientation tensor must be approximated by a closure, which471

becomes increasingly inaccurate, if only a few bundled directions are dominant.472

At regions close to the mold walls and the weld line, Direct Bundle Simulation473

accounts for spatial constraints of the fiber orientation due to mold boundaries474

and leads to more accurate fiber orientation results. This is expected to be useful475

for narrow features such as ribs or beads. Nonetheless, Jeffery’s equation leads476
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to reasonable results in planar, homogeneous regions and has an approximately477

ten times faster computational time. Therefore, a hybrid approach with bundles478

in critical regions might be a solution to improve computational efficiency for479

large SMC parts.480

Finally, simulation and experiment represent only single realizations of random481

processes. The ability to run multiple simulations with different initial mi-482

crostructures may help estimating process reliability and statistical deviations483

in future.484

6. Conclusion485

The Direct Bundle Simulation approach treats fiber bundles in SMC as one-486

dimensional instances that move independent of the matrix material and inter-487

act through hydrodynamic forces as well as contact forces. The computational488

effort is greatly reduced compared to a simulation of all fibers by utilizing the489

observation that most bundles stay in a bundled configuration during SMC com-490

pression molding. The approach reproduces Jeffery’s equation for a single fiber491

bundle in shear flow. A part with double-curved geometry was molded using two492

initial charges in order to force formation of a weld line and with a single initial493

charge to provide a long flow path. CT analysis of the parts shows that the494

Direct Bundle Simulation is able to predict a resin rich weld line and accounts495

for long fiber orientation constraints. Predicting such manufacturing defects in496

SMC compression molding enables the optimization of process parameters and497

molds early in the development process.498

Compared to statistical descriptors of fiber orientation, such as commonly used499

second order fiber orientation tensors, the direct simulation approach offers sev-500

eral advantages: Regions, where fiber lengths are comparable to local dimensions501

of the mold and thus where scale separation does not apply, can be described.502

This leads to an improved accuracy of computed fiber orientation data at weld503

lines and close to the mold boundaries. The distribution of fiber volume fraction504
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and fiber-matrix separation effects can be simulated, as bundles move indepen-505

dent of the matrix material. Flow anisotropy is treated naturally by imposing506

opposing forces to the fluid phase and does not rely on a closure approximation507

of the fourth order fiber orientation tensor. Additionally, the number of con-508

tacts and bundle curvature can be computed and shows good agreement with509

analytical estimates or evaluation of CT data.510
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Appendix A. Slices through thickness529

x
3

=
1.

95
m

m
x
3

=
1.

6
m

m
x
3

=
1.

2
m

m

x
3

=
0.

8
m

m
x
3

=
0.

4
m

m
x
3

=
0.

05
m

m

Figure A.14: Equidistant slices through the center area of the CT scan. Bundles are spread

close to the mold walls, which can be seen as blurry distribution at x3 = 0.05 mm and x3 =

1.95 mm at this resolution. Most bundles in the core stay intact. There is no other pronounced

difference between core and shell, which is in agreement with the plug-flow assumption for

SMC [3].

530

Appendix B. Contacts531

The total number of contacts is evaluated for each frame of the simulation532

results and is plotted in Figure B.15. This averages to approximately 1.8× 105533

contact pairs for the split stack configuration and 2.2× 105 contact pairs for the534

asymmetric flow, which has a slightly increased fiber volume fraction compared535

to the nominal value. Considering the total amount of 77438 and 87950 bundle536

segments, this evaluates to 4.6 and 5.0 contacts per bundle segment, respectively.537

538
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Figure B.15: Number of bundle-bundle contacts pairs during the molding process. The number

of contact pairs decreases during the forming phase of the stack and increases during flow,

when the entire stack is compressed.
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[29] S. Le Corre, D. Caillerie, L. Orgéas, D. Favier, Behavior of a net of fibers linked by620

viscous interactions: theory and mechanical properties, Journal of the Mechanics and621

Physics of Solids 52 (2) (2004) 395–421. doi:10.1016/S0022-5096(03)00090-5.622
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[51] L. Schöttl, K. Weidenmann, T. Sabiston, K. Inal, P. Elsner, Fiber bundle tracking method681

to analyze sheet molding compound microstructure based on computed tomography im-682

ages, NDT and E International (submitted) (2019).683

[52] A. G. Gibson, S. Toll, Mechanics of the squeeze flow of planar fibre suspensions, Journal of684

Non-Newtonian Fluid Mechanics 82 (1) (1999) 1–24. doi:10.1016/S0377-0257(98)00127-685

X.686

[53] S. Toll, Packing mechanics of fiber reinforcements, Polymer Engineering & Science 38 (8)687

(1998) 1337–1350. doi:10.1002/pen.10304.688

36


