KIT | KIT-Bibliothek | Impressum | Datenschutz

Benchmark and performance of long-range corrected time-dependent density functional tight binding (LC-TD-DFTB) on rhodopsins and light-harvesting complexes

Bold, Beatrix M. 1; Sokolov, Monja 1; Maity, Sayan; Wanko, Marius; Dohmen, Philipp M. 1; Kranz, Julian J. 1,2; Kleinekathöfer, Ulrich 1; Höfener, Sebastian 1; Elstner, Marcus 1,2
1 Institut für Physikalische Chemie (IPC), Karlsruher Institut für Technologie (KIT)
2 Institut für Biologische Grenzflächen (IBG), Karlsruher Institut für Technologie (KIT)

Abstract:

The chromophores of rhodopsins (Rh) and light-harvesting (LH) complexes still represent a major challenge for a quantum chemical description due to their size and complex electronic structure. Since gradient corrected and hybrid density functional approaches have been shown to fail for these systems, only range-separated functionals seem to be a promising alternative to the more time consuming post-Hartree–Fock approaches. For extended sampling of optical properties, however, even more approximate approaches are required. Recently, a long-range corrected (LC) functional has been implemented into the efficient density functional tight binding (DFTB) method, allowing to sample the excited states properties of chromophores embedded into proteins using quantum mechanical/molecular mechanical (QM/MM) with the time-dependent (TD) DFTB approach. In the present study, we assess the accuracy of LC-TD-DFT and LC-TD-DFTB for rhodopsins (bacteriorhodopsin (bR) and pharaonis phoborhodopsin (ppR)) and LH complexes (light-harvesting complex II (LH2) and Fenna–Matthews–Olson (FMO) complex). This benchmark study shows the improved description of the color tuning parameters compared to standard DFT functionals. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000117633
Veröffentlicht am 12.06.2020
Originalveröffentlichung
DOI: 10.1039/C9CP05753F
Scopus
Zitationen: 42
Web of Science
Zitationen: 42
Dimensions
Zitationen: 45
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Biologische Grenzflächen (IBG)
Institut für Physikalische Chemie (IPC)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2020
Sprache Englisch
Identifikator ISSN: 1463-9076, 1463-9084
KITopen-ID: 1000117633
HGF-Programm 47.02.02 (POF III, LK 01) Zellpopul.auf Biofunk.Oberflächen IBG-2
Erschienen in Physical chemistry, chemical physics
Verlag Royal Society of Chemistry (RSC)
Band 22
Heft 19
Seiten 10500-10518
Vorab online veröffentlicht am 13.01.2020
Nachgewiesen in Dimensions
Web of Science
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page