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Shadows in Coxeter Groups

Marius Graeber and Petra Schwer

Abstract. For a given w in a Coxeter group W , the elements u smaller
than w in Bruhat order can be seen as the end alcoves of stammering
galleries of type w in the Coxeter complex Σ. We generalize this notion
and consider sets of end alcoves of galleries that are positively folded with
respect to certain orientation φ of Σ. We call these sets shadows. Positively
folded galleries are closely related to the geometric study of affine Deligne–
Lusztig varieties, MV polytopes, Hall–Littlewood polynomials, and many
more algebraic structures. In this paper, we will introduce various notions
of orientations and hence shadows and study some of their algorithmic
properties.

1. Introduction

It is well known that the Bruhat order on a Coxeter group (W,S) has a geo-
metric interpretation in terms of galleries: the set of all elements y ≤ x for a
fixed x ∈ W is the set of all end alcoves of folded (or stammering) galleries
of type x in the Coxeter complex Σ = Σ(W,S). One can show that for given
x, y ∈ W , one has y ≤ x in Bruhat order if and only if there exists a folded
gallery of type x which ends in y.

In the present paper, we look at sets of end alcoves of folded galleries
where the foldings are positive with respect to a given orientation φ of the
complex Σ. Such galleries will be called φ-positively folded. An orientation
on a Coxeter complex essentially decides for every pair of an alcove and a
hyperplane containing one of its codimension one faces, whether or not the
alcove lies on a positive side of the hyperplane.

The notion of a positively folded gallery goes back to [6] (respectively,
[10]). This concept requires a refined notion of what is typically known as a
gallery in a Coxeter complex, namely in addition to the sequence of alcoves, a
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gallery contains one needs to remember a specific codimension one face of any
two subsequent alcoves. This is equivalent to a choice of a decorated word in
S, i.e., a word plus the knowledge at which positions the corresponding gallery
stammers.

(Positively) folded galleries and paths have appeared in several places
some of which we will now highlight. Folded paths were used to compute Hall–
Littlewood polynomials by C. Schwer in [16]. Kapovich and Millson study
folded paths in connection with their proof of the saturation conjecture for
SLn in [9]. Ehrig [5] studies MV polytopes by means of Bruhat–Tits buildings
and gives a type-independent definition of MV polytopes by assigning to every
LS gallery in the sense of [6] an explicitly constructed MV polytope. There are
probably other references which we have missed.

The aim of the present paper is to extract and generalize some of the com-
binatorics contained in the aforementioned applications and the joint work of
the second author with Milićević and Thomas on affine Deligne–Lusztig vari-
eties [13]. We would like to make these folding games accessible on a purely
combinatorial level while, at the same time, providing tools for future appli-
cations in other areas of mathematics. There is upcoming work by the second
author together with Milićević, Naqvi, and Thomas [12] in which shadows are
studied further and will be related to retractions from infinity based at chim-
neys as well as double coset intersections. In particular, a new proof of Schwer’s
Kostant convexity theorem [7] will be given in [12]. Additionally, shadows have
direct connections with MV cycles and polytopes and non-emptiness of affine
Deligne–Lusztig varieties. It is for example interesting to see (and no coinci-
dence) that the length additivity condition in Theorem 7.3 also appears in
work of Milićević (Beazley) (see Theorem 1.4 in [2]).

The main concept of the paper is the notion of a shadow, which we
formally introduce in Definition 6.1. The shadow of w with respect to some
orientation φ is the set of end alcoves of all galleries of type w that are φ-
positively folded.

We will study a natural class of orientations, the so-called Weyl chamber
orientations, which is induced by a choice of a regular direction or, equiva-
lently, by a parallel class of Weyl chambers. Our main results are recursive
descriptions of shadows with respect to these Weyl chamber orientations. See
Theorems 7.1 and 7.3.

An example for a shadow with respect to a Weyl chamber orientation is
shown in Fig. 1. This picture illustrates the full and regular shadows in a type
Ã2 Coxeter group of the outlined alcove at the top with respect to the orien-
tation determined by the regular vector. Details are explained in Example 6.5.

This article is organized as follows: We use the second section to fix
notation for several basic facts on Coxeter groups. Orientations on Coxeter
complexes and some of their properties are discussed in Sect. 3, where we also
define the notion of a regular orientation. Folded galleries, ways to manipulate
them as well as some statistics on the number of folds are discussed in Sect. 4.
In Sect. 6, we then define the central notion of the present paper: shadows.
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Figure 1. A shadow in type Ã2

Section 7 finally contains the algorithms and recursive descriptions of regular
shadows and their restricted cousins.

2. Coxeter Systems and Coxeter Complexes

We assume that the reader is familiar with the standard notions and objects
associated with Coxeter groups. For details, please refer to one of the many
good textbooks on the topic; for example [3,4] or [8].

Throughout this paper, (W,S) will denote a Coxeter system. We will
write u, v, w for words in the generators S of W and [u], [v], [w] for the associ-
ated elements in W . In general, elements in W will be denoted by x, y, z. Any
subset S′ ⊂ S defines a standard parabolic subgroup WS′ of W and each pair
(WS′ , S′) is a Coxeter system in its own right.

For a given Coxeter system, write Σ = Σ(W,S) for the set of all left
cosets xWS′ of standard parabolic subgroups in W which is partially ordered
by reverse inclusion and hence forms an abstract simplicial complex. The ver-
tex set of Σ is the set containing all cosets of maximal parabolic subgroups
corresponding to subsets S′ = S\{s}. The maximal simplices in the Coxeter
complex Σ are called alcoves and their codimension one faces panels. We will
typically denote alcoves by c, d and panels by p, q. Note that each panel p cor-
responds to a coset of a parabolic subgroup of the form xW{s} for some s ∈ S.
In this case, we say that p has type s and write τ(p) = s.

The group W contains a subset R :=
⋃

x∈W xSx−1 of reflections each of
which fixes a hyperplane (or wall) in Σ. For a given reflection r ∈ R, we denote
the associated hyperplane by Hr. We say that a hyperplane H separates alcoves
c and d if the two alcoves are contained in different half-spaces determined by
H.
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In case that (W,S) is a Euclidean Coxeter system of type X̃, the group
W splits as a semi-direct product of a spherical Weyl group W0 of type X
and a translation group T acting on Σ. The set of special vertices in Σ are the
ones whose stabilizer in W is isomorphic to W0. In this setting, Σ does have a
geometric realization as a tiled Euclidean n-space with n = #S − 1 if (W,S)
is irreducible. The group T is isomorphic to Z

n and corresponds to the coroot
lattice. By slight abuse of notation, we denote the geometric realization of Σ
also by Σ.

Fix a special vertex 0 and call it the origin of Σ. For each special vertex
v in the orbit of 0 under T , consider the set Hv of hyperplanes through v. The
closures of the connected components of Σ\∪H∈Hv

H are called Weyl chambers
in Σ.
The set of equivalence classes of parallel rays in Σ form the boundary sphere
∂Σ. This sphere inherits a natural tiling from Σ by taking as the hyperplanes in
∂Σ the parallel classes of hyperplanes in Σ. The maximal simplices in ∂Σ then
are precisely the parallel classes of Weyl chambers in Σ. We sometimes refer
to the maximal simplices in the boundary as chambers to distinguish them
from alcoves in Σ. As a simplicial complex, ∂Σ is isomorphic to the Coxeter
complex of (W0, S0) where S0 is a subset of S generating a copy of W0.

We will choose the identifications of elements in an affine Coxeter group
W with the alcoves in Σ and the identification of element in the associated
W0 with chambers in ∂Σ in a compatible way. The identity in W0 labels a
chamber at infinity which has a unique representative C0 with basepoint 0
in Σ, the fundamental Weyl chamber. The unique alcove in C0 containing 0
is labeled with 1. Then, the W action on Σ yields identifications of elements
x ∈ W with alcoves in Σ. The walls of C0 correspond to the generators in
S that also generate W0. The equivalence class of a Weyl chamber x.C0 with
cone point 0 has label x in W0. That is, the image of some x ∈ W under the
natural projection p : W → W0 can be interpreted both as the local spherical
direction of an element x = ty with t ∈ T and y ∈ W0 and as the direction at
infinity towards which y points when seen as an alcove with basepoint t.0.

3. Orientations on Coxeter Complexes

In this section, we will introduce orientations of Coxeter complexes and provide
some natural examples. We start with the definition and some basic properties
in the first subsection below.

3.1. General Notions

If not otherwise stated, (W,S) is any Coxeter system and Σ is its associated
Coxeter complex.

Definition 3.1 (Orientations of Σ). An orientation φ of Σ is a map which
assigns to a pair of a panel p and an alcove c containing p a value in {+1,−1}.
We say that c is on the φ-positive side (respectively, the φ-negative side) of p
if φ(p, c) = +1 (respectively, -1).
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Example 3.2 (Trivial orientations). One way to produce an orientation is to
take the map φ to be a constant map which is either ≡ +1 or ≡ −1. We will
refer to these orientations as the trivial positive/negative orientation.

Sometimes, we will want to exclude orientations which locally behave like
trivial ones and, therefore, introduce the following two notions.

Definition 3.3 (Locally non-negative/non-trivial orientations). An orientation
φ of Σ is called:

(i) locally non-negative if every panel p has at least one φ-positive side.
(ii) locally non-trivial if every panel p has exactly one φ-positive side.

The Coxeter group W naturally acts on the set of all orientations of the
associated Coxeter complex.

Definition 3.4 (W -action on orientations). Let (W,S) be a Coxeter system
with Coxeter complex Σ. Then, the natural left action of W on the alcoves
and panels of Σ induces a natural left action of W on the orientations of Σ via
(x · φ)(p, c) := φ(x−1p, x−1c).

Definition 3.5 (Wall-consistent orientations). An orientation φ of Σ is wall
consistent if for any wall H in Σ and all alcoves c, d which are in a same half-
space of H and have panels p and q in H, one has: φ(p, c) = φ(q, d). We may
then call a half-space Hε of H, such that φ(p, c) = +1 for one (and hence
every) adjacent alcove in Hε, a positive side of H with respect to φ or simply
φ-positive side. The φ-negative sides are defined analogously.

There are several ways to define a natural orientation on a Coxeter com-
plex. We first introduce one class of orientations which works for arbitrary
Coxeter groups. They are induced by a choice of an alcove or, equivalently, a
regular point in a (geometric realization of) a Coxeter complex and are hence
called alcove (or regular) orientations.

Definition 3.6 (Alcove orientation). Let c be a fixed alcove in Σ. For any alcove
d and any panel p in d, let φc(p, d) be +1 if and only if d and c lie on the same
side of the wall spanned by p. The resulting orientation φc is called the alcove
orientation towards c or short the c–orientation.

Similar to Definition 3.6 but more generally, one can define an orientation
with respect to a choice of any simplex, or in fact any point in a geometric
realization of Σ. Obviously, the alcove orientations are a sub-class of the ori-
entations introduced in the next definition.

Definition 3.7 (Simplex orientation). Let b be any simplex in Σ. For any alcove
c and any panel p incident to c, let φb(p, c) be +1 if and only if either c and
b lie on the same side of the wall H containing p, or if b lies inside H. The
resulting orientation φb is called the simplex orientation towards b or short the
b–orientation.

Example 3.8 (Alcove and simplex orientation). Figure 2 shows two different
simplex orientations on a type A2 Coxeter complex. The one on the left-hand
side is induced by the alcove labeled c, while the one on the right-hand side is
induced by the panel p.
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Figure 2. An alcove (left) and panel orientation (right) on
the type A2 Coxeter complex

Lemma 3.9 (Basic properties). Let (W,S) be a Coxeter group with Coxeter
complex Σ. The following are true:

(i) All simplex orientations are wall consistent and locally non-negative.
(ii) All alcove orientations are wall consistent and locally non-trivial.

Proof. To see (i) observe that for any wall H, there are two cases for the
defining simplex b of the given simplex orientation φ = φb. Either b is contained
in H in which case both sides of H are positive, or b is contained in exactly one
of the two sides of H making this the positive side. In any case, two alcoves
on a same side of H with panels in H always obtain the same sign under the
given orientation φ. Hence, φ is wall consistent. From what we have said it
is also clear that a simplex orientation cannot assign −1 simultaneously to
two alcoves sharing a panel. This implies (i). To deduce the second item, it is
enough to see that in this case, there is no wall with two positive sides. �

3.2. Orientations on Affine Coxeter Complexes

We now restrict to the affine case and introduce the class of orientations which
we will study most in this paper. It is determined by a choice of a chamber at
infinity.

A wall-consistent orientation chooses the same sign for all chambers hav-
ing a panel in the same hyperplane H and that are on the same side of H.
This amounts to choosing a positive side of H. However, there is no need to
choose the positive sides of the hyperplanes in a consistent way. But if so, we
will call these orientations periodic. See the next definition.

Definition 3.10 (Periodic orientations). A wall-consistent orientation φ of an
affine Coxeter complex is periodic if for any two parallel hyperplanes H1 and
H2 and corresponding half-spaces Hε1

1 and Hε2
2 , if Hε1

1 ⊂ Hε2
2 , then Hε1

1 is
φ-positive if and only if Hε2

2 is φ-positive.

Obviously, the trivial orientations on an affine Coxeter complex are peri-
odic. Note that the simplex induced orientations are not periodic as in every
parallel class of hyperplanes, one can find representatives having the defining
simplex on different sides.
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Periodic orientations have the nice property that they naturally induce an
orientation on the boundary. We had already studied this interplay in Section
3 of [13]. Compare in particular Definitions 3.5 and 3.7 as well as Lemma 3.6.
in [13] where one can essentially find what we recollect in Lemmas 3.11, 3.12
and Definition 3.13 below.

Lemma 3.11 (Induced spherical orientations). Any periodic orientation φ on
an affine Coxeter complex Σ induces a wall-consistent orientation ∂φ on the
spherical complex ∂Σ. We will call ∂φ the orientation (at infinity) induced by
φ. In case φ is locally non-negative or non-trivial, then so is ∂φ.

Proof. Let M be a wall in ∂Σ, that is a parallel class of walls in Σ, and let a
be a chamber in ∂Σ having a panel p in M . Then, there exists a Weyl chamber
Ca in Σ representing a which has a bounding wall HM in the parallel class M .
Denote by c the tip of Ca, that is the alcove in Ca which contains the cone
point of the Weyl chamber Ca. Then, c is, by construction, an alcove in Σ with
a panel q in HM . Now, we can put ∂φ(a, p) := φ(c, q). As φ is periodic, this
definition does not depend on the choice of Ca and ∂φ is automatically wall
consistent as well. It is not hard to see that the properties locally non-negative
or non-trivial will also be satisfied for the induced orientation. �

The converse is also true.

Lemma 3.12 (Induced affine orientations). For a given affine Coxeter complex
Σ, let φ be a wall-consistent orientation of Δ:= ∂Σ. Then, there exists a unique
periodic orientation φ̃ of Σ, such that ∂φ̃ = φ. We will call φ̃ the (affine)
orientation induced by φ. In case φ is locally non-negative or non-trivial, then
so is φ̃.

Proof. For a hyperplane H in Σ, we choose a side Hε to be positive, respec-
tively, negative, if ∂Hε is a positive, respectively, negative, side of the hyper-
plane ∂H in Δ. This uniquely determines φ̃. �

Alcove orientations on a spherical Coxeter complex Δ are wall consistent
and locally non-trivial by Lemma 3.9. Hence, they induce orientations on affine
Coxeter complexes with Δ as their boundary by Lemma 3.12. One can view
these as orientations on an affine Σ determined by alcoves in the boundary
∂Σ = Δ. We summarize this special case of induced affine orientations in the
following definition.

Definition 3.13 (Weyl chamber orientations). Suppose that Σ is an affine Cox-
eter complex with boundary Δ and let σ ∈ Δ be some chamber. Then, the
Weyl chamber orientation with respect to σ (or short the σ–orientation) is the
orientation φ̃σ on Σ induced by the σ-simplex orientation φσ.

Remark 3.14 (Alternative description of Weyl chamber orientations). Note
that one can also describe the Weyl chamber orientation as follows. For any
alcove c and any panel p in c, let H be the affine wall containing p. The cham-
ber σ corresponds to an equivalence class of Weyl chambers in Σ. We may
hence define φu(p, c) to be +1 if σ has a representative Cσ which lies on the
same side of H as c. This is the viewpoint which we had taken in [13].
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Remark 3.15. (More induced orientations). Links in a Coxeter complex are
again Coxeter complexes. One can show that they inherit orientations from
the orientations on the ambient space. We will not need this concept in the
present paper and hence will not formally introduce it.

4. Folded Galleries

In this section, we introduce positively folded galleries, discuss some of their
properties as well as possible ways to construct other positively folded galleries
from a given one. We essentially follow the terminology of [13] which is slightly
different from the one in [6], where the concept of a folded gallery was, to our
knowledge, introduced first.

4.1. General Notions

We start with the definition of a combinatorial alcove–to–alcove gallery.

Definition 4.1 (Combinatorial galleries). A (combinatorial) gallery in a Cox-
eter complex Σ = Σ(W,S) is a sequence:

γ = (c0, p1, c1, p2, . . . , pn, cn),

of alcoves ci and panels pi where for all i = 1, . . . , n the panel pi is contained
in both ci and ci−1. The length of γ is defined to be n + 1. We say that γ is
minimal if there is no shorter gallery connecting the source c0 with the sink
cn.

All of our combinatorial galleries will contain at least one alcove. It is easy
to see that if ci �= ci−1, there is no choice for the panel pi. As combinatorial
galleries are the only ones, we work with this paper; we will skip the word
‘combinatorial’ in most places.

Remark 4.2 (Other classes of galleries). Note that it also makes sense to define
vertex-to-vertex, vertex-to-alcove, or simplex-to-simplex galleries. The differ-
ences in their behavior are quite subtle. Compare for example [13, Section 3.2]
in particular Remark 3.13 there. In addition, one can allow for more general
steps in the gallery, i.e., replace the alcoves ci in our definition by smaller
dimensional simplices as done in [6]. Again, the properties which they have
might differ from the ones discussed here and it is often quite technical to
keep track of their differences. However, depending on the context, it might be
necessary to switch to a different class and/or study the relationships between
two classes.

Definition 4.3 (Folds). A gallery γ is said to be folded (or stammering) if there
is some i, such that ci = ci−1, and unfolded (or non-stammering) otherwise. If
for some i, the alcove ci = ci−1, we say γ has a fold at panel pi or position i.
The set F(γ) of folds in γ is the set of all 1 ≤ i ≤ n, such that γ has a fold at
panel pi.
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Figure 3. This figure shows galleries in type Ã2 with two
folds (black) and no folds (gray)

Example 4.4 (Illustrating (folded) galleries). When drawing pictures, we typi-
cally illustrate a (folded) gallery by a continuous path in the Coxeter complex
that walks through the chambers and panels in the gallery. The arrow points
towards the sink of the gallery. A bend touching a panel of an alcove illus-
trates a fold at the respective panel and shows that the alcove is repeated in
the gallery.

In Fig. 3, we show two galleries in a type Ã2 Coxeter complex. The gray
gallery walks from a to c, which is not folded and not minimal. The black
gallery has source a and sink b. The first bit of the gallery (up to panel p4)
agrees with the gray one. The black gallery has two folds at panels p4 and p7.

Taking orientations into account, we can introduce the notion of a posi-
tively folded gallery.

Definition 4.5 (Positively folded galleries). A gallery γ is positively (respec-
tively, negatively) folded with respect to an orientation φ if for all 1 ≤ i ≤ n
either ci−1 �= ci, or ci = ci−1 and φ(pi, ci) = +1. (respectively, −1).

In other words, a gallery γ has a positive fold at ci = ci−1 if the alcove
ci is on the positive side of pi. Analogously, for negative folds, the repeated
alcove is on the negative side of the panel.

Remark 4.6 (Negative folds and opposite orientations). We will only be con-
sidering positively folded galleries as if some γ is negatively folded with respect
to an orientation φ, then it is positively folded with respect to the opposite
orientation −φ defined by −φ(p, c) := (−1) · φ(p, c).

Using the types of panels in a Coxeter complex, we may associate a word
to a combinatorial gallery.
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4.2. Galleries and Words

Fix a Coxeter system (W,S) with Coxeter complex Σ. In this subsection, we
discuss the close relationship of galleries in Σ and (decorated) words in S.
By decorated words, we mean words in S where we put hats on some of its
letters. To make the wording easier, words with no hats are also considered
decorated words. If there are no hats on a (decorated) word, we may also call
it undecorated.

Definition 4.7 (Type of a gallery). Let γ = (c0, p1, c1, . . . , pn, cn) be a gallery.
Its type, denoted by τ(γ), is the word in S obtained as follows:

τ(γ) := sj1sj2 . . . sjn
,

where for 1 ≤ i ≤ n, the panel pi of γ has type sji
∈ S. We write Γ+

φ (w) for
the set of φ-positively folded galleries of type w.

The decorated type denoted by τ̂(γ) is the (decorated) word in S obtained
as follows:

τ̂(γ) := sj1 . . . ŝj2 . . . sjn
,

where the sji
∈ S are chosen as above and a hat is put on sji

in case ci−1 = ci

in γ. By slight abuse of notation, we call a letter with a hat a fold of γ. We
write Γ+

φ (ŵ) for the set of positively folded galleries of decorated type ŵ.

Lemma 4.8 (Galleries and words). Fix an alcove c0 in a Coxeter complex Σ =
Σ(W,S). Then, the following hold.

(i) Words in S are in bijection with the unfolded galleries with source c0.
(ii) The decorated words in S are in bijection with the set of all galleries with

source c0 via τ̂ .

Proof. Note that in an unfolded gallery, the alcove ci is obtained from ci−1

by right multiplication with the generator sji
. This implies (i). The fact that

minimality is equivalent to the type being reduced was, for example, shown as
Proposition 4.41 in [1].

To go from a decorated word sj1 . . . ŝj2 . . . sjn
to a gallery define ci to be

the sji
-neighbor of ci−1 if there is no hat on sji

. In this case, put pi := ci ∩ci−1.
If there is a hat on sji

, put ci = ci−1 and choose as pi the unique panel of ci

of type sji
. Hence, item (ii). �

Lemma 4.9 (Properties of galleries). For all galleries γ, the following hold.
(i) F(γ) = ∅ if and only if τ(γ) = τ̂(γ).
(ii) γ is minimal if and only if τ(γ) is reduced and F(γ) = ∅.

The notion of a footprint, defined below, will allow us to characterize end
alcoves, i.e., sinks, of folded galleries.

Definition 4.10 (Footprint of a gallery). Let γ = (c0, p1, c1, . . . , pn, cn) be a
combinatorial gallery of decorated type τ̂(γ) := sj1 . . . ŝj2 . . . sjn

. The footprint
ft(γ) of γ is the gallery obtained by deleting all the pairs pi, ci for which the
letter si in τ̂(γ) carries a hat.
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Figure 4. This figure shows galleries (black), their unfolded
images (dotted gray), and footprints (dashed gray)

Example 4.11 (Footprints). Note that the footprint of a given folded gallery γ
is shorter than γ and unfolded (by construction) but need not be minimal. On
the right-hand side of Fig. 4, the black gallery with source a and sink d has
as its footprint the minimal dashed gray gallery from a to d. Here, the panel
p4 and the chamber adjacent to it got deleted. The black gallery with source
a and sink b on the left has a non-minimal footprint. Both unfolded galleries,
shown dotted, are minimal with source a and sink e, respectively, c.

From the right action of the Coxeter group W on Σ, one obtains that the
type of the footprint is a word, such that the element it defines corresponds
to the end alcove of a folded gallery.

Lemma 4.12 (Footprint and end alcoves). The final alcove of any combinato-
rial gallery γ = (c0, p1, c1, . . . , pn, cn) can be computed using the type of its
footprint, namely cn = c0 · w, where w = τ(ft(γ)).

Proof. In the footprint of a gallery, all the folds are deleted. That is, in the
footprint ft(γ) = (c0, q1, d1, . . . , qm, dm), where m = n − #F(γ), every alcove
di is obtained from di−1 via right multiplication with si := τ(qi). Hence, the
claim of the lemma. �
4.3. Modification of Galleries

There are several ways to manipulate a positively folded gallery. In [13], we
have made crucial use of the Littelmann root operators from [10] which were
defined for galleries in [6]. In Sections 6, 8.1, 8.3, and 9 of [13], we, moreover,
introduced several methods to explicitly construct and manipulate galleries via
extensions, conjugation, or concatenation. Ram [15] as well as Parkinson, Ram,
and C. Schwer [14] also discussed concatenations of folded galleries dressed as
alcove walks. Kapovich and Millson studied the closely related Hecke paths
and ways to construct them in [9].

In this subsection, we discuss two kinds of manipulations of galleries:
the natural action of W and explicit folding and unfolding. In addition, we
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introduce an equivalence relation on folded galleries induced by braid moves
on the type.

Notation 4.13 (W action on galleries). It is clear from the definition of galleries
and from the natural left action of W on Σ that the Coxeter group W also
acts from the left on the set of all galleries in Σ. Write x.γ for the image
(x.c0, x.p1, x.c1, . . . , x.pn, x.cn) of γ = (c0, p1, c1, . . . , pn, cn) under x ∈ W .

Let us record a key property of this action in the following lemma.

Lemma 4.14 (W action on positively folded galleries). Let (W,S) be an affine
Coxeter system with Coxeter complex Σ and choose a chamber a in ∂Σ. A
gallery γ is φa-positively folded if and only if x.γ is φx.a positively folded. Here,
x.a is the equivalence class of the Weyl chamber x.Ca for any representative
Ca ⊂ Σ of a.

Proof. The group W acts by isometries on Σ. This implies that galleries are
mapped to galleries and that the action preserves the number and positions
of folds. To see the rest check that an alcove c is on the φa-positive side of a
hyperplane H if and only if x.c is on the φx.a-positive side of x.H. �

We will now introduce explicit foldings of galleries along panels.

Definition 4.15 ((Un-)foldings of galleries). Let γ = (c0, p1, c1, . . . , pn, cn) be a
gallery and write ri for the reflection across the hyperplane Hi containing the
panel pi. For any i ∈ {1, 2, . . . , n} define:

γi := (c0, p1, c1, . . . , pi, rici, ripi+1, rici+1, . . . , ripn, ricn).

We call γi a (un-)folding of γ at panel i, depending on whether γ was folded
or not at i.

The next lemma follows from the fact that reflections are type preserving.

Lemma 4.16 (Elementary properties of folds). Every (un-)folding γi of a
gallery γ is again a gallery of the same type as γ, that is τ(γ) = τ(γi). The
number of folds decreases by one for an unfolding and increases by one for a
folding. Moreover, (γi)i = γ.

Lemma 4.17. (Folds commute). Let γ = (c0, p1, c1, . . . , pn, cn) be a gallery and
1 ≤ i, j ≤ n. Then, (γi)j = (γj)i.

Proof. Lemma 4.16 deals with the case that i = j. Therefore, assume without
loss of generality that i < j. Then:

(γj)i = (c0, p1, c1, . . . , ci−1, pi, rci, . . . , rcj−1, rpj , rr
′cj , . . . , rr

′cn),

where r is the reflection along the hyperplane spanned by pi and r′ the reflec-
tion on the hyperplane spanned by pj . And:

(γi)j = (c0, p1, c1, . . . , ci−1, pi, rci, . . . , rcj−1, rpj , r
′′rcj , . . . , r

′′rcn),

where r is as above and r′′ is the reflection on the hyperplane spanned by rpj .
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For every panel p of an alcove c, the unique second alcove in Σ containing
p is cτ(p). Therefore, the reflection along the hyperplane H spanned by p is
the product cτ(p)c−1. We obtain:

r = ci−1τ(pi)c−1
i−1, r′ = cj−1τ(pj)c−1

j−1 and r′′ = rcj−1τ(rpj)c−1
j−1r.

Reflections preserve types. Therefore, τ(rpj) = τ(pj). It is now easy to check
that r′′r = rr′, and hence, (γi)j = (γj)i. �

Because of Lemma 4.17, we can write γij in place of (γi)j and define
folds with respect to subsets of the index set. Hence, we can fold a gallery
simultaneously at several panels which implies that Definition 4.18 below is
well defined.

Definition 4.18 (Multifoldings). Let γ = (c0, p1, c1, . . . , pn, cn) be a gallery and
let I = {i1, i2, . . . , ik} be a subset of the index set {1, 2, . . . n} of γ, such that
ij ∈ {1, 2, . . . , n} ∀1 ≤ j ≤ k. Then, we define the multifolding of γ at I to be
the gallery γI := γi1i2···ik and call I the multifolding index.

Lemmas 4.16 and 4.17 imply similar properties for multifoldings.

Lemma 4.19 (Properties of multifoldings). Let γ be a gallery of length n + 1
and I ⊂ {1, 2, . . . , n}. Then, the following hold.

(i) τ(γ) = τ(γI), i.e., folding does not change the type.
(ii) F(γI) = F(γ)ΔI, i.e., the set of folds of γI is the symmetric difference of

the folds of γ with the multifolding index I. In particular (γI)J = γIΔJ

for all J ⊂ {1, 2, . . . , n}.
From what we have discussed the following is immediate.

Corollary 4.20 (Unfolding). For every folded gallery γ of type w and length
n + 1, there exists a subset I ⊂ {1, 2, . . . , n}, such that γI is unfolded and of
the same type.

In other words, every folded gallery arises as a multifolding of an unfolded
gallery of the same type.

Example 4.21 (Commuting folds and multifolds). The gray gallery γ4,7 in
Fig. 5 is the multifolding of the black gallery γ at positions 4 and 7. This
figure also illustrates the fact that folds commute, which we have shown in
Lemma 4.17. The dotted and dashed galleries are the folds of γ at positions 7
and, respectively, 4. Both of them admit a fold that takes them to the gallery
γ4,7.

Notation 4.22 (Object A folds onto object B). Let (W,S) be a Coxeter system
with Coxeter complex Σ and suppose that w is a word in S. Denote by γw the
unique unfolded gallery of type w starting in 1. We will write:

(i) γ −⇀ η for galleries γ, η if η = γI for some I ⊂ {1, 2, . . . , n}\F(γ).
(ii) w−⇀u for a word u in S if there exists a gallery η with footprint ft(η) = u

and γw −⇀ η.
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Figure 5. This figure shows commuting folds at panels 4 and
7 of the black gallery γ

(iii) w −⇀ x for an element x ∈ W if there exists a gallery η with end alcove
cx, such that γw −⇀ η.

If in the above η is positively folded with respect to some orientation φ, we
label the arrow with φ and write A

φ−⇀ B.

Notation 4.23. (Sets of folded galleries). The set of all (multi)folds of a gallery
γ are denoted by Γ(γ). The set of all (multi)folds of a gallery γ that are posi-
tively folded with respect to a given orientation φ is denoted by Γ+

φ (γ). We will
sometimes write Γ+

φ (w) for the set Γ+
φ (γw), for w a word and γw the unfolded

gallery of type w.

4.4. Statistics on Positive Folds

In this subsection, we restrict ourselves to Weyl chamber orientations on affine
Coxeter complexes. Therefore, in the following, we assume, if not stated oth-
erwise, that (W,S) is an affine Coxeter system with Coxeter complex Σ and
that φ = φ̃a for some chamber a ∈ ∂Σ.

The number of folds in a positively folded gallery with respect to a Weyl
chamber orientation has natural bounds. The formula in Proposition 4.24 says
that the length of the longest element in the associated spherical Weyl group
is a uniform upper bound, while reflection length 	R, that is the length of an
element measured with respect to the larger generating set R of all reflections
of W , provides a lower bound.

Proposition 4.24 (Bounds on the number of folds). Let w0 denote the longest
element in W0. For any x ∈ W and any φ-positive multifolding γ of a minimal
gallery γx with sink the alcove labeled by x, one has:

	R(xy−1) ≤ |F(γ)| ≤ 	(w0), with y := τ(ft(γ)).
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Proof. By Lemma 4.12, the element y = τ(ft(γ)) corresponds to the final
alcove of γ. With this observation, the claim directly follows from Corollary
4.25 and Lemma 4.26 in [13]. �

Note that Section 4 of [13] contains a more detailed study of folds, cross-
ings, and dimensions of galleries.

We now introduce a valuation on elements of W , respectively, the cor-
responding alcoves in Σ. We have not worked out the precise connection, but
this seems closely related to the notion of load-bearing walls introduced in [6].

Notation 4.25 (Separating hyperplanes). Denote by H(Σ) the collection of all
hyperplanes in a Coxeter complex Σ. For some fixed alcove c in Σ, let H(c)
be the set of hyperplanes separating c and the identity alcove 1. Then, H(c) =
H+

φ (c) � H−
φ (c), where H+

φ (c) is the subset of H(c) for which c is on a positive
side and H−

φ (c) the ones for which c is on a negative side.

In the following, we will write Ch(Σ) for the collection of all alcoves in a
Coxeter complex Σ.

Definition 4.26 (φ-valuation). We define the φ-valuation to be the map

vφ : Ch(Σ) → Z with c 
→ vφ(c) := |H+
φ (c)| − |H−

φ (c)|.
The function introduced in the next definition can be thought of as exten-

sion of a wall-consistent orientation to pairs of alcoves and hyperplanes. It
decides whether a given alcove is on a positive side of a hyperplane.

Definition 4.27 (Positive sides of hyperplanes). We define a function pφ on
Ch(Σ) × H(Σ) as follows:

pφ(c,H) :=
{

1 if c is on a φ-positive side of H
0 otherwise.

Lemma 4.28 (Formulas for vφ). Denote the identity alcove in Σ by 1. Then,
for all c ∈ Ch(Σ), we have:

vφ(c) =
∑

H∈H(Σ)

(pφ(c,H) − pφ(1,H)).

Proof. Recall from Notation 4.25 that the set H(c) of hyperplanes separating
c from 1 can be written as a disjoint union H(c) = H+

φ (c) � H−
φ (c). Now,

every hyperplane H has a positive and a negative side, and hence, either
(pφ(c,H) = pφ(1,H)) or they are different, H ∈ H(c) and (pφ(c,H) and
pφ(1,H)) differ by ±1. Therefore:

vφ(c) =
∑

H∈H(Σ)

(pφ(c,H) − pφ(1,H)) =
∑

H∈H(c)

(pφ(c,H) − pφ(1,H)),

and the result follows from combining summands. �
Lemma 4.29 (Length and valuations). Fix x ∈ W and denote by cx the alcove
corresponding to x. Then:

	(x) ≥ vφ(cx).
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Proof. Simply compute 	(x) = |H(cx)| = |H+
φ (cx)| + |H−

φ (cx)| ≥ vφ(cx). �

Definition 4.30 (φ-dominant alcoves). An alcove c is dominant with respect to
an orientation φ if vφ(c) = 	(c).

Recall that for a given chamber a in ∂Σ, we write φ̃a for the Weyl chamber
orientation on Σ induced by the simplex orientation φa on ∂Σ. By slight abuse
of notation, we will write a ∈ W0.

Lemma 4.31 (length via Weyl chamber orientations). For every x ∈ W and
its corresponding alcove cx, we have:

	(x) = max
a∈W0

vφ̃a
(cx).

Proof. Let C be the unique Weyl chamber with tip at the origin 0 containing
the alcove cx and write a := ∂C for the chamber at infinity determined by C.
Let φ be the affine inherited valuation from the alcove orientation towards a
at infinity. Then, any minimal gallery from 1 to cx has the property that its
panels span hyperplanes for which cx is on the φa-positive side. Therefore:

	(x) = |H+
φ (cx)| = vφ(cx) ≤ max

a∈W0
vφ̃a

(cx).

The statement now follows from Lemma 4.29. �
Remark 4.32 (φ-dominant alcoves). In view of Definition 4.30, the assertion
of Lemma 4.31 says that for every alcove c, there exists a Weyl chamber ori-
entation φ, such that c is dominant with respect to φ. Therefore, the lemma
should not be surprising.

Lemma 4.33 (Reflections increasing v). Let ϕ ∈ Dir(W ) be a direction and let
r ∈ R be a reflection in W across a hyperplane Hr. Then, for any x ∈ W ,
vϕ(x) > vϕ(rx) if and only if x is on the ϕ-positive side of Hr.

Proof. It suffices to show one implication of the equivalence, since the other
implication is obtained by exchanging x and rx, and equality of vϕ(x) and
vϕ(rx) is impossible by parity. Therefore, let x lie on the ϕ-positive side of
Hr.

Consider the set S of those hyperplanes separating x and rx. Let S+ be
the set of hyperplanes H ∈ S, such that x is on the ϕ-positive side of H and rx
is on the ϕ-negative side. Moreover, let S− = S\S+ be the set of hyperplanes
H ∈ S, such that rx is on the ϕ-positive side of H and x is on the ϕ-negative
side.

Observe that vϕ(x)−vϕ(rx) = |H+
ϕ (x)|−|H+

ϕ (rx)| = |S+|−|S−|. There-
fore, it suffices to show that |S+| > |S−|.

Observe also that the map H 
→ rH is an involution on S with exactly
one fixed point Hr, where Hr is the reflection hyperplane of r. We claim that
S− ∩ rS− = ∅. If this is true, then rS− is a proper subset of S+ (proper,
because Hr = rHr lies in S+ but not in rS−), so |S+| > |rS−| = |S−| and
the proof is done.

We now want to prove the claim. For any H ∈ S, denote by H+ and H−

the half-spaces of H on the ϕ-positive and ϕ-negative side, respectively.
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Assume for contradiction that there is some H ∈ S− ∩ rS−. Let J be the
intersection of H+ with (rH)+. The set J is nonempty, since rx lies in J , and
its boundary ∂J = ∂H+ ∩ ∂(rH)+ at infinity contains σ.

Now, r((rH)+) is some half-space of H that contains rrx = x, so it must
be the ϕ-negative half-space H−, because H ∈ S−.

Now, rJ = r(H+) ∩ r((rH)+) ⊆ r((rH)+) = H−, and J ⊆ H+, so J
and rJ are disjoint sets. Hence, J cannot contain a fixed point of r, so, by
convexity, must be contained in a single half-space of Hr. As the boundary of
J contains σ, we find that J ⊂ H+

r . Since rx lies in J , we find that rx lies
on the ϕ-positive side of Hr, so x lies on the ϕ-negative side of Hr, which
contradicts our choice of x. This proves the claim. �

5. Braid Invariant Orientations

We introduce the notion of a braid invariant orientation in this section. It will
later be used to prove that certain shadows do not depend on a chosen word
representing a given element in a Coxeter group.

Remark 5.1 (Braid moves on words). Ideally, one would define an equivalence
relation on galleries coming from braid moves on words. The word property,
discovered by Matsumoto [11] and Tits [18] in the 1960s, implies that any two
reduced expressions for an element x ∈ W can be connected via a sequence
of braid moves. (For a textbook reference, see Theorem 3.3.1 in [3].) A braid
move can also be considered for a folded gallery γ by changing the subgallery
corresponding to the word stst . . .︸ ︷︷ ︸

mst

to the subgallery of type tsts . . .︸ ︷︷ ︸
mst

while keep-

ing the folds in the same positions, i.e., on the letters with the same index
in the word. This, however, will in general not be well defined, as the new
subgallery may end in a different alcove.

Definition 5.2 (Braid invariant orientations). Let Σ be a Coxeter complex for
the Coxeter system (W,S). An orientation φ on Σ is braid invariant if for any
braid equivalent words w,w′ in S and any x ∈ W , it is true that w

φ−⇀x if and
only if w′ φ−⇀ x. We call φ strongly braid invariant if and only if yφ is braid
invariant for all y ∈ W .

Notation 5.3 (Folds for braid invariant orientations). Let Σ be a Coxeter com-
plex for the Coxeter system (W,S); let φ be a braid invariant orientation on
Σ. Given two elements x, y ∈ W , we define x

φ−⇀ y to be equivalent to w
φ−⇀ y

for any (and thus every) reduced expression w of x.

It is obvious that the trivial positive/negative orientation is (strongly)
braid invariant. Proposition 4.33 of [13] implies that the Weyl chamber ori-
entations are braid invariant. We include an elementary proof for this fact in
Proposition 5.4 below.

Proposition 5.4 (Weyl chamber orientations are braid invariant). Let Σ be an
affine Coxeter complex with boundary Δ, and let φ̃σ be a Weyl chamber ori-
entation, induced by some chamber σ. Then, Σ is strongly braid invariant.
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Note that for any x ∈ W , we have xφ̃σ = φ̃xσ, and thus, strong braid
invariance for all σ follows immediately from braid invariance for all σ. For
the proof of Proposition 5.4, we will need the following lemma.

Lemma 5.5 (Braid invariant folds). Suppose that (W,S) is a Coxeter system
with Coxeter matrix M = (mst)s,t∈S. Let φ̃σ be a Weyl chamber orientation
on Σ. Then, for all words w = stst . . .︸ ︷︷ ︸

mst

, w′ = tsts . . .︸ ︷︷ ︸
mst

in S and all x ∈ W , it is

true that w
φ̃σ−⇀ x if and only if w′ φ̃σ−⇀ x.

Proof. Since the type of the footprint of any folded gallery of type w or w′

beginning at 1 can only contain symbols s and t, the end of that gallery must
lie in W{s,t}1. Therefore, it suffices to consider only x ∈ W{s,t}.

Let m = mst and put γw := (c0 = 1, p1, . . . , pm, cm). Let c̃ be the alcove
in W{s,t}1 that lies closest to σ, i.e., it lies on the φ̃σ-positive sides of all walls
that separate alcoves in W{s,t}1. Observe for any reflection r ∈ W{s,t} and
any alcove c ∈ W{s,t}1 that c lies on the positive side of Hr if and only if the
gallery distance (i.e., length of shortest connecting gallery) of c̃ to c is smaller
than the one to rc.

Claim Let x be any element in W{s,t} and write cx for the alcove it

represents. Then, w
φ̃σ−⇀ x if and only if either cx = cm or c̃ is has shorter

gallery distance to cx than to cm.
Note that the right-hand side of the equivalence in this claim is symmetric

in s and t, so applying the claim twice immediately yields that w
φ̃σ−⇀ x if and

only if w′ φ̃σ−⇀ x, as desired.
Let us now prove the claim. For the case cx = cm, the gallery γw imme-

diately demonstrates w
φ̃σ−⇀ x, so we may suppose cx �= cm from now on.

Suppose that w
φ̃σ−⇀ x, so there exists a folded gallery γ = γI

w of type
w starting in 1 and ending in cx. Let I = {i1, . . . , ik} for some indices 1 ≤
i1 < · · · < ik ≤ m. Note that k > 0, since cx �= cm. Let cj

i or pj
i denote the

ith alcove or panel of the gallery γ
i1...ij
w for j = 0, . . . , k. Note that any such

gallery γ
i1...ij
w is φ̃σ-positively folded, since each folded panel of that gallery

already lies at the same position as its corresponding folded panel in γI
w.

Then, for any such j, the alcove cj−1
ij−1 = cj

ij−1 = cj
ij−1 lies on the positive

side of the hyperplane Hj with respect to φ̃σ containing pj
ij

, by positivity of

γ
i1...ij
w . Now, (cj−1

i−1 , pj−1
i , . . . , cj−1

m ) is an unfolded gallery of the same type as
(ci−1, pi, . . . , cm) and, therefore, minimal. This gallery starts on the φ̃σ-positive
side of Hj and passes through Hj . Therefore, cj−1

m lies on the φ̃σ-negative side
of Hj ; and cj

m, obtained from cj−1
m by reflection across Hj , is closer to c̃ than

cj−1
m is.

By induction over j, we find that c̃ is closer to ck
m = cx than to c0

m = cm.
This proves one side of the claim.

Suppose now that c̃ lies closer to cx than to cm. We wish to find some
φ̃σ-positive multifolding of γw ending at cx.
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Case 1 cx and cm have different parity. Then, there is a reflection
r ∈ W{s,t}, such that rcm = cx. Since cm and 1 lie on different sides of
the hyperplane Hr, there is some i, such that pi lies on Hr.

Then, cx lies on the φ̃σ-positive side of Hr and cm lies on the φ̃σ-negative
side. Since γw is minimal, this means that ci−1 lies on the φ̃σ-positive side
of Hr, so γi

w is a φ̃σ-positively folded gallery of type w from 1 to rcm = cx,

demonstrating w
φ̃σ−⇀ x.

Case 2 cx and cm have the same parity, and c̃ = ci for some i = 0, . . . ,m.
We may assume that i �= m, because otherwise c̃ would lie closer to cx than
to itself, which is not possible.

Now, the gallery γi+1
w is positively folded and ends at rcm where r is the

reflection across the panel pi+1. Since pi+1 is adjacent to c̃, we find that the
combinatorial distance between c̃ and rcm is exactly 1 less than the distance
between c̃ and c̃m. Because of parity, c̃ still lies closer to cx than to rcm.

Since cx and rcm now have different parity, we find a reflection r′ ∈
W{s,t}, such that r′rcm = cx. Using our observation at the beginning of this
proof, we find that the hyperplane H corresponding to r′ now separates c̃ and
rcm. Since (rci+1 = c̃, rpi+2, . . . , rcm) is a minimal gallery from c̃ to rcm, there
exists some j > i+1, such that rpj , the jth panel of γi+1

w , lies in H. Therefore,
the gallery (γi+1

w )j is the desired φ̃σ-positively folded gallery from 1 to cx of
type w.

Case 3 cx and cm have the same parity, but c̃ /∈ {c0, . . . , cm}. Then, it
must be the case that c0 is closer to c̃ than c1, so γ1

w = (c0, p1, sc1, sp2, . . . , scm)
is φ̃σ-positively folded, and the alcoves of γ1

w contain all those alcoves in W{s,t}1
not yet covered by {c0, . . . , cm}. Therefore, c̃ = sci for some 1 < i ≤ m. Since
scm is adjacent to cm, the alcove c̃ still lies closer to cx than scm, in particular
this means that i �= m.

Since scm and cx have different parity, we find some reflection r ∈ W{s,t},
such that r′scm = cx, and the hyperplane H corresponding to r separates c̃
and scm. Therefore, we find j with i < j ≤ m, such that the panel spj lies in
H. The gallery (γ1

w)j is now the desired φ̃σ-positively folded gallery from 1 to
cx of type w. �

We can now prove Proposition 5.4.

Proof. Let s, t ∈ S and write wst = stst . . .︸ ︷︷ ︸
mst

as well as wts = tsts . . .︸ ︷︷ ︸
mst

for

the two words making up the defining Coxeter relations. Let w = uwstv and
w′ = uwtsv be any two words in S differing by a braid move. Let m = mst

and let k and l be the length of the subwords u and v, respectively. Then,
n := k + m + l is the length of w and w′.

Suppose that w
φ̃σ−⇀x for some x ∈ W . Then, there exists a φ̃σ-positively

folded gallery γ = (c0 = 1, p1, . . . , pn, cn = cx) of type w. We now want to
construct a φ̃σ-positively folded gallery γ′ of type w′ from 1 to cx.

Consider the subgallery γ1 := (ck, pk+1, . . . , pk+m, ck+m) of γ. This sub-
gallery is a φ̃σ-positively folded gallery of type wst. Choose y, z ∈ W , such
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Figure 6. The picture shows a non-braid-invariant orienta-
tion which hence produces different shadows (shown fat blue)
for the two minimal galleries from 1 to w0. See Example 6.2
for details

that ck = cy and ck+m = cyz. Then, γ2 := y−1γ1 is a y−1φ̃σ-positively folded

gallery of type wst from 1 to y−1cyz = cz, which means that wst
y−1φ̃σ−⇀ z.

Since y−1φ̃σ = φ̃y−1σ is a Weyl chamber orientation, we can apply

Lemma 5.5 and find that wts
y−1φ̃σ−⇀ z, so there exists some y−1φ̃σ-positively

folded gallery γ′
2 of type wts from 1 to cz. Multiplication with y yields a gallery

γ′
1 = (c′

k = cy = ck, p′
k+1, . . . , p

′
k+m, c′

k+m = cyz = ck+m) := yγ′
2 of type wts

from ck to ck+m that is yy−1φ̃σ-positively folded.
Now, the gallery:

γ′ := (c0 = 1, p1, . . . , pk, ck = c′
k, p′

k+1, . . . , p
′
k+m, c′

k+m = ck+m, . . . , pn, cn)

constructed from γ and γ′
1 is φ̃σ-positively folded from 1 to cx, and the type

of γ′ is exactly uwtsv = w′ by construction. This shows w′ φ̃σ−⇀ x as desired.

The reverse implication that w′ φ̃σ−⇀x implies w
φ̃σ−⇀x, follows by exchang-

ing the letters s and t. �

6. Shadows

We are finally able to introduce the notion of a shadow.

Definition 6.1 (Shadows of words). Let (W,S) be a Coxeter system and φ be
any orientation on Σ(W,S). Then, the shadow of a word w in S with respect
to φ is defined as follows:

Shφ(w) = {u ∈ W | w
φ−⇀ u}.

In case φ is braid invariant, we may define Shφ(x) := Shφ(w) for any choice of
a minimal expression w for x ∈ W . We will sometimes write Shφ(c) for Shφ(x)
when c is the alcove corresponding to x.

Example 6.2 (Examples of shadows). In general, the shadow will depend on
the choice of a word representing x, as illustrated in Fig. 6. The orientation on
the type A2 Coxeter complex shown here is such that the two minimal galleries
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Figure 7. The regular vector in the figure determines a Weyl
chamber orientation. This picture shows the full and regular
shadows with respect to that orientation in a type G̃2 Coxeter
group. For details, refer to Example 6.5

from 1 to w0 shown in light gray (going clockwise vs counterclockwise) produce
different shadows which are colored in on the respective complex in fat blue.
Hence, this orientation is not braid invariant. In the figure, we draw both their
positively folded images (also as gray paths) and their shadows (as fat blue
edges in the complex).

See also Fig. 8 for some examples of shadows with respect to the trivial
positive orientation.

Definition 6.3 (Regular and full shadows). Let W be an affine Weyl group.
Define for any x ∈ W and any Weyl chamber orientation φa with a ∈ W0 the
regular shadow of x with respect to a to be:

Sha(x) := Shφa
(w) = {y ∈ W : x

φa−⇀ y}
for any minimal word w with [w] = x. We define the full shadow of x to be
the following union of regular shadows:

Sh(x) :=
⋃

a∈W0

Sha(x).

The importance of full shadows will become clear in applications pre-
sented in [12] and [17].



M. Graeber and P. Schwer

Remark 6.4 (Regularity). Regular shadows are determined by a choice of an
equivalence class of Weyl chambers in Σ or, equivalently, a choice of a Weyl
chamber at infinity. This corresponds to a regular direction (i.e., regular vector
based at 0) contained in the unique Weyl chamber representing the class that
is based at 0. Hence, the term regular shadow.

Example 6.5 (Regular versus full shadows). In Figs. 1 and 7, we illustrate full
and regular shadows of elements in type Ã2 and G̃2. In both figures, the set of
all shaded alcoves are the full shadow Sh(c) of the outlined alcove c. The dark
shaded alcoves are the elements of the regular shadow of the outlined element
with respect to the orientation defined by the chamber at infinity to which the
arrow points.

Remark 6.6 (Shadows vs retractions). There is another vary natural geometric
interpretation of shadows. Namely, one can show that a shadow of an element
x in some affine Coxeter group W with respect to some orientation based
at infinity can be interpreted in terms of a thick affine building of the same
type as W . The shadows is the same as the image of a retraction from the
same direction at infinity of the pre-image of a second type of retraction. This
connection was already hidden in [7] and will be made explicit in [12].

In the next proposition, we formally summarize that indeed intervals of
the form [1, x] in Bruhat order can be described via shadows. This is easily
seen using the description of Bruhat order via the subword property.

Remark 6.7 (Subword property). The subword property (see [3, Thm 2.2.2])
implies that one can describe the Bruhat order as follows. Let w = s1s2 . . . sn

be a reduced expression for x = [w] and let y ∈ W . Then:

y ≤ x ⇔ there exists a reduced expression u for y with
u = si1si2 . . . sik

, 1 ≤ i1 < i2 < · · · < ik ≤ n.

That is y ≤ x if and only if for any reduced expression w for x, there exists a
reduced expression u for y which appears as a subword of w.

Proposition 6.8 (Bruhat order and shadows). Let φ+ be the trivial positive
orientation and let φ1 be the alcove orientation towards 1. For any pair of
elements x, y ∈ W , one has:

x ≥ y ⇔ x
φ+−⇀ y ⇔ x

φ1−⇀ y.

In particular, Shφ+(x) = Shφ1(x) = [1, x].

Proof. From the subword property, the first equivalence is obvious as reduced
expressions are in bijection with minimal galleries. It is also obvious that (x φ1−⇀

y ⇒ x
φ+−⇀y), since any φ1-positive folding of some gallery is also φ+-positive.

To show (x φ+−⇀ y ⇒ x
φ1−⇀ y): let w be a reduced expression for x, let

n = 	(x). Among all I ⊂ {1, . . . , n}, such that γI
w ends at cy, choose I, such

that the sum of its elements is minimal. This ensures that γI
w is φ1-positively

folded, because if γI
w were not positively folded at i ∈ I, we could replace i

with some smaller value j. Specifically, let j be the first index, such that the
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Figure 8. The picture shows shadows Shφ+(x) with respect
to the trivial positive orientation φ+ in types Ã2 (left) and
B̃2 (right). See also Example 6.9 for different interpretations

ith and jth panels of γI
w lie in the same hyperplane. Then, for J := IΔi, j, we

have γJ
w ending at cy and

∑
(J) <

∑
(I), because j < i, since every gallery

from 1 crosses all hyperplanes from the φ1–positive to the φ1–negative side
first. Compare also with [3, Lemma 2.2.1]. �

Example 6.9 (Bruhat order and shadows). The shaded alcoves in Fig. 8 are
the elements of the shadow of x with respect to the trivial positive orientation
on a type Ã2 Coxeter complex. By the previous proposition, this is the same
as the Bruhat interval [1, x] and also the same as Sh1(x).

Remark 6.10 (Other intervals in Bruhat order). Note that it is also possible
to express intervals [a, b], for a, b ∈ W , in Bruhat order in terms of positively
folded galleries. To do this, one needs to consider elements/alcoves c in Sh+(b)
that fold onto a.

7. Recursive Computation of Regular Shadows

In this section, we examine the properties of regular shadows (and full) shadows
and prove two identities in Theorems 7.1 and 7.3 from which we obtain two
algorithms that are well suited to compute regular and full shadows. Suppose,
throughout the section, that (W,S) is affine.

7.1. Structural Results

In the following, we mean by a direction in W, denoted by ϕ ∈ Dir(W ), a
chamber in the boundary ∂Σ. That is Dir(W ) := Ch(∂Σ(W,S)). By what we
have discussed at the end of Sect. 2 directions are in natural bijection with
elements in W0. Each direction induces a Weyl chamber orientation φ̃ϕ on Σ.
We will abbreviate Shφ̃ϕ

(x) by Shϕ(x).
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Note that the condition vϕ(s) < 0 (resp. > 0) in the next theorem simply
means that the alcove corresponding to s is on the negative (resp. positive)
side of the hyperplane separating s from 1.

Theorem 7.1 (Recursive computation of regular shadows). For every ϕ ∈
Dir(W ), all x ∈ W and s ∈ S the following holds.

(i) If s is in the right descent set DR(x) of x, then

Shϕ(x) = Shϕ(xs) · s ∪ {z ∈ Shϕ(xs) : vϕ(zs) < vϕ(z)}.

(ii) If s is in the left descent set DL(x) of x, then

Shϕ(x) =
{

s · Shsϕ(sx) ∪ Shϕ(sx) if vϕ(s) < 0
s · Shsϕ(sx) if vϕ(s) > 0.

Proof. In this proof, we will not distinguish between alcoves and the group
elements labeling them.

To prove item (i) suppose that s ∈ DR(x). Let w′ be a reduced expression
for xs. Since 	(xs) < 	(x), the word w := w′s is a reduced expression for x.

We first prove that “⊆”: Let y ∈ Shϕ(x). Then, there exists a ϕ-positively
folded gallery γ = (c0 = 1, p1, . . . , cn−1, pn, cn = y) of type w from 1 to y.

Case 1 If cn = cn−1, then removing the last alcove of γ yields a gallery
of type w′ from 1 to y, so y ∈ Shϕ(xs). By ϕ-positivity of γ, cn = y lies
on the ϕ-positive side of pn. Since pn is of type s, the panel pn lies on the
hyperplane Hr corresponding to the reflection r = ysy−1. By Lemma 4.33,
this implies that vϕ(y) > vϕ(ry), and since ry = ysy−1y = ys, we obtain that
y ∈ {z ∈ Shϕ(xs) : vϕ(zs) < vϕ(z)}.

Case 2 If cn = cn−1s, then removing the last alcove of γ yields a gallery
of type w′ from 1 to ys, so ys ∈ Shϕ(xs), and thus, y ∈ Shϕ(xs) · s.

To see the converse containment “⊇” let y ∈ Shϕ(xs) ·s. Then, xs
ϕ−⇀ys,

so there exists a ϕ-positively folded gallery γ = (c0 = 1, p1, . . . , pn, cn = ys)
of type w′. Now, since the alcove cn = ys and y meet in a panel p of type s,
we may extend γ to the gallery (c0, p1, . . . , pn, cn, p, y) which is ϕ-positively
folded from 1 to y of type w′s = w, so y ∈ Shϕ(x).

Now, let y ∈ {z ∈ Shϕ(xs) : vϕ(zs) < vϕ(z)}. Then, xs −⇀ y, so there
exists a ϕ-positively folded gallery γ = (c0 = 1, p1, . . . , pn, cn = y) of type
w′. Now, let p be the panel of y of type s. Then, p lies in the hyperplane Hr

corresponding to the reflection r := ysy−1. Since ry = ysy−1 = ys, we have
that vϕ(ry) ≤ vϕ(y), and thus, y lies on the positive side of Hr and the gallery
(c0, p1, . . . , pn, cn, p, y) is a ϕ-positively folded gallery of type w′s = w (thus of
type x) from 1 to y.

We split the proof of item (ii) into two cases and assume first that s ∈
DL(x) with vϕ(s) > 0. Let w′ be a reduced word for sx. Put w = sw′. Since
	(sx) ≤ 	(x), the word w is a reduced expression for x.

Consider “⊆”: Let y ∈ Shϕ(x). Then, there is a ϕ-positively folded gallery
of type w from 1 to y.

Case a Suppose c1 = s. Define a subgallery γ′ = (c1, p2, . . . , pn, cn) of γ.
Then, γ′ is ϕ-positively folded from s to y, so by Lemma 4.14 the gallery sγ′
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is sϕ-positively folded of type w′ from 1 to sy. Therefore, sy ∈ Shsϕ(sx) and
y ∈ s · Shsϕ(sx).

Case b Suppose that c1 = 1. Then, the subgallery γ′ = (c1, p2, . . . , pn, cn)
of γ is ϕ-positively folded of type w′ from 1 to y, so y ∈ Shϕ(sx).

To see “⊇” let y ∈ s · Shsϕ(sx). Then, there exists a sϕ-positively folded
gallery γ of type w′ from 1 to sy. By Lemma 4.14, the gallery sγ is ϕ-positively
folded of type w′ from s to y. Let p be the panel shared by alcoves 1 and s.
The gallery (1, p, s) is now non-stammering of type s, therefore, trivially ϕ-
positively folded. This implies that extending the gallery sγ at the front by
(1, p, s) yields a gallery (1, p, s)+ sγ which is also ϕ-positively folded and runs
from 1 to y. Moreover, its type is sw′ = w, proving that y ∈ Shϕ(x).

Now, let y ∈ Shϕ(sx). Let γ be a ϕ-positively folded gallery of type w′

from 1 to y. Let p be the panel shared by alcoves 1 and s. Since vϕ(s) < 0 =
vϕ(1), we know that 1 lies on the ϕ-positive side of p, and thus, the gallery
(1, p,1) is ϕ-positively folded of type s. Thus, we may extend γ to a gallery
(1, p,1) + γ which turns out to be the desired ϕ-positively folded gallery of
type sw′ = w from 1 to y. Therefore, y ∈ Shϕ(x).

Assume for the second case of (ii) that s ∈ DL(x) with vϕ(s) > 0. Let
w′ be a reduced expression for sx. Since 	(sx) ≤ 	(x), the word w := sw′ is a
reduced expression for x.

Let y ∈ Shϕ(x). There is a ϕ-positively folded gallery γ = (c0, p1, . . . ,
pn, cn) of type w from 1 to y. Now, p1 is of type s and lies on the hyperplane
Hs, so if the alcove s lies on the positive side of Hs, then 1 must lie on the
negative side of Hs. Since γ is positively folded, the alcove c1 can not be equal
to 1 and, therefore, equals s. The gallery γ′ := (c1, p2, . . . , pn, cn) is, therefore,
a ϕ-positively gallery from s to y of type w′. Therefore, its image sγ′ is sϕ-
positively folded from 1 to sy of type w′. This implies that sy ∈ Shsϕ(sx), so
y ∈ s · Shsϕ(sx). We have shown “⊆”.

We prove the opposite direction “⊇” as in the first case: let y ∈ s ·
Shsϕ(sx). Then, there exists a sϕ-positively folded gallery γ of type w′ from
1 to sy. By Lemma 4.14, the gallery sγ is ϕ-positively folded of type w′ from
s to y. Let p be the panel shared by alcoves 1 and s. The gallery (1, p, s)
is now non-stammering of type s and, therefore, trivially ϕ-positively folded.
Therefore, the extended gallery (1, p, s)+ sγ is also ϕ-positively folded from 1
to y of type sw′ = w, proving that y ∈ Shϕ(x). �

We conclude this subsection with a slightly more powerful variant of The-
orem 7.1 which we obtain by splitting up our regular shadows by translation
class.

Definition 7.2 (Partial shadows). For an element y ∈ W write ȳ for its image
in the spherical Weyl group W0 under the natural projection. Then, for any
x ∈ W , a ∈ W0, and ϕ ∈ Dir(W ), define the partial shadow in local direction
a to be the set:

Sha
ϕ(x) := {y ∈ Shϕ(x) | ȳ = a}.
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Theorem 7.3 (Recursive computation of partial shadows). Let x, y ∈ W with
	(xy) = 	(x) + 	(y). Let a ∈ W0 and ϕ ∈ Dir(W ). Then:

Sha
ϕ(xy) =

⋃

b∈W0

Shb
ϕ(x) · Shb−1a

b−1ϕ(y).

Proof. Let w1 = (s1, . . . , sk) be a reduced expression for x and suppose that
w2 = (sk+1, . . . , sn) is a reduced expression for y. Then, w = (s1, . . . , sn) is a
reduced expression for xy.

To show forward inclusion, suppose z ∈ Sha
ϕ(xy) and fix a gallery (c0 =

1, p1, . . . , pn, cn = z) of type w. Then, (c0, p1, . . . , pk, ck) is a ϕ-positively folded
gallery of type w1 from 1 to x′ := ck, and x′−1(ck, . . . , pn, cn) is a x′−1ϕ-
positively folded gallery of type w2 from 1 to y′ := x′−1z. Choosing b equal
to x̄′, we find that x′ ∈ Shb

ϕ(x) and because ȳ′ = x̄′−1z̄ = b−1a, we find

y′ ∈ Shb−1a
b−1ϕ(y), and thus, z = x′y′ ∈ Shb

ϕ(x) · Shb−1a
b−1ϕ(y).

To show reverse inclusion, suppose that z ∈ Shb
ϕ(x) · Shb−1a

b−1ϕ(y) for some

b ∈ W0. Then, z = x′y′ for some x′ ∈ Shb
ϕ(x), y′ ∈ Shb−1a

b−1ϕ(y). Now, there exists
a ϕ-positively folded gallery γ1 of type w1 from 1 to x′ and a b−1ϕ-positively
folded gallery γ2 of type w2 from 1 to y′. Since x̄′ = b, we know that x′γ2 is
ϕ-positively folded from x′ to x′y′ = z, so γ = γ1 + x′γ2 is ϕ-positively folded
from 1 to z. Finally, z̄ = x̄′ȳ′ = bb−1a = a; therefore, z ∈ Sha

ϕ(xy). �

7.2. Algorithms

Much like intervals in Bruhat order have recursive descriptions; Theorem 7.1
allows us to construct regular shadows recursively from regular shadows of left
or right subwords. We will now provide two algorithms. The first one uses the
left-multiplication action of W on itself and (i) of Theorem 7.1; the other uses
the right-multiplication action and item (ii).

Lemma 7.4 (Algorithm L). Fix a direction ϕ ∈ Dir(W ) and let x ∈ W . Fix
a reduced word w = (s1, . . . , sn) ∈ S∗ for x. Put A0 = {1} and define for
i = 1, . . . , n the set:

Ai := Ai−1 · si ∪ {z ∈ Ai−1 : vϕ(zs) < vϕ(z)}.

Then, An = Shϕ(x).

Proof. It is easy to iteratively show by Theorem 7.1 (i) that Ai = Shϕ(s1 · · · si)
for i = 0, . . . , n. �

Remark 7.5 Note that since z and zs are only separated by the hyperplane
Hzsz−1 , vϕ(z) and vϕ(zs) only differ by pϕ(z,Hzsz−1) − pϕ(zs,Hzsz−1), so
vϕ(zs) < vϕ(z) is equivalent to the fact that z lies on the ϕ-positive side of
the panel of z of type s.

Alternatively, we can use Lemma 4.14 to see that vϕ(zs) < vϕ(z) if and
only if vz−1ϕ(s) < vz−1ϕ(1) = 0. The latter is equivalent to pz−1ϕ(s,Hs) = 0.

Lemma 7.6 (Algorithm R). Let x ∈ W , and let w = (sn, . . . , s1) ∈ S∗ be a
reduced expression for x (note the unusual indexing).
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For all ϕ ∈ Dir(W ), let Bψ
0 := {1}. For i = 1, . . . , n, and all ϕ ∈ Dir(W ),

let:

Bϕ
i =

{
siB

siϕ
i−1 ∪ Bϕ

i−1 if vϕ(si) < 0,

siB
siϕ
i−1 if vϕ(si) > 0.

Then, Bϕ
n = Shϕ(x) for all ϕ ∈ Dir(W ).

Proof. It is easy to iteratively show by Theorem 7.1 (ii) that Bϕ
i =

Shϕ(si · · · s1) for all ϕ ∈ Dir(W ) and i = 0, . . . , n. �

7.3. Remarks on the Computational Effort

For a fixed orientation φ, a simple yet inefficient algorithm to calculate the
φ-shadow of some element x would be to take a minimal gallery γ from 1 to
x and construct all 2�(x) foldings γI of γ. Then, Shφ(x) is the set of endings
of all the galleries in this set that are φ-positively folded.

Unfortunately, this naive approach requires examining a number of fold-
ings exponential in 	(x). One can immediately improve this to a polynomial-
time algorithm by checking only the foldings of γ with less than k := 	(w0)
folds by Proposition 4.24 (recall that w0 denotes the longest element in W0).
However, there are then still over

(
�(x)

k

) ≈̂ 	(x)k such foldings. So, in case 	(w0)
is large, this quickly becomes infeasible again. The algorithms L and R which
we constructed by means of Theorem 7.1 are more efficient.

Algorithm L can compute Ai from Ai−1 using Θ(|Ai|) multiplications and
Θ(|Ai|) evaluations of pϕ(·, ·). Since Aisi+1 · · · sn ⊂ An = Shϕ(x), the total
calculation effort of Algorithm R is bounded by O(	(x)|Shϕ(x)|). The shadow
Shϕ(x) is a subset of {y ∈ W : 	(y) ≤ 	(x)}. Hence, one can conclude from the
deletion condition of Coxeter groups that the total calculation effort is bounded
by O(	(x)	(x)d) = O(	(x)d+1). This is a potentially very large improvement
over the Ω(	(x)�(w0)) effort which we get from our improved naive algorithm.

Algorithm R can compute the Bϕ
i from all sets Bϕ

i−1 using Θ(
∑

ϕ∈Dir(W )

|Bϕ
i |) operations. Since sn · · · si+1B

sn···si+1ϕ
i ⊂ Bϕ

n = Shϕ(x), the total calcu-
lation effort of Algorithm R is bounded by O(

∑
ϕ∈Dir(W ) 	(x)|Shϕ(x)|), which

is the same effort as calculating all regular shadows of x separately using Algo-
rithm L.

The main difference between algorithms L and R is that Algorithm L
iteratively calculates shadows in a single direction, while Algorithm R calcu-
lates shadows in all directions at once. If we want to calculate a single regular
shadow of some element x ∈ W , then Algorithm L is preferable, especially
when Dir(W ) is large. If we want to find the full shadow of x, then we need
the shadows for all directions anyway, so Algorithm R is preferable to repeated
use of Algorithm L, because Algorithm R requires much less checking whether
certain chambers lie on positive sides of their panels.
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