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Abstract

Climate change mitigation has become a political target with high sig-
nificance and broad social acceptance. An integral part of this target is
the reduction of greenhouse gas emissions. The term energy transition
summarizes the activities in different parts of the energy sector to shift
the generation of energy from conventional to renewable energy sources.
It is a major challenge to control the costs and speed of this conversion
and to appropriately synchronize it with other related activities including
transmission grid expansion and the electrification of the transport sector.

To promote renewable energy sources, which are not yet competitive
with conventional power plants, governments around the world increasingly
decide to implement competitive auction mechanisms. Auctions promise
to enable a controlled expansion at lowest costs. Those arguments and
good experiences from recent projects led to the implementation of auc-
tions in many countries around the world. Nevertheless, the promotion of
renewable energy support is still a relatively new application of auctions
and lacks a coherent analysis of practical experiences and the theoretic
background. Therefore, the analyses in this thesis enhance and comple-
ment the existing research and contributes to the literature by applying
auction-theoretic analyses on the field of auctions for renewable energy
support.

This thesis presents four different analyses of auctions for renewable en-
ergy support. Two analyze specific design elements auction-theoretically,
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one complements the theoretical research by an agent-based model and
one by an experimental approach. The first analysis highlights the impli-
cations of prequalifications and penalties on realization rates and auction
prices and provides policy implications regarding an appropriate auction
design. Discriminatory design elements gained relevance in auctions for re-
newable energy support through the recent trend of technology-neutral and
cross-border auctions. The more distinct groups of bidders participate in
the same auction, the more possibilities arise to implement discriminatory
design elements. This theoretical analysis presents the opportunities and
threads of discriminatory design elements and highlights the relationship
between auction targets and auction design.

The third analysis in this thesis combines auction-theoretical research
with an agent-based model to enhance the understanding of the bidding
behavior in a real-world auction. This new insight explains the effects
of given design elements and bidder beliefs on the auction outcome and
facilitates improvements to the future auction design. Finally, this the-
sis contributes to the research on common value auctions. The analysis
adapts the common value framework to the conditions of auctions for re-
newable energy support and systematically compares the most common
pricing rules and different competition levels in multi-unit common value
procurement auctions. The risk of the winner’s curse is severe in such a
setting, however, in contrast to theoretical predictions, the pricing rules
have no significant influence on the experimental outcome.

This thesis is based on four papers prepared at the Institute for Eco-
nomics (ECON) in the Research Group for Strategic Decisions under the
supervision of Professor Karl-Martin Ehrhart at the Karlsruhe Institute of
Technology (KIT) and is written in English.



Kurzfassung

Die Bekämpfung des menschengemachten Klimawandels ist aktuell eines
der wichtigsten politischen Ziele und besitzt große öffentliche Akzeptanz.
Die Verringerung der Treibhausgasemissionen ist eine notwendige Bedin-
gung, um dieses Ziel zu erreichen. Der Begriff Energiewende fasst dabei alle
Aktivitäten zur Umstellung von konventioneller zu erneuerbarer Energie-
erzeugung zusammen. Die wesentliche Herausforderung der Energiewende
ist deren Umsetzung im Spannungsfeld zwischen Kosten und Zeit.

Da Erneuerbare Energien im Vergleich zu konventionellen Kraftwerken
noch nicht wettbewerbsfähig sind, wird ihr Ausbau staatlich gefördert. Für
diese Förderung werden weltweit vermehrt Auktionen eingesetzt, da die-
se eine Kosten- und Mengenkontrolle versprechen. Obwohl mittlerweile in
vielen Ländern Auktionen durchgeführt werden, sind die Erfahrungswer-
te und die theoretische Analyse noch unvollständig. Die Forschung dieser
Doktorarbeit erweitert die vorhandenen Untersuchungen und trägt durch
die Anwendung von auktionstheoretischen Methoden im Feld der Auktio-
nen für Erneuerbare Energien zur Literatur bei.

Diese Doktorarbeit beinhaltet zwei auktionstheoretische Analysen von
besonderen Designmerkmalen von Auktionen für Erneuerbare Energien. In
den zwei weiteren Arbeiten werden die auktionstheoretischen Methoden
durch eine agentenbasierte Modellierung und durch eine experimentelle
Untersuchung ergänzt. Im ersten Abschnitt dieser Doktorarbeit wird der
Zusammenhang zwischen Präqualifikationen und Realisierungsraten bezie-
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hungsweise Auktionspreisen analysiert und erläutert. Auf Basis dieser Er-
gebnisse werden Empfehlungen hinsichtlich einer geeigneten Gestaltung
der Auktion gegeben. Durch die Öffnung von Auktionen für verschiedene
Technologien oder Bieter aus verschiedenen Ländern haben diskriminie-
rende Gestaltungselemente in Auktionen für Erneuerbare Energien erheb-
lich an Bedeutung gewonnen. Durch die Teilnahme verschiedener Bieter-
gruppen eröffnen sich neue Möglichkeiten aber auch Herausforderungen im
Auktionsdesign. Die in dieser Doktorarbeit verfasste Analyse zu diskrimi-
nierenden Designelementen zeigt insbesondere den engen Zusammenhang
zwischen den Zielen der Auktion und deren Ausgestaltung auf.

Im dritten Abschnitt wird die auktionstheoretische Forschung um ei-
ne agentenbasierte Modellierung ergänzt. Die neu gewonnenen Einsichten
erklären die Auswirkungen des Auktionsdesigns auf das Auktionsergebnis
und tragen somit zu einem besseren Verständnis der Wechselbeziehungen
bei. Die vierte Analyse in dieser Doktorarbeit befasst sich mit Common-
Value Auktionen unter den Rahmenbedingungen von Auktionen für Er-
neuerbare Energien. Dabei wird ein systematischer Vergleich zwischen den
beiden meistverwendeten Preisregeln mit verschiedenen Wettbewerbsnive-
aus vorgenommen. Unter allen Parametern ist das Risiko des Fluchs des
Gewinners erheblich, aber das Ergebnis unterscheidet sich – im Gegen-
satz zur theoretischen Erwartung – nicht signifikant zwischen den beiden
Preisregeln.

Die Grundlage dieser Doktorarbeit sind vier Papiere, welche am Institut
für Volkswirtschaftslehre (ECON) in der Forschungsgruppe Strategische
Entscheidungen unter der Betreuung von Professor Karl-Martin Ehrhart
am Karlsruher Institut für Technologie (KIT) erarbeitet wurden. Die Ar-
beit ist in englischer Sprache verfasst.
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Chapter 1

Introduction

The recent Fridays for Future (Fridays For Future, 2019) campaign draws
public attention to climate change awareness and mitigation measures.
The principal claim of the campaign is the compliance with the targets of
the Paris Agreement (United Nations Framework Convention on Climate
Change, 2015), in particular to limit global warming below 2 degrees Cel-
sius above pre-industrial levels. A cornerstone to achieve the associated
greenhouse gas emission reduction is the expansion of renewable energy
(RE). As a result, the 2030 targets of the European Commission (Euro-
pean Commission, 2014a) explicitly set greenhouse gas emission reduction
and RE expansion targets. Although this expansion receives broad social
support, it lies between the conflicting priorities of politics, economics and
environment.

RE sources are defined as naturally replenishing energy sources such
as wind, water, tides, waves, geothermics and sunlight. The potential
of these sources in principal meets many times the human energy demand
(Ellabban et al., 2014). RE sources are distinguished whether they provide
energy for electricity, heating or transport purposes (Ragwitz et al., 2009).
This thesis will focus on the electricity sector.1

Although RE sources are in principal available for free, RE plants still
1For the sake of simplicity, I refer to electricity from RE sources with the term RE.
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2 1 Introduction

require support to achieve expansion targets. However, the form of sup-
port as well as affected stakeholders and technologies underwent significant
changes in the last two decades. The support payment developed from
administratively set feed-in-tariffs (FiTs), that is each operator receives a
fixed rate per produced unit of electricity of the RE source, to more market
oriented approaches. The market orientation has several facets. First, RE
suppliers do not receive a previously set support payment but payments
are determined in a competitive process. Second, RE suppliers have to
compete in direct marketing of their electricity (Wassermann et al., 2015).
Although there are many more market oriented specifics, this thesis will
focus on the competitive set support payments.

The development of the support mechanisms is also reflected in the de-
velopment of RE technologies and of RE suppliers. Both became more
market oriented. Construction and operation of RE plants is now an eco-
nomic factor while there exists a high innovation pressure on the technol-
ogy side (New Energy Update, 2019). This pressure led to a maturation of
technologies so that they are now at a crossroad of economic development.
The costs for electricity generation from RE sources, in particular of pho-
tovoltaics (PV) and wind, are similar to those of newly built conventional
energy sources, yet they still require support. The two main reasons are
the asymmetry between investment costs and operations costs and the ac-
companying dependence on interest rates (Steffen, 2018) and the variable
nature of REs, especially wind and PV. Those RE sources produce energy
when the sun is shining or the wind is blowing, which need not be the
times when there is electricity demand. This discrepancy results in a tech-
nology specific market value and requires additional measures to achieve
a sustainable electricity system (Joskow, 2011).
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1.1 Political background

In recent years auctions have become the prevalent competitive mecha-
nism to determine support payments for REs. Such auctions are now
implemented in Europe, Latin America and most recently in Africa as well
as some other countries. The number of countries implementing auctions is
still growing (IRENA, 2019; Wigand et al., 2016). Table 1.12 lists some of
the countries which implement auctions as well as the year of the first auc-
tion. In Europe REs are mostly supported to replace conventional power
plants while in Latin America and Africa REs are required to meet the
increasing electricity demand (IRENA, 2019).

The principle of auctions for RE support is similar across most imple-
mentations. The auctioned good is a predetermined amount of energy
(MWh) or capacity (MW). Those bidders are awarded that supply this
good at lowest support costs. The support payment is guaranteed for a
given time period or amount of energy. Usually, there are other benefits
for the supplier besides the support payments, e.g. feed-in priority or grid
connection.

The convergence to auctions in Europe was caused by a decision of the
European Commission on state aid in the context of REs. From 2017
onward member states of the European Union (EU) have to implement
competitive mechanisms, i.e., auctions, to support REs (European Com-
mission, 2014b). This decision had great impact not only on the energy
legislation in EU countries but also beyond as further countries benefited
from public awareness and experiences with auctions in the EU.

Germany adapted its RE legislation in 2016 (Deutscher Bundestag,
2016). The Renewable Energy Sources Act (EEG) supported REs with
an administratively set FiT from 2000 on. The support amount was al-

2This table is based on the data from the AURES II (http://aures2project.eu/) project.

http://aures2project.eu/
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Table 1.1: Summary of selected countries conducting auctions for RE support.
Country Eligible Year of

technologies introduction

Brazil Wind 2009
PV 2014

China Wind 2003
PV 2016

France PV 2012
Wind 2017

Germany
PV 2015
Wind 2017
Wind offshore 2017

Great Britain Multi-technology 2014

India PV 2010
Wind 2017

Italy Wind 2012
Mexico Multi-technology 2015

The Netherlands Multi-technology 2011
Wind offshore 2016

Saudi-Arabia PV 2017
Slovenia Multi-technology 2016

South Africa Wind 2011
PV 2011

Spain Multi-technology 2016

ways controversial (Plickert, 2013). With the change of legislation, from
2017 on all RE suppliers were obliged to participate in auctions to receive
support.3 Already before this, there were six pilot auctions for ground-
mounted PV plants in 2015 and 2016.

Although the recent success and proliferation of auctions, early experi-
ences were rather disappointing. In the United Kingdom (UK) and Ireland
the realization rates, that is, the share of awarded RE projects that were
actually built, was very low (Menanteau et al., 2003), while in Brazil the
realization period, that is the time between award and actual grid con-
nection, was very long (Bayer et al., 2018). Those experiences proved the
challenges of auctions for REs and that there is no one-size-fits-all auction

3Small RE suppliers are exempt from this legislation and still receive an administratively set FiT. However,
the amount of support is adapted according to the results of recent auctions.
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design.
There is a large variety of design elements in auctions for RE sup-

port around the globe. One main distinction between the different auc-
tions is the choice of participation conditions for different technologies.
Some countries implement only technology-specific auctions where in each
auction only one RE technology can participate. Other countries imple-
ment multi-technology auctions where two or more technologies partici-
pate. Those auctions are sometimes referred to as technology-neutral auc-
tions although real technology-neutrality is rarely achieved (Kreiss, 2019).
In multi-technology auctions, it is common to discriminate the different
technologies either deliberately to achieve the respective targets or un-
intentionally if the circumstances do not allow otherwise. For example,
if due to the environmental legislation the required permits for different
technologies may differ significantly.

Further distinctions in the auction design affect geographical differences
and the participants of the auctions. In some auctions there are restric-
tions for some geographical areas based on, e.g. grid restrictions. It is
also not uncommon to favor some specific bidder groups, e.g. citizen en-
ergy projects (Lundberg, 2019). A more recent trend for auctions for RE
support is the opening of the support schemes for participants from differ-
ent countries (Kitzing and Wendring, 2016). The actual implementation
can be diverse. Either one country opens the auction unilaterally or both
countries open them mutually (von Blücher et al., 2019).

Although the actual design of the auctions is diverse, there are three
overall auction targets that each country prioritizes differently. (1) Auc-
tions shall reduce the costs of RE support as the FiT is not set administra-
tively anymore but determined through competitive market mechanisms.
(2) This market mechanisms guarantee an efficient support, that is those
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projects are awarded that require least support in order to produce a given
amount of RE. And (3), auctions enable a quantity control of RE expan-
sion. The auction volume determines the number of supported RE and,
thus, the RE expansion can be controlled with respect to budget con-
straints, RE expansion targets or grid expansion requirements (del Rio
and Cerdá, 2014; Mora Alvarez et al., 2017b; Haufe and Ehrhart, 2018).

Particular political challenges for the design of auctions for RE support
accompany those targets. This thesis will highlight the conflicts between
the three main targets which cannot be resolved. As bitterly experienced in
the first auctions, non-realization of awarded projects is a major risk of the
RE expansion and, thus, hampers target achievement. Then, the opening
of the auctions for different technologies and/or participants from different
countries is a particular challenge for a fair auction design. Finally the
prospective energy market design and the integration of RE is a challenge
of the future.

1.2 Auction-theoretic background

Auctions are a popular market mechanism when public resources are sold,
e.g. oil and gas leases (Capen et al., 1971) or spectrum licenses (McMillan,
1995; Cramton, 1997). As another example, the EU CO2 emission trading
system has already applied market mechanisms to reduce and control CO2

emissions for years (Ehrhart et al., 2005; Ellerman et al., 2015). There is
also a wide range of procurement auctions, either in the public sector, e.g.
for investments in infrastructure and in the private sector where industrial
procurement auctions play a big role in awarding huge supplier contracts
(Spulber, 1990; Herbsman et al., 1995).

All those implementations vary widely with respect to the auction de-
sign. In reference to Haufe and Ehrhart (2018) in this thesis I will concen-
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trate on auction designs that satisfy the following basic principles:

1. All bids are binding.

2. The best bid wins.4

3. All awarded bidders receive a payment higher than or equal to
their bid.

The following section will provide insights in the game-theoretic back-
ground of auctions for RE support. Technological, political or economical
disruptive events are only some more (external) factors that have an influ-
ence on the auction outcome and the bidder behavior, but these are out
of scope of this thesis and will not be analysed. Examples, therefore, are
changing balancing power requirements or an accelerated coal phase-out.

1.2.1 Auction format

From an auction-theoretic perspective there are specific characteristics of
auctions for RE support. First, those are procurement auctions where
the state does not sell a good but buys one. In this case, the state buys
renewable electricity that either replaces or obviates electricity from con-
ventional electricity sources. The procured good is usually either capacity
or energy and, thus, a divisible good. Depending on the size of the auction
it is either common or inevitable that multiple bidders are awarded.5 Thus,
most auctions for RE support are multi-unit auctions. To determine the
number of awarded bidders it is essential to know the size of the respective
projects and, thus, the bidders have to submit price-quantity-bids. That
is, the bidders do not only have to state the bid price but additionally the

4And the rules what is regarded as best bid are determined ex-ante.
5One exemption are auctions for offshore wind were usually one particular site and, thus, only one bidder

is awarded.
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size of the planed project in case of award. Unless otherwise specified the
demand from the different potential suppliers is considered homogeneous.

For multi-unit auctions there exist variations of the common pricing
rules for single-unit auctions. The two most common ones with respect
to RE auctions are discriminatory price (DP) auctions6 and uniform price
(UP) auctions. In the standard independent private value (IPV) auction
model with single project bidders, the equilibrium bidding strategies in
both pricing rules yield the same outcome with respect to prices and allo-
cation (Weber, 1983; Engelbrecht-Wiggans, 1988). However, in real world
application other conditions apply. For instance, bidders potentially par-
ticipate with more than one project and, thus, the results may be inefficient
(Vickrey, 1961; Ausubel et al., 2014).

The RE auction format has further special characteristics. The auctions
are conducted periodically. However, it is not a sequential auction in the
proper sense. If a project is awarded it cannot participate in any further
auction. If a project is not awarded in an auction it may participate in a
future auction conditionally on the limited validity of all required permits.
That is, some bidders may participate in subsequent auction with the same
or different projects, some bidders may stop participating and some may
start bidding in future auctions so that there is no common set of bidders
for subsequent auctions

1.2.2 Characteristics of participants

Not only the auction format but also the bidders feature some special char-
acteristics. Two of those characteristics require special attention. First,
the project costs between bidders are not completely independent but –
depending on technology and other factors – there are common cost and
value components. The costs of RE projects are highly depending on tech-

6DP auctions are sometimes referred to as pay-as-bid (PaB) auctions.
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nology and raw material costs, that is the costs for PV modules and wind
turbines are similar for all projects (European Commission, 2016; Yu et al.,
2017). On the other hand – depending on the remuneration type – the rev-
enue of each project is depending on the electricity spot market price (see
Section 1.2.3). Due to the time lag between auction, realization and op-
eration of the RE plants, there exist not only common costs and values
but those cost and values are partly uncertain. That is, in the context of
RE auctions the IPV model does not apply but the interdependent values
(IV) auction model (Wilson, 1969).

The participant composition is another important factor. If there are
different technologies or bidders from different countris competing in one
auctions, or if bidder groups of the same technology or country are het-
erogeneous, e.g. due to different sizes, geographical regions or ownership
structures, then the bidders are considered asymmetric. A set of asym-
metric bidders also has an influence on the bidding behavior and auction
outcome (Maskin and Riley, 2000). This is not only true from an auction-
theoretic perspective but also from a political perspective as there are more
different groups of stakeholders involved. The higher the heterogeneity of
bidders the more potential for discrimination in auctions. This work will
elaborate this topic in more detail in Chapter 3.

1.2.3 Framework conditions

Besides the auction format and the participants characteristics this work
analyzes further influencing factors on the auction. In the context of auc-
tions for RE support there is a time period between conduction of the
auction and realization of the project in which the RE plants have to be
built. However, the bidders have to prepare their projects even before par-
ticipating in the auction. For example, they have to obtain the required



10 1 Introduction

permits to realize the project, negotiate contracts with suppliers or carry
out feasibility studies. However, if they are not awarded the costs to pre-
pare the projects are sunk. A rational bidder factors those costs in when
deciding to take part in an auction.

The auctioneer sets the prequalification requirements and, therefore,
indirectly affects the auction outcome. The same holds for any kind of
penalty in case of non-realization or project delay. By considering the
respective probabilities and consequences bidders price a potential penalty
in when deciding on their bid. However, prequalification requirements
reduce project uncertainties and increase the probability of a timely project
realization. Chapter 2 will elaborate on this topic.

Another important auction design choice is the remuneration type. In
most cases the FiT is actually a feed-in-premium.7 That is, the RE sup-
plier receives a support payment on top of the wholesale market price of
the produced electricity. A crucial difference is the question whether this
premium is fixed or sliding and in case of a sliding premium whether it is
symmetric or asymmetric. The auction result is usually referred to as sup-
port level but the meaning for the RE supplier is significantly influenced
by the type of remuneration. The principles of the most common types of
feed-in premiums are illustrated in Figure 1.1.

If the remuneration is a fixed feed-in-premium (c) then the support level
is essentially a predetermined payment per unit of produced electricity that
a RE supplier receives independent of the additional revenue from the
electricity wholesale market price. If the feed-in-premium is sliding, then
the RE supplier receives the difference between the electricity wholesale
market price and the support level as additional payment. The differences
between symmetric (a) and asymmetric (b) arise if the wholesale market

7Nevertheless, in this work the term FiT is used to generally describe the support payment independent of
the actual implementation if not stated otherwise.
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a) Symmetric sliding
feed-in premium

b) Asymmetric sliding
feed-in premium

c) Fixed feed-in 
premium

Electricity price risk

𝑏𝑠 𝑏𝑎

𝑏𝑓

Wholesale Market Revenue Support Payment

Figure 1.1: Illustration of the most common remuneration types.

price is higher than the support level. In the symmetric case the RE
supplier has to pay back the overcompensation, in the asymmetric case
not. There are further differences and details, e.g. grid connection costs
and feed-in-priority to distinguish remuneration types. However, the major
difference is to what extent bidder face the electricity market risk. This
is highest under a fixed feed-in-premium and lower than under a sliding
feed-in-premium (Kitzing and Ravn, 2013). This work does not further
detail the implications of the remuneration type.

1.3 Objective

The recently increased interest in climate change awareness requires an
objective foundation of the discussion. A cornerstone of climate change
mitigation is the energy transition and the expansion of REs. This work
aims to contribute to this discussion by connecting theory and practice.

The energy transition requires the interaction and cooperation of many
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stakeholders: research and development of new technologies in universities
and companies, investors and banks to back the project developers, con-
struction and operation of the RE plants as well as new grid connections
to name only some of them. Even more, every taxpayer and electricity
consumer is directly or indirectly affected. There is a high expectation
that policy makers create suitable framework conditions. Additionally, all
stakeholders have a self-interest to influence the energy transition in their
favor.

Therefore, it is important to answer the raised questions scientifically
and unbiased. In the literature, there is research on political and technical
issues regarding RE support and the energy transition and the auction-
theoretic literature concentrates on other application fields or is more gen-
eral. Hence, the link between auction theory and the field of auctions for
RE support is a gap in the existing literature. This work takes up ques-
tions from practice and analyzes them auction-theoretically. The results
of the analyses are processed in order to translate them into policy impli-
cations. Thereby, it is not only a goal to deliver theoretical results but
to provide important practical insights and to contribute to the ongoing
political discussion.

1.4 Approach

The covered research questions in this thesis are real-world issues regarding
the implementation of auctions for RE support and those are analyzed
through a combination of different approaches. The respective situations
are modeled abstractly and theoretical analyses are applied. Thereby, this
thesis applies game-theoretic solution concepts and extends them with an
agent-based model (ABM), a thorough policy analysis and a laboratory
experiment.
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A main concern regarding the implementation of auctions for RE sup-
port is the potential of non-realization and project delays (Mitchell and
Connor, 2004; Held et al., 2014; Bayer et al., 2018). To prevent this risk,
auctioneers require physical and financial prequalifications and implement
penalties. This, however, comes at a price. While prequalifications reduce
cost uncertainty it also means that bidders have to invest in their projects
prior to the auction and, thus, before they know whether their projects are
awarded or not. It is therefore crucial to find the right balance between
prequalification requirements, sunk costs and realization rates. Chapter 2
auction-theoretically analyzes the implications of penalties, physical and
financial prequalifications on the auction outcome from the perspective of
both, the bidders and the auctioneer.

Chapter 3 applies an auction-theoretic analysis of discriminatory design
elements in the field of auctions for RE support and combines it with a
thorough policy analysis. Such instruments are a bonus for a particular
group of bidders, different maximum prices depending on the bidders char-
acteristics or minimum and maximum quotas. All instruments favor one or
several particular groups of bidders. An analysis of discriminatory design
elements is important due to the increased number of auctions open to
different bidder groups, for example for different technologies. The analy-
sis thereby contrasts the auction-theoretic results with the actual political
targets and elucidates the trade-offs between different targets. Further, it
compares the discriminatory design elements with respect to their robust-
ness to misestimations in a simplified model.

Chapter 4 provides insights into an actual auction implementation. A
combination of auction theory and ABM enhances the understanding of
auction outcomes. The actual data of six auctions for ground-mounted PV
plants in Germany in the years 2015 and 2016 is fed into an ABM. The
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behavior of the agents is modeled with respect to auction theory. Through
this approach it is possible to conduct a backward analysis to understand
the auction results and to further analyze some What if cases.

In Chapter 5 the auction-theoretic analysis of multi-unit common value
(CV) auctions is complemented by an experimental study. This thesis ex-
tends the existing literature for CV auctions by a systematic comparison of
different auction formats in combination with different competition levels.
The different competition levels are modeled through a different number
of demanded goods and, therefore, the CV theory is complemented for
multi-unit auctions. The analysis finds a stark difference between theoret-
ical and experimental results. This thesis provides three main explanations
for those differences.

The thesis concludes in Chapter 6. Here, overarching conclusions and
implications are drawn from the results of the analyses, and an outlook for
further directions of research is presented.

Chapters 2 to 5 are based on four papers, which have been edited slightly
for consistency and coherence in this thesis. Table 1.2 illustrates the au-
thors, title and reference for each paper.
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Table 1.2: Overview of the papers prepared for this thesis.
Chapter Authors Title Reference

2
Jan Kreiss,
Karl-Martin
Ehrhart,
Marie-Christin
Haufe

Appropriate Design of Auctions
for Renewable Energy Support
– Prequalifications and Penal-
ties

Kreiss
et al.
(2017)

3
Jan Kreiss,
Karl-Martin
Ehrhart,
Marie-Christin
Haufe, Emilie
Rosenlund
Soysal

Different cost perspectives for
renewable energy support: As-
sessment of technology-neutral
and discriminatory auctions

Kreiss
et al.
(2019)

4

Marijke
Welisch,
Jan Kreiss

Uncovering bidder behaviour in
the German PV auction pilot –
Insights from agent-based mod-
elling

Welisch
and Kreiss
(2019)

5

Karl-Martin
Ehrhart, Jan
Kreiss

Multi-unit common value pro-
curement auctions -– theoreti-
cal and experimental analysis

Ehrhart
and Kreiss
(2019)





Chapter 2

Appropriate design of auctions for
renewable energy support –
prequalifications and penalties

A key driver for auctions for RE support is the efficient and cost effective
achievement of RE expansion targets. Therefore, this chapter focuses on
the task of designing auctions for RE support as a means of contributing to
the fulfillment of RE targets. Here, the problem of non-realization comes to
the fore, which is considered to be one of the main risks in auctions for RE
support, particularly concerning the expansion target and the acceptance
of auctions for RE support (del Rio and Linares, 2014).

We auction-theoretically analyze, the influence of different measures on
the non-realization risk. From a theoretical point of view, this risk only
arises if bidders are uncertain about their project costs. In the case of solar
power systems, for example, the future PV module price, which is a crucial
cost component, is uncertain due to fluctuations and political decisions
(European Commission, 2016). Another relevant cost component, the costs
of capital, is also uncertain, especially in the current political and economic
situation in Europe (Francis et al., 2014).

17
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2.1 Definitions

We analyze the designated measures to ensure realization: financial and
physical prequalifications and penalties. A financial prequalification is a
payment a bidder has to deposit before the auction or after the award.
This payment is regarded as security. The bidder regains it if he is either
not awarded or realizes his project in time.

Physical prequalifications are project specific requirements the bidders
have to fulfill in order to participate in the auction. These requirements
reduce the bidders’ uncertainties. Examples are a land-use plan or a fea-
sibility study. An essential characteristic of physical prequalifications is
that bidders have to conduct them in any case to realize their project.
The auctioneer might force the bidders to comply with these requirements
before the auction. But then the costs of the bidders to meet these re-
quirements are sunk. Thus, a bidder has to decide whether he fulfills the
prequalifications and participates in the auction or not. There exist other
qualification criteria, which are not related to a specific project but to the
bidder. Examples are past experiences with the bidder or technological
know how. We consider those criteria as access requirements rather than
prequalifications.

Penalties are a measure taken by the auctioneer to punish awarded bid-
ders in case of non-realization or delay. Examples are a lower support level,
a shortened support period, a termination of the contract, and an exclusion
from future auctions (Held et al., 2014). In contrast to prequalifications,
a penalty may become effective only after award. While a penalty in-
volves the risk of a future expense for a bidder, a financial prequalification
involves the risk of not regaining a past expense.

These measures are usually included in auctions for RE support, but
there is no general understanding of how they affect bidding behavior and
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Table 2.1: Selected examples of conducted RE support auctions in reference to Mitchell (1995),
Pollitt (2010) and Wigand et al. (2016).
Country Germany UK California Netherlands France Brazil
Year of In-
troduction

2015 1990-2001 2011-2015 2011 2011 2007

Technology PV multi-
technology

multi-
technology

multi-
technology

PV biomass, PV,
wind/multi-
technology

Price Rule DP / UP DP / UP DP DP DP DP
Physical
Prequalifi-
cation

yes,
early auction

yes,
early auction

yes,
late auction

yes,
late auction

yes,
late auction

yes,
late auction

Financial
Prequalifi-
cation

bid bonds
(50e/kW)

no security,
project must
meet ’normal
standards’

development
deposit
($20/kW),
performance
deposit (5%
lifetime rev-
enue)

no security,
bank state-
ment for huge
projects

no security,
evidence of
capital

bid bonds
(5% invest-
ment)

Penalty Reduction of
FIT

loses support
right, exclu-
sion for 3
years, fine for
huge projects

support dura-
tion reduced

end of con-
tract, penalty
payment for
underproduc-
tion

Realization
Period

18-24 months not specified 18-36 months 3-4 years 18 months 1-5 years

Realization
Rate

> 90% ~ 30% > 75% depending
on year from
11% to 100%

< 50% low, ~ 30% on
time

the auction outcome and how they interact. This chapter provides an
auction-theoretical analysis of the effect of these particular measures, with
the intention of assisting auctioneers regarding the appropriate design of
an auction in order to achieve the predefined targets.

Auctions for RE support are often conducted as multi-unit auctions in
the form of static sealed bid auctions either with DP or UP. We conduct
our analysis to single-unit auctions, where we consider the first-price and
second-price payment rule. This simplification facilitates the identifica-
tion and illustration of effects and the derivation of results, which can be
transferred to the multi-unit equivalent.

Table 2.1 summarizes the key design criteria and results of RE support
auctions in different countries where realization rates are available. The
characteristics of the auctions in the different countries do not lend them-
selves to direct comparison because auctions designs are highly context
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specific. The physical prequalifications are especially diverse. For exam-
ple, a construction permit in one country does not have the same cost
implication or legal meaning as in another. Therefore, we only distinguish
between cases in which the auction is early in the project development
process, and those in which it is late. This timing acts as a means of
qualitatively describing the level of physical prequalification. The level of
financial prequalification can be compared more directly. In Brazil, Cal-
ifornia and Germany the securities have a similar value, at about 5% of
the expected investment or revenue. In the other countries there were no
financial prequalifications. The type of penalties was also very different
between the auctions. Either the support was decreased (e.g. in Germany
by 0.003 e/kWh per year) or the particular bidder was excluded from
future auction rounds (e.g. in the Netherlands).

Some general conclusions can be drawn. The project realization rate is
often quite low. There is probably not only one reason or design criteria
responsible for this apparently poor performance. For the auctions in the
UK (Mitchell and Connor, 2004) and in France (Held et al., 2014) the
low financial prequalifications are considered are thought to have been the
main reason for the low realization rates. It is a different story in Brazil,
where many awarded projects could not be realized in time due to the
unavailability of grid connections (IRENA and CEM, 2015). The physical
prequalifications could be said to have been insufficient. IRENA and CEM
(2015) and Kopp et al. (2013) show also other examples for RE support
auctions worldwide. In general, the implementation and enforcement of
financial and physical prequalifications cannot be seen as standard in RE
support auctions.

The remainder of this chapter is organized as follows. Section 2.2 intro-
duces a general auction-theoretic model. Based on the model, Section 2.3



2.2 Model 21

analyzes the effects of the three measures (financial prequalification, phys-
ical prequalification, penalties) and motivates the transfer of the results to
multi-unit auctions. Section 2.4 concludes and assesses our results in order
to provide assistance for policy makers in the auction design process.der
characteristics.

2.2 Model

A RE support auction is a procurement mechanism for energy or capacity
in which bidders with different production plants compete for an award.
The awarded bidders will receive a financial support, the level of which is
derived from the bids in the auction.

For our analysis, we make use of the IPV approach (Vickrey, 1961) with
an additional common cost parameter. There are n ex ante symmetric bid-
ders, who are risk-neutral, i.e., they maximize their expected profit. The
bidders are characterized by individual cost parameters θ1, ..., θn, which
represent their expected project costs. These costs depend on different
factors as the technology (e.g. PV or wind turbine) and the location (i.e.,
the expected solar radiation or wind strength). For comparability, θi can
be expressed as bidder i’s expected project costs allocated to the expected
amount of energy the plant will produce during its lifetime or the support
period respectively. The individual cost parameters θ1, ..., θn are private
information and are modeled as independent realizations of the random
variable Θ, which is distributed on the interval

[̄
θ, θ̄
]
.

Besides the individual costs, there are cost uncertainties that affect all
bidders in the same way, such as the future development of material costs,
e.g. PV module prices (European Commission, 2016), capital costs (Fran-
cis et al., 2014), and possibly the cost of obtaining social and environmental
permits. The uncertainty of these costs is captured by the random vari-
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able S with distribution G on the interval [−s̄, s̄] and an expected value
of zero, i.e., E[S] = 0. The random variable S is the same for all bidders,
but its realization s is unknown prior to the auction. The common cost
parameter s is drawn after the auction and only matters for the winning
bidder.

The cost function c(θi, s), which is assumed to be the same for all bid-
ders, captures bidder i’s total costs to realize his project and increases
in the two cost parameters θi and s. Throughout this chapter in all il-
lustrations and the referring explanations we use the linear cost function
c(θ, s) = θ + s and a uniformly distributed random variable S on [−s̄, s̄].

In the following, we analyze a RE support auction in which one plant is
awarded. The auctioneer sets a reservation price (i.e., maximum price) r,
which caps the possible bids. We consider the two main single-unit sealed
bid auction formats, the first-price auction and the second-price auction.
In both formats, the bidder with the lowest bid wins the auction. In the
first format, he receives the price he bid, whereas in the latter format, he
receives the price of the second lowest bid (McAfee and McMillan, 1987).
In Section 2.3.4 we transfer the results to multi-unit auctions, in which
several plants are awarded. Since in our auctions plants are awarded, the
findings are valid independently of whether the auctioned good is capacity
or energy.

Since all bidders are ex ante symmetric, we consider a representative
bidder. Let p denote the award price of the auction. Then, the profit of
the winning bidder is

π(θ, s, p) = p− c(θ, s). (2.1)

Depending on s, the winning bidder’s profit might become negative, i.e.,
the bidder suffers a loss if realizing the project.
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2.3 Analysis

2.3.1 Financial prequalifications (securities)

Financial prequalifications are widely used in auctions for RE support,
particularly in the form of a security, which has to be deposited before
the auction or at the point of award. In the case of non-realization of the
awarded project, the auctioneer retains the security (Bundesministerium
für Wirtschaft und Energie, 2015). The purpose of these requirements is
twofold. On the one hand, they aim to ensure the financial capacity of a
bidder to realize the project in the event that support is awarded. On the
other hand, it is an enforcement mechanism to ensure that the winning
bidder realizes his project (Held et al., 2014; Klessmann et al., 2015).

To model financial prequalifications auction-theoretically, we refer to
the work of Waehrer (1995), which was extended by Parlane (2003) and
Board (2007). The model introduced in Section 2.2 is thereby augmented
by the non-realization option.

Let tv denote the monetary value of the security, tv ≥ 0. If the bidder
does not realize the project, the auctioneer will retain the security and
the bidder suffers a loss of −tv. If s turns out to be high, the bidder
might choose the option not to realize. Then, the auctioneer will retain
the security tv. With this extension the bidder’s profit is1

πD(θ, s, p, tv) = max {p− c(θ, s),−tv} . (2.2)

With the security the bidders insure themselves against high losses.
They eliminate all cases where the project realization is more expensive
than not regaining the security. If the security is equal to zero, the bidders
do not face any risk of losing money. A high security induces bidders to

1Since a rational bidder accounts for timing of payments and costs in his bid, the timing does not affect our
findings in principal. Therefore, for the sake of simplicity and illustration we neglect the timing of payments
and costs, which is an usual approach in auction-theoretical analyses.
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accept a higher loss through project realization than a lower security.
If the combination of the award price p and the common cost component

s is such that the profit from realizing the project p− c(θ, s) is lower than
the costs of non-realization −tv, according to (2.2) the bidder will not build
the project. The probability that this case occurs decreases in p. If the
award price is sufficiently high (i.e., p > c(θ, s̄) − tv) the awarded bidder
will always realize, independent of s. In general, the realization probability
depends on the distribution of the uncertain cost parameter S, its impact
on the cost function c, the value of the security tv, the competition level
and the auction format.

Figure 2.1 illustrates the impact of the award price on the realization
probability. It displays two different cases with high th and low tl values of
the financial prequalification. As S is uniformly distributed, the realization
probability is linear in the award price p. Note that the general effects are
independent of the specific value of t. First, for all award prices p <

c(θ,−s̄)− tv, the bidder never realizes. Even with the best realization of S
as −s̄, the costs of non-realization are lower than the costs of realization,
−t > p − c(θ, s̄). Second, the other extreme is given by p > c(θ, s̄) − tv,
where the bidder always realizes. Third, in between these two boundaries,
the bidder realizes whenever it is best for him, i.e., if p − c(θ, s) > −tv.
Thus, the realization probability increases in the award price p.

The non-realization option also affects bidding behavior. Without this
option, the bidders bear the full risk of the uncertainty in S. That is, a
winning bidder has to complete the project, even if S realizes as s̄ and
this induces a big loss. Rational bidders account for this risk in their
bidding strategy. In this scenario, the non-realization risk is zero. The
corresponding profit function in case of winning is given by (2.1). For
every type θ, the expected profit of the winning bidder is linear in the
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Figure 2.1: Impact of the award price p on the realization probability for two different financial
prequalifications th and tl.

award price p.
Figure 2.2 illustrates the two scenarios with and without the non-

realization option in reference to Parlane (2003). The dashed line cor-
responds to expected profit of the winning bidder in the scenario without
the option, where the bidder has to realize. Here, the expected profit
increases linearly in the award price and is zero for p = θ.

The graph looks different in the scenario with the non-realization option
(solid line in Figure 2.2). For all award prices p < c(θ,−s̄)− tv, the bidder
never realizes. Thus, the left part of the graph is horizontal at −tv. For
p > c(θ, s̄) − tv, the bidder always realizes. Thus, the graph corresponds
to the dashed line. In between these two cases, the realization probability
increases in p, which induces the convex shape of the expected profit curve.

In order to assess the effect of different values of financial prequalifica-
tion, we compare two different security values, a low value tl and a high
value th, tl < th. The effect that different securities have on a bidder’s
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Figure 2.2: Expected profit of the awarded bidder for a given θ, in reference to Parlane (2003),
Figure 1.

realization probability subject to the award price p is illustrated in Figure
2.1. The curves are parallel shifts of each other. A higher security leads to
a left shift, a lower to a right shift bidders will realize their projects with
a higher probability in case of the higher security th. The reason is, that
the bidder accepts a bigger loss (equal to the value of the security) before
he chooses not to realize.

What is the impact of the non-realization option on bidding behavior
and the auction outcome? In the scenario without the option, bidders
face a higher risk of loss induced by a high realization of S. With the non-
realization option, this risk is smaller because bidders have the opportunity
to avoid the negative consequences of high s (depending on the value of
−t). Since bidders incorporate their loss risk, they submit higher bids if
the risk is higher. Hence, independently of the auction format, the non-
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realization option induces bidders to submit lower bids (Parlane, 2003;
Board, 2007).

Independently of the auction format, lower bids lead to a lower award
price and a lower award price increases the probability of non-realization
(Figure 2.1). That is, the non-realization option per se increases the non-
realization risk.

We illustrate this by means of the second-price auction. In both scenar-
ios, it is a weakly dominant strategy (with respect to the expected profit)
to submit a bid βSA(θ) so that the expected profit of winning the auction
at p = βSA(θ) is zero, i.e.,

ES

[
πD(θ, S, βSA(θ), tv)

]
= 0. (2.3)

It is obvious that βSA(θ) positively depends on θ. In both scenarios,
βSA(θ) is determined by the intersection point of the respective expected
profit function and the x-axis (Figure 2.2). Hence, the non-realization
option reduces the award price and, thus, increases the non-realization
risk compared to the virtual situation, in which the bidders bid as they
were in the scenario without the non-realization option. This also holds
for the first-price auction.2

Figure 2.3 illustrates the effects of two different securities on bidder’s
expected profit (all other variables stay the same). The solid blue graph
illustrates the scenario with the low security tl, the solid red graph for the
high security th, and the dashed line the scenario with enforced realization.
Obviously, the difference between the red and the dashed graph is much
smaller than between the blue and the dashed line. Also the gap starts to
open at a lower level of p. The reason is that a higher security induces a
higher risk. A winning bidder will lose more money if he does not realize

2Note that a higher competition level induces a lower award price and, hence, a higher non-realization risk.
This holds independent of the auction format.
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Figure 2.3: Expected profit of the awarded bidder for a given θ with different financial pre-
qualifications tl and th.

the project. As a consequence, the bidder is willing to accept a higher loss
through realizing the project than in the case of lower security.

Bidders incorporate the higher risk in their bids, which leads to higher
bids. This can be seen in the simple example of the indifference price, which
is the award price at which the bidder is indifferent between winning and
losing the auction because his expected profit, given this award price, is
zero. In a second-price auction, a bidder exactly submits the indifference
price as his bid, which is indicated by the intersection of the respective
graph and the x-axis in Figure 2.3. The greater the risk is, the higher the
indifference prices. In general, higher securities lead to higher realization
rates but also to higher expected award prices.

Combining the results, illustrated in Figure 2.3, we conclude that with
higher securities the award prices increase and the positive effect on the
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realization probability is reinforced, as higher prices lead to higher realiza-
tion probabilities.

Next, we compare the two auction formats with respect to the expected
award price and the non-realization risk. In the standard IPV model,
the second-price auction and the first-price auction lead to the same ex-
pected award price (Revenue Equivalence Theorem (McAfee and McMil-
lan, 1987)), which also applies to procurement auctions. This also holds if
we introduce a uncertain common cost component S.

However, the equivalence of expected award prices no longer holds if the
bidders have the non-realization option at cost −tv. The expected award
price and, thus, the bidders’ expected profits are higher in the first-price
auction than in the second-price auction (Parlane, 2003; Board, 2007).
This is due to the effect that the non-realization option induces risk-neutral
bidders to behave as they were risk-loving in an IPV framework without the
option. This is expressed by the convex shape of the expected profit func-
tion (Figure 2.2). In an IPV framework without the non-realization option,
risk loving bidders submit higher bids than risk-neutral bidders in the first-
price auction but they submit the same bids (weakly dominant strategy)
in the second-price auction. Hence, risk-loving leads to a higher expected
award price in the first-price auction but not in the second-price auction.
Therefore, in the framework with the non-realization option, the expected
award price in the first-price auction is higher than in the second-price
auction. This also implies that the winning bidder has a higher expected
profit in the first-price auction compared to a second-price auction.

In Germany, where the auction format for ground mounted PV changed
between UP and DP in the first four auctions, differences in the outcomes
of the two auction formats cannot be identified. Although the realization
rates are lower under UP than under DP, the differences are only minor.
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The main reason is that the auction process has just started and it ap-
pears that the process is not yet settled as the prices are still decreasing
significantly independent of the auction format.

Since the realization probability is positively related to the award price,
the realization probability is lower in the second price auction than in the
first-price auction. Furthermore, the differences between the two auction
formats with respect to award price and non-realization probability can be
significant (Board, 2007).

2.3.2 Physical prequalification

In the context of auctions for RE support, physical prequalification criteria
are defined as requirements that all potential bidders must fulfill in order
for a bid to be acceptable. Examples are a feasibility study, a land-use plan,
a construction permit or further country specific permits (Minister van
Economische Zaken, 2015; Bundesministerium für Wirtschaft und Energie,
2015). The reason for these requirements is to ensure serious bids (del
Rio and Linares, 2014). Physical prequalifications do seek to ensure that
bidders are capable of realizing their projects. Instead, it is a guarantee for
the auctioneer that the bidders are ‘serious’ and genuinely intend to realize
their projects and that they are confident that this is possible within the
auction criteria (location, time frame, etc.).

Most of the costs that occur through the prequalification requirements
accrue in the course of project realization, independent of whether an
auction is conducted. For example, the bidders are required to have a
construction permit if they aim to build a PV installation on the roof.
As those costs accrue prior to the actual auction they are considered as
sunk costs. If a bidder is not awarded in the auction, he might halt the
development process. In this case, the bidder has no benefit from the
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previous investment.
Since physical prequalifications are usually activities bidders must per-

form regardless of the existence of an auction, they do not generate addi-
tional costs. But they may reduce bidder’s uncertainty regarding future
costs and project feasibility. A construction permit is a good example.
The expected costs for the permit itself may be known, but it is unknown
if all requirements for this permit are met. If not additional costs might be
incurred to meet the requirements or it might transpire that the project is
not feasible at all. However, physical prequalifications are only worthwhile
if the bidder realizes the project, otherwise these costs are sunk, e.g. the
bidder is not awarded or decides not to realize the project after the award.

In the following, we analyze the impact of physical prequalifications
on bidding behavior, the auction outcome and the realization probability.
We assume that all bidders conduct the same physical prequalifications,
which results in sunk costs. Further, we assume that conducted physical
prequalifications reduce the level of cost uncertainty.

As before, bidder’s costs are modeled by the additional uncertain com-
ponent S with distribution G on the interval [−s̄, s̄] and E[S] = 0. That
is, positive and negative deviations from the expected costs are possible,
as it could work better (no complications) or worse (additional measures
necessary) than expected. A reduction of cost uncertainty due to physical
prequalification activities is captured by the random variable SPQ with
distribution GPQ and realization sPQ.3 Bidder’s sunk costs induced by
the physical prequalification activities are described by variable e. We
analyze the effects of physical prequalifications in the framework set out
Section 2.3.1 with the non-realization option and financial prequalifications
in form of a security t. Hence, the bidder’s resulting profit function in case

3G is a mean-preserving spread of GPQ (Mas-Colell et al., 1995).
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of winning is

πE(θ, sPQ, p, tv, e) = max {p− c(θ, sPQ),−tv} − e. (2.4)

Figure 2.4 shows the expected profit curves of two cases that differ in
the degree of uncertainty S (blue curve) and SPQ (red curve). For this
illustration, we use uniformly distributed random variables S and SPQ

on the intervals [−s̄, s̄] and [−s̄PQ, s̄PQ] with s̄PQ < s̄. The red curve
represents the case of reduced uncertainty due to physical prequalification
activities. The dashed line represents the case with enforced realization.
The difference in the degree of uncertainty leads to different shapes of
the curves. The beginning and end point of both graphs are identical.
However, the red curve is more bent within a shorter interval and lies
below the blue curve. This results, according to the considerations in
Section 2.3.1, in bidders submitting higher bids in the prequalification
case with a lower degree of uncertainty, which thus yields higher expected
award prices.

With a higher degree of uncertainty, a lower realization s is more prob-
able than with less uncertainty. Hence, with higher uncertainty a positive
profit is possible at a lower award price. This can be seen in Figure 2.4,
where c(θ,−s̄PQ)− tv > c(θ,−s̄)− tv. On the other hand, the worst case
does not get worse. Even if S realizes very high and the bidder would suf-
fer a high loss, he can choose not to realize. The costs of non-realization
are the same in both cases. Thus, with less uncertainty, a bidder wins less
in the best case, but faces the same risk in the worst case. As a result, he
submits a higher bid. This is also revealed by the indifference price, i.e.,
the award price where the bidder is indifferent between winning and losing
the auction. In Figure 2.4, these prices are the intersection points between
the respective curve and the x-axis. The lower the uncertainty the higher
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Figure 2.4: Expected profit of the awarded bidder for a given θ with different uncertainty
intervals.

the indifference price, but it is still lower or equal to the indifference price
without the non-realization option.

In order to analyze the effect on non-realization, one has to distinguish
two cases: the realization probability is below or above 50%. Since the
realization probability also depends on the financial prequalification tv and
the cost function c, the cases are analogous to award prices lower or higher
than c(θ, 0)− tv.

If financial and physical prequalifications lead to a realization probabil-
ity greater than (or equal to) 50%, an increase in the physical prequalifica-
tion and hence a decrease in the uncertainty leads to a higher realization
probability. This has two reasons. Firstly, a higher award price means
that even a high realization of SPQ results in a positive profit and, hence,
the project will be realized. Secondly, the probability of a high realization
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of SPQ, that induces the bidder to abandon the project, is lower than of
S.

The effect of physical prequalifications on the non-realization risk is
ambiguous if the realization probability is lower than 50%. On the one
hand, the reduced uncertainty of SPQ increases the award price, which in
turn increases the realization probability. On the other hand, the reduced
uncertainty of SPQ induces that the probability of a low s is lower. As a
result, for the same award price the realization probability decreases.

We obtain similar results if we model the uncertainty reduction of phys-
ical prequalifications by changing the shape of the distribution G and shift
probability mass from the tails to the center of the distribution.

Sunk costs

Beside the effect of uncertainty reduction, physical prequalifications in-
fluence bidding behavior also in another way. As already mentioned, the
costs of achieving physical prequalifications are sunk as they also accrue if
a bidder is not awarded in the RE support auction.

In the auction-theoretic literature, two different types of sunk costs are
considered: entry fees and participation costs. The entry fee has to be
paid by all bidders in order to participate in the auction and will not be
refunded after the auction (Levin and Smith, 1994; Menezes and Monteiro,
2005; Krishna, 2002). Participation costs accrue through the preparation
of the bids and the participation in the auction (Menezes and Monteiro,
2000; Samuelson, 1985; Tan and Yilankaya, 2006). Both forms of costs
are sunk costs. In contrast to the entry fee, the auctioneer does not di-
rectly benefit from the participation costs and they need not to be the
same for all bidders. Obviously, participation costs reflect the concept of
physical prequalifications in RE support auctions. We assume that the
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participation costs, denoted by e, are deterministic and the same for all
bidders.

Before any costs incur, a bidder considers whether he wants to par-
ticipate in the auction or not. A bidder will only participate, if his ex-
pected profit is non-negative. The expected profit depends on the bidder’s
costs (respectively his cost signal), the number of bidders (i.e., competition
level), and the reservation price r (i.e., maximum price).

Costs and maximum price are essential for the bidder’s expected profit
in case of winning, whereas the number of competitors influences the prob-
ability of winning. Auction-theoretically, there exist specific costs θ̃, which
correspond to an expected profit of zero, and therefore, are called cutoff
costs (Samuelson, 1985). A bidder with θ̃ is indifferent between winning
and losing the auction. Bidders with costs higher than θ̃ will not par-
ticipate in the auction. The cutoff costs θ̃ are calculated indirectly by4

(r − θ̃) · Prob{θ̃ are the lowest costs among all bidders} = e. (2.5)

The term (r − θ̃) is the profit if the bidder has costs θ̃ and is the only
participant, which is the case if his costs are the lowest. The left hand side
of (2.5) describes bidder’s expected profit (without e), which has to be
equal to the participation costs e, so that the total expected profit of the
bidder with θ̃ is zero. For costs lower than θ̃, the expected profit is positive
and those bidders have an incentive to participate in the auction. Thus, a
bidder with θ̃ knows that he will only win the auction if all other bidders
have higher costs. Then, the award price p equals the maximum price r, as
he is the only participant. Therefore, he bids θ̃ in the second-price auction
and r in a first-price auction, which leads to p = r in both auction.

4Equation (2.5) is derived from Menezes and Monteiro (2000) who analyze sunk costs in sales auctions.
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From (2.5) follows how the variables influence the cutoff costs. A high
maximum price r leads to higher cutoff costs, while a high number of
potential bidders and high participation costs e have the opposite effect
(Menezes and Monteiro, 2005; Tan and Yilankaya, 2006). That is, high
participating costs have the same effect as a low maximum price. Both
exclude bidders with high costs from the auction (Krishna, 2002).

The impact of participating costs on bidding behavior is more diverse.
In the second-price auction, nothing changes for participating bidders. If
a bidder has costs below θ̃, he truthfully bids his costs in the symmet-
ric equilibrium. However, in contrast to the model without participation
costs, this is not a (weakly) dominant strategy. Under certain conditions,
asymmetric equilibria can exist (Tan and Yilankaya, 2006).

In the first-price auction, participating costs influence the bidding be-
havior directly. Also, a bidder only participates in the auction if his costs
are not higher than θ̃. A bidder with θ̃ bids r and the symmetric bidding
function is strictly decreasing, i.e., bidders with lower costs submit lower
bids. As a consequence, fewer bidders participate, but those with lower
costs (Menezes and Monteiro, 2000).

The result for the auctioneer is twofold: In the symmetric equilibrium
of both auctions, the outcome is efficient, if at least one bidder partic-
ipates. Participation costs exclude bidders efficiently in that sense that
only the bidders with the lowest costs participate. The auction outcome is
inefficient if the participation costs are so high that no bidder participates.

In both auctions, the expected award price is either equal to or higher
than a case without participation costs. This result can be transferred to
the auction model with the non-realization option (Section 2.2). Here, a
higher award price yields a higher realization probability. This also holds
if sunk costs are the reason for a higher award price.
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Finally, the fact that sunk costs generate losses for non-awarded bidders
may have a deterrent effect on potential participants. This will reduce
competition and increase award prices. In the context of repeated auctions
for RE support and time-limited project permits, bidders who have not
been successful so far are more or less forced to underbid their costs in
order to increase the probability of being awarded.5 The potential for
sunk cost losses may also harm the acceptance of auctions for RE support,
which may hinder their future implementation.

2.3.3 Penalties

Another measure, which is often used to increase the realization probabil-
ity of RE projects are penalties. In contrast to the physical or financial
prequalifications, penalties do not require any effort by the bidders prior
to the auction. Penalties become effective if an awarded bidder does not
abide by the agreement that results from the auction award. In the con-
text of RE support auctions, basic contents of such an agreement are the
support level, the supported capacity, the support duration, and the be-
ginning of the support. Bidders are responsible to realize the project in a
given time frame.

There are different ways to penalize a breach of contract. Examples
are a lower support level, a shorter support period, a termination of the
agreement, or the exclusion of the bidder from future auctions (Held et al.,
2014). Although not all of these measures have a directly monetary impact,
all of them can be evaluated financially. Therefore, we treat penalties as
monetary payments.

Penalties extend our approach such that an awarded bidder does not
only lose his security in case of non-realization but also has to pay the
penalty q. We do not analyze the combination of different levels of physical

5This is also referred as sunk cost fallacy (Wilson and Zhang, 1997).
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prequalifications with penalties to reduce complexity. Hence, the resulting
profit in (2.2) extends to

πQ(θ, s, p, tv, q) = max {p− c(θ, s),−tv − q} . (2.6)

A necessary condition for a bidder to pay the penalty is that he is
capable of doing so. If he is not, he will have to declare bankruptcy and
lose all his assets. The assets held by individual companies can vary a
great deal. Large companies will naturally have more capital than smaller
project companies, which are only founded for the purpose of the specific
project (Board, 2007).

Consider a representative bidder with an asset value w. There are three
cases to be distinguished. First, an awarded bidder realizes the project
at costs c(θ, s), receives the payment p and regains the security t. If the
bidder does not realize the project, he has two options: either he pays
the penalty and loses the security or he does not pay the penalty, declares
bankruptcy and loses his assets and the security. As a rational bidder
always chooses the option that is best for him, his profit is

πW (θ, s, p, tv, q, w) = max {p− c(θ, s),−tvq,−tv − w} . (2.7)

This model and the implications are related to the work of Burguet et al.
(2012) and Chillemi et al. (2009).

What is the effect of penalties on bidding behavior, the auction out-
come, and the realization probability? Without penalties, the value of
the security is the limit for accepted losses through realization. The non-
realization option at costs t prevents the bidders from high downside losses.
The bidders consider this possibility in their bidding strategy and bid more
aggressively, i.e., submit lower bids (see Section 2.3.1). With a penalty,
the limit for losses changes to the maximum of security tv and assets w or
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penalty q. Thus, individual bidding behavior also depends on the individ-
ual asset value w, and variation in companies’ assets induces some bidders
to underbid their cost signal more than others.

As stated in Section 2.3.1, a higher security t induces less aggressive
bidding and hence higher award prices (see Figure 2.3). If all bidders face
the same risk in case of non-realization, efficiency is preserved because the
bidding behavior of all bidders is affected in the same way and the order of
bids does not change. A bidder with lower costs (i.e., lower θ) still submits
a lower bid than a bidder with higher costs (in both first- and second-price
auction).

This does not hold in the case of different non-realization costs caused,
for example, by different assets. Due to lower assets w and hence a lower
risk, a bidder with higher costs may submit a lower bid than a bidder with
lower costs. Figure 2.5 illustrates this case with the example of a second-
price auction, in which Bidder 1 (blue graph) and Bidder 2 (red graph)
participate. Bidder 1 has a lower asset value but a higher cost signal and
thus higher realization costs than Bidder 2, i.e., w1 < w2 and θ1 > θ2 and
thus c(θ1, s) > c(θ2, s) for all s. We assume a very high penalty q that is
larger than the assets of the two bidders w1 and w2. The bidding strategy
of each bidder in the second-price auction is to bid the indifference price
βSA(θ), where ES

[
πW (θ, S, βSA(θ), tv, q, w)

]
= 0.

The decision of an awarded bidder concerning the realization of the
project depends on the realization of S. If

p− c(θ, s) > −tv − w, (2.8)

the bidder realizes the project, otherwise, he does not. Bidder 1 has higher
project realization costs than Bidder 2, c(θ1, s) > c(θ2, s) but lower non-
realization costs, −tv − w1 > −tv − w2. In the example, illustrated in
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Figure 2.5: Expected profit for two bidders with different type and risk.

Figure 2.5, Bidder 1, although he has higher realization costs, wins the
auction, as his indifference price, which corresponds to his bid, is lower
than Bidder 2’s bid. This outcome is inefficient. Furthermore, the non-
realization probability of Bidder 1 is higher than the one of Bidder 2.

In general, if the case of a penalty q and a financial prequalification tv
is compared to the case of a monetary equivalent financial prequalification
teqv = tv + q, the first case leads to a lower expected support level but the
downsides are a lower expected realization probability and a potentially
inefficient auction outcome. This holds in particular if there is only a
penalty and the financial prequalification is zero (tv = 0, teqv = q).
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2.3.4 Transferability of the results to multi-unit auctions

Many of the RE support auctions are conducted as multi-unit auctions in
the form of static sealed bid auctions either with DP or UP.6 Here, we
briefly explain how the results of the two single-item auctions, as derived
in the sections before, can be transferred to the two multi-item auctions
with single-project bidders. With respect to bidders’ strategic incentives,
the DP auction corresponds to the first-price single-item auction and the
UP auction with LRB rule corresponds to the second-price single-item
auction. In the UP auction, as in the second-price auction, it is optimal
for the bidders to submit their indifference price (expected profit equals
zero) as their bid. In the DP auction, as in the first-price auction, bidders
have an incentive to exaggerate their indifference price in their bid subject
to their costs and the competition level. Moreover, in the reference case of
the standard IPV model, the Revenue Equivalence Theorem in the form of
the same expected (average) award price also holds for the two multi-item
auctions (Ausubel et al., 2014). Therefore, one can expect the same effects
and differences as in the two single-item auctions.

2.4 Conclusion and policy implications

The expansion of REs faces various challenges and there remain technical
and political obstacles to overcome. The overriding challenge is to reach
specific expansion targets in time and at the lowest possible costs. There-
fore, effectiveness and efficiency are fundamental aims. But they are not
always compatible. One of the main reason for introducing auctions is to
obtain efficient outcomes. Additionally, auctions enable the auctioneer to
control expansion through selection of the auctioned volume or budgetary
envelope. The issue we addressed in this chapter is that not all awarded

6For the rules and the theoretical analysis of these auctions see, for example, Ausubel et al. (2014).
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Table 2.2: Overview of different auction design options and their respective effects on the
auction outcome.
Auction design option Desired effects Undesired effects
Financial prequalifications • higher expected realization

probability
• higher expected support level

Physical prequalifications
additive to financial prequalifica-
tions

• reduced cost uncertainty
• higher expected realization
probability

• sunk costs
• reduced competition level
• higher expected support level

Penalties
additive to financial prequalifica-
tions

• higher expected realization
probability

• higher expected support level
• potentially inefficient

Penalties
substitutive to monetary equiva-
lent financial prequalifications

• lower expected support level • lower expected realization prob-
ability
• potentially inefficient

Second-price auction
in comparison to first-price auc-
tion

• lower expected support level • lower expected realization prob-
ability

bidders may realize their projects and hence the expansion target may be
missed. Therefore, we recommend generally auctioning a higher volume
than needed to reach the expansion targets.

The bidders face various uncertainties regarding their costs on the one
side and the option not to realize the project after the auction on the
other side. Hence they will stop development of the project if the costs of
realization are higher than the costs of non-realization. We analyzed dif-
ferent measures that affect this realization probability. Table 2.2 provides
an overview of the auctioneer’s design options and the respective effects.

The first and most distinct measure is a financial prequalification. The
bidders deposit a security and only regain it in case they realize the project.
This measure makes non-realization less attractive and hence higher finan-
cial prequalifications lead to a higher probability of realization. Depositing
a security also has an influence on the expected support level of first-price
and second-price auctions. In general, the non-realization option of the
project reduces the bids since the worst possible outcome for the bidders
is not to regain the security. However, counterintuitively, the expected
support level is not equal in the two auction formats. The expected award
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price the auctioneer has to pay is higher in a first-price auction than in
a second-price auction and as a consequence the non-realization probabil-
ity is higher in the second-price auction. While retaining the same basic
conditions, a higher award price yields a higher realization probability.
This holds for whatever caused the lower award price. One possibility is
the choice of the auction format as mentioned above; another could be
increased competition.

Furthermore, financial prequalifications have a direct impact on the ef-
fect of physical prequalifications. If the uncertainty regarding realization
costs is reduced due to physical prequalifications, then, the resulting sup-
port level increases because the bidders will still not realize their project
in the bad cases, and the best cases yield a lower profit. The implications
for the realization probability depend on the interaction of physical and
financial prequalifications. If the deposited security is relatively high in
comparison to the uncertainty, higher physical prequalifications lead to
higher realization rates. If this is not the case, the effects are working in
opposite directions and no clear statement is possible. However, physical
prequalifications lead to sunk costs for bidders that are not awarded. This
implicates that only bidders with a positive expected profit choose to par-
ticipate in the auction and the expected support level remains constant or
increases.

Finally, there is the possibility of penalties that are not covered by
the securities. If all companies are able to pay this penalty in case of
non-realization, it has the same effect as a monetary equivalent financial
prequalification. But this might not be the case. Often small project com-
panies without small assets take part in auctions for RE support. Such
companies could declare bankruptcy in case of non-realization and there-
fore not pay the penalty. As the assets of all companies might differ, the
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incentives to take risks in the auction might also be different. As a conse-
quence, the expected support level and the expected realization probability
decrease and there might be inefficient auction outcomes because bidders
with higher costs might also take higher risks and vice versa.

Nevertheless, the most difficult challenge is the right parametrization
of the different measures. It is hard to evaluate the actual level of un-
certainty the bidders face as well as their assets and willingness to accept
bankruptcy and losses. The right parametrization also depends on the
emphasis for the different goals by the auctioneer. Is a high realization
rate necessary to satisfy expansion and policy targets or is the main goal
to minimize the costs that are necessary to reach the expansion target also
including retained securities and paid penalties? A third possibility is that
the auctioneer is not interested in an expansion at all but is forced to con-
duct auctions. Such an auctioneer might be delighted by a low realization
probability that may also be accompanied by low award prices. So there
is a lot of potential to use or abuse the measures discussed here.

What an auction designer needs to keep in mind is that the exact
achievement of expansion targets cannot be controlled very well. An ex-
pansion of auctioned volume to compensate for expected non-realization
also results in a higher support level. This means that the realization
probability increases, hence, not only is more volume awarded but a higher
percentage of this volume is realized.

Our recommendation to design an efficient auction with a sufficiently
high realization rate is to have a high financial prequalification and an
adjusted physical prequalification. It should not be too high in relation
to the securities and also to limit the sunk costs effect. We do not rec-
ommend the introduction of penalties that are not covered by financial
prequalifications. Furthermore, according to the result of analysis there is
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a preference for the first-price auction over the second-price auction.





Chapter 3

Different cost perspectives for
renewable energy support: Assessment
of technology-neutral and
discriminatory auctions

Although there is a convergence of opinions regarding the selection of RE
promotion mechanisms to auctions, there is disagreement about the defi-
nition of efficiency, the type of costs to be considered, and the appropriate
auction design. Particularly within the EU, there have been heated debates
regarding the advantages and disadvantages of technology-neutral auctions
compared to those of discriminatory auctions.1 Technology-neutral auc-
tions are open to all RE technologies and do not discriminate positively
or negatively among participants, whereas discriminatory auctions treat
different classes of participants differently.2

Non-discriminatory, technology-neutral auctions theoretically result in
an outcome that minimizes the pure generation costs of RE sources (e.g.
Myerson, 1981; McAfee and McMillan, 1989). With reference to this defi-

1Note that, in this context, discriminatory does not relate to the payment rule.
2The extreme case is a technology-specific auction, restricted to a specific technology, and, within such

auctions, there might be further discrimination regarding e.g. the location or the ownership structure of the
RE source.
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nition of efficiency, the European Commission proposes technology-neutral
auctions (European Commission, 2014b). This, however, may conflict with
other targets, particularly with (1) the internalization of integration costs
and (2) the minimization of the support costs through a reduction of the
producer rent and, thus, prevention of windfall profits3. Although target
(1) is based on an energy system perspective of efficiency, target (2) re-
stricts the definition of efficiency to the support costs. In fact, these two
targets are set by EU member states: for example, the consideration of
integration costs in Germany (Deutscher Bundestag, 2016) or the mini-
mization of support costs in the UK (Department of Energy and Climate
Change, 2014).

This chapter contributes to the discussion on technological neutrality
and different targets by applying auction-theoretic knowledge, particularly
about discriminatory instruments, to the task of designing an appropriate
auction for RE support. We formalize this discussion by analyzing differ-
ent design options and their implications on the auction outcome, thereby
highlighting the trade-offs between different cost perspectives. The imple-
mentation of discriminatory elements in auctions allows pursuing targets
(1) and (2). We consider two forms of discrimination. We refer to the
first as quality-based and to the second as cost-based. Both forms of dis-
crimination can reduce the total costs for the consumers; however, they
may lead to inefficiencies with respect to the minimization of generation
costs. Further, we analyze cost-based discriminatory instruments with re-
spect their robustness to misestimations. Therefore, we implement a model
with linear marginal costs and apply the three discriminatory instruments.
We then compare the results with correct and incorrect estimations of the
bidders’ strength and number. The theoretically equivalent instruments

3Due to the higher variance of production costs, windfall profits are considered to be more relevant in
technology-neutral auctions than in technology-specific auctions (Held et al., 2006).
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have practical differences.
We combine auction-theoretic methods with practical examples and ex-

periences from past auctions. We theoretically analyze different forms of
discrimination and several discriminatory instruments to evaluate auction
design options against the underlying economic principles for the future
promotion of REs. Thus, the game-theoretic principles of auction theory
and their application to RE support are combined in an in-depth analysis.

The remainder of this chapter is structured as follows. Section 3.1 pro-
vides a comprehensive literature review on both technology-neutrality and
auctions for RE support. Section 3.2 addresses the conflicting views on
relevant costs of REs and provides a consistent definition. A clear sepa-
ration of the cost components is imperative for our undertaken analysis.
In Section 3.3 we present the variety of policy objectives for successful
RE support allocation and relate these to the cost definitions. In Section
3.4 we analyze how the two approaches for discriminating among bidders
in auctions, namely, quality-based and cost-based discrimination, perform
with respect to the policy objectives. We show that both approaches are
suitable for the auctioneer to reduce consumers’ overall costs and, thus,
policy makers ought to consider discriminatory design options. We con-
clude this chapter with Section 3.5.

3.1 Literature review

The topic of neutral or discriminating governmental support has been
widely discussed in the literature. Aghion et al. (2009) contrast neutral
and specific support mechanisms for R&D subsidies. Azar and Sandén
(2011) discuss the advantages and disadvantages of technology-neutral and
technology-specific support mechanisms in the context of climate change
mitigation measures. Calculations based on optimization models support
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EU’s opinion that technology-specific support is costlier than technology-
neutral allocation (Jägemann et al., 2013; Jägemann, 2014). In contrast,
there are arguments in favor of technology-specific support, for exam-
ple, in terms of integration costs, dynamic efficiency, and market fail-
ures (de Mello Santana, 2016; Gawel et al., 2017; Lehmann and Söder-
holm, 2018). The literature also discusses the general differences between
neutral and discriminatory support instruments, especially regarding cost-
effectiveness (Lehmann and Söderholm, 2018), and also addresses their po-
tential application through auctions (Frontier Economics, 2014). However,
the literature lacks a detailed theoretic analysis of discriminatory design
elements in the context of auctions for RE support, which this chapter
provides.

Further discussion in the literature focuses on the benefits of auctions
as a support mechanism in general. Weitzman (1974) laid the founda-
tion for the theoretical comparison between quantity-based mechanisms,
that is, auctions, and price-based mechanisms, that is, administratively
set FITs. In recent years, studies comparing different mechanisms have
reached different conclusions. Menanteau et al. (2003) argues based on
case studies that FITs have been suitable for ensuring a capacity expan-
sion but that auctions are more effective in reducing support costs. Butler
and Neuhoff (2008), however, notes that auctions might reduce costs, but
are less effective due to low realization rates. Further concerns against
auctions are the uncertain investment conditions, especially for immature
technologies (Lauber, 2004; Mitchell et al., 2006; Batlle et al., 2012; del
Rio and Linares, 2014), small actors (Grashof, 2019), and high transaction
costs (Agnolucci, 2007; del Rio and Linares, 2014). Grashof et al. (2018)
questions whether auctions actually reduce support costs. On the other
hand, there are further arguments in favor of auctions. Borenstein (2012)
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states that auctions are more appropriate to deal with market failures and
externalities than administratively set FITs. Furthermore, extensive case
studies show an increased application of auctions and that these are ac-
companied by major price reductions (IRENA, 2015, 2017; Wigand et al.,
2016). However, the aim of this chapter is not to discuss the suitability
of auctions in general, but to analyze discriminatory instruments used in
auctions. We show that these instruments can help to mitigate or minimize
some of the risks mentioned above.

The different views on technology-neutrality versus discrimination stem
from different interpretations of efficiency, cost-effectiveness, and costs
in general, resulting in different definitions of political targets. del Rio
and Cerdá (2014) identify two views on cost-effectiveness for RE support
schemes: minimization of generation costs and minimization of consumer
costs. When support schemes minimize generation costs, defined as all
costs related to installation and generation of REs, the allocation of sup-
port secures an efficient deployment of RE sources. From a system per-
spective, an efficient allocation maximizes the total welfare (Smith, 1962).
Policy makers may also seek to maintain the approval of the general popu-
lation for their RE support policies by aiming to minimize consumer costs.
Consumers’ costs are not only affected by the cost of electricity, but also
by the support and integration costs of REs. Either with levies or taxes,
consumers pay for investments in new RE plants, the electricity network,
and reserve capacity. Policy makers might seek to secure a certain RE
penetration level at the lowest cost for those bearing the costs of the sup-
port scheme. All three views appear among the political targets of support
schemes in different countries.
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3.2 Definition of relevant costs – a basis for discussion

To analyze the different targets and to evaluate different auction formats
with respect to these targets, we first provide an overview of the costs of
RE in line with Joskow (2011) and Hirth (2013). In general, there are
two perspectives: that of the bidders (project developers) and that of the
auctioneer (government). Both perspectives are necessary to understand
the reasoning behind the identified target conflicts between windfall profits
and integration costs in non-discriminatory auctions.

Total
 Costs

Generation Costs 
(LCOE)

Producer Rent

Bid

Support Level
 (FIT)

Figure 3.1: Relevant costs of RE sources from a bidder perspective.

From a bidder’s perspective, costs can be divided in two parts: invest-
ment costs and operational costs. In the case of RE sources4, most costs
occur as investment costs, whereas operational costs are rather low. The
levelized costs of electricity (LCOE), the costs equivalent to a unit of gen-
erated electricity (Short et al., 1995), combine both components and are
often simplified to the term generation costs. LCOE represent the net
present value of the total life cycle costs (including both investment and
operational costs) of a RE source per unit of electricity generated. For the
RE installation to provide a return on the investment, project developers

4In this chapter, we focus on variable RE sources like PV and wind. However, other RE sources exist, such
as biomass, which are dispatchable and rely on fuel inputs.
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require a surplus in addition to LCOE. We term the surplus per unit of
generated electricity producer rent. If we assume the installation is granted
with support through a FIT, then the FIT should cover both LCOE and
producer rent. Thus, we define support level to be LCOE plus the producer
rent, which is effectively the revenue obtained by the awarded bidder. The
costs from a bidder’s perspective are illustrated in Figure 3.1.5

Windfall profits arise if the producer rent of a specific class of bidders is
disproportionately high (Haas et al., 2011). These bidders have a compet-
itive advantage not resulting from good management or innovations but
from factors outside bidders’ influence, for example, the cost advantage of
a technology.

The auctioneer, the representative of the energy consumers in the auc-
tion, has a different perspective (Figure 3.2). Consumers have to bear not
only the support costs paid to the awarded producers but also the integra-
tion costs, for which the producers are not responsible, for example, grid
integration, balancing power, and contingency costs.6 Integration costs are
determined by grid costs, technology, the resulting generation profile, and
other design characteristics indirectly affecting the costs of the RE source,
such as alignment and height. The sum of the support level and integra-
tion costs is referred to as the overall costs from a consumer perspective
or System LCOE.7

Integration costs are influenced by the technology type and the location
of the RE source (Hirth et al., 2015) and include potential differences

5For simplicity, we assume a FIT to be the remuneration type applied; however, the analysis can easily
be generalized to other types of remuneration types, for example, a feed-in premium, either sliding or fixed.
When participating in an auction, bidders determine their bid based on their individual generation costs and,
where applicable (e.g., discriminatory pricing), on an assumption regarding the competition level. In general,
the lower the competition level, the higher the producer rent.

6This chapter focuses on the costs of REs. From a consumers’ perspective, one may consider all components
of the electricity bill including the electricity costs of all energy sources and record the additional RE support
payments separately. However, for a given share of REs the implications of both views are equivalent.

7Note that System LCOE include the producer rent because it measures the cost of the RE if the auctioneer
were to buy it from the producer and integrate it into the system.



54 3 Assessment of technology-neutral and discriminatory auctions

Total
 Costs

Support Level 
(FIT)

Integration Costs

Overall Costs 
 (System LCOE)

System Integration

Figure 3.2: Relevant costs of RE sources from the consumers’ perspective.

between the market price of RE sources and the average spot market price.
Based on these characteristics, which we henceforth refer to as the quality
of the RE source, the auctioneer can calculate the integration costs. The
resulting net costs for the consumers equal the difference between System
LCOE and the average spot market price. The payment of these costs is
the net transfer from the auctioneer as a result of offering support to and
ensuring the integration of a RE project under the given market conditions.

Figure 3.3 illustrates an example of a non-discriminatory, technology-
neutral auction, in which nine bidders with equal-sized projects from two
technologies, A and B, participate. The technologies differ with respect
to the cost structure: the average generation costs of Technology A are
lower than those of Technology B. The overall auction volume (demand)
constitutes five projects. The five bidders with the lowest bids are awarded.
All examples in this chapter are illustrated in the case of a UP auction
where the lowest rejected bid (LRB) determines the price.8 Thus, the
sixth lowest bid determines the price p∗.

Non-discriminatory auctions allocate support to projects with the low-
8The results also hold for the DP auction (Vickrey, 1961; Myerson, 1981). In particular, DP does not prevent

windfall profits, as the bidders with a disproportionate advantage bid disproportionately less aggressively.
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Figure 3.3: Example of a two-technology, non-discriminatory UP auction with LRB.

est generation costs (LCOE). However, these auctions neither necessarily
prevent windfall profits nor consider integration costs. Policy makers have
to consider these trade-offs when designing auctions for RE support. We
show that by introducing discrimination in auctions, it is possible to min-
imize the overall costs and the support costs.

3.3 Political targets for RE support auctions

The definition of relevant costs is crucial for political target setting in
the context of RE support and determines the framework for the auc-
tion design. In this section, we analyze the approach presented in the
European Commission’s State Aid Guidelines, as this is the fundamental
document regulating auction design in all EU member states. Further-
more, we provide examples of national policy targets and contrast them
with the respective auction design.
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3.3.1 EU State Aid Guidelines

The European Commission considers competitive bidding mechanisms such
as auctions as an appropriate support allocation mechanism. This is ap-
parent from the “Guidelines on State aid for environmental protection and
energy 2014—2020" (henceforth referred to as the State Aid Guidelines),
which proclaim that competitive bidding will be obligatory for all new sup-
port schemes for which member states wish to obtain state aid approval be-
yond 2017 (European Commission, 2014b). The State Aid Guidelines are
the superior directive regarding RE support in the EU (European Commis-
sion, 2014b) and refer to the cases of state aid for promoting RE expansion.
Although there are certain exemptions, for example, for small installations
and demonstration projects, the competitive bidding requirement has led
to significant changes in the support policies across the member states.

Throughout the State Aid Guidelines, there are two reoccurring con-
cepts related to the reasoning behind auctions. The first concept is mini-
mization of any support payments, that is, ensuring that the aid is propor-
tionate. Section 3.2.5.1 of the State Aid Guidelines specifies the general
conditions and targets of the support mechanisms for REs, e.g. with re-
spect to the support level:

“Environmental and energy aid is considered to be proportion-
ate if the aid amount per beneficiary is limited to the minimum
needed to achieve the environmental protection or energy objec-
tive aimed for" (European Commission, 2014b, 3.2.5.1, §69).

Depending on the interpretation of aid, the proportionality requirement
can have two meanings. If aid focuses on the actual price of the RE, the
proportionality principle aims to minimize the support level. However, if
the aid also includes integration costs, the proportionality principle implies
minimizing the overall cost of the auctioneer.
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Furthermore, according to the State Aid Guidelines, technology neu-
trality will (normally) also lead to aid minimization:

“Market instruments, such as auctioning or competitive bid-
ding process open to all generators producing electricity from RE
sources competing on equal footing at EEA level, should nor-
mally ensure that subsidies are reduced to a minimum in view
of their complete phasing out" (European Commission, 2014b,
3.3.1, §109).

The State Aid Guidelines do not foresee any contradiction between
technology-neutral auctions and minimizing the aid, although technology-
neutrality is, in principle, a tool for minimizing generation costs.

The second reoccurring concept in the State Aid Guidelines is market
distortions: the state aid must not lead to reduced economic efficiency by
distorting markets. In this respect, the guidelines also refer to the design
of RE support auctions:

“[...] If such competitive bidding processes are open to all gen-
erators producing electricity from RE sources on a non-discriminatory
basis, the Commission will presume that the aid is proportion-
ate and does not distort competition to an extent contrary to
the internal market.[...]” (European Commission, 2014b, 3.3.2.1,
§126).

Hence, the European Commission prescribes a technology-neutral, non-
discriminatory auction, and, since the European Commission requires its
member states to strictly adhere to this guideline, it forces them to imple-
ment technology-neutral auctions for RE support. Although technology
neutrality is an instrument for minimizing generation costs, the State Aid
Guidelines prescribe technology neutrality for ensuring the minimization
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of aid and a reduction in market distortions. Thus, there is a conflict be-
tween target setting and the proposed auction design. Moreover, as the
following examples show, most auctions where multiple technologies com-
pete include discriminatory design elements and are not “neutral” in the
actual sense.

3.3.2 National targets

At country level, we find differences in the interpretation of costs, in the
target settings, and in the auction designs. In this section, we provide ex-
amples of implemented multi-technology auctions and contrast them with
their respective target setting. The examples cover auctions in North and
Latin America as well as in EU member states. Table 3.1 contrasts the
discussed auctions for RE support with respect to auction design and tar-
gets.

Most countries’ target is to reduce the costs for RE through the auc-
tions. Although it is ambiguous and not always clear what costs each
country actually addresses, support costs play an important role. For ex-
ample, the UK’s target is reducing support costs through a discriminatory
auction format (Department for Business, Energy & Industrial Strategy,
2017): RE technologies are split into different “pots” depending on the ma-
turity of the technology and compete against each other within each pot.
Additionally, there are different maximum prices for the different technolo-
gies (Department of Energy and Climate Change, 2014). The Netherlands
also pursues the reduction of support costs by a multi-technology auction
with technology-specific maximum prices (European Commission, 2012;
Minister van Economische Zaken, 2015).

California focuses on a different cost category. There, bidders are di-
vided into “buckets” of technologies with similar electricity generation pro-
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files. Although in principle the buckets are neutral, they ensure that only
RE technologies with similar profiles compete against each other. This
discriminatory approach not only considers generation costs but also in-
tegration costs through a better utilization of existing infrastructure and
load profiles (Public Utilities Commission of the State of California, 2010).
The Mexican auction design pursues the same target. Depending on the
location and the regional load profile, the participating projects are evalu-
ated and the bidders receive a corresponding bid bonus (Centro Nacional
de Control de Energia, 2017; IRENA, 2017). In other words, the bidders
accounting for the least total system costs are awarded. In all four ap-
proaches, the discriminatory auction design can be explicitly justified by
the minimization of costs for the consumer.

Germany, however, states additional specific auction targets in its RE
law: cost efficiency, actor diversity, expansion goal achievement, and opti-
mal grid and system integration (Deutscher Bundestag, 2016, EEG (2017),
§39i). From 2018 onward, technology-neutral auctions have been con-
ducted for PV and wind onshore, in addition to technology-specific auc-
tions for both technologies. Although the free competition between PV
and wind adheres to the non-distortion principle of the State Aid Guide-
lines, the auction design includes discriminatory instruments to achieve the
additional targets (Bundesministerium für Wirtschaft und Energie, 2017).

3.4 Discriminatory auctions

Technology-neutral, non-discriminatory auctions ensure that the projects
with the lowest generation costs (LCOE) are deployed first, although not
necessarily those with the lowest overall costs (System LCOE). Further-
more, although the bidders with the lowest bids are awarded, technology-
neutral auctions do not necessarily minimize the support costs, as we show
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Table 3.1: Examples of multi-technology auctions in different countries (Public Utilities Com-
mission of the State of California, 2010; Wigand et al., 2016; Bundesministerium für Wirtschaft
und Energie, 2017; IRENA, 2017; Department of Energy and Climate Change, 2014).
Country California Germany Mexico The Nether-

lands
UK

Technologies RE tech-
nologies

Wind and
PV

RE tech-
nologies

RE tech-
nologies

RE tech-
nologies

Objective
of discrim-
ination

Minimize
overall costs

Reduce inte-
gration costs
and support
level

Minimize
overall costs

Minimize
support level

Minimize
support level

Discrimina-
tory design
elements

Quotas de-
pending on
load profile

Regional
quota, loca-
tion bonus
and different
maximum
prices

Location
and load
profile bonus

Different
maximum
prices

Technology
pots and
different
maximum
prices

in this section. Based on the target conflicts identified in Section 3.2 and
the examples of Section 3.3, we analyze different discriminatory design
elements auction-theoretically and contrast them with the given political
targets. We discuss two possible approaches that reduce the overall costs:
(1) including integration costs (Figure 3.2) into the bidding process and
(2) reducing the support costs (Figure 3.1). We call the first approach
quality-based based discrimination and the second one cost-based discrim-
ination.

Discrimination can only be successfully implemented if bidders have
qualitative differences that can be objectively distinguished, for example,
technology, design, or location. If such differences do not exist or cannot
be identified, discrimination is arbitrary and inapplicable to the goal of
minimizing aid payments or of successfully pursuing other targets (Myer-
son, 1981). Generation costs (LCOE) differ structurally among groups of
bidders (IRENA, 2015). The overall costs and revenues of a specific RE
source depend on different factors, of which some are observable. Like-
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wise, integration costs can be assigned according to specific observable
characteristics of the bidders.

3.4.1 Quality-based discrimination

Mexican auctions for RE support discriminate among bidders based on
the location and the conformance of load and generation profile of their
project. The discrimination is implemented as a bid bonus. Bidders are
not awarded based only on their price bid but, additionally, on a factor
depending on their location and load profile. This approach is in line
with the analysis of Newbery (2017) and Pérez-Arriaga et al. (2017), who
indicate that the market value of a RE source has to be considered in any
efficient support mechanism. This explicitly includes the location of the
RE plant. The underlying auction-theoretic principle is the concept of
scoring auctions (Che, 1993; Asker and Cantillon, 2008); however, it has
hitherto not been analyzed for RE auctions. In the case of RE support,
scoring auctions enable the internalization of integration costs and, thus,
the reduction of overall costs and aid payment. The following section
describes the functionality of scoring auctions and how to implement them
for RE support. Moreover, it illustrates the opportunities and risks based
on the examples of Section 3.3. Auctions with quality-based discrimination
are commonly implemented in other industries, for example, in the private
sector (Perrone et al., 2010), for public tenders for highway construction
(Herbsman et al., 1995) and military goods (Che, 1993), and also in the
energy sector (Bushnell and Oren, 1994; Chao and Wilson, 2002).

In contrast to a non-discriminatory auction, where the requested sup-
port level is the only award criterion, additional criteria are relevant in
scoring auctions. The bids are tuples b = (p,q). The first component,
p, is the support level or price, as in any non-discriminatory (price-only)
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auction. The additional “quality” component q contains the characteristics
of the project relevant to the integration costs, for example, the location
of the RE project, its technology, and its design (e.g., the alignment of
the PV-modules or height of a wind turbine). In the auction, each bidder
decides on the deployed quality level q. Depending on the chosen option,
a bidder incurs costs cb(q), subject to the quality q of the project.

The auctioneer evaluates each submitted quality component q through
a cost function ca(q), which assigns a monetary value to q, corresponding
to the integration costs induced by q. This generates a hierarchy for all
possible quality vectors, that is, an order based on what would be better in
terms of lower integration costs. We say that vector q̃ has a higher quality
level than vector q if ca(q̃) < ca(q), that is, if q̃ yields lower integration
costs than q.

In the Mexican example, project quality is evaluated with respect to
the resulting integration costs. The regional component factors address
the potential grid costs; the load profile component measures the match
between the load and the generation profile . The components reflect
the costs the Mexican government would have to bear given the project
characteristics. Usually, the cost function ca(q) is common knowledge
among all bidders.

The auctioneer calculates a score for each bid b = (p,q) based on the
scoring function

s(p,q) = p+ ca(q) , (3.1)

that is, based on the sum of the support level and integration costs. The
bids with the lowest scores, accounting for the lowest overall costs, are
awarded. This concept maintains the desirable characteristics of a price-
only auction whereas the focus shifts from efficiency with respect to gen-
eration costs to overall system efficiency.
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(a) In ascending order of generation costs.
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(b) In ascending order of scores (System LCOE).

Figure 3.4: Example of a two-technology scoring auction where the integration costs are priced
in.

Figure 3.4 extends the example in Figure 3.3 by including integration
costs. The integration costs of Technology A are higher than those of
Technology B and are equal for each project with the same technology. If
the score (3.1) requires to add the integration costs to the generation costs,
the different integration costs change the ordering of the projects. In part
(a) of Figure 3.4, the projects are sorted in ascending order of generation
costs (this is the same order as in Figure 3.3). Sorting the projects in
ascending order of their scores (part (b) of Figure 3.4) two projects of
Technology B and only three of Technology A (compared to four before)
are awarded. This example illustrates that the projects with the lowest
generation costs do not necessarily occasion the lowest overall costs.

A great challenge for the practical implementation of a scoring rule in
the complex energy market with many uncertainties and interdependent
variables is the correct evaluation of different quality levels and the result-
ing integration costs ca(q). This evaluation was also a major challenge
in Mexico, where the regional bonus greatly affected the outcome of the
first auction round and was abandoned afterwards. For the bidders, it is
equally hard to determine the exact costs cb(q) for the different qualities
q, for example, the different locations or technologies.

Although it is hardly possible to calculate the costs ca(q) and cb(q)
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exactly beforehand – for the bidders or for the auctioneer – a scoring
auction can still be an appropriate choice. A scoring rule can be restricted
to specific characteristics that are easily measurable for the auctioneer on
the one side, and possible for the bidders to influence on the other side,
for example, the location and the corresponding direct grid cost of a RE
source. The more information is available the more this helps a scoring
auction to select those RE projects that occasion the least overall costs.
However, even with little information, a scoring auction still improves the
outcome compared to a price-only auction with respect to overall system
efficiency.

Although a scoring auction represents the actual integration costs the
most precisely, other discriminatory measures can also have a positive ef-
fect. Especially for costs which increase stepwise, a maximum quota is a
sensible measure. Such a quota was, for example, implemented in auctions
for onshore wind in Germany, with grid restrictions in the northern part
of the country.

In conclusion, appropriate discrimination implemented based on the dif-
ferent characteristics of different RE sources reduces the overall costs and,
thus, the aid payment. Although a full implementation is hard to accom-
plish, even a partial implementation improves the result from an overall
system perspective. Furthermore, the example of California illustrates
that discriminatory design elements can help to control the expansion of
RE so that it is even more in line with the actual needs and the demand.
The match of the generation and load profile through respective quotas
supports the expansion of RE where it is most sensible.
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3.4.2 Costs-based discrimination

In multi-technology auctions, projects may not only differ in the inte-
gration costs but also in the generation costs. The auctioneer can take
advantage of these differences through discriminatory auctions to reduce
the support level. In the following, we analyze the principles of cost-based
discrimination, which requires different types of RE sources (e.g., wind and
solar) with systematically different cost structures. Our results are related
to the monopolistic third degree price discrimination. Schmalensee (1981)
and Varian (1989) lay the foundation for the analysis of discriminatory
market mechanisms, while McAfee and McMillan (1989) and Bulow and
Roberts (1989) apply this approach to auctions.

We set up a model auctions for for RE support. The detailed model
and the derivation of the results are presented in Appendix A.1. Consider
a RE auction with a given demand D (e.g., capacity [MW] or energy
[MWh]) and two classes of bidders with different technologiesA andB with
different cost structures. The bidders’ LCOE are represented by increasing
marginal cost functions, where the marginal cost curve of Technology A lies
below that of Technology B, that is, Technology A has a cost advantage
over Technology B. However, we assume that some B-bidders have to be
awarded in the auction to efficiently meet the demand D, that is, based
on the lowest generation costs.

We analyze three discriminatory instruments: quota, maximum price,
and bonus. A minimum quota Q < D for Technology B guarantees a
supply of at least Q.9 A maximum price pmaxA for Technology A implies
that A-bidders with higher costs than pmaxA do not participate. A mone-
tary bonus b+ > 0 is an additional payment to the awarded B-bidders.10

9A maximum quota for Technology A is to be considered equivalent.
10A monetary malus for Technology A in the form of a deduction on the award price is to be considered

equivalent.
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Another type is the bid bonus, which reduces the bids of the B-bidders
by b−, but not their award prices. Each instrument implies a supply shift
from Technology A to Technology B and different prices for the awarded
A-bidders and B-bidders.

For example, the following have been implemented: maximum price in
multi-technology auctions in the Netherlands (Minister van Economische
Zaken, 2015), a bonus depending on the location in German auctions for
onshore wind (Deutscher Bundestag, 2016), and quotas depending on the
availability in Californian auctions (Public Utilities Commission of the
State of California, 2010) (see Table 3.2).

In Appendix A.1, we prove that the three discriminatory instruments
are theoretically equivalent with respect to their effects. First, they reduce
the support cost below the level of a non-discriminatory auction. Second,
every auction outcome, including the cost-minimizing outcome, achievable
by one instrument can also be achieved with another instrument. If any
of the three discriminatory instruments is employed so that it leads to the
support cost minimum, the price difference between the awarded B- and
A-bidders is the same.11

Figure 3.5 illustrates the effect of a technology-specific maximum price
in the example of Figure 3.3. In the auction with a demand of five projects,
the auctioneer sets a maximum price pmaxA for Technology A, which is
lower than the clearing price p∗ without discrimination. This leads to a
change in the awarded projects and prices. The three A-projects with the
lowest costs and, additionally, the two B-projects with the lowest costs of
this technology are awarded (the awarded projects are outlined in bold),
whereas the fourth A-project that would have been awarded in a non-
discriminatory auction is not awarded. Although it is not the projects with

11The price difference then equals the difference of the reverse relative elasticity of supply of the two classes
of bidders for the respective market clearing prices.
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Figure 3.5: Example of a two-technology, discriminatory auction with a maximum price and
a award price for each technology.

the lowest costs that are awarded, the total support costs decrease. The
two awarded B-projects receive pB > p∗, which, however, is compensated
by the lower award price pA = pmaxA < p∗ of the three awardedA-projects.12

The intuition behind the cost-reducing effect of discrimination is that
the auctioneer utilizes the different cost structures and reduces the support
level at the expense of a lower producer rent. Since some B-bidders receive
a higher payment but many A-bidders receive a lower payment, the overall
costs are reduced. However, cost reduction through discrimination always
involves an inefficient outcome because the cost-reducing effect involves
awarding some B-bidders, although there are A-bidders with lower costs.

It might be difficult for the auctioneer to obtain detailed information
about the cost structure of the different bidder classes. However, even with-
out this knowledge, the auctioneer can reduce the support level through

12The expected results are the same for an auction under DP. In such an auction, the bidders do not bid
their costs but a higher price to gain a profit in case of an award.
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a discriminatory instrument that reduces the price difference between the
two bidder classes. The evaluation of the auctions in Germany, the Nether-
lands, and the UK supports these considerations. In Germany, wind on-
shore projects receive a bonus depending on the expected generation of
the wind turbines, which in turn depends on the location. Without dis-
criminatory measures, due to the geographic differences regarding wind
penetration, good locations near the coast would have a disproportional
advantage and would receive windfall profits. Although the actual bonus
might be too low, it still reduces the support level. The same can be ob-
served in the Netherlands and the UK. The mere fact that the maximum
prices for the different technologies have become effective (Wigand et al.,
2016) indicates a reduction in the support level although it is not clear if
the optimal maximum prices would be higher or lower.

Although the three discriminatory instruments are theoretically equiva-
lent, from a practical and political perspective, they differ and have specific
advantages and disadvantages, particularly with respect to their robustness
against false estimation. In Appendix A.2.1 we apply the three discrimina-
tory instruments to a model with linear marginal costs. Then, in Appendix
A.2.2 we compare the three instruments with respect to their robustness.

From those additional analysis, it follows that if discriminatory instru-
ments are applied cautiously at a low level, they are expected to reduce
costs compared to non-discrimination, whereas a parameterization that is
too ambitious (i.e., more than the optimal value) may increase the support
level. If a quota is set too low or the maximum price set too high, they
are not effective, whereas a bonus always has an effect. In other words,
if the cost difference between Technology A and B is underestimated, the
bonus might be favorable but if it is overestimated, the bonus is the least
preferable option.
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The combination of a bonus and a maximum quota for the B-bidders
offers an advantageous solution. The maximum quota for the B-bidders
aims to limit the number of B-bidders privileged by the bonus. Thus,
the bonus only applies to the B-bidders with the lowest costs. Although
discrimination is always effective through a bonus, the risk of overcom-
pensation and high support costs in case of a wrong parameterization is
constrained by a maximum quota. Hence, the positive effects of discrimi-
nation are maintained, whereas the negative effects are restricted.

A political advantage of a quota is that it can be implemented as “non-
discriminatory” in the way that every group of bidders (technology, region,
etc.) has a (the same) minimum quota. It could be argued that this repre-
sents a level playing field, on which all bidders have the same “advantage.”
This quota only determines the minimum supply by the high-cost bidders,
whose effective quota is expected to reduce the support level.

Table 3.2: Characteristics of the different forms of discrimination.
Quality-based Cost-based
discrimination discrimination

Basis of discrimination Induced integration costs Cost structures
Target of Minimization of Minimization of
discrimination overall costs support level
Examples Quota in California, Bonus in Germany (wind onshore),

Quota in Germany Different maximum prices
(wind onshore), in the Netherlands,
Bonus in Mexico Different maximum prices

in the UK

Table 3.2 summarizes the characteristics of the different forms of dis-
crimination in auctions for RE support with respect to the basis, target,
and examples of the respective form of discrimination.
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3.5 Conclusion

The recent trend regarding auction design indicates more open auction for-
mats where bidders from different technologies or from different countries
participate. The European Commission suggests that a technology-neutral
auction becomes the design standard. Yet, at the moment, technology-
specific auctions are more commonly implemented. Although pure, techno-
logy-neutral auctions minimize the generation costs theoretically, this chap-
ter illustrates the trade-offs associated with discriminatory auctions. We
discuss two types of discrimination in multi-technology auctions from an
auction-theoretic viewpoint but also empirically. We link general economic
concepts with a real-world application and consider the resulting chal-
lenges. Depending on the targets and available information, discriminatory
auctions may be reasonable. In other words, we show that discriminatory
auctions can reduce the auctioneer’s overall expenses for supporting RE
sources.

The first type of discrimination involves including externalities by dis-
criminating among the bidders based on the different characteristics of
their projects. This approach considers the resulting implications on the
overall system costs. The applicability of quality-based discrimination also
depends on the available information. For a full implementation, the inte-
gration costs of each bidding RE project are required. Nevertheless, even
with less information, quality-based discrimination can be implemented
successfully and even be combined with cost-based discrimination. It has
been proven in practice that it is hard to retrieve the desired information
but that the resulting outcomes are mainly favorable.

The second type of discrimination involves reducing the producer rent
by discriminating among the bidders based on their different cost struc-
tures. Discriminating against low-cost bidders in favor of high-cost bidders
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reduces the support level through absorbing the different profits of the dif-
ferent bidders and, thus, reduces the producer rent, resulting in a lower
support level. It requires less information and allows for three theoretically
equivalent implementations, which, however, are different from a practi-
cal and political perspective. Depending on the available information, on
uncertainties, and on the political targets, the three instruments have re-
spective advantages and disadvantages and exhibit different robustness to
inaccurate estimation. Here, a combination of two approaches (e.g., quota
and bonus) is superior due to its higher robustness, whereas the benefits
are preserved.

Finally, a reason why auctions are implemented to promote RE is the
controllability of the support scheme. Discriminatory instruments, espe-
cially quality-based discrimination, preserve this controllability in multi-
technology auctions. The advantage is a higher predictability and, thus,
lower transaction costs for both the auctioneer and the bidders. The auc-
tioneer incurs, for example, lower costs for adapting and expanding the
grid, while the bidders incur lower capital costs.

In conclusion, the theoretical concepts of discrimination can be trans-
ferred to the area of RE support auctions and can have a positive impact
on the essential expansion of RE sources with the lowest necessary over-
all system costs. There are differences between the theoretically optimal
concepts and the practice, but examples show that the concepts can be im-
plemented successfully. However, it should be noted that these concepts
could also be misused for corrupt practices or for harming competitors. It
is of utmost importance that policy makers clarify the auction targets so
that they can choose the appropriate auction design.





Chapter 4

Uncovering bidder behavior in the
German PV auction pilot – Insights
from agent-based modeling

This chapter enables a deeper understanding of the ground-mounted solar
PV auctions in Germany. The German PV pilot took place over six rounds
in 2015 and 2016 in which both DP and UP schemes were implemented.
We contribute to the understanding of the extreme price reduction in the
six rounds of the pilot. Furthermore we investigate, how the different leg-
islatory and auction design changes, namely the exemption for arable land
bidders and the change between UP and DP influenced bidding behavior.
Granted the opportunity to make use of detailed data on the pilot pro-
vided by the German Federal Ministry of Economic Affairs and Energy
(BMWi), we statistically analyzed empirical outcomes of these auctions to
define input parameters for our ABM. The model is further endorsed by
game theory. We thus benefit from empirical experience to improve our
model and at the same time learn from the modeling results how varying
design parameters changes auction results. This two-sided learning offers
new insights regarding the bidder behavior in auctions for RE support and
the combination of methods provides decision support for policy makers

73
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from a novel scientific perspective.
The structure of this chapter is as follows: First, we provide a short lit-

erature review and introduction to our approach in Section 4.1. Then, in
Section 4.2 we give some background information on the German solar PV
pilot to introduce the topic. We provide an auction-theoretic background
of bidding behavior in auctions - and the limitations for theoretical analy-
sis of repeated multi-unit auctions are explained in Section 4.3. In Section
4.4 we describe our ABM, which incorporates implications of the theoreti-
cal analysis wherever feasible, but also insights from the empirical auction
outcomes. This model then simulates the auction pilot with the given pa-
rameters on design and our knowledge on agent distribution in the German
electricity market as well as on the price development of PV modules and
generation of electricity from large-scale solar PV. Empirical auction out-
comes are used to improve our modeling, however without pre-empting our
model results. They instead allow for an optimal depiction of the distribu-
tion of participants in terms of e.g. costs and project sizes in the German
large-scale PV sector. In the Section 4.5, we explain the bid prices and
bidder distribution and evaluate how bidding evolved over the respective
rounds. Specifically, we show the price development as compared to the
actual prices, the distribution of bids over the six rounds and insights into
the behavior of those bidders who submit bids for the restricted arable
land areas. We conclude in Section 4.6.

4.1 Literature review and approach

The underlying research adds on to a strand of literature on auctions for
RE that is relatively recent. In particular, this chapter applies an ABM, a
well established methodology to simulate auctions and electricity markets
but which has only recently been applied to assess RES auctions in particu-
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lar (see Anatolitis and Welisch (2017), Welisch (2018) and Welisch (2019)).
Earlier studies using an ABM to model auctions in a non-renewables con-
text are e.g. Mizuta et al. (2000) or Hailu et al. (2011). Other recent
papers dealing with auction-based renewables support are e.g. Haufe and
Ehrhart (2018) which gives an overview of relevant auction design elements
Winkler et al. (2018) which evaluates the performance of auctions for RE
support or del Río (2017) and Mora Alvarez et al. (2017a) which give a
qualitative overview on European experiences with renewables auctions.
Other work looks into the theoretical background and implications of cer-
tain design elements, see e.g. (Kreiss et al., 2017, 2019). Specific country
cases also exist, as for example Kylili and Fokaides (2015) who evaluate
the functioning of an auction-based support scheme in Cyprus and Wigand
et al. (2016) who summarize case studies across Europe.

By remodeling the auctions and looking into the detailed ABM out-
comes, i.e., costs, distribution of bidder types and dropout rates, we en-
able a better understanding of the decision processes underlying the auc-
tions and motivating the participants. An ABM allows to simulate differ-
ent forms of behavior and makes the underlying procedures visible. We
furthermore have some of the advantages of econometric analysis in our
model, as we make use of empirical data and analyze the short time series
of auctions that already took place before modeling the auction partici-
pants. By comparing model results to empirical outcomes, this chapter
aims to provide an explanation for the steep drop in bid prices. The
findings are also relevant in the eye of a current legislatory change: the
Bundesländerklausel/Freiflächen-Öffnungsverordnung. This new law al-
lows the German federal states (Bundesländer) to come up with their
own restrictions or open their disadvantaged arable land for tendering of
ground-mounted solar PV. This change in legislation led to an opening of
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these formerly restricted areas for upcoming auctions.1 We show through
our modelling how this could influence future auction outcomes and discuss
the resulting policy implications.

4.2 Background on the German PV auction pilot

In the German ground-mounted solar PV auctions, the auctioneer is the
German federal network agency (BNetzA). A sliding feed-in-premium to
support large-scale solar PV installations for a support period of 20 years
is tendered (Deutscher Bundestag, 2017). The auctioneer publishes the
successful capacity amounts in detail. The lowest and highest accepted
bids together with the weighted average winning bid are also made public.
The actual bid prices and project costs remain private information.

In the auctions, participants submit their (sealed) bid in each round.
Specifically, the bid contains a price in ct/kWh and a corresponding capac-
ity in kW of their individual projects. The location of the project is also
submitted (Deutscher Bundestag (2017), § 30), such that the auctioneer is
immediately able to differentiate between disadvantaged arable land which
is per definition not suitable for farming in its current state (in the follow-
ing just referred to as arable land for simplification purposes) and other
areas, namely the area adjacent to a highway or railway or a converted area
which was previously used for military, business purposes, infrastructure or
housing (named converted areas in the following). The difference between
these two areas is a crucial feature of the German PV auction scheme, as
the former is restricted due to reservations by the German farmer’s asso-
ciation (Bauernverband), see e.g. Deutscher Landwirtschaftsverlag GmbH

1Bavaria and Baden-Württemberg have already made use of this law and opened up tendering on arable land
for up to 30 projects (Bavaria) and up to 100 MW annually (Baden-Württemberg). For more details see the
legal publications by the federal states of Bavaria (Bayerische Staatsregierung, 2017) and Baden-Württemberg
(Die Regierung des Landes Baden-Württemberg, 2017)).
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(2015). The described procedure holds for DP and UP auctions. Bids are
chosen while the cumulative amount of capacity is lower than the demand.
Immediately after the procured quantity is reached or surpassed for the
first time, the auction round is closed. This procedure is implemented into
our model in all its specifications (see also: Anatolitis and Welisch (2017)).

The German PV pilot consisted of six rounds, three in 2015 and 2016
respectively. In each round quantities between 125 and 200 MW were
tendered. The ceiling price started at 11.29 cet/ kWh 2 then decreased
to 11.19 ct/kWh and then 11.09 ct/kWh for the remaining four rounds
(Deutscher Bundestag, 2017). Two of the pilot rounds (rounds 2 and 3)
were held as UP auctions and the rest were DP auctions. Their results,
which will also be discussed in the following were a sharp decrease in sup-
port costs3, which were previously administratively set with a FiT system.

4.3 Auction-theoretic foundations

Since 2015, the support payments for ground-mounted solar PV plants in
Germany, are determined by repeated, static multi-unit auctions. This
section will elucidate this auction design as well as the characteristics of
the participating bidders auction-theoretically. It will explain how we
transferred this framework into an ABM and where the limitations of
transferability between theory and practice are. We will start with the
auction-theoretic basics of the revenue equivalence principle and then add
complexity by including repeated games, asymmetric bidders and CVs.

The multi-unit characteristic is common to most auctions for RE sup-
port, meaning that more than one project is awarded to supply the auction

2cet are in the future only referred to as ct for simplification purposes.
3The auction mechanism determines the sliding feed-in-premium that the generator receives. The payment

is composed of the electricity spot price and an additional support payment. The sum of both equals the
sliding feed-in-premium and, thus, the auction result.
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demand. In the analyzed case of large-scale ground-mounted solar PV auc-
tions in Germany, the auction volume in the first round was 150 MW of
installed capacity, the maximum bid volume was 10 MW and thus at least
15 projects had to be awarded. As there were also smaller bid volumes,
in total 25 projects were awarded in the first auction. The demand of
installed capacity is considered to be homogeneous.4

The two most common formats are the so called DP and the UP auc-
tion. The latter can be further divided into the highest accepted or the
lowest rejected bidder setting the price. In a simplified setting, DP and
UP auctions have the same expected revenue, given only bidders with
single unit supply participate (Engelbrecht-Wiggans, 1988). Nevertheless,
bidding behavior is quite different between the two pricing rules (Weber,
1983). Especially, it can be shown that a UP auction with the LRB rule
(which is not the case in the German ground-mounted solar PV auctions)
is incentive compatible: it is the optimal strategy for a participating bidder
to submit her true costs independent of the bidding strategy of every other
bidder. The bidder cannot improve her expected profit by deviating from
this strategy. A participant’s bid does not determine the price she receives
in a UP auction, which is different in case of winning in a DP auction.
Thus, in a DP auction a bidder has an incentive to exaggerate the costs in
the bid in order to gain a positive profit in case of winning the auction.

As we do not encounter a one-shot auction, but a repeated auction with
several rounds each year over a multi-annual time frame, the conditions
deviate from this simplified theoretical basis. Even a bidder with only a
single project has the possibility to participate in several auction rounds.
Therefore, the strategic considerations from the one-shot auction have to
be adapted (Milgrom and Weber, 2000). For the sequential DP auction,

4An exception for this is to be found in the locational differentiation between arable land and converted
areas, which will be explained and discussed in the following.
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the adaptation is rather straightforward. In a one-shot auction the bidder
has to consider the possibility of being awarded and the profit in case of
award. In a sequential auction, the bidder considers the additional positive
expected profit from being awarded in a future round. Thus, the more
auction rounds remain, the more the bidder increases her profit margin by
adding on to her true costs. If the bidder has not been awarded before the
last round, she then applies the same bidding strategy as in the one-shot
auction.

It is less intuitive to understand why there is also a deviation in the
bidding strategy for UP if there is a sequential (repeated) auction. If all
bidders would bid their true costs, the lowest cost bidder would be awarded
in the first round at the costs of the second lowest bidder and so on. Thus,
the award price would rise in every auction round as the lowest cost bidders
are always awarded and do not participate in the forthcoming rounds. As
a result, a bidder would prefer an award in a later round as this would
yield a higher price and, as a consequence, a higher profit. To compensate
for this effect, bidders increase their expected profit by submitting higher
bids the more auction rounds are left. In the last round they follow the
strategy of a one-shot auction and bid their true costs. As a result, the
award price of a repeated UP auction is the same in each round and also
the same as in a repeated DP auction. That is, the bidders in round t

of a repeated UP auction use the same bidding strategy as a bidder in
round t+ 1 in a DP auction (Weber, 1983). As explained beforehand and
also shown by e.g. Bower and Bunn (2001), it is impossible to derive a
theoretical comparison between DP and UP outcomes in terms of multi-
unit, repeated auctions. The underlying auctions exhibited a high level
of competition and little danger of collusion (described e.g. in Bower and
Bunn (2001) as the main reason for deviating from theoretically derived
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bidding strategies). Therefore, we assume that bidders in the benchmark
case all submit their true costs and in the UP case the bidders utilize the
DP strategy of round t + 1 in all but the last round where they bid their
true costs.

An additional difficulty for theoretical analysis of auctions for RE sup-
port is that the set of participating bidders changes over time and the
number of rounds each bidder can participate in, may be different. Fur-
thermore, the bidders could differ in other ways. For example, their cost
structure could be substantially different and bidders could also differ with
respect to the available information. In auction theory, such bidders are
considered asymmetric (Maskin and Riley, 2000). If certain bidder types
are discriminated against in the auction, as is the case for arable land bid-
ders in this auction pilot, due to the restriction to 10 awarded areas per
year, they adapt their respective bidding strategy and bid more aggres-
sively.

Furthermore, many cost components for RE sources are the same for
most or all participants. PV modules are a major cost component and,
except for large customer framework contracts, those costs are similar for
all participants. They are thus referred to as CVs (Wilson, 1969). Although
we didn’t implement uncertainty through common cost components in our
ABM (the bidders know their respective costs exactly), the cost reduction
in PV module prices was common for all bidders.

The implications of the mentioned characteristics on the auction out-
come and the bidding behaviur are manifold. Depending on the framework,
it is hard or even impossible to theoretically derive the bidding strategies
and in some cases there are several theoretical bidding equilibria. For this
reason, we incorporate insights from theoretical analysis into an ABM to
better understand the results of the first auction rounds for PV instal-
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lations in Germany. The next section illustrates how we transferred the
theoretical implications into the ABM.5

4.4 Agent-based model

This chapter documents the ABM we used to assess the German ground-
mounted solar PV auctions - its set-up and input parameters. The model
builds on work by Anatolitis and Welisch (2017), makes use of the ABM in-
frastructure mesa and is programmed in Python. In principle, the model
simulates multi-unit, multiple round auction schemes with a variety of
participants that are subject to different constraints (see Section 4.4.2).
Depending on whether it’s a DP or UP auction the bidders make use of
different strategies, which are depicted in sections 4.4.4 and 4.4.3. In this
study, six rounds of DP and six rounds of UP were modeled to repli-
cate the German large-scale PV auction pilot. Furthermore, in Section
4.4.5 we show a benchmark case, where all participants truthfully submit
their costs. Contrasting these modeled rounds with the empirical auction
outcomes enables a more detailed understanding of the underlying bidder
behavior.

Learning is a crucial factor in auctions over several rounds. In our
simulation, the participants learn the weighted average overall bid in DP
and the highest awarded bid in UP (Anatolitis and Welisch, 2017). The
ceiling prices for each auction round have been administratively set at
11.29, 11.18 (two rounds) and 11.09 ct/kWh (last three rounds) and were
incorporated in the model, as have the auctioned quantities of 150 (two

5In addition to the mentioned characteristics, auctions for RE support face an additional complexity
through the participation of multi-unit bidders. However, quantifying the influence of such bidders is be-
yond the scope of this analysis, thus, we did not include them in our model. The main problem behind this
is, that theoretically both pricing rules (UP and DP) are inefficient in the case where bidders can supply
multiple units (Ausubel et al., 2014). A bidder with the potential to supply more than one unit of the good
has an incentive to increase the bid for the second best and the following goods or even to reduce supply. This
strategy enables bidders to increase the profit for the first or better bids and thus maximize profit.

https://github.com/projectmesa/mesa


82 4 Uncovering bidder behavior in the German PV auction pilot

rounds), 200, 125 (two rounds) and 150 MW respectively. 6 To average
over stochastic elements of the simulation (Hailu et al., 2011), the mean
of a minimum of 100 simulation rounds is used for each final result in the
following modeling cases. The next section gives insights into the model’s
parameters before we get into the bidding process according to the different
pricing rules.

4.4.1 Model parametrisation

The model is run with the following parameters. For each agent type
aconverted,w, aconverted,s and aarable the number of bidders (per type) for the
first round is predefined as follows: |aconverted,w| = 75, |aconverted,s| = 75

and |aarable| = 0. Arable land bidders are initialized at 0, because their
participation was not allowed in the first year of the pilot (i.e. the year
2015, rounds 1-3). Then the demand dt for each round t ∈ range(T )

in MW and the auction’s price limit ptlim in ct/kWh are implemented.
Furthermore, the auction rounds in which each agent can participate are
limited to the duration of the auction pilot range(T ). Each agent takes
these input factors into consideration in order to optimize her bidding
strategy over the given time period.

The bidder initialization process is as follows. For each type of agent,
the bidders are drawn from the same distribution function and each bidder
i is randomly assigned her initial costs c0

i from her corresponding cost
distribution in ct/kWh and a project size qi in MW (see Table 4.1). Each
agent i is therefore characterized as

6In the last round, actually 160 MW have been auctioned, which is due to the fact that in earlier rounds
around 10 MW had been returned (Bundesnetzagentur, 2016). As in our model, we do not offer agents the
possibility to return bids, we leave the auctioned quantity at the originally planned 150 MW to achieve the
planned total amount of 400 MW for the year of 2016.
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ai = (c0
i , qi).

Consequently, each agent only submits one bid in each round and the
model does not allow for multiple bids. This is a simplification which
does not strongly impact the outcomes of the present analysis - as the
focus rather lies on shedding light on bid price optimization as well as the
different bidder types and the impacts of changing the restriction on arable
land areas. After the bid submission, the bids are sorted in ascending order
where b(1) corresponds to the lowest bid and the bidders are awarded until
supply equals demand: dt = st where st = (q(1) + q(2) + ...+ q(nts)

). For the
arable land bidders (aarable), who only start participating in 2016 there is a
limit of 10 awarded projects per year (so for rounds 4-6). The strike price
is determined depending on the applied pricing rule. Before a new round
takes place, a certain amount of new bidders in each category is drawn.

Degression takes place in every round. First of all, bidders whose bid
was more than 15% above the highest awarded bid (strike price) do not
participate in the next round. Similar behavior was observed in the sta-
tistical analysis of the empirical auction outcomes, such that we assumed
this threshold to be a realistic approximation of bidding behavior in the
German PV auction pilot. The other bidders who were not awarded but
whose project is below the cost-threshold, remain "live", i.e. continue par-
ticipating with their respective project. All awarded bidders have a 50
% chance to either participate in the following round or the round after
that. They participate with a new bid bt+1

i considering their new costs ct+1
i

which were multiplied by the degression factor λt: ct+1
i = λt · cti.



84 4 Uncovering bidder behavior in the German PV auction pilot

4.4.2 Agents

The agents in this model are the bidders or auction participants. They
are assumed to behave rationally. This means their bid is based on their
costs and they try to maximize their expected profit over time. An agent is
further characterized by her attributes, namely the size of her PV project,
and her bidding behavior – the bid function and the implemented learning
algorithm (see also Anatolitis and Welisch (2017)). As explained in Section
4.4.3, learning of bidders takes place by updating the bidding function with
results from previous auction rounds. We assume three different types of
bidders that participate in the auctions: a strong and a weak type for the
converted areas - which are the most commonly auctioned areas in Ger-
many, where the strong type draws from a lower cost distribution than the
weak type. The different cost distributions we assign to the bidder types
have been derived from statistical analysis of the actual bids submitted
in the German ground-mounted PV pilot auction and are thus evidence-
based. We further assume a third category: bidders bidding for arable
land. These are the strongest types in terms of costs, as arable land is
very cheap and constructing there most likely has lower opportunity costs,
due to a lack of alternative use - making these bidders more competitive
than the other types. However, due to legal restrictions (Deutscher Bun-
destag, 2017) only 10 of these areas were allowed to be awarded in 2016.
Therefore, their participation is restricted in the model to starting in round
4 (first auction in 2016).

In the first round, a certain amount of participants is predetermined.
For this, we try to mirror empirically observed participation which amounts
to about 180 bidders. Having access to the detailed German PV auction
pilot data, we are able to implement very concise and realistic assumptions
into our model concerning the agent’s behavior and cost distribution. First
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of all, as the number of bidders decreases over time, we assume a drop-out
of participants. This drop-out is determined endogenously by restricting
further participation to only those bidders who bid a maximum of 15%
above the awarded bid. Similar behavior was observed empirically in the
data we received on the auction pilot. We assume this to be rational
behavior concerning the decreasing award probability over rounds. If a
bidder was awarded, we assign her a 50% probability of participating in
the next round. This is also a realistic assumption examining the data on
repeated participation.

Concerning new entry of bidders, we also assessed the auction results
and found that the number of entering participants decreases over time.
We therefore model new entry to be endogenously dependent on the previ-
ous auction outcome. Specifically, we assume that more strong than weak
bidders enter in each round, as they have a higher estimate of their chances
of winning, weak bidders being more easily deterred by decreasing prices
over time. Thus, the number of new entrants depends on the amount of
bidders in the previous round. Namely, also drawing on insights from em-
pirical data, 10% of the number of previous weak and 20% of the previous
strong bidders enter in each round. New bidders for arable land only enter
to that extent as there are still projects available, i.e. if not all 10 were
awarded in the first round of 2016.

Agents’ costs are also based on the empirical auction data.7 We assume
that all agents draw their bids from a uniform distribution, which differs
for the respective agent types. This cost distribution adapts dynamically
to the previous strike price for newly entering participants. Furthermore,
there is external cost degression which affects both new and remaining par-

7Specifically, we statistically evaluated the distribution of bids from the first auction rounds and assigned
bidders a distribution. The development of these costs however draws on module price developments in the
two years, in order to not merely replicate the empirical auction outcomes but to rather show the extent of
price development possible due to technical developments.
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ticipants equally. Specifically, this cost degression is piecewise and builds
upon module price data and observed bidding behavior for the two years.
We assume an overall decrease of 2% per round in 2015 and 3% per round
in 2016.8 For project sizes, we also refer to the empirical data and imple-
ment a random draw between 1 and 10 MW capacity for the converted
area bidders as well as for the arable land bidders, as there is no empirical
evidence to model a difference between those types when it comes to size.

Table 4.1: Agent distribution.
Agent type Converted

areas -
strong type

Converted
areas - weak
type

Arable land

Number of bidders in first
round

75 75 0

New draw of bidders per
round

20% (around
15)

10% (around
8)

varied9

Range of capacity bid
[MW]

1-10 MW

Cost distribution
[ct/kWh]

7.5-8 8-10 6-8.5

Type of distribution Uniform distribution
Cost degression 2% per round in 2015, 3% per round in 2016
Time span t = 0,1...5 (equals 6 rounds)

4.4.3 Discriminatory pricing (DP)

In a DP auction every awarded bidder receives her bid. Therefore, when
a bidder wants to maximize her expected profit E[π(·)] she has to weigh
the possibility of winning in this round with the profit in case of winning
and also the possibility to be awarded in an upcoming auction round. The
possibility to be awarded increases with a lower bid but then the profit in

8The module price translates into an approximate cost decrease of 50%, and as we observed a steeper
decline in 2016 (pvXchange Trading GmbH, 2017), we implement this change between the years.
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case of winning decreases. The expected profit for rounds t=0,1,2,...,T for
a representative bidder i is thus given as follows:

max
b

E[πi(bi)] =
T∑
j=t

δj−t(bji − c
j
i ) · Pr(‘awarded in round j’)

·
j−t∏
x=1

Pr(‘not awarded in round j-x’) (4.1)

The bid vector bi contains all bids bti of bidder i from the current round t
to the last round T . Furthermore, the discount factor δ ∈ (0, 1) represents
the bidders’ preference that the same profit is less favorable in a future
round than in the current round. In combination with the bidders costs
cti in the specific round, the profit in case of winning can be calculated.
As a bidder can (by assumption) only participate with one project in any
given round, the bidder can only take part in a future round with the
same project if she has not previously been awarded. Hence, for all rounds
t < T , not being awarded in this round still leads to a positive expected
profit as there is a positive probability of being awarded in a future round.

In (4.1), the probabilities to be awarded in a specific round and to
not be awarded in all previous rounds are not elaborated. (4.2) accounts
for this issue and shows where learning comes into play. We assume the
bidders to have a rough estimation regarding their competitors in the first
auction round and based on the results of the auctions, they adapt their
beliefs. Therefore, we introduce a cumulative distribution function (CDF).
This function F (·) captures an agent’s belief on the bid distribution of
the other participants. This belief contains both the expected number of
competitors and their strength.

The bidders model the CDF as a normal distribution where they adapt



88 4 Uncovering bidder behavior in the German PV auction pilot

the distribution through adjustment of the mean µ to the results of the
previous rounds. In the first round, the agents base µ on their own signal
and in the forthcoming rounds, they use the newly generated information
to adapt µ to the overall mean bid of the previous auction round. Further-
more, the number of participants in the last round nt−1 and the number
of awarded bidders nt−1

s is considered for the forthcoming rounds (also ac-
counting for the varying auction volume). Given these assumptions, from
an agent’s perspective, the probability F (bti) equals the probability that bti
is higher than the bid of one other bidder from the CDF F (·) and respec-
tively 1−F (bi) depicts the bidder’s probability of her own bid being lower
than her opponent’s.

Applying the concept of order statistics, the agents can calculate the
expected probability of having a lower bid than a predefined fraction of
other bidders. More precisely, based on the agents assumption on the
strength of their competitors, the number of competitors and the number of
successful bidders, the agent can calculate the probability of being awarded
given a specific bid.10 In the first round, they make an initial assumption
on competition: comp and on the number of successful bidders: succ.

Based on the approach in Ahsanullah et al. (2013) and Anatolitis and
Welisch (2017), we can calculate the expected profit of the agent i given a
specific bid vector bi as

10Moreover, as it is a multi-unit auction, the agents have to consider that not only the lowest bid is awarded
but that there are different possibilities depending on the agent’s position in the order of the bids.
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E(πi(bi)) =
T∑
j=t

δj−t
(
bji − c

j
)

·
nt−1s −1∑
k=0

(
nt−1 − 1

k

)
F (bji )

k
(

1− F (bji )
)nt−1−1−k

·
j−t∏
x=1

nt−1−1∑
l=nt−1S

(
nt−1 − 1

l

)
F (bji )

l
(

1− F (bji )
)nt−1−1−l

. (4.2)

The bidders maximize the expected profit given in (4.2) by optimizing
their bid vector bi. After every auction round, the bidders adjust this bid
vector given the additional information from this last round. By incorpo-
rating this information, bidders improve their bidding function by learning
between auction rounds. They can adapt their bids up or downwards, de-
pending on the average bid and level of competition in the previous round.
In addition, all bidders experience technological learning which lowers the
costs for all bidders alike. It should be noted that this approach is based
on auction theory, but does not consider the other bidders’ behavior, i.e.
their best response. Therefore, this approach has to be considered as a
decision-theoretic optimization.

4.4.4 Uniform pricing (UP)

The main difference between DP and UP is the price determination. In
the case of a UP auction, the agents also simultaneously submit their bids
(bti, qi). Bids are rejected if they are above the ceiling price (bti > ptlim)
or lower than zero (bti < 0), as foreseen by law. The uniform remunera-
tion in our model is determined by the highest awarded bid btnts+1, which
corresponds to the German PV auction scheme.

As already mentioned in Section 4.3, in an idealized setting in a UP
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auction it is a (weakly) dominant strategy for each bidder to bid her own
costs. However, if the UP auction is repeated, the strategic considerations
change and bidders increase their expected profit by deviating from this
strategy. Given all further design parameters in this setting, it is difficult
to determine an equilibrium bidding strategy for a UP auction where the
bidder has no direct influence on her award price (Lykouris et al., 2016).
We thus assume the equilibrium bidding strategy of the repeated UP auc-
tion which is to use in round t the same strategy as in a DP auction in
round t+ 1 and submitting one’s true costs in the last round (see Section
4.3).

4.4.5 Benchmark case

Finally, in a benchmark case we assume the bidders to apply the symmetric
bidding strategy

β(cti) = cti (4.3)

which assumes that bidders follow the same bidding strategy as in
the one-shot UP auction, meaning they submit their true costs in every
round.11 As the corresponding pricing rule we use a UP with LRB. This
provides us a comparison to both the empirical results and the results from
the simulation of the DP and UP rule. The bidding process, selection of
winning bids and drawing of new bidders in the respective rounds is the
same in all three variations.

11The assumption of truth telling in a repeated auction is quite strong. However, with this benchmark case
we do not claim full accuracy but rather want to provide the results of a what-if scenario as an additional
comparison.
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4.5 Results and discussion

In this section, we present findings from modelling the German ground-
mounted PV pilot as six rounds of UP, DP and the benchmark case respec-
tively. To provide adequate insights into the different bidding strategies of
arable land bidders, we further simulate a distinct auction for 2016, taking
into account their limits concerning the time horizon and the average ca-
pacity available for the allowance of 10 projects (55 MW). As competition
in this separate simulation, we assume all arable land competitors as well
as the lower cost converted area bidders, i.e. all direct competition in the
lower bid range (see Table 4.3 for model results).
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Figure 4.1: Comparison of the mean award price between the actual auction outcome and the
model results.
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Figure 4.1 shows a comparison of the auction outcome of the PV pilot
auctions in Germany with our modeled DP results as well as a UP and
a benchmark case.12 The dispersion shown for the modeled results is the
distribution over 100 simulation rounds.

We can see that the actual auction results of the PV pilot are substan-
tially higher in the first three rounds compared to our modeled results. In
the modeled DP case, all bids lie (at least slightly) below the empirical auc-
tion outcomes, showing that with the competition present in the German
solar PV auctions and accounting for technology cost developments, lower
auction results would have been possible from the start of the auction.
Another explanation could have been learning effects and recovery of sunk
costs from bidders in the actual auction in the transition phase between
the administratively set support scheme and the auction-based system.
This is a parameter which cannot be captured as easily in the ABM, as
this kind of calculation has to take place before the auction itself. Further
the average award price is decreasing with each round.

In the benchmark case, all outcomes but the last one are below the
empirical auction outcomes. The results of the UP case lie between the
DP and the truth telling outcomes. Both UP and the benchmark case are
more volatile than the DP auction with respect to the auction volume and
external effects (arable land bidders in Round 4). That is, in Round 3 the
award prices increase compared to the previous round. So the price deter-
mining bid is more dependent on the auctioned quantity than the average
bid in the DP case although those agents accounted for the additional
demand. The same applies the other way around in Round 4 where the
additional arable land bidders participate. To summarize this comparison,
the UP case lies between DP and benchmark and has a greater reactions

12The empirical auction took place as one round of DP, two rounds of UP and three rounds of DP. The
model results show six rounds of either pricing mechanism.
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to a changing competition level than the DP case.
The model results show that bidding in the German pilot became more

and more aggressive over time, potentially even inducing bidders to put up
with small losses to secure their project realization.13 This is in line with
theory and empirical findings, showing that towards the end of a series of
auctions, bidders become more aggressive as their probability to realize a
successful bid decreases. To summarize, the sharp decline in award prices
in the German PV pilot auctions cannot be explained by falling prices for
PV modules alone, but may also have occured due to pressure on realiza-
tion towards the end of the pilot or uncertainty about the continuation of
the support scheme and future award possibilities. Comparing the empir-
ical outcomes to our model results, it is highly possible that the bidders
either reduced their profit margin or benefited from economies of scale or
one or several of the previously described learning effects.

This finding is particularly substantiated by the DP modeling results,
which are very much in line with the final three rounds. The reason for the
monotonically decreasing prices in the DP model lies in the simulated ex-
pectation of a lower level of competition in the first round. Modeling this,
we tried to approximate bidder behavior in the pilot where the first rounds
exhibited high(er) prices. As bidders learn about the strong competition
and low bid prices from previous rounds, they incorporate this knowledge
into their strategies and reduce their bids and therefore their profit margin.
Furthermore, bids decrease as the subset of non-competitive high-cost bid-
ders becomes smaller over time and the successful bidders are increasingly
cost-competitive. Without the assumption of a low competition level in
the first round, the difference between model and empirical findings would
be even higher and award prices would not decline throughout the auction

13Aggressive bidding in this case means that bidders decrease their profit margin and submit bids very close
to their true costs in order to ensure that their project is secured.
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rounds due to the higher auction volume in Round 3. Nevertheless, even
modeling the earlier described two-way learning does not provide us with
the empirically observed outcomes of the auction pilot.
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Figure 4.2: Comparison of the overall bid distribution for all six rounds in the DP model.

Figure 4.2 shows the distribution of bid prices averaged over five ex-
emplary simulations of the auction pilot. Basically, we zoom into the
development of the bids over time in more detail and the vertical variation
shows the amount of bidders at each point of the bid price distribution.
The figure distinguishes the distribution for the different rounds, starting
with the distribution of all bids from the first down to the sixth round. Two
general patterns regarding the bidding behavior are identifiable. First, the
competitive bidders, i.e. those bidders with the lower costs and thus with
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bids on the left hand side of the figure, reduce their bid in the duration
of the auctions. This can be seen by the shift to the left of the curve
from round to round in general and the shift to the left of the first peak
in particular. The distribution of the bids of the weaker bidders, i.e. the
bidders on the right hand side of the graph is different. From the second
auction round onward, the bid distribution remains constant. A possible
explanation for this could be, that those bidders learn their low probability
of being awarded and thus have already bid really aggressively (close to
their true costs) at an early stage so that the timing only plays a minor
role.

Table 4.2: Detailed results of the DP model.
Round Average

supply
Mean over-
all bid

Mean
awarded
bid

Mean high-
est awarded
bid

Average
profit

1 153.04 8.75 7.67 7.93 0.37
2 153.22 8.37 7.43 7.52 0.21
3 202.86 8.27 7.30 7.56 0.10
4 127.98 8.18 7.09 7.15 0.24
5 128.06 8.15 6.92 7.12 0.04
6 152.80 8.07 6.84 7.08 0.03

Table 4.2 further specifies the results of the DP model. It shows that
the mean overall bid follows the same trend as the mean awarded bid
illustrated in Figure 4.1. So not only the awarded bidders reduce their bids
throughout the auction rounds but also the bidders in general. However,
this trend is not as strong as for the awarded bidders. The explanation for
this is already provided by Figure 4.2. Furthermore, not only the average
bid is decreasing but as a result also the average profit of the bidders
falls. The sole exception is Round 4 where the bidders on arable land
participate for the first (and final) time, due to the legislative restriction
described earlier.

We then open up the auction to a range of scenarios where we lift
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this limit on arable land bidding. We model scenarios which are al-
ready taking place or are planned for the near future, due to the so-called
Bundesländerklausel/Freiflächen-Öffnungsverordnung. As explained ear-
lier, this law enables German federal states (Bundesländer) to individually
regulate the auctioning of arable land for large-scale ground-mounted solar
PV. While the modeled costs thus show that the ABM is suitable to repro-
duce the findings from the PV pilot auctions, we are further interested in
insights on agent behavior and composition. Specifically, we want to look
into the impacts of allowing arable land bidders in 2016 and furthermore to
show how auction results could change if the restrictions on these bidders’
participation were lifted. Detailed results for the arable land bidders are
shown in Table 4.3.

Table 4.3: Detailled results of the DP model for arable land bidders in Round 4.
Round Average

supply
Mean over-
all bid

Mean
awarded
bid

Mean high-
est awarded
bid

Average
profit

4 58.17 7.54 6.90 6.94 0.21

The depicted results are from a scenario where only the arable land
bidders compete, as well as a small partition of very low-priced converted
area bidders. Specifically, a separate auction is shown, where all relevant
model parameters are reduced: available size (an average of 55 MW), time
horizon (one year, i.e. three rounds) and the number and characteristics
of participants. This scenario represents the optimization horizon of the
arable land bidders, who basically compete amongst themselves and in the
PV pilot only have a realistic award probability in the first round of 2016,
due to the small amount of available land.

Model results from this scenario clearly illustrate that arable land bid-
ders are amongst the most aggressive bidders. In all displayed criteria,
the results are well below the values of the original scenario in Table 4.2.
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Two main conclusions can be drawn from those model results. Firstly,
the participation of arable land bidders reduces the award price and thus
the support costs for RE. Secondly, by discrimination against arable land
bidders14 who have a cost advantage the support costs may be reduced
even further (see Chapter 3). This is particularly visible when comparing
the average profit of the bidders in the arable land auction to those of the
overall auction scheme: in the discriminatory auction, the average profit
is lower, reflecting more aggressive bidding behavior. This finding shows
that by lifting the restriction as already planned or implemented in some
parts of Germany, bid prices are bound to decrease even further. Having
all bidders participate in the same auction without restrictions on arable
land bidders, could however also lead this bidder type to increase their
profit margin by correcting their bid towards the cost level of the com-
petitors (converted areas). Which effect would be stronger would finally
depend on the total amount of land freed up for this bidder type.

4.6 Conclusions

This chapter analyses bidder behavior in the German PV auction pilot
which took place over six rounds in the years 2015 and 2016. For this, it
uses a novel approach which combines insights from decision theory and
data analysis which were both used to optimize an agent-based auction
simulation model. Decision theory was used to model the agent’s bidding
behavior precisely, and an ABM was used to calibrate the characteristics
of the agents based on empirical auction outcomes. We model six UP
rounds and a DP scheme over the same time period, where agents account
for several auction and auction round-specific parameters when optimizing
their bidding strategy over time.

14Discrimination in that case is the restriction on a fixed number of awarded bidders.
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The findings from modeling are then contrasted with the empirical auc-
tion outcomes. As the bidders are modeled according to empirical insights
on bidder behavior, this comparison shows how the empirical results com-
pare to a modeled decision theoretic optimization approach, assuming bid-
ders behave rationally. This way we use the essence of theory, modeling
and empirical data analysis to add a new contribution towards understand-
ing auction-based support schemes. In particular, we find that the high
bid prices in the first rounds and the monotonously decreasing price de-
velopment can not merely be attributed to cost decreases in PV module
prices. Potentially, the relatively high auction outcome in the first round
can be explained by high uncertainty regarding the level of competition
in the auction.15 A further explanation are learning effects of auction
participants that took place in the transition phase between the previous
administratively set FiT and the auction-based support system. Further-
more, the sharp reduction in award prices towards the end of the auction
pilot shows how bidding behavior became increasingly aggressive, poten-
tially due to the high competition and the pressure to realize a project
before the support scheme ends.

Moreover, we look at the bidders who submit projects for the limited
arable land areas and their specific behavior. These bidders are the most
cost-competitive types in the German large-scale solar PV auctions. In
addition to the overall auction simulation, we model their optimization by
taking them out of the auction and having them participate in a simulated
separate environment - as the limitations on arable land actually caused a
sort of discriminatory auction to take place. This simulation leads to two
main conclusions. Firstly, the participation of arable land bidders reduces
the support costs significantly, as those bidders are the most competitive

15Modeling sensitivities in terms of different expectations towards competition showed that this hypothesis
is plausible under the given assumptions.
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types. Secondly, discrimination induces arable land bidders to bid more
aggressively, due to the higher competition level amongst the strongest
types of bidders, as they compete for a very low amount of areas. Con-
tinuing this limitation and thus implicitly discriminating among bidder
types, could actually even lead to lower bid prices and thus overall re-
duced support costs. How costs develop with the increased participation
of the arable land bidder type, which will occur due to legislative changes
and expanded opening of auction schemes towards this type of land use,
thus depends on how participation of this bidder type will be implemented
in the future.

In terms of further research it would be interesting to relax the assump-
tions on single-unit bidders and include more strategies for bidder types
that enter the auction with several projects. Furthermore, an ex-post anal-
ysis of outcomes after the legislative change will be of interest, to see how
this change has actually affected the overall bidding behavior.





Chapter 5

Multi-unit common value
procurement auctions – theoretical
and experimental analysis

Auctions for RE support are usually conducted as procurement auctions,
in which the bidders (i.e., energy companies) compete with their projects
for financial support. The prevailing design is a multi-item sealed bid
auction, either as DP auction or UP auction (Wigand et al., 2016; del Río,
2017)1.

The two most important RE sources, wind and solar, are characterized
by a large proportion of common components, whose cost are the same for
all bidders. This is caused by a high cost share for raw material (e.g., steel
and copper in wind turbines), PV modules, and standardized electronic
and mechanical equipment (Yu et al., 2017; IRENA, 2017).2. Due to long
periods for the realization of the awarded projects, often several years, the
projects are usually accompanied by a high degree of cost uncertainty, par-
ticularly their common cost components (Wigand et al., 2016). Thus, the
problem of the winner’s curse (e.g., Thaler, 1988) plays an important role

1For the theoretical analysis of multi-item auctions see, e.g., Ausubel et al. (2014).
2Generally, the stricter the bidding requirements are, the larger is the common cost component. This, for

example, applies to offshore wind auctions, where the sites are pre-determined and even pre-developed and
the total capacity is restricted (e.g. Bureau of Ocean Energy Management, 2018).
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in the support of RE sources through auctions (IRENA, 2017). Beside the
bidders, also the auctioneer has a strong interest in avoiding the winner’s
curse in order not to endanger the acceptability of the RE auctions and
future participation.

Section 5.1 reviews the existing literature on CV auctions and illustrates
the relation to auctions for RE support. In Section 5.2, we present the the-
oretical model of multi-unit CV procurement auctions, derive the unique
symmetric equilibrium for DP and UP, and formulate our experimental
hypotheses. Section 5.3 outlines our experimental setting and the results
of the experiment are presented in Section 5.4. Section 5.5 concludes.

5.1 Common values in auctions

Common value auctions and the phenomenon of the winner’s curse have
been attracted attention for a long time and have been investigated in-
tensively, theoretically, empirically, and experimentally. Most of theses
studies consider single-unit sales auctions, in which the bidders receive
private signals that are correlated with the ex ante unknown CV of the
good being sold.

The theoretical analysis of CV auction started with Wilson (1969), fol-
lowed by many other works,3 including the general auction model by Mil-
grom and Weber (1982).

The empirical analysis of CV auctions and the winner’s curse was initi-
ated by a study of auctions for oil and gas leases (Capen et al., 1971). The
winner’s curse has since been identified in a number of fields, e.g., takeovers
(Roll, 1986; Varaiya and Ferris, 1987), bank loans (Shaffer, 1998), (IT-
)outsourcing (Kern et al., 2002), or even baseball (Cassing and Douglas,
1980).4 In an investigation of CV procurement auctions, Hong and Shum

3See, for example, the survey by McAfee and McMillan (1987).
4For further examples see Hendricks et al. (1987), Hendricks and Porter (1988), McAfee and McMillan
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(2002) find more conservative bidding (i.e., higher bids) if the competition
level increases (i.e., the number of competitors increases), which is in line
with theory.

The experimental analysis of CV auctions was initiated by Bazerman
and Samuelson (1983) and their great coin jar experiment. In most of the
following experiments, the CV and the bidders’ signal are randomly gen-
erated, where two design are prevalent. The first is based on the approach
of Wilson (1969) with a randomly generated CV and randomly drawn sig-
nals around the CV. This design was first implemented by Kagel and Levin
(1986). The other is based on the wallet auction (Bulow and Klemperer,
2002), in which the CV is endogenously generated by the randomly drawn
signals. This design is used, e.g., by Avery and Kagel (1997) and Goeree
and Offerman (2002).5

We design our experimental in accordance with the prevailing condi-
tions of actual RE auctions. The auctions are conducted as multi-unit
procurement auctions with simultaneous sealed bidding. The demanded
objects are homogenous CV goods, i.e., producing a good has the same
common cost for all bidders, where we apply the design of Kagel and Levin
(1986), which fits well with the conditions in RE auctions. The bidders
have single-unit supply, i.e., each bidder can produce and deliver one good.

Within this framework, we investigate the effects of the competition
level (i.e., relationship between number of goods and number of bidders)
and the pricing rule (i.e, DP and UP) and their combination on the auction
outcome. Here, we particularly focus on bidders’ profit and, thus, the
prices (i.e., auctioneer’s rent) and on the occurrence of the winner’s curse,
or more precisely, on the frequency of awarded bids with a loss.6

(1987) and Thaler (1988).
5For an overview on auction experiments, see, e.g., Kagel and Levin (2016).
6Strictly speaking, the winner’s curse refers to an expected loss, while in the experiment and in the real

world, actual losses matter, which, therefore, can be termed as “ex post winner’s curse”.
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Novelties of our study are the investigation of multi-unit auctions, the
systematic comparison of DP and UP, and varying the competition level
by altering the number of goods while keeping the number of bidders con-
stant. These elements are relevant for real world applications, including
RE auctions. The comparison of advantages and disadvantages of DP and
UP has a long history in the economic literature (e.g., Ausubel and Cram-
ton, 2011; Griffin, 2013), and is also intensively discussed in the context
of RE auctions (e.g., del Río, 2017; Haufe and Ehrhart, 2018). Beside the
aspect of maximizing auctioneer’s expected rent, the controversial debates
also include the question which format is better in preventing the winner’s
curse. This was one of the reasons why both formats were implemented in
the PV pilot auctions in Germany in 2015 (Wigand et al., 2016). Finally,
the number of auctioned goods is an important design element because
this can be controlled by the auctioneer.

In experiments of Kagel et al. (1995) and Kagel and Levin (1986), in
which single-unit sales auctions are implemented, the competition level is
varied by the number of bidders, and they find that a lower competition
level results higher bidder profit and a lower loss frequency. Experimental
investigations of pricing rules are mainly concentrated on either a com-
parison of static and dynamic formats (Kagel et al., 1987; Kirchkamp and
Moldovanu, 2004; Turocy and Cason, 2015) or a single price rule (e.g.,
Kagel et al., 1995; Goeree and Offerman, 2003). A finding of our study is
that experimental results do not support the theoretical predicted differ-
ences between the DP and UP auction concerning bidders’ profit and loss
frequency.

There are several studies that focus on potential explanations for the
winner’s curse in CV auctions, e.g., limited liability (Hansen and Lott,
1991; Cox et al., 1999), level-k thinking (Eyster and Rabin, 2005; Craw-
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ford and Iriberri, 2007), bounded rationality (Charness and Levin, 2009),
number of rounds (Ball et al., 1991; Lind and Plott, 1991), feedback to
bidders and information conditions (Armantier, 2004; Brocas et al., 2017),
comparison between experienced and inexperienced bidders (Dyer et al.,
1989; Garvin and Kagel, 1994), and the joy of winning (Holt and Sherman,
1994). In this context, we refer to another finding of our study. We ob-
serve in both auctions, DP and UP, that the frequency of losses (i.e., the
winner’s curse) significantly decreases as the number of goods increases,
which, however, cannot be attributed to an improvement in the bidding
behavior, but simply to its heterogeneity.

5.2 Theory

We consider procurement auctions for k homogeneous goods. In the UP
auction the goods are purchased at the same price, where the LRB rule
is applied. In the DP auction the goods are purchased at different prices,
which are determined by the awarded bids. There is a set N of n sym-
metric, risk-neutral single-unit-supply bidders, who have common cost,
i.e., the same production cost for a unit of the good, and affiliated signals.
Our approach is based on the well-known model of a sales auction for a CV
good with a uniformly distributed value and bidders’ signals independently
drawn from a uniform distribution around the good’s value (e.g. Kagel and
Levin, 1986). The extension to multi-unit auctions is provided by Ehrhart
and Ott (2019). In our approach, the common production cost are modeled
by the random variable C, which is drawn from a uniform distribution on
[c, c̄]. Given C = c, bidders’ signals X1, X2, . . . , Xn are independent draws
from a uniform distribution on [c− ε, c+ ε]. Throughout this chapter, we
restrict our analysis to signals in the interval [c+ε, c̄−ε], so that from the
individual perspective of a bidder with signal x, C is uniformly distributed
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on [x − ε, x + ε]. The model parameters of our experiment are shown in
Table 5.1.

The symmetric equilibrium bid of the UP auction is given by

βUP(k,n)(x) = x+
n− 2k

n
ε (5.1)

and of the DP auction by

βDP(k,n)(x) = x+ ε− k + 1

n+ 1
ε · exp

(
−n(c̄− ε− x)

2kε

)
. (5.2)

The derivation of the equilibrium bids is presented in Appendix B.1.7

The auctioneer’s payment per good is the price she has to pay per good.
The expected price in the UP auction and in the DP auction are

E[PUP
(k,n)] = E

[
βUP(k,n)(X(k+1,n))

]
, (5.3)

E[PDP
(k,n)] =

1

k

k∑
j=1

E
[
βDP(k,n)(X(j,n))

]
. (5.4)

Although (5.4) is calculated as an average expected price, for simplicity,
we call (5.4) the expected price in the DP auction.

Given C = c, the expected value of the j-lowest signal X(j,n) is

E[X(j,n) |C = c] = c− ε+
2jε

n+ 1

= c− n+ 1− 2j

n+ 1
ε . (5.5)

7The UP and DP equilibrium bids correspond to the equilibrium bids provided by Ehrhart and Ott (2019)
for sales auctions with k goods with the same common value v, which is randomly drawn from a uniform
distribution on [v, v̄]:

βUP(k,n)(x) = x− n− 2k

n
ε ,

βDP(k,n)(x) = x− ε+
k + 1

n+ 1
ε · exp

(
−n(x− v − ε)

2kε

)
.

These are the multi-unit extensions of the single-unit cases with k = 1 (e.g. Kagel and Levin, 2002).
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In the UP auction, the bidder with the signalX(k+1,n) determines the price.
By (5.5),

E[X(k+1,n)] = E[C] +
2k + 1− n
n+ 1

ε . (5.6)

With (5.1) and (5.6), the expected price per good (5.3) yields

E[PUP
(k,n)] = E

[
βUP(k,n)(X(k+1,n))

]
= E[C] +

n− k
n(n+ 1)

2ε . (5.7)

By (5.7), E[PUP
(k,n)] increases in ε. That is, the higher the bidders’ uncer-

tainty about the cost of the good, the higher is the expected price.
In the DP auction, the expected price (5.4) is given by8

E
[
PDP

(k,n)

]
=
E
[∑k

j=1 β
DP
(k,n)(X(j,n)) |C

]
k

=

∫ c̄−2ε

c+2ε

k∑
j=1

∫ c+ε

c−ε

(
x+ ε− (k + 1)ε

n+ 1
exp

(
−n(c̄− ε− x)

2kε

))
· f(j,n)(x|c) dx

1

k(c̄− c− 4ε)
dc .

What are the effects of varying the number of goods k for a given number
of bidders n? Since the equilibrium bid strictly increases in the signal x
for both auctions in the CV model, the awarded bidders’ profit and the
prices are completely correlated: a higher price is equivalent to a higher
bidders’ profit.

Corollary 1. In the procurement auction with k common cost goods and
8The conditional density f(j,n)(x|c) of the j-lowest signal of n bidders given c is

f(j,n)(x|c) = n

(
n− 1

j − 1

)
f(x|c)F (x|c)j−1(1− F (x|c))n−j

=
n!

(n− j)!(j − 1)!

(x− c+ ε)j−1(c+ ε− x)n−j

(2ε)n
for x ∈ [c− ε, c+ ε]
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n bidders, the following apply:

(i) In the DP auction the equilibrium bid βDP(k,n)(x) decreases in k, while
the expected average price E[PDP

(k,n)] and the awarded bidders’ average
expected profit increase in k if c̄−c

ε is sufficiently large.

(ii) In the UP auction, the equilibrium bid βUP(k,n)(x) decreases in k and
also the expected price E[PUP

(k,n)] and the awarded bidders’ expected
profit.

(iii) The expected price in the UP auction is smaller than in the DP auc-
tion, i.e., E[PUP

(k,n)] < E[PDP
(k,n)], and the difference E[PDP

(k,n)]−E[PUP
(k,n)]

increases in k. The same applies to the awarded bidders’ (average)
expected profit.

The first part of (i) follows from ∂βDP(k,n)(x)/∂k < 0,9 while (ii) directly
follows from (5.1) and (5.7). That is, equilibrium bids for UP and DP
decrease in k. Results (iii) reflects a general results for interdependent
costs and affiliated signals (Ehrhart and Ott, 2019).

In the DP auction, the price effect of k is the same as in the IPV
model, whereas in the UP auction, the price effect is different. Although
an increasing k has a negative effect on both equilibrium bids of UP and
DP, the price effects of k for UP and for DP are opposite. An increasing
k effects an decreasing expected price in the UP auction.

Next, we consider winning bidders’ loss probability. Although ex ante
bidders expect positive profits in the auction equilibrium, ex post they can
suffer a loss if the award price is lower than the actual cost.

In the UP auction, the bidder with the k+1-lowest signal determines the
price. Thus, the probability that all k awarded bidders (i.e., the k bidders

9By (5.2),

∂βDP(k,n)(x)

∂k
= − ε

n+ 1

(
1 +

n(k + 1)(c̄− ε− x)

2(n+ 1)k2ε

)
exp

(
−n(c̄− ε− x)

2kε

)
< 0 . (5.8)
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with the lowest signals) suffer a loss is equal to Prob
{
βUP(k,n)(X(k+1,n)) < C

}
.

Since the UP equilibrium bid (5.1) does not depend on the position of the
signal x in the interval [c + ε, c̄ − ε], the loss probability is the same for
every c and with (5.1) becomes10

Prob
{
βUP(k,n)(X(k+1,n)) < C

}
=

n−k−1∑
j=0

(
n

j

)(
k

n

)n−j (
n− k
n

)j
. (5.9)

In the DP auction, the k awarded bidders (i.e., the k bidders with the
lowest signals) receive their bid and an awarded bidder suffers a loss if
βDP(k,n)(x) < c. Other than in the UP auction, the DP equilibrium bid (5.2)
depends on the position of the signal x in the interval [c+ ε, c̄− ε]. Thus,
the distribution of C has to be taken into account when computing the
awarded bidders’ loss probabilities, which is given by

Prob
{
βDP(k,n)(X(j,n)) < C

}
=

1

c̄− c− 4ε

∫ c̄−2ε

c+2ε

F(j,n)

(
βDP(k,n)

−1
(c) | c

)
dc,

j = 1, . . . , k . (5.10)

Since (5.2) increases in x, the loss probability (5.10) continuously decreases
from the bidder with the lowest signal to the bidder with the k-lowest

10

Prob
{
βUP(k,n)(X(k+1,n)) < C

}
= Prob

{
X(k+1,n) < c− n− 2k

n
ε

}
= F(k+1,n)

(
c− n− 2k

n
ε | c
)

=

n−k−1∑
j=0

(
n

j

)(
k

n

)n−j (
n− k
n

)j
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signal:

Prob
{
βDP(k,n)(X(1,n)) < C

}
> Prob

{
βDP(k,n)(X(2,n)) < C

}
> . . .

. . . > Prob
{
βDP(k,n)(X(k,n)) < C

}
.

If the bidder with the j-lowest signal x(j,n), j ≤ k, suffers a loss, all bid-
ders with smaller signals also suffer a loss and their losses are higher. The
loss probabilities for the values of our experimental setting are presented
in Table 5.2. The loss probabilities under UP (5.9) are exactly calculated,
while those under DP (5.10) are simulated. According to Table 5.2, the
loss probability is much higher under UP than under DP for all k.11 Table
5.2 also contains the expected prices and the awarded bidders’ expected
profits, in line with the properties described in Corollary 1.12

Table 5.1: Experimental setting.
Common-cost C ∼ U [c = 125, c̄ = 325]

Number of bidders per auction n 6

Number of homogeneous goods k 1, 2, 3
Uncertainty parameter ε 18

Pricing rule Discriminatory (DP), Uniform (UP)

5.3 Experiment setting

5.3.1 Hypotheses

Applying the results of the theoretical analysis (Section 5.2) to our exper-
imental setting (Table 5.1) leads to the equilibrium outcomes for DP and
UP and k ∈ {1, 2, 3} (Table 5.2). These values are the basis for our ex-

11This does not generally apply. For example, Peeters and Tenev (2018) show for a special case of the
wallet auction (Bulow and Klemperer, 2002) that the loss probability depends on the affiliation level. The
loss probability is higher in the second-price auction than in the first-price auction for low affiliation levels, as
in our case, whereas it is the other way round for high affiliation levels.

12The awarded bidders expected profit is equal to the expected value of the common cost of each good
(E[C] = 225) minus the expected award price.
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Table 5.2: Equilibrium bids, expected prices, profits, and losses in the experimental setting.

DP auction UP auction

k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

Average difference between
equilibrium bid and signal

17.8 17.4 16.9 12.0 6.0 0.0

Expected Price 230.1 232.6 234.9 229.3 228.4 227.6

Bidder’s expected profit in
case of an award

5.1 7.6 9.9 4.3 3.4 2.6

Loss probability in case of an
award

0.02% 0.31% 1.14% 26.32% 31.96% 34.08%

perimental hypotheses, which are aligned with the theoretical benchmark
outcomes of the actual auctions in the experiment (Table 5.3). Although
the values in Table 5.2 and Table 5.3 slightly differ, they have the same
pattern. The differences are also caused by the fact that in the experiment
all variables (costs, signals, bids, prices, profits) are integers, while the
theoretical values in Table 5.2 are computed with real numbers.

The following hypotheses summarize the theoretical findings. For the
bidders, the DP auction is superior to the UP auction because they can ex-
pect higher profits and a lower loss probability, independent of the number
of goods (i.e., competition level). For the auctioneer, the bidders’ higher
expected profits imply higher expected prices (i.e., payments) in the DP
auction compared to the UP auction.

Hypothesis 1. The awarded bidders’ (average) profit and, thus, the ex-
pected (average) price in the DP auction is higher than in the UP auction
for k ∈ {1, 2, 3}.

Hypothesis 2. The loss frequency is higher in the UP auction than in
the DP auction for k ∈ {1, 2, 3}.

While in the DP auction we expect a very small share of awarded bids
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leading to a loss, in the UP auctions the share is around 30% (Table 5.2
and 5.3).

5.3.2 Design of the experiment

In the experiment, we implement a multi-unit procurement auction with
the parameters in Table 5.1. All parameters were common knowledge.

The treatment variables are the pricing rule and the number of de-
manded goods. There are six different treatments: the six combinations
of the two pricing rules DP and UP with the three auction demands
k ∈ {1, 2, 3}.13

We conduct twelve sessions: six with UP and six with DP. Each subject
participates in one session. During a session, a subject participates in
40 auctions (rounds), each with six bidders and the same pricing rule
but with different demands k. A session is divided in four sections of
ten auctions (rounds) each. A section is characterized by the demand
k ∈ {1, 2, 3}. To control the effect of the sequence of the different k, we
vary the sequence between the six sessions; and to control learning effects,
the demand k of the last section is the same as in the first section.14 Each
session is conducted with a matching group of 18 subjects. Thus, 216
subjects participate in the experiment.

We implement a stranger setting. In each round, three auction groups,
each with six bidders, are randomly drawn from the matching group with
18 subjects. Each group plays an auction with the demand k of the section
and the pricing rule of the session. Thus, each subject participates in 40
auctions under the same pricing rule, either DP or UP, but under three
different demand levels k ∈ {1, 2, 3}.

13See B.6 for a detailed overview of payments and dates.
14In the six sessions of each pricing rule, we implement the following sequences of k ∈ {1, 2, 3} in the four

sections: 1-2-3-1, 1-3-2-1, 2-1-3-2, 2-3-1-2, 3-1-2-3, 3-2-1-3.



5.3 Experiment setting 113

At the beginning of each section, the subjects are informed about the
demand k, which applies to the following ten section rounds. At the be-
ginning of each round, the subjects receive their private signals xi, which
are determined in the following way. First, C is randomly drawn from
the uniform distribution of integers in the interval [125, 325], which is not
observed by the subjects. Given C = c, the individual signals Xi are
randomly drawn from the uniform distribution of integers in the interval
[c − ε, c + ε]. Then, the subjects submit their bids bi. After all bids are
submitted, the results of this round are revealed, which includes the true
cost c, the award price p, and the individual profit πi. The latter is zero
if the bidder has not won and p − c otherwise. This is common informa-
tion, that is, all members of an auction group are informed about their
competitors’ private signals, bids, award, and profits.

The subjects’ final payment consists of a show-up fee and their profits
of twelve randomly drawn auction rounds, three from each section, which
was made known to the subjects. For the total and average payments see
B.6.

5.3.3 Conduction of the experiment

The experiment was conducted at the KD2Lab at Karlsruhe Institute of
Technology (KIT). The experiment was programmed in oTree (Chen et al.,
2016) and the participants were recruited using Hroot. At the beginning
of the experiment written instructions were distributed (see a translation
of the instructions in B.4) and read out loudly. Before starting the experi-
ment, participants had to answer a series of control questions checking their
understanding of the instructions (see B.5). Each session lasted around 90
minutes.

The average payment to the participants was 12.00 EUR. The lowest
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payment to a participant was 5.00 EUR and the highest payment was 21.00
EUR. For an overview of the total and average payments see B.6.

5.4 Experimental results

For comparability, in the analyses of the experimental data we only con-
sider auctions with c ∈ [c + 2ε, c̄ − 2ε], so that for all cost signals xi
the equilibrium bidding strategies (5.1) and (5.2) apply. Unless otherwise
specified, we analyze the first three different sections of each session and
neglect the forth section, which is equal to the first. Since in the CV model
of the DP- and UP-auction, the (average) price and the awarded bidders’
(average) profit are completely correlated, it is sufficient to restrict the
analysis only to one variable; the results also apply to the other. We use
the awarded bidders’ profit because the strong variation of the common
cost c in the experimental auctions leads to strong variation of the price,
which does not apply to the bidders’ profit.

First, we examine if the sequence of the sections (given by k), as de-
scribed in Section 5.3.2, has an effect. We conduct an analysis of variance
(ANOVA) with the profit in case of an award and the share of loss, which
does not reveal a significant differences between the different sequences.15

Therefore, for our further analyses, we take the freedom to ignore the
different sequences and merge the data.

5.4.1 Effects of the treatment variables pricing rule and number of goods

The block “Experimental outcome” in Table 5.3 shows the aggregated ex-
perimental data for the pricing rules DP and UP and the different demand
(competition) levels k ∈ {1, 2, 3}. Under DP and UP, the awarded bidders’

15ANOVA: For the profit in case of award there are 525 observations (subjects’ average profit in case on
an award in each section), p-value: 0.690; for the share of loss there are 525 observations (subjects’ average
number of cases with a loss in each section), p-value: 0.308.
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Table 5.3: Actual experimental outcomes and benchmark outcomes.
DP auction UP auction

k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

Experimental
outcome

Number of bids 942 942 1008 912 906 906

Average profit per award -6.24 -0.43 5.32 -3.97 0.01 2.64

Share of awarded bids with a loss 69% 42% 23% 69% 43% 32%

Benchmark
outcome

Avg. awarded bidders’ profit 4.62 7.51 9.88 3.43 2.81 2.93

Share of awarded bids with a loss 0% 0% 1% 30% 34% 29%

Difference between
experimental and
benchmark outcome

Avg. awarded bidders’ profit -10.86 -7.94 -4.56 -7.40 -2.80 -0.29

Share of awarded bids with a loss 69% 42% 22% 39% 9% 3%

Table 5.4: Comparison of experimental and benchmark outcomes on matching group level.
Difference between
experimental and
benchmark ...

DP auction UP auction

Total k = 1 k = 2 k = 3 Total k = 1 k = 2 k = 3

... profit

<0 18 6 6 6 14 6 5 3

>0 0 0 0 0 4 0 1 3

p-value <0.001*** 0.031* 0.031* 0.031* 0.031* 0.031* 0.219 1

... share of
loss

<0 18 6 6 6 13 6 4 3

>0 0 0 0 0 5 0 2 3

p-value <0.001*** 0.031* 0.031* 0.031* 0.097 0.031* 0.688 1

profit increases if the number of goods k increases, i.e., the competition
level decreases. While the average profit of the awarded bids is positive
under DP and UP (1.48 and 0.67), it is negative for k = 1 and it is positive
for k = 3. The analogous trend is observed for the share of the awarded
bids with a loss for the bidder because the award price is lower than the
actual cost c. Under DP, this share decreases from 69% (k = 1) to 23%
(k = 3), and under UP, from 69% (k = 1) to 32% (k = 3). In total, 38%
of the awarded bidders suffered a loss under DP and 42% under UP.

The theoretical benchmark outcomes in Table 5.3 are computed on the
basis of the actual values of the experimental parameters. That is, for
every single auction in the experiment, we compute the outcome for the
realized c and the equilibrium bids for the realized signals xi. The results of
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the comparison of experimental and theoretical benchmark data are shown
in Table 5.4. For this, we conduct sign tests on matching group level, that
is, for each treatment, we have 6 observations. The subjects achieved
significant lower profits than their equilibrium profits for k ∈ {1, 2, 3}
under DP and for k = 1 under UP (Table 5.4). Only for the lowest
competition level (k = 3) under UP, the subjects’ profits are on the same
level as the equilibrium profits. The results are similar for the share of
losses (Table 5.4). For k ∈ {1, 2, 3} under DP and for k = 1 under UP, the
subjects perform significantly worse than in the corresponding equilibria.
That is, for all k ∈ {1, 2, 3} in the DP auction and for k = 1 in the UP
auction, the subjects perform worse with respect to their profits and loss
frequency than theory predicts.

Two observations attract attention. First, the differences between the
experimental and benchmark outcomes diminish in k (see lower part of
Table 5.3). The actual outcomes in the experiment get closer to the cor-
responding equilibrium outcomes if k increases, particularly in the UP
auction. This also means that the subjects perform better with respect to
their profit and the loss frequency for higher k than for lower k. Second,
under DP the subjects deviate stronger from the equilibrium than under
UP.

Hence, the question arises if the theoretical predicted differences be-
tween the pricing rules, according to Hypothesis 1 and 2, still apply. To
test the effects of the treatment variables pricing rule and number of goods,
we conduct two two-way ANOVAs, one with the bidders’ profit in case of
an award as dependent variable and one with the bidders’ share of loss
in case of an award (Table B.1 and B.2 in B.2). The ANOVAs neither
support Hypothesis 1 nor Hypothesis 2. There is neither a effect of the
pricing rule on awarded bidders’ profits nor on the loss frequency, and
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there is no significant difference between UP and DP with respect to these
two variables. However, there is a strong effect of k. For both auctions,
DP and UP, awarded bidders’ profit significantly increases with k and the
loss frequency significantly decreases with k.

That is, the experimental results are inconsistent with the theoretical
predictions of Hypothesis 1 and 2 but also with respect to the effect of k.
In both auction, an increasing number of goods k leads to an increase in
the awarded bidders’ profits and a decrease in the frequency of losses. This
is in line with the decreasing differences between the actual and benchmark
outcomes in Table 5.3, as described before.

Next, we investigate whether the subjects increase their performance
during the experiment. First, we compare the first and the last section,
which have the same configuration, i.e., the same k. We do not find any
significant improvement regarding bidders’ profits and the loss frequency
from the first and the last section across all six treatments.16 Apparently,
the experiences and observations within the first three sections do not help
the subjects to increase their profits and to avoid losses.

How do the subjects perform within the different sections with k ∈
{1, 2, 3}? Figure 5.1 shows the development of the average awarded bid-
ders’ profit and the share of awarded bids with a loss during the 10 rounds
of the different sections. Apart from a slight increase in the profits in the
first rounds in the UP auction for k = 1 and k = 2 (b), trends are not ap-
parent. The conspicuous zigzag pattern in share of loss in the UP auction
for k = 1 (d) is discussed in Section 5.4.3. Obviously, the subjects also do
not learn to improve their outcome within the sections.

These observations are in line with experimental studies on CV auctions,
in which typically a pervasiveness of losses is observed (Kagel and Levin,
2016).

16The statistical test is presented in Table B.4 in B.2.
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(a) Average awarded bidders’ profit (DP) (b) Average awarded bidders’ profit (UP)

(c) Share of awarded bids with a loss (DP) (d) Share of awarded bids with a loss (UP)

Figure 5.1: Development of the average awarded bidders’ profit and the share of awarded bids
with a loss during the 10 rounds of the sections with k ∈ {1, 2, 3} in the DP auction and UP
auction.

The following result summarizes our findings in this section.

Result 1. (i) In all treatments, except for the UP auction for k = 3 and
to a lesser extent also for k = 2, bidders’ profits and, thus, the prices
are lower and the loss frequencies are higher in the experiment than
in the theoretical equilibrium. In the course of the experiment, there
is no trend towards a change.

(ii) The deviations from the equilibrium are larger in the DP auction than
in the UP auction. There is no support for Hypothesis 1 and Hypoth-
esis 2.
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(iii) If the number of goods k increases, the differences between the experi-
mental and the theoretical outcomes diminish and the subjects perform
better with respect to their profit and the loss frequency, particularly
in the UP auction.

5.4.2 Bidding behavior

To gain a better understanding of the findings in Section 5.4.1, we now
investigate the bidding behavior. The distributions of the bids around
the corresponding equilibrium bids are shown in Table 5.5 and in Figure
5.2. Generally, subjects underbid the equilibrium bid more often than they
overbid, which is the main reason for the high frequency of losses in the
experiment. This, however, differs between the DP auction and the UP
auction and between the different competition levels k ∈ {1, 2, 3}. In the
DP auction, significantly more bids are below than above the corresponding
equilibrium bids for k ∈ {1, 2, 3}.17 In the UP auction, this only applies
to k = 1, while for k = 2 the higher frequency of below-equilibrium bids is
not significant and for k = 3 the ratio is balanced. The case k = 3 in the
UP auction is notable because the equilibrium bid is equal to the bidder’s
signal (Table 5.2), which is met by 14% of all bids. In this case we also
observe a high share of “irrational bids” (>10%), which are lower than the
lowest possible realization of C from a bidder’s view, i.e., bi < xi−ε. These
bids are mainly responsible for the relatively large negative value of the
average deviation of the submitted bids from the equilibrium bids in this
case. Obviously, the relatively high number of goods induces the subjects
to make the typical error in second-price auctions to heavily underbid
their signal to increase the award probability in the procurement auction,
analogously to overbidding in second-price sales auctions (Kagel et al.,
1987; Kagel and Levin, 1993; Harstad, 2000).

17The results of the corresponding sign test are presented in Table B.3 in B.2.
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Table 5.5: Deviation of the submitted bids from the corresponding equilibrium bids.

DP auction UP auction

Deviation of submitted bids
from equilibrium bids

k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

< 0 74% 71% 66% 70% 54% 42%

= 0 17% 13% 12% 4% 4% 14%

> 0 9% 16% 22% 25% 42% 44%

Average deviation -6.11 -5.37 -3.49 -7.20 -3.47 -4.72

bi < xi − ε (irrational bids) 0.2% 0.4% 0.0% 2.1% 3.6% 10.2%

Let us take a closer look at the distributions of the bids around the
corresponding equilibrium bids in Figure 5.2. While in the DP auction (a)
the distributions of the different values of k look very similar, in the UP
auction (b) the distributions are more diverse. The equilibrium bids in
Table 5.2 provide an explanation. In the DP auction, the equilibrium bids
for the different values of k differ only slightly. For low and medium values
of c, they are even equal: the integer equilibrium bid is ε higher than the
signal xi, bi = xi + ε. The peak in 0 in the distributions for k ∈ 1, 2, 3

indicates that in the DP auction the equilibrium bid is submitted most
frequently of all available bids. In the UP auction, the equilibrium bids
for k ∈ {1, 2, 3} differ, but they are independent of c. The peaks in the
distributions in −12 for k = 1, −6 for k = 2, and 0 for k = 3 are caused
by bids that are equal to the signal. For k = 1, the equilibrium bid is 12
higher than the signal, for k = 2, it is 6 higher than the signal, and for
k = 3, it is equal to the signal (Table 5.2). That is, in the UP auction the
individual and private signal is submitted most frequently.

We conclude that the high share of bids below the equilibrium is re-
sponsible for the high loss frequencies. But why do the subjects in the DP
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(a) DP auction (b) UP auction

Figure 5.2: Distribution of the submitted bids around the corresponding equilibrium bids.

auction perform worse than in the UP auction with respect to profit and
loss frequency relative to the equilibrium outcome (Table 5.3: Difference
between experimental and benchmark outcome)? The different distribu-
tions of the bids around the equilibrium provide a first answer to this
question, particularly the lower share of bids below and the larger share of
bids above the equilibrium for k = 2 and k = 3 in the UP auction. This
leads us to the question why in both auctions, DP and UP, the subjects’
performance increases in k (Table 5.3). In both auctions, there is an up-
wards shift of the distributions of the bids in form of a larger share of bids
above the equilibrium under higher values of k (Table 5.5). We refer to
this as the shift effect. However, the shift effect is very weak in the DP
auction (see also Figure 5.2 (a)) and, thus, it cannot fully account for the
strong improvement from k = 1 to k = 3, that is, an increase of 11.5 in
the average profit and a decrease of 46% in the share of loss, while theory
predicts an increase of 5.3 and an increase of 1% (Table 5.3: Experimental
outcome and Benchmark outcome). The same applies to the UP auction
for the improvement from k = 2 to k = 3.

For this reasons, we investigate the submitted bids in more detail, par-
ticularly the deviations of the bids from the signals and the equilibrium
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Table 5.6: Heterogeneous bidding behavior.
DP auction UP auction

k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

Spearman rank correlation coefficient
between signals and bids

0.79 0.75 0.82 0.63 0.62 0.58

Percentage of bids for the k-lowest sig-
nals among the k awarded bids

63% 74% 86% 45% 66% 77%

Average deviation of the . . . from the
equilibrium bid

... 1st lowest bid ... -13.56 -13.32 -7.98 -22.31 -23.83 -32.10

... 2nd lowest bid ... -8.74 -6.44 -4.60 -8.91 -6.16 -7.62

... 3rd lowest bid ... -6.74 -4.98 -4.09 -5.68 -3.91 -0.41

... 4th lowest bid ... -5.14 -4.31 -2.98 -4.57 -0.34 1.17

... 5th lowest bid ... -4.16 -3.19 -2.42 -2.92 0.69 4.24

... 6th lowest bid ... 0.71 0.15 0.94 2.31 11.33 12.48

bids (Table 5.6). The Spearman rank correlation coefficients indicate a sig-
nificantly positive relationship between signal and bid.18 However, since
the rank correlation coefficients are (clearly) below 1, it is not surprising
that not only the bids for the k-lowest signals are awarded, but also bids
for higher signals (second block in Table 5.6).

Against this background, we analyze the deviation of the submitted bids
from the equilibrium bids subject to the rank of the submitted bid. In an
auction with k goods, the k-lowest bids are awarded, that is, the k bids
with the lowest ranks. While Table 5.5 shows the average deviation from
the equilibrium bids, Table 5.6 present the average deviation separately
for the six ranks. These values, which are presented in the third block
of Table 5.6, provide a clear picture. The lower the rank, the higher the
underbidding compared to the equilibrium bid. With an increasing rank,

18Each rank correlation coefficient is calculated for more than 900 pairs of bids and signal. All correlations
are significantly positive with p-values < 0.001***.
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the submitted bids approach their equilibrium bids from below and even
exceed them (see also Figure 5.3).19 That is, the awarded bids undershoot
the corresponding equilibrium bids at most. The high negative value of
the first rank in the UP auction with k = 3 is mainly due to the high share
of “irrational bids” (Table 5.5).20

The heterogeneity of the bids relative to the equilibrium in Table has
the following effect. In the DP auction, an awarded bid determines its
price. An increasing k implies that an additional bid is awarded, which
on average is closer to the equilibrium bid than the lower awarded bids.
Thus, an increasing k leads to an improvement of the average profit. In the
UP auction this effect is even stronger because the price for all awarded
bids is determined by the (k+ 1)-lowest bid. This bid increases relative to
the equilibrium bid in k and even exceed it. As a consequence, the price
and, thus, the awarded bidders’ profits increase in k. In other words, the
bidder who is awarded first, makes the biggest mistake, but the mistake
becomes smaller with each additional awarded bidder. In the DP auction,
the average profit increases and the loss probability decreases. If in the UP
auction the number of awarded bids is high enough, the price is determined
by a bidder who does not make a mistake or even overbid the equilibrium
bid.

Concluding, behavioral heterogeneity seems to be mainly responsible
for the experimental auction outcome getting closer to the equilibrium
outcome if k increases and for the outcome in the UP auction being closer
to the equilibrium than the DP auction for k ∈ {2, 3}. In support of this
statement and as robustness check, we conduct Monte Carlo simulations
with different bid distributions.

19For all k ∈ {1, 2, 3} in the DP auction and the UP auction, the gradient of a linear regression of the
difference between submitted bid and equilibrium bid on the rank of the bid is significantly positive with a
p-value < 0.001***.

20Behavioral heterogeneity is a typical finding in experimental studies of CV auctions (Crawford and Iriberri,
2007; Kagel and Levin, 2016).
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(a) DP auction (b) UP auction

Figure 5.3: Average deviation of the bids from the equilibrium bids subject to the rank of the
bids.

Monte Carlo simulation

For the simulations, we implement different distributions of bids around
the equilibrium bids, which are derived from the actual distributions in the
experiment (Figure 5.2), so that the simulations approximate the charac-
teristics of the actual distributions, particularly the values in the tables
5.5 and 5.6. For each auction, DP and UP, we implement three differ-
ent distributions (Figure B.1 in B.3): (1) uniform distribution, (2) normal
distribution, and (3) normal distribution with a peak in the equilibrium
bid. For the DP auction, the latter reproduces the actual distributions
(Figure 5.2 (a)) quite accurately. As a robustness check of our hypothesis
that behavioral heterogeneity is mainly responsible for the different results
under k = {1, 2, 3}, we compare the different values of k under the same
distribution. That is, for each auction, DP and UP, we run three simula-
tions, each with a different distribution. In each simulations, we compute
and compare the results of k ∈ {1, 2, 3} for the same distribution.21 The
setup and the results of the simulations are presented in Table B.6 in B.3.

21In the simulations, each sample unit is given by a draw of C from the uniform distribution of integers in
the interval [125, 325] followed by the draws of the six signals Xi from the uniform distribution of integers in
the interval [c− ε, c+ ε] (Table 5.1). Then, each of the six bids bi is determined by a random draw from the
implemented distribution of bids around the equilibrium bid, which corresponds to xi.
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First, we compare the results of the simulations in Table B.6 with the
theoretical equilibrium predictions in Table 5.2. In the latter, the average
profit per awarded bid increases from k = 1 to k = 3 by 4.8 in the DP
auction and in decreases by 1.7 in the UP auction. In the simulations,
the average profit increases by nearly 7 in the DP auction, i.e., slightly
more than theory predicts, while in the UP auction the average profit
does not decrease but increases by around 5. This also applies to the loss
probability (share of loss) in case of an award in the UP auction. While
theory predicts an increasing loss probability, the simulations generate
decreasing probabilities of losses.

Second, the comparison of the results of the simulations in Table B.6
with the experimental results in Table 5.3 reveals that simulations accu-
rately reproduce the trends in the average profit and the share of loss. In
all three simulations of both auctions, DP and UP, the average profit per
award increases from a negative value for k = 1 to a positive value for
k = 3, and the share of awarded bids with a loss decreases from k = 1 to
k = 3, just as in the experiment. Since we compare the different values of
k under the same distributions, we interpret this result as a clear indica-
tion for the impact of the behavioral heterogeneity on the different results
for k = {1, 2, 3}, particularly on the bidders’ better performance under
higher values of k. We refer to this as the heterogeneity effect. However,
the simulated changes are smaller than the actual, both for the profits and
the losses. According to the tables 5.3 and B.6, in the DP auction, the
average profit increases from k = 1 to k = 3 by 11.5 in the experiments
and by just under 7 in the simulations, and in the UP auction, by 6.6 in
the experiments and by around 5 in the simulations. In the DP auction,
the share of loss deceases by 46% in the experiment and by 32% DP in
the simulations, and in the UP auction by 37% in the experiment and
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Table 5.7: Change in the bid relative to the signal subject to the outcome of the previous
round.

DP auction UP auction

Result previous round Profit Loss Total Profit Loss Total

Awarded (experienced) 0.58 4.66 2.10 1.87 8.79 5.01

Not Awarded (observed) -1.82 -0.68 -1.27 -6.59 -0.54 -3.26

Total -0.93 0.79 -0.16 -3.46 2.11 -0.41

by around 18% in the simulations. We suppose that the shift effect is
responsible for this additional improvement.

The following result summarizes our findings in this section.

Result 2. In both auctions, DP and UP, the subjects’ better performance
under an increasing k in form of higher profits per award, a lower share
of losses, and outcomes closer to the equilibrium predictions are mainly
caused by the heterogeneity effect and the shift effect, where the hetero-
geneity effect is supposed to be stronger.

5.4.3 Behavior pattern

Finally, we try to identify behavior patterns, which may help to better
understand the experimental results, particularly of the permanence of
losses. For this, we analyze the change of the bids relative to their signals
subject to the outcome of the previous round by distinguishing four cases
in the previous round: (1) the bidder is awarded and gains a profit, (2)
the bidder is awarded and suffers a loss, (3) the bidder is not awarded and
observes that the awarded bidders gain a profit, and (4) the bidder is not
awarded and observes that the awarded bidders suffer a loss.

In the DP auction and the UP auction we observe similar patterns
(Table 5.7).22 After being awarded in the previous round, bidders on

22The statistical significance of the effects result from the ANOVA in Table B.5 in B.2.
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average increase their bid relative to their signal, where they increase their
bid more in case of a loss in the previous period than in case of a gain.
The modest increase in case of a previous gain can be interpreted as an
attempt to increase the profit while not significantly reducing the award
probability. The strong increase in case of a experienced loss apparently
aims at preventing a further loss. After being not awarded, bidders reduce
their bid relative to their signal if the awarded bidders gained a profit,
whereas they rarely lower their bid if the awarded bidders suffered a loss.
In the first case, non-awarded bidders’ stronger bid reduction apparently
aims at being awarded with a profit in the current round. In the second
case, non-awarded bidders are more reluctant to lower their bid in the
current round after the awarded bidders suffered a loss in the previous
round.

The sequence of increasing the bid after an experienced loss and the
lowering the bid after an observed gain is held responsible for the zigzag
pattern in the UP auction for k = 1 (Figure 5.1 (d)) since in the majority
of the groups the awarded bidder suffers a loss in the rounds with an even
number.

Since the overall change of the bids relative to the signal is slightly
negative (−0.14 and −0.41), it is not surprising that the subjects do not
improve their profits and reduce the loss frequency during the experiment.

The observed bid adjustment has the character of myopic best reply
behavior (e.g., Boylan and El-Gamal, 1992). The upward adjustment of
the bids after being awarded and the downward adjustment after not being
awarded in our experiment resembles the effects of winner’s regret and of
loser’s regret in the study of Engelbrecht-Wiggans and Katok (2008), who
examine the adjustment of bids in repeated first-price sealed bid auctions
with private values under different information feedback conditions. This
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may be an indication that the subjects in our CV experiment tend to treat
their signals as true cost and disregard the relationship between cost and
signals, that is, the signals are randomly scattered around the true cost
and the bidders, when submitting their bids, do not know whether they
have low or high signals.

The following result summarizes our findings in this section.

Result 3. Subjects adjust their bids relative to their signals according to a
myopic best reply rule that accounts for their and the other bidders’ success
and failure in the previous round. On average, subjects do not increase
their bids relative to their signals, which provides an explanation for the
permanence of losses in the experiment.

5.5 Conclusion

Based on a theoretical approach, we experimentally study sealed bid multi-
unit procurement auction for homogeneous CV goods, in which single-unit
supply bidders participate. We compare the DP auction with the UP
auction under different demand levels (i.e., number of auctioned goods).

Beside the typical pervasiveness of losses in CV auction experiments,
the theoretic predicted differences between DP and UP concerning bid-
ders’ profit and, thus, the price, and the frequency of losses (winner’s
curse) are not reproduced. The theoretical predicted advantages of DP
over UP diminish, which is mainly caused by the fact that the subjects
under DP deviate more from the equilibrium than under UP. However,
in both auctions, DP and UP, the auction outcomes develop towards the
equilibrium outcome as the number of goods increases. This improvement
is essentially caused by a “mechanical effect” due to behavioral heterogene-
ity concerning the deviation of the submitted bids from the corresponding
equilibrium bids. That is, a larger number of demanded goods mitigate
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the negative effects of aggressive bidding behavior for the awarded bidders,
particularly in the UP auction. Subjects’ bidding behavior can be quite
well characterized by a myopic best reply rule depending on the own and
the other bidders’ previous performance. Since this myopic behavior does
not include an average increase of the bids relative to the signals, it is
not surprising that the high loss probabilities are persistent and do not
diminish.

There are several implications for practical applications. First, the the-
oretical differences between the DP auction and UP auction do not neces-
sarily apply to real world auctions. Instead, the competition level, i.e., the
relationship between demand and supply, seems to have a stronger impact
on the price and the occurrence of the winner’s curse than the pricing rule.
Also, theoretically complemented, the degree of uncertainty of the good’s
value resp. cost plays an important role. Against the background of the
experimentally observed pervasiveness and the persistence of the winner’s
curse, which is mostly not in the auctioneer’s interest either, the auctioneer
should try to reduce degree of uncertainty as far as possible.

To gain further insights, the experimental study can be extended by
also varying the number of bidders, i.e., testing different combinations of
the supply and demand, by applying other cost and signal distributions,
or by also implementing other auction formats, e.g., open English-style
(ascending resp. descending) auctions, in which the bidders can learn
about the other bidders’ signals and, thus, about the CV.





Chapter 6

Conclusions and outlook

To mitigate climate change and to reach greenhouse gas emission reduction
targets, the expansion of RE sources is inevitable. However, the energy
transition impacts the everyday life of most people directly or indirectly
and its implementation is therefore full of political, social, environmental
and economical challenges. A farsighted and reliable political approach is,
thus, all the more important.

Auctions have become the prevalent mechanism to promote REs in
recent years. This development started in Latin America and Europe and
by now auctions are implemented all over the world. In general terms,
auctions are a suitable mechanism for the auctioneer to pursue several
targets simultaneously. In the context of RE support, the support cost
reduction, efficiency and the controlability of the expansion are the most
frequently mentioned targets. However, as proved in this thesis, it is hard
to pursue all those targets at the same time. Therefore, it is of utmost
significance to prioritize the targets and design the auction accordingly.

6.1 Summary

This thesis enhances the knowledge of four relevant criteria regarding auc-
tions for RE support. First, prequalification requirements are a significant
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design choice for auctions for RE support, yet their direct implications on
the auction outcome in this specific field of application were analyzed in
this thesis. Second, the participants in auctions for RE support are hetero-
geneous. For example, there might be regional or technological differences
that might be accompanied by differences in the company structure of the
bidders. This thesis analyzed how to include and utilize those differences
in discriminatory auctions. Third, the implementation of auctions to pro-
mote REs is quite novel, thus, also the bidders are rather inexperienced.
This thesis compared auction outcomes with the results of an ABM. Fi-
nally, REs usually involve CV and common cost components. This thesis
theoretically and experimentally analyzed the effects of common costs in
a realistic multi-unit auction setting.

In contrast to other governmental procurement auctions in most cases
there is no long-term relationship between auctioneer and bidders in auc-
tions for RE support. There is a huge heterogeneous set of bidders that
participate in such auctions, from small cooperatives to international com-
panies and some of them might participate the first or even the only time.
That is, the auctioneer has neither information regarding the reliability of
the bidders nor sanctioning possibilities like exclusion of future bid rounds.
Therefore, there are usually auction design measures to guarantee serious
participation, namely penalties, physical and financial prequalifications.
Those measures also provide further benefits regarding the uncertainty in
the auction.

This work analyzes the auction-theoretic implications of the different
auction design elements and gives recommendations regarding an appro-
priate use of them. The trade-off in implementing prequalifications and
penalties is between realization rates and support costs. Generally speak-
ing, the higher the costs for prequalifications and potential penalty pay-
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ments the higher the realization rates and the support costs. Therefore,
it is a political decision on how much non-realization is acceptable or vice
versa round, what price for a high realization rate is acceptable. However,
physical prequalifications also benefit the bidders as they reduce the cost
uncertainties and, thus, the risk of bad investments. The main problem
with penalties that are only sanctioned after the auction is that the ef-
fects on the heterogeneous bidders may differ and, thus, be inefficient. For
that reason, the recommendation derived in this thesis to design an effi-
cient auction with a sufficiently high realization rate is requiring a high
financial prequalification and an adjusted physical prequalification. The
physical prequalification should not be too high in relation to the securi-
ties and also to limit the sunk costs effect. Furthermore, according to the
result of the analysis, there is a preference for the first-price auction over
the second-price auction.

The heterogeneity of bidders in auctions for RE support yields further
implications. The auction design elements have different effects on different
bidder groups. This is especially important as the current trend of auctions
for RE support is to open the auction to different technologies or even to
bidders from different countries. For example, a realization period of 18
months is sufficient for a PV plant, it may be not sufficient for building
new wind turbines. There may be even structural cost differences between
technologies. And, on the other hand, there are differences in the value of
the electricity generated by variable REs. That is, the load profile of PV
and wind differ in so far, that the electricity generated by wind may be
more valuable than the electricity generated by PV or vice versa.

The differences in costs and values of different groups of RE projects
result in different target settings of auctioneers. Possibilities to optimize
the auction design include the value of the RE or the support costs. This
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thesis shows that the targets in different countries vary and are sometimes
even ambiguous and contradictory. Further, this thesis presents two ways
of implementing discriminatory design elements to achieve either one of the
targets. This thesis compares three discriminatory design elements that
yield theoretically the same result with respect to cost minimization but
have practical differences especially with respect to robustness. Finally, it
is important to note, that the introduction of discriminatory design ele-
ments can only improve the auction outcome if the auctioneer chooses them
in accordance with the auction targets. To comply with this principle, the
targets have to be set before the auction is designed.

This thesis also takes on the bidders’ perspective in order to enhance
the understanding of the German PV pilot auctions. In this first of its
kind series of auctions in Germany the prices decreased more than the
observable costs of PV plants. By utilizing an ABM this thesis could
show that the assumption regarding the competition in the first auction
round has major implications on further rounds. The actual outcome
can be reconstructed if the bidders had a very low expectation regarding
competition in the first round. Although auctions for RE support are not
repeated auctions in the pure sense, the results of prior rounds still have
an effect on all forthcoming rounds.

In the theoretical and experimental analysis of CV auctions, this thesis
complements the existing literature by including multi-unit auctions and a
systematical comparison between different competition levels and pricing
rules. Although auctions for RE support are not pure CV auctions, there
are major CV and common cost components in such auctions and this
implies the risk of the – so called – winner’s curse. In auctions for RE
support the occurrence of the winner’s curse, that is the project costs
are higher than the project revenues, is usually accompanied by a project
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non-realization. However, as non-realization threads the achievement of
expansion targets, it is in common interest to avoid the winner’s curse
when designing the auction.

While the theoretical findings suggest that there are major differences
with respect to prices and loss probabilities between the two pricing rules
DP and UP, the experimental results draw another picture. There are no
significant differences between the two pricing rules. Under both pricing
rules the participants in the experiment perform worse than theoretically
predicted but on an equal level. The competition level, however, has signif-
icant influence on the auction outcome. A lower competition level results
in a smaller probability of bidders suffering a loss.

6.2 Conclusions

The target of this thesis is to enhance the understanding of the implica-
tions of the auction design on the auction outcome in the specific field of
auctions for RE support. Such auctions are necessary to achieve the RE
expansion targets and to introduce REs to a competitive market. Natu-
rally, since the auctioneer determines the auction design, the associated
analyses focuses on the auctioneer’s perspective. The four main sections
of this thesis set priorities on different design options, however, there are
recurring implications in all of them.

There are two main challenges when designing auctions for RE support.
The first one is aligning auction targets and auction design. Second, the
set of participating bidders is heterogeneous. This means that, on the one
hand, there arise even more trade-offs and conflicts but, on the other hand,
there are also more possibilities for the auction design. Overall, there is
no one-size-fits-all auction design and every auction has to be designed
specifically to its application.
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For the auctioneer this means, that first and foremost the targets have
to be set before deciding on the auction design. However, this is a very
hard task and - if not done correctly - may lead to ambiguity and errors.
This thesis illustrates that it is not possible to pursue all targets at the
same time. Auctioneers who try it, certainly fail to design the auction
appropriately. Therefore, any effort before the auction for a broad public
discussion regarding the political targets of the promotion mechanism will
be worth the effort. The same holds for any effort to gain insights into
the market and the participants. The availability of these information is
essential for an appropriate auction design.

If the information is obtained and the targets are set, an auctioneer
can make use of the toolbox that is provided in this thesis to design the
auction. There is a broad variety of auction design elements to tailor-
fit the auction design to the targets but all of them induce trade-offs of
some kind. Some between price and efficiency others between sunk costs
and realization rate. This thesis not only highlights the impossibility of
pursuing different targets with one auction but also the interdependency of
auction design elements. The three main targets of auctions for RE support
are cost reduction, efficiency and controllability of the RE expansion.

If either one of the targets is given priority, the auction design can never
reach the other two targets at the same time. If the auctioneer chooses
to design an auction in order to reduce the RE support costs as far as
possible, the recommendations are to foster competition through low entry
barriers and discrimination of strong bidders. That is, the auction should
have low requirements regarding financial and physical prequalifications
and discriminatory design elements that favor weaker bidders. Of course
this may lead to inefficiencies and low realization rates.

If the latter one is the main target, the auction design must prioritize
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the reduction of cost uncertainties for the bidders and balance – if feasible –
the auction volume between insufficient competitiveness and the risk of the
winner’s curse. Again, such an auction design neither results in efficiency
nor lowest costs. To pursue the target of efficiency is insofar hard, that de-
pending on the context, there is more than one definition of efficiency, e.g.
efficiency from a value or cost perspective. In general terms, the auction
should be a level playing field for all participants. However, this is easier
said than done. Different bidder groups react differently to design elements
like realization times and prequalification requirements making it virtually
impossible to achieve this goal. And if there are separate auctions for
the different bidder groups, efficiency is even more unlikely. Nevertheless,
some general recommendations hold, e.g. the implementation of financial
prequalifications and not penalties.

Those examples illustrate quite obviously that the pursuit of one auction
target results in negative effects on other potential targets. Therefore, pri-
oritizing targets and gaining of relevant information are the first and most
important steps to implement an successful auction mechanism. With suf-
ficient information and clear targets, this thesis provides recommendations
to tailor fit the auction design to the targets.

6.3 Critical reflection and outlook

The whole energy sector is at a turning point from conventional energy
sources to RE sources. This energy transition involves a more competitive
environment for REs compared to only a few years ago. More and more
countries implement auctions as a mechanism to promote REs but neither
the development nor the auction design has settled yet. The research con-
ducted in this thesis enhances the auction-theoretical knowledge of those
auctions and facilitates the understanding of the implications of different



138 6 Conclusions and outlook

auction design elements. As the dynamic development of auctions for RE
support continuously results in additional research questions, this thesis is
only a starting point for further analyses.

A topic already discussed in this thesis are prequalification measures
as requirements to participate in the auction. While this research concen-
trates on the auctioneer’s point of view, especially regarding realization
rate and auction prices, future research might take a look on the bidders’
perspective. That is, analyzing the costs and benefits for bidders of both
mandatory and voluntary prequalification measures. A topic that was also
addressed in this thesis, is the repeated nature of auctions for RE support.
However, those are not sequential auctions as some bidders participate in
multiple auctions while others do not. Further theoretical research could
complement the ABM in this thesis. With more and more auctions for RE
support conducted all over the world, more auction results will become
available. Based on those results it will be possible to conduct economet-
ric analyses to complement the theoretical and experimental results.

One essential requirement of a successful energy transition is the full
integration of REs in the energy market. This long-term goal requires fur-
ther research in various energy (economic) research areas from balancing
power to grid infrastructure. The first step concerning auctions for RE
support is the opening of the auctions to more bidder groups (technolo-
gies, countries, etc.). Thus, future research should focus on discriminatory
instruments and asymmetric auctions. This could be complemented by
experimental research. The research of this thesis and the further research
to develop an energy market with fully integrated REs contributes to the
important challenges associated with the energy transition which is – in
turn – necessary to facilitate a sustainable energy supply.
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Appendix to Chapter 3

A.1 Equivalence of quota, maximum prices and bonus

In a RE auction with a given demand D, participate the bidders of two
technologies, A and B, with different cost structures, described by the
increasing marginal cost functions MCA and MCB, where

MCA(x) < MCB(x) for all x ≥ 0 . (A.1)

A UP auction with LRB is applied. The auction is incentive compati-
ble, that is, it is optimal to bid the support that exactly covers the costs
(Weber, 1983). The supply functions are given by

Sk(p) = MC−1
k (p), k ∈ {A,B}, (A.2)

and increase in the price p. From (A.1), it follows that

SA(p) > SB(p) for all p ≥MCA(0) . (A.3)

The elasticities of supply of the two technologies are defined as

εk(p) =
S ′k(p)

Sk(p)
p with S ′k(p) =

dS(p)

dp
, k ∈ {A,B} . (A.4)
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In a free competition, the market clearing price p∗ is determined by

SA(p∗) + SB(p∗) = D , (A.5)

where SA(p∗) > SB(p∗) ≥ 0. The auctioneer’s total support costs are
K(p∗) = p∗D.

Each of the three discriminatory instruments – quota, maximum price,
and bonus – induces a supply shift from the A-bidders to the B-bidders,
and different prices pA and pB, which lead to the supply volumes SA(pA)

and SB(pB), with
SA(pA) + SB(pB) = D . (A.6)

In these cases, the total support costs are

K(pA, pB) = pASA(pA) + pBSB(pB) . (A.7)

Incentive compatibility holds for a quota Q, which is effective if Q >

SB(p∗), that is, if the B-bidders would not reach Q in a free competition.
This leads to a volume shift

q± = Q− SB(p∗) (A.8)

from the A-bidders to the B-bidders and to different award prices pA and
pB, with

pA = MCA(D −Q) > p∗ and pB = MCB(Q) < p∗ . (A.9)

Incentive compatibility also holds for a maximum price p̂maxA , except
for the A-bidders with higher costs than p̂maxA , who do not participate.
The maximum price is effective if p̂maxA < p∗. Then, by (A.2) and (A.5),
pA = p̂maxA < p∗, pB > p∗, SA(pA) < SA(p∗), and SB(pB) > SA(p∗).

With a bonus b+, incentive compatibility applies to the A-bidders,
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whereas the B-bidders reduce their bids by b+. The bonus also implies
pA < p∗ < pB and supply volumes SA(pA) < SA(p∗) and SB(pB) > SB(p∗).
Incentive compatibility holds for the bid bonus. Since the argumentation
is the same as for the monetary bonus, the results also apply to the bid
bonus.

Both the maximum price and the bonus imply volume shift (A.8) as the
quota.

To analyze the effect of discriminatory instruments on the support costs,
we state three conditions:1

(C1) εA(p) and εB(p) are non-increasing in p.

(C2) SB(p∗) > 0.

(C3) εA(p∗) < εB(p∗).

Let ∆(q±) denote the change in the support costs induced by q± com-
pared to those in a free competition. Then, (A.7) and (A.9) imply

∆(q±) = MCA(SA(p∗)− q±) · (SA(p∗)− q±) +MCB(SB(p∗) + q±)

·(SB(p∗) + q±)−K(p∗)
.

Differentiating ∆(q±) with respect to q±, denoted by ∆′(q±), we obtain

∆′(q±) = −MC ′A(SA(p∗)− q±)(SA(p∗)− q±)−MCA(SA(p∗)− q±)

+MC ′B(SB(p∗) + q±)(SB(p∗) + q±) +MCB(SB(p∗) + q±) .

We first analyze the effect of discriminatory instruments on the support
costs when the instruments become effective. Thus, we consider ∆(q±) at

1(C1) is a standard assumption and is supported by the RE literature (de Vries et al., 2007; Hoefnagels
et al., 2011; Brown et al., 2016). (C2) requires that the B-bidders gain at least a small share in a non-
discriminatory auction. There are many examples where wind and solar are awarded in multi-technology
auctions, for example, in Mexico (IRENA, 2017) and Spain (Ministerio de Energia, Turismo y Agenda Digital,
2017), or are awarded in separate auctions but at similar prices, for example, in Germany (Bundesnetzagentur,
2017a,b). According to (C3), the B-bidders’ price elasticity of supply at p∗ is larger than that of the A-bidders,
which is justified by the B-bidders’ smaller supply volume in a non-discriminatory auction.



142 A Appendix to Chapter 3

q± = 0,

∆′(0) = −MCA(SA(p∗))− SA(p∗)MC ′A(SA(p∗)) +MCB(SB(p∗))

+ SB(p∗)MC ′B(SB(p∗)) .

By MCA(SA(p∗)) = MCB(SB(p∗)) = p∗, we obtain

∆′(0) = SB(p∗)MC ′B(SB(p∗))− SA(p∗)MC ′A(SA(p∗)). (A.10)

With MC ′k(Sk(p)) = 1
S′k(p) for k ∈ {A,B},

∆′(0) < 0 if
SA(p∗)

S ′A(p∗)
>
SB(p∗)

S ′B(p∗)
⇐⇒ S ′A(p∗)

SA(p∗)
p∗ <

S ′B(p∗)

SB(p∗)
p∗ ,

which, by (A.4), holds because of (C3). Therefore, the support costs de-
crease if the quota Q becomes effective, that is, q± becomes positive, the
maximum price p̂maxA becomes effective – that is, p̂maxA − p∗ becomes nega-
tive –, or the bonus b+ becomes positive.

We now show that, given (C1), (C2), and (C3), for each instrument
there exists a unique support cost minimizing parameterization and the
respective optima are equivalent. The minimization of the support costs

K(pA, pB) = pASA(pA) + pBSB(pB) subject to SA(pA) + SB(pB) = D

(A.11)
with regard to pA and pB yields the first order conditions

∂K(pA, pB)

∂pk
= Sk(pk) + pkS

′
k(pk) + λS ′k(pk) = 0, k ∈ {A,B} ,

which lead to the condition

pB − pA =
SA(pA)

S ′A(pA)
− SB(pB)

S ′B(pB)
. (A.12)

For Q ≤ SB(p∗), pB = pA = p∗ and, thus, the left-hand side of (A.12) is
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zero. Q > SB(p∗) implies pB > p∗ > pA. As Q increases, pB increases
and pA decreases and, thus, the left-hand side of (A.12) increases. (A.4)
together with (C1), (C2), and (C3) imply that the right-hand side of (A.12)
is positive at p∗. Thus, (A.12) does not hold for an ineffective quota
Q ≤ SB(p∗). By (C1), εB(pB) does not increase if pB increases and εA(pA)

does not decrease if pA decreases. Thus, based on (A.4), the right-hand
side of (A.12) decreases. Since the left-hand side of (A.12) increases in Q
and the right-hand side of (A.12) decreases, there exists a unique Q̂ that
fulfills (A.12). Combined with the property that the support costs decrease
when the quota becomes effective, this implies that Q̂ is the unique cost
minimizing quota. Thus, there exists a unique quota Q̂ > SB(p∗) that
minimizes the support costs, where Q̂, pA, and pB are determined by
Q̂ = SB(pB), SA(pA) + SB(pB) = D and

pB − pA =
SA(pA)

S ′A(pA)
− SB(pB)

S ′B(pB)
.

Analogously, this also applies to the maximum price and the bonus. Thus,
there exists a unique maximum price p̂maxA > 0 that minimizes the support
costs, where p̂maxA , pA, and pB are determined by SA(p̂maxA ) + SB(pB) = D

and
pB − p̂maxA =

SA(p̂maxA )

S ′A(p̂maxA )
− SB(pB)

S ′B(pB)
,

and there exists an unique bonus b̂ > 0 that minimizes the support costs,
where b̂ and the award price p are determined by SA(p) + SB(p+ b̂) = D

and

b̂ =
SA(p)

S ′A(p)
− SB(p+ b̂)

S ′B(p+ b̂)
.

From these results, it follows directly that the quota Q̂, the maximum
price p̂maxA , and the bonus b̂ lead to the same support-cost-minimizing
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outcome, that is, the prices (payments) and the supply volumes of the
A-bidders and B-bidders are the same for Q̂, p̂maxA , and b̂.

A.2 Example with linear marginal costs

A.2.1 Linear marginal cost functions

In this appendix, we illustrate and discuss the principle of functionality of
the three discriminatory instruments Q̂, bonus b̂ and maximum price p̂maxA

by means of a simplified model: the marginal costs of the bidders in class
k ∈ {A,B} are uniformly distributed over the interval [ak, dk] with density
mk. Thus, mk(dk − ak) represents the number of bidders in [ak, dk]. This
approach involves the linear marginal cost function

MCk(x) =
x

mk
+ ak (A.13)

for x ∈ [0,mk(dk − ak)]. By (A.2), the supply functions for k ∈ {A,B}
are

Sk(p) =

0 for p < ak

mk(p− ak) for p ≥ ak .
(A.14)

with
S ′k(p) =

dSk(p)
dp

= mk .

By (A.4), the elasticity of supply is given by

εk(p) =
S ′k(p)

Sk(p)
p =

p

p− ak
. (A.15)

It does not depend on mk, which is due to the linear supply function
(A.14), and is non-increasing in p,

dεk(p)

dp
= − ak

(p− ak)2
< 0 for all p 6= ak .
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For the following analysis, we express the characteristic parameters of
the B-class aB and mB as multiples of the characteristic parameters of the
A-class aA and mA: aA = a, mA = m, aB = %a, and mB = m/λ with
1 T λ > 0 and % > 1, which follows from (A.1). Parameter % describes the
general cost ratio (strength) of the B-class and A-class, while λ indicates
the ratio of the number bidders of the A-class and B-class.

We assume dB > dA. Thus, the marginal cost functions do not intersect,
which is in line with Condition (A.1). Furthermore, we assume that dB
and dA are sufficiently large so that in neither of the two classes the bidders
with marginal cost at the upper boundary are awarded. This implies that
dA and dB are irrelevant for the analysis.

The marginal cost functions (A.13) yield

MCA(x) =
x

m
+ a for x ∈ [0,m(dA − a)],

MCB(x) =
λx

m
+ %a for x ∈ [0,

m

λ
(dB − %a)].

The intercept and the slope of the marginal cost function MCB are ex-
pressed as multiples of the intercept and the slope of the marginal cost
function MCA. While the case λ < 1 allows that MCB is flatter than
MCA (more B-bidders than A-bidders), % > 1 implies that the lowest
marginal cost in the B-class are always higher than in the A-class.

The supply functions (A.14) then yield

SA(p) =

0 for p < a

m(p− a) for p ≥ a ,

SB(p) =

0 for p < %a

m
λ (p− %a) for p ≥ %a .

By (A.15), εA(p) = p
p−a and εB(p) = p

p−%a . Thus, due to % > 1, εA(p) <
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εB(p).
In the free competition case, the equilibrium price and the supply vol-

umes are

p∗ =
D

m

λ

λ+ 1
+

(λ+ %)a

λ+ 1
,

SB(p∗) =
D

λ+ 1
− m(%− 1)a

λ+ 1
,

SA(p∗) =
Dλ

λ+ 1
+
m(%− 1)a

λ+ 1
,

where SB(p∗) > 0 requires D > m(%− 1)a. The total support costs yield

K(p∗) = Dp∗ = (SA(p∗) + SB(p∗))p∗ =
λD

λ+ 1

(
D

m
+
(

1 +
%

λ

)
a

)
.

(A.16)
The price and the support costs increase in % and in λ. This is caused by the
fact that a larger % and a larger λ correspond to “weaker” B-bidders. That
is, a larger % corresponds to a higher cost level and a larger λ corresponds
to a smaller number of B-bidders.

We keep λ as a variable parameter throughout this appendix. However,
for illustration purposes, in the figures we set λ = 1, i.e., the same density
of bidders in the two classes. In Figure A.1, the individual support costs
KA(p∗) and KB(p∗) are visualized by the areas p∗SA(p∗) and p∗SB(p∗).
The A-bidders receive a larger payment as their supply is greater.

We now consider the optimal quota Q̂, bonus b̂, and maximum price
p̂maxA . As outlined in Appendix A.1, the optimal values of the three instru-
ments are determined by the price difference

pB − pA =
SA(pA)

S ′A(pA)
− SB(pB)

S ′B(pB)
= (pA − a)− (pB − %a) ,
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SB (p
∗) SA(p

∗)

p∗

Price

Quantity

MCB

MCA

Figure A.1: Illustration of the linear marginal costs model with free competition.

which directly determines the optimal bonus b̂,

pB − pA =
(%− 1)a

2
= b̂ . (A.17)

The optimal bonus b̂ increases in % and is independent of λ. This implies
that the bonus increases if the cost difference between the A-bidders and
the B-bidders increases. The optimal bonus does not react to different
quantities of the two bidder classes.

With two different prices pB and pA the Condition (A.5) still holds, that
is SA(p∗) +SB(p∗) = SA(pA) +SB(pB) = D and, thus, with (A.17) we get

pB = D
m

λ
λ+1 + a(λ+2%+λ%)

2(λ+1) , (A.18)

pA = D
m

λ
λ+1 + a(1+2λ+%)

2(λ+1) = p̂maxA , (A.19)

which also determines the optimal maximum price p̂maxA . That is, p̂maxA

depends on λ and % and increases in both meaning that the A-bidders are
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less restricted if the B-bidders are weaker and/or less.
By (A.14), (A.18) and (A.19), the supply volumes and the optimal quota

Q̂ are

SB(pB) = D
λ+1 −

m(%−1)a
2(λ+1) = Q̂ , (A.20)

SA(pA) = Dλ
λ+1 + m(%−1)a

2(λ+1) = D − Q̂ , (A.21)

which also depends on λ and % and decreases in both.
With (A.20) and (A.21), the volume shift q± = Q̂ − SB(p∗) to the

B-bidders is
q± =

m(%− 1)a

2(λ+ 1)
. (A.22)

The optimal bonus b̂, the optimal maximum price p̂maxA and the optimal
quota Q̂ induce the same volume shift q± from (A.22).

Comparing the total support costs K(pA, pB) under the optimal quota
Q̂, bonus b̂ and maximum price p̂maxA withK(p∗) in free competition (A.16)
yields

K(pA, pB) = pBSB(pB) + pASA(pA)

=
D2λ

m(λ+ 1)
+
aD(λ+ %)

λ+ 1
− a2m(%− 1)2

4(λ+ 1)

= K(p∗)− a2m(%− 1)2

4(λ+ 1)
< K(p∗) .

The support costs K(pA, pB) are lower than K(p∗) by a2m(%−1)2

4(λ+1) . This
difference increases in % and decreases in λ. As a result, discrimination is
more effective, i.e., a2m(%−1)2

4(λ+1) increases if the relative cost difference % be-
tween A-bidders and B-bidders is greater. If, however, the ration between
the number of B-bidders and A-bidders is lower, discrimination is less ef-
fective. Further, it shows that, given (A.3) and the conditions (C1), (C2),
(C3) are met, the three instruments only reduce the price for a % > 1. That
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is, to reduce support costs through discrimination, the lowest cost bidders
of the two bidder classes must have different costs MCA(0) < MCB(0).
A pure difference in numbers is not sufficient.

In Figure A.2, the individual support costs are given by the areas
pBSB(pB) and pASA(pA). Compared to Figure A.1, the sum of the two
areas, i.e., the total support costs, is smaller. Although the price increase
for the B-bidders is equal to the price reduction for the A-bidders,2 the
overall costs for the auctioneer decrease as the number of bidders for which
the price increases is lower than the number of bidders for which the price
decreases.

Q̂ = SB (pB) SA(pA)

pA

pB

Price

Quantity

b̂

Price

Quantity

MMCCB

MMCCA

Figure A.2: Illustration of the linear marginal costs model with optimal discriminatory in-
struments Q̂, b̂ and p̂max

A = pA.

2This equality is caused by the characteristics of the example because the marginal cost curves of both
classes are parallel shifts of each other. This equality does not necessarily hold for other marginal cost curves.



150 A Appendix to Chapter 3

A.2.2 Linear marginal cost functions with estimations of λ and %

We analyze and compare the effects of interior misestimations, particularly
on support costs, by applying the model with linear marginal cost functions
from Appendix A.2.1.

Let us assume that the auctioneer knows the A-class parameters a and
m but she does not know theB-class multipliers % and λ.3 The auctioneer’s
estimates for these two parameters are denoted by %e and λe. Let be , peA,
and Qe denote the corresponding bonus, maximum price, and quota that
are determined by (A.17), (A.19), and (A.20) under %e and λe:

be =
(%e − 1)a

2
, (A.23)

re =
D

m

λe

λe + 1
+
a(1 + 2λe + %e)

2(λe + 1)
, (A.24)

Qe =
D

λe + 1
− m(%e − 1)a

2(λe + 1)
, (A.25)

where be = b̂, re = ê, and Qe = Q̂ for %e = % and λe = λ.
In the following, we investigates the effects of misestimations of λ and

%, i.e., λe 6= λ and/or %e 6= %, on the calibration of the discriminatory
instruments and the support costs.

The first major difference between the instruments is that the maximum
price re (A.24) and the quota Qe (A.25) both depend on %e and λe, while
the bonus be (A.23) only depends on %e but not on λe. Therefore, the
bonus is robust to misestimations of λ but not of %. Since be depends
positively on %e, it holds that be T b̂ for %e T % and all λe.

Things are different for the maximum price and the quota for the A-
bidders. By (A.24), re depends positively on both λe and %e and the
following hold: (i) re T p̂maxA for %e T % and λe = λ; (ii) re S p̂maxA for

3The results of the following analyses are qualitatively the same if we assume that the auctioneer knows
the B-class parameters but not the A-class parameters.
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λe T λ and %e = %. The effects of misestimations are reverse for the quota.
Since, by (A.25), the quota Qe depends negatively on both λe and %e, the
following hold: (i) Qe S Q̂ for %e T % and λe = λ; (ii) Qe S Q̂ for λe T λ

and %e = %.
On the basis of %e and λe and the correspondingly calibrated instru-

ments be, re, and Qe, we now consider the price, supply, and cost effect of
misestimations λe 6= λ and %e 6= %. That is, we calculate the prices and
support costs under the condition that the actual parameters are % and λ,
but the instruments are calibrated under the assumption of %e and λe.

Bonus be (A.23) leads to the prices

pb
e

A =
D

m

λ

λ+ 1
+
a(2λ+ 2%− %e + 1)

2(λ+ 1)
,

pb
e

B = pb
e

A + be =
D

m

λ

λ+ 1
+
a(λ+ 2%+ λ%e)

2(λ+ 1)
,

and the corresponding supply volumes

SA(pb
e

A) =
Dλ

λ+ 1
+
am(2%− %e − 1)

2(λ+ 1)
,

SB(pb
e

B) =
D

λ+ 1
− am(2%− %e − 1)

2(λ+ 1)
.

Obviously, pbeA and SA(pb
e

A) negatively depend on %e, i.e., the higher the
estimate, the lower the A-bidders’ price and the supply, while the reverse
applies for the B-bidders. The support costs are

K(be) =
D2λ

m(λ+ 1)
+
aD(λ+ %)

λ+ 1
+
a2m(2%− 2%%e + %e

2 − 1)

4(λ+ 1)
.

Since be (A.23) does not depend on λe, nor of the above variables do. For



152 A Appendix to Chapter 3

analyzing the cost effect of %e we consider

∂K(be)

∂%e
=
a2m(%e − %)

2(λ+ 1)
,

which is non-zero for all %e 6= %. Thus, since be = b̂ and K are minimized
for %e = %, the support costs K are higher if the estimation is incorrect.4

When analyzing the effects of misestimations for either a quota (A.25)
or a maximum price (A.24), we additionally have to take λe into account.
Since in our setting with linear marginal costs functions the effects of
misestimations are the same for both instruments, we restrict our notation
to re. Both instruments lead to the prices

pr
e

A = re =
D

m

λe

λe + 1
+
a(1 + 2λe + %e)

2(λe + 1)
,

pr
e

B =
D

m

λ

λe + 1
+
a(λ+ 2λe%+ 2%− λ%e)

2(λe + 1)
,

and supply quantities

SA(pr
e

A ) =
Dλe

λe + 1
+
am(%e − 1)

2(λe + 1)
,

SB(pr
e

B ) = Qe =
D

λe + 1
− am(%e − 1)

2(λe + 1)
.

The prices and quantities for the A-bidders increase in %e and λe while the
4The derivative ∂K(pb

e

A ,be)

∂λe is equal to zero.
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opposite holds for the B-bidders. The resulting support costs are

K(pr
e

A , p
re

B ) =
1

(λe + 1)2

(
D2(λe

2

+ λ)

m

+ aD [%(λe + 1)− λ(%e − 1) + λe(λe + %e)]

+
a2m(%e − 1) [%e(λ+ 1) + 2λe(1− %)− 2%− λ+ 1]

4

)
.

(A.26)

Differentiating (A.26) with respect to %e and λe leads to

∂K(pr
e

A , p
re

B )

∂%e
=

1

(λe + 1)2

(
aD(λe − λ)

+
a2m [(%e − %) + (%eλ− λe%) + (λe − λ)]

2

)
, (A.27)

∂K(pr
e

A , p
re

B )

∂λe
=

1

(λe + 1)3

(
2D2(λe − λ)

m

+ aD [(2%eλ− λe%e − λe%) + 2(λe − λ) + (%e − %)]

− a2m(%e − 1) [(%e − %) + (%eλ− λe%) + (λe − λ)]

2

)
.

(A.28)

Both derivations (A.27) and (A.28) are non-zero for %e 6= % or λe 6=
λ. Hence, analogous to the above argumentation, misestimations of the
strength and/or number of the B-bidders lead to higher support costs than
in the minimum.

There are three effects. First, if only λ is estimated incorrectly (λe 6= λ

and %e = %), implementing a bonus still yields the optimal result, while
implementing a maximum price or a quota does not.

Second, if only % is estimated incorrectly, i.e., %e 6= % and λe = λ, all
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three instruments yield the same non-minimal support costs, i.e., K(be) =

K(re). However, the prices and the supply volumes are not equal. The
same support costs are achieved through different combinations of prices
and quantities, all of which are non-optimal. As mentioned above, pbeA
and SA(pb

e

k ) decrease in %e, while preA and SA(pr
e

A ) increase in %e. Thus,
when implementing the bonus be, an underestimation (overestimation) of
the B-bidders’ strength, i.e., %e > (<) %, leads to a lower (higher) than
optimal price and supply volume for the A-bidders, whereas under the
maximum price re and quota qe an underestimation (overestimation) of the
B-bidders’ strength leads to a higher (lower) than optimal price and supply
volume for the A-bidders. The reverse applies for the B-bidders. That is,
depending on whether a bonus or a maximum price (quota) is implemented,
a wrong estimation of the B-bidders’ strength leads to opposing privileges
through higher prices and supply volumes of the two bidder classes.

Third, if both parameters are estimated incorrectly, i.e., λ 6= λe and
% 6= %e, we have to distinguish two cases. If both estimates are wrong
in the same direction, i.e., both the relative strength and number of B-
bidders are underestimated (%e > % and λe > λ) or overestimated (%e < %

and λe < λ), the bonus yields a better result than maximum price and
quota. However, if the estimates are wrong in opposing directions, i.e.,
%e > % and λe < λ or %e < % and λe > λ, the result is ambiguous and the
maximum price and the quota might even yield a better result than the
bonus.

To summarize, since the bonus does not depend on λe for linear marginal
cost functions, it dominates the maximum price and the quota for mises-
timations of λ. The bonus is also more robust to misestimations of % and
λ as long as those misestimations do not neutralize each other. Although
the support costs are equal under all three instruments if only % is misesti-
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mated, one should keep in mind that the two bidder classes are privileged
differently, depending on whether a bonus or a quota (maximum price) in
implemented.





Appendix B

Appendix to Chapter 5

B.1 Derivation of the equilibrium bids in the CV model

Uniformly distributed common cost The common cost C is the same for
all k goods and drawn from a uniform distribution on [c, c̄]. Given C =

c, bidders’ signals X1, X2, . . . , Xn are independent draws from a uniform
distribution on [c − ε, c + ε]. We restrict our analysis to signals in the
interval [c+ ε, c̄− ε]. The distribution function of a signal X given C = c

is

F (x|c) =


0 : x < c− ε

x−c+ε
2ε : c− ε ≤ x ≤ c+ ε

1 : x > c+ ε

(B.1)

and the density function is

f(x|c) =

{
1
2ε : c− ε ≤ x ≤ c+ ε

0 : otherwise.
(B.2)

From the perspective of a bidder with signal x, C is uniformly distributed
on [x− ε, x+ ε].
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Derivation of the UP equilibrium bid (5.1): βUP(k,n)(x) = x + n−2k
n ε According to

Ehrhart and Ott (2019),

βUP(k,n)(x) = E[C |Xi = x, Yk = x] , (B.3)

where Yk denotes the k-lowest signal of the n− 1 opponents. By (5.5),

E[Yk |C = c] = c+
n− 2k

n
ε

and, thus,

E[Yk] = E[C]− n− 2k

n
ε ,

which implies

E[C |Yk = x] = x+
n− 2k

n
ε ,

which with E[C |Xi = x, Yk = x] = E[C |Yk = x] and (B.3) verifies (5.1).

Derivation of the DP equilibrium bid (5.2): βDP
(k,n)(x) = x+ ε− k+1

n+1ε · exp
(
−n(c̄−ε−x)

2kε

)
Let G(k,n)(z|c) denote the distribution of the kth order statistics of n− 1

signals conditional on v, where for k < n (e.g., Ahsanullah et al., 2013)

G(k,n)(z|c) =
n−k−1∑
j=0

(
n− 1

j

)
F (z|c)n−1−j(1− F (z|c))j, (B.4)

g(k,n)(z|c) =
(n− 1)!

(k − 1)!(n− k − 1)!
f(z|c)F (z|c)k−1(1− F (z|c))n−k−1 .

(B.5)

Under the assumption that the other n − 1 bidders apply the strictly
increasing bidding strategy β ≡ βDP(k,n), the expected profit of the bidder
with signal x when bidding β(z) is

Π(x, z) =

∫ x+ε

x−ε
(β(z)− x)(1−G(k,n)(z|c))dc , (B.6)
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With (B.1), (B.2), (B.4), and (B.5), the first order condition for maximiz-
ing (B.6) yields

0
!

=
∂Π(x, z)

∂z
=

∫ x+ε

x−ε
β′(z)− β′(z)G(n,k)(z|c)− β(z)g(n,k)(z|c)

+ cg(n,k)(z|c)dc

= 2εβ′(x)−
∫ x+ε

x−ε
β′(z)G(n,k)(z|c)dc−

∫ x+ε

x−ε
β(z)g(n,k)(z|c)dc

+

∫ x+ε

x−ε
cg(n,k)(z|c)dc

z=x
= 2εβ′(x)− β′(x)(

1

2ε
)n−1

n−k−1∑
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(
n− 1

j

)∫ x+ε

x−ε
(x− c+ ε)n−1−j

· (ε− x+ c)jdc

− β(x)
(n− 1)!

(k − 1)!(n− k − 1)!
(

1

2ε
)n−1

∫ x+ε

x−ε
(x− c+ ε)k−1

· (ε− x+ c)n−k−1dc

+
(n− 1)!

(k − 1)!(n− k − 1)!
(

1

2ε
)n−1

∫ x+ε

x−ε
c(x− c+ ε)k−1

· (ε− x+ c)n−k−1dc

= 2εβ′(x)− β′(x)(
1

2ε
)n−1

n−k−1∑
j=0

(n− 1)!

j!(n− j − 1)!
· (n− j − 1)!j!

(n− 1)!

1

n
(2ε)n

− β(x)
(n− 1)!

(k − 1)!(n− k − 1)!
(

1

2ε
)n−1 · (k − 1)!(n− k − 1)!

(n− 1)!
(2ε)n−1

+
(n− 1)!

(k − 1)!(n− k − 1)!
(

1

2ε
)n−1 · (k − 1)!(n− k − 1)!

(n− 1)!
(2ε)n−1

· (x+ ε− 2kε

n
)

= 2εβ′(x)− β′(x)
2ε

n
(n− k)− β(x) + x+ ε− 2kε

n
.
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The first integral was calculated by using n − j − 1 partial integration,
where for the second and third integral k−1-times partial integration was
used. Rearranging the first order condition yields the differential equation

x+ ε− 2kε

n
= β(x)− 2kε

n
β′(x) .

The solution of the differential equation with the initial condition β(c̄ −
ε) = c̄− k+1

n+1ε, which yields an expected profit of zero, is given by

βDP(k,n)(x) = x+ ε− k + 1

n+ 1
ε · exp

(
−n(c̄− ε− x)

2kε

)
. (B.7)

For x ∈ [c̄ − ε, c̄ + ε), the equilibrium bid is βDP(k,n)(x) = c̄ − (c̄+ε−x)(k+1)
2(n+1) ,

which also yields an expected profit equal to zero and is derived under the
initial condition βDP(k,n)(c̄ + ε) = c̄ (cf. Ehrhart and Ott (2019) for sales
auctions).

B.2 Supplementary statistical analyses

In the following three two-ways ANOVAs, the independent factors are the
pricing rule p with the levels DP and UP and the number of goods k with
the levels 1, 2, and 3. The depend variable in the first ANOVA is the
awarded bidders’ profit (Table B.1) and in the second the share of loss
(Table B.2). The depend variables are the averages of each subject for
each treatment in which the subject is awarded at least once or at least
suffer a loss, respectively. Hence, there are at maximum four observations
per subject in a data set. In total, the are 525 observations in the data set
of the first and second ANOVA and 340 observations in the data set of the
third ANOVA.
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Table B.1: Two-way ANOVA on bidders’ profits in case of an award.
n = 525 DF F -value Pr(> F )
Overall 5 24.63 < 0.001 ***
p 1 0.135 0.713
k 2 58.746 < 0.001 ***
p : k 2 2.766 0.064

Estimate t-value Pr(> |t|)
(Intercept) -4.48 -5.184 < 0.001 ***
p = UP 0.73 0.564 0.573
k = 2 4.19 3.685 < 0.001 ***
k = 3 10.04 9.070 < 0.001 ***
p = UP : k = 2 0.11 0.066 0.947
p = UP : k = 3 -2.94 -1.814 0.070

Table B.2: Two-way ANOVA on the share of loss in case of an award.
n = 340 DF F -value Pr(> F )
Overall 5 22.60 < 0.001 ***
p 1 0.444 0.505
k 2 55.488 < 0.001 ***
p : k 2 0.791 0.454

Estimate t-value Pr(> |t|)
(Intercept) 0.64 14.903 < 0.001 ***
p = UP 0.04 0.571 0.569
k = 2 -0.17 -2.964 0.003 **
k = 3 -0.43 -7.847 < 0.001 ***
p = UP : k = 2 -0.06 -0.680 0.497
p = UP : k = 3 0.03 0.416 0.677

Table B.3: Sign tests on the difference between submitted bids and equilibrium bids.
Majority of differences between
submitted bids and equilibrium bids

DP auction UP auction

Total k = 1 k = 2 k = 3 Total k = 1 k = 2 k = 3

< 0
matching group 18 6 6 6 15 6 5 4

individual1 260 90 89 81 191 82 63 46

> 0
matching group 0 0 0 0 3 0 1 2

individual 50 13 15 22 121 23 43 55

p-value
matching group <0.001*** 0.031* 0.031* 0.031* 0.008** 0.031* 0.219 0.688

individual < 0.001*** < 0.001*** < 0.001*** < 0.001*** <0.001*** < 0.001**** 0.064 0.426
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Table B.4: Two-way ANOVA on bidders’ learning behavior w.r.t. profit.
n = 351 DF F -value Pr(> F )
Overall 1 0.03 0.954
learn 1 0.03 0.954

Estimate t-value Pr(> |t|)
(Intercept) 0.42 2.022 0.044 *
learn = 1 0.02 0.057 0.954

Table B.5: Two-way ANOVA on bidding behavior compared to previous round.
n = 3368 DF F -value Pr(> F )
Overall 7 20.06 < 0.001 ***
pr.round 3 39.19 < 0.001 ***
p 1 2.62 0.11
pr.round : p 3 6.75 < 0.001 ***

Estimate t-value Pr(> |t|)
(Intercept) 4.66 4.141 < 0.001 ***
pr.round = A− P -4.08 -2.871 0.004 **
pr.round = NA− L 1.40 0.460 0.646
pr.round = NA− P -6.11 -4.992 < 0.001 ***
p = UP 4.13 2.596 0.009 **
pr.round = A− P : p = UP -2.84 -1.362 0.173
pr.round = NA− L : p = UP -9.99 -2.960 0.003 **
pr.round = NA− P : p = UP -6.72 -3.803 < 0.001 ***
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B.3 Monte Carlo simulation

Table B.6: Monte Carlo simulation.
DP auction UP auction
k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

Uniform distribution
Distribution of the bids relative to the
equilibrium bids

Uniform distribution on
[−17, 7]

Uniform distribution on
[−30, 25]

Number of samples 10,000,000 10,000,000

Average profit per award -3.29 0.39 3.31 -3.75 -0.74 1.73

Share of awarded bids with a loss 66% 46% 34% 63% 51% 41%
Average deviation of the . . . from the equi-
librium bid
... 1st lowest bid ... -10.45 -10.48 -10.52 -19.41 -19.40 -19.40

... 2nd lowest bid ... -7.32 -7.36 -7.42 -12.69 -12.69 -12.69

... 3rd lowest bid ... -5.61 -5.64 -5.68 -5.98 -5.98 -5.98

... 4th lowest bid ... -4.41 -4.40 -4.39 0.98 0.98 0.98

... 5th lowest bid ... -2.68 -2.64 -2.58 7.69 7.69 7.69

... 6th lowest bid ... 0.47 0.53 0.59 14.41 14.41 14.41

Normal distribution
Distribution of the bids relative to the
equilibrium bids

Normal distribution with µ =
−5 and σ = 8

Normal distribution with µ =
−3.5 and σ = 16

Number of samples 1,000,000 1,000,000

Average profit per award -3.87 -0.00 3.02 -3.96 -1.43 0.42

Share of awarded bids with a loss 67% 48% 35% 63% 54% 46%
Average deviation of the . . . from the equi-
librium bid
... 1st lowest bid ... -11.39 -11.41 -11.48 -20.54 -20.53 -20.53

... 2nd lowest bid ... -7.61 -7.64 -7.70 -11.85 -11.85 -11.85

... 3rd lowest bid ... -5.71 -5.77 -5.80 -6.08 -6.10 -6.11

... 4th lowest bid ... -4.29 -4.28 -4.27 0.91 0.91 0.89

... 5th lowest bid ... -2.39 -2.36 -2.31 4.86 4.86 4.88

... 6th lowest bid ... 1.42 1.47 1.54 13.55 13.53 13.53

Normal distribution with spike in equilibrium bid

Distribution of the bids relative to the
equilibrium bids

Normal distribution with µ =
−6, σ = 8, and 15%-spike in
0 (equilibrium bid)

Normal distribution with µ =
−3.5, σ = 17, and 8%-spike in
0 (equilibrium bid)

Number of samples 1,000,000 1,000,000

Average profit per award -4.08 -0.19 2.82 -3.92 -1.18 0.76

Share of awarded bids with a loss 67% 47% 35% 62% 53% 45%
Average deviation of the . . . from the equi-
librium bid
... 1st lowest bid ... -11.67 -11.69 -11.75 -21.25 -21.24 -21.24

... 2nd lowest bid ... -7.65 -7.69 -7.75 -11.78 -11.74 -11.76

... 3rd lowest bid ... -5.80 -5.81 -5.84 -5.71 -5.70 -5.72

... 4th lowest bid ... -4.46 -4.46 -4.45 -0.57 -0.55 -0.51

... 5th lowest bid ... -2.77 -2.73 -2.69 5.18 5.21 5.19

... 6th lowest bid ... 0.55 0.60 0.67 14.30 14.31 14.30
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(a) DP auction (b) UP auction

Figure B.1: Distributions of bids around the equilibrium bid in the Monte Carlo simulation.

B.4 Experimental instructions

Welcome to the Experiment!

You are participating in an economic experiment. Please read the follow-
ing instructions carefully. The instructions state everything you need to
know about your participation in the experiment. Please note:

• For arriving on time to the experiment, you will receive a
show-up fee of 5 EUR. You will receive this payment inde-
pendent of the result of the experiment.

• From this moment on, during the whole experiment, you are not
allowed to communicate with other participants. Please do not
surf the Internet. If you have any questions, please raise your hand
silently.

• All decisions are anonymous. This means none of the other par-
ticipants will learn about the identity of any other decision maker.

• In this experiment, you can earn additional money. The exact
amount depends on your decisions as well as on the decisions of the
other participants. The total amount of money you will have earned
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during the experiment plus the show-up fee will be paid out in cash
at the end. The payment will be individual and anonymous that
means no one learns about the payments of the other participants.
This experiment uses the currency “Monetary Units” (GE). 5 GE
correspond to one EUR, or 1 GE corresponds to 0.20 EUR.

• For this experiment, you have a starting balance of 30 GE.

The Experiment
The experiment consists of 40 rounds. In each round, you form a

group of six with five other, randomly selected participants. The compo-
sition of your group is unknown and changes each round. In each round,
you have exactly one decision to take.
PROCEDURE OF THE EXPERIMENT

In each of the 40 rounds, you compete against the other five members
within your group for the award of one or several assignments each
for the delivery of one unit of a good. The 40 rounds are divided into
four sections of 10 rounds each: Section 1 with rounds 1-10, Section 2
with rounds 11-20, Section 3 with rounds 21-30 and Sections 4 with rounds
31-40.
The particular sections only differ in how many units of the good are
demanded in the respective rounds. The number of units of demand is
either one, two or three. This means that in all rounds of a section either
one, two or three units of the good are demanded. The number of units
of demand per round is announced at the beginning of each section.
DECISION

In all 40 rounds, you represent a company which produces one unit of a
certain good with the intention to sell. All members within your group of
six (i.e. their companies) produce one unit of the same good and compete
for selling their good only by their offer prices. In each round, the cost
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of producing a unit of the good is the same for all members of
your six member group. The costs change each round and are drawn
randomly. However, the production costs are unknown. Therefor you
and each other group member receive an individual estimated value
for these costs.
In each of the 40 rounds, you can produce and sell one unit of the good
with the valid production costs for this round. Your decision consists of
submitting an offer price for selling the unit.
If your offer is accepted, you will earn the profit in the amount of the
sales price less the actual production costs. If your offer is rejected,
you will not receive any payment and you will not incur any costs as you
do not produce the goods. Thus your profit is equal to zero.
PROCEDURE OF A ROUND

Each of the 40 rounds is structured as follows:

(1) Random group composition
In each round you and five other randomly selected participants
form a group of six. You do not know who the other members of your
group are.

(2) Demand and accepted offers
In Section 1 and 4 one unit is demanded, in Section 2 two units are
demanded and in Section 3 three units are demanded. Accordingly,
in each round either the lowest offer or the two lowest offers or
the three lowest offers are accepted.

(3) Cost of production
In each round, the cost of production for one unit of the good are
the same for all members within a group of six. The cost of
production are defined at the beginning of each round as a random
integer between 125 GE and 325 GE, where each whole number
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between 125 GE and 325 GE is equally probable. However, at the
beginning of a round, you do not know the cost of production; you
only learn them after the round is finished.

(4) Individual cost estimations
At the beginning of each round your individual cost estimation for
the cost of production is announced to you. This cost estimation is
an integer and deviates from the cost of production by maxi-
mum 18 GE. Each cost estimation is randomly defined, where each
whole number between the cost of production minus 18 GE and the
cost of production plus 18 GE is equally probable. The individual
cost estimations of the members within your group can differ. You
only know your individual cost estimation.
Example for (3) and (4):
In this example, let the randomly defined – as described in (3) – cost
of production be 230 GE. Consequently, each member of your group
of six obtains an individual cost estimation between 230 GE – 18 GE
= 212 GE und 230 GE + 18 GE = 248 GE.

Let the six cost estimations of your group be defined as described in
(4) and be given by: 219 GE, 236 GE, 230 GE, 242 GE, 227 GE
and 215 GE. That is, your individual cost estimation can be smaller,
equal or greater than the cost of production.

(5) Decision
You decide about your offer for a unit of the good produced by
your firm. Simultaneously, the other members within your group
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of six take their decisions about their offers. All participants only
know their own offer and are unaware of the others’ offers. Your
offer consists of one offer price. This offer price is only allowed to
be between 100 GE and 350 GE.

(6) Award price
If your offer is accepted, the award price will be determined by your
offer price:

award price = offer price

If your offer is accepted, the award price will be determined by the
lowest not accepted offer in your six member group:

award price = lowest not accepted offer in your six member
group

Thus all accepted offers of one round obtain the same award price. If
one unit is demanded, than the second lowest offer will determine the
award price. If two units are demanded than the third lowest offer
will determine the award price and so on.

(7) Result
If your offer is accepted, your profit equals your offer price less the
cost of production:

profit = offer price – cost of production

If your offer is not accepted, you receive no payment, the cost of
production do not accrue and thus your profit is zero.
In the end of each round you are informed about the result of the
round. This information includes, if your offer was accepted and if
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yes, at which award price you sell your unit of the goods and what
your profit was in that round.
In addition, the cost of production, the anonymized order of all offers
with the corresponding individual cost estimations and profits
within your group of six are announced.

The particular rounds only differ in Paragraph (2), i.e. the number of
units of demand or the number of accepted offers. The Paragraphs (1)
and (3) – (7) are equal for all 40 rounds.
NOTICE

In case of equal offer prices, awards are determined by a random mech-
anism.
YOUR PAYMENT

For your payment in the end of the experiment three (out of ten)
rounds of each of the four Sections are randomly chosen, where
all rounds are equally probable. The results of the other rounds are not
paid. Your profits of these 12 randomly chosen rounds are added up and
amount together with your starting balance of 30 GE to your total pay-
ment. If the sum of your profits is negative, i.e. result in a loss, this loss
will be deducted from your starting balance; a negative total payment is
not possible, however. This means: If your loss out of the 12 randomly
chosen rounds exceeds 30 GE, your total payment will be 0 GE. Your total
payment will be converted into EUR (5 GE correspond to 1 EUR).
Your payment is the sum of your total payment (in EUR) and
your show-up fee (5 EUR).

B.5 Experimental questionnaire

Welcome to the Experiment!

You are participating in an economic experiment. Please read the follow-
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ing instructions carefully. The instructions state everything you need to
know about your participation in the experiment. Please note:

• For arriving on time to the experiment, you will receive a
show-up fee of 5 EUR. You will receive this payment inde-
pendent of the result of the experiment.

• From this moment on, during the whole experiment, you are not
allowed to communicate with other participants. Please do not
surf the Internet. If you have any questions, please raise your hand
silently.

• All decisions are anonymous. This means none of the other par-
ticipants will learn about the identity of any other decision maker.

• In this experiment, you can earn additional money. The exact
amount depends on your decisions as well as on the decisions of the
other participants. The total amount of money you will have earned
during the experiment plus the show-up fee will be paid out in cash
at the end. The payment will be individual and anonymous that
means no one learns about the payments of the other participants.
This experiment uses the currency “Monetary Units” (GE). 5 GE
correspond to one EUR, or 1 GE corresponds to 0.20 EUR.

• For this experiment, you have a starting balance of 30 GE.

The Experiment
The experiment consists of 40 rounds. In each round, you form a

group of six with five other, randomly selected participants. The compo-
sition of your group is unknown and changes each round. In each round,
you have exactly one decision to take.
PROCEDURE OF THE EXPERIMENT



B.5 Experimental questionnaire 171

In each of the 40 rounds, you compete against the other five members
within your group for the award of one or several assignments each
for the delivery of one unit of a good. The 40 rounds are divided into
four sections of 10 rounds each: Section 1 with rounds 1-10, Section 2
with rounds 11-20, Section 3 with rounds 21-30 and Sections 4 with rounds
31-40.
The particular sections only differ in how many units of the good are
demanded in the respective rounds. The number of units of demand is
either one, two or three. This means that in all rounds of a section either
one, two or three units of the good are demanded. The number of units
of demand per round is announced at the beginning of each section.
DECISION

In all 40 rounds, you represent a company which produces one unit of a
certain good with the intention to sell. All members within your group of
six (i.e. their companies) produce one unit of the same good and compete
for selling their good only by their offer prices. In each round, the cost
of producing a unit of the good is the same for all members of
your six member group. The costs change each round and are drawn
randomly. However, the production costs are unknown. Therefor you
and each other group member receive an individual estimated value
for these costs.
In each of the 40 rounds, you can produce and sell one unit of the good
with the valid production costs for this round. Your decision consists of
submitting an offer price for selling the unit.
If your offer is accepted, you will earn the profit in the amount of the
sales price less the actual production costs. If your offer is rejected,
you will not receive any payment and you will not incur any costs as you
do not produce the goods. Thus your profit is equal to zero.
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PROCEDURE OF A ROUND
Each of the 40 rounds is structured as follows:

(1) Random group composition
In each round you and five other randomly selected participants
form a group of six. You do not know who the other members of your
group are.

(2) Demand and accepted offers
In Section 1 and 4 one unit is demanded, in Section 2 two units are
demanded and in Section 3 three units are demanded. Accordingly,
in each round either the lowest offer or the two lowest offers or
the three lowest offers are accepted.

(3) Cost of production
In each round, the cost of production for one unit of the good are
the same for all members within a group of six. The cost of
production are defined at the beginning of each round as a random
integer between 125 GE and 325 GE, where each whole number
between 125 GE and 325 GE is equally probable. However, at the
beginning of a round, you do not know the cost of production; you
only learn them after the round is finished.

(4) Individual cost estimations
At the beginning of each round your individual cost estimation for
the cost of production is announced to you. This cost estimation is
an integer and deviates from the cost of production by maxi-
mum 18 GE. Each cost estimation is randomly defined, where each
whole number between the cost of production minus 18 GE and the
cost of production plus 18 GE is equally probable. The individual
cost estimations of the members within your group can differ. You
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only know your individual cost estimation.
Example for (3) and (4):
In this example, let the randomly defined – as described in (3) – cost
of production be 230 GE. Consequently, each member of your group
of six obtains an individual cost estimation between 230 GE – 18 GE
= 212 GE und 230 GE + 18 GE = 248 GE.

Let the six cost estimations of your group be defined as described in
(4) and be given by: 219 GE, 236 GE, 230 GE, 242 GE, 227 GE
and 215 GE. That is, your individual cost estimation can be smaller,
equal or greater than the cost of production.

(5) Decision
You decide about your offer for a unit of the good produced by
your firm. Simultaneously, the other members within your group
of six take their decisions about their offers. All participants only
know their own offer and are unaware of the others’ offers. Your
offer consists of one offer price. This offer price is only allowed to
be between 100 GE and 350 GE.

(6) Award price
If your offer is accepted, the award price will be determined by your
offer price:

award price = offer price

If your offer is accepted, the award price will be determined by the
lowest not accepted offer in your six member group:
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award price = lowest not accepted offer in your six member
group

Thus all accepted offers of one round obtain the same award price. If
one unit is demanded, than the second lowest offer will determine the
award price. If two units are demanded than the third lowest offer
will determine the award price and so on.

(7) Result
If your offer is accepted, your profit equals your offer price less the
cost of production:

profit = offer price – cost of production

If your offer is not accepted, you receive no payment, the cost of
production do not accrue and thus your profit is zero.
In the end of each round you are informed about the result of the
round. This information includes, if your offer was accepted and if
yes, at which award price you sell your unit of the goods and what
your profit was in that round.
In addition, the cost of production, the anonymized order of all offers
with the corresponding individual cost estimations and profits
within your group of six are announced.

The particular rounds only differ in Paragraph (2), i.e. the number of
units of demand or the number of accepted offers. The Paragraphs (1)
and (3) – (7) are equal for all 40 rounds.
NOTICE

In case of equal offer prices, awards are determined by a random mech-
anism.
YOUR PAYMENT
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For your payment in the end of the experiment three (out of ten)
rounds of each of the four Sections are randomly chosen, where
all rounds are equally probable. The results of the other rounds are not
paid. Your profits of these 12 randomly chosen rounds are added up and
amount together with your starting balance of 30 GE to your total pay-
ment. If the sum of your profits is negative, i.e. result in a loss, this loss
will be deducted from your starting balance; a negative total payment is
not possible, however. This means: If your loss out of the 12 randomly
chosen rounds exceeds 30 GE, your total payment will be 0 GE. Your total
payment will be converted into EUR (5 GE correspond to 1 EUR).
Your payment is the sum of your total payment (in EUR) and
your show-up fee (5 EUR).

B.6 Participants and payments

Pricing rule Section order Session Payment [EUR] Average Payment [EUR]2

UP 1-3-2-1 29.03.2017, 11:00 201.60 10.09
UP 3-1-2-3 24.03.2017, 14:00 215.20 11.12
DP 3-2-1-3 24.03.2017, 11:00 481.60 13.22DP 1-3-2-1
DP 2-3-1-2 22.03.2017, 14:00 465.40 12.65DP 2-1-3-2
UP 2-3-1-2 22.03.2017, 11:00 477.80 13.13UP 2-1-3-2
DP 1-2-3-1 15.03.2017, 16:00 466.00 12.25DP 3-2-1-3
UP 1-2-3-1 15.03.2017, 13:30 379.20 10.12UP 3-2-1-3
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