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Abstract

When water penetrates into silica surfaces near a crack tip, it reacts with the
S10, network and generates hydroxyl =SiOH. Due to the hydroxyl generation,
silica expands and gives rise for swelling stresses. The consequence is a
fracture mechanics shielding stress intensity factor K,<0. The fracture me-
chanical treatment of swelling in the crack-tip region is significantly compli-
cated by the occurrence of damage due to the production of hydroxyls.

A maximum possible shielding effect is obtained by using an asymmetry pa-
rameter 4=1 in the crack wake (c5,<0) and neglecting the tension region ahead

the crack tip, where strong damage is present under hydrostatic tension
(Gh>0).

II



IV



Contents

1 Introduction
2 Hydroxyl damage under strain boundary conditions

3 Shielding stress intensity factor
4 Shielding stress intensity factor for asymmetric damage

Appendix: Mechanical interpretation of the limit cases

References

10

12



1. Introduction

The reaction of water and silica in the surface diffusion zone affects the fracture
mechanics stress intensity factor K at the tips of cracks. At temperatures 7' < 450°C,
the equilibrium constant of the water/silica-reaction

=Si-0-Si= +H,0 <> =SiOH+HOSi= (1)
is given by
S
k = e (2)

where, §=[=S10H], is the concentration of the hydroxyl groups in the silica network
and C=[H,0] the concentration of unreacted water.
According to Le Chatelier [1], the equation governing the equilibrium constant is

olnk, AV
op RT

3)

where p is pressure, AV is the reaction volume, R the universal gas constant, and T the
temperature in °K.

In gases and liquids, the loading is always hydrostatic. In a solid the situation is more
complicated, since the individual stress components oy, Gy, G, are in general indepen-
dent of each other and are not necessarily hydrostatic. Especially in uniaxial tension or
compression, the hydrostatic stress deviates clearly from the tensile stress. In contrast
to this, the stress state ahead of crack tips is more hydrostatic since the stress in the
prospective plane and the stress normal on this plane are identical, ,=cy, and the
stress o, 1s very close to the tip: 6,=v(c,t0oy), v=Poisson’s ratio.

By replacing the hydrostatic pressure p by the hydrostatic stress G}, in a solid

o, =§(6x+0'y+0'2) 4)
we obtain with the hydroxyl concentration S, for ;=0

o, AV
sesiof %) . ey .

Whereas in uniaxial tension, 6=cy, the ratio of the hydrostatic stress to the maximum
stress 1s only
o,/0,=3 (6)
it holds along a prospective crack plane
O

=2(1+v) = 0.78 (7

o, v=0.17



This value is much closer to the purely hydrostatic stress state described by op/cy=1
and should therefore be applied to crack problems.
For a crack of depth a, the singular hydrostatic near-tip stresses are given as

o,=2(1+v) \/% cos(p/2) (8)
where r and ¢ are the polar coordinates with the origin at the crack tip, K is the stress
intensity factor. Equations (5) and (8) imply that in the high crack-tip stress field
nearly all water is present in form of hydroxyl S.

Subcritical crack growth tests in heavy water were carried out on DCDC specimens of
silica by Lechenault et al. [2]. The water entrance into the fracture surfaces, formed by
the passage of the crack exposed to deuterium oxide D,0, was evaluated with a
neutron reflection technique to measure the penetration of the deuterium oxide into the
silica glass. The authors found a satisfactory fit to the reflection data by assuming that
the water concentration was constant at the surface up to a distance of L, followed by
an exponential decrease in concentration for distances greater than L.
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Fig. 1 Water profiles expressed by the neutron reflectivity ¢ measured by Lechenault et al. [2] on
DCDC specimens fractured in heavy water.

Lechenault et al. [2] fitted their results by the expression

1 for z<L

C./CO)= {exp[—(z —L)/n] for z>L

9)



and found the parameters L=4.3 nm, n=3.5 nm for a region of low crack rates (v=10™
m/s) at K= 0.61 MPa-m"? and L=4.6 nm, n=2.3 nm for higher crack rates (va4 107
m/s) at K= 0.77 MPa-m"?. These water profiles are illustrated in Fig. 1. Their flat
behaviour over an extended region calls for the application of the Dugdale- and the
Irwin-model developed for linear-elastic perfectly plastic materials. Since in the crack-
tip region the boundary conditions are not purely strain-controlled, as will be pre-
scribed for the developments in Section 2, we will not yet make use of these models.

2 Hydroxyl damage under strain boundary conditions

The hydroxyl generation by the reaction eq.(1) causes damage since the originally
intact silica ring structure is cracked by the water attack. One of the consequences of
such damage is the reduction of Young’s modulus E. In order to describe this E-
decrease, we used in [3] the rather simple damage model proposed by Phany and
Niyogi [4]. When Ep is the modulus in the damaged state and E, the value for un-
damaged silica, we could derive the relation [3]

%:a—mz =(1-5/8,,) (10)

0

with y=5.3 [4.35, 6.25] (90%-CI in brackets). The hydroxyl concentration at which the
Young's modulus disappears is Sy.x =1/y=0.188[0.16, 0.23]. Under the condition that
the damage is isotropic and Poisson’s ratio v remains sufficiently constant [5], the
multiaxiality in damaged states remains unchanged. Then it holds for the individual
normal stress components G;

Oip _ 9up

=27 (11)

O-i,O Gh,appl

Let’s consider a certain stress state with hydrostatic stress Gy upp t0 @ volume element
of undamaged material with Young's modulus E, under strain boundary conditions.
The strain- boundary conditions for Fig. 2 have to be understood in the following way:
The volume element may contain molecular (unreacted) water in the unloaded state.
The strain after load application is proportional to the loading, i.e.

O- a,
£,,6,,E, o 2 (12)
0
In the special case of o, =6, =0, =0y, the coefficient of proportionality is the “bulk
module” E/(3(1-2v)). The strained volume is then fixed in this state and water-silica
reaction is started.



The hydrostatic stress after hydroxyl generation and damaging, c,p, decreases with
decreasing Young's modulus:

Onb _(1-5/8,,) (13)

O-h ,appl

Consequently, the hydroxyl concentration as a function of the hydrostatic stress, eq.(5),
can be written in the damaged state
_AY

2
S:SO exp[#o-h,appl(l_S/Smax) ]a H= RT

(14)
Equation (14) is an implicit equation since the unknown concentration S occurs on
both sides. The solution can be found by numerical methods (e.g. by the subroutine
FindRoot of Mathematica [6]).

Figure 2a shows the hydroxyl concentration as a function of o, 45 and Sy, The effect of
the coefficient p is small for large puxcyapp. The hydroxyl generation by the reaction
causes the reduction of Young’s modulus from E, (undamaged state) to Ep (damaged
state) according to eqs.(10, 11). The consequence is a reduction of the hydrostatic
stress from Gy, 4pp1 t0 O3, p In the damaged state (red arrow in Fig. 2b).

Figure 2b represents the hydrostatic stress under damage conditions as a function of
the externally applied hydrostatic stress for several initial hydroxyl concentrations Sj.
The maximum hydrostatic stress, asymptotically reached for oy, 4pp—>, is according to

eq.(5)

& =—1Log[ Sﬁ (15)

The true stresses oy, p of Fig. 2b may be simplified by a bi-linear description as intro-
duced by the dashed lines in Fig. 2¢ for Sy=107. In this case the maximum possible
stress in the damaged state is depending on the parameter p, i.e. on temperature 7:
UGhDmax=2-24. In the sense of an upper limit solution, the stresses can be approxi-
mated as

(16)

o _ O-h,appl for Gh,appl < Gh,D,max
h,D —
O 1D max else

The damage behaviour studied in this section is only addressed in order to show that
the stresses at a crack tip must be limited as is the case for elastic-plastic materials.
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Fig. 2 a) Hydroxyl concentration vs. applied stress under condition of constant strains, b) hydrostatic
stress in the damaged material o, as a function of the applied hydrostatic stress Gy 4pp1 and the
hydroxyl concentration S, in the absence of stresses with the abbreviation p defined by eq.(14), ¢)
limit of hydrostatic stress and approximation by an upper bound description (dash-dotted straight
lines).



3 Shielding stress intensity factor

For a zone of constant hydroxyl concentration and constant modulus over the height
it holds:

e E kSE
KSh €,,Ep=const. = _w 1‘)_5 \/5: _l// l—VD \/5 (17)

v 1s Poisson’s ratio of v=0.17.

The volume swelling strain €, can be computed from the hydroxyl concentration §

e, =KS (18)
with § in parts by mass and k=0.97 [7].
Figure 3a shows the contour of a heart-shaped (black) and a semi-circular zone (red)
for a crack starting to grow. In the range of ¢<90°, the contours are hardly different.
After a crack extension of Aa>5w, Fig. 3b, the full shielding contribution is reached.
The coefficient v was computed by McMeeking and Evans [8] with the result of
y=0.22 for the heart-shaped zone contour, y=0.25 for a semi-circular profile, and
y=0.37 if the contribution from material ahead of the tip is neglected, see Table 1 and
Fig. 4. The value y=0.37 is regarded in [8] as an upper bound.

Damage Zone Coefficient y | Case in Fig. 4
Zone with heart-shaped end contour 0.22 ©)
Zone with semi-circular end contour 0.25 (B)
Semi-circular zone ahead the tip -0.121
Contributions behind the tip 0.37 (A) Upper bound

Table 1 Coefficient y of eq.(17) for different shapes of swelling zones.
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Fig. 3 a) Swelling zone with constant volume strain &, for an arrested crack, b) zone for a grown crack.
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Fig. 4 Coefficient y of eq.(17), a) swelling zones with different shape at the zone end, b) results by
McMeeking and Evans for constant volume swelling (circles) and interpolating curve.

4 Shielding stress intensity factor for asymmetric damage

In the case of disappearing total stress intensity factor at the crack tip, K= Kappl TKiip
<0, all volume elements in the water-affected zone are under compression due to
volume swelling by hydroxyl generation. In the previous considerations, we applied
the model of pore-like defects. This model describes symmetrical material response
under tension and compression loading. The Young's modulus in compression is not
necessarily identical in tension and compression. This problem was handled by
Lemaitre and Sermage [10] introducing non-symmetry of deformation in tension and
compression. These authors included the case that the reduction of Young’s modulus
in compression is less strong than in tension by a non-symmetry coefficient or crack
closure parameter 0<A<1

E:{Eo(l—D) for o3>0 (19)

E,(1-hD) for o<0

with the “damage parameter” 4 and damage D by Lemaitre [9], defined as D=1-Ep/E.
For most practical applications Lemaitre and Sermage suggest 4=0.2 [10]. A possible
reason for the differences in tension and compression is addressed in the Appendix.

The asymmetry gives reason to define an upper limit for the shielding stress intensity
factor. The zone in front of the crack tip is under tension for a load of Ky, >0, Fig. 5.
The crack flanks, on the other hand, are stress-free with regard to the applied load and



are under pressure due to the swelling stresses. In this region the lower expression in
(19) holds. As the limit approximation, the reduced modulus in the zone ahead of the
tip is assumed to be free of any stress (Ep—0) and the crack-face region is assumed to
exhibit the initial modulus, 1.e. #~—0. This approximation is also given by Eq. (17) by
using the value y=0.37 according to McMeeking and Evans [8], see also Fig. 4.
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Fig. 5 Negative and positive contributions to the total shielding stress intensity factor.

0.1

0.25
'Ksh
0.2

(MPaVm)

0.15

0.1

0.05

(I T T I T I VA I A A A A

0.05 0.1 0.15
S(0) (wt%)

Fig. 6 Shielding stress intensity factors for an erfc-shaped hydroxyl distribution as a function of the
surface concentration S(0). Solid curves: from [11], dashed curve: eq.(17) with y=0.37.

Finally, Fig. 6 represents results from [11] for an erfc-shaped hydroxyl distribution
with a surface value S(0) and a parameter b of 4.95 nm (solid curves), according to:



- Z
S=5(0) erfc{ 2 } (20)

The dashed line in Fig. 6 shows the upper limit solution for the same S-distribution
addressed before.

Outlook: Great similarities in the deformation behavior due to hydroxyl generation
with elastic-plastic materials may give rise to the use of the well-known models by
Irwin and Dugdale.



Appendix:
Mechanical interpretation of the limit case under compression

Figure 7a illustrates schematically the silica net structure attacked by a water molecule.
A possible interpretation of the asymmetry coefficient 7 may be illustrated in the
following way:

A Si10,-ring of the silica network may be described by a spherical (nano)-void in a
continuous material. This allows a fracture mechanics treatment by an FE-study.
According to the finite crack-tip curvature for cracks, the radius of such a void has to
be expected in the order of p=0.5 nm [12], Fig. 7a.

Under a remote tensile load in z-direction, o, the red Si-O-bond may be cracked by
reaction with molecular water (blue/red). In the tensile case the opened bond cannot
transfer any significant tensile forces, Fig. 7b. Consequently, it is A~—1 in eq.(19).

Due to the initially load-carrying fractured bond, the stress concentrations increase at
the ends of the now tablet-shaped void as indicated by the red circles. Due to the
exponential increase of the hydroxyl concentration with stress, newly reacting water
molecules will predominantly react at these locations. Figure 8a illustrates the enlarged
void when the water molecule might have reacted at the right side of Fig. 7b. Addi-
tional reactions will lead to micro-crack-like elongated defects perpendicular to the
maximum principal stress.

<7
R0

2

Fig. 7 a) Bond breaking under uni-axial tension by reaction with molecular water (attacked SiO,-bond
in red), b) limit case of an open bond represented by a disk-like notch of diameter 2(p+L), red circles:
increased stress concentrations.
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Fig. 8 a) Additionally cracked bond at a location of high stress concentration, b) limit case of a wedge-
like contact of the hydroxyls under compression.

Figure 8b shows the case, when the reacted bonds are closed again by remote com-
pressive stresses. Then it must hold 4<I1. In the ideal limit of a “hard”, wedge-like
contact it would be 4—0 as occurs for cracks oriented normal to the stress.

The void under tensile loading acts as a disk-like defect of length 2(p+L) oriented per-
pendicular to the load direction. As the result of a Finite Element study, the stress in-
Crease Ouma/O. at the notch root is shown in Fig. 9a as a function of the length L
(circles).

A rough representation of these data may be given by the simple relation

9 _148x% /1.84+£ (21)
o, p

11



The maximum displacement in the centre is given in Fig. 9b. The straight-line depen-
dency is represented by

5.-E _2i1075L 22)

po, P

2 4 6 8 10 T2 4 s 8 10
L/p L/p

Fig. 9 a) Stress concentration at the notch root for several values of notch length L (circles: FE-results,
curve: approximation by eq.(21), b) displacements in the axis direction, straight line: eq.(22).
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