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ABSTRACT

Using a two-year dataset (2016–17) from 17 one-minute rain gauges located in the moist forest region of

Ghana, the performance of Integrated Multisatellite Retrievals for GPM, version 6b (IMERG), is evaluated

based on a subdaily time scale, down to the level of the underlying passive microwave (PMW) and infrared

(IR) sources. Additionally, the spaceborne cloud product Cloud Property Dataset Using SEVIRI, edition

2 (CLAAS-2), available every 15min, is used to link IMERG rainfall to cloud-top properties. Several im-

portant issues are identified: 1) IMERG’s proneness to low-intensity false alarms, accounting for more than a

fifth of total rainfall; 2) IMERG’s overestimation of the rainfall amount from frequently occurring weak

convective events, while that of relatively rare but strong mesoscale convective systems is underestimated,

resulting in an error compensation; and 3) a decrease of skill during the little dry season in July and August,

known to feature enhanced low-level cloudiness and warm rain. These findings are related to 1) a general

oversensitivity for clouds with low ice and liquid water path and a particular oversensitivity for low cloud

optical thickness, a problem which is slightly reduced for direct PMW overpasses; 2) a pronounced negative

bias for high rain intensities, strongest when IR data are included; and 3) a large fraction of missed events

linked with rainfall out of warm clouds, which are inherently misinterpreted by IMERG and its sources. This

paper emphasizes the potential of validating spaceborne rainfall products with high-resolution rain gauges

on a subdaily time scale, particularly for the understudied West African region.

1. Introduction

Human activities and socioeconomic stability in de-

veloping countries within the tropics are strongly influ-

enced by the availability and variability of precipitation

(UN 2009). Droughts and torrential rainfall belong to

the risks on the extreme sides of the rainfall spectrum

and have distressed West Africa in the past few decades

(Nicholson 1981; Lamb and Peppler 1992; Benson and

Clay 1998; L’Hôte et al. 2002; Paeth et al. 2011; Panthou

et al. 2014; Sanogo et al. 2015). Historically, rain gauges

have been the most reliable source for the investigation

of West African rainfall characteristics and trends (e.g.,

Nicholson et al. 2012). In the current age of remote

sensing, spaceborne rainfall information is provided al-

most in real time and has mitigated the dependency

on often sparsely available rain gauge data in Africa,

where maintenance and accessibility have frequently

become subject to the lack of political will, interest, or

financial means. Thus, satellite-based precipitation es-

timates play a key role in the ongoing development of

hydrological and numerical weather models as well as
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water resource management, which can help preventing

rainfall-related socioeconomic losses (Thiemig et al. 2012).

A recent result of continuous technical advance-

ment is the satellite-based, globally gridded rain-

fall product Integrated Multi-Satellite Retrievals for

Global PrecipitationMeasurement (GPM) (IMERG;Hou

et al. 2014; Huffman et al. 2015), whichwent operational in

2014 and builds upon the legacy of the Tropical Rainfall

Measuring Mission (TRMM) Multisatellite Precipitation

Analysis (TMPA; e.g., Kummerow et al. 1998; Huffman

et al. 2007). The fundamental idea behind IMERG is a

seamless blending of passive microwave (PMW) and in-

frared (IR) information based on a large ensemble of

satellite imagers and sounders (Huffman et al. 2019a). IR

retrievalmethods benefit from a high data sampling rate of

radiometers aboard geostationary satellites, but correlate

rainfall through an indirect relationship with cloud-top

temperature (e.g., Arkin et al. 1994). PMW techniques, in

turn, suffer from a lower sampling rate from satellites on

low-Earth orbits, but are physically more direct and rely

on the interaction between upwelling MW signals and

precipitation-sized hydrometeors in clouds (Petty 1995;

Kidd 2001; Kidd and Levizzani 2011). The resulting high

spatiotemporal resolution (0.18 3 0.18 and 30min) on a

global scale makes IMERG interesting for a wide range of

hydrological applications (e.g., Gaona et al. 2016; Zubieta

et al. 2017; Mazzoglio et al. 2019) and the investigation of

convective phenomena, particularly in the tropics (e.g.

Gaona et al. 2018; Maranan et al. 2019).

Passive rainfall retrieval techniques are inherently

prone to errors and biases (Islam et al. 2017), which are

often region specific (McCollum et al. 2000; Petković

and Kummerow 2017). The significance of IMERG as

well as TMPA has led to a large number of validation

efforts against ground-based rainfall observations on

several time scales (e.g., Wolff et al. 2005; Nair et al.

2009; Wang and Wolff 2010; Karaseva et al. 2012; Chen

et al. 2013; Mantas et al. 2015; Tan et al. 2016; Gaona

et al. 2016; Xu et al. 2017), and in particular for the data-

sparse African continent (e.g., Adeyewa and Nakamura

2003; Nicholson et al. 2003; Dinku et al. 2007; Roca et al.

2010; Jobard et al. 2011; Thiemig et al. 2012; Gosset et al.

2013; Pfeifroth et al. 2016;Dezfuli et al. 2017b,a;Monsieurs

et al. 2018; Camberlin et al. 2019). A general conclusion

that can be drawn from these studies is that IMERG and

TMPA belong to the best rainfall products on monthly

down to daily time scales. Much of the good performance

has been credited to the monthly calibration against rain

gauges, which has successfully led to an overall reduction

of bias.

One ongoing challenge, however, is the question how

spaceborne rainfall products perform on a subdaily time

scale. Deficiencies in the observations of single rainfall

events eventually lead to erroneous rainfall amounts on

larger time scales unless gauge calibration mitigates this

issue. Thus, understanding the sources of errors on the

shortest possible time scale is a key element in improv-

ing the overall product (Huffman et al. 2007). In the case

of the densely populated West Africa, there is a general

shortage of spatiotemporally high-resolution validation

sources for rainfall, such as rain gauges and radars, as

well as sources for environmental conditions, such as

in situ weather stations and radiosondes (Fink et al.

2011), and only few studies analyzed the behavior of

IMERG/TMPA for this region on a subdaily time scale.

Dezfuli et al. (2017b) investigated the performance of

IMERG compared to TMPA with high-resolution rain

gauges from the Trans-African Hydrometeorological

Observatory (TAHMO) project (van de Giesen et al.

2014) based on different rainfall types in West Africa.

Owing to the higher spatiotemporal resolution, they

concluded that IMERG has improved from TMPA in

capturing the distributions of rainfall rates, especially

during intense rainfall events, which is a known weak-

ness of TMPA (Monsieurs et al. 2018). Furthermore,

over some well-gauged West African sites, Pfeifroth

et al. (2016) recently highlighted a delay in the diurnal

rainfall cycle within multisatellite-based products such

as TMPA, which largely originate from the underlying

IR data sources. In this context of source-specific un-

certainties, Tompkins and Adebiyi (2012) found that

TMPA reacts to deep cloud structures in the coastal area

with more enhanced rainfall than products based purely

on PMW data, with the latter being more sensitive to

high ice content in Soudano–Sahelian cloud systems

than TMPA. Consequently, the works of Tan et al.

(2016) and Gebregiorgis et al. (2017) recommend an

individual evaluation of the underlying PMW and IR

sources, ideally for different seasons, in order to detect

error cancellation effects. Analyzed for North America,

IR tends to produce higher magnitudes in misses and

false alarms than PMW, the latter of which, however,

exhibits varying error contributions between the sum-

mer and winter season.

The aim of this work is to build upon aforementioned

validation strategies to identify and deduce sources

of errors in IMERG at its half-hour time scale for

the understudied West African forest zone. In the

framework of the Dynamics–Aerosol–Chemistry–Cloud

Interactions in West Africa (DACCIWA) project

(Knippertz et al. 2015, 2017; Flamant et al. 2018), a

dense network of 17 one-minute rain gauges was es-

tablished in southern Ghana in 2015, which will serve

as the validation dataset. The region is a suitable test-

bed for the validation of IMERG because of the di-

versity of the rainy and dry seasons, and the occurrence
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of different rainfall types throughout the year (Hamilton

et al. 1945; Eldridge 1957; Kamara 1986; Fink et al. 2006;

Janiga and Thorncroft 2014; Maranan et al. 2018). In a

further step, IMERG rainfall is linked to various mi-

crophysical cloud-top properties. This unique approach,

that is, a subdaily, seasonal-, rainfall-type-, IMERG-

source-, and cloud-property-based evaluation, can pro-

vide valuable insights into the behavior, strengths, and

deficiencies of IMERG.

This study is structured as follows: After a description

of the datasets and evaluation methods in sections 2 and

3, general characteristics of rainfall in the rain gauges

and IMERG rainfall are given in section 4 before the

performance of IMERG is evaluated in section 5. The

latter is further decomposed from the perspective of

different IMERG sources (section 6). Finally, the link to

cloud properties is presented section in 7, before the

manuscript is concluded with a discussion and summary

in sections 8 and 9, respectively.

2. Data

a. IMERG V6B

IMERG V6B, final version (IMERG hereafter, unless

noted otherwise; Huffman et al. 2019b), is a Level 3 glob-

ally gridded precipitation product that combines data from

several sources within the GPM satellite constellation.

It includes the GPM Core Observatory satellite with a

dual-frequency precipitation radar and the 13-channel

PMW imager GMI, multiple partner PMW instruments,

and IR information from geostationary satellites.

Rainfall estimates in IMERG are processed on a

0.18 grid (blue grid in Fig. 1) every 30min. The IMERG

algorithm builds on the satellite merging techniques

applied in its predecessor TMPA (Huffman et al. 2007,

2010). After an initial calibration of all partner PMW

sensors toward rainfall estimates of the GPM/TRMM

Combined Radar-Radiometer (CORRA), they are

merged from their native spatial resolution onto the

Level 3 IMERG grid at every half-hour time step. In

regions without a direct PMW overpass, PMW obser-

vations are spatiotemporally ‘‘morphed’’ forward and

backward using water vapor motion vectors from

the hourly available reanalysis product Modern-Era

Retrospective Analysis for Research and Applications,

version 2 (MERRA-2; Gelaro et al. 2017), similar

to the principle of the Kalman filter (KF)-based

Climate Prediction Center (CPC) morphing tech-

nique (CMORPH-KF; Joyce and Xie 2011). Beyond a

‘‘forecast’’ time of 630min from the closest PMW

observation, estimations from PMW-calibrated IR

information based on the principles of PERSIANN-

CCS (Hong et al. 2004) are additionally included

(Huffman et al. 2019c). In a last step, monthly IMERG

FIG. 1. Distribution of the DACCIWARG stations in the Ashanti region of Ghana (see map

inset in the upper-left corner). Each red number represents an RGwith names given in the top-

right inset. The blue grid illustrates the IMERG pixels. RG-associated IMERG pixels that are

used for the point-to-pixel comparison are denoted by the light-red shading. The gray shaded

background shows the topography of the study region as provided by the Global LandOne-km

Base Elevation Project (GLOBE; Hastings et al. 1999).
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estimates are calibrated toward rain gauge data from

the Global Precipitation Climatology Centre (GPCC;

Schneider et al. 2008).

In similar fashion to Tan et al. (2016), three categories

of IMERG observations are considered: 1) direct PMW

overpasses (PMW-direct hereafter), 2) pure PMW morph-

ing (MORPH-only), and 3) a mixture of morphed PMW

and IR (MORPH1IR). As seen later, a fourth category,

IR-only, is not evaluated due to its low sample size. Within

the IMERGoutput variable ‘‘precipitationCal’’ (containing

the gauge-calibrated precipitation field), these cate-

gories can be discriminated using the auxiliary variables

‘‘HQprecipitation’’ and ‘‘IRkalmanFilterWeight.’’ While

the former is used to identify ‘‘PMW direct’’ areas, the

latter refers to the weight of IR observations wherever

‘‘PMW-direct’’ is absent. It ranges from 0% (MORPH-

only) to 100% (IR-only).

b. Rain gauge dataset

In the framework of theDACCIWAproject, a total of 17

optical rain gauges (RGs hereafter) were installed within a

radius of approximately 80km around the city of Kumasi in

theGhanaian forest zone (Fig. 1) andwent fully operational

in December 2015. Ten RG sites coincide with rain gauge

stations operated by the Ghana Meteorological Agency

(GMet). The rest were placed on secured school yards.

The RG instrumentation operates on the principle

that rainwater is funneled through a rain collector,

forming drops equal to 0.01mm of rainfall. These are

counted by an IR sensor and stored in a logger every

minute. Comparable RG networks in West Africa with

such a high precision only exists in the framework of

African Monsoon Multidisciplinary Analysis–Coupling

the Tropical Atmosphere and the Hydrological Cycle

(AMMA-CATCH; Lebel et al. 2009) and the TAHMO

project (van de Giesen et al. 2014). The upper bound of

measurable rainfall rate is approximately 300mmh21,

which would cause a water stream rather than the for-

mation of drops.

For the present study, quality-controlled RG data

from 2016 and 2017 are used for validation. The quality

control was performed on daily rainfall and followed

two steps. First, a manual removal of obviously erro-

neous periods, such as unrealistic values or long periods

of obvious failed recordings, was performed by com-

parison with neighboring RGs. Second, daily RG rain-

fall was compared with collocated GMet data. While no

specific threshold value was applied, days that exhibit a

strong deviation to GMET were removed. Although

valuable rainfall data exist for large parts of the two years,

intermittent power outages and other issues due to

electronics and environmental influences caused epi-

sodes of missing data (Fig. S1 in the online supplemental

material). Larger data gaps exist from September 2016

toMay 2017, when data were temporarily obtained from

only seven RGs. Therefore, RGs with longer data rec-

ords may have a stronger influence in the skill measures

(Monsieurs et al. 2018). Since no rainfall data from these

RGs were ingested into the Global Telecommunication

System, they were not part of the monthly IMERG

gauge calibration and thus serve as an independent

validation source. The raw rainfall data used in the

present study are available under https://doi.org/10.6096/

baobab-dacciwa.1772.

c. CLAAS-2

To investigate cloud properties around rainy episodes,

RG and IMERG rainfall is linked to cloud-top in-

formation from the Cloud Property Dataset Using

SEVIRI, edition 2 (CLAAS-2) dataset (Stengel et al.

2014; Benas et al. 2017). CLAAS-2 is compiled by the

Satellite Application Facility on Climate Monitoring

(CM SAF), which processes data from the multichan-

nel Spinning Enhanced Visible and Infrared Imager

(SEVIRI) on board the Meteosat satellite with a spa-

tiotemporal resolution of 3 km (at nadir) and 15min,

respectively (Aminou 2002). We make particular use of

three quantities: 1) the cloud optical thickness (COT) in

the visible spectrum, increasing with stronger scattering

by water droplets and ice crystals (Glickman 2000); 2) the

IR cloud-top brightness temperature (CTT); and 3) the

cloud drop effective radius (Reff), defined as the weighted

mean of the droplet size distribution (Hansen and Travis

1974). All values are taken at the nearest grid points and

closest time stamps of the rainfall events.

The retrieval of the cloud properties follows the

scheme described in Roebeling et al. (2008). Initially,

the cloud phase at a given cloudy pixel is determined

through several threshold tests with observed and sim-

ulated IR brightness temperature fields, which ulti-

mately yields a flag (‘‘liquid’’ or ‘‘ice’’). Through an

iterative matching algorithm similar to that described in

Nakajima and King (1990), Reff and COT are then es-

timated using lookup tables of simulated reflectances for

liquid or ice phase at the wavelengths 0.6 and 1.6mm.

While liquid droplets are assumed to be spherical with

Reff,l ranging between 3 and 34mm, ice particles are

considered to be monodisperse, hexagonal, and ran-

domly orientated with Reff,i values from 5 to 80mm

(CM SAF 2016). In both cases, the maximum of COT is

set to 100. Beyond this value, COT becomes indistin-

guishable from higher values for a givenReff. Combining

COT and Reff, the liquid and ice water path (LWP,

IWP), that is, the vertically integrated amount of liquid

and frozen water droplets, respectively (Glickman 2000),

can be estimated via (Stephens 1978; Benas et al. 2017):
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LWP, IWP5
2

3
r
(l,i)

COTR
eff,(l,i)

, (1)

where r(l,i) are the densities of water and ice, respec-

tively. Note that since the retrieval of Reff and COT

require solar radiation, both can be determined only

during daytime.

3. Methods

a. Measures for point-to-pixel validation

IMERG is validated on a half-hourly point-to-pixel

basis by taking the closest grid cell to the respective RGs

(e.g., Thiemig et al. 2012). It shall be stressed that point

measurements by RGs sometimes lack representative-

ness of the averaged rainfall in satellite pixels, which

presumably becomes less severe with increasing reso-

lution in satellites (Tan et al. 2016; Monsieurs et al.

2018). In the present setting, only one IMERG pixel

contains more than one RG for a potential investigation

of intrapixel variabilities. Potential effects on the results

are discussed in section 8. Hence, while acknowledging

this caveat, no further processing such as spatial aver-

aging of RG data is performed. Half-hour intervals with

an aggregated amount of less than 0.1mm (0.2mmh21)

are discarded to account for potential noise in the RG

dataset. The same threshold is applied to IMERG,

which corresponds to the minimum detectable rainfall

rate of the GPM Ka-band radar (Tan et al. 2016).

Two groups of statistical measures are used. The first

group is derived from the 2 3 2 contingency table with

hits H (rainfall in both RG and IMERG), misses M

(rainfall in RG only), false alarms F (rainfall in IMERG

only), and correct negatives N (zero rainfall in both RG

and IMERG) (see Fig. 2). The probability of detection

(POD), probability of false alarms (POFA), bias in

detection (BID), and the Heidke skill score (HSS) are

then defined by (see Wilks 2011)

POD5
H

H1M
, (2)

POFA5
F

H1F
, (3)

BID5
H1F

H1M
, (4)

HSS5
2(HN2FM)

(H1F)(F1N)1 (H1M)(M1N)
. (5)

POD quantifies the ability of IMERG to detect rainy

episodes as recorded by the RGs and is perfect when

POD5 1. Similarly, POFA is the fraction of false alarms

relative to all rainfall occurrences in IMERG. If no false

alarms are produced, then POFA 5 0. BID determines

whether IMERG tends to overestimate (BID . 1) or

underestimate (BID, 1) the rainfall frequency. Finally,

the HSS evaluates the performance of IMERG com-

pared to random chance. A value of HSS 5 1 indicates

maximum skill, a value of HSS 5 0 means no skill.

Technically, the HSS can become negative, which would

imply a lower skill of IMERG than random draws.

As in Tan et al. (2016), the second group of measures

compares the rainfall rates from the subset of hits, where

the mean error (ME) and mean absolute error (MAE)

and their normalized counterparts, NME and NMAE,

are calculated via

ME5
1

n
�
i

(y
i
2 x

i
) and NME5

1

n
�
i

(y
i
2 x

i
)

1

n
�
i

x
i

, (6)

FIG. 2. Schematic showing how hits, misses, and false alarms are defined based on an exemplary half-hourly

rainfall pattern in (first row) RG and (second row) IMERG with wet (black, $0.2mmh21) and dry time steps

(white). (third row) The standard approach designates misses (false alarms) wherever a rainy time step in RG

(IMERG) is associated with a dry time step in IMERG (RG). (fourth row) In the event-based approach, misses

(false alarms) in adjacent time steps of hits are considered as a reduction (prolongation) of the event duration,

hence termed Duration2 (Duration1). ‘‘Isolated’’ errors are called true misses and false alarms, respectively.
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MAE5
1

n
�
i

jy
i
2 x

i
j and NMAE5

1

n
�
i

jy
i
2 x

i
j

1

n
�
i

x
i

, (7)

where xi and yi denote a pair of RG and IMERG rain

rates, and n the number of hits. All error measures are

perfect if 0. While MAE quantifies the overall error

magnitude, ME indicates the direction of the bias.

Through normalization related to a background cli-

matology of rain rates, the error magnitudes become

comparable, for instance, for different rainfall rates

across different seasons.

b. Identification and definition of rainfall types

In addition to half-hourly rainfall, IMERG’s perfor-

mance for different rainfall types is investigated. Here,

the RG network is considered as a unit, meaning that

spatiotemporally coherent signals at several RGs can be

associated to the same rainfall event. The high temporal

resolution of the RGs then allows an assignment to

specific rainfall types.

First, the identification of rainfall events follows

the correlation-regression method by Upton (2002),

for which the time series of all available RGs were

aggregated to 5-min data. Each rainfall event is then

categorized into one of three rainfall types based

on the definitions in Dezfuli et al. (2017b). Weak

convective rainfall (WCR) exhibits a mean rainfall

rate and duration of less than 10mmh21 and 80min,

respectively. Accordingly, strong convective rainfall

(SCR) is defined for events with at least 10mmh21.

Any event exhibiting at least 80min of uninterrupted

rainfall at one RG or more is classified as a mesoscale

convective system (MCS). Again, RGs affected by the

same event are considered together. For instance, if the

rainfall profile at one stationmatches the criterion for an

MCS, the profiles of all other stations are collectively

assigned to MCS, even if they would not fulfill the cri-

terion individually. That way, we believe that a reason-

able quantification of number and integrated rainfall of

each rainfall type can be obtained.

From the perspective of rainfall events, misses and

false alarms are defined slightly differently compared to

single half-hour time steps (see Fig. 2). Over the length

of a given rainfall event in the RGs, a ‘‘true miss’’ is

considered when no respective IMERG time step con-

tains any rainfall. Otherwise, the duration of the rainfall

event is cut short (Duration2). The same principle ap-

plies for ‘‘true false alarms’’ and Duration1. Finally, we

note that a half-hour RG time step is considered as rainy

as soon as rainfall is detected in at least one of the 5-min

periods.

4. General characteristics of RG and IMERG
rainfall

a. RG-based rainfall types

A total of 2552 separate rainfall events were identified

within the 2-yr period. Figure 3 shows how they fall into

the rainfall categories described in the previous section.

The bulk of events is short lived and has low intensity

(Fig. 3a) with WCRs accounting for over half of all

events (see %n in the legend). Roughly a tenth can be

attributed to longer-lasting MCSs, but these account for

over 60% of total rainfall, while WCRs contribute only

5% (see%RR). This pattern resembles the results in the

satellite-based study of Maranan et al. (2018) for a

broader domain in southern West Africa, where the

contribution of frequent but small-scale convection is

almost negligible.

The temporal evolution of rainfall rates during the

passage of each rainfall type is depicted in Figs. 3b–d. It

is usually marked by a sudden increase within the first

15min followed by a more gradual weakening during

the remainder of the event. We note that these profiles

are highly variable as seen by the interquartile range

(shaded areas). The enhanced rainfall rate in the early

stages is clearly associated with the convective part of

the rainfall system. It is strongest for SCRs (Fig. 3c),

which likely comprise young, but vigorous convective

cells. A major characteristic of MCSs is the extended

trailing stratiform region, which can contribute sub-

stantially to their integrated rainfall amount (green

curve in Fig. 3d). However, because of the weaker na-

ture of this stratiform rainfall, the mean intensity of

the strongest events decreases quasi-exponentially with

longer event durations (Fig. 3a). Note that the inten-

sity of the leading convective part is highly variable

(cf. Dezfuli et al. 2017b), where some of the weaker

events may be related to dissipating MCSs. For WCRs,

a clear convective part cannot be identified in many

cases, as they often last only 5–10min. Also debris of

decaying MCSs occasionally causes instances of weak

and short events.

b. Seasonal evolution of rainfall types in RGs
and IMERG

The composition of rainfall types throughout the year

changes depending on the stage of the West African

monsoon (WAM; e.g., Fink et al. 2006; Janiga and

Thorncroft 2014; Maranan et al. 2018). In Fig. 4a, the

monthly evolution of both the overall number of events

(green curve) and the respective fractions of the rainfall

types are presented. Two number maxima are pres-

ent in June and September, in line with the bi-

modal cycle typical of the West African forest zone
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(Fink et al. 2017). A local minimum in August indi-

cates the so-called little dry season, where the rela-

tive frequency of WCRs strongly increases at the

expense of SCRs. The fraction of MCSs is less than

those of WCRs and SCRs in all months. It exhibits

a distinct peak in April and an apparent decrease

toward the long dry season beginning in November,

but otherwise changes little throughout the year.

Thus, in absolute numbers, MCSs exhibit a simi-

lar seasonal evolution as the event numbers. How

the frequencies translate into the seasonal rainfall

amount is depicted in Fig. 4b. First of all, the sea-

sonal cycle of rainfall averaged over the two years

and all available RGs (white curve) confirms the

bimodal pattern of the event numbers. However,

the pronounced intergauge spread, indicated by

the standard deviation (dashed curves), emphasizes the

high small-scale variability of monthly rainfall. The

fractional rainfall of the individual types, indicated by

the stacked bars, shows a seasonal pattern similar to the

fractional number distributions, however, scaled in

accordance with their respective intensity as shown in

Fig. 3. MCSs are the main contributor to rainfall, ex-

cept for the long dry season where short intense rainfall

events dominate. Remarkably, the high numbers of

WCRs during the little dry season accounts for only

little more than 10% of total rainfall.

The representation of seasonal rainfall and rainfall

types in IMERG is evaluated in Fig. 4c. In general,

IMERG is able to capture the fundamental charac-

teristics well on a monthly scale (correlation coeffi-

cient CC 5 0.98). This is also true for the diurnal time

scale (Fig. S2), which was already found to be well

represented by IMERG in Dezfuli et al. (2017b). The

high agreement in monthly rainfall is likely related to

the gauge calibration, the latter of which is stronger

over Ghana and Togo than elsewhere over West

Africa for 2016 and 2017 (Fig. S3). During the rainy

seasons, IMERG tends to underestimate monthly

rainfall, causing large parts of the averaged root-mean-

square error (RMSE5 14.05mm).At the same time, the

interpixel variability (s 5 15.74mm, gray shaded area)

is far less pronounced than the aforementioned inter-

gauge variability (s 5 37.12mm, light-red shaded area).

FIG. 3. (a) Scatterplot showing the duration andmean rainfall rate (i.e., integrated rainfall amount divided by the

duration) of all individual rainfall events within the study period 2016–17. Different colors denote the rainfall types

listed in the legend and as characterized by Dezfuli et al. (2017b). Here, %n and %RR designate the relative

frequency and fractional rainfall contribution, respectively, both in%. (b)–(d)Marker plots showing composites of

rainfall rates in 5-min bins against elapsed time of event for weak convective rainfall (WCR), strong convective

rainfall (SCR), and mesoscale convective systems (MCSs), respectively. The bin median values are denoted by

connected circles, whereas the interquartile range is given by the colored bars. Themedian for each bin is calculated

by all available events, the number of which decreases toward longer durations (not shown). The green curve is the

cumulative median rainfall.
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It is visibly larger during the second rainy season in

September and October compared to the first rainy

season in May and June. Potential reasons for this be-

havior as well as the overall skill of IMERG are inves-

tigated in the next section.

5. Evaluation of IMERG

Building upon the previous paragraph, the skill of

IMERG on a half-hourly and a point-to-pixel basis is

evaluated for different categories listed as sections in

Table 1. In the following, the results in each section of

Table 1 is discussed and further analyzed. Unless noted

otherwise, the standard approach of the contingency

table is considered (Fig. 2).

a. Rainfall occurrence

The occurrence frequency of the standard contingency

table elements based on all available half-hour time steps

(n 5 419147) is presented in Fig. 5a. First of all, less than

10% of the time steps in either RGs or IMERG contain

rainfall and a total of 1.2% are hits. The errors, in turn, are

clearly dominated by false alarms with a fraction of 6.2%.

However, the decomposition of these false alarms and

misses using the event-based approach of the contin-

gency table reveals that not all errors emerge from a

misinterpretation of isolated rainfall events (Figs. 5b,c).

Almost 40% of falsely detected rainy time steps occur in

association with rainfall events observed by the RGs,

tantamount to an overestimation of the event duration

in IMERG (Duration1, gray bar). The underestimation

of the event duration (Duration2) comprises roughly a

quarter of all misses. However, given the low percentage

of misses in general (0.4%), Duration2 rarely occurs.

Section A of Table 1 summarizes the results in Fig. 5a

as skill measures introduced in section 3. As expected,

an eye-catching result is the high POFA with 0.83,

meaning that 83% of all rainy IMERG time steps are

false alarms. At the same time, 23% of all rainy RG time

steps are missed by IMERG (POD 5 0.77). This pre-

ponderance of false alarms compared to misses is re-

flected in a BID of 4.61. With an HSS of 0.25, however,

IMERG statistically performs better than observations

based on pure chance. It shall be stressed again that

these metrics are based on a simple rain–no rain con-

dition without any information about rainfall rates.

Applying the error measures, IMERG rainfall exhibits a

mean absolute error of 7.22mmh21 and is negatively

biased on average (ME 5 24.53mmh21).

b. Rainfall rates

An important aspect to consider about the rain rate

error measures is that they refer to the same RG and

FIG. 4. Seasonal cycles of (a) the total number of individual

rainfall events (green curve; left axis) and the fractional occurrence

of the RG-based rainfall types (right axis). The respective WAM

seasons are indicated at the top and are defined similarly to

Maranan et al. (2018); (b) the fractional contribution of individual

rainfall types (stacked colored bars; right axis) and the total rainfall

(solid white curve; left axis) averaged over all available RGs. The

dashed lines denote 61s of monthly rainfall within the RG net-

work. We considered a month at a station as ‘‘available,’’ if at least

90%of the days contain data. The total monthly rainfall at a station

was then rescaled to 100% if necessary; and (c) mean RG (red

curve) and IMERG rainfall (black curve) with the rescaling ap-

plied to both RGs and IMERG. The red curve and the light red

shaded area are identical to the solid and dashed white curves,

respectively, in (b). Accordingly, the gray area denote the standard

deviation of monthly rainfall between IMERG pixels.
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IMERG time steps. The scatterplot in Fig. 6a illustrates

how the half-hourly rain rate pairs are distributed.

Note that only hits are considered here. The bulk

of data points comprise rainfall rates in the range

of 1–10mmh21 and is located close to the 1:1 line.

However, the overall variability is high, suggesting is-

sues in rain rate estimation and/or timing. The latter

was found to affect the skill of PMW retrievals (You

et al. 2019, see section 8 for a brief discussion). The

regression line, determined with the error model in

Tian et al. (2013), further indicates a positive and

negative bias for low and high rain rates, respectively.

Ignoring corresponding time steps and arranging this

data subset in a quantile–quantile (Q–Q) plot, differ-

ences in the underlying distribution of rainfall rates

between the RGs and IMERG as well as biases can

be made visible in a more comprehensive manner

(Fig. 6b). While rain rates are almost evenly distrib-

uted up to 2mmh21, the negative bias in IMERG

at higher rain rates becomes increasingly evident.

Overall, IMERG is unable to resolve the most extreme

rainfall rates. Expressed as cumulative distributions,

rainfall rates for hits and other elements from the

event-based contingency table are compared in Fig. 6c.

Around 70% of time steps containing true false alarms

are equal or less than 1mmh21 with a median of

0.55mmh21 (short vertical orange line at the bottom).

This is also true for roughly 50% of all Duration1 time

steps. This hints toward a generally flawed formulation

for very low-intensity rainfall in IMERG. At the same

time, the subsets of true misses as well as Duration2
comprise markedly higher rain rates.

The dependence of IMERG’s performance on certain

rain rate intervals observed by the RGs is evaluated in

section B of Table 1. Here, only POD can be quantified

out of the contingency measures. Increasing rain rates as

measured by the RGs are associated with an increase in

POD. However, the rain rate intervals are differently

biased. As seen in ME, the positive bias at low RG in-

tensities turns strongly negative at high rain rates.

Interestingly, for the weakest andmost intense intervals,

the absolute value of ME is nearly the same as MAE.

Hence, at simultaneous RG and IMERG time steps,

low- and high-intensity RG values are almost exclu-

sively over and underestimated, respectively.

c. Rainfall types

Using the analysis techniques from the previous par-

agraphs, the ability of IMERG in capturing RG-based

rainfall types is shown in Fig. 7. Here, rainfall in the RGs

and IMERG, which are not associated with the respec-

tive rainfall type, is set to zero. This also involves true

false alarms in IMERG. Therefore, misses are repre-

sented by both true misses and Duration2, false alarms

solely by Duration1. Evidently, more hits and less

true misses are observed going from WCRs to MCSs

(Fig. 7a). Thus, the degree of convective organization

is an important factor in IMERG’s detection ability.

However, the overestimation of the event duration is

an issue for all rainfall types. Over half of all rainfall-

type-related time steps in IMERG are Duration1
(dark gray bars in Fig. 7a). By contrast, Duration2
plays an inferior role in detection errors. The Q–Q

plot for each rainfall type highlights remarkable

TABLE 1. Performance evaluation of IMERG based on the measures introduced in section 3 for different categories, namely, all

available time steps (section A), rain rate intervals (section B), rainfall types (section C), and seasons (section D). Note again that only

hits are considered for calculation of the rain rate error measures ME, MAE, NME, and NMAE. In section B, rain rates are based on

the RGs. Therefore, false alarms and correct negatives are not quantified. In section C, rainy time steps in the RGs and IMERG not

associated with the respective rainfall type, i.e., all true false alarms and rainfall of the other rainfall types, are set to zero. Thus, misses

include both true misses and Duration2, whereas false alarms contain only Duration1.

Contingency measures Rain rate error measures (hits only)

Section Description POD POFA BID HSS ME (mmh21) MAE (mmh21) NME NMAE

A All time steps 0.77 0.83 4.61 0.25 24.53 7.22 20.55 0.88

B ,1mmh21 0.69 — — — 2.47 2.54 4.39 4.50

1–5mmh21 0.77 — — — 1.01 2.46 0.40 0.97

5–10mmh21 0.77 — — — 23.07 4.42 20.44 0.63

10–20mmh21 0.82 — — — 210.25 10.67 20.72 0.75

.20mmh21 0.87 — — — 231.90 31.95 20.87 0.87

C WCR 0.33 0.75 1.33 0.28 20.34 1.99 20.15 0.86

SCR 0.63 0.76 2.62 0.35 27.71 9.08 20.75 0.88

MCS 0.92 0.63 2.48 0.52 24.22 7.45 20.49 0.87

D First rainy season 0.83 0.80 4.26 0.29 24.22 7.41 20.51 0.90

Little dry season 0.57 0.88 4.70 0.18 23.88 6.67 20.49 0.85

Second rainy season 0.79 0.81 4.11 0.27 24.98 7.00 20.60 0.84

Long dry season 0.66 0.92 8.06 0.14 25.85 7.59 20.70 0.91
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differences in the rain rate distributions between the

RGs and IMERG (Fig. 7b). Rain rate pairs around

WCR events are well aligned to the 1:1 line, whereas

those of SCRs and MCSs indicate a strong underes-

timation of high-intensity rain rates in IMERG, which

was seen already in Fig. 6b. The most notable differ-

ence between SCR and MCS distributions is found for

lower rain rates. Low-intensity SCR rainfall is clearly

too weak in IMERG as seen by the early deviation of

the SCR curve from the 1:1 line. Since the curve never

approaches the 1:1 line again at higher rain rates, the

integrated SCR rainfall within the subset of hits is

almost exclusively underestimated. Conversely, low-

intensity MCS rainfall, largely occurring during the

overpass of the stratiform part, is slightly too strong in

IMERG.However, IMERGgenerally fails to adequately

capture rain rates above 5mmh21, from where the curve

deviates strongly from the 1:1 line.

The skill is summarized in section C of Table 1.

Considering POD, less than half of WCR time steps

are identified by IMERG but confidence in detection is

strongly increased around MCS events (0.92). Some

cases of true misses do occur even for MCSs. These are

confined to cases where stations were located at the

periphery of MCS passages (not shown). HSS increases

from WCRs toward MCSs, again indicating a higher

detection skill as well as better POFA for organized

convection. It is interesting to note that the values for

BID are still larger than 1. This means that time steps

containing false alarms due to Duration1 outnumber

the sum of time steps with true misses and Duration2.

In other words, the net event duration of all rainfall

types is considerably overestimated by IMERG, which

became clear already in Fig. 7a. This is supported by

the fact that rain rate distribution for WCRs within the

subset of hits is even slightly negatively biased (ME 5
20.34mmh21). Consequently, the integrated WCR

rainfall is generally overestimated by IMERG, whereas

there are compensational effects between longer event

duration and a mean underestimation of rain rates

for SCR and MCS cases (27.71 and 24.22mmh21,

respectively).

d. Seasonality

Projecting the previous results onto a seasonal per-

spective, Fig. 8a shows the averaged, monthly accumu-

lated rainfall difference associated with the occurrence

of the rainfall types by considering the event-based

contingency (Fig. 2), where Duration1 contributes to

a positive bias, Duration2 as well as true misses to a

negative bias. Confirming previous findings, monthly

rainfall amounts associated with WCR events are

overestimated and those linked to SCRs and MCSs

are underestimated. However, September stands out

exhibiting by far the largest negative and positive

number biases for MCSs and WCRs, respectively.

Pronounced underestimation of MCS rainfall is also

visible in October and higher than both in May and

June. Monthly IMERG rainfall obviously consists of

substantial error compensations between the different

rainfall types. Decomposing the seasonal cycle of

IMERG into the contributions of rainfall types in the

same manner as for the RGs (see Fig. 4b) yields re-

markable discrepancies (Fig. 8c). More than a fifth of

IMERG’s total rainfall can be attributed to true false

alarms (light orange bars). This potentially has im-

portant implications for the monthly gauge-calibration

process in IMERG where rainfall estimates in the case

of hits may be scaled in the wrong direction. At the

same time, true misses are observed as well (Fig. 8c).

Both SCRs andMCSs dominate the fractional rainfall of

misses. As mentioned previously, true misses of MCSs

occurred at stations located at the periphery of MCS

passages, but still account for over half of missed rainfall

in some months. WCRs exhibit a marked peak during

FIG. 5. (a) Standard approach of the contingency table on all

available IMERG time steps. Note that the axis is truncated at 10%

for more clarity. The fraction of correct negatives extends further

to 100%. (b),(c) Event-based approach of the contingency table

applied on the false alarm and miss subsets, respectively, of

IMERG. Refer to Fig. 2 for both definitions of the contingency

table. The numbers in the bars denote the percentages.
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the little dry season. The increased frequency of

WCRs during this time of the year suggests season-

specific difficulties in IMERG in detecting low-intensity

events.

More generally, the event-based contingency table

highlights a pronounced difference between dry and

rainy seasons (Fig. 9a). Both dry seasons are dominated

by a much higher frequency of true false alarms (.60%)

compared to the rainy seasons. However, these (low-

intensity) true false alarms appear to be a general issue

within IMERG. In contrast, true misses are far less

frequent overall, but are maximized during the little dry

season. The latter is in large part due to IMERG’s in-

ability to capture WCR events during this period (cf.

Fig. 8c). Considering the subset of hits, the respective

distributions in theQ–Qplot in Fig. 9b largely reflect the

dominating rainfall type in the respective seasons.While

the curves of both rainy seasons resemble that of MCSs,

the long dry season exhibit a pattern similar to SCRs (cf.

Fig. 7b). However, IMERG underestimates high rain

rates stronger during the second rainy season compared

to the first. The quality of rain rate estimation during the

little dry season is distinctively better compared to the

long dry season, but exhibits a similar weak negative bias

at the lowest rain rates. Overall, the obvious common-

ality in all seasons is the negative bias at high rainfall

intensities.

Summarizing the seasonal dependence in section D

of Table 1, the skill of IMERG, although still better

than random chance, is markedly lower during both

dry seasons compared to the rainy seasons due to

both decreased detection ability and frequent false

alarms. During the little dry season, the skill of

IMERG particularly suffers from frequent misses of

WCRs. Interestingly, all error measures are worst for

the long dry season, which is, in some parts, related to

SCRs being the dominant rainfall type during this

period.

6. Source-based evaluation of IMERG

a. Rainfall occurrence and rates

As described in section 2, rainfall observation in

IMERG is composed of estimates based on direct

PMW overpasses (PMW-direct), spatiotemporally ad-

vected PMW information (MORPH-only), and the

combination of MORPH and IR (MORPH1IR). As

seen in Fig. 10a, MORPH-only is the most frequently

used source (37.2%) over the study area, followed by

MORPH1IR (35.1%) and PMW-direct (27.6%). Only

a small fraction is represented by IR-only and is

therefore not subject to further study. While the frac-

tion of misses hardly changes among the sources, it

becomes evident that both PMW morphing and the

inclusion of IR information increase the frequency of

false alarms. IR retrievals are known to misjudge cold

cloud features as rainy, for example, nonprecipitating

anvils (Liu et al. 2007). However, the prevalence of

false alarms in comparison to misses exists in all sour-

ces and suggests a general deficiency of overestimating

rain occurrences.

Focusing again on hits, Fig. 10b shows the Q–Q plot

for all sources. Most notably, the curves shift toward the

right going from PMW-direct to MORPH1IR, indi-

cating an increasing underestimation of rain intensities.

Both PMW-direct andMORPH-only are closely aligned

FIG. 6. Comparison of rain rates between the RGs and IMERG. (a) Scatterplot with RG rain rates on the x axis and IMERG rain rates

on the y axis. Only hits are considered. Darker colors indicate a higher density of points. The regression line was calculated using the

multiplicative error model of Tian et al. (2013). The parameters on the bottom right are total number of hits n, the y intersect a, slope b,

and standard deviation s of the regression in the natural logarithm space of the error model, and the p value of the regression.

(b) Quantile–quantile (Q–Q) plot of RG (x axis) and IMERG (y axis) rain rates. The positions of the 10th, 50th, and 90th percentiles are

highlighted. (c) Cumulative rain rate distribution of the event-based contingency table (Fig. 2). The distribution of the RG rain rates are

plotted in black as a reference. The colored lines at the bottom denote the respective median values.
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to the 1:1 line for very low rain rates, but MORPH-only

deviates from it earlier. Thus, while the underestimation

of high rain rates in IMERG results from every

source, the negative bias is weakest for PMW-direct.

However, this bias appears to be an inherent problem

in the PMW algorithm, which is amplified by morphing

and IR data.

b. Rainfall types and seasonality

Figures 11a–c decomposes the results in Fig. 7a by

source. Again, more hits and less frequent true misses

are detected going from WCRs to MCSs across all

sources. However, the duration of rainfall events

is drastically increased within MORPH-only and/or

MORPH1IR, and is strongest for SCR events. On the

other hand, source-dependent tendencies for true

misses and Duration2 are less obvious, in large parts

due to their low frequency (Fig. 10a). The general

pattern of the source-based Q–Q plots all resemble

FIG. 8. Comparison between RG and IMERG with respect to

total rainfall and representation of rainfall types using the event-

based approach of the contingency table (Fig. 2), all averaged over

collocatedRGs and IMERGpixels. (a)Monthly integrated rainfall

difference for rainfall types. (b) As in Fig. 4b, but for IMERG. The

fractional rainfall contribution of true false alarms is denoted as

orange bars. The solid and dashed white curves are identical to the

black curve and gray area, respectively, in Fig. 4c. (c) As in (b), but

for true misses. The left axis refers to the white curve and the right

axis to the stacked bars.

FIG. 7. (a) Fractional distribution of the event-based contingency

table for WCRs, SCRs, and MCSs. True false alarms are excluded

since only time steps associated with rainfall types are considered.

(b)Q–Qplots of rain rates for time stepswith hits forWCRs, SCRs,

and MCSs.
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the curves for the respective rainfall types seen in

Figs. 7d–f. While PMW-direct again exhibit the weakest

negative bias at high rain rates, the variation among

the sources with respect to rainfall types is otherwise

relatively low.

In the same manner, the different seasons are ana-

lyzed in Fig. 12. First of all, the dominance of true false

alarms is again evident in all seasons (Figs. 12a–d).

Interestingly, their fractions barely show a dependency

on the source and rather exhibit similar values. With the

exception of the long dry season, it is Duration1 that

increases going from PMW-direct to MORPH1IR,

which eventually causes the increase in false alarms

in the standard approach of the contingency table

(Fig. 10a). Source-based variations in the Q–Q plots

(Figs. 12e–h) are most apparent for the little dry season,

where rain rates below 10mmh21 are stronger nega-

tively biased in MORPH1IR than in the other sources.

Unlike the other seasons, which are dominated by deep

convection, the larger fraction of shallow precipitating

clouds during the little dry season (not shown) likely

imposes bigger challenges for the CTT-based IR rainfall

estimation.

In summary, the clear benefits of filling data gaps in

IMERG through morphing and inclusion of IR in-

formation come at the expense of amplifying the

weaknesses of the PMW algorithm, that is, longer

event durations and a stronger negative bias of in-

tense rain rates.

7. Link to cloud-top properties

The high temporal resolution of the CLAAS-2

dataset allows us to break down the behavior of

IMERG based upon the presence of different cloud-

top properties and to compare it with the observa-

tions from the RGs. As CLAAS-2 contains cloud-top

information only, this analysis can contribute additional

FIG. 10. (a) Standard approach of the contingency table based

on all available time steps in the IMERG sources. The absolute

numbers of time steps as well as their fraction relative to all

IMERG time steps are given on the right axis. Note that the

axis is truncated at 10% for more clarity. The fraction of correct

negatives extends further to 100%. (b) Q–Q plot of RG rain

rates (x axis) and those of the IMERG sources (y axis). The

respective positions of the 10th, 50th, and 90th percentiles are

highlighted.

FIG. 9. As in Fig. 7, but for the different seasons of theWestAfrican

monsoon. Refer to Fig. 4a for their definition.
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and independent information about error sources, par-

ticularly in PMW measurements, which contain infor-

mation about the precipitation depth within clouds.

a. Cloud characteristics around rainy episodes and
skill of IMERG

Figure 13 compares the probability distribution of

cloud-top properties described in section 2 around all

rainy time steps within the different sources (colored

lines) with those of the RGs (gray shade). Here, we

distinguish between cloud tops in ice (Figs. 13a–d)

and liquid phases (Figs. 13e–h), the latter of which

is associated with warm rain. Note again that the

sample consists of daytime rainfall only since the

retrieval of COT and Reff requires sunlight as input

(see section 2). Although available at all times, the

FIG. 11. As in Fig. 7, but based on the IMERG sources.

FIG. 12. As in Fig. 9, but based on the IMERG sources.
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same temporal subset is taken for CTT in order to

retain consistency.

A fundamental issue with IMERG and its sources is

an overestimation of rainfall related to low LWP

and IWP (,100 gm23), leading to substantially lower

median values compared to the RGs (Figs. 13a,e).

One major reason for this is the oversensitivity for low

COT (Figs. 13b,f), which is more pronounced for ice.

Overall, this issue slightly reduces as soon as direct

PMW observations come into play. With respect to

Reff, IMERG performs well for ice clouds, but is

oversensitive for liquid (i.e., warm) clouds, particularly

below 15mm (Figs. 13c,g). In fact, warm rain becomes

considerably likely for Reff . 14mm (e.g., Lensky and

Rosenfeld 1997; Freud and Rosenfeld 2012), which

already represents the median value of IMERG and its

sources. Thus, while uncertainties in the rainfall oc-

currence associated with glaciated clouds are mostly

related to COT, it is the combination of COT and Reff,l

for warm clouds. With respect to CTT, differences

between IMERG and RGs for frozen cloud tops are

subtle but become more apparent for warm clouds

(Figs. 13d,h). Here, IMERG strongly overestimates

the occurrence frequency of rain around CTTs of

260–270K but underestimates it for cloud tops above

this temperature range. Interestingly, the fractional

number of rainy time steps for CTT . 270K is highest

in MORPH1IR. Overall, IMERG predicts more rain

occurrences from supercooled clouds than recorded by

the RGs.

A look into the skill measures separated for warm and

glaciated clouds as well as all sources reveals a consid-

erable discrepancy in skill between and warm and cold

cloud rainfall (Table 2). Around warm clouds, POD is

substantially lower, POFA is even higher despite being

already around 0.8 for ice clouds, and BID is overall

higher (5.0 versus 4.34 for IMERG). Consequently, HSS

is lower, but still indicates a slightly better skill than

random chance for all sources. ME andMAE are higher

for ice clouds, which is unsurprising due to heavy rainfall

being mostly associated with deep convection. In fact,

the NMAE values are very similar between cold and

warm clouds, the latter of which, however, are associ-

ated with a stronger negative bias (see NME).

b. Origin of hits, false alarms, and misses

Focusing on IMERG only, Fig. 14 illustrates the dis-

tribution of the standard contingency table elements

(Fig. 2) based on all rainy time steps. For IWP (Fig. 14a),

the distributions for hits (blue curve) and the RGs (gray

shade, same as in Fig. 13) are nearly identical. In other

words, with IWP as a reference, IMERG is generally

able to detect rain occurrences as measured by the RGs.

As seen previously, however, IMERG is tuned such that

it produces too many low-intensity false alarms. In the

case of ice clouds, this stems from the aforementioned

FIG. 13. Probability distributions of cloud properties described in section 2 based on all rainy time steps in the RGs (gray shaded),

IMERG, and its sources (colored lines), separated into (a)–(d) glaciated cloud tops and (e)–(h) warm/liquid cloud tops. Note the different

scales for CTT between glaciated and liquid cloud tops. The colored vertical lines at the bottom of each plot denote the median values of

the respective distribution.
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oversensitivity toward low IWP values (orange), which

can be traced back to a flawed relationship with COT

(Fig. 14b). In contrast, the high similarity between the

contingency elements and RGs with respect to Reff,i in-

dicates that hits, false alarms and misses can hardly be

predicted with Reff,i. Considering CTT, the distribution

of misses is shifted towards higher values compared to

that of the RG observation (Fig. 14d), that is, clouds at

lower altitudes.

With respect to warm clouds, IMERG behaves dif-

ferently. As expected from the low POD in Table 2,

IMERG’s current relationship to LWP predominantly

yields misses. In addition, the similarity between hits

and false alarms indicates that warm clouds are fre-

quently misinterpreted. This deficiency is partly related

to a combined oversensitivity for low COT and Reff,l

(Figs. 14f,g). Furthermore, the uncertainty is enhanced

by CTT, where pronounced differences between the

RGs and hits are apparent as well (Fig. 14h). Overall,

this is the reason for frequent misses of WCR events

during the little dry season, which are predominantly

produced by warm clouds (not shown). At the same

time, the aforementioned overestimation of rain occur-

rences for CTTs around 260K are typically false alarms.

8. Discussion

As mentioned in section 2, all results presented in

this study must first be understood from the perspective

of a point-to-pixel validation. While IMERG contains

area-averaged rainfall information within its 0.18 grid

(Huffman et al. 2019c), almost every pixel is compared

with only a single RG. This discrepancy in spatial rep-

resentativeness may affect some of the error measures

TABLE 2. As in Table 1, but for glaciated cloud tops (section A) and warm/liquid cloud tops (section B), and further decomposed into

IMERG and its sources.

Contingency measures Rain rate error measures (hits only)

Section Description Source POD POFA BID HSS ME (mmh21) MAE (mmh21) NME NMAE

A Glaciated clouds IMERG 0.83 0.81 4.34 0.26 24.57 7.33 20.55 0.88

PMW-direct 0.81 0.77 3.53 0.31 22.50 7.54 20.31 0.93

MORPH-only 0.83 0.80 4.08 0.28 24.73 7.54 20.55 0.87

MORPH1IR 0.85 0.85 5.54 0.21 25.37 7.20 20.65 0.87

B Warm clouds IMERG 0.29 0.94 5.00 0.09 23.14 3.61 20.74 0.85

PMW-direct 0.28 0.94 5.15 0.08 23.10 3.88 20.71 0.90

MORPH-only 0.34 0.95 6.34 0.08 23.78 4.19 20.76 0.84

MORPH1IR 0.26 0.93 3.70 0.10 22.17 2.67 20.67 0.83

FIG. 14. As in Fig. 13, but for the elements of the standard contingency table. Results are shown for IMERG only.
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and may hamper the comparability of the most extreme

rain rates between the RGs and IMERG. In fact, further

investigations have shown that a successively increased

number of RGs within coarse-grained IMERG grid

boxes improves skill (according to HSS) and mitigates

bias issues (at high rain rates), although at the expense of

the detection ability (see Table S1 and Fig. 4). This is

consistent with Monsieurs et al. (2018) and Tian et al.

(2018), with the latter authors arguing that the POD is

particularly reduced at low rain rates. By contrast,

gradual coarse-graining of the IMERG grid around a

single RG tends to improve rainfall detection, but

lowers HSS as a result of more false alarms (see Tables

S2–S5). Given this general point-to-pixel uncertainty,

we conclude that some of the errormagnitudes in Tables

1 and 2, particularly MAE, are overestimated.

A particular aspect in IMERG that has rarely been

documented in other studies to the best of the authors’

knowledge is the high occurrence frequency of low-

intensity false alarms. First, we note that the RGs po-

tentially underestimate the frequency of light rain due to

wind and dirt-filter-related undercatch. For reasons

outlined above, we expect that the POFA values are

overestimated. Although examined for a different cli-

matic zone, an additional aspect stressed by You et al.

(2019) is a time lag effect in PMWobservations, in which

false alarms (correlation coefficients) were reduced

(increased) through a temporal shift of PMW estima-

tions relative to surface observations. Indeed, shifting

IMERG backward by one time step (i.e., 230min) re-

sults in the highest correlation coefficient as well as an

increased POD (Fig. S5a and Tables S6 and S7). This

implies that strong rainfall in IMERG tends to lag its

counterpart in the observation, which becomes evident

in all but the little dry season (Fig. S5b). It is speculated

that this lag appears (i) due to limitations of the

morphing technique when, for example during the first

rainy season, particularly fast moving convective sys-

tems are observed within a highly sheared environment

(e.g., Maranan et al. 2018); or (ii) due to the time

needed during the cumulonimbus development until a

critical level of ice water path is reached for rain de-

tection while the convective cell has already started

precipitating (e.g., Pfeifroth et al. 2016). Nonetheless,

frequent false alarms remain a distinct issue in the

present study domain despite a slight improvement in

POFA after the temporal shift. They are source inde-

pendent, but become more pronounced as soon as

spatiotemporal morphing of PMW data and inclusion

of IR data come into play. For TRMM, the latter was

found to be largely associated with nonprecipitating

anvils in convective situations (Liu et al. 2007). As

these false alarms constitute more than a fifth of

monthly IMERG rainfall, they promote a reduction of

daily and subdaily rainfall (and in particular high

rainfall rates) around hits if monthly rainfall is reduced

through gauge calibration. In fact, the early run of

IMERG, which contains data prior to the gauge cor-

rection, exhibits a decreased negative bias at high rain

rates (Fig. S6). Thus, it can be argued that the early run

is more suitable for the evaluation as well as statistics of

extreme rainfall. Either way, this pronounced negative

bias at high rain rates in IMERGmust be considered in

future rainfall studies. Quantile mapping techniques,

usually applied for bias corrections in climate models,

are a potent way to address this issue (Lafon et al. 2013;

Cannon et al. 2015), and here particularly with respect

to the different IMERG sources.

While false alarms are a particular challenge for gla-

ciated clouds, especially with low COT, misses are fre-

quently related to warm rain (cf. Young et al. 2018),

which in turn highlights issues of PMWrainfall retrievals

in the absence of frozen precipitation-sized hydrome-

teors. Thus, the overall detection skill of IMERG may

depend on the moment in which precipitation-sized ice

particles are eventually formed within a convective

cloud. Over West Africa, rainfall processes and the

timing of ice formation are likely influenced by the high

aerosol load documented in a number of studies (e.g.,

Knippertz et al. 2015; Deroubaix et al. 2019; Deetz et al.

2018; Taylor et al. 2019; Haslett et al. 2019). In general,

Rosenfeld et al. (2011) found that under heavy aerosol

load conditions, clouds glaciate at warmer temperatures

and the activity of ice nuclei, for example, Saharan dust

in the case of West Africa, becomes dominant for precip-

itation formation. At the same time, McCollum et al.

(2000) argued that these conditions may explain the

substantial overestimation ofmonthly rainfall over central

Africa in the Global Precipitation Climatology Project

(GPCP; Huffman et al. 1997) due to the reduction of drop

size and thus precipitation efficiency in deep convection.

Eventually, these opposing rainfall processes may signifi-

cantly affect the performance of IMERG with regard to

rainfall detection and rain rate estimation.

The WAM dynamics determine the occurrence of the

different rainfall types presented in this study, and thus

the event rainfall amount. In this regard, Hamada et al.

(2015) interestingly noticed a weak relationship be-

tween deep intense radar echoes and extreme near

surface rainfall for many moist tropical regions. They

argued that extreme rain rates are rather controlled by

abundant low-level moisture, leading to low cloud bases

and thus a deep warm cloud layer where collision–

coalescence processes are enhanced. This, however,

was in absence of high radar reflectivities in the upper-

level portion of the convective clouds, which are
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usually caused by large, precipitation-sized ice parti-

cles. In contrast, intense convection featuring these

high upper-level reflectivities were associated to a

lesser extent with the most extreme near-surface rain

rates. This weak linkage between cloud ice content and

rain rates potentially adds to the uncertainty in rainfall

estimation in IMERG given the fact that scattering of

microwave signals by ice is its key principle over land.

The described situation is frequent during the second

rainy season in September and October, which has

been found to exhibit the strongest integrated under-

estimation of SCR and MCS rainfall in this study.

We stress that this study is representative primarily

for theWest African forest zone and other regions with

comparable conditions regarding climate and aerosols.

Petković and Kummerow (2017) and McCollum et al.

(2000) already emphasized how region-dependent rain-

fall biases are. They can partly be understood through

the complex interplay between underlying dynamics,

aerosol load, and their influence on the evolution and

characteristics of clouds. Thus, together with further

regional-scale validation efforts, we anticipate that the

consideration of such additional information can help

to improve IMERG.

9. Summary

The present work evaluated the performance of

IMERG V6B (final run) with respect to different

rainfall types, WAM seasons, its sources (PMW-direct,

MORPH-only, MORPH1IR), and cloud-top charac-

teristics on a subdaily time scale. Two years of data

from a dense network of 17 high-resolution rain gauges

deployed in the forest zone of Ghana in southern West

Africa served as the reference.We found the following:

d Very frequent but low-intensity false alarms contrib-

ute more than a fifth to total IMERG rainfall. They

occur in every IMERG source.
d The duration of rainfall events is generally overesti-

mated, but increasingly more pronounced going from

PMW-direct to MORPH1IR. Overall, we find a sys-

tematic overestimation in integrated rainfall for weak

and short convective events.
d High rainfall intensities are negatively biased in every

IMERG source, leading to an underestimation in

integrated rainfall for SCRs as well as MCSs and

ultimately to an error compensation with WCRs. This

particularly applies to the second rainy season in

September and October.
d IMERG and its sources are too sensitive toward low

values in IWP and LWP, accounting for the majority

of false alarms. For ice clouds, it is mainly the over-

sensitivity toward a low COT, whereas for warm

clouds, it is the combination of both low COT and

Reff,l. IMERG performs drastically better in the pres-

ence of ice clouds than warm clouds, the latter of

which is subject to a lot of missed events.

This study has emphasized the potential of regional-

and subdaily-scale validations of spaceborne rainfall

products in combination with high-resolution rain

gauges, particularly for data-sparse regions such as

West Africa.
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L’Hôte, Y., G. Mahé, B. Somé, and J. P. Triboulet, 2002: Analysis

of a Sahelian annual rainfall index from 1896 to 2000; The

drought continues.Hydrol. Sci. J., 47, 563–572, https://doi.org/

10.1080/02626660209492960.

Liu, C., E. J. Zipser, and S. W. Nesbitt, 2007: Global distribution of

tropical deep convection: Different perspectives from TRMM

infrared and radar data. J. Climate, 20, 489–503, https://

doi.org/10.1175/JCLI4023.1.

Mantas, V. M., Z. Liu, C. Caro, and A. Pereira, 2015: Validation

of TRMM Multi-Satellite Precipitation Analysis (TMPA)

products in the Peruvian Andes. Atmos. Res., 163, 132–145,

https://doi.org/10.1016/j.atmosres.2014.11.012.

Maranan, M., A. Fink, and P. Knippertz, 2018: Rainfall types over

southern West Africa: Objective identification, climatology

and synoptic environment. Quart. J. Roy. Meteor. Soc., 144,

1628–1648, https://doi.org/10.1002/qj.3345.

——,A.H. Fink, P. Knippertz, S.D. Francis, A. B. Akpo, G. Jegede,

and C. Yorke, 2019: Interactions between convection and a

moist vortex associated with an extreme rainfall event over

southern west africa. Mon. Wea. Rev., 147, 2309–2328, https://

doi.org/10.1175/MWR-D-18-0396.1.

Mazzoglio, P., F. Laio, S. Balbo, P. Boccardo, and F. Disabato,

2019: Improving an extreme rainfall detection system with

GPM IMERG data. Remote Sens., 11, 677, https://doi.org/

10.3390/rs11060677.

McCollum, J. R., A. Gruber, and M. B. Ba, 2000: Discrepancy

between gauges and satellite estimates of rainfall in equatorial

Africa. J. Appl. Meteor., 39, 666–679, https://doi.org/10.1175/

1520-0450-39.5.666.

Monsieurs, E., and Coauthors, 2018: Evaluating TMPA rainfall

over the sparsely gauged East African Rift. J. Hydrometeor.,

19, 1507–1528, https://doi.org/10.1175/JHM-D-18-0103.1.

Nair, S., G. Srinivasan, and R. Nemani, 2009: Evaluation of multi-

satellite TRMMderived rainfall estimates over a western state

of India. J. Meteor. Soc. Japan, 87, 927–939, https://doi.org/

10.2151/JMSJ.87.927.

Nakajima, T., and M. D. King, 1990: Determination of the optical

thickness and effective particle radius of clouds from reflected

solar radiation measurements. Part I: Theory. J. Atmos.

Sci., 47, 1878–1893, https://doi.org/10.1175/1520-0469(1990)

047,1878:DOTOTA.2.0.CO;2.

Nicholson, S. E., 1981: Rainfall and atmospheric circulation during

drought periods and wetter years in West Africa. Mon. Wea.

Rev., 109, 2191–2208, https://doi.org/10.1175/1520-0493(1981)

109,2191:RAACDD.2.0.CO;2.

——, and Coauthors, 2003: Validation of TRMMand other rainfall

estimates with a high-density gauge dataset for West Africa.

Part II: Validation of TRMM rainfall products. J. Appl. Meteor.,

42, 1355–1368, https://doi.org/10.1175/1520-0450(2003)042,1355:

VOTAOR.2.0.CO;2.

——,A. K. Dezfuli, andD. Klotter, 2012: A two-century precipitation

dataset for the continent of Africa. Bull. Amer. Meteor. Soc., 93,

1219–1231, https://doi.org/10.1175/BAMS-D-11-00212.1.

Paeth, H., A. H. Fink, S. Pohle, F. Keis, H. Mächel, and C. Samimi,

2011: Meteorological characteristics and potential causes of

the 2007 flood in sub-Saharan Africa. Int. J. Climatol., 31,

1908–1926, https://doi.org/10.1002/joc.2199.

Panthou, G., T. Vischel, and T. Lebel, 2014: Recent trends in

the regime of extreme rainfall in the central Sahel. Int.

J. Climatol., 34, 3998–4006, https://doi.org/10.1002/joc.3984.
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