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Abstract

This thesis examines cryptographic techniques providing security for computer log files.
It focuses on ensuring authenticity and integrity, i.e. the properties of having been
created by a specific entity and being unmodified. Confidentiality, the property of being
unknown to unauthorized entities, will be considered, too, but with less emphasis.
Computer log files are recordings of actions performed and events encountered in

computer systems. While the complexity of computer systems is steadily growing,
it is increasingly difficult to predict how a given system will behave under certain
conditions, or to retrospectively reconstruct and explain which events and conditions
led to a specific behavior. Computer log files help to mitigate the problem of retracing a
system’s behavior retrospectively by providing a (usually chronological) view of events
and actions encountered in a system.
Authenticity and integrity of computer log files are widely recognized security

requirements, see e.g. [Lat85, p. 10], [KS06, Section 2.3.2], [GR95, Section 18.3.1],
[NDP17, Section 9.3], [CC12, Section 8.6]. Two commonly cited ways to ensure integrity
of log files are to store log data on so-called write-once-read-many-times (WORM) drives
and to immediately print log records on a continuous-feed printer. This guarantees
that log data cannot be retroactively modified by an attacker without physical access
to the storage medium.
However, such special-purpose hardware may not always be a viable option for the

application at hand, for example because it may be too costly. In such cases, the
integrity and authenticity of log records must be ensured via other means, e.g. with
cryptographic techniques. Although these techniques cannot prevent the modification
of log data, they can offer strong guarantees that modifications will be detectable, while
being implementable in software. Furthermore, cryptography can be used to achieve
public verifiability of log files, which may be needed in applications that have strong
transparency requirements. Cryptographic techniques can even be used in addition to
hardware solutions, providing protection against attackers who do have physical access
to the logging hardware, such as insiders.
Cryptographic schemes for protecting stored log data need to be resilient against

attackers who obtain control over the computer storing the log data. If this computer
operates in a standalone fashion, it is an absolute requirement for the cryptographic
schemes to offer security even in the event of a key compromise. As this is impossible
with standard cryptographic tools, cryptographic solutions for protecting log data
typically make use of forward-secure schemes, guaranteeing that changes to log data
recorded in the past can be detected. Such schemes use a sequence of authentication
keys instead of a single one, where previous keys cannot be computed efficiently from
latter ones.
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This thesis considers the following requirements for, and desirable features of, cryp-
tographic logging schemes: 1) security, i.e. the ability to reliably detect violations of
integrity and authenticity, including detection of log truncations, 2) efficiency regarding
both computational and storage overhead, 3) robustness, i.e. the ability to verify
unmodified log entries even if others have been illicitly changed, and 4) verifiability of
excerpts, including checking an excerpt for omissions.

The goals of this thesis are to devise new techniques for the construction of crypto-
graphic schemes that provide security for computer log files, to give concrete construc-
tions of such schemes, to develop new models that can accurately capture the security
guarantees offered by the new schemes, as well as to examine the security of previously
published schemes.

This thesis demands that cryptographic schemes for securely storing log data must be
able to detect if log entries have been deleted from a log file. A special case of deletion
is log truncation, where a continuous subsequence of log records from the end of the
log file is deleted. Obtaining truncation resistance, i.e. the ability to detect truncations,
is one of the major difficulties when designing cryptographic logging schemes. This
thesis alleviates this problem by introducing a novel technique to detect log truncations
without the help of third parties or designated logging hardware. Moreover, this work
presents new formal security notions capturing truncation resistance. The technique
mentioned above is applied to obtain cryptographic logging schemes which can be
shown to satisfy these notions under mild assumptions, making them the first schemes
with formally proven truncation security.

Furthermore, this thesis develops a cryptographic scheme for the protection of log
files which can support the creation of excerpts. For this thesis, an excerpt is a (not
necessarily contiguous) subsequence of records from a log file. Excerpts created with
the scheme presented in this thesis can be publicly checked for integrity and authenticity
(as explained above) as well as for completeness, i.e. the property that no relevant
log entry has been omitted from the excerpt. Excerpts provide a natural way to
preserve the confidentiality of information that is contained in a log file, but not of
interest for a specific public analysis of the log file, enabling the owner of the log file
to meet confidentiality and transparency requirements at the same time. The scheme
demonstrates and exemplifies the technique for obtaining truncation security mentioned
above.

Since cryptographic techniques to safeguard log files usually require authenticating
log entries individually, some researchers [MT08; MT09; YP09] have proposed using
aggregatable signatures [Bon+03] in order to reduce the overhead in storage space
incurred by using such a cryptographic scheme. Aggregation of signatures refers to some
“combination” of any number of signatures (for distinct or equal messages, by distinct
or identical signers) into an “aggregate” signature. The size of the aggregate signature
should be less than the total of the sizes of the orginal signatures, ideally the size of
one of the original signatures. Using aggregation of signatures in applications that
require storing or transmitting a large number of signatures (such as the storage of log
records) can lead to significant reductions in the use of storage space and bandwidth.
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However, aggregating the signatures for all log records into a single signature will
cause some fragility: The modification of a single log entry will render the aggregate
signature invalid, preventing the cryptographic verification of any part of the log file.
However, being able to distinguish manipulated log entries from non-manipulated
ones may be of importance for after-the-fact investigations. This thesis addresses this
issue by presenting a new technique providing a trade-off between storage overhead
and robustness, i.e. the ability to tolerate some modifications to the log file while
preserving the cryptographic verifiability of unmodified log entries. This robustness
is achieved by the use of a special kind of aggregate signatures (called fault-tolerant
aggregate signatures), which contain some redundancy. The construction makes use of
combinatorial methods guaranteeing that if the number of errors is below a certain
threshold, then there will be enough redundancy to identify and verify the non-modified
log entries.

Finally, this thesis presents a total of four attacks on three different schemes intended
for securely storing log files presented in the literature [YPR12b; Ma08]. The attacks
allow for virtually arbitrary log file forgeries or even recovery of the secret key used
for authenticating the log file, which could then be used for mostly arbitrary log file
forgeries, too. All of these attacks exploit weaknesses of the specific schemes. Three of
the attacks presented here contradict the security properties of the schemes claimed
and supposedly proven by the respective authors. This thesis briefly discusses these
proofs and points out their flaws. The fourth attack presented here is outside of the
security model considered by the scheme’s authors, but nonetheless presents a realistic
threat.

In summary, this thesis advances the scientific state-of-the-art with regard to provid-
ing security for computer log files in a number of ways: by introducing a new technique
for obtaining security against log truncations, by providing the first scheme where
excerpts from log files can be verified for completeness, by describing the first scheme
that can achieve some notion of robustness while being able to aggregate log record
signatures, and by analyzing the security of previously proposed schemes.
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1. Introduction

Computer log files are recordings of actions performed and events encountered in
computer systems. As the complexity of computer systems is steadily accumulating, it is
increasingly difficult to predict how a given system will behave under certain conditions,
or to retrospectively reconstruct and explain which events led to a specific behavior.
The problem is even worse for systems based on machine learning techniques, where
even experts struggle to understand and explain the precise rules and/or parameters
“learned” by a system from some training data.

At the same time, dependency on complex computer systems is increasing, and
more and more valuable and invaluable assets are entrusted to computers and the
algorithms they are running. For example, the United States’ Commodity Futures
Trading Commission (CFTC, a US government agency supervising and regulating a
specific branch of finance) reported that in the time period from November 2014 until
October 2016, 77.7% of the total market volume for so-called “futures” trading US
dollars for Japanese Yen could be attributed to trades where the offer was placed and
accepted by automated trading systems [HR17]. An additional 18.8% of the market
volume was due to contracts where either the placement or the acceptance was the
result of an automated decision. The report noted [HR17]:

The level of automated trading has increased, over the past few years,
across all of the major product groups traded on the [Chicago Mercantile
Exchange].

Moreover, human lives implicitly depend on the correct functioning of computer systems
on a daily basis. Pacemakers, fully automated trains or trams, cars’ onboard control
systems, and aerial traffic monitoring systems are just a few examples of computer
systems whose malfunction could endanger human lives. The enormous degree of
pervasion of today’s society by computers of all kinds has led to a strong dependence
on these computers, which gives rise to the need for accountability.
However, the enormous complexity of today’s systems is a serious hindrance for

establishing accountability. Computer log files alleviate the burden of complexity
during reviews of past system behavior by providing a (usually chronological) record of
events and actions (such as business trancations, errors or security violations) which
happened in a computer system. They are an indispensable source of information for
after-the-fact digital forensics, system maintenance, as well as intrusion detection. For
all of these objectives, having reliable information is imperative.
Therefore, authenticity and integrity of computer log files are widely recognized

security requirements. Authenticity refers to the property of originating from a specific
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1. Introduction

entity, e.g. a person, a computer or an organisation. Integrity refers to the property of
being unmodified with respect to some reference version.

For example, the “Orange Book” [Lat85], published by the United States’ Department
of Defense in 1985, a collection of security requirements for products used to process
classified or otherwise sensitive information, stated [Lat85, p. 10]:

A trusted system must be able to record the occurrences of security-relevant
events in an audit log. [. . .] Audit data must be protected from modifica-
tion and unauthorized destruction to permit detection and after-the-fact
investigations of security violations.

Similarly, the United States’ National Institute of Standards and Technology (NIST)
claimed, in the handbook “An Introduction to Computer Security” published in 1995
[GR95, Section 18.3.1]:

It is particularly important to ensure the integrity of audit trail data against
modification. One way to do this is to use digital signatures. [. . .] Another
way is to use write-once devices. The audit trail files needs [sic!] to be
protected since, for example, intruders may try to “cover their tracks” by
modifying audit trail records.

While the handbook above has recently been withdrawn and superseded, the superseding
version [NDP17, Section 9.3] suggests:

Cryptography may play a useful role in audit trails, which are used to
help support electronic signatures. Audit records may implement electronic
signatures for integrity, and cryptography may be needed to protect audit
records stored on systems from disclosure or modification.

In another publication, dealing specifically with logs in the context of computer security,
NIST states [KS06, Section 2.3.2]:

Because logs contain records of system and network security, they need to
be protected from breaches of their confidentiality and integrity. [. . .] Logs
that are secured improperly in storage or in transit might also be susceptible
to intentional and unintentional alteration and destruction. This could
cause a variety of impacts, including allowing malicious activities to go
unnoticed and manipulating evidence to conceal the identity of a malicious
party. For example, many rootkits are specifically designed to alter logs to
remove any evidence of the rootkits’ installation or execution.

Furthermore, the “IT-Grundschutz”—a set of standards on how to manage IT security
in companies or government agencies developed by the German Federal Office for Infor-
mation Security (Bundesamt für Sicherheit in der Informationstechnik, BSI)—explicitly
names “Loss of Confidentiality and Integrity of Log Data” (author’s translation) as
a threat to be countered [Bun19, Module OPS.1.1.5, Section 2.5]. Additionally, the
standard contains the following suggestion for IT systems with a high need of protection:
[Bun19, OPS.1.1.5.A12, author’s translation]
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[. . .] Furthermore, all stored logs SHOULD be signed digitally.

Given these recommendations, it is not surprising that the so-called “Common Criteria”
specify requirements for the secure storage of audit data. [CC12, Section 8.6].

Approaches to Securely Storing Log Data. Two commonly cited methods of ensuring
integrity of log files are to store log data on so-called write-once-read-many-times
(WORM) drives (as noted by [GR95]) and to immediately print log records on a
continuous feed printer. These methods guarantee that log data cannot be retroactively
modified by an attacker without physical access to the storage media.

Another mechanism, which is frequently used in practice, is to send log records to a
dedicated logging server over a network. While this approach may be an improvement
in terms of security if the logging server is well secured and hardened against attacks,
the problem of securely storing log files is ultimately just shifted to a different part
of the system. Moreover, this approach requires that the transmission of log data is
secure and reliable. While cryptography has developed a rich set of tools for secure
transmission of data over untrusted networks (e.g. TLS [RFC8446]), most modern
computer networks do not offer strict guarantees of reliability.
Yet another approach to ensuring the authenticity and integrity of log files is to

use cryptography, as proposed by [GR95; NDP17]. While cryptographic techniques
cannot prevent the modification of log data, they can offer strong guarantees that
modifications will be detectable.
This thesis addresses the problem of securely storing log files, taking the latter

approach. It focuses on the case where neither specialized hardware nor other servers
are available (i.e. the logging system must operate in a completely standalone fashion
after deployment). This setting is referred to as the standalone model. Our reasons for
studying the security of log files from a cryptographic perspective and in the standalone
model are as follows:

• Cryptographic solutions can achieve public verifiability of log files, i.e. the property
that (at least in principle) everyone can check the log file for her-/himself. This
feature may be needed in applications that have strong transparency requirements
(such as electronic voting), or when log data is introduced into a lawsuit as
evidence.

• Cryptographic techniques can be implemented purely in software, without re-
quiring additional hardware (such as WORM drives, continuous feed printers or
dedicated log storage servers).

• Cryptography can even achieve security against insider threats (e.g. rogue em-
ployees) who have access to the log storage media.

• If so desired, cryptographic techniques for securely storing log data can be used
in addition to hardware-based approaches such as WORM drives and profit from
the capabilities offered by the hardware solution.

3



1. Introduction

• Since cryptographic solutions can be implemented in software, their implementa-
tion is more amenable to analysis and inspection than hardware solutions.

• The security of abstract cryptographic solutions can be formally proven (with
regard to mathematical definitions of security), under certain computational
assumptions.

• The science of cryptography is often concerned with determining the weakest
assumption(s) necessary to achieve certain security goals. By restricting our
attention to the standalone model and refraining from assuming the presence of
designated hardware modules we (indirectly) address this question for the case of
protecting stored log data.

Desiderata for Cryptographic Logging Schemes. This work considers the following
requirements, features and properties for assessing the quality of cryptographic logging
schemes:

• First and foremost, a cryptographic logging scheme must be secure. In particular,
it is required that the logging scheme protects the integrity and authenticity of
stored log data. This includes that attackers must not be able to modify existing
log records, inject new, forged ones, delete existing log entries, or re-order the
existing log records without being detected.
In the standalone setting considered in this thesis, where the data logger cannot
rely on designated hardware or external servers, the cryptographic keys used to
authenticate the log data must be kept on the same computer that also stores
the log data. Hence, when an attacker compromises this system in order to
manipulate stored log data, the attacker can also obtain the authentication key.1
Thus, the cryptographic schemes employed must continue to offer security even
in the event of a key compromise. Cryptographic schemes having this property
are called forward-secure.

• This work considers the efficiency of cryptographic logging schemes, i.e., the
overhead introduced by the secure storage of log files as opposed to storing them
without protection. Efficiency itself can be measured in a number of ways, such
as the the required running time for generating keys, authenticating log records
or verifying a log file, as well as the storage requirements for cryptographic keys
and signatures.
Naturally, when comparing the efficiency of logging schemes, one scheme’s effi-
ciency may exceed another’s in some of these aspects, while falling short in other
aspects. In these cases, it is difficult to say that one scheme is more efficient than

1We conservatively assume that any compromise of the machine storing the log records is complete,
i.e. the attacker gains unrestricted access to the machine. This is in accordance with the overall
cryptographic approach taken in this thesis: We strive to give mathematical guarantees of security,
and to refrain making assumptions on the attacker’s ability to corrupt a given system.
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another one. The logging schemes constructed in this thesis strike a reasonable
balance between different aspects of efficiency.
It may at times be desirable to verify individual log entries with as little overhead
as possible. In particular, one may want to check individual log entries without
needing to verify the entire log file. A scheme’s ability to perform such a selective
verification is considered as another (slightly “exotic”) aspect of efficiency.

• Cryptographic logging schemes should have robustness, i.e. the ability to verify
the integrity and authenticity of parts of a log file, even if other parts have
been illegitimately manipulated. Otherwise, once a compromise is detected,
it may be impossible to tell which log records are true and which ones have
been manipulated, severely obstructing the after-the-fact forensic analysis of the
incident.
While it may be possible to consult backup copies of the stored log data, such
backup copies need not contain the authentic, “real” log data, neither, if the
tampering has occured a long time before its detection.

• This thesis considers the feature of providing excerpts of log files, i.e. subsequences
of log records from a log file. It should be possible to verify these excerpts for
authenticity and integrity (log data contained in the excerpts should be “correct”)
as well as completeness. Completeness refers to the property of containing all
“relevant” log entries, as opposed to missing some (potentially critical) log records.

Goals of this Thesis. Following the cryptographic approach to securely storing log
data, the goals of this thesis are:

• to devise new techniques for the construction of cryptographic schemes that
provide security for computer log files,

• to provide concrete constructions of such schemes following the desiderata laid
out above,

• to develop new models that can accurately capture the security guarantees offered
by the new schemes,

• to conduct proofs of security for these schemes in the respective models, relating
the difficulty of retroactively forging log entries to the hardness of well-defined,
well-studied and assumedly intractable mathematical problems, as well as

• to examine the security of previously published schemes.

Practical Considerations. In the field of IT security, it is a common approach to
monitor log data for intrusion detection. If log data is cryptographically authenticated,
the monitoring should involve regularly verifying the integrity and authenticity of the
log data. Doing so will detect modifications that attackers may have performed in
order to hide their activities.
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1. Introduction

Once modifications have been detected, it is usually clear that a security violation
has occured, and appropriate actions should be taken to react to this violation. How
to respond to such a situation is outside the scope of this thesis, but the reaction will
typically contain an ex post examination of the incident. During this examination, one
may (and should) consider existing backup copies of the log files. This might help to
recover from modifications of log data recorded before the creation of the latest backup
copy.

1.1. Foundations

This section briefly and informally recaps some cryptographic concepts and techniques
which are prevalent in the study of cryptographic schemes for protecting stored log
data.
This section is strongly based [Har16b, Section 1]. Significant parts of the text in

this section have been taken from that work without or with only minor modifications
and without specific designation. In addition, this section reproduces text from [Har17,
Section 1] and [Har+17b, Section 2], again without designation.

Digital Signatures and MACs. The standard cryptographic approach to ensure
authenticity and integrity of some information is to authenticate the data at hand
using digital signature schemes (a concept initially conceived by Diffie and Hellman
[DH76]) or message authentication codes (MACs). Although the techniques presented
in this work can be applied to MACs as well, this work focuses on the case of digital
signatures, since they allow for public verification of the authenticity and integrity of
signed data. MACs, in contrast, are not publicly verifiable in general.
Digital signatures are commonly modeled as triples of algorithms: key generation,

message signing, and verification.2 Before any data can be authenticated, the originator
(or sender) of that data runs the key generation algorithm to obtain an authentication
key and a verification key. The authentication key must be kept secret (hence, it is
called the secret key), whereas the verification key can be published (public key). In
order to authenticate some target datum (the message), the sender runs the signing
algorithm (using the secret key) in order to derive an additional datum (the signature),
which serves as a cryptographic proof that the message at hand indeed originates
from the sender. The signature is then transmitted to the intended recipient alongside
the message. Upon receiving a message and an ostensible signature the recipient
may execute the verification algorithm to determine if the received datum indeed
originates from the sender. Running the verification algorithm requires the sender’s
public verification key, the received datum and the signature generated by the sender.

2Kerckhoffs’ principle ([Ker83], see also [KL07, pp. 6–8]) mandates that these algorithms are publicly
known. While Kerckhoffs’ principle predates the invention of digital signatures by almost a century
and was originally only meant to apply to encryption systems, it applies analogously to other types
of cryptographic schemes, such as digital signatures. Kerckhoffs’ principle has developed to be one
of the fundamental and most universally applied principles of modern cryptography.
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1.1. Foundations

A signature accepted by the verification procedure is said to be valid for the respective
message (under the respective public key).

MAC schemes are very similar to digital signature schemes, but differ in the fact that
they use a single key for both authenticating and verifying messages. Therefore, this
key must be kept secret and hence the verification algorithm cannot be run publicly.

In order to provide adequate assurance of data authenticity, it must be very hard for
an attacker to forge a signature confirming the authenticity of a message which does
not actually originate from the sender. Constructing digital signature schemes in a
way that makes forgeries very hard is a frequent subject of research in cryptography.

On an intuitive level, the de facto standard definition of security [GMR84; GMR88]
for digital signatures requires that it should be “practically impossible” to create a valid
signature for some message under a given public key without knowing the corresponding
secret key, even if an attacker knows valid signatures for different messages selected by
the attacker her-/himself. This, together with the implicit assumption that the secret
key is only known to the sender, implies that if a message has a valid signature, then
only the sender could have created the signature, and thus the message must indeed
originate from the sender.

Forward Security. In the context of this work, dealing with protecting log files in
a stand-alone setting, it is necessary to consider the possibility that the data logger
might get corrupted by the attacker at some point in time. (If the data logger was
considered to be incorruptible, the attacker would not be able to manipulate the logged
data in the first place.) Once an attacker has taken control over a system, (s)he may
access all cryptographic keys stored within that system, including the secret keys used
to sign log data.

Using the keys and the publicly known signature algorithm, an attacker can compute
signatures on her/his own. Thus, an attacker might modify log data arbitrarily, and
recompute a valid signature for the forged log data afterwards. Since the signature
will be valid, such a modification will not be detectable by executing the verification
algorithm.

Therefore, cryptographic solutions for protecting stored log data must be resilient to
attackers who gain full control of the log server which holds the secret key. Rephrasing
this requirement, a cryptographic logging scheme must remain secure even if the
attacker obtains the secret key at some point in time, and must continue to enable the
discovery of illicit, retroactive modifications of log records.

As this is impossible with standard authentication schemes, researchers have devised
schemes (e.g. [BY97; BM99; BY03; AR00; IR01; MMM02; Kra00; Boy+06; Son01;
ZWW03; AMN01; HWI03]) which guarantee “forward integrity” [BY97].3 Such schemes
use a series of secret keys sk1, . . . , skT (instead of a single constant secret key) for
authentication and integrity protection, where each key ski is used for some time period

3The term “forward integrity” as introduced by [BY97] referred to MAC schemes only. However, the
principle applies analogously to digital signature schemes.
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(called the i-th epoch), until it is eventually erased and replaced by its successor.4
The key ski+1 may either be computed from ski in a completely deterministic fashion,
or may be chosen at random, depending on the scheme at hand. The verification
algorithm is adapted to accept an index t ∈ {1, . . . , T} as an additional input and
is expected to check whether the message was signed using key skt. The verification
should fail if the message has not been authenticated at all or has been authenticated
under a different key ski with i 6= t.

Informally speaking, a scheme has forward integrity if obtaining one of these secret
keys skB does not help in forging a signature with respect to any previous key ski
with i < B. This implies that given skB, it must be hard to compute ski, since otherwise
an attacker could use ski and the normal signing procedure to create a forged signature
for epoch i. Digital signature schemes as well as MACs that have forward integrity are
also called forward-secure.

Secure Storage of Log Files. Given a forward-secure signature scheme, one might
build a secure log file (or secure audit log) as follows [BY97]: When a new log file is
created, the scheme generates a key pair (sk1, pk). The public key is copied and either
published or distributed to a set of verifiers (e.g. auditors). When a new log entry m1 is
added to the log file, the log record is signed with key sk1, and the resulting signature
σ1 is stored along with the log file. When another log entry m2 is added, it is signed,
too, and the new signature σ2 is stored together with σ1 and the messages m1, m2.
This process continues analogously for newly arriving log messages. At some point in
time (for example after a certain amount of time has passed or a certain number of log
entries have been signed), the signer updates the secret key sk1 to sk2, securely erases
sk1 and continues signing log entries with sk2 instead of sk1. At a later point in time,
the signer updates sk2 to sk3, deletes sk2 and continues to work with sk3, and so on.5
When the log file needs to be verified later, everyone who is in possession of pk (or can
securely retrieve a copy of it) can run the verification algorithm to see if the log file
has been tampered with.
When an attacker A takes control over the system during epoch B (and hence

obtains the secret key skB), the forward security of the applied digital signature scheme
guarantees that A cannot forge valid signatures for log entries created in previous
epochs, and thus cannot modify these log records without being detected.
Note that A can trivially forge signatures for the current epoch B and all future

epochs i > B by using the regular signing and updating procedures. Thus, this model
cannot offer any guarantees of integrity or authenticity for log data recorded after the
attacker has successfully breached the system.

The setting described above defines the security model used throughout this thesis.
This model is illustrated by Figure 1.1.

4Erasure of secret keys must be complete and irrecoverable to guarantee security, i.e., the secret keys
must actually be overwritten or destroyed, instead of just removing (file) pointers or links to the
secret key.

5Again, the secret keys must be deleted in a way that guarantees that they cannot be recovered.
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Figure 1.1.: An illustration of the security model considered in this thesis. When the
logging system is set up, one generates a pair of keys for a forward-secure
signature scheme. The public key is copied and stored in a secure location.
Log records are signed using sk1 at first, until sk1 is eventually retired,
replaced by sk2, and securely erased. New log records are signed with sk2,
until sk2 is replaced by sk3 at the start of the third epoch, and so on. If the
attacker A eventually breaks in during an epoch B and obtains the secret
key skB, then any changes to log records saved before epoch B should be
detectable. After the break-in, the attacker is complete control of the input
to the logging system, and can fully determine what data is recorded.

However, note that even if the log data was stored on a WORM drive or immediately
transmitted to another (more secure) server, the attacker would still be in control
of the input to the logging system, and thus of the logged data. Thus, the lack of
cryptographic security guarantees for data logged after system compromise does not
lead to any weaknesses that would not exist otherwise.
The scheme sketched above is highly simplified, and can only detect attackers

modifying existing log records or adding new ones to epochs before the corruption.
However, it is not sufficient to protect the integrity of the log file as a whole: For
example, an attacker might reorder existing log entries, feigning a sequence of events
that is different from what really happened (reordering attack). Moreover, an attacker
might delete one or more individual log records along with their signatures. Deleting
one or more messages from the end of the log file (so that the deleted messages form
a suffix of the sequence of real log records) is called a truncation attack. Therefore,
actual proposals in the literature usually employ a combination of additional measures,
which will be detailed further below.

Signature Aggregation. Since log files accumulate log entries over potentially long
periods of time, the number of signatures which must be stored to verify the log
messages will grow accordingly. In order to improve storage efficiency, it is therefore
desirable to be able to “compress” the signatures.
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Aggregate signature schemes [Bon+03] allow the signer to merge independently
created signatures σi on different messages mi (possibly even originating from different
signers, having public keys pki) into just one signature σ, which may be as small as a
signature for a single message.

For example, in the BGLS aggregate signature scheme [Bon+03], each signature σi is
a single element of a cyclic group G with a bilinear map. Signatures are aggregated by
simply multiplying them (in G). The resulting signature σ =

∏
σi is called the aggregate

of all σi. Using aggregate signatures for secure logging does not only improve the logging
system’s storage efficiency, but may also help preventing truncation attacks [MT08].
In the BGLS aggregate signature scheme, aggregation is very flexible and can be

done in a completely ad-hoc fashion: The commutativity and associativity of the
multiplication in the group guarantee that signatures can be aggregated in any order,
and aggregated signatures can be aggregated further.
Sequential aggregate signatures [Lys+04] do not support this fully flexible aggregation:

Messages are added to an aggregate one-by-one, each message by its signer. Signing and
aggregation may be a single, inseparable process (i.e., once created, signatures cannot
be combined further in general). Sequential aggregate signatures are not as flexible
as general aggregate signatures, but are still useful in a wide range of applications,
such as certificate chains, secure routing, version control systems, and securing log
files [MT09]. Ma and Tsudik [MT07b] introduced the abbreviation FssAgg for forward-
secure sequential aggregate signatures. This thesis will additionally use the shorthand
SAS to refer to sequentially aggregate signatures.

1.2. State of the Art and Related Work

We now briefly review prior work on cryptographic techniques for secure logging. The
review presented here is strongly based on [Har16b, Section 1]. Significant parts of
the review given here are taken from this publication, without or with only minor
modifications, and without further designation.

1.2.1. Common Techniques for Secure Logging

Before moving to a more detailed review of previous work, the author would like
to highlight some common themes and techniques which can be found in previous
publications:

• Even when not ensuring log file authenticity and integrity, it is common practice
to store log entries together with a timestamp. From a security point of view, this
enables the detection of reordering attacks, provided the time stamp is signed
together with the log record and the timestamp resolution is sufficiently high.
[BY97; MT08]

• Many schemes count the number of log entries and add the counter values
(sequence numbers) to the log record before signing it. This helps to determine
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the order of log entries (which reflect real events in the system) if the log entries do
not contain timestamps themselves (or the timestamps have too coarse resolution).
In addition, this helps to detect deletion of log entries, except for truncation
attacks. [BY97; MT08; YP09; YPR12b]

• Some authors (e.g. [SK98]) have proposed to use hash chains, where each log
entry is augmented by the hash value of the previous log message, which in turn
contains the hash value of the previous log message, and so on. This detects
reordering attacks as well as deletions of log entries, except from the end of the
log file (truncation attacks).

• Instead of using hash chains, some newer proposals [CW09; Bul+14; RFC6962]
utilize Merkle hash trees [Mer88] to combine hash values of distinct log records.
These have additional structure (compared to hash chains), that can be used to
provide additional features such as efficient “proofs of inclusion” (i.e. efficient
proofs that a given log record is contained in the log).

• Some schemes add epoch markers to the log file. An epoch marker is a dedicated
log record conveying the information that an epoch has ended and the secret
key is being updated. A verifier can then determine which key index i to use for
verifying a log entry by counting the number of epoch markers before the log
entry. [BY97]

• If a scheme performs epoch switches independently of the amount of time passed
since the last epoch switch, it may be sensible to just add log entries containing
the current time in regular intervals. Such log entries are called metronome
entries. [Hol06]

• Some schemes additionally employ encryption to protect the confidentiality of
log messages, e.g. [SK98; Hol06; Bul+14].

1.2.2. Overview of Individual Publications
We now review several schemes and publications concerning the secure storage of log
files in more detail. The schemes are given in chronological order. While this review can
in no way claim completeness, it highlights the basis on which the research presented
in this thesis is built. The reader might want to consider a somewhat dated survey
paper [Acc09] on secure logging in addition to the overview given below.

The oldest mentioning of protocols to protect the integrity of log files appears to be
due to Futoransky and Kargieman [FK95; FK98], but passed mostly unnoticed. They
built various schemes based on hash chains, with a secret start value which functions
as an initial secret key.
The study of cryptographic mechanisms to protect log files has been brought to

wider attention by Bellare and Yee [BY97] in 1997. Motivated by the task to verify the
operation of an initially trusted machine in an untrusted and potentially adversarial
environment, they introduced the notion of forward integrity for MAC schemes.

11
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They developed a simple scheme of forward-secure MACs (based on a key-chain
generated by a pseudorandom function) and augmented that scheme with sequence
numbers and epoch markers to add protection against the deletion of individual log
entries.

Schneier and Kelsey [SK98; SK99] devised a more concrete scheme for secure logging
using MACs. The MAC key is continuously evolved using a hash function, similar
to Bellare and Yee’s scheme. Schneier and Kelsey assume an untrusted machine U
collecting the log entries, a trusted machine T that holds the initial MAC key (and thus
can verify the complete log) and a semi-trusted log verifier V . Their scheme includes
encryption of log entries and a mechanism for T to grant the semi-trusted verifier V
read access to individual log entries.
Waters et al. [Wat+04] focused on encryption of log entries in a way that allows

for efficient keyword-search in the log file. They do not develop new techniques to
guarantee log file integrity. Therefore, their line of research is mostly orthogonal to the
one pursued in this thesis.
Xu, Chadwick, and Otenko [XCO05] built a web service for secure audit logs.

Building on Schneier’s and Kelsey’s scheme, they proposed to (optionally) use public-
key encryption and digital signatures instead of symmetric encryption and MACs.
While this change decreases performance, it allows for publicly verifiable log files,
since the verification key can be made public. In addition, they used trusted platform
modules to store cryptographic keys.

Kiltz et al. [Kil+05] designed “append-only signatures”, a type of signature scheme
where given a signature (under some key pk) for a sequence of symbolsm = (m1, . . . ,mn),
anyone should be able to append to m, and produce a valid signature (under pk, too)
for the resulting sequence. Kiltz et al. showed that this notion is equivalent to hierar-
chical identity-based signature schemes [GS02]. However, Kiltz et al. aim for different
applications than ours, and hence they do not consider forward security. Moreover,
a scheme where anyone (instead of only the legitimate logger) can append to such
sequences and produce a valid signature for the resulting sequence would violate our
expectations of security in the log signing case.
Kawaguchi et al. [Kaw+05] proposed a logging scheme where multiple hosts first

arrange their log records in a Merkle tree locally, and then the root hashes of all hosts
are communicated over network and arranged in another Merkle tree. The root node
of the latter Merkle tree is then authenticated by an external, trusted Time Stamping
Authority. The resulting signature is sent back to each host, along with the root hash
values of other hosts, as necessary to verify the top Merkle tree.

Building on Schneier and Kelsey’s scheme, Holt [Hol06] designed Logcrypt. Holt used
a construction similar to the Schneier-Kelsey scheme, but (as [XCO05]) proposed to
substitute digital signatures for the MACs used by Schneier and Kelsey. He implicitly
constructed forward-secure signatures from standard signature schemes for his logging
scheme.
Ma and Tsudik [MT08; MT09] showed that Schneier’s and Kelsey’s semi-trusted

verifier V can easily be tricked into accepting a modified log file. This was termed a
“delayed detection attack”, since the fully trusted verifier T can indeed detect such
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tampering, but is considered to check the log file at a later point in time. Moreover, Ma
and Tsudik showed a truncation attack on the previous schemes, where the attacker
deletes one or more log entries from the end of the log file.6

In response to these attacks, Ma and Tsudik proposed using “forward secure sequential
aggregate” signatures (FssAgg signatures) [MT07b], which are a combination of forward-
secure signatures with sequential aggregate signatures. As noted above, sequential
aggregate signature schemes [Lys+04] are a special kind of signature schemes, where
a single signature can simultaneously authenticate multiple messages. (In contrast,
standard signature schemes require one signature per message.) Therefore, sequential
aggregate signatures offer an attractive option to reduce storage and bandwidth overhead
in applications requiring authentication of a large number of messages.

Since FssAgg schemes are public-key primitives, the verification key can be given to
any verifier, preventing delayed detection attacks. Moreover, since only one (aggregated)
signature needs to be kept in order to verify the log file, truncation attacks can be
detected, as long as the attacker cannot “deaggregate” signatures for log entries from
the aggregate signature (i.e. derive a signature for a prefix of a message sequence from
a signature for the entire sequence).
While providing a single aggregate signature for the complete log file may help

to avert truncation attacks, it also eliminates the possibility to check the integrity
of individual log entries without checking the entire log file. In order to re-enable
the verifier to do so, Ma and Tsudik modified their scheme to include an individual
signature for each log entry as well as an aggregated signature for all log entries. This
forced them to reconsider the deaggregation problem and strengthen their security
notion to so-called “immutable” forward-secure sequential aggregate signatures, which
offer some protection against deaggregation.
Later on, Ma [Ma08] devised two more FssAgg signature schemes (called BM-

FssAgg and AR-FssAgg), which offer different tradeoffs in efficiency and build on other
hardness assumptions. These schemes are sequential aggregate variants of forward-
secure signature schemes by Bellare and Miner [BM99] and Abdalla and Reyzin [AR00].
This thesis presents a successful cryptanalysis of both sequential aggregate schemes in
Chapter 3.

Crosby and Wallach [CW09] proposed a scheme where log records are not arranged
in a hash chain (as with e.g. Schneier’s and Kelsey’s scheme [SK98; SK99]), but in a
Merkle hash tree [Mer88] instead. Their scheme allows for the generation of excerpts
as well as controlled deletion of certain log entries, while keeping the remaining log
entries verifiable. In order to obtain completeness of excerpts, i.e. guarantees that
no log entry has been omitted, they proposed to annotate tree nodes with attributes,
which are propagated towards the root node. Thus, if a given node does not have a
certain attribute, then none of its descendants will have that attribute. This allows for
proving completeness in a reasonably efficient manner. However, their scheme relies on
frequent communication between the log server and one or more trusted auditors that

6This truncation attack also applies to Logcrypt, which was already acknowledged in [Hol06]. Holt
proposed to use metronome entries to deal with this issue.
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need to store “commitments” to the log file, whereas this thesis strives to offer security
in the standalone model.

In 2010, the Internet Engineering Task Force released a standard for “Signed Syslog
Messages” [RFC5848]. This standard extends the syslog protocol, a widely used
mechanism to collect and transmit log records in UNIX systems. The standard focuses
on the secure transmission of log messages over a potentially untrusted and/or unreliable
network, adding “origin authentication, message integrity, replay resistance, message
sequencing, and detection of missing messages to syslog” [RFC5848, Section 1].

In this standard, messages are collected in “signature groups” of limited size. Newly
arriving log messages are assigned to the respective group. The signer (who can be
the originator of the log messages or an intermediary) will eventually sign the entire
signature group, send the signature to the receiver, and then close this signature group
for the addition of more log records. Log messages arriving in the future are then
added to another signature group, and the process repeats.
While the security requirements quoted above are essential for the transmission of

log entries over a network, the techniques proposed by the standard offer only limited
security for the storage of log entries as considered in this work. More specifically,
the standard does not support forward integrity and therefore does not benefit the
security of log messages captured in a fully standalone setting. Only in a setting where
the messages are signed by one server before being sent to another server for storage
does this approach offer protection for stored log entries, since an attacker will have to
compromise both servers in order to manipulate log entries without risking detection.

In contrast, the security guarantees provided by the schemes developed in this thesis
do not depend on the attacker’s limited ability to compromise computer systems, but
stand regardless of the number of entities compromised by the attacker, as long as the
verifier remains uncompromised.

Driven by performance considerations on the signer side, Yavuz, Peng and Reiter
[YP09; YPR12a] designed a scheme called “Blind-Aggregate-Forward” (BAF). While
BAF has a very efficient signing procedure, the size of the public verification key is
linear in the maximum number of supported epochs. While this is a sensible trade-off
for applications where signers are subject to tight resource constraints (such as wireless
sensors), it may be undesirable in other applications.

Another scheme by Yavuz, Peng and Reiter is LogFAS [YPR12b; YR11]. The verifi-
cation algorithm for LogFAS requires less computational effort than BAF’s verification
algorithm, but the sizes of signing and verification keys for LogFAS are linear in the
number of supported log entries.

LogFAS provides the option to extract signatures for single messages from a signature
for the entire log file, and (by extension) provide signatures for excerpts from the log
file. However, with LogFAS, any subsequence of the real log file can be verified (given
the right signatures), and consequently, LogFAS can not guarantee completeness of the
generated excerpt. This thesis presents two attacks on LogFAS in Chapter 3.

Marson and Poettering [MP13] devised “Seekable Sequential Key Generators” for a
secure logging scenario (using MACs). These “SSKGs” basically form a hash chain
based on a one-way function, where one can efficiently “seek forward”, i.e. given the
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i-th element in the chain ei, one can quickly compute the j-th element ej for each j ≥ i
without having to evaluate the one-way function j − i times. This can be useful if the
verifier only needs to verify some of the log entries in a log file. They build such a
“seekable” chain by using squaring modulo a Blum integer N = PQ, i.e. each element in
the chain is the square of its predecessor. Given the factorisation (P,Q) of N , one can
seek forward by first computing f := 2j−i mod φ(N), where φ(N) = (P − 1)(Q− 1),
and then calculating ej := efi = e

(2j−i)
i (mod N).

Certificate Transparency [RFC6962] is an experimental approach to detect mis-issued
cryptographic certificates binding public keys to identities. The core idea is to require
all certification authorities to submit the certificates issued by them to public logs. In
this scenario, cryptographic software should reject any certificate that is not contained
in such a public log as invalid. The log is organized as a Merkle hash tree, so log servers
can efficiently prove that a given certificate is contained in the log. The Certificate
Transparency approach crucially relies on monitors and auditors to regularly check the
log state at a given point in time for consistency with previously observed log states.
Hence, the certificate transparency approach is not applicable in the standalone setting
considered in this work.
PillarBox [Bow+14] is a logging system focusing on additional properties such as

confidentiality of log entries and logging rules. The authors assume forward-secure
MACs as a tool, and use interaction with other servers to obtain truncation security.
Buldas et al. [Bul+14] build a logging scheme based on a Merkle tree structure,

adding random values to hashes of leaves in order to strengthen the confidentiality
offered by the hash function. They propose to authenticate the root of the Merkle tree
with a digital signature scheme, but require external time stamping services to obtain
security against attackers breaking into the logging host.
Lindqvist [Lin17] built a logging scheme with membership tests based on Bloom

filters. His work focuses on confidentiality of the log data. Information about log
entries is placed in Bloom filters, whose bits are then arranged in a Merkle tree. The
Bloom filter can (with good probability) be used to show that certain log data is not
contained in the log file.

Pulls and Dahlberg [PD18] proposed “Steady”, a logging system where the storage of
log records is outsourced to a relay, e.g. an untrusted cloud provider. In their scheme,
a “client” first collects log entries into blocks, then computes a Merkle tree hash of all
log entries in a block, signs the root hash, optionally compresses and encrypts the log
data, and finally uploads it to the relay. A trusted verifier can later verify the log file
based on signatures created by the client.

1.3. Contribution
This thesis advances the state of the art as follows.

Attacks on Previously Published Schemes. Firstly, it points out a total of four
serious vulnerabilities in three of the schemes introduced above. All three schemes
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were published at notable and peer-reviewed conferences, and all of them have an
accompanying security proof which should rule out any meaningful attack on the
schemes. In fact, three of the four vulnerabilities described here stand in contradiction
to the security properties claimed and supposedly proven by the respective authors,
while the fourth one is outside the respective security model. This thesis points out
some mistakes in the proofs, resolving this contradiction.
In particular, this thesis presents two attacks on LogFAS [YPR12b; YR11], one of

them allowing for virtually arbitrary forgeries, and one of them allowing for confusion
of legitimate signers. Both of these attacks are very simple, yet were apparently
overlooked during the peer-review process.
The other two attacks presented here regard the BM-FssAgg scheme and the AR-

FssAgg scheme by [Ma08]. These schemes are built on forward-secure signature schemes
by Bellare and Miner [BM99] and Abdalla and Reyzin [AR00], respectively, but have
been modified in order to add support for sequential aggregation of signatures. These
modifications involved replacing values chosen randomly per signature by interdependent
values that have a compact representation. The attacks presented in this thesis exploit
this “de-randomization” to recover the secret key skt for some epoch t from t consecutive
signatures. The resulting attacks are non-trivial and require doing linear algebra “in
the exponent”. See Chapter 3 for more details.

Truncation Security. Secondly, this thesis presents formal security notions which
include truncation security for logging schemes. Most prior work did not formally
model this security requirement, and hence authors could only give informal arguments
for the truncation security of their schemes. To the best of the author’s knowledge,
the only work formally considering truncation security is LogFAS [YPR12b]. However,
the security notion given in [YPR12b] allows for omissions of log entries: For example,
after three queries to the signature oracle (for messages m1, m2, and m3, respectively),
a forgery of a signature for the log file (m1,m3) is considered trivial in their notion.
In contrast, our definitions typically consider such an attack as non-trivial, and our
security proofs rule out such forgeries.

Moreover, this thesis presents a new technique which can be used to achieve truncation
security without relying on external auditors or designated hardware. The technique
works by a) requiring the log signer to add epoch markers (see p. 11) to the log file, each
indicating an evolution of the current secret key ski to ski+1, and, b) upon verification,
requiring the signer to “prove” that (s)he knows the most recent secret key skt, where
t can be derived from the number of epoch markers in the log file.
This technique is sufficient to guarantee the same level of truncation security as

obtained in prior work. The logging schemes presented in this thesis use this approach,
thereby illustrating its application. The schemes are proven secure with regard to our
security notions, and therefore provably attain truncation security. The technique is
discussed in more detail in Section 4.3, in “proximity” to our first construction using
this approach.
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Log Files with Verifiable Excerpts. Thirdly, this thesis proposes a cryptographic
scheme [Har16a] for the protection of log files that can support the creation of excerpts
from log files, while maintaining the public verifiability of these excerpts, see Chapter 4.
Excerpts can be checked for integrity and authenticity (no log entry in the excerpt
has been retroactively modified or injected by an attacker) as well as for completeness
(no relevant log entry has been omitted from the excerpt). This scheme appears to
be the only one published to date that provides forward integrity and completeness of
excerpts in the standalone model:

While logging schemes based on Merkle hash trees (e.g. [CW09; Bul+14; RFC6962])
have the ability to prove that specific log entries are contained in the log, and (by
extension) generate excerpts, [Bul+14] and [RFC6962] neither explicitly consider
excerpts of more than one log entry, nor provide for completeness. While [CW09]
consider completeness, their scheme requires constant interaction with auditors to
guarantee security, and hence their scheme is not in the standalone model.
Another scheme that can support the creation of excerpts is LogFAS [YPR12b;

YR11], which can provide signatures for arbitrary subsets of the log records contained
in a log file. However, LogFAS does not have mechanisms for proving completeness of
the generated excerpt—and does not even offer security against forgeries, as pointed
out above.

Fault-Tolerance for Log Files built from Aggregate Signatures. Fourthly, this work
introduces a technique that combines the reduction of signature storage overhead offered
by sequential aggregate signatures with resilience to log file modifications (i.e. the ability
to verify the integrity and authenticity of parts of the log file when other parts have
been modified). Previous approaches either had storage overhead proportional to the
number of stored log records [BY97; SK98; Hol06; YPR12b; MP13] or used techniques
like Merkle trees (e.g. [CW09]) or aggregate signatures [MT08; Ma08; YPR12a] to form
a compact proof of authenticity, introducing only sub-linear storage overhead.

However, the latter approaches cause some fragility: The modification of a single log
entry will render the entire signature invalid, preventing the cryptographic verification
of any part of the log file. However, being able to distinguish manipulated log entries
from non-manipulated ones may be of importance for after-the-fact investigations. The
thesis at hand addresses this issue by presenting a new technique providing a trade-off
between storage overhead and robustness, i.e. the ability to tolerate some modifications
to the log file while preserving the cryptographic verifiability of unmodified log entries.
This robustness is achieved by the use of a special kind of sequential aggregate signatures
(called fault-tolerant sequential aggregate signatures [Har+17b]), which contain some
redundancy. The construction of fault-tolerant aggregate signatures [Har+16] makes
use of combinatorial methods guaranteeing that if the number of errors is below a
certain threshold, then there will be enough redundancy to identify and verify all
non-modified log entries. See Chapter 5 for more details.
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Summary. This thesis advances the state of the art with regard to providing security
for computer log files in a number of ways: by analyzing the security of previously
proposed schemes, by defining formal security notions capturing truncation security and
proposing a new technique to achieve resistance against log truncations, by providing
the first scheme in the standalone model where excerpts can be verified for completeness,
and by describing the first scheme which can achieve some notion of robustness while
being able to aggregate log record signatures.
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2. Preliminaries

We begin by briefly introducing some preliminaries for this thesis. Preliminaries only
relevant for a specific chapter of this thesis will be introduced in the respective chapter.

The content of this chapter is mostly a selection of the preliminaries for the research
papers underlying this thesis [Har+16; Har16a; Har+17b] and the author’s master’s
thesis [Har13]. Parts of this chapter have been taken from these publications without
or with only minor modifications, and without further designation.

2.1. Notation and Basic Definitions

We start with some notations and definitions. It is assumed the reader is familiar with
the concepts introduced here.

Notation 2.1 (Iff). We use “iff” as an abbreviation for “if and only if”, verbally
expressing logical equivalence of two statements, where each statement implies the
other.

Notation 2.2 (Definitions and Assignments). We write := to denote mathematical
definitions as well as assignment operations in algorithms. The symbol ← is used to
denote the assignment operation when we want to emphasize the probabilistic nature
of the assignment, e.g. when assigning the output of a probabilistic algorithm to a
variable.

If S is a finite, non-empty set, we also write V ← S to indicate that the variable V
is assigned a random value according to the uniform distribution on S, i.e. for each
e ∈ S: Pr[V = e] = 1

|S| . All random choices are considered to be independent, unless
explicitly noted otherwise.

Notation 2.3 (Sets). The set of natural numbers {1, 2, . . .} is denoted by N, N0 is
defined as {0} ∪ N. For a natural number n ∈ N, we let [n] := {1, 2, . . . , n}. The set
of integers {. . . ,−2,−1, 0, 1, 2, . . .} is written as Z. For a, b ∈ Z, gcd(a, b) refers to the
greatest common divisor of a and b, i.e. the greatest integer d such that d divides both
a and b.

R is the set of real numbers, and R+
0 is the set of non-negative real numbers. For

a, b ∈ R, [a, b] denotes the closed interval from a to b, i.e. [a, b] := {x ∈ R : a ≤ x ≤ b}.

Notation 2.4 (String Literals). String literals used by algorithms are indicated by
typewriter text between quotation marks, e.g. “End of epoch”.
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Notation 2.5 (Modulo Arithmetic). Let a, b,N ∈ Z and N ≥ 2. a mod N is the
remainder of the integer division a/N . We write a ≡ b (mod N) iff a mod N = b
mod N .

ZN := Z/NZ refers to the set of integers modulo N , which forms a commutative
ring with one under the modular addition and modular multiplication operations. We
do not distinguish operations on ZN from operations on Z or R in our notation, and
use the standard symbols +, −, ·, etc. to represent calculations in ZN . We may write
integers for the elements of ZN , these integers are implicitly mapped to their respective
residue class. Similarly, we may use residue classes from ZN as integers, these are
implicitly mapped to their “canonical” representative in {0, . . . , N − 1}. We may use
= to denote equality within ZN .

Z∗N refers to the units of ZN , i.e. the elements i ∈ ZN with gcd(i,N) = 1. If N is
a prime number, then ZN is a finite field and is also written as FN . In this case,
Z∗N = {1, . . . , N − 1}.

Notation 2.6 (Statements for almost all n). We say that a statement is true for
almost all n ∈ N if there exists a n0 ∈ N such that the statement is true for all n > n0.

Notation 2.7 (Asymptotic Behaviour of Functions). For two functions f, g : N→ R+
0

we write f ∈ O(g) iff there is a constant cf,max ∈ R+
0 such that f(n) ≤ cf,max · g(n) for

almost all n. O(g) is the set of all such functions. We write f ∈ Ω(g) iff a constant
cf,min ∈ R+ with f(n) ≥ cf,min ·g(n) for almost all n exists. We let Θ(g) := Ω(g)∩O(g).

If g(n) can be described by a closed formula, we usually simply write the formula
instead of explicitly defining g. E.g., if g(n) = n, we simply write O(n),Ω(n) and Θ(n)
for O(g), Ω(g) and Θ(g), respectively.

Notation 2.8 (Polynomially Bounded Functions). We write a ∈ poly(x) to indicate
that a is a function of x and a ∈ O(xc) for a constant c ∈ N.

Notation 2.9 (Security Parameter). Throughout this thesis, κ ∈ N denotes the
security parameter. All algorithms are implicitly given the security parameter encoded
in unary (written as 1κ) as their first input, even when not explicitly denoted.

Notation 2.10 (PPT Algorithms). We say an algorithm A is probabilistic polynomial
time (PPT) if A is a probabilistic algorithm and the running time of A is upper-bounded
by some polynomial t ∈ poly(κ).

Definition 2.11 (Negligible and Overwhelming Functions). A function f : N→ R+
0

is called negligible iff for each polynomial p : N → R+
0 it holds that f(n) < 1/p(n)

for almost all n ∈ N. We also write f(n) ≤ negl(n) to indicate that f(n) is negligible.
A function g : N→ [0, 1] is called overwhelming iff 1− g(n) is negligible.

Notation 2.12 (Matrices). For a non-empty set S, and n,m ∈ N, Sn×m is the set of
all matrices with n rows, m columns and entries in S. For M ∈ Sn×m, rows(M) := n
and cols(M) := m denote its number of rows and columns. M [i, j] is the entry in the
i-th row and j-th column of M .

Addition and multiplication of matrices is defined in the standard sense if S is a ring.

22



2.2. Sequences

2.2. Sequences

In this thesis, we will constantly (implicitly or explicitly) be working with sequences.
It is therefore in order to properly introduce sequences and their notation.

Notation 2.13 (Sequences). IfD is a non-empty set, D∗ is the set of all finite sequences
over D. Such sequences are denoted by parentheses, e.g. (1, 2, 3). In particular, {0, 1}∗
is the set of all bit strings. The empty sequence is ().

A sequence S = (s1, . . . , sl) may also be written as (si)li=1. The length of a sequence
S is the number of (not necessarily distinct) elements in the sequence, and is denoted
by len(S) = l. For an i ∈ [len(S)], S[i] refers to the i-th element in the sequence. We
write v ∈ S to indicate that some value v is contained in S, i.e., there exists an i ∈ [l]
such that v = S[i].

The concatenation of two finite sequences S1, S2 over the same domain D is denoted
as S1 ‖S2. If s ∈ D is a single element, we write S1 ‖ s as a shorthand for S1 ‖(s).

Given an element s ∈ D and a non-negative integer n ∈ N0, sn is the sequence that
results from repeating s for n times, i.e. sn := (s1, . . . , sn) where s1 = . . . = sn = s.

The notation sn may introduce some ambiguity in notation if multiplication on D is
defined. We use this notation despite the arising ambiguity, as is standard practice in
the literature. How to interpret this notation will usually be clear from the context. In
particular, when we write 1n or 0n, we usually refer to the sequence notation introduced
here.

For this work, we will often need to work with subsequences, which are defined next.

Definition 2.14 (Subsequences). Let S = (s1, . . . , sl) be a sequence. If I = (i1, . . . , in)
is a (possibly empty) finite, strictly increasing sequence of numbers ij ∈ [l] (for all
j ∈ [n], with n ∈ N0, n ≤ l), we call I an index sequence for S. S[I] := (si1 , . . . , sin) is
the subsequence of S induced by I.

Definition 2.15 (Prefixes). If S = (s1, . . . , sl) is a sequence of length l ∈ N0 and
P = (s1, . . . , sm) for some m ≤ l, then P is a prefix of S.

Log messages and log files are special cases of sequences:

Definition 2.16 (Log Messages and Log Files). A (plain) log entry, log message or
log record m is a bit string, i.e. m ∈ {0, 1}∗. A (plain) log file is a finite, possibly empty
sequence of log entries M = (m1, . . . ,ml).1

Additional definitions regarding sequences will be introduced in the following chapters,
when they are needed.

1Note that M = (m1, . . . ,ml) 6= m1 ‖ . . . ‖ml, i.e. we consider the log entries in M to be distinguish-
able.
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2.3. Digital Signature Schemes
This thesis makes use of two specific types of digital signature schemes, namely forward-
secure signature schemes, both in a “plain” and a sequential aggregate version. This
section formally introduces these types of signature schemes and gives security notions
for such schemes. The reader is referred to Section 1.1 for intuition on these types of
signature schemes.

Since this thesis only makes black-box use of such signature schemes, our focus is on
introducing the abstraction of such schemes, not on introducing specific constructions.
Nonetheless, we briefly describe possible constructions in order to provide some more
intuition and to illustrate our definitions.

Claims and Claim Sequences. In order to simplify working with lots of messages,
public keys and epochs, we use the concept of claims, as introduced by [Har+16]. In
our context, a claim is a tuple c = (pk, t,m), consisting of a public key pk, an epoch
number t ∈ N and a message m ∈ {0, 1}∗. It represents the to-be-proven proposition
that the owner of the public key pk has authenticated the message m during epoch t. In
this sense, a valid signature σ is a “proof” of this statement. Informally, a signature σ
is valid for a claim c if the verification algorithm of a given signature scheme outputs 1
when given c and σ as input. When the public key pk and the epoch number t are
clear from the context, we may more briefly say that σ is valid for m.
A claim sequence is simply a finite sequence of claims. In the context of (forward-

secure) sequential aggregate signatures, an aggregate signature may authenticate an
entire claim sequence (i.e. it proves all the claims in the claim sequence). If so, the
signature is valid for the claim sequence.

Claim sequences may be empty. We assume there is an “empty signature” λ which is
valid for the empty claim sequence. This empty signature can be trivial, i.e. a constant
value such as 1, since there is nothing to be proven.

Security Notions. The security of digital signature schemes is usually defined via
imaginary “experiments”. In these experiments, an attacker, modeled as a probabilistic
algorithm A, is tasked to forge a signature, under the general conditions set out by
the experiment setup. For example, the experiment setup defines the resources and
utilities the adversary may use to forge a signature, and may restrict the attacker’s
freedom of action.

A digital signature scheme is considered secure with respect to the given experiment
if all “efficient” adversaries have only negligible probability of successfully forging a
signature. These experiments are sometimes viewed as “games” where a “challenger”
plays the role of the experiment, and it is the adversaries’ goal to beat the challenger
by forging a valid signature.
The security experiments for signature schemes commonly allow the attacker A

to obtain valid, honestly created signatures for messages chosen by A. If so, the
experiments require A to forge a signature σ∗ for a message m∗ for which A did not
obtain a signature before. If A outputs a signature for some message m which was
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honestly signed before, this forgery is considered trivial, and A is considered to be
unsuccessful in this case.2

Correctness, Valid and Regular Signatures. Intuitively, security requires that only
signatures created honestly by the owner of some given secret key are accepted by the
verification algorithm. The converse property requires that the verification algorithm
accepts all signatures created honestly by the correct use of the signing algorithm. This
property is called correctness. Informally speaking, signatures honestly created by the
use of the respective algorithms in the intended way are called regular. We will give
precise definitions of being regular below. These formal definitions differ for (plain)
forward-secure signatures and forward-secure sequential aggregate signatures, but the
intuition is the same in both cases: Signatures are regular if they are created by using
the digital signature scheme’s algorithms in the intended way. Given this definition,
we may rephrase correctness as the requirement that all regular signatures are valid.

The precise definitions of “valid” signatures, “regular” signatures, “security” and
some other properties defined in this thesis differ for the various types of signature
schemes and logging schemes presented in this thesis. For simplicity, we will refer to
these definitions by the name of the property only.

For example, if Σ is a forward-secure signature scheme and σ is a signature created
using Σ, then saying that σ is “valid” refers to the definition of valid signatures for
forward-secure signature schemes (i.e. Definition 2.18 below). If Σ instead was a
forward-secure sequential aggregate signature scheme, then the phrase “σ is valid”
would refer to the notion of valid signatures for this type of signature scheme instead,
i.e. Definition 2.23 (see below). Which of the respective definitions is meant at a given
point in this thesis will hence be clear from the context.

2.3.1. Forward-Secure Signature Schemes
A forward-secure signature scheme [BM99] uses distinct secret keys for signing in
each time interval (epoch). For efficiency reasons, schemes where each secret key
can be computed from the previous one, and where there is only single, compact
key for verification are desirable. However, these properties are not strictly required.
Throughout this thesis we assume w.l.o.g. that the current epoch number can be
efficiently derived from the current secret key.
Next, we will give formal definitions for forward-secure signature schemes. As is

customary in cryptographic literature, we separate the syntax of signature schemes
from their security notion, and consequently give separate definitions for these concepts.
In the context of forward-secure signature schemes, we will define key-evolving digital
signature schemes to denote the syntactical difference from standard signature schemes,
and define a security notion capturing the property of forward security later.
We now briefly introduce the main differences between the syntax of standard

signature schemes and key-evolving schemes. The latter ones have an additional
2This restriction is relaxed for the notion of strong unforgeability [ADR02], where A may additionally
output modified signatures σ∗ for messages m for which A obtained a signature σ.
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algorithm called Update for key evolution. This algorithm takes a secret key skt as
input and returns its successor skt+1. The verification algorithm is adapted canonically:
Its input consists of a claim (containing a public key pk, an epoch number t and a
message m) and a signature. In comparison, a claim for a standard signature scheme
only consists of a public key and a message.
We do not require forward-secure schemes to support an unbounded number of

epochs. Rather, the user must specify an upper bound T on the number of epochs
when generating a new key pair. This bound is given as an input to the key generation
algorithm, which must generate a key pair fit for use for at least T epochs. (However,
a user may decide to stop using such a key-pair before the T -th epoch has passed, e.g.
when the key is revoked.)

Definition 2.17 (Key-Evolving Signature Scheme, based on [BM99]). A key-evolving
signature scheme is a tuple FS = (KeyGen,Update, Sign,Verify) of PPT algorithms,
where

KeyGen(1κ, 1T )→ (sk1, pk)
receives the security parameter κ and an a-priori upper bound T on the number
of epochs as input. Both inputs are encoded in unary. It generates and outputs
a pair of keys, consisting of the initial private signing key sk1 and the public
verification key pk.

Update(skt)→ skt+1
takes the secret key skt of period t as input. If t ≥ T , the behaviour of Update
may be undefined. Otherwise, Update evolves skt to skt+1, deletes skt in an
unrecoverable fashion, and outputs skt+1.

Sign(skt,m)→ σ
takes as input a secret key skt and a messagem ∈ {0, 1}∗ and outputs a signature σ
for the claim (pk, t,m), where t is the epoch of skt and pk is the public key for skt.

Verify((pk, t,m), σ)→ 0/1
checks if σ is a valid signature under public key pk for a given message m,
supposedly signed with the secret key for the epoch t. It outputs 1 iff the
signature is deemed valid, otherwise it outputs 0.

A key-evolving signature scheme is required to be correct as defined below.

Definition 2.18 (Valid and Regular Signatures). Let FS = (KeyGen,Update,Sign,
Verify) be a tuple of algorithms as defined above. Given a signature σ and a claim
c = (pk, t,m), σ is called valid for c iff Verify(c, σ) outputs 1.
Moreover, σ is called regular for c iff it is in the image of Sign(skt,m) where T ∈

poly(κ), t ∈ [T ], (sk1, pk)← KeyGen(1κ, 1T ) and ski+1 := Update(ski) for all i ∈ [t− 1].
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Definition 2.19 (Correctness). Let FS = (KeyGen,Update,Sign,Verify) be a tuple
as defined above. FS is correct iff for all κ ∈ N, all claims c = (pk, t,m), and all
signatures σ regular for c, we have that σ is valid for c.3

In Definition 2.17, the maximum number of supported epochs T is encoded in unary
for formal reasons: In many common constructions of forward-secure signature schemes
(e.g. [BM99; AR00]), the running time of one or more algorithms may depend linearly
on T . Hence, if T was given in binary, the algorithms had input length O(log T )
(assuming the security parameter κ is fixed), while the runtime is Ω(T ). Thus, the
algorithm’s runtime would not be polynomial in the input length. We therefore need
to encode T in unary.
In order to obtain a meaningful security notion, we will pass the maximum epoch

number T (in unary) to the adversary as well, or otherwise the attacker might not
even be able to execute the scheme’s original algorithms. We thus need to demand
that T be at most polynomial in the security parameter κ, or else the attacker may
have super-polynomial runtime (in κ).

If an algorithm other than key generation has runtime linear in T , we may formally
include 1T in each secret and public key, respectively. This will make sure that the input
length of all algorithms is at least Ω(T ), and thus they may have runtime polynomial
in T . However, in order to simplify notation, we will omit explicitly denoting 1T as part
of the keys. It is understood that 1T must be contained in the secret and public keys
output by the key generation and Update algorithms when the runtime of algorithms
would not be polynomial in the input length otherwise.

The need to encode the parameter T in unary applies analogously to several other
definitions in this work, e.g. Definitions 4.8 and 2.22.

Security Notion

The security notion for key-evolving signature schemes is mostly similar to the standard
notion of existential unforgeability under chosen message attacks, but slightly more
complicated, due to the presence of different epochs. It captures the “forward security”
property, i.e. even if an adversary A knows the secret key of the current epoch, (s)he
should not be able to forge a signature for any earlier epoch. In contrast, if A has
obtained the secret key sktBreakIn of some epoch tBreakIn, then A can trivially forge
signatures for arbitrary messages m and epochs t ≥ tBreakIn by using the scheme’s
signing and updating algorithms.

The definition given below is roughly based on [BM99].

Definition 2.20 (Forward-Secure Existential Unforgeability under Chosen Message
Attacks). Let FS = (KeyGen,Update,Sign,Verify) be a key-evolving digital signature

3For certain key-evolving signature schemes FS, some of the algorithms constituting FS might have
a small probability of failing. For example, an algorithm might fail to select two “large enough”
prime numbers p, q by random sampling. In this case, the output of the respective algorithm is
unclear. In order not to make the definitions in this work even more complicated, such issues are
usually ignored here, as is customary in the literature.
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scheme as defined above, A be a PPT algorithm with access to oracles as defined below,
and T := T (κ) ∈ poly(κ).
The security experiment for the notion of forward-secure existential unforgeability

under chosen message attacks consists of the following phases:

Setup Phase.
The challenger creates a pair of keys (sk1, pk)← KeyGen(1κ, 1T ) and initializes a
counter t := 1. Afterwards A is called with inputs pk and 1T .

Query Phase.
During the experiment, A may adaptively issue queries to the following two
oracles:

Signature Oracle.
On input m ∈ {0, 1}∗, the signature oracle computes the signature σ =
Sign(skt,m) for m using the current secret key skt. It returns σ to A.

Epoch Switching Oracle.
Whenever A triggers the NextEpoch oracle, the experiment sets skt+1 :=
Update(skt) and t := t + 1. The oracle returns the string “ok” to the
adversary. A may invoke this oracle at most T − 1 times.

Break-In Phase.
When the adversary signals it is done with the query phase, the experiment
switches to the break-in phase and queries to the signature and epoch switching
oracles are no longer allowed.

During the break-in phase, the attacker may query a BreakIn oracle. If A does,
the experiment sets tBreakIn := t and returns skt to A.

After A has invoked this oracle, it is no longer allowed any oracle queries.

Forgery Phase.
Finally, the attacker outputs a forgery (m∗, t∗, σ∗).

Let tBreakIn :=∞ if A did not query the BreakIn oracle. A’s forgery (m∗, t∗, σ∗)
is trivial iff t∗ ≥ tBreakIn or A submitted the message m∗ to the signature oracle
during epoch t∗.

The experiment outputs 1 iff Verify((pk, t∗,m∗), σ∗) = 1 and (m∗, t∗, σ∗) is not
trivial. Otherwise, the experiment outputs 0.

A is said to win an instance of the experiment defined above iff the experiment outputs 1.
Otherwise, A loses the experiment.

A key-evolving signature scheme FS is forward-secure existentially unforgeable under
chosen message attacks (or FS-EUF-CMA-secure) iff for each PPT adversary A and
each T ∈ poly(κ):

Pr[A wins] ≤ negl(κ).
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Remark 2.21. In the definition above, we have specified that the attacker may no
longer use the signature oracle and epoch switching oracle once the break-in phase
has begun. Note that this restriction is without loss of generality: Once the attacker
has obtained the current secret key skt, (s)he can execute the signing and updating
algorithms by him-/herself. (For the same reason, any forgery with regard to an epoch
t∗ ≥ tBreakIn is considered trivial.)

Constructions

We briefly point out how forward-secure signature schemes may be constructed.
Forward-secure digital signature schemes can be built from standard digital signature

schemes in a black-box fashion. We explain some of these constructions along the
lines of [MMM02], although some of these ideas already appeared in [BM99] and other
previous works. Observe that we can consider any standard (non-key-evolving) digital
signature scheme which is existentially unforgeable under chosen message attacks
[GMR84; GMR88] as a key-evolving signature scheme that is fit for at most T = 1
epochs and secure according to the notion given above: If the attacker does not steal the
secret key, then the experiment is equivalent to the standard existential unforgeability
experiment, and if the attacker does break in, then all forgeries are trivial.
Malkin, Micciancio, and Miner [MMM02] formalized two methods of composing

forward-secure signature schemes FS1, FS2 for T1, T2 epochs, respectively: These
methods are called the “sum” composition and the “product” composition. We briefly
summarize these composition methods, the reader is referred to [MMM02] for more
detailed presentations. Let (KeyGeni,Updatei, Signi,Verifyi) be the algorithms of the
respective scheme, for i ∈ {1, 2}.

Sum Composition. In the sum composition, one generates two key pairs (sk1
1, pk1)←

KeyGen1(1κ, 1T1), (sk1
2, pk2)← KeyGen2(1κ, 1T2). One publishes pk = (pk1, T1, pk2, T2),

and keeps (sk1
1, sk1

2) as the initial secret key. For the first T1 epochs, messages are signed
with the respective key skt1, and only sk1 is updated. After T1 epochs, the first secret
key skT1

1 is deleted, and further epoch switches update sk2 instead. New messages are
signed with skt−T1

2 . The resulting scheme supports T = T1 + T2 epochs, and is secure if
FS1 and FS2 are forward-secure for T1, T2 epochs, respectively.

Product Composition. In the product composition, one uses a key-pair of FS1 to
“certify” public keys of the second scheme. In more detail, one initially generates
(sk1

1, pk1) ← KeyGen1(1κ, 1T1), (sk1
2, pk2) ← KeyGen2(1κ, 1T2) and computes σpk :=

Sign1(sk1
1, pk2). Then sk1

1 is updated to sk2
1. The initial secret key is (sk2

1, sk1
2, pk2, σpk),

the public key is pk1. For the first T2 epochs, messages are signed with the respective
skt2 of FS2. The signature for a message m signed during epoch t ∈ [T2] is

σ := (σ′ := Sign2(skt2,m), pk2, σpk).

It is verified by checking if both Verify1((pk1, 1, pk2), σpk) and Verify2((pk2, t,m), σ′)
output 1.
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After T2 epochs, skT2
2 , pk2 and σpk are deleted, and a new key-pair (sk1

2, pk2) ←
KeyGen2(1κ, 1T2) is generated. The new public key is certified by recomputing σpk :=
Sign1(sk2

1, pk2), and sk2
1 is updated to sk3

1. New messages m are signed by computing

σ := (σ′ := Sign2(skt−1·T2
2 ,m), pk2, σpk).

After another T2 epochs, the “used up” key pair for FS2 is deleted again, and replaced
by a new key pair, which is again certified by the secret key of FS1, and so on.
The result of this product composition is a scheme that can support T = T1 · T2

epochs. The scheme is forward-secure if the underlying schemes FS1,FS2 are secure.

Tree-Based Schemes. Using these composition methods, there are various ways to
construct forward-secure signature schemes for a high number of epochs T . We briefly
present one possibility next.4 One first uses the additive composition method to obtain
a forward-secure signature scheme FS for T = 2 epochs from two standard signature
schemes (which are considered as forward-secure signature schemes for 1 epoch). One
then applies the product composition method l − 1 times (l ∈ N) to this scheme to
build a scheme for 2l epochs.

The resulting scheme can be represented by a binary tree where each non-leaf node
is associated with a pair of public keys. In each such node, the left key is used to sign
the two public keys of the left child node, the right key is used to sign the keys of the
right child node. The keys in the leaf nodes are used to sign the messages. New nodes
are generated randomly on demand, their public keys are immediately authenticated
by the corresponding key in the parent node, and the parent’s secret key used for this
authentication is then deleted.
The tree needs to have only l levels for a total of 2l epochs, and can thus support

an exponential number of epochs. If T ∈ poly(κ) instead, one only needs a tree of
logarithmic height, and the scheme therefore only incurs logarithmic overhead.
A similar tree-based scheme can be built from hierarchical identity-based signa-

tures [HWI03] (see also [GS02]).

Other Constructions. Besides these generic constructions, there exist a number of
more direct constructions of forward-secure signature schemes, e.g. [BM99; AR00;
IR01]. We do not give more detailed presentations of these schemes, but note that
sequential aggregate versions of the schemes by Bellare and Miner [BM99] and Abdalla
and Reyzin [AR00] will be presented in Sections 3.3.1 and 3.3.2. While these sequential
aggregate variants are broken in Section 3.3, the original schemes [BM99; AR00] are
unaffected by the attacks presented in Section 3.3.

2.3.2. Forward-Secure Sequential Aggregate Signatures
Sequential aggregate signatures were first introduced by Lysyanskaya et al. [Lys+04]
as a restricted form of aggregate signatures [Bon+03]. The core idea of aggregate

4The scheme presented here differs from the scheme that Malkin, Micciancio, and Miner [MMM02]
call the MMM scheme.
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signatures is to “combine” signatures σi for individual messages mi (valid under some
public key pki) into a single signature σ which simultaneously authenticates all mi

under their respective pki.5 The resulting signature σ is called the aggregate of all σi.
Aggregate signatures have the potential to greatly reduce storage and bandwidth

overhead in applications dealing with large numbers of signatures, if the resulting
aggregate signature σ is significantly “smaller” (in terms of required storage space)
than the total space required to store all σi. Thus, the aggregate signature σ can be
viewed as a “compressed form” of the signatures σi.

Consider, for example, the aggregate signature scheme by Boneh et al. [Bon+03]. In
this scheme, signatures are elements of some group G, and aggregating two signatures
σ1, σ2 is realized by multiplying these signatures in the group, i.e. the aggregate
signature is σ = σ1 · σ2. Therefore, aggregation is very flexible: Anyone can aggregate
signatures at any time in an ad-hoc fashion, signatures can be aggregated in any order,
and aggregate signatures can be aggregated further.
Sequential aggregate signatures [Lys+04] are less flexible than general aggregate

signatures, but can be constructed and proven secure (see e.g. [Lys+04]) without
requiring the random oracle heuristic [BR93]. Whereas (general) aggregate signatures
allow for ad-hoc aggregation of signatures created completely independently at any
time and by anyone, sequential aggregate signatures only require that the signer
can aggregate a signature with an already existing aggregate at the time of signing.
Thus, if n signers wish to create an aggregate signature σ1,n for messages m1, . . . ,mn

(each signed by the i-th signer), they need to cooperate as follows: The first signer
authenticates m1 to obtain σ1 and sends σ1 to the second signer. The second signer
computes a new aggregate signature σ1,2 based on the signer’s secret key, m2 and σ1.6
The new signature simultaneously authenticates both m1 and m2. This signature is
sent on to the third signer who uses it to create σ1,3, valid for m1,m2,m3 and so on.
In the context of this work, usually there will only be a single signer, eliminating

the need for cooperation. However, the signer will use a signature scheme which not
only supports sequential aggregation but also forward security (as explained above).
Thus, the signer may use different secret keys ski to authenticate messages, and the
forward-secure sequential aggregate signature scheme is expected to allow aggregation
of signatures created with different ski, as well as to retain the information which
message was signed during which epoch.

The following definition of key-evolving sequential aggregate signature (SAS) schemes
is based on [Ma08], which in turn is based on [BM99] and [Lys+04]. It combines the
forward security property [BM99] and the property of sequential aggregation [Lys+04].

5Aggregate signatures can be considered a generalization of multi-signatures, where different signers
(with public keys pki) jointly authenticate a single message m. In contrast with multi-signatures,
aggregate signatures lift the restriction that all signers authenticate the same message.

6How σ1 is used during this process depends on the signature scheme at hand. One common way is
to first create a signature σ2 for the message m2 and then multiply the signatures σ1, σ2 in order
to obtain σ1,2, as in the BGLS scheme. In fact, each fully flexible aggregate signature scheme can
be viewed as a sequential aggregate signature scheme in this way.
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It differs from the definition of key-evolving (non-aggregate) signature schemes in the
following respects:

• Firstly, the signing algorithm Sign is replaced by an AggSign algorithm. This
algorithm has two additional inputs: a signature-so-far σi−1 and a claim sequence
Ci−1, purportedly authenticated by σi−1. Its task is to somehow authenticate the
message mi in addition to the prior claim sequence Ci−1. The resulting signature
σi should authenticate the claim sequence Ci := Ci−1 ‖(pk, t,mi).

• Secondly, the verification algorithm now checks an entire sequence of claims
(instead of a single claim). It outputs 1 if the signature is valid for the entire
claim sequence C, and 0 otherwise.

Definition 2.22 (Key-Evolving Sequential Aggregate Signature Schemes). A key-
evolving sequential aggregate signature scheme is a tuple of four PPT algorithms
AS = (KeyGen,Update,AggSign,Verify), where

KeyGen(1κ, 1T )→ (sk1, pk)
takes as input the security parameter κ and an a priori upper bound T on the
number of epochs. It generates and outputs a key pair (sk1, pk), where sk1 is the
initial secret key for the first epoch, and pk is the public verification key.

Update(skt)→ skt+1
takes as input the secret key skt of period t. If t ≥ T the output of Update may
be undefined. If t < T it computes the secret key skt+1 for the following period
t + 1. It then securely erases the old secret key skt irrecoverably and outputs
skt+1.

AggSign(skt, Ci−1, σi−1,mi)→ σi
takes as input a secret key skt for an epoch t, a claim sequence Ci−1, a corre-
sponding signature σi−1 and a message mi. It outputs a signature σi for the new
claim sequence Ci := Ci−1 ‖(pk, t,mi).

Verify(C, σ)→ 0/1
takes as input a claim sequence C and a signature σ and outputs 1 iff σ is deemed
valid for C, and 0 otherwise.

Key-evolving sequential aggregate signature schemes are required to be correct as
defined below.

Recall that we assume the existence of an empty signature λ which can be used for
the empty claim sequence ().

Definition 2.23 (Valid and Regular Signatures). Let AS = (KeyGen,Update,AggSign,
Verify) be a tuple of PPT algorithms as defined above, Ci be a claim sequence and
σi be a signature.

We say that σi is valid for Ci iff Verify(Ci, σi) = 1. Moreover, σi is regular for Ci iff
either
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• Ci = () and σi = λ, or

• Ci = Ci−1 ‖(pk, t,mi) for some claim (pk, t,mi), t ∈ [T ], and σi is in the image
of AggSign(skt, Ci−1, σi−1,mi) where σi−1 is a regular signature for Ci−1, mi

is an arbitrary message, (sk1, pk) is a key pair output by KeyGen(1κ, 1T ), and
skj+1 := Update(skj), for j ∈ [T − 1].

Definition 2.24 (Correctness). Let AS be a tuple of algorithms as defined above. AS
is correct iff for all κ ∈ N, for all bounds on the number of epochs T := T (κ) ∈ poly(κ),
and all claim sequences C, it holds that all signatures σ which are regular for C are
also valid for C.

Note that in case of verification failure, a standard key-evolving SAS scheme provides
no information on which claims are or aren’t “true”: The verification algorithm returns
a single bit, indicating if either the signature is valid for the entire claim sequence
(i.e. all claims in the sequence can be trusted), or the signature is invalid (i.e. at least
one claim could not be confirmed as authentic). This “all-or-nothing” behavior of
verification is relaxed in Section 5.3.

Security Notion for FS-SAS Schemes

The security notion for forward-secure sequential aggregate signatures requires that
the information on which message was signed by which signer(s) during which epochs
is retained in the aggregate signature, and this information is hard to forge. The
security experiment combines the experiments of forward-secure signatures [BM99] and
sequential aggregate signatures [Lys+04].

Definition 2.25 (Forward-Secure Sequential Aggregate Signature Existential Unforge-
ability under Chosen Message Attacks, based on [Ma08; Lys+04]). Let AS = (KeyGen,
Update,AggSign,Verify) be a key-evolving sequential aggregate digital signature scheme
as defined above, A be a PPT algorithm with access to oracles as defined below, and
T := T (κ) ∈ poly(κ).
The security experiment for the notion of forward-secure sequential aggregate exis-

tential unforgeability under chosen message attacks consists of the following phases:

Setup Phase.
The challenger generates a key pair (sk1, pk)← KeyGen(1κ, 1T ), where T is the
maximum number of time periods. It initializes the epoch counter t := 1. The
challenger then starts the adversary A with the inputs pk and 1T .

Query Phase.
During the query phase, the adversary A has access to the following oracles,
which may be queried adaptively:
Signature Oracle.

The AggSign oracle takes as input a claim sequence Ci−1, a correspond-
ing signature σi−1 and a message mi. It computes and returns σi :=
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AggSign(skt, Ci−1, σi−1,mi), where skt is the secret key for the current pe-
riod t.

Epoch Switching Oracle.
When A calls the epoch switching oracle, the challenger computes skt+1 :=
Update(skt), increments t := t + 1, and returns the string “ok”. A is not
permitted to query this oracle more than T − 1 times.

Break-In Phase.
When the adversary is done with the query phase, the experiment enters the
Break-In phase.
The adversary may send a break-in request to obtain the current secret key by
using a BreakIn oracle. The BreakIn oracle does not take parameters and returns
skt to A. If A queries the BreakIn oracle, the experiment sets tBreakIn := t.
After A has used the BreakIn oracle, A may no longer query any of the oracles.
Let tBreakIn :=∞ if A does not query the BreakIn oracle.

Forgery Phase.
Finally, A outputs a claim sequence C∗ and a corresponding signature σ∗.
We say that a claim c∗ = (pk∗, t∗,m∗) ∈ C∗ is non-trivial iff pk∗ = pk, t∗ < tBreakIn
and A did not query m∗ at its AggSign oracle during epoch t∗.
The experiment outputs 1 iff Verify(C∗, σ∗) = 1 and C∗ contains a non-trivial
claim. Otherwise, the experiment outputs 0.

The adversary A wins an instance of this experiment iff the instance outputs 1,
otherwise A loses this instance.
A FS-SAS scheme AS is forward-secure sequential aggregate signature existentially

unforgeable under chosen message attacks (FS-SAS-EUF-CMA-secure) iff for each
T := T (κ) ∈ poly(κ) and all PPT adversaries A:

Pr[A wins] ≤ negl(κ).

Note that A has much freedom in this experiment: The adversary may create any
number of key pairs (sk1, pk) for him-/herself (which also models that the attacker
may corrupt other parties), or even use public keys created maliciously. The attacker
can build claim sequences arbitrarily interleaving claims referring to the challenge
public key pk∗ and other public keys pk 6= pk∗. Additionally, A may arbitrarily branch
claim sequences constructed in the experiment. For example, after building a claim
sequence C = (c1, c2) the attacker may build different continuations of C, for example
C ′ = (c1, c2, c3) and C ′′ = (c1, c2, c4) for c3 6= c4. If c3 or c4 refer to the challenge public
key pk∗, the attacker can use the signature oracle to obtain signatures for the respective
claim sequence(s). Moreover, the attacker is free to build several independent claim
sequences in parallel, which may or may not overlap.

Note that some security notions found in the literature impose restrictions on the use
of (forward-secure) sequential aggregate signatures: For example, Ma [Ma08] proposes
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two schemes which can only support a single signature per epoch. As another example,
the security notion given by [Lys+04] (for sequential aggregate signatures without
forward security) requires that all public keys in a given claim sequence are distinct.
In contrast to these notions, the security notion given above does not introduce such
restrictions. We note that the BGLS-FssAgg scheme by [MT07b] (briefly introduced
below) can be shown to be secure according to the notion defined above.

There is another difference between the security notion given above and some notions
from the literature: The notions by [Lys+04; MT07b] consider the mere reordering of
claims in a claim sequence as a non-trivial attack, whereas such a forgery is considered
trivial in our notion. We stress that our security notions for keeping log files will
consider the order of messages.

Constructions

As an example construction, we briefly point out the BGLS-FssAgg scheme by [MT07b],
which is based on the BGLS aggregate signature scheme [Bon+03]. The BGLS-FssAgg
scheme (like the BGLS scheme) uses a cryptographic pairing. A (type 3) pairing is a
function e : G1 ×G2 → G3 mapping two elements from finite cyclic groups G1, G2 of
order q ∈ N to an element in another finite cyclic group G3 (also of order q), where:

• e is non-degenerate, i.e. for all generators g1, g2 of G1, G2, respectively, e(g1, g2)
is a generator of G3,

• e is bilinear, i.e. for all group elements a ∈ G1, c ∈ G2, and all exponents x, y ∈ Zq,
we have that e(ax, cy) = e(a, c)xy,

• e can be computed efficiently, and

• there are no known non-trivial, efficiently computable homomorphisms between
G1 and G2.

Since the groups G1, G2, G3 are assumed to be cyclic, the bilinearity condition implies
that for all a, b ∈ G1, c, d ∈ G2:

e(a · b, c ) = e(a, c) · e(b, c), and
e( a , c · d) = e(a, c) · e(a, d).

For the BGLS scheme, the group order q is usually chosen as a prime number.
Given a pairing and the corresponding groups G1, G2, G3 with generators g1, g2,

g3 = e(g1, g2), the BGLS-FssAgg scheme works as follows. For key generation, one
selects a random exponent x← Zq. The initial secret key is sk1 := x. Subsequent secret
keys are computed as skt+1 := H1(skt) for a hash function H1 : Zq → Zq modelled as a
random oracle [BR93] and t ∈ [T − 1]. For each of these secret keys, one computes the
public key for the respective epoch as pkt := gskt

1 . The overall public key for a signer is
pk := (pk1, . . . , pkT ). The update procedure simply replaces skt by skt+1 := H1(skt), as
above.
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During epoch t, a message m is signed by computing σ := H2(m)skt , where H2 :
{0, 1}∗ → G2 is another hash function, which is modeled as a random oracle, too.7 For
verification of a single claim c = (pk, t,m) one checks if

e(g1, σ) ?= e(pkt, H2(m)).

If σ is computed honestly, then this equation holds, since

e(g1, σ) = e
(
g1, H2(m)skt

)
= e(g1, H2(m))skt

= e
(
gskt

1 , H2(m)
)

= e(pkt, H2(m)). (2.1)

Signatures can be aggregated by multiplication, i.e. if σ1,l−1 is a signature for a claim se-
quence Cl−1 (l ∈ N), and σl is a signature for a claim cl = (pkl = (pkl,1, . . . , pkl,T ), tl,ml),
then σ1,l := σ1,l−1 · σl is the signature for Cl := Cl−1 ‖ cl.

Such aggregate signatures are verified by checking

e(g1, σ1,l)
?=

l∏
i=1

e
(
pki,ti , H2(mi)

)
.

Correctness can be shown by first expanding the left hand side as follows:

e(g1, σ1,l) = e

(
g1,

l∏
i=1

σi

)
=

l∏
i=1

e(g1, σi).

One then applies (2.1) analogously to each element in the product.
The security of the BGLS-FssAgg scheme can be shown under the computational

co-Diffie-Hellman assumption (see [MT07b; Bon+03]) if H1 and H2 are modeled as
random oracles.
This concludes our brief description of the BGLS-FssAgg scheme. The reader is

referred to [MT07b] and [Bon+03] for more details. We will briefly present two more
key-evolving sequential aggregate signature schemes in Sections 3.3.1 and 3.3.2, but
these schemes are not secure as we will show in Section 3.3.

2.4. Conventions
We assume that we may use each signature scheme (with some message spaceM) to
sign certain mathematical objects o even if o /∈ M. (For example, we will need to
sign tuples and partial maps f : {0, 1}∗ 7→ N with finite support.) More precisely, we
assume that whenever we sign some object o, then o is first encoded to a bit string
m ∈ {0, 1}∗ in some uniquely invertible encoding, then hashed with some collision

7The original proposal by Ma and Tsudik [MT07b] adds a counter i to m before signing in order to
authenticate the order in which messages are signed. We will omit this counter here, since our
security notion for sequential aggregate forward-secure signatures does not require the order of
claims to be authenticated.
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resistant hash function H : {0, 1}∗ →M, and then H(m) is signed as a representative
of o. Throughout this thesis, we assume that the encoding is injective, i.e. there are no
two objects o 6= p that are encoded to the same bit string. We employ the convention
that the encoding and the hash function H are applied implicitly when invoking the
signing and verification algorithms.

We do not model different “levels” of corruption of a system by an attacker. That is,
we assume that when an attacker breaks into a system, this break-in is complete and the
attacker immediately gains full control of the respective system. This assumption is in
accordance with our goal to give security guarantees based on mathematical assumptions,
instead of assumptions about the presence or absence of software vulnerabilities in the
respective systems.
Throughout this thesis, we assume that key evolution and signing algorithms (for

example Update, Sign or AggSign) have access to the public key belonging to the
respective secret key. As stated before, we also assume that the index t of a secret
key skt can be extracted from skt efficiently.

For simplicity, we assume that all verification algorithms (i.e. Verify) are determinis-
tic.
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This chapter presents a total of four attacks on three logging schemes proposed in
the literature, namely the LogFAS scheme [YPR12b] and the BM- and AR-FssAgg
schemes [Ma08].
This chapter is strongly based on [Har17]. Significant parts of that work are

reproduced in this chapter without or with only minor modifications, and without
specific designation.

3.1. Introduction

We describe two attacks on LogFAS [YPR12b; YR11] and one attack each on the BM-
and AR-FssAgg schemes of [Ma08].

LogFAS. LogFAS assumes a “Key Generation Center” (KGC) which generates the
secret keys and public keys for all signers. Signer-specific keys are derived from
common secrets held by the KGC, the signers identity ID and per-signer values chosen
at random.1 Signatures consist of a number of group elements (of a prime-order
subgroup of Z∗p for a large prime p) and exponents for other group elements, as well as
a standard signature on the log file length and the signer’s identity ID. The verification
procedure checks that the group elements and exponents satisfy a specific equation
(see (3.1) below), and the standard signature is valid for the tuple (ID, l), where l is
the length of the log file.
Our first attack on LogFAS exploits a severe weakness in LogFAS’ verification

equation, and allows for virtually arbitrary forgeries of log files. Given the signer’s
public key pk and a valid signature σ for a log file L, an attacker can easily compute
a valid signature σ′ for a modified log file L′. The forged signature σ′ may contain
different group elements, but does not change the signature on the log file length.
Hence, this attack can not change the length of the log file, while the content of the
log file can be changed arbitrarily.
The second attack on LogFAS exploits the fact that the signer’s identity is not

cryptographically bound to the signed log file, but only to the log file length. An
attacker might exploit this weakness to deceive a verifier into believing a log file L was
signed by some signer ID while it was actually created by a distinct signer ID′ 6= ID, by
exchanging the signature on the tuple (ID, l) by a signature for (ID′, l). This specific
attack is outside of the security model considered in [YPR12b].

1This model is slightly reminiscent of identity based cryptography [Sha85].
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It is possible to use both of our attacks in combination. Combined, these attacks
enable an attacker to forge a valid signature for any log file L′ of length l, purportedly
signed by some signer ID, iff the attacker has the signer’s public key pkID and a valid
signature created by ID for a log file L of length l.

BM- and AR-FssAgg. The BM- and AR-FssAgg schemes of [Ma08] are sequentially
aggregatable variants of the forward-secure signature schemes by Bellare and Miner
[BM99] and Abdalla and Reyzin [AR00]. Both of the original schemes are quite similar,
since the scheme by [AR00] is based on [BM99]. In order to support aggregation, the
FssAgg constructions use a “de-randomized” signing algorithm, where the independently
chosen, random per-signature values r that were used in the original schemes are
replaced by arithmetically related values. (New values ri+1 are obtained by squaring
the previous value ri in Z∗N one or more times, where N is a Blum integer, i.e. a product
of two prime numbers p, q with p ≡ q ≡ 3 (mod 4).)

Our attacks exploit this “de-randomization” by building a system of equations from
obtained signatures. The core idea of our attack allows us to reduce the number of
variables in this system of equations (by using the relation between the ri) such that
the number of variables is not larger than the number of equations. Afterwards, the
system of equations can be solved by doing linear algebra “in the exponent”. As a
result, we obtain the secret key skt for some epoch t, where t is reasonably small.
Since our attack crucially relies on the de-randomization, our attacks do not carry

over to the original schemes by Bellare and Miner [BM99] and Abdalla and Reyzin
[AR00].

The original publication of the attacks [Har17] described the attacks on BM-FssAgg
and AR-FssAgg as two distinct attacks. Since then, the author has become aware
that the original attack on AR-FssAgg is a special case of a more general attack on
AR-FssAgg, which is very similar to the attack on BM-FssAgg. Moreover, the AR-
and BM-FssAgg signature schemes can be generalized and recast in a single framework
encompassing both schemes. Therefore, this thesis will present both schemes as special
cases of a generalized signature scheme, called de-randomized chain-based (DRCB)
signature scheme. Our attacks are generalized to a single attack on the DRCB scheme.

The original (non-generalized) attacks have been implemented and empirically eval-
uated by [Har17]. We have not implemented the generalized attack, but present the
results of the empirical evaluation of the original attacks.

Outline. The remainder of this chapter is organized as follows. The construction
of LogFAS is reviewed in more detail in Section 3.2.1. Details on the two attacks
sketched above are given in Section 3.2.2. We point out how an attacker might use
these attacks in practice in Section 3.2.3. We briefly review LogFAS’ proof of security
in Section 3.2.4, and point out the flaw in the proof.
We give a more detailed description of the BM-FssAgg and AR-FssAgg schemes

as well as the DRCB signature scheme in Sections 3.3.1 to 3.3.3. Some additional
mathematical prerequisites are introduced in Section 3.3.4. The generalized attack is
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detailed in Section 3.3.5. We discuss how the original attack on AR-FssAgg described in
[Har17] compares to the generalized attack in Section 3.3.6. Section 3.3.7 discusses how
our attacks on BM-FssAgg and AR-FssAgg might be used in practice. We briefly point
out the flaws in the security proofs of the FssAgg schemes in Section 3.3.8. Finally, we
present the results of the empirical evaluation of the attacks in Section 3.3.9.
We do not present new, “fixed” versions of the attacked schemes. Modifying these

schemes in order to prevent the attacks outlined here is out-of-scope for this thesis.

3.2. LogFAS

LogFAS [YPR12b] is a forward-secure and aggregate audit log scheme, which features
high computational efficiency and compact public key sizes at the expense of large
secret keys and signatures.
Before we describe our attacks, we will briefly introduce LogFAS. The reader is

referred to [YPR12b; YR11] for a more detailed presentation.

3.2.1. Description of LogFAS

LogFAS assumes a Key Generation Center (KGC) which generates keys for individual
signers. Each signer i has an identity IDi. Signatures consist of several values, some of
which can be aggregated. For the remainder of this section, we employ the convention
that variables with two indices are aggregated values of several epochs. For instance,
s1,l is the aggregation of the values s1, . . . , sl.
LogFAS uses three fundamental building blocks: an ordinary signature scheme

Σ = (KeyGen, Sign,Verify), the Schnorr signature scheme [Sch90; Sch91], and an
incremental hash function IH based on a collision-resistant hash function H which
is modelled as a random oracle [BR93]. The latter two building blocks are briefly
introduced below.

Schnorr Signatures. The Schnorr Signature Scheme [Sch90; Sch91] is based on the
hardness of the discrete logarithm problem in some group G. It uses a prime-order
subgroup G of Z∗p, where p is large a prime, G’s order q is also a large prime, and q
divides p− 1. Let α be a generator of G. A secret key for Schnorr’s scheme is y ← Z∗q ,
the corresponding public key is Y := αy (mod p).
In order to sign a message m, choose r ← Z∗q , set R := αr (mod p), compute the

hash value e := H(m ‖R) and set s := r − ey (mod q). The signature is the tuple
(R, s). To verify such a signature, recompute the hash value e := H(m ‖R) (where R is
taken from the signature and m is given as input to the verification algorithm). Then
check if R ?= Y eαs (mod p) and return 1 if and only if this holds.
The Schnorr signature scheme can be shown to be secure based on the hardness

of the discrete logarithm problem in G, if H is modelled as a random oracle [BR93].
This concludes our brief recap of the Schnorr signature scheme. LogFAS uses the same
group setup as Schnorr’s scheme, so let p, q,G, α be fixed.
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Incremental Hash Function. Let T be the total number of supported epochs. The
key of LogFAS’ incremental hash function IH consists of T factors z1, . . . , zT . The
hash value of a sequence of l ∈ [T ] messages (m1, . . . ,ml) is then given by

IH (m1, . . . ,ml) :=
l∑

i=1
H(mi)zi (mod q).

The security of this hash function can be shown under subset-sum-style assumptions,
see the references in [YPR12b; YR11] for details.

LogFAS’ Algorithms. In LogFAS, an individual signer’s secret key is derived from a
central long-term secret b ∈ Z∗q held by the KGC (which can be compared to a secret
key of the Schnorr scheme) and several values chosen uniformly at random. Each
signer’s secret key includes a set of coefficients z1, . . . , zT (derived from b) that form
the key of IH . The exact relations between the values in the secret key, the public key
and the signature are reflected in our summary of LogFAS’ algorithms below, but our
attack can be understood without fully comprehending how these values relate to each
other.

The algorithms used by LogFAS are given below.

Key Generation.
The KGC chooses a random value b ∈ Z∗q and generates a key pair (ŝk , p̂k) using
the signature scheme Σ. The long term private and public keys are (b, ŝk) and
(B := αb

−1 (mod q), p̂k), respectively. These values constitute the secret and public
key of the KGC, and hence are implicitly shared for all signers.
Next, for each identity IDi, the KGC generates temporary keys for each epoch
t ∈ [T ] based on random values rt, at, dt, xt ← Z∗q . These values are used to create
interdependent variables as follows:

yt := at − dt (mod q),
zt := (at − xt)b (mod q),
Mt := αxt−dt (mod p), and
Rt := αrt (mod p).

Finally, the KGC generates “tokens” βt := Sign(ŝk , H(IDi ‖ t)) for each signer IDi

and each epoch number t. These serve as witnesses that signer IDi has created
at least t signatures. Let sk′t := (rt, yt, zt,Mt, Rt, βt) for each t ∈ [T ]. The initial
secret key of IDi is sk1 = (sk′1, . . . , sk′T ).
Each key sk′t can only be used to sign a single message. Hence, the secret key
must be updated each time a message has been signed.

Key Update.
A signer updates his key skt (t ∈ [T − 1]) to the next epoch skt+1 by simply
erasing rt, yt,Mt, and βt from sk′t.
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Signature Generation.
A LogFAS signature σ1,l consists of aggregate-so-far values s1,l ∈ Zq andM ′1,l ∈ Z∗p,
the most recent token βl, as well as the random group elementsRt and the elements
zt of IH ’s key for all t ∈ [l].2

Given an aggregate signature σ1,l−1 for (m1, . . . ,ml−1), a new entry ml and the
temporary secret key (rl, yl, zl,Ml, Rl, βl) for epoch l, first compute the hash value
el := H(ml ‖ l ‖ zl ‖Rl). Then compute sl := rl − elyl (mod q) and aggregate
this value into s1,l := s1,l−1 + sl (mod q). Next, set M ′l := M el

l (mod p) and
aggregate this into M ′1,l := M ′1,l−1M

′
l (mod p). The new aggregate signature is

σ1,l := (s1,l,M
′
1,l, βl, ((Rt, zt))lt=1).

Each time a signature has been computed, the signer updates the secret key to
the next epoch.

Verification.
To verify an aggregate signature σ1,l = (s1,l,M

′
1,l, βl, ((Rt, zt))lt=1) over l log

entries (m1, . . . ,ml), one first checks the validity of the token βl. If

Verify(p̂k, H(IDi ‖ l), βl) = 0,

then output 0 and exit. Otherwise, compute

z1,l := IH (m1 ‖ 1 ‖ z1 ‖R1, . . . , ml ‖ l ‖ zl ‖Rl),

and check if
l∏

t=1
Rt

?≡M ′1,l ·Bz1,l · αs1,l (mod p). (3.1)

Accept if the equation holds (output 1 and exit). Otherwise, reject the signature
(output 0 and exit).

3.2.2. The Attacks

We report two simple and efficient attacks on LogFAS. The first one allows for virtually
arbitrary modification of log entries, but cannot change the log file size. It requires
only minimal computation and a single signature. This attack contradicts the claimed
security of LogFAS. We analyzed the proof of security in [YR11] and found a flaw,
resolving this contradiction.

Our second attack allows an adversary to masquerade a signature as originating from
another (valid) signer. This attack is outside the formal security model considered
in [YPR12b], and therefore does not contradict the claimed security. It nonetheless
presents a serious threat, as it undermines the signature’s authenticity.

2The original scheme in [YPR12b] includes the value et in the signature. This value has been omitted
here, as et can be recomputed by the verifier.
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Signature Forgery.

Our first attack can be used to sign any sequence of log messages (m∗1, . . . ,m∗l ) (l ∈ [T ]),
provided the attacker has a valid signature for some other sequence of log messages
(m1, . . . ,ml) of the same length, and knows the public key pk.

On a high level, our attack exploits the fact that the right hand side of (3.1) can
be fully determined M ′1,l. Since M ′1,l is part of the signature, an attacker can simply
set M ′1,l to a value such that the equation holds. Computing the respective value
essentially only requires modular multiplication, exponentiation and inversion, which
can be implemented efficiently.
Concretely, let σ1,l = (s1,l,M

′
1,l, βl, ((Rt, zt))lt=1) be the signature known to the

attacker. At first, the adversary computes

R1,l =
l∏

t=1
Rt (mod p)

and
z∗1,l = IH (m∗1 ‖ 1 ‖ z1 ‖R1, . . . , m

∗
l ‖ l ‖ zl ‖Rl).

(S)he then sets M∗1,l := R1,l ·B−z
∗
1,l · α−s1,l (mod p). The forged signature is

σ∗1,l = (s1,l,M
∗
1,l, βl, ((Rt, zt))lt=1).

It is easy to see that this signature will be accepted by the verification algorithm. Since
βl is taken from the original signature, it is a valid signature for H(IDi ‖ l) and so
Verify(p̂k, H(IDi ‖ l), βl) will return 1, i.e. the first check of the verification algorithm
will succeed. Now, by our setup, we have

M∗1,l ·B
z∗1,l · αs1,l ≡ (R1,l ·B−z

∗
1,l · α−s1,l) ·Bz∗1,l · αs1,l ≡ R1,l ≡

l∏
t=1

Rt (mod p).

Therefore, the verification algorithm will accept the signature, and the attack is
successful. Note that the attack works for arbitrary B, s1,l, z1, . . . , zl and R1, . . . , Rl.
For each possible combination of these, the attack computes a value M∗1,l which satisfies
the verification equation. As stated above, this simple attack is due to the structure of
(3.1), where the right hand side can be fully and directly determined by M ′1,l.

Sender Confusion.

We now turn to our second attack. If an attacker has two aggregate signatures σ1,l,
σ′1,l for two sequences of log messages of the same length l, created by different signers
IDi, IDj the attacker can just exchange the βl tokens. The receiver will accept σ1,l as
a signature from IDj , even though the messages were really signed by signer IDi, and
vice versa. This attack is due to the fact that the identity IDi of the signer is only
bound to the signatures βt but not to the other signature components s1,l, M ′1,l, Rt
and zt.

44



3.2. LogFAS

Combination.

It is possible to use both of our attacks in combination. Assume an attacker knows the
public key pk and a valid signature σ for a log file L of length l, created by the signer
with the identity ID.

The attacker may then create a forged log file L′ (of the same length l), and
obtain a valid signature for L′ as follows. Firstly, the attacker may choose arbitrary
s1,l, R1, . . . , Rl and z1, . . . , zl and compute a suitable M∗1,l according to our first attack.
Secondly, the attacker may reuse the βl token from σ, as in our second attack. Then
(s1,l,M

∗
1,l, βl, ((Rj , zj))lj=1) is a valid, but forged signature for the log file L′. This

signature will be accepted by the verification algorithm, misleading the recipient of the
signature to believe that the signer with identity ID has authenticated L′.

3.2.3. Attack Consequences

We present a scenario that shows how our attacks might be used in a real-world attack.
Consider a corporate network, where there are multiple servers S1, . . . , Sn (n ∈ N)
offering different services. Each server Si collects information in its log files, and
regularly transfers all new log entries together with a signature to some central logging
server L. The logging server L checks the signatures, stores the log data, and might
examine it automatically for signs of a security breach using an intrusion detection
system (IDS). If a server Si does not transmit any new log entries to L within a certain
amount of time, L raises an alarm (as there might be an attacker suppressing the
delivery of log messages to L). Assume that LogFAS is used to sign log entries.
An attacker A who has broken into a server Si in the corporate network without

raising an alarm might retroactively change the log entries not yet transmitted to L to
cover his traces, and then create a new (valid) signature for the modified log file using
our first attack. The attacker continues to transmit log entries to L regularly, in order
not to raise an alarm, albeit A replaces log entries that might raise suspicion with ones
that appear perfectly innocuous.
Now, assume that the attacker can bring her-/himself into a man-in-the-middle

position between some other server Sj and L. (This might be achieved using techniques
such as ARP spoofing.) A may now filter and change log entries sent from Sj to
L on-the-fly, while our first attack allows him to create valid signatures. Thus, the
attacker may attack Sj without risking detection by the IDS at L.

To illustrate our second attack, suppose that the logging system was fixed to prevent
the signature forgery. However, bringing himself into a man-in-the-middle position
again, the attacker might still exchange the identities of some servers Sj , Sk included
in the signature using our sender confusion attack. A may then try to compromise Sj ,
while the IDS raises an alarm regarding an attack on Sk. The attacker can thus
misdirect the network administrators’ efforts to defend their network, giving A an
advantage, or at least gaining time until the administrators notice the deception.
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3.2.4. The Proof of Security

In this section we point out the mistake in LogFAS’ proof of security that allowed for
the false conclusion of LogFAS being secure. While reading this section, the reader
should consider the proof in Section 5 of the technical report [YR11] accompanying
the LogFAS paper [YPR12b].
The security proof for LogFAS follows a simple and mostly standard scheme. One

assumes an attacker A that breaks LogFAS, and constructs an attacker F against the
Schnorr signature scheme, using A as a subroutine. F first guesses an index w of a
message block that A will modify. F ’s challenge public key (for the Schnorr scheme) is
then embedded into the temporary key pair for that message, the remaining key pairs
are set up honestly.

When the attacker outputs a forgery, the proof considers three cases. The first case
deals with attackers that actually create a new message together with a valid signature
(as does our attack). The second case deals with truncation attacks and the third case
models a hash collision.
The error is located in the first case, where the authors conclude that a forgery for

an entirely new message must imply a forgery of a Schnorr-type signature, i.e. that the
values Rw, sw (when properly extracted from the LogFAS signature) must be a valid
signature for the message mw. We can see that this conclusion is false, since our attack
does not modify the values Rw, sw at all, but only replaces the original message with
an arbitrary one. Thus, the verification algorithm of the Schnorr scheme will reject
the signature with very high probability, while the authors conclude that the signature
will be accepted.

3.3. The FssAgg Schemes

This section presents the BM-FssAgg scheme (see Section 3.3.1) and the AR-FssAgg
scheme [Ma08] (see Section 3.3.2), as well as our generalization of these schemes, called
the de-randomized chain-based (DRCB) signature scheme (see Section 3.3.3).
We point out that both the BM-FssAgg scheme and the AR-FssAgg scheme are

intended to provide only one signature per epoch. Hence, the generalized scheme has
the same restriction. For all of these schemes, the respective key must be updated
every time a message has been signed.

We then introduce some additional prerequisites for the attack in Section 3.3.4, and
describe the generalized attack on the DRCB scheme (Section 3.3.5). Section 3.3.6
describes how our original attack on the AR-FssAgg scheme fits into the framework of
the generalized attack on the DRCB scheme. We discuss how an attacker might use our
attacks on the BM- and AR-FssAgg schemes in practice in Section 3.3.7. Section 3.3.8
briefly points out the flaws in the security proofs of both schemes. Finally, Section 3.3.9
summarizes the results of our experimental evaluation of the attacks.
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3.3.1. Description of the BM-FssAgg Scheme
The BM-FssAgg signature scheme [Ma08] is based on a forward-secure signature scheme
by Bellare and Miner [BM99]. Both schemes utilize repeated squaring modulo a Blum
integer N . (An integer N is called a Blum integer if it is a product of two primes p, q
such that p ≡ q ≡ 3 (mod 4).) Again, we first describe the BM-FssAgg scheme before
we turn to our attack.

Let T be the number of supported epochs and H a hash function that maps arbitrary
bit strings to bit strings of some fixed length l ∈ N.

Intuitively, the scheme is built on l + 1 sequences of units modulo N , where in each
sequence, each number is obtained by squaring the predecessor. Once the starting
points r0 and si,0 (for i ∈ [l]) have been selected during key generation, the scheme
successively computes

rj+1 := r2
j (mod N) for j ∈ {0, . . . , T}

si,j+1 := s2
i,j (mod N) for j ∈ {0, . . . , T} and i ∈ [l].

(3.2)

When r0 and the si,0 are clear from the context, we may thus naturally refer to rj
and si,j for j ∈ [T + 1] throughout this section. Observe that these sequences form
one-way chains: Given any element si,j of a chain, it is easy to compute the subsequent
elements si,j′ with j′ > j, but it is unknown how to efficiently compute the previous
ones without knowing the factorization of N . (The same holds analogously for the
chain of the rj-s.)

We now describe the BM-FssAgg scheme in more detail. See Figure 3.1 for a depiction
of the key evolution process.

Key Generation.
Pick two random, sufficiently large primes p, q, each congruent to 3 modulo 4,
and compute N = pq. Next, pick l + 1 random integers r0, s1,0, . . . sl,0 ← Z∗N .
Compute y := 1/rT+1 (mod N), and ui := 1/si,T+1 (mod N) for all i ∈ [l]. The
public key is then defined as

pk := (N,T, u1, . . . ul, y),

whereas the initial secret key is

sk1 := (N, j = 1, T, s1,1, . . . , sl,1, r1).

Key Update.
In order to update the secret key, simply replace all rj , si,j by the respective
rj+1, si,j+1 (i.e., square all these values), and increment the epoch counter j.

Signing.
In order to sign a message mj , first compute the hash value c := H(j, y,m). Let
c1, . . . , cl ∈ {0, 1} be the bits of c. The signature for m is

σj := rj

l∏
i=1

scii,j ,
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r0 r1 r2 rT rT+1· · ·
(·)2 (·)2 (·)2 (·)2 (·)2

s1,0 s1,1 s1,2 s1,T s1,T+1· · ·
(·)2 (·)2 (·)2 (·)2 (·)2

sl,0 sl,1 sl,2 sl,T sl,T+1· · ·
(·)2 (·)2 (·)2 (·)2 (·)2

...
...

...
...

.... . .

sk1 sk2 skT ≈ pk

Figure 3.1.: Illustration of the key evolution process of the BM-FssAgg scheme. Each
secret key skj consists of l + 1 values rj , si,j ∈ Z∗N . Each rj+1 is com-
puted as r2

j . The si,j are computed analogously. The public key contains
the modulus N as well as y := 1/rT+1 (mod N) and all ui := 1/si,T+1
(mod N) for i ∈ [l].

i.e., the signature is the product of rj and all si,j where ci = 1.

An aggregate signature for multiple messages is computed by multiplying the
individual signatures. Thus, a signature σj can be added to an aggregate
signature σ1,j−1 by computing the new aggregate as

σ1,j := σ1,j−1 · σj (mod N).

Verification.
Given an aggregate signature σ1,t for messages m1, . . . ,mt signed in epochs 1
through t, the verification algorithm will effectively “strip off” the individual
signatures one-by-one, starting with the last signature.

More precisely, to verify σ1,t, act as follows: Recompute the hash value ct =
(c1,t, . . . , cl,t) := H(t, y,mt) of the last message. (Recall that the signature for mt

is rt
∏l
i=1 s

ci,t
i,t .) Square σ1,t exactly T + 1− t times, effectively adding T + 1− t to

the j-indices of all rj , si,j contained in σ1,t. (In particular, this effectively changes
the signature for mt to rT+1

∏l
i=1 s

ci,t
i,T+1.) Multiply the result with y

∏l
i=1 u

ci,t
i ,

cancelling out the last signature because y and the ui are the modular inverses
of rT+1 and the si,T+1.

For the last-but-one message, square the result another time (projecting the
last-but-one signature into the epoch T + 1), recompute the hash value ct−1 =
(c1,t−1, . . . , cl,t−1), and cancel out the last-but-one signature by multiplication
with y

∏l
i=1 u

ci,t−1
i .

The scheme continues analogously for the remaining messages mt−2, . . . ,m1. If
the procedure terminates at a value of 1, the aggregate signature is accepted as
valid, otherwise it is rejected as invalid.
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r0 r1 r2 rT rT+1· · ·
(·)2l

(·)2l

(·)2l

(·)2l

(·)2l

s0 s1 s2 sT sT+1· · ·
(·)2`

(·)2`

(·)2`

(·)2`

(·)2`

sk1 sk2 skT ≈ pk

r1s
c1
1

(·)c1

r2s
c2
2

(·)c2

σ1 =

= σ2

Figure 3.2.: Illustration of the key evolution process and signing process (without
aggregation) in AR-FssAgg. The key evolution is very similar to the key
evolution in BM-FssAgg, except for the following two differences: Firstly,
there is only a single chain of sj (instead of l chains) in addition to the
chain of rj-s. Secondly, in each chain, each successive element is obtained
by raising its predecessor to the power of 2l (instead of only 2). The signing
process combines the values rj and sj to σj := rjs

cj
j . Individual signatures

can be multiplied to obtain an aggregate signature for multiple messages
(not depicted).

3.3.2. Description of the AR-FssAgg Scheme

In the following, we will briefly describe the differences between the AR-FssAgg scheme
and the BM-FssAgg scheme. The reader is referred to [Ma08] for a complete description
of the AR-FssAgg construction.

The main difference between the AR-FssAgg scheme and the BM-FssAgg scheme is
that the former interprets the hash function’s output c as an integer in {0, . . . , 2l − 1},
instead of l individual bits. Consequently, the l+1 chains of squares rj , si,j are replaced
by just two chains rj , sj of higher powers, namely:

rj+1 := r
(2l)
j (mod N) for j ∈ {0, . . . , T}

sj+1 := s
(2l)
j (mod N) for j ∈ {0, . . . , T}.

As for the BM-FssAgg scheme, the starting points r0 and s0 are chosen randomly, and
N is a Blum integer. The key update procedure is adapted canonically: rj and sj are
raised to their 2l-th power instead of being squared. Thus, they are replaced by r2l

j

and s2l
j , respectively. In the signing procedure, the hash value c is computed as before,

but the signature for the single message is now σj := rj · scj (mod N). The aggregate
signature is σ1,j := σ1,j−1 · σj (mod N), as before.

The process of key evolution as well as signing (without aggregation) is depicted in
Figure 3.2.
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3.3.3. Generalization

Our description of AR-FssAgg above already pointed out the differences between the
BM-FssAgg and the AR-FssAgg scheme. Given this comparison, the generalization of
both schemes is straightforward:
The hash output is split into b ∈ N blocks of µ := l/b bits each (where b divides l),

and the bits of each block are taken to represent integers ci ∈ {0, . . . , 2µ − 1}. The
DRCB scheme uses b+ 1 chains rj , si,j (i ∈ [b]). When evolving a secret key, each rj+1,
si,j+1 is computed as

rj+1 := r
(2µ)
j (mod N) for j ∈ {0, . . . , T}

si,j+1 := s
(2µ)
i,j (mod N) for j ∈ {0, . . . , T} and i ∈ [b].

(3.3)

(I.e. each element of the chain is obtained by squaring its predecessor µ times.) The
starting values r0, si,0 are chosen at random during key generation.

The signing algorithm splits the hash output c into b blocks c1, . . . , cb (as described
above), and then computes the signature as σj := rj ·

∏b
i=1 s

ci
i,j .

Verification raises the signature σ1,t to the power of 2µ for T + 1 − t times, and
multiplies the result with y ·

∏b
i=1 u

ci
i to “strip off” an individual signature, where

y = 1/rT+1 (mod N) and ui = 1/si,T+1 (mod N) for i ∈ [b] are contained in the public
key.

Given this generalization, the BM-FssAgg scheme can be obtained by choosing b = l,
while the AR-FssAgg scheme is obtained by setting b = 1.

3.3.4. Attack Prerequisites

Before turning to the attack on the DRCB scheme, we would like to introduce some ad-
ditional mathematical prerequisites. This enables us to give a more concise presentation
of our attack in the next section.

Lemma 3.1 (Repeated Raising to Powers). LetN,µ ∈ N, and f : ZN → ZN , x 7→ x(2µ).
Let fk denote the k-times iterated repetition of f , i.e. f0 = ID and fk+1 : x 7→ f(fk(x))
for k ∈ N0, where ID denotes the identity function. Then

fk(x) = x(2kµ) for all x ∈ ZN , k ∈ N0.

Proof. The proof easily follows by induction over k using standard rules for exponenti-
ation. For the start of the induction, let k = 0, x ∈ ZN . Then

x(2kµ) = x(20) = x1 = x = ID(x) = f0(x) = fk(x),

as claimed. For the induction step, assume that fk(x) = x(2kµ) for a specific k ∈ N0
and all x ∈ ZN . Then

fk+1(x) = f(fk(x)) = f(x(2kµ)) =
(
x(2kµ)

)(2µ)
= x(2kµ)(2µ) = x(2(k+1)µ).
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Linear Algebra over Z. We now briefly introduce linear algebra over Z. We assume
the reader is familiar with basic linear algebra, in particular vector spaces over R, and
focus on a few notable differences between linear algebra over R and Z.

For our attack, we will need to “solve” a matrix over Z. More specifically, given a set
of row vectors cj ∈ Zd (d ∈ N), we will want to represent the standard basis vectors ei
as integer linear combinations of the cj .
In the case of vector spaces over R, this problem is easily solved by algorithms like

Gaussian elimination. However, over Z, a linearly independent set S of d vectors does
not necessarily form a basis of Zd. Consider, for example, S = {(2, 0), (0, 2)}. Clearly,
every integer linear combination of these vectors will only have even entries, and there
is no way that an integer linear combination of these vectors can yield a vector with
an odd component, i.e. a standard basis vector.

Formally, for some dimension d ∈ N, Zd is not a vector space over Z, since Z is not
a field but only a ring. Zd is referred to as a free module over Z. We will nonetheless
continue to refer to elements of Zd as “vectors” for simplicity.
For similar reasons, the Gaussian elimination method is not suited for “solving” a

linear system of equations over Z, since it will compute a linear combination of the
vectors if one exists, but the output may not be an integer linear combination. We
therefore need to employ different algorithms.

Specifically, we compute the Hermite Normal Form (HNF) of the matrix to be solved.
The exact definitions and conventions used for the HNF differ in the literature. The
following definition is a special case of Definition 2.8 given by Adkins and Weintraub
[AW92, p. 301], applying the preceding Example 2.7 (1) on the same page, and including
an erratum published online [Wei].

Definition 3.2 (Hermite Normal Form). Let A ∈ Zm×n be an integer matrix. Denote
the i-th row of A by ai, and the j-th entry of the i-th row by ai,j (for i ∈ [m] and
j ∈ [n]). A is in Hermite Normal Form iff there is a non-negative integer r with
0 ≤ r ≤ m such that

1. ai 6= 0 for all 1 ≤ i ≤ r and ai = 0 for all r + 1 ≤ i ≤ m, and

2. there is a sequence of column indices 1 ≤ n1 < . . . < nr ≤ n such that for all
i ∈ [r] the following three conditions hold:

ai,ni > 0
ai,j = 0 for j < ni, and

0 ≤ aj,ni < ai,ni for 1 ≤ j < i.

Intuitively, a matrix is in HNF if only the first r rows are occupied (and the remaining
m− r rows are zero), each non-zero row has a positive “pivot” element ai,ni (which is
the first non-zero element in this row), the pivot element of each row is further to the
right than the pivot of the preceding row, and all elements above a pivot element are
between 0 (inclusive) and the pivot (exclusive). See [AW92, Table 2.1, p. 301] for a
schematic depiction of matrices in HNF.

We make use of the following two theorems:
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Theorem 3.3 (Transformation to HNF). Let A ∈ Zm×n. Then there are matrices
H ∈ Zm×n, R ∈ Zm×m such that H is in Hermite Normal Form and H = RA.

The theorem as noted here is a special case of [AW92, Theorem 2.9, p. 302], again
applying [AW92, Example 2.7 (1), p. 301].3

Theorem 3.4 (Uniqueness of the HNF). Let A ∈ Zm×n. Then the Hermite Normal
Form of A is unique.

Again, the theorem is based on [AW92, Theorem 2.13, p. 304], applying [AW92,
Example 2.7 (1)]. Furthermore, the HNF is known to be computable in polynomial
time, see e.g. [KB79; MW01].

Finally, we will need the following lemma:

Lemma 3.5 (HNF of Bases). Let A ∈ Zm×n be an integer matrix (m,n ∈ Z,m ≥ n),
and let ai denote the rows of A (for i ∈ [m]). Then the ai span Zn (wrt. integer linear
combinations) iff the HNF H of A is of the form

H =
(

1n
0m−n,n

)
,

where 1n is the n × n identity matrix and 0m−n,n is the all-zero matrix with m − n
rows and n columns.

Proof. Assume that all row vectors x ∈ Zn can be represented as integer linear combina-
tions of the ai. Then, in particular, the standard basis vectors ei = (ei,1, . . . , ei,n) ∈ Zn
(where ei,j = 1 if i = j, and ei,j = 0 otherwise) can be represented as integer linear
combinations xi of the rows of A, i.e. xiA = ei, where xi ∈ Zm. Thus there exists a
matrix R′ ∈ Zn×m such that R′A = 1n. We build the matrix R by appending m− n
zero rows to R′. Then RA = H has the form depicted in the theorem statement. Now,
since RA = H, and H is in HNF, and the HNF is unique, H must be the HNF of A.

Conversely, if the HNF of A has the form H as described in the theorem statement,
then each v ∈ Zn can clearly be represented as an integer linear combination x ∈ Zm of
the rows of H, i.e. v = xH. Since there exists a matrix R such that RA = H, we may
as well write v = x(RA) = (xR)A, and thus xR defines an integer linear combination
of the rows of A that yields v. Since v was chosen arbitrarily, we have shown that the
rows of A span Zn.

3.3.5. Attack on the Generalized Scheme
Recall that the DRCB scheme divides the hash values of messages into b blocks of µ
bits each. We show a conceptually simple way to recover the secret key skt (t ≥ b+ 1)
from t successive aggregate signatures and the public key pk. Our attack may work
with as little t = b+ 1 signatures, but has a higher success probability if t > b+ 1. In
our experiments, t = b+ 11 signatures have been sufficient for all cases.

3Cf. [AW92, Remark 2.13 (2), pp. 61–62], [AW92, Example 5.17 (1), p. 86], [AW92, Definitions 1.8
and 1.9, pp. 187–188], and [AW92, Definition 2.1, p. 296].
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Attack Overview. Before proceeding to the mathematical details, the author would
like to give an informal, high-level overview of the attack. Our attack makes use of the
fact that the rj values, which are supposed to randomize the signatures, are not chosen
independently at random, but are strongly interdependent.4 This allows us to set up a
set of equations with a limited number of variables (namely, rt and the si,t), and then
solve the equations for these variables, which together make up the secret key skt.
The attack is divided into three main steps. The first step is to recover signatures

for single messages from successive aggregate signatures. This step is quite simple,
since each aggregate signature σ1,j is the product of the individual signatures σj up to
index j, and we can simply divide (modulo N) σ1,j by σ1,j−1 to recover σj .
The second step of our attack is perhaps the most crucial one. Here, we raise each

individual signature σj to its 2µ-th power for t− j times, effectively adding t− j to
the j-indices of the rj , si.j because of (3.3). This process is illustrated in Figure 3.3
for the example of AR-FssAgg. We thus obtain a system of t ≥ b+ 1 equations in the
b+ 1 variables rt, si,t (i ∈ [b]).

The third and final step is to solve this system of equations. Doing so requires us to
systematically compute rt and the si,t from a system of equations where the si,t have
essentially random exponents. We use linear algebra “in the exponent” to find row
operations that reduce the exponents of each equation (considered as a row vector) to
the standard basis vectors. An equation having a standard basis vector as exponents
directly reveals the corresponding value si,j .
We will now describe our attack in more detail. Fix arbitrary messages m1, . . . ,mt

and the respective aggregate signatures σ1,j , where

σ1,j =
j∏

k=1
σk for all j ∈ [t].

Each aggregate signature σ1,j is valid for messages m1, . . . ,mj . Let ci,j denote the i-th
block of the hash value of message mj , as computed by the signing algorithm.

First Step: Recovering Individual Signatures. Firstly, recover the individual signa-
tures σj := σ1,j/σ1,j−1 (mod N) for all j ∈ [t], letting σ1,0 = 1. Observe that

σ1 = r1 s
c1,1
1,1 . . . s

cb,1
b,1

...
...

... . . . ...
σt = rt s

c1,t
1,t . . . s

cb,t
b,t .

For ease of presentation, we let s0,j = rj and c0,j = 1 for all j. We thus have

σj =
b∏
i=0

s
ci,j
i,j .

4For this reason, our attack does not carry over to the underlying forward-secure signature schemes
by Bellare and Miner [BM99] and Abdalla and Reyzin [AR00]. In their schemes, the values rj are
chosen uniformly and independently at random, which prevents our attack.
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r0 r1 r2 r3 · · ·
(·)2l

(·)2l

(·)2l

(·)2l

s0 s1 s2 s3 · · ·
(·)2l

(·)2l

(·)2l

(·)2l

sk1 sk2 sk3

r1s
c1
1

(·)c1

r2s
c2
2

(·)c2

r3s
c3
3

(·)c3

σ1 =

σ2 =

σ3 = = τ3

r3s
c2
3

r3s
c1
3 = τ1r2s

c1
2

(·)2l

= τ2

(·)2l

(·)2l

Figure 3.3.: Illustration of the second step of our attack for AR-FssAgg with t = 3.
By raising each signature σj to the power of 2l for t− j times, we obtain
three equations in r3 and s3 with known results τ1, τ2, τ3. Note that in the
generalized attack, we raise the values to their 2µ-th power, but µ = l for
AR-FssAgg.

Second Step: “Projection” into the Target Epoch. Secondly, for all j ∈ [t], we
compute:

τj := σ
(2(t−j)µ)
j

=
(

b∏
i=0

s
ci,j
i,j

)(2(t−j)µ)

=
b∏
i=0

(
s
ci,j
i,j

)(2(t−j)µ)

=
b∏
i=0

(
s

(2(t−j)µ)
i,j

)ci,j

=
b∏
i=0

s
ci,j
i,j+t−j by Lemma 3.1 and (3.3)

=
b∏
i=0

s
ci,j
i,t (3.4)
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This process is illustrated by Figure 3.3 for AR-FssAgg with t = 3. We thus obtain

τ1 = σ
(2(t−1)µ)
1 = s

c0,1
0,t s

c1,1
1,t . . . s

cb,1
b,t

τ2 = σ
(2(t−2)µ)
2 = s

c0,2
0,t s

c1,2
1,t . . . s

cb,2
b,t

...
...

...
... . . . ...

τt−1 = σ
(21µ)
t−1 = s

c0,t−1
0,t s

c1,t−1
1,t . . . s

cb,t−1
b,t

τt = σ
(20µ)
t = s

c0,t
0,t s

c1,t
1,t . . . s

cb,t
b,t ,

(3.5)

where all ci,j ∈ {0, . . . , 2µ− 1}. We thus have t ≥ b+ 1 equations in the b+ 1 unknown
variables si,t.

Third Step: Solving for si,t. For our third step, we now want to solve these equations
for the si,t. Observe that if we compute τi · τj for i, j ∈ [t], the result is

τi · τj = (sc0,i
0,t s

c1,i
1,t · · · s

cb,i
b,t ) · (sc0,j

0,t s
c1,j
1,t · · · s

cb,j
b,t )

= s
c0,i+c0,j
0,t s

c1,i+c1,j
1,t · · · scb,i+cb,jb,t .

Thus, we have effectively performed an addition of the row vectors ci = (c0,i, . . . cb,i),
cj = (c0,j , . . . , cb,j) in the exponent. We can similarly realize subtraction of row vectors
by division (mod N) of the respective τi, τj , and multiplication of a row vector with a
scalar a ∈ Z by computing τai (mod N).
We may thus use standard algorithms to systematically compute a set of row

operations that transforms the row vectors cj into the standard basis vectors. Having
a standard basis vector ei (with a 1 in position i and zeroes in all other positions) as
the exponent directly reveals a single si,t.
More precisely, we consider the ci,j as a matrix C over the integers, and try to

express each standard basis vector ei as an integer linear combination of the row vectors
cj = (c0,j , . . . , cb,j).5

Assume that the rows of C span Zb+1. (We will show that this is a realistic assumption
given enough signatures in Section 3.3.9). If this is the case, then the Hermite Normal
Form of C is

H =
(

1b+1
0t−(b+1),b+1

)
, (3.6)

as shown in Lemma 3.5. In the following, let ei = (ei,0, . . . , ei,b) ∈ Zb+1 be the i-th
standard basis vector.

5 The preceding steps of our attack induce two deviations from common matrix notation: Firstly,
the first index i specifies a column, while the second index j identifies a row (instead of the other
way around). Secondly, columns are indexed starting with i = 0, while rows start at index j = 1.
Both of these deviations could be fixed by re-indexing the matrix C, i.e. defining a matrix D with
di,j = cj,i−1 and continuing to work with D. However, the author believes that the exposition of
the remainder of the attack is easier to understand if we remain with the current notation.
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Continuing our attack, we compute the matrix R = (ri,j) ∈ Zt×t that transforms C
into its HNF H (i.e., RC = H). We then fix i ∈ {0, . . . , b} and compute

t∏
j=1

(τj)ri,j = (sc0,1
0,t . . . s

cb,1
b,t )ri,1 · . . . · (sc0,t

0,t . . . s
cb,t
b,t )ri,t

= s
ri,1c0,1+...+ri,tc0,t
0,t · . . . · sri,1cb,1+...+ri,tcb,t

b,t

= s
ei,0
0,t · . . . · s

ei,b
b,t

= si,t

where the first equality follows from substituting the τj according to (3.5) and writing
out the product, and the second equality can be obtained by sorting the product by
the base terms. To see the third and fourth equality, note that the exponents for the
si,t match the i-th row of the matrix RC = H, and that the first b+ 1 rows of H are
the standard basis vectors (see (3.6)).
Overall, this gives away si,t. Repeating this step for all i ∈ {0, . . . , b} allows us

to reconstruct all si,t, thus leaking the entire secret key skt of the t-th epoch. This
concludes the description of our attack against the DRCB scheme. In order to obtain
an attack against the BM-FssAgg, and AR-FssAgg, one simply instantiates this attack
with b = l or b = 1, respectively.

Further Generalizations of Our Attack. Finally, we note that our attack can be
generalized further to work with t pairs of successive aggregate signatures (σ1,j1−1, σ1,j1),
. . . , (σ1,jt−1, σ1,jt) instead of a single sequence of t successive aggregate signatures
σ1,1, . . . , σ1,t. The latter scenario simply directly yields the t pairs of successive
aggregate signatures required by the former one (together with σ1,0 = 1). In the
generalized scenario, the attack recovers the secret key skjt (instead of skt). The second
step has to be adjusted to raise all individual signatures σj to suitable powers such the
τj are composed of rjt and si,jt (i ∈ [b]).

3.3.6. The Original Attack on AR-FssAgg
This section briefly points out how the attack on AR-FssAgg originally described in
[Har17] differs from the attack on the DRCB scheme described here, and why the
original attack is a special case of the generalized attack on the DRCB scheme.

The original attack in [Har17] only differs in the third step. Given several τj = rts
cj
t ,

the author’s original publication proposed to compute

φj := τj/τ1 = s
cj−c1
t for j ∈ {2, . . . , t}

in order to cancel out rt. The attack would then continue to compute the greatest
common divisor d of all cj − c1, and (using the extended euclidean algorithm) compute
coefficients fj such that

f2(c2 − c1) + · · ·+ ft(ct − c1) = d.
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These are used to calculate

φf2
2 · · ·φ

ft
t = s

f2(c2−c1)
t · · · sft(ct−c1)

t = sdt .

Given enough signatures, the greatest common divisor of the c′j := cj − c1 would
eventually be 1, and this would reveal st. Finally, it would be easy to recover rt as
rt = τ1/s

c1
t .

However, this procedure essentially realizes a simple algorithm for computing the
HNF of a matrix of the following form:

1 c1
1 c2
...

...
1 ct


Here, the computation of the φj implements a subtraction of row vectors in the exponent,
effectively clearing the first column, such that all but one row vector have a zero in
their first entry. The computation of the greatest common divisor and the coefficients
fj determines a way of producing a minimal value of d in the second column. This
step is applied “in the exponent” when the φj are raised to the respective exponents fj .
If d = 1, the only remaining step to produce the HNF would be to cancel out non-zero
entries in the second column. The attack described in [Har17] skips this step, since it
is not necessary for the attack to be successful.

3.3.7. Attack Consequences
Reconsider the scenario from Section 3.2.3, but assume that log entries are signed with
the BM-FssAgg or AR-FssAgg scheme instead of LogFAS.

Assume again that an attacker has managed to break into a server Si without raising
an alarm. He may then bring himself into a man-in-the-middle position between
another server Sj and L again, and first passively observes several transmissions of log
entries from Sj to L, storing the respective signatures.

If at least t signatures for individual messages can be recovered from the (aggregate)
signatures sent to L, the attacker can launch the attack described above to recover a
recent secret key. He may then attack the server Sj , filtering the log messages sent
from Sj to L on-the-fly, and create valid signatures using the known secret key.

While it may seem unnatural that the aggregate signatures observed by the attacker
are directly consecutive, it is actually a plausible scenario. For example, this might
happen when the server Sj is mostly idle, e.g. at night.

3.3.8. The Proofs of Security
This section briefly points out the flaw in the security proofs of the BM-FssAgg and
the AR-FssAgg schemes. These proofs are given in the appendix of [Ma08].

Both proofs give a reduction to the hardness of factoring a Blum integer, assuming
an efficient forger A on the respective scheme, and constructing an attacker B on the
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factorization of N . The proofs are incorrect for they assume that not only A may use
a signing oracle, but B has access to a signing oracle, too.

3.3.9. Experimental Results

We implemented the original (non-generalized) attacks on the BM-FssAgg and AR-
FssAgg schemes in order to verify the attacks, and to empirically determine the number t
of signatures required. (Recall that the attacks assume that the matrix C spans Zl+1.)
We measured the run times of the attacks, and found that the attacks are entirely
practical.

Since the attacks require a number of signatures, we also implemented the key gener-
ation, key updating and signing procedures of the two schemes.6 The implementations
are written for the computer algebra system Sage [Ste] and are available at [Har19b].
Our attack implementations miss a number of quite obvious optimizations: We

did not parellelize independent tasks, and some computations are repeated during
the attacks. Furthermore, since code for Sage is interpreted (instead of compiled to
machine language code), we expect that our attacks could be executed significantly
faster if implemented in a compiled language. Our measurements should therefore not
be regarded as a precise estimate of the resources required for the respective attacks,
but as an upper bound.

Experiment Setup.

All experiments used a modulus size of 2048 bit and were conducted on a desktop office
PC, equipped with a four-core AMD A10-7850K Radeon R7 processor with a per-core
adaptively controlled clock frequency of up to 3.7 GHz, different L1-caches with a total
capacity of 256 KiB, two 2 MiB L2-Caches, each shared between two cores, and 14.6
GiB of RAM. The PC was running version 16.04 of the Ubuntu Desktop GNU/Linux
operating system, Sage in version 6.7, and Python 2.7.

For our attack on the BM-FssAgg scheme, we used the SHA-224, SHA-256, SHA-384
and SHA-512 hash functions to examine the influence of the hash length l on the
runtime of our attack. The BM-FssAgg scheme was instantiated with 512 epochs for
the SHA-224, SHA-256 and SHA-384 hash functions, and with 1024 epochs for the
SHA-512 hash function. (Recall that the scheme signs exactly one message per epoch,
and our attack on the BM-FssAgg scheme requires at least l signatures, where l is the
hash length.)7
Our implementation of the attacks first collects the minimum required number of

signatures and then checks if the respective requirement on the hash values is fulfilled
(i.e. the vectors cj span Zb+1 or the gcd of the c′j is 1). Once this is the case, the

6Our implementation of the schemes is only intended to provide a background for our attacks. We
did therefore not attempt to harden our implementation against different types of attacks at all.

7The number of supported epochs T may be unrealistically low. But since T does not influence the
time required for executing our attacks, a small T is sufficient for our demonstration.
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attacks are continued as described above. Otherwise, our implementation gradually
requests additional signatures until the requirement is met.
For the attack on the BM-FssAgg scheme, the implementation uses l + 1 as the

minimum number of required signatures, where l is the output length of the hash
function. For the original attack on AR-FssAgg, the implementation assumes that the
attack always requires at least 3 signatures. This assumption dismisses the theoretically
possible, but very improbable event that c2 − c1 = 1, in which case the attack could be
executed with as little as 2 signatures. We have updated this section and Table 3.1 to
correctly reflect the theoretical minimum of the number of required signatures.

For both of our schemes, we measured the time that was necessary to collect the total
number of signatures. (This includes the time necessary to compute the signatures in the
first place, and to update the keys respectively.) For our BM-FssAgg implementation,
this time also includes the computation of the Hermite Normal Form of the given
matrix, along with the transformation matrix. For the AR-FssAgg attack, the time
includes the computation of the gcd of the c′j , as well as the factors fj . We refer to these
times as the signature collection times. The remaining time required for the attacks is
referred to as reconstruction time. A measurement corresponds to one execution of an
attack.

Our experiments quickly showed that the reconstruction times for BM-FssAgg were
quite long. Given the large amount of time required for the reconstruction and the
small amount of variation in the reconstruction times, we restricted our examination of
the reconstruction times of BM-FssAgg to 50 measurements per hash-function. For the
reconstruction time of the attack on the AR-FssAgg scheme, the number of requested
signatures (for both schemes), and the the signature collection times (for both schemes),
we collected 250 measurements per scheme and hash-function.

Results

Our results are summarized in Table 3.1. All times are given in seconds.
In our experiments regarding the attack on BM-FssAgg, the greatest difference

d = t− (l + 1) between t (the number of actually required signatures) and l + 1 (the
minimum number of required signatures) was 10. (So, t = l+ 11 signatures were always
sufficient.) For AR-FssAgg, t = 2 + 5 signatures have been sufficient for all of our 250
tries. The number of signatures actually required in our experiments is shown in the
top third of Table 3.1. The theoretical minimum of signatures required to launch the
attacks is given for comparison, denoted as “Theoretical Optimum”.

We found that despite the lack of optimizations, our attack on BM-FssAgg took only
minutes to recover the respective secret key (in the case of SHA-224) and at most 50
minutes (in the case of SHA-512). Our attack on the AR-FssAgg scheme took less than
0.05 seconds in all 250 measurements.
For BM-FssAgg, the reconstruction time turned out to be the major part of the

attack time. In retrospect, this is understandable, since the computation of a single si,t
requires t modular exponentiations, so the reconstruction of all si,t (including rt = s0,t)
required t · (l + 1) ≥ (l + 1)2 modular exponentiations.
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3.4. Summary
We have presented a total of four attacks on LogFAS [YPR12b], the BM-FssAgg scheme,
and the AR-FssAgg scheme [Ma08]. The attacks on LogFAS have been acknowledged
by one of LogFAS’ authors, and we have demonstrated the practicality of our attacks on
BM-FssAgg and AR-FssAgg experimentally. Our attacks allow for virtually arbitrary
forgeries, or even reconstruction of the secret key. We conclude that neither of these
schemes should be used in practice.
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4. Secure Logging with Verifiable Excerpts

This chapter presents a scheme for securely storing log files which supports the creation
of excerpts of log files. These excerpts can be publicly verified with regard to the
authenticity and integrity of the contained log entries as well as with regard to their
completeness, i.e. the presence of all “relevant” log entries in the excerpt.

This chapter is strongly based on [Har16a; Har16b], and significant parts of the text
in this chapter have been taken from these publications without or with only minor
changes. Additionally, Sections 4.3 and 4.4.3 reproduce some text from [Har+17b],
with modifications.

4.1. Introduction
Log files are generally well-suited to serve as evidence, especially if they can be verified
publicly. However, to actually prove a certain fact (e.g. in court) with the help of a log
file is problematic even if the log file’s integrity is unharmed, since the log file may
contain confidential information which must not be disclosed. Furthermore, a large
fraction of log entries may be irrelevant. Filtering these out significantly facilitates the
log file analysis.
We propose a logging scheme that can support the verification of excerpts from a

log file. Creating an excerpt naturally solves both problems: Log entries that contain
irrelevant and possibly confidential information can simply be omitted from the excerpt.
Excerpts created with our scheme remain verifiable, and therefore retain their probative
force. We illustrate the use of excerpts with two examples.

Example 4.1 (Banking). Consider a bank B which provides financial services to its
customers. In order to prove correct behaviour of its computer systems, the bank
maintains log files on all transactions on customers’ accounts.

When a customer A accuses the bank of fraud or incorrect operation, the bank will
want to use its log files to disprove A’s allegations. However, submitting the entire log
file as evidence to court is not an option, as this would compromise the confidentiality
of all transactions recorded, including the ones of other customers. Besides, the log file
may also be prohibitively large.

One might alternatively hand the log entries to an independent expert witness, who
verifies the log file integrity and then testifies before court on the correct or incorrect
operation of the bank. However, this approach eliminates public verifiability, does not
solve the problem of the log file size, and still puts the confidentiality of the transactions
of all customers at unnecessary risk, even if the expert witness is bound to protect the
confidentiality of transactions.
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Yet another solution would be to have the entire log file encrypted (under different
keys) and to only reveal keys for those log entries that are of interest to the court’s
proceedings. This would retain the confidentiality of other customers’ bank transactions
while allowing for public verifiability. But still, this approach does not solve the problem
of the log size.

Utilizing a logging scheme with verifiable excerpts, however, the problem at hand is
simple: The bank B generates an excerpt from its log files, containing only information
on the transactions on A’s account and possibly general information, e.g. about the
system state. This excerpt is then submitted to court, where it can be verified by the
judge and everyone else. If the verification succeeds, the judge may safely consider the
information from the excerpt in her/his deliberation.

Example 4.2 (Cloud Auditing). Imagine an organisation O that would like to use the
services of a cloud provider, e.g. for storage. O may be legally required to pass regular
audits, and must therefore be able to provide documentation of all relevant events in
its computer systems. Therefore, the cloud provider C must be able to provide O with
verifiable log files, which can then be included in O’s audit report.

Now, if C was to hand over all its log files to O, this would reveal details about other
customers’ usage of C’s services, which would most likely violate confidentiality con-
straints. Furthermore, once again, the entire log files may be too large for transmission
by regular means.

Here, as above, audit logging schemes with verifiable excerpts can solve the problem at
hand easily. With these, C could simply create an excerpt containing only information
that is relevant for O from its log files. This would solve the confidentiality issue while
simultaneously lightening the burden induced by the log file’s size, while the excerpt
can still be checked by the auditors.

Note that simply being able to prove that all log entries contained in the excerpt are
authentic is not sufficient for proving that the excerpt speaks the truth: Some relevant
information might have been omitted from the excerpt. Thus, when providing excerpts,
completeness is an essential feature. We informally define completeness as the property
of containing all “relevant” log entries.
More formally, we assign each log entry to a set of categories. Each log entry can

belong to any number of categories, and categories may overlap arbitrarily. The set of
categories needs not be fixed in advance, but new categories can be added on-the-fly.
However, previously added log entries cannot be added to newly introduced categories,
since this would constitute a retroactive modification of the log data, which is what we
are striving to prevent.
Each category naturally defines a subsequence of all log entries in the log file. An

excerpt may consist of one or more categories, and is defined as the “union” of all the
category subsequences.

We achieve completeness by numbering log entries in each category separately. This
way, when a certain category ν is supposed to be contained in an excerpt, one can
verify that the counters for category ν signed together with the log entries form a
strictly increasing sequence without gaps.
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This chapter also introduces our first cryptographic logging scheme which features
security against truncation attacks. Proving this property requires formally modeling
truncation resistance in our security notions. The publications underlying this chapter
[Har16a; Har16b] were the first publications which gave a security definition capturing
this requirement as well as completeness of excerpts.

Moreover, this section introduces a novel technique for achieving truncation security
in the standalone model: We require the log signer to a) sign at least one log entry
per epoch (e.g. by adding epoch markers), and b) during verification, provide proof
that (s)he knows the secret key skt for a t that is “close” to the end of the verified
log file. This approach is widely applicable and of independent interest. The use of
this technique is illustrated by the two logging schemes constructed in this thesis: our
scheme for logging with verifiable excerpts given in this chapter, and our scheme for
robust logging with sub-linear storage overhead given in Chapter 5. Both schemes
enjoy a formal proof of security with respect to our security notions capturing the
truncation security property, making them the first cryptographic logging schemes with
provable truncation resistance, since the LogFAS scheme was broken in Chapter 3.

Our scheme makes efficient use of a forward-secure signature scheme, which is used
in a black-box fashion. Therefore, our scheme can be instantiated with an arbitrary
forward-secure signature scheme and thereby tuned to meet specific performance
goals, and be based on a wide variety of hardness assumptions. We analyze our
scheme formally and give a perfectly tight reduction to the security of the underlying
forward-secure signature scheme.

Outline.

Section 4.2 introduces preliminary definitions and some notation. Section 4.3 discusses
truncation security in more detail and presents our approach to achieve this security
property. In Section 4.4, we develop a formal framework to reason about log files with
excerpts, and give a security definition for such schemes. Section 4.5 presents our
construction, proves that it satisfies the security notion from Section 4.4, and analyzes
the overhead imposed by our scheme. It also compares our scheme to other schemes
from the literature. Finally, Section 4.6 concludes this chapter.

4.2. Preliminaries, Notation and Conventions

We briefly introduce some additional notations and definitions required for this chapter.
Recall our definition of index sequences and subsequences from Section 2.2: Given
a sequence S = (s1, . . . , sl) of length l ∈ N0, an index sequence for S is a strictly
increasing sequence I = (i1, . . . , in) (n ≤ l) of integers i ∈ [l]. The subsequence of S
induced by I is S[I] := (si1 , . . . , sin).

Definition 4.3 (Operations on Subsequences). Let S = (s1, . . . , sl); let I = (i1, . . . , iv),
J = (j1, . . . , jw) be two index sequences for S, and let T = S[I] = (si1 , . . . , siv),
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U = S[J ] = (sj1 , . . . , sjw) be the subsequences of S induced by I and J , respectively.
Then:

T ∪ U
is the subsequence of S that contains exactly those elements sk for which k ∈ I
or k ∈ J or both, in the order of increasing k ∈ [l],

T ∩ U
is the subsequence of S that contains exactly those elements sk for which k ∈ I
and k ∈ J , in the order of increasing k ∈ [l].

Note that if S contains duplicates, then there may be different index sequences inducing
the same subsequence. Therefore, the operations from Definition 4.3 are only well-
defined if the index sequences I and J are given. In this work, we will omit specifying
I and J when they are clear from the context.

Example 4.4. Let S = (s1, . . . , s6), and let I := (1, 4, 6), J := (3, 4, 5) induce the
subsequences T = (s1, s4, s6) and U = (s3, s4, s5) of S. Then we have T ∪ U =
(s1, s3, s4, s5, s6) and T ∩ U = (s4). Note that even if, e.g. s5 = s6, we would still have
T ∩ U = (s4), since the operations are defined based in the indices i of the elements si
in the sequence S, not based on the equality in the domain D ⊃ {s1, . . . , s6}.

4.3. Truncation Security
We present a new approach to achieve truncation security in the standalone model.
This approach first appeared in [Har16a; Har16b].

Truncation security refers to the property of a logging scheme to detect log truncations,
i.e. the deletion of a tail-end subsequence of the entire log file. Phrased differently, if
M is the complete log file, the logging system should be able to correctly identify any
prefix P of M as incomplete. The logging system must achieve this capability in spite
of the fact that P represented the complete log file at some point in the past.
Truncation security can be achieved easily if one assumes the presence of external

auditors or other external utilities. For example, in Merkle-tree-based schemes such as
[CW09; Bul+14; RFC6962] one simply sends the root of the Merkle tree to the auditors
in regular intervals. The Merkle-tree structure even allows for efficient proofs that a
newly sent root belongs to a tree representing a log that is a “continuation” of the
previous log state. However, this thesis deals with secure logging in the standalone
model, i.e. we do not assume the presence of external (trusted) entities. Thus, we need
to achieve truncation security by purely cryptographical/mathematical techniques.

At first, this problem seems paradoxical, since signatures usually present a solution to
a certain mathematical/computational problem (posed by the verification algorithm),
and this solution is independent of when it is verified and what happened since the
solution was found.
In fact, detecting log truncations in the standalone model is a surprisingly hard

problem. It is easy to create logging schemes where newly added signatures implicitly
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re-authenticate previously added log entries, e.g. by arranging the log entries in a hash
chain. However, it is unclear how to protect the end of such a chain.

Ma and Tsudik [MT09] were the first to present a mechanism to detect truncations
of log files. Their solution is based on forward-secure sequential aggregate signatures.
The core idea of their solution lies in the fact that for specific (sequential) aggregate
signature schemes (such as [Bon+03]), removing a message from a given aggregate
signature is intractable under standard assumptions. For example, for the BGLS
signature scheme, the aggregate of n signatures σ1, . . . , σn is simply the product
σ = σ1 · · ·σn of the signatures in a specific algebraic group. Being able to remove l
signatures σn−l+1, . . . , σn and thus producing σ′ = σ1 · · ·σn−l given only σ is equivalent
to computing the signature σ′′ = σn−l+1 · · ·σn, since (given σ and σ′) it is easy to
compute σ′′ := σ/σ′. (Coron and Naccache [CN03] formally prove this problem to be
equivalent to the co-CDH assumption.)

We will not go into more detail on this problem here, but refer the reader to [Kai20],
where this issue is discussed in more detail. Moreover, Fischlin, Lehmann, and Schröder
[FLS12] as well as Saxena, Misra, and Dhar [SMD14] discuss security notions for
sequential and standard aggregate signature schemes, respectively, where the security
notions capture such removals of signatures.

Ma and Tsudik [MT09] use this property by keeping only a single signature for the
entire log file, which is an aggregate of the signatures for each individual message. The
hardness of removing signatures from the aggregate is then used to guarantee that no
efficient attacker has a non-negligible chance of removing any message from the log file,
and successfully forging a signature for the modified log file.

Note that this property does not hold for log entries signed in the break-in epoch: If
an attacker obtains some secret key skt, the attacker can recompute all the signatures
added during epoch t and thus remove them from the aggregate signature by division.1
Hence, after break-in, an attacker can truncate the log file to the state it had at the
time of the most recent epoch switch.
Ma and Tsudik [MT08; MT09] also propose “immutable” schemes which store

signatures for individual log entries in addition to an aggregate signature. These
schemes, however, only offer protection against attackers that try to truncate the log
file to a state before the most recent “anchor point”.

We now describe a new approach of obtaining truncation security in the standalone
model, as presented in [Har16a]. The approach follows the idea of verifying that the
log file is reasonably up-to-date by

• enforcing that the log file contains at least one entry in each epoch, and

• requiring the log signer to “prove” he owns a secret key skt for a t that is “close”
to the maximum epoch number of all entries in the log file.

In more detail, we design the logging system to use epoch markers, created every time
the secret key is updated. (The epoch markers are signed just before updating the

1The signatures of the BLGS scheme [Bon+03] are computed deterministically, thus the attacker can
recompute exact copies of the signatures.
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secret key. Thus, when a secret key skt is updated to skt+1, the epoch marker is signed
with skt.) This enforces that there is at least one log entry in each epoch, realizing the
first requirement of our technique.

For the second requirement, assume that the last log entry in the log file was signed
using skt. In this case, we force the log signer to produce a valid signature using either
skt or skt+1.2 What message is signed for this proof is a more or less arbitrary choice.
The scheme given in Section 4.5 requires the logger to sign the entire excerpt (with some
metadata). Our scheme in Section 5.4.2 has the signer precompute a signature on the
log file length. One might just as well imagine a standard challenge-response protocol
where the verifier chooses a random nonce r, and the signer authenticates r with the
current secret key.3 One might even use zero-knowledge protocols or non-interactive
zero-knowledge schemes to conduct this proof, but we do not pursue this line of research
further here.
Note that this approach does not prevent an attacker who broke in during epoch t

from “embezzling” the log entries added during epoch t: He might truncate the log file
to the state of the most recent epoch switch, and then prove ownership of skt. Hence,
our approach has the same restriction as the solution by [MT09]. While it is possible
to bypass this restriction and achieve full truncation security by simply updating
the secret key every time a log entry has been added, this change may negatively
impact the efficiency of the logging scheme. Creating a logging scheme that achieves
truncation-security in the standalone model even for the most recently added log entry
without requiring an epoch switch is an interesting and important open problem.

The restriction on truncation security outlined above is reflected in our security
notions, e.g. Definitions 4.13 and 5.19. These notions consider an attacker’s forgery
trivial, iff:

• the attacker obtained a signature for the forgery from its oracles, or

• the attacker requested the secret key during some epoch tBreakIn and the forgery
does not differ from the “real” log file regarding the epochs 1 through tBreakIn − 1.

The former condition is analogous to standard definitions of unforgeability, e.g. exis-
tential unforgeability under chosen message attacks [GMR84; GMR88], or its forward-
secure variant (see [BM99] or Definition 2.20).

The latter condition only applies if the attacker did use the BreakIn oracle to obtain
a secret key. If so, it is considered trivial for the attacker to truncate the log file to
the most recent epoch switch (from epoch tBreakIn − 1 to epoch tBreakIn). Moreover, it
is trivial to “extend” the log file from there by adding new, forged log records with
arbitrary contents, using the logging scheme’s key evolution and signing procedures to
create valid signatures. Hence, only changes made to the log file before the epoch tBreakIn

2If the last signature added to the log file is an epoch marker, it is legitimate for the log signer to
only own skt+1 instead of skt.

3The scheme would have to make sure that the signature for r can not be mistaken for a signature
for a log entry, or otherwise a malicious verifier might abuse this challenge-response protocol as a
signing oracle for log entries.
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are considered non-trivial. This is accordance with our security model as depicted in
Figure 1.1 on page 9.
The security notion given in this chapter was one of the first notions to capture

security against truncations. In fact, to the best of the author’s knowledge, the only
prior notion considering truncation security was given by Yavuz, Peng, and Reiter
[YPR12b]. However, their security notion allows for almost arbitrary omission of log
entries. For example, after querying the signature oracle three times for messages
m1, m2, m3, respectively, a forgery for the log file (m1,m3) is considered trivial
in their notion. While our scheme supports the creation of signatures for excerpts
(i.e. subsequences) of the entire log file, too, our notion requires that such excerpts
are complete. In contrast, the security notion given in [YPR12b] does not consider
completeness.

4.4. Secure Logging with Verifiable Excerpts

We now develop a formal model for log files with excerpts. Obviously, given a log fileM ,
an excerpt E is a subsequence of M . However, a scheme where each subsequence
of M can be verified4 is not sufficient for our applications, since the provider of the
excerpt could simply omit some critical log entries. Put differently, such a scheme may
guarantee correctness of all log entries in the excerpt, but it does not guarantee that
all relevant log entries are present.

To address this problem, we introduce categories. Each log entry is assigned to one
or more categories, which may overlap. Each category has an unique name ν ∈ {0, 1}∗.
We require that when a new log entry m is appended to the log file, one must also
specify the names of all categories that m is assigned to.
We return to our banking example from Section 4.1 to illustrate the use of such

categories. The bank B introduces a category CA for each customer A, and then adds
each log entry concerning A’s account to CA. The problem of checking the completeness
of the excerpt for A’s account is thereby reduced to checking the presence of all log
entries from the category CA and possibly from other categories containing general
information. Of course, categories may also be added based on other criteria, such as
the event type (e.g. creation and termination of an account, deposition or withdrawal
of funds, and many more). Note that the set of categories is not fixed in advance; rather
the bank must be able to add new categories on-the-fly, as it gains new customers. The
use of categories is similar in the cloud provider example.

4.4.1. Categorized Logging Schemes

Definition 4.5 (Categorized Messages and Log Files). A categorized message (also
categorized log entry or categorized log record) m = (N,m′) is a pair of a finite, non-

4This capability is offered by a number of schemes such as LogFAS [YPR12b; YR11] and schemes
based on Merkle hash trees, e.g. [CW09; Bul+14].
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empty set N of category names ν ∈ {0, 1}∗ and a log entry m′ ∈ {0, 1}∗.5 A categorized
log file M = (m1, . . . ,ml) is a finite, possibly empty sequence of categorized log
entries m.

When it is clear from the context that we mean categorized log entries or categorized
log files, we will omit the term “categorized” for the sake of brevity. In particular, this
chapter will mainly be concerned with categorized log entries and categorized log files.

Definition 4.6 (Categories). A category with name ν ∈ {0, 1}∗ of a categorized log file
M = ((Ni,m

′
i))li=1 is the (possibly empty) subsequence C of M that contains exactly

those log entries (Ni,m
′
i) ∈ M where ν ∈ Ni. C is denoted by C(ν,M). C’s index

sequence I(ν,M) is the (possibly empty, strictly increasing) sequence that contains all
i ∈ [l] for which ν ∈ Ni.

Definition 4.7 (Excerpts). Given a categorized log file M = (mi)li=1 and a finite
set N of category names, the excerpt for N is E(N,M) =

⋃
ν∈N C(ν,M). The index

sequence I(N,M) is the (possibly empty, strictly increasing) sequence of all i with
i ∈ I(ν,M) for at least one ν ∈ N .

Clearly, C(ν,M) is induced by I(ν,M), and E(N,M) is induced by I(N,M). In the
following, we will mostly omit the second parameter, since it will be clear from the
context.

We employ the convention that there are two designated, special-purpose categories
named “All” and “EM”. The category “EM” will contain all epoch markers and no other
log entries. A log entry m = (N,m′) which is an epoch marker has N = {“All”, “EM”}.
By convention, the category “EM” is contained in all excerpts. The category “All”
contains all log entries, i.e. “All” ∈ N1 ∩ . . . ∩ Nl, and thus C(“All”) = M . As a
special case of excerpts, we obtain the entire log file M as an excerpt for the categories
N = {“All”, “EM”}.6
In the following, variables with two indices correspond to a sequence of values

ranging from the first to the second index, i.e. σ1,j is the sequence of (σ1, . . . , σj), and
M1,j := (m1, . . . ,mj).

Definition 4.8 (Categorized Key-Evolving Audit Log Scheme). A categorized key-
evolving audit log scheme is a quintuple of probabilistic polynomial time algorithms
LS = (KeyGen,Update,Extract,Append,Verify), where:

KeyGen(1κ, 1T )→ (sk1, pk, σ0,1)
outputs an initial signing key sk1, a permanent verification key pk, and an initial
signature σ1,0 for the empty log file. T is the number of supported epochs.

5The set N of category names is represented by the upper case version of the greek letter “ν”, which
unfortunately looks identical to the upper case latin letter “n”.

6Since all epoch markers also belong to the category “All”, giving “EM” is actually redundant here. It
is nonetheless specified here for consistency with our requirement that the category “EM” must be
requested in all excerpts.
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Update(skt,M1,i, σ1,i)→ skt+1
evolves the secret key skt for epoch t to the subsequent signing key skt+1 and
then outputs skt+1. skt is erased securely. Update may also use and modify the
current log file M1,i as well as the current signature σ1,i, e.g. by adding epoch
markers.

Extract(skt,M1,i, σ1,i, N)→ σ
takes a log fileM1,i together with a signature σ1,i forM1,i and a set N of category
names and outputs a signature σ for the excerpt E(N) = E(N,M1,i), computed
with the help of skt.

Append(skt,M1,i−1, σ1,i−1,mi)→ σ1,i
takes as input the secret key skt, the current log file M1,i−1, its signature σ1,i−1
and a new (categorized) log entry mi and outputs a signature σ1,i for M1,i :=
M1,i−1 ‖mi.

Verify(pk, N,E, σ)→ 0/1
is given the verification key pk, a set N = {ν1, . . . , νn} of category names, an
excerpt E and a signature σ. It outputs 1 or 0, where 1 means E is an authentic,
unmodified and complete excerpt for categories N , and 0 means E is not. As
noted above, one can verify the entire log file up until the current epoch by
choosing N = {“All”, “EM”}.

We require correctness as defined below.

Definition 4.9 (Valid and Regular Signatures). Let LS be a quintuple of algorithms
as defined above and κ ∈ N. We say that a signature σ is valid for (pk, N,E) iff
Verify(pk, N,E, σ) = 1. As always, we may omit pk and/or N when they are clear from
the context.

We say that a signature σ is regular for (pk, N,E), iff (pk, N,E, σ) are in the image
of the following process for some κ ∈ N, T = T (κ) ∈ poly(κ), a log file length l ∈ N,
a categorized log file M1,l = (m1, . . . ,ml), an increasing sequence I = (t1, . . . , tl, tl+1)
with ti ∈ [T ] for all i ∈ [l+ 1], and a set of category names N . The process for creating
(pk, N,E, σ) is as follows:

1. Let (sk1, pk, σ1,0)← KeyGen(1κ, 1T ), t := 1, M1,0 := (), and σ := σ1,0.

2. Iterate over all i ∈ [l] in increasing order:
a) While ti > t, compute skt+1 := Update(skt,M1,i−1, σ) and set t := t + 1.

(Recall that Update may modify σ and M1,i−1.)
b) Set σ := Append(skti ,M1,i−1, σ,mi).
c) Set M1,i := M1,i−1 ‖mi.

3. While tl+1 > t, compute skt+1 := Update(skt,M1,l, σ) and set t := t+ 1. (Again,
Update may modify M1,l and σ.)
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4. Output pk, N , E(N,M1,l), σ := Extract(sktl+1 ,M1,l, σ,N).

The process used for the definition of correctness models regular usage of LS. Here, the
mi are the log entries to be added, and each ti corresponds to the epoch during which
mi is added to the log file. The additional epoch number tl+1 models epoch switches
performed after the last log entry was added.

Definition 4.10 (Correctness). Let LS = (KeyGen,Update,Extract,Append,Verify) be
quintuple of algorithms as defined above. We say that LS is correct iff for all κ ∈ N,
T := T (κ) ∈ poly(κ), all (pk, N,E) and all signatures σ regular for (pk, N,E) we have
that σ is valid for (pk, N,E).

Note that we require Verify to validate excerpts without actually “knowing” the complete
log file. This is the main difficulty that our construction must overcome.
Moreover, note that our definition of a logging scheme given above includes only a

single verification algorithm, which is intended to verify excerpts. We did not formalize
another verification algorithm for complete log files. Rather, we treat the verification
of entire log files as a special case of verifying excerpts, namely excerpts for the
categories {“All”, “EM”}.

4.4.2. General Remarks

Remark 4.11 (Reset Attacks). It is quite obvious that once an attacker has seen
a valid signature σ for a log file M from some point in time t1, (s)he can reset the
entire log file to M and restore the previous signature σ once (s)he has control over
the log server. Since one requires that Verify(pk, {“All”},M, σ) = 1 at t1, we cannot
expect Verify(pk, {“All”},M, σ) = 0 at some later point in time t2, unless Verify has
an additional trusted input such as the current time or the number of messages that
have been added to the log file so far.

We therefore take a different path and let excerpts remain (cryptographically) valid
for an indefinite amount of time. It is then up to the application to decide whether an
excerpt is “fresh enough”. This is sufficient for both our examples, where only an a
posteriori verification of events is required, and everyone can see whether an excerpt
spans the time period of interest. In more interactive scenarios, one might consider
using a challenge response protocol, as discussed in Section 4.3.

Remark 4.12 (Secret Keys for Generation of Excerpts). In our model, creating an
excerpt signature from a log file M and a corresponding signature σ requires a secret
key. Our reason for requiring the secret key during extraction is that (intuitively) an
attacker should be unable to produce a valid signature for an excerpt. If the generation
of an excerpt signature was a public operation, then anyone, and in particular the
adversary, could create an excerpt, which would violate our intuition.

Note that requiring a secret key for creating excerpts does not prevent attackers who
do break in and obtain the secret key from computing valid signatures for excerpts.
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4.4.3. Security Model
We now define our security notion for categorized key-evolving audit log schemes. The
security notion for logging schemes is similar to the FS-EUF-CMA notion for forward-
secure signature schemes, but models the real world setting of secure logging more
closely: The log server maintains some internal state which the adversary influences
only through his oracles. In more detail, a signature oracle appends an entry to the
log file, and an adversary can never again add messages to any earlier state of the log
file. Moreover, we have added an oracle which can be used by an adversary to create
signatures for log file excerpts.

Definition 4.13 (Forward-Secure Existential Unforgeability under Chosen Log Message
Attacks). We define the following experiment for a categorized key-evolving audit log
scheme LS = (KeyGen,Update,Extract,Append,Verify), a PPT adversaryA, the security
parameter κ ∈ N, and the number of epochs T := T (κ) ∈ poly(κ):

Setup Phase.
The experiment generates the initial secret key, the public key and the initial
signature as (sk1, pk, σ1,0) ← KeyGen(1κ, 1T ). It initializes the epoch counter
t := 1, the message counter i := 1, and the log file M1,0 := (). It then starts A
with inputs pk, 1T and σ1,0.

Query Phase.
During the query phase, the adversary may adaptively issue queries to the
following three oracles:
Signature Oracle.

Whenever A submits a message mi = (Ni,m
′
i) to the signature oracle, the

experiment verifies that “All” ∈ Ni and “EM” /∈ Ni. If these requirements
are not met, then the experiment outputs 0 and aborts. Otherwise, the
experiment appends mi to the log file by setting M1,i := M1,i−1 ‖mi and
updates the signature to

σ1,i := Append(skt,M1,i−1, σ1,i−1,mi).

It then sets i := i+ 1. The oracle returns the new signature σ1,i.
Epoch Switching Oracle.

Upon a query to the NextEpoch oracle, the experiment moves to the next
epoch, updating the secret key to skt+1 := Update(skt,M1,i, σ1,i), which may
update the log file and its signature as a side effect, and incrementing the
epoch counter t := t + 1. The oracle returns the updated log file M ′ and
signature σ′ to the attacker. This oracle may be queried at most T − 1
times.

Extraction Oracle.
On input of a set N of category names, the experiment checks if “EM” ∈ N . If
“EM” ∈ N , the experiment creates a signature σ := Extract(skt,M1,i, σ1,i, N)
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for the excerpt E := E(N,M1,i) and returns (E, σ) to the adversary. Other-
wise, the experiment outputs 0 and aborts.

Break-In Phase.
When the adversary is done with the query phase, the experiment enters the
break-in phase.
During this phase, the adversary is no longer allowed queries to the previously
defined oracles.7 Instead, the attacker is provided with a BreakIn oracle, which
returns the current secret key skt. If A queries the BreakIn oracle, the experiment
sets tBreakIn := t. Otherwise, let tBreakIn :=∞.

Forgery Phase.
At the end of the experiment, A outputs a non-empty, finite set N∗ of category
names, a forged excerpt E∗ for N∗, and a forged signature σ∗ for E∗.
We say that (N∗, E∗) is trivial, iff:
• (N∗, E∗) ∈ {(N1, E1), . . . , (Nq, Eq)}, where q is the number of queries to the

extraction oracle A did, Ni is the set of categories during A’s i-th query to
this oracle (i ∈ [q]), and Ei is the excerpt returned during that call, or
• A queried the BreakIn oracle during some epoch tBreakIn and E′ = E(N∗,M ′)
is a prefix of E∗, where M ′ is the log file directly after the epoch switch
from epoch tBreakIn − 1 to epoch tBreakIn (including changes made by Update,
if any). We let M ′ := () if tBreakIn = 1.

The experiment outputs 1 iff σ∗ is valid for (pk, N∗, E∗) and (N∗, E∗) is non-trivial.
Otherwise, the experiment outputs 0.

We say that A wins the experiment, iff the experiment outputs 1, otherwise A loses
the experiment.

A categorized key-evolving audit log scheme LS is said to be forward-secure existen-
tially unforgeable under chosen log message attacks (or FS-EUF-CLMA-secure), iff for
all T = T (κ) ∈ poly(κ) and all probabilistic polynomial time attackers A:

Pr[A wins] ≤ negl(κ).

Let us review the above definition. As for standard security notions, we let the adversary
completely determine the input to the cryptographic scheme, except for the keys. In
our case, this input consists of the messages being submitted to the log (using the
signature oracle) as well as the timing of these messages (controlled by the order in
which A submits these to the signing oracle as well as the NextEpoch oracle). While
such a powerful adversary may be unrealistic in most real-world scenarios, giving the
adversary such power in the experiment results in a stronger security notion.8

7Again, this restriction is without loss of generality, see Remark 2.21 on page 29.
8We only allow the attacker to move forward in time, i.e. attackers having time machines are considered
outside of our threat model.
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Moreover, we grant the adversary access to all signatures created during the experi-
ment, including the updated signatures created during epoch switches, by returning
these signatures to the attacker. Furthermore, the adversary may explicitly request a
signature for arbitrary excerpts. This models a scenario where the attacker might learn
signatures from court proceedings, or as a regular customer of the cloud provider.

The adversary wins the experiment if (s)he manages to output a valid signature σ∗
together with a forged excerpt E∗ for some categories N∗ of its choice. We want to
exclude trivial cases from our definition, and therefore place restrictions on A’s forgery,
as in standard security notions.

Specifically, we require that if A obtained the secret key for some epoch tBreakIn, then
E∗ must differ from the real excerpt for categories N∗ with respect to an epoch t <
tBreakIn. We formalize this by first “truncating” the log file M to the state of the
most recent epoch switch (M ′), then defining the real excerpt E′ := E(N∗,M ′) for
the categories N∗ chosen by the attacker. We then require that A’s forgery E∗ does
not “agree” with E′, i.e. that E′ is not a prefix of the forged excerpt E∗. Any changes
with regard to epochs t ≥ tBreakIn are trivial, since A obtained the key sktBreakIn and can
therefore use the scheme’s algorithms Append, Extract and Update to create regular
(and hence valid) signatures.

As dicussed in Section 4.3, we currently do not know of any technique preventing an
attacker from truncating the log file to the state of the most recent epoch switch in the
standalone model. Hence, we consider any truncations up to the most recent epoch
switch trivial. However, if an attacker could provide a valid signature for an excerpt
E∗ such that E∗ is a prefix of E′ (instead of the other way around) and E∗ 6= E′, then
this truncation would be considered non-trivial.

Our condition that E′ must not be prefix of E∗ also implicitly models the property
of completeness. If an attacker managed to omit one or more log entries from E′ in E∗
(where the log entries were added before epoch tBreakIn), then E′ would not be a prefix
of E∗ and hence the forgery would be considered non-trivial. Only if no log entry from
the epochs 1 through tBreakIn − 1 has been omitted is the attacker’s output considered
trivial.

As another restriction, we require that E∗ was never returned to A as an excerpt for
the categories N∗. If it was, then E∗ used to be a correct excerpt for categories N∗,
and the challenger created a signature σ∗ for it. As discussed in Remark 4.11 on
page 72, such attacks are always possible, and hence we consider the attack trivial.
Note, however, that A may re-use an excerpt E returned by a query to the extraction
oracle if A changes the set of associated categories N . I.e., if the attacker manages to
have an excerpt E (for some categories N) accepted as an excerpt for another set of
categories N∗ 6= N , (and E differs from the correct excerpt with regard to an epoch
before the break-in epoch) then A’s forgery is considered non-trivial.
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4.5. Our Scheme

We now describe a scheme that achieves the above security notion. We call it SALVE,
for “Secure Audit Log with Verifiable Excerpts”. The main ingredient for SALVE9 is a
forward-secure signature scheme. Let us briefly describe the basic ideas underlying our
construction.

Sequence Numbers per Category.
Instead of adding only global sequence numbers, we augment signatures with
sequence numbers (counters) cν for each category ν. In particular, the sequence
numbers for the category “All” act as global sequence numbers.

Signing Counters.
Each log entry is signed along with the sequence numbers belonging to the
categories of the log entry. All these counters are increased by one after the log
entry has been signed. During verification, one checks if the counters of each
category ν supposed to be present in the excerpt form the sequence (1, . . . , cν).
This way, one can detect duplicate log entries, log entries missing between present
ones, and reordering attacks.

Epoch Markers with Counters.
Additionally, we sign all counters that have changed during an epoch i together
with the epoch markers created at the end of epoch i. After these counters have
been signed together with the epoch markers, the secret key is evolved using the
Update algorithm.

4.5.1. Formal Description

We introduce some additional notation. When signing multiple counter values, we
will sign a partial map f : {0, 1}∗ → N, which is formally modelled as a set f of
pairs (ν, cν) ∈ {0, 1}∗ × N, signifying that the counter value of category ν is cν , or
f(ν) = cν . For each category name ν, there is at most one pair in f that has ν as
the first component. We also write such partial maps as {ν1 7→ cν1 , . . . , νn 7→ cνn}.
A key of f is a bit string ν ∈ {0, 1}∗ for which f(ν) is defined. The set of keys for f is
keys(f) := {ν ∈ {0, 1}∗ : ∃c ∈ N : (ν, c) ∈ f}.
Recall our convention (introduced in Section 2.4), that we may sign mathematical

objects o /∈ {0, 1}∗, for example a tuple (f,m′) for a partial map f and a bit string
m′ ∈ {0, 1}∗. These objects are implicitly mapped to bit strings using some encoding
function before signing. We re-emphasize that we assume this encoding to be uniquely
decodable, i.e. injective, see Section 2.4. This assumption is required for our proof of
security.

9“This is what passes for humour amongst cryptographers.” [AP13]
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SALVE.

Let FS = (KeyGen,Update, Sign,Verify) be a key-evolving signature scheme. The key-
evolving categorized audit log scheme SALVE is given by the following algorithms:

KeyGen(1κ, 1T )→ (sk1, pk, σ0,1)
creates a key pair by running (sk1, pk)← FS.KeyGen(1κ, 1T ). The initial signature
is the empty sequence σ1,0 := (). The output is (sk1, pk, σ1,0).

Append(skt,M1,i−1, σ1,i−1,mi = (Ni,m
′
i))→ σ1,i

is called to create a new signature σ1,i when a new log entry mi = (Ni,m
′
i) is

appended to the current log fileM1,i−1 = (m1, . . . ,mi−1). BesidesM1,i−1 and mi,
it also receives the current secret key skt and the current signature σ1,i−1 as
input.
We assume “EM” /∈ Ni, except when Append is called from the Update algorithm
(see below), and “All” ∈ Ni.
Append first determines the current counter values cν for all ν ∈ Ni (the total
count of all log entries previously added to these categories).10 Let cν := 0 if the
category ν has never occurred before.
Next, Append creates the partial map fi = {ν 7→ cν + 1: ν ∈ Ni}, computes σ′i :=
FS.Sign(skt, (fi,m′i)), and appends σi := (fi, σ′i) to σ1,i−1 to obtain σ1,i := (σ1,
. . . , σi−1, σi). It outputs σ1,i.

Update(skt,M1,i−1, σ1,i−1)→ skt+1
is called at the end of each epoch t with the current secret key skt, the current log
file M1,i−1 and the current signature σ1,i−1. It has two tasks: it must append an
epoch marker to M1,i−1 (and its accompanying signature to σ1,i−1) and update
the secret key.
In order to create the epoch marker, it determines the set N of all categories that
have received a new log entry during epoch t and the total number of log entries
cν in each of these categories (including log entries from previous epochs).11 It
then creates the set of all these counters f ′i := {ν 7→ cν : ν ∈ N} and encodes
(“End of epoch:”, t, f ′i) =: m′i as a bit string m′i in some unique fashion. The
epoch marker (which is a categorized log entry) is set to mi := ({“All”, “EM”},m′i)
and appended toM1,i−1. Next, the Update algorithm computes a signature σ1,i :=
Append(skt,M1,i−1, σ1,i−1,mi) for the log file including the epoch marker mi.
Finally, if t < T , Update computes skt+1 := FS.Update(skt), securely erases skt
and outputs skt+1. Otherwise it deletes skt and outputs skt+1 := ⊥.

Extract(skt,M1,i, σ1,i, N)→ σ
is tasked to create a signature for the excerpt E(N) of the log file M1,i and the
signature σ1,i = (σ1, . . . , σi). We assume that we always have “EM” ∈ N .

10These counter values may be cached or determined by searching for the most recent log entry added
to each category.

11Again, this information may be cached.
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The signature mostly consists of the individual signatures for all log messages in
the excerpt, including the epoch markers, but also contains a newly generated
signature for the entire excerpt. More formally, let K := I(N,M1,i), l := len(K),
(k1, . . . , kl) = K.
Then Extract computes the signature σE := FS. Sign(skt, (N,E)), and outputs
σ := (σk1 , . . . , σkl , σE) as the signature for E.

Verify(pk, N,E, σ)→ 0/1
must check the correctness of the excerpt E = ((N1,m

′
1), . . . (Nl,m

′
l)) (with

l ∈ N0) for the categories N based on the public key pk and the signature σ.
Verify first checks if len(E) + 1 = len(σ), and rejects the input (outputs 0 and
exits) if this is not the case. Otherwise, let σ = ((f1, σ

′
1), . . . , (fl, σ′l), σE). We

assume that we always have “EM” ∈ N . If “EM” /∈ N , the signature is rejected as
invalid.
The algorithm will use counters c′ν for all categories ν ∈ N to keep track of the
number of log entries in each category that already occured in the excerpt. These
counters will be compared with the actual counters from the signatures. We omit
the usual string notation in the index, i.e., we simply write cEM and cAll instead
of c“EM” and c“All”.
As a first step, Verify initializes its counters c′ν := 0 for all ν ∈ N . If “All” /∈ N ,
it also sets c′All := 0. It then performs the following checks for each entry
mi = (Ni,m

′
i) ∈ E, in the order of increasing i:

• It checks whether the signature for the individual log entry is valid:

FS.Verify((pk, c′EM + 1, (fi,m′i)), σ′i) = 1, (4.1)

• whether mi belongs to one of the requested categories:

Ni ∩N 6= ∅, (4.2)

• whether mi’s set of category names Ni is unchanged:

keys(fi) = Ni, and (4.3)

• whether the counter values signed together with the message are as expected:

fi(ν) = c′ν + 1 for all ν ∈ N ∩Ni. (4.4)

• If mi is an epoch marker, i.e. “EM” ∈ Ni, then Verify decodes m′i to recon-
struct f ′i . It then checks whether

f ′i(ν) = c′ν for all ν ∈ keys(f ′i) ∩N . (4.5)
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• If “All” /∈ N , it checks whether

fi(“All”) > c′All (4.6)

and sets c′All := fi(“All”).

If any of these checks fail, Verify outputs 0. If they pass, Verify increments c′ν
by one for all ν ∈ N ∩Nj . The verification procedure then continues with the
next i, until (including) i = l.
Finally, Verify checks whether

FS.Verify((pk, c′EM + 1, (N,E)), σE) ?= 1, (4.7)

and outputs 1 if so, and 0 otherwise.

A few notes are in order here:

1. Firstly, observe that for all log entries mi, the number of epoch markers cEM in
the log file (or an excerpt) before mi is one less than the number t of the epoch
in which mi was signed.

2. Excerpts created by SALVE are signed with the most recent secret key available.
The verification algorithm implicitly checks for truncation attacks by requiring
that the entire excerpt was signed during epoch t, where t is the number of
epoch markers found in the excerpt plus 1 (see (4.7)). Thus, the final signature
σE serves as an implicit proof that the signer knows the key of epoch c′EM + 1.
Truncating a log file (or an excerpt) to an epoch before the break-in therefore
requires forging a signature σE supposedly created with a previous secret key,
and thus breaking the security of FS.

3. If the verification algorithm had the current epoch number t as an additional
trusted input, it could also check whether t = c′EM + 1. This would strengthen
the verification algorithm considerably.

4. Generally, given an excerpt E for some set of categories N , it is easy to create
an excerpt for a subset of these categories, or to add other categories to E.
However, creating a valid signature σ for the new excerpt is hard, because the set
of category names N is included in the signature σE := FS.Sign(skt, (N,E)). We
view this as a feature, as it prevents an attacker from tampering with excerpts.

5. Much information required by the above algorithms (e.g. current counter values
and the set of categories modified since the last epoch switch) can be cached by
an implementation. This way, SALVE can be implemented very efficiently.

Before proving SALVE correct, we first give a few examples illustrating how SALVE
operates.
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Example 4.14 (Signing and Updating). We return to our bank example. When the
log file is created, the KeyGen algorithm creates a pair of keys (sk1, pk) and initializes
the signature σ1,0 := () for the empty log file M1,0 = ().

Let m1 := (N1 = {“All”, “customer id 1”, “account creation”},m′1) be the first
entry added to the log file. The new log file is M1,1 = (m1). The Append algorithm is
called to create a signature for M1,1.
It first determines the number of log entries in the categories ν ∈ N1 so far. Since

there have been no log entries before, we have cAll = ccustomer id 1 = caccount creation = 0.
It therefore sets f1 := {“All” 7→ 1, “customer id 1” 7→ 1, “account creation” 7→

1}, and stores σ1 := (f1, σ
′
1 := FS. Sign(sk1, (f1,m

′
1))) as the individual signature for

the log entry m1. The signature for M1,1 is (σ1).
Now let m2 := (N2 = {“All”, “customer id 1”, “deposit”},m′2) be the second log

entry. When this log entry is added to M1,1, we get M1,2 = (m1,m2).
Again, one needs to create a signature for m2 (and the new log file M1,2). In

order to compute the signature for m2, the Append algorithm determines the counter
values cAll = 1, ccustomer id 1 = 1 and cdeposit = 0. These are transformed into f1 :=
{“All” 7→ 2, “customer id 1” 7→ 2, “deposit” 7→ 1}. The signature for m2 is σ2 :=
(f2,FS.Sign(sk1, (f2,m

′
2))). This is appended to σ1,1 to obtain σ1,2 = (σ1, σ2), the

signature for M1,2.
Now suppose there is an epoch switch from epoch 1 to epoch 2. The Update algorithm

is called. It first collects the counter values of all categories that have had a log entry
added to them in epoch 1. These counter values are cAll = 2, ccustomer id 1 = 2,
caccount creation = 1, cdeposit = 1, and encodes them to

f ′3 := {“All” 7→ 2, “customer id 1” 7→ 2,
“account creation” 7→ 1, “deposit” 7→ 1}.

It then encodes the tuple (“End of epoch:”, 1, f ′3) as a bit string m′3. This bit string
is converted to a categorized log message m3 := (N3 = {“All”, “EM”},m′3) by assigning
it to the categories “All” and “EM”.

Next, m3 is to be appended to the log file. The Update algorithm computes the new
signature σ1,3 as before: It determines the counter values cAll = 2, cEM = 0, and sets
f3 := {“All” 7→ 3, “EM” 7→ 1}. It then creates the signature σ′3 := FS.Sign(sk1, (f3,m

′
3))

and appends σ3 := (f3, σ
′
3) to σ1,2. The result is σ1,3 = (σ1, σ2, σ3). Observe that since

m′3 contains f ′3 and m′3 has been signed, the number of log entries in all categories is
authenticated with sk1.
Before Update terminates, it evolves sk1 to sk2 := FS.Update(sk1), and securely

erases sk1.
Now assume that one adds two messages in epoch 2: The first one is m4 := (N4 =

{“All”, “customer id 2”, “account creation”},m′4) and the second is m5 := (N5 =
{“All”, “customer id 1”, “withdrawal”},m′5). The corresponding maps are

f4 = {“All” 7→ 4, “customer id 2” 7→ 1, “account creation” 7→ 2}, and
f5 = {“All” 7→ 5, “customer id 1” 7→ 3, “withdrawal” 7→ 1}.
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We skip to the next epoch switch, as the signatures σ4 and σ5 are created as above.
At the epoch switch from epoch 2 to epoch 3, Update is called. It first constructs

f ′6 = {“All” 7→ 5, “account creation” 7→ 2, “customer id 1” 7→ 3,
“customer id 2” 7→ 1, “withdrawal” 7→ 1}.

Observe that the counter for the category “deposit” is not contained in f ′6, since
there was no log entry in that category during epoch 2. Update creates a categorized
log message m6 = ({“All”, “EM”},m′6 = (“End of epoch:”, 2, f ′6)), signs it (resulting
in σ6), and appends m6 and σ6 to the log file M1,5 and the signature so far σ1,5,
respectively. It then computes sk3 := Update(sk2), deletes sk2 in an unrecoverable
fashion and outputs sk3.

Example 4.15 (Excerpts and Verification). Say someone requested an excerpt for
any log entries regarding customer 2. Then one creates an excerpt for the categories
N = {“customer id 2”, “EM”}. (Recall that by convention, we have “EM” ∈ N when
the extraction algorithm is called.)
The excerpt to be output is E := (m3,m4,m6), since m3,m6 ∈ C(“EM”) and m4 ∈

C(“customer id 2”). Thus, the signature σ for E contains σ3, σ4 and σ6. The last
component of σ is a signature σE for (N,E).

The verification algorithm gets (m3,m4,m6) and (σ3, σ4, σ6, σE) as input, along the
public key pk. It verifies whether σ3, σ4 and σ6 are valid for m3,m4,m6 using FS.Verify.
Note that all epoch markers are included in the excerpt, so Verify can determine the
epoch in which these messages were signed by counting the number of epoch markers
occuring before the respective message. (In our description above, this is just c′EM.)
The verification algorithm also checks whether keys(fj) = Nj . To understand this,

observe that Nj is not signed directly during the signature algorithm, but implicitly
(since fj is signed). If one omitted this check, an adversary might tamper with the
categories Nj of the excerpt without the verification algorithm detecting this.

Verify also checks that all counters in fj match the expected values. As a last step,
Verify checks the signature over the entire excerpt E together with the set of categories
N for which this excerpt was created. For this check, it determines the epoch number
based on the number of epoch markers in the excerpt.

The last component σE of a signature σ serves two purposes: Firstly, it is necessary
to prevent attackers not having a secret key from freely “combining” signatures for
different excerpts. For example, without the additional signature over all log entries in
E, if an attacker had signatures for excerpts for the categories N1 and N2, then it were
trivial for the adversary to create a signed excerpt for N1 ∪N2 or N1 ∩N2. Secondly,
this signature implicitly proves the signer knows sk3, and thus that the excerpt has not
been truncated.
In comparison, if the signer could only sign (N,E) with, say, sk5, then it would be

evident that the excerpt is missing at least the epoch markers indicating the end of
epochs 3 and 4. While this alone might not seem harmful for the verification of the
excerpt, observe that without these epoch markers, the verifier has no way to tell if
new log entries were added to the category “customer id 2” during these epochs. The
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correct excerpt generated with sk5 has to contain these epoch markers, so the verifier
can check if the counter value for this category has increased during the respective
epoch. If no updated counter value is contained in the respective epoch markers,
then the verifier can be certain that no log entry was added to the category during
these epochs. Without the epoch markers, however, the verifier might fall victim to a
truncation.

This concludes our examples for SALVE. We now show:

Lemma 4.16. SALVE is correct if FS is correct.

Proof. We need to show that all checks of Verify pass, when Verify is called with a
regularly created signature σ = (σ1, . . . , σl, σE).

First let us gather some simple observations:

1. Verify correctly counts the number of entries it has seen for each category ν ∈ N
as c′ν . The sequence number expected to be found in the next log message
belonging to category ν is c′ν + 1.

2. In particular, c′EM contains the number of epoch markers it has encountered so
far, which is one less than the epoch during which the next message should have
been signed (see Note 1 on page 79).

3. Similar to observation 1, c′All is the maximum sequence number in the category
“All” that Verify has encountered.

Now let us show that the checks of Verify pass. For each i ∈ [l], check (4.1) will pass
due to the correctness of FS, and because of observation 2.

Check (4.2) will always hold true, because Extract only considers messages that are
contained in the excerpt, see Definition 4.7. Check (4.3) will pass, too, because of the
construction of fi in the Append algorithm.
Check (4.4) will pass since for each ν ∈ Ni, Append has set fi(ν) to one plus the

number of log entries contained in category ν, all of these entries are contained in the
excerpt, and Verify counts these (as c′ν) correctly. A similar argument shows that check
(4.5) is successful.

If “All” /∈ N , check (4.6) verifies that the counters for the category “All” that are
signed together with each log entry form a strictly increasing sequence. (If “All” ∈ N ,
this is already verified by check (4.4). Furthermore, check (4.4) also verifies that the
counter values are consecutive.) This is always the case for excerpts created by the
regular mechanism, so this check will never fail.

Finally, equation (4.7) will hold because of the correctness of FS. Hence, for a regular
signature all checks pass, and Verify outputs 1.

4.5.2. Security Analysis

We now analyze the security of SALVE. The following theorem states our main result:
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Theorem 4.17 (Security of SALVE). Assume that SALVE uses an injective encoding
to map the signed objects to bit strings. If there exists a PPT attacker A that wins
the FS-EUF-CLMA experiment against SALVE with probability εA, then there exists
a PPT attacker B that wins the FS-EUF-CMA game against FS with probability
εB = εA.

Proof. Let A be an attacker having success probability εA in the FS-EUF-CLMA
experiment against SALVE. We construct an adversary B which tries to break the
FS-EUF-CMA-security of the underlying scheme FS, using A as a component. B must
simulate the FS-EUF-CLMA experiment with SALVE for A. B does this as follows.
B receives a public key pk and the number of epochs T as input. It sets t := 1, i := 1,

M1,0 := (), σ1,0 := (). It then starts executing A with input (pk, 1T , σ1,0).
When A issues an oracle query, B reacts as follows:

Signature Queries.
When A requests that a new message mi = (Ni,m

′
i) shall be added to the log

file, B first verifies that “All” ∈ Ni but “EM” /∈ N . If this is not the case, then B
aborts.

Otherwise, B collects the counter values cν for all ν ∈ Ni, initializing them to
0 if the category ν has not occured before. It builds fi := {ν 7→ cν + 1: ν ∈ Ni}
and submits (fi,m′i) to the signature oracle in the FS-EUF-CMA experiment.
This oracle answers with a signature σ′i for (fi,m′i). B combines this with fi to
get σi := (fi, σ′i). Then B sets σ1,i := σ1,i−1 ‖σi, M1,i := M1,i−1 ‖mi, returns σ1,i
to A, and increments i := i+ 1.

Epoch Switching Queries.
When A requests an epoch switch from epoch t to epoch t+ 1 in the FS-EUF-
CLMA experiment, B verifies that t < T and aborts if this is not the case. Then
B creates the epoch marker just as in the Update algorithm: It first determines
the set N of categories that had a log entry added to them during epoch i,
collects the counters cν for all ν ∈ N , builds f ′i := {ν 7→ cν : ν ∈ N} and sets
m′i := (“End of epoch:”, t, f ′i). It then simulates the Append algorithm for
mi := ({“All”, “EM”},m′i) as described above and obtains a signature σi for mi.
The signature σi is added to σ1,i−1, mi is added to M1,i−1, and i is incremented
as above.

Finally, it calls the epoch switching oracle in the FS-EUF-CMA experiment, and
increments t := t+ 1. It returns M1,i and σ1,i to A.

Excerpt Queries.
When A requests a signature for an excerpt for the categories N , B proceeds
as follows. If “EM” /∈ N , then B aborts. Otherwise B first builds E(N,M1,i).
Next, B collects the individual signatures σj for all mj ∈ E. (More formally, let
l = len(E), and let I(N,M1,i) = (j1, . . . , jl) denote the index sequence of the
excerpt E with respect to M1,i.) B submits (N,E) to the signature oracle in
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the FS-EUF-CMA experiment to obtain σE . It sets σ = (σj1 , . . . , σjl , σE) and
returns (E, σ) to A.

Breaking In.
When A requests the current secret key skt in the FS-EUF-CLMA experiment,
B obtains it from its own oracle in the FS-EUF-CMA experiment and passes it
to A.

It is easy to see that the joint distribution of all values occuring in B’s simulation
of the FS-EUF-CLMA experiment (A’s “view”) matches the distribution in the real
FS-EUF-CLMA experiment.

At the end of the experiment, A outputs a forged excerpt E∗, a set of categories N∗
and a forged signature σ∗ for E∗. If A outputs an invalid or trivial forgery, then
B outputs ⊥ and aborts. Otherwise, B determines which of the following cases has
occured and acts as described for each case. For this distinction, we let c∗EM be the
number of log entries (N∗j ,m′∗j ) in E∗ with “EM” ∈ N∗j .

Case 1: E∗ contains c∗EM epoch markers with c∗EM + 1 < tBreakIn.
Note that this case also captures the event that A does not obtain a secret key
at all (because then tBreakIn =∞). In this case, B outputs m∗ := (N∗, E∗) as its
message, the number t∗ := c∗EM + 1 as the epoch number, and the last element σ∗E
of the sequence σ∗ as its forged signature for m∗. σ∗E must be a valid signature
for (N∗, E∗), since otherwise Verify would have rejected the signature σ∗ after
checking (4.7).
All queries that B submitted to its signature oracle during epoch t∗ (if any)
were either of the form (fj ,m′j) for some messages (including epoch markers)
mj = (Nj ,m

′
j) or of the form (N,E) for extraction queries. Because of the

uniqueness of the encoding, all of B’s signature queries (fj ,m′j) for log messages
(Nj ,m

′
j) differ from (N∗, E∗). Also, since E∗ is a non-trivial forgery in the FS-

EUF-CLMA game, B did never request a signature for (N∗, E∗). Finally, since
t∗ < tBreakIn, B’s output is a non-trivial forgery in the FS-EUF-CMA experiment.
Hence, B’s output is valid and non-trivial, so B wins the FS-EUF-CMA game.

Case 2: E∗ contains c∗EM epoch markers with c∗EM + 1 ≥ tBreakIn.
Let M ′ and E′ be as in Definition 4.13, that is, M ′ is the log file returned by
A’s most recent call to the epoch switching oracle, and E′ is the excerpt for the
categories N∗ of M ′. Observe that if A broke in during epoch tBreakIn = 1, then
we had M ′ = () by definition, and so E′ = (), which is a prefix of all excerpts E∗
that A may have created. Thus, any forgery of A were trivial, and A could not
win the game. In the following, we may therefore assume tBreakIn > 1.
Let E′∗ be the prefix of E∗ up until (including) the (tBreakIn− 1)-th epoch marker
(the (tBreakIn − 1)-th log message (N∗i ,m′∗i ) ∈ E∗ with “EM” ∈ N∗i ). We know
that E′ is not a prefix of E′∗, since otherwise E′ would also be a prefix of E∗ in
contradiction to A’s forgery not being trivial.
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Let l = len(E′), l∗ = len(E′∗), E′ = (mi)li=1, E′∗ = (m∗i )l
∗
i=1, m∗i = (N∗i ,m′∗i )

for all i ∈ [l∗] and mi = (Ni,m
′
i) for all i ∈ [l]. B builds the sequences S∗ =

((f∗1 ,m′∗1 ), . . . , (f∗l∗ ,m′∗l∗)) (taking the f∗i from the signatures σ∗i ∈ σ∗) and S =
((f1,m

′
1), . . . , (fl,m′l)) (taking the fi from the signatures σi it constructed during

the simulation). Note that S contains exactly B’s oracle queries during epochs 1
through tBreakIn − 1, restricted to those messages that belong to at least one of
the categories N∗. Also observe that S∗ 6= S, since we otherwise had E′∗ = E′

(by (4.3)) in contradiction to E′ not being a prefix of E′∗.
The key observation is that there must be a (f∗j ,m′∗j ) ∈ S∗ with (f∗j ,m′∗j ) /∈ S
(j ∈ [l∗]). Suppose for the sake of a contradiction that there is no such pair.
Then S∗ consists entirely of pairs that also occur in S. Obviously, S∗ can not
contain duplicate pairs (f∗j ,m′∗j ), since the verification algorithm would have
rejected the excerpt when checking that counters always increase (equations (4.4)
and/or (4.6)). Since S∗ contains only pairs also contained in S, contains no
duplicates, and S∗ 6= S, S∗ is missing at least one tuple from S. Since S∗ (by
construction) contains exactly tBreakIn − 1 epoch markers, S∗ is missing a log
entry which is not an epoch marker. But then Verify had failed when checking
the counters in (4.5), which is impossible if A’s output was valid.
So we have established that S∗ contains a pair (f∗j ,m′∗j ) /∈ S. B searches for this
pair, and outputs it as its message. It also outputs one plus the number of epoch
markers before (f∗j ,m′∗j ) as the epoch number t∗ and σ′∗j as the signature.
This is a valid signature in the FS-EUF-CMA experiment, since (4.1) holds.
It remains to show that this is a non-trivial forgery. Firstly, the number of
epoch markers before (f∗j ,m′∗j ) is at most tBreakIn − 2, since E′∗ contains at most
tBreakIn − 1 epoch markers, and the last log message in E′∗ is one of these. Hence,
the number of epoch markers before (f∗j ,m′∗j ) is at most tBreakIn − 2. Therefore,
the signature σ′∗j is valid for an epoch t∗ ≤ tBreakIn − 1 < tBreakIn. Secondly,
observe that m∗j belongs to at least one of categories N∗, since Verify had rejected
the excerpt when checking (4.2) for m∗j otherwise. Thus, B has never requested
(f∗j ,m′∗j ) from its signature oracle, since (f∗j ,m′∗j ) /∈ S, where S is exactly the
sequence of B’s signature queries for all messages belonging to at least one of
the categories N∗, such as m∗j . Also, all of B’s signature queries of the form
(N,E) differ from (f∗j ,m′∗j ), since we assumed that their encoding to bit strings
is injective. Hence, B wins the FS-EUF-CMA game in case 2, since it outputs a
non-trivial and valid forgery.

Since B’s simulation of the FS-EUF-CLMA game for A is perfect, B wins both in case 1
and in case 2, and one of these cases occurs whenever A outputs a valid and non-trivial
signature, we have εB = εA. Also, B runs in polynomial time, as A does.

Corollary 4.18. If FS is FS-EUF-CMA-secure, and SALVE uses injective encodings,
then SALVE is FS-EUF-CLMA-secure.
This concludes our treatment of SALVE’s ability to protect the authenticity and
integrity of excerpts, as well as verify the completeness of excerpts.
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Remark 4.19 (Enhanced Confidentiality). Note that while SALVE can create excerpts
and thus protect the confidentiality of log records not in contained in the excerpts,
each excerpt leaks the number of log records added to each category during each epoch.
Formalizing a security notion regarding the confidentiality of this information as well
as designing a scheme provably attaining such a notion is outside of the scope of this
thesis and is left as future work.

4.5.3. Performance Analysis

In this section, we analyze the runtime and storage overhead of SALVE. Our findings
are derived from the algorithms described in Section 4.5.1. Since SALVE can be
instantiated with an arbitrary forward-secure signature scheme FS, we give our findings
with regard to algorithm runtime in terms of calls to algorithms of FS, and our findings
in regard to storage overhead in terms of key and signature sizes of FS, respectively.
Table 4.1 summarizes our findings.

Throughout our analysis, let M denote the current log file, l be the number of log
entries inM (not counting epoch markers, if any), t be the current epoch, mi = (Ni,m

′
i)

be the log message added during Append, R be the total number of associations between
log entries (excluding epoch markers) and categories (i.e. R :=

∑l
j=1|Nj |), E be the

excerpt being signed by the Extract algorithm or verified by Verify, l′ be the number of
log entries in E (again, not counting epoch markers), N the set of requested categories
for an excerpt, Ntotal be the set of (the names of) all categories that have been used so
far, and Nepoch be the set of (the names of) the categories that have received a new
log entry in the epoch being ended by the update procedure. Our runtime analysis
assumes that:

• All sequence numbers cν and category names ν have size O(1), i.e. there is an
a-priori-bound on the length of these. We stress that we make this assumption
purely to simplify the analysis. Our scheme can handle sequence numbers and
category names of arbitrary length.

• The implemenation always stores sets N of category names in an ordered fashion
in order to achieve a unique representation. Maps fi are ordered as well, by Ni.

• The implementation caches sequence numbers in balanced binary trees. In this
case, lookup, insertion and update operations to the cache take O(log|Ntotal|)
time units. This is a conservative assumption, since the same operations have an
expected cost of O(1) time units for caches based on hash tables.

• The implementation caches the names of all categories which have received a new
log message in the current epoch, i.e. Nepoch.

• We also assume that encoding and decoding pairs (fj , σ′j) to and from {0, 1}∗
takes time O(|fj |+ len(σ′j)).
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Algorithm Runtime Analysis

Key Generation.
The runtime of the KeyGen algorithm is dominated by the call to FS.KeyGen,
which creates a key for T time periods. All other computations can be done in
O(1) time units.

Message Signing.
The Append algorithm must determine the current counter values cν for all ν ∈ Ni

in order to create the mapping fi. We assume that the algorithm first sorts Ni in
order to achieve a unique representation. This can be done in O(|Ni| log|Ni|) time
units. Looking up all counter values takesO(|Ni| log |Ntotal|) time units. Encoding
(fi,m′i) to a binary string takes time O(|fi|+ len(m′i)) = O(|Ni|+ len(m′i)). The
signing of the tuple then takes one call to FS. Sign. Updating the cached sets Ntotal
and Nepoch requires time O(|Ni|(log|Ntotal|+ log|Nepoch|)) ⊂ O(|Ni| log|Ntotal|).

Updating the Secret Key.
The Update algorithm accesses the cached set Nepoch and looks up the corre-
sponding counter values cν . This takes at most O(|Nepoch| log|Ntotal|) time units.
It then calls the Append algorithm, and thus inherits its runtime costs. Note that
Ni is constant for this call, so |Ni| = 2 can be disregarded in the O notation.
Finally, it performs a call to FS.Update.

Extraction of Excerpts.
Extract first sorts N in time O(|N | log|N |). It then scans through M to find
relevant log entries. For each log entry mi = (Ni,m

′
i), the algorithm can check if

Ni ∩N = ∅ with at most |Ni| lookup operations in N . Thus, scanning the entire
log file takes O(

∑l
i=1|Ni| log|N |+ t) = O(R log|N |+ t) time units.

Verification.
The verification algorithm takes l′ + (t − 1) + 1 = l′ + t calls to FS.Verify for
checks (4.1) and (4.7).
Checks (4.2) and (4.4) take O(|Ni| log|N |) operations per iteration, check (4.3)
only O(|Ni|). Check (4.6) can be done in O(|fi|) = O(|Ni|) time units.
For check (4.5), let Nepoch,i be the set of categories that received at least one new
entry during epoch i. Then all checks of this type can be implemented in time
O(
∑t
i=1|Nepoch,i| log|N |).

In total, we have (l′ + t) calls to FS.Verify, and

O
(

l∑
i=1
|Ni| log|N |+

t∑
i=1
|Nepoch,i| log|N |

)

= O
((

l∑
i=1
|Ni|+

t∑
i=1
|Nepoch,i|

)
log|N |

)
= O((R+ t) log|N |)
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other operations.

Storage Overhead

In the following, we analyze the storage overhead imposed by SALVE.

Key Sizes.
The sizes of SALVE’s public and secret keys are the same as FS’s.

Log File Signature Size.
A signature for a log file M consists of l + (t− 1) signatures of FS, as well as the
maps fi, which take O(

∑l
i=1|Ni|+ t) = O(R+ t) bits.

Excerpt Signature Size.
The signature for an excerpt E consists of each log entry’s individual signature,
including the signatures for all epoch markers, and a final signature on the pair
(N,E). We thus have l′ + (t− 1) + 1 = l′ + t signatures of FS. Furthermore, we
have (l′ + (t− 1)) maps fi, which take at most O(R+ t) bits in total.

Comparison to Other Schemes

We now compare the efficiency of SALVE to the performance of other schemes in the
literature. In particular, we compare to the scheme by Ma and Tsudik [MT08; MT09]
and the Logcrypt scheme by Holt [Hol06], since both constructions are generically built
on an underlying signature scheme, too. We also compare SALVE to the BAF [YP09;
YPR12a] scheme by Yavuz et al.

However, Ma and Tsudik require a signature scheme that is not only forward-secure,
but can also sequentially aggregate signatures, while Holt’s scheme uses a standard
digital signature without special properties such as forward security or sequential
aggregation.12 SALVE can be seen in between these two, as SALVE requires the
underlying signature scheme to be forward-secure, but does not require the aggregation
property.

The different requirements on the underlying signature scheme make it very hard to
compare these schemes fairly. For example, the aggregate signature scheme used by
Ma and Tsudik hides the amount of work required to verify a signature behind just
one call to the aggregate verification algorithm. Comparison is complicated further by
the issue that both Ma and Tsudik as well as Holt propose to perform an epoch switch
every time a log entry has been added. (This is a case in which SALVE performs
badly. However, given the linear overheads imposed by Logcrypt and Ma’s and Tsudik’s
schemes, their schemes are not very practical in this case, neither.)

Comparing these three schemes to BAF is even harder, since BAF is not generically
built on an arbitrary signature scheme (possibly requiring additional properties), but
uses very concrete hardness assumptions and constructions.
12 Holt implicitly constructs a forward-secure scheme from it by building a long certification chain

which is embedded in the log file. The forward-secure scheme is a simple variant of the “Long
Signature” scheme from [BM99, Section 2].
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Table 4.2 shows our results. For Logcrypt, SALVE, and the scheme by Ma and
Tsudik, KeyGen, Update, Sign, AggSign, and Verify refer to the costs to call the respective
underlying signature scheme’s algorithm. Similarly, len(sk), len(pk), len(σ) refer to the
sizes of the underlying scheme’s secret key, public key and signatures, respectively. For
Logcrypt, n ∈ N is a parameter that can be chosen freely. For BAF, ModExp, ModMul
and ModAdd refer to the costs of modular exponentiation, multiplication and addition
respectively, and H refers to the cost of evaluating a hash function on a relatively short
input. BigInt refers to the size of a large integer value.13

Comparison with Logcrypt and the MT scheme. We see that SALVE is competitive
with Logcrypt and the scheme by Ma and Tsudik in terms of key generation time,
log entry signing time, as well as secret and public key size. It performs only slightly
worse than these schemes for the key evolution and verification algorithms. (All
forward-secure sequential aggregate signature schemes that we know of require at least
O(len(M)) operations. These operations may be modular squarings or even pairing
evaluations.)

In terms of storage overhead for the log file SALVE beats Logcrypt, but cannot level
with the scheme by Ma and Tsudik, since they use (sequential) aggregate signatures.

Note that the aggregation approch by Ma and Tsudik comes with two severe draw-
backs: Firstly, their scheme cannot verify any log entry individually without verifying
the entire log file. Secondly, if a single log entry is modified, verification of the en-
tire log file fails, and all information stored in the log file must be considered to
be forged by the adversary. Ma and Tsudik recognize these drawbacks, and devise
an alternative “immutable” scheme that solves these issues. The modified scheme
has (len(M) + 1)× len(σ) storage overhead, which is notably but not far better than
SALVE.14

Comparison with BAF. As stated before, comparing SALVE to BAF is very hard,
since SALVE may have very different performance characteristics depending on the
underlying signature scheme FS.
BAF is heavily optimized for an efficient signing procedure. It also has an efficient

key evolution algorithm, a modest secret key size and a very compact signature, that is
independent of len(M), just as the scheme by Ma and Tsudik. (BAF therefore carries
the same drawbacks.) These enjoyable performance properties of BAF are paid for
with a very expensive key generation algorithm and an extreme public key size. In
comparison, while it is unlikely that SALVE could beat BAF with respect to signing
and updating time, SALVE has more balanced performance properties overall.
13BAF uses prime-order subgroups of a prime field where the discrete logarithm problem is intractable

with current methods and equipment. In order not to complicate our analysis further, we do not
differentiate between integers in the size of the group order (at least 160 bits) and integers in the
size of the prime field size (at least 1024 bits). One may conservatively assume that all of these
integers are 160 bits in size, referring only to the group order.

14We show how to construct a scheme that can tolerate some modifications to the log file while still
having sub-linear storage overhead in Chapter 5.
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4.6. Summary
The ability to verify excerpts can be useful (i) to provide full confidentiality and privacy
of most of the log entries, even when a subset of the log entries needs to be disclosed,
(ii) to save resources during transmission and storage of the excerpt, and (iii) to ease
manual review of log files.
We have defined a security notion for logging schemes which can provide excerpts.

This security notion includes the property of verifiable completeness, i.e. the logging
scheme’s ability to detect omissions. Moreover, the security notion also considers
truncation attacks. The author’s original publication [Har16a] was the first work in
the literature to formally model these attacks as well as completeness.

We proposed a new scheme that can detect both omissions from excerpts as well as
truncation attacks, and proven that our scheme satisfies our security notion.

Our scheme can be instantiated with an arbitrary forward-secure signature scheme,
and can therefore be tuned to specific performance requirements and based on a wide
variety of computational assumptions.

15 The values shown here are an average per log entry.
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5. Fault-Tolerant Sequential Aggregate
Signatures for Robust Logging

This chapter introduces a cryptographic technique that facilitates a trade-off between
two rivaling goals for the design of a cryptographic logging scheme: On the one hand,
it is desirable for a cryptographic logging scheme to be able to identify unmodified
log entries even if other log entries have been illicitly forged by an attacker. This
functionality might be achieved by storing an individual signature for each log message,
such as in [BY97; Hol06] and the SALVE scheme (see Chapter 4). On the other hand,
a scheme with as little storage overhead as possible is preferable efficiency-wise. (For
example, Ma and Tsudik [MT08; MT09] propose a scheme that only needs to save a
single aggregate signature for an entire log file.) We achieve a trade-off between these
goals by creating multiple (sequentially) aggregate signatures for different subsequences
of the log records in the log file. The details of our construction are described below.
This chapter is strongly based on [Har+17b]. Significant parts of the former publi-

cation are reproduced here without or with only minor changes, and without specific
designation. The publication [Har+17b] in turn applies a technique from [Har+16],
which was independently developed by [Ida15; Ida+15].

5.1. Introduction

We consider the problem of creating a cryptographic scheme for securely storing log
data that combines the following two properties:

• the logging scheme is robust to modifications, i.e. it can identify unmodified
log entries as authentic, even if some other log entries have been illegitimately
modified, and

• the logging scheme has sub-linear storage overhead in the number of stored log
entries.

Previous solutions either stored one signature per log record, attaining robustness but
having linear storage overhead (e.g. [BY97; Hol06], the “immutable” schemes in [MT09]
and the SALVE scheme in Chapter 4), or stored a single signature for all log entries
in the log file [MT08; MT09; Bul+14], attaining space-efficiency at the cost of being
fragile (i.e. not being robust).1

1Buldas et al. [Bul+14] also realize this issue and propose a modification to their scheme which
induces linear storage overhead. This modified scheme thus belongs to the former category.
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We propose a trade-off between robustness and storage overhead, using a technique
from [Har+16], independently developed by [Ida15, Chapter 4] and published in [Ida+15].
More concretely, we build a scheme where log records are redundantly authenticated by
multiple (sequential) aggregate signatures. Each aggregate signature authenticates a
subsequence of the complete log file. The subsequences are chosen in a specific way, as
to guarantee that changes to up to d log records (where d is a parameter of our scheme)
can be tolerated without affecting the scheme’s ability to verify the authenticity and
integrity of unmodified log entries.
More specifically, we use incidence matrices of cover-free families (see e.g. [KS64])

to determine the subsequences. Cover-free families are objects from the field of
combinatorics, where a “base set” (or universe) S is divided into subsets (or blocks) B,
such that the union of up to d blocks B1, . . . , Bd does not “cover” any other block
B /∈ {B1, . . . , Bd}. We give a formal definition in Section 5.2.1.

We now briefly illustrate the key technique with an example from [Har+16]. Consider
the following matrix: 

1 0 0 1 0 1
1 1 0 0 1 0
0 1 1 1 0 0
0 0 1 0 1 1


We associate each column with a log entry and each row with an aggregate signature
to be computed. The 1-entries in each row indicate the log entries to be included in
the respective aggregate signature. Thus, if we had six log entries m1, . . . ,m6, the first
sequential aggregate signature σ1 would be computed from m1,m4, and m6, another
aggregate signature σ2 would be based on m1,m2, and m5, and so on.

Now suppose that an attacker modified the fourth entry of the log file m4. As a result,
verification of the first and third row would (most probably) fail. However, the second
and fourth row are unaffected. One may thus verify the integrity and authenticity of
m1,m2 andm5 by checking the signature of the second row σ2, and confirm the integrity
and authenticity of m3,m5 and m6 with the signature σ4. Together, the signatures σ2
and σ4 authenticate the messages m1,m2,m3,m5 and m6, so all unmodified log entries
can still be verified. The reader may check that the latter property holds independently
of which of the log records m1, . . . ,m6 is changed by the attacker, as long as only a
single log entry is changed.2 We will discuss how to instantiate our scheme such that it
can accomodate more log entries, compensate more modifications and achieve better
“compression” below.

The approach described above was originally developed in [Har+16] for (fully flexible)
aggregate signatures. However, the technique equally lends itself to our context of
detecting illicit modifications to log files. It realizes a black-box transformation from a
forward-secure sequential aggregate signature scheme FSSAS to a fault-tolerant forward-
secure sequential aggregate signature scheme. A signature of the fault-tolerant scheme

2Changing more than a single log entry may affect the verifiability of unchanged log entries. For
example, changing m4 and m6 would lead to a situation where m1, m2 and m5 can still be verified,
but m3 would be “lost”. If an attacker changed m4 and m5 instead, all rows would be affected, and
thus no log entry could be verified anymore.
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is simply a “vector” of signatures σ1, . . . , σr (r ∈ N), each initialized to the empty
signature λ of FSSAS. When a new message is added to the aggregate signature, the
scheme assigns the next (leftmost) unused column to this message, determines the
affected rows with the help of the matrix and uses the AggSign algorithm of FSSAS to
update the signatures of the respective rows. Formally, the verification algorithm of a
fault-tolerant scheme does not return a single bit indicating the validity of the entire
claim sequence, but returns a sequence of bits instead, each indicating the validity of
a specific claim.3 We use the phrase “with list verification” to mark the syntactical
difference, and then formally define the property of fault-tolerance for such schemes.
Note that our construction of fault-tolerance does not rely on any computational

assumption, but fault-tolerance can be achieved unconditionally. (We only assume that
a given set system is a CFF, which in turn can be shown unconditionally for certain
constructions.) This does not mean we achieve unconditional “security”, though, since
the property of fault-tolerance is not related to “security” of signature schemes (in the
sense of unforgeability notions such as the ones in Sections 2.3.1 and 2.3.2), but is a
generalization of correctness. While fault-tolerance can be shown unconditionally, we
still require computational assumptions for the security of our schemes.
We give another transformation, building a robust logging scheme from a fault-

tolerant forward-secure SAS scheme and a (plain) forward-secure signature scheme.
This transformation essentially adds security against reordering and deletion of claims,
including security against truncations to the fault-tolerant signature scheme. We use
the technique discussed in Section 4.3 to achieve truncation security.
Having a fixed matrix as in the example above places a limit on the number of

messages which can be signed by our scheme. However, since the number of messages
which can be added can be made exponentially large with only polynomial overhead,
this does not pose a serious problem. Nonetheless, we briefly discuss how to achieve a
scheme without such a limitation in Section 5.3.4.

The technique from [Har+16] also features so-called selective verification: To verify a
single log entry, one can use the aggregate signature’s redundancy to call the verification
routine on a smaller set, instead of the whole log file, see Section 5.3.4. Note that
space-inefficient logs using distinct signatures for each log entry have this feature
trivially.

Our Contribution.

We build a cryptographic logging scheme that simultaneously features robustness,
sublinear storage overhead and truncation security. Our approach is provably secure
and uses a tight security reduction. For this, we define a security model for the logging
scenario that captures truncation attacks as well as a wide range of other manipulations.
This distinguishes our work from previous publications (e.g. [MT07a; Ma08]) where

3In the definitions given in the original publications [Har+16; Har+17b], the verification algorithm
returns a (multi-)set of all valid claims. We redefine the verification algorithm to output a sequence
of bits instead, since it seems more natural in retrospect.
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truncation security is only argued for informally and is not part of the security model,
or which allow for omission of log entries [YPR12b].
Our logging scheme can operate in the stand-alone model without any interaction

with another party. It does not require public ledgers (e.g. blockchains) or any other
third party that needs to vouch for the integrity of the log file. However, our scheme
can easily be combined with such techniques, and thus can be re-used as a building
block for future schemes.
We implemented a prototype version of our scheme and present benchmark results

for multiple sets of parameters.

Outline.

Section 5.2 introduces notation, preliminary definitions and tools we need for our
constructions. In Section 5.3 we present the notion of fault-tolerant forward-secure
sequential aggregate signatures, and give a generic construction of such schemes from
an arbitrary forward-secure sequential aggregate signature scheme. We then apply the
technique from Section 4.3 to this scheme in order to add truncation resistance and
obtain a robust and truncation-secure logging scheme, see Section 5.4. We present an
example implementation of this scheme as well as benchmark results in Section 5.5.
Finally, we conclude in Section 5.6.

5.2. Preliminaries

We briefly introduce some additional preliminaries for this chapter.

5.2.1. Cover-Free Families

Definition 5.1 (Cover-free Family, based on [KS64; KRS99]). Let S be a finite set, B be
a set of subsets (or blocks) of S and d ∈ N. The pair F = (S,B) is a d-cover-free family
(or d-CFF) if for all d blocks B1, . . . , Bd ∈ B and all distinct B ∈ B \ {B1, . . . , Bd}, we
have that B * B1 ∪ · · · ∪Bd, i.e. no block is covered by the union of any other d blocks.
F is a cover-free family (CFF) if it is d-cover-free for a d ≥ 1. A CFF with a linear
order ≤ on B is called ordered.

To simplify the presentation, we also assume an order on S and usually identify S
with [r], for r = |S|.

Definition 5.2 (Incidence Matrices). The incidence matrix M of an ordered CFF
(S,B) is defined via

M[i, j] =
{

1, if i ∈ Bj ,
0, otherwise,

for |S| = r ∈ N, |B| = n ∈ N, i ∈ [r], B = {B1 ≤ · · · ≤ Bn} and j ∈ [n].
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In this way, each row of the incidence matrix is associated with an element i ∈ S, and
the positions of the 1-entries in the row show the blocks Bj that contain i. Similarly,
each column of the incidence matrix corresponds to a block Bj , and the 1-entries
designate the elements i ∈ S contained in Bj .
While our construction outlined below can be instantiated with an arbitrary cover-

free family, we briefly present the construction from [KRS99, Section 5] as an example
of a CFF in Appendix A.

5.2.2. Notation

IfM is a matrix with n rows and m columns and i ∈ [n], j ∈ [m], thenM[i, 1 . . . j] is
the sequence of the leftmost j entries of the i-th row ofM. Moreover, if S is a sequence
over {0, 1}, then ones(S) is the sequence of all k ∈ [len(S)] such that S[k] = 1. (This
sequence is sorted in ascending order.) Consequently, ifM is a matrix over {0, 1}, then
ones(M[i, 1 . . . j]) is the sequence of all k ∈ [j] such thatM[i, k] = 1.
During this chapter, we will frequently use ones(M[i, 1 . . . j]) as an index sequence

(as defined in Definition 2.14 on page 23) for a claim sequence C = (ck)lk=1 (l ∈ N, l ≥ j).
The subsequence of C induced by ones(M[i, 1 . . . j]) is C[ones(M[i, 1 . . . j])], i.e. the
subsequence of C that contains all ck such that M[i, k] = 1. In order to simplify
notation, we denote this subsequence by C[M, i, 1 . . . j].

5.3. Fault-Tolerant Forward-Secure Sequential Aggregate
Signatures

In this section we define the syntax of forward-secure sequential aggregate signatures
(SAS) with list verification, define fault-tolerance for such schemes, and present a
security notion which captures the forward security property. We then give a generic
construction, and prove its fault-tolerance and security.
We now define key-evolving sequential aggregate signature schemes (SAS) with

list verification. The definition given below is mostly the same as the definition of
(standard) key-evolving sequential aggregate signature schemes (see Definition 2.22 on
page 32), but differs in the verification algorithm and the definition of validity.

Definition 5.3 (Key-Evolving Sequential Aggregate Signature Scheme with List-Veri-
fication). A key-evolving SAS scheme with list-verification Σ is a tuple of four PPT
algorithms Σ = (KeyGen,Update,AggSign,Verify), where:

KeyGen(1κ, 1T )→ (sk1, pk)
takes as input the security parameter κ and an upper bound T on the number of
epochs. It outputs a key pair (sk1, pk), where sk1 is the secret key for the first
epoch.

Update(skt)→ skt+1
takes as input the secret key skt of period t. If t ≥ T the output of Update is not
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defined. If t < T it computes the secret key skt+1 for period t+ 1 and securely
and irrecoverably erases the old key skt. It outputs skt+1.

AggSign(skt, Ci−1, τi−1,mi)→ τi
takes as input a secret key skt for an epoch t, a claim sequence Ci−1, a corre-
sponding signature τi−1 and a message mi. It outputs a signature τi for the new
claim sequence Ci := Ci−1 ‖(pk, t,mi).

Verify(C, τ)→ V
takes as input a claim sequence C of length l ∈ N0 and a signature τ for C and
outputs a sequence V ∈ {0, 1}l of l bits. Claims C[i] for which V [i] = 1 are taken
to be valid (i ∈ [l]), those claims with V [i] = 0 are considered invalid.

We require a key-evolving sequential aggregate signature scheme with list verification
to be correct as defined below.

Definition 5.4 (Valid and Regular Signatures). Let Σ be a quadruple of algorithms
as defined above, Ci be a claim sequence and τi be a signature. We say that τi is valid
for position j of Ci (where j ∈ [len(Ci)]), if Verify(Ci, τi)[j] = 1.

We say that τi is regular for Ci iff either

• Ci = () and τi = λ, or

• Ci = Ci−1 ‖ c for some claim c = (pk, t,mi) with t ∈ [T ], and τi is in the
image of AggSign(skt, Ci−1, τi−1,mi) where τi−1 is a regular signature for Ci−1,
mi is an arbitrary message, T = T (κ) ∈ poly(κ), and skt is the (t − 1)-times
updated version of some secret key sk1 such that (sk1, pk) is a key-pair output by
KeyGen(1κ, 1T ).

5.3.1. Fault Tolerance of FS-SAS Schemes
Definition 5.5 (Differences of Claim Sequences). Let n, n′ ∈ N0, and C = (c1, . . . , cn),
C ′ = (c′1, . . . , c′n′) be claim sequences. We say that C and C ′ differ on ` positions
(0 ≤ ` ≤ min(n, n′)) iff ci 6= c′i for ` indices 1 ≤ i ≤ min(n, n′) and ci = c′i for the
rest. Moreover, we say that C ′ contains d errors with respect to C iff they differ on
` positions and d = |n− n′|+ `.

Definition 5.6 (Fault Tolerance). A key-evolving SAS scheme Σ with list verification
is tolerant against d errors, iff for all claim sequences C = (c1, . . . , cn), C ′ = (c′1, . . . , c′n′)
(n, n′ ∈ N0) where C ′ contains at most d errors with respect to C and for all signatures τ
which are regular for C, we have

V [i] = 1 for all 1 ≤ i ≤ min(n, n′) where ci = c′i,

where V := Σ.Verify(C ′, τ). In other words, Verify correctly identifies at least all claims
ci from C ′ as valid that were already contained in C at the same position.
A d-fault-tolerant key-evolving SAS scheme is an SAS scheme with list verification

that is tolerant against d errors. A scheme is fault-tolerant, if it is d-fault-tolerant for
some d > 0.
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Note that Σ.Verify may also identify claims c as valid where c = C ′[i] 6= C[i], but our
security proof will show that such events are extremely rare or trivial.

Observe that 0-fault-tolerance requires that if C = C ′ and the signature τ is regular
(for C) then V [i] = 1 for all claims ci ∈ C. This observation illustrates that fault-
tolerance is not a property akin to “security” (in the sense of unforgeability notions),
but a generalization of correctness. Hence we may define correctness as a special case
of fault-tolerance:

Definition 5.7 (Correctness). We say that a key-evolving SAS scheme with list
verification is correct iff it is 0-fault-tolerant.

Note that our definition of key-evolving sequential aggregate signature schemes with
list verification represents a purely syntactical change. To show this, we build a simple
example scheme with list verification (but without fault-tolerance) from a scheme
without list verification.

Example 5.8 (A Scheme with List Verification but without Fault Tolerance). Let
FSSAS be a key-evolving sequential aggregate signature scheme (without list verifica-
tion). We define a scheme FSSAS′ with list verification as follows: The key generation,
key evolution and signing algorithms of FSSAS′ are the same as for FSSAS. The
verification algorithm of FSSAS′ first runs the verification algorithm of FSSAS on its
inputs C, σ and obtains a single bit b indicating the validity of all claims in C. If b = 1,
then it outputs the sequence 1len(C), otherwise it outputs 0len(C).

The resulting scheme is correct and secure (as defined below) if FSSAS is correct and
secure, respectively. However, the resulting scheme is not fault-tolerant: A single invalid
signature will still lead to a situation where no original message can be verified anymore.
Thus, the scheme still exhibits an “all-or-nothing” behavior during verification, instead
of the desired “graceful degradation”.

5.3.2. Security Notion
Let AS = (KeyGen,Update,AggSign,Verify) be a key-evolving SAS scheme with list
verification, A be a PPT algorithm, κ ∈ N a security parameter, and T be the number of
epochs. The security experiment for a forward-secure SAS scheme with list verification
is identical to that of forward-secure SAS schemes described in Section 2.3.2, except
for the following difference: The experiment outputs 1 iff there is a non-trivial claim
c∗ = C∗[i] (for i ∈ [len(C∗)]) such that V [i] = 1, where V := Verify(C∗, σ∗).
A key-evolving SAS scheme with list verification is called forward-secure sequen-

tial aggregate signature existentially unforgeable under chosen message attacks (FS-
-SAS-EUF-CMA-secure) if for all T = T (κ) ∈ poly(κ), the probability of each PPT
adversary A to win the above experiment is negligible in κ.

5.3.3. Generic Construction
Next, we show how to port the generic construction of fault-tolerant aggregate signatures
given by [Har+16] to forward-secure sequential aggregate signature schemes. We use
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this construction to convert a forward-secure SAS scheme FSSAS to a fault-tolerant
forward-secure SAS scheme. We give proofs of both security and fault-tolerance below.

Let FSSAS be a key-evolving SAS scheme, F a d-cover-free family (d ∈ N0), andM
its incidence matrix. A signature τ of our new scheme is a vector of signatures σ of
FSSAS. The algorithms of our scheme are as follows:

KeyGen and Update
are identical to the respective algorithms of FSSAS.

AggSign(skt, Cj−1, τj−1,mj)→ τj
takes as input a secret key skt, a claim sequence Cj−1 = (c1, . . . , cj−1), its
corresponding signature τj−1 and a message mj to sign. The sequential aggregate
signature is updated component-wise, according to the entries of M. More
precisely, we set

τj [i] := FSSAS.AggSign(skt, Cj−1[M, i, 1 . . . j − 1], τj−1[i],mj),

where M[i, j] = 1, and let τj [i] := τj−1[i] otherwise (i ∈ [rows(M)]). (Here,
C0 := () and τ0[i] := λ for each i.) The output is τj .

Verify(C, τ)→ V
takes as input a claim sequence C of length n ∈ N0 and an aggregate signature τ
for C. We compute a bit sequence V ∈ {0, 1}n that specifies for each claim if it is
considered valid. We initialize V to 0n, and iterate over all entries τ [i] of τ . In each
iteration, if FSSAS.Verify(C[M, i, 1 . . . n], τ [i]) = 1 we let V := V ∨M[i, 1 . . . n].
(Here, ∨ denotes the bitwise logical OR of two bit strings.) Finally, output V .

This concludes the description of our scheme. Before proving the scheme fault-tolerant
and secure, we first show the following lemma, which shows the main invariant main-
tained by our scheme:

Lemma 5.9. Let τ be a regular signature of the scheme described above for a claim
sequence C of length n ∈ N0. Then, for all i ∈ [r], τ [i] is regular for C[M, i, 1 . . . n],
where r = |S|.

Proof. We show the lemma by a straightforward induction over n. For the start of the
induction, let n = 0. Then C = () and hence C[M, i, 1 . . . n] = () for all i. Moreover,
for all i, τ [i] = λ, which is regular for () = C[M, i, 1 . . . n]. This constitutes the start
of the induction.
For the induction step, assume that for a fixed n′ ∈ N0, all claim sequences C ′ of

length n′, all signatures τ ′ regular for C ′ and all i ∈ [r], it holds that τ ′[i] is regular
for C ′[M, i, 1 . . . n′].

Let C be a claim sequence of length n = n′+1, i ∈ [r], and τ be regular for C. Let C ′
be the length-n′ prefix of C and c = C[n]. Since τ is regular for C, τ is in the image
of AggSign(skt, C ′, τ ′,m) for some secret key skt, t ∈ [T ], some message m ∈ {0, 1}∗,
and τ ′ which is regular for C ′. By the induction hypothesis, we thus know that for all
i ∈ [r], we have that τ ′[i] is regular for C ′[M, i, 1 . . . n′].
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Now, if M[i, n] = 0, then τ [i] = τ ′[i], which is regular for C ′[M, i, 1 . . . n′] =
C[M, i, 1 . . . n]. If M[i, n] = 1 instead, then (by the construction of AggSign), we
have that τ [i] is in the image of AggSign(skt, C ′[M, i, 1 . . . n′], τ ′[i],m), and hence it is
regular for C ′ ‖ c = C[M, i, 1 . . . n].
So in both cases (M[i, n] = 0 and M[i, n] = 1) we have that τ [i] is regular for

C[M, i, 1 . . . n], as claimed.

We now prove the scheme fault-tolerant and secure.

Theorem 5.10. Let Σ be the key-evolving SAS scheme with list verification defined
above. If Σ is based on a d-CFF F = (S,B), and FSSAS is correct, then Σ is tolerant
against d errors.

We give a sketch of the proof first. Observe that each message mj is redundantly
aggregated into several of the signatures τ [i], namely those whereM[i, j] = 1. Each
column j is associated with a block Bj of F . If errors occur on (at most) d positions
(k1, . . . , kd), verification of the rows SK = Bk1 ∪ . . . ∪Bkd will most likely fail, whereas
the other rows are unaffected. However, this subset SK cannot cover any other block Bj
belonging to another message mj due to the cover-freeness of F . Thus, each correct
message mj can be verified from at least one row i, and the verification algorithm will
set V [j] to 1 in the i-th iteration. Thus, the message will be considered valid by our
scheme. We now proceed to the formal argument, which is illustrated by Figure 5.1.

Proof. Let C and C ′ be two claim sequences, where C ′ contains at most d errors with
respect to C. Let n, n′ be the lengths of C, C ′, respectively, let τ be a regular signature
for C, andM be the incidence matrix of F , let S = {s1, . . . , sr}, B = {B1, . . . , Bm}
and r = rows(M) = |S|. Let V := FSSAS.Verify(C ′, τ).
We need to show that V [j] = 1 for all 1 ≤ j ≤ min(n, n′) where C[j] = C ′[j].

Observe that V is the bitwise logical OR of all sequencesM[i, 1 . . . n′] where

FSSAS.Verify(C ′[M, i, 1 . . . n′], τ [i]) = 1. (5.1)

Therefore, V [j] will be 1 if for at least one of these i it holds thatM[i, j] = 1. So, let
j ∈ [min(n, n′)] be an arbitrary position where C[j] = C ′[j]. We will show that there
is at least one row i such that (5.1) holds andM[i, j] = 1.

Let D := {k ∈ [min(n, n′)] : C[k] 6= C ′[k]} be the indices of all positions where C and
C ′ differ, and let E := {min(n, n′) + 1, . . . ,max(n, n′)} be the set of indices of excess
claims. Let K := D ∪ E. Since C ′ contains at most d errors with respect to C, we
have |K| ≤ d. Clearly, j /∈ K, because j is a position where C and C ′ agree, whereas
K contains the positions k where either they disagree, or one of the claim sequences
does not even have k elements.
Define IK := {i ∈ [r] : M[i, k] = 1 for a k ∈ K}. This is precisely the set of rows

such that C[M, i, 1 . . . n] 6= C ′[M, i, 1 . . . n′], i.e. the rows affected by the errors. For
all other rows i /∈ IK it holds that C[M, i, 1 . . . n] = C ′[M, i, 1 . . . n′].
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SK



c1 c2 . . . c′p . . . cj . . . c′q . . . cn

s1 1 0 . . . 0 . . . 1 . . . 1 . . . 0
...

...
... . . . ... . . . ... . . . ... . . . ...... 0 1 . . . 1 . . . 0 . . . 1 . . . 1

...
...

... . . . ... . . . ... . . . ... . . . ...
si 1 1 . . . 0 . . . 1 . . . 0 . . . 1
...

...
... . . . ... . . . ... . . . ... . . . ...

sm 1 0 . . . 1 . . . 1 . . . 0 . . . 1



∈
∈

∈

Figure 5.1.: An example for our proof of fault tolerance. Recall that we associate
elements s ∈ S with rows of the incidence matrix. Likewise, we associate
claims with blocks of the CFF, and thus with columns of the matrix.
Assume that the incidence matrix belongs to a d-CFF with d ≥ 2. Let
C = (ci)ni=1 and C ′ be claim sequences, differing on positions K = {p, q},
and w.l.o.g. p < q. The ones in the respective columns (in red circles)
define a subset SK of the rows of the matrix (red background). IK is the
set of indices of these rows. Since SK is the union of Bp and Bq, and the
matrix belongs to a d-CFF with d ≥ 2, SK does not cover Bj , so there
is a si ∈ Bj which is not contained in SK . The fact that si belongs to
Bj is indicated by a one in a blue circle. Thus, verification of row i (blue
background) will succeed, and hence all claims belonging to this row (and
in particular cj) can be successfully verified. Note that cj could in theory
also be verified from the first or the last row, but these rows are affected
by the changes at the indices p and q of the claim sequence.
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Let SK :=
⋃
k∈K Bk. Note that

SK = {si ∈ S : si ∈ Bk for a k ∈ K}
= {si ∈ S : M[i, k] = 1 for a k ∈ K}
= {si ∈ S : i ∈ IK},

where the first equality follows from the definition of SK and the definition of union of
sets, the second equality follows directly from the definition of the incidence matrixM,
and the third equality follows from the definition of IK .

As a union of at most d blocks Bk ∈ B, SK does not cover any other, distinct block
B ∈ B. In particular, since j /∈ K, Sk does not cover Bj . So, there must be a si ∈ Bj
such that si /∈ SK , and thus i /∈ IK . At the same time, we know M[i, j] = 1, since
si ∈ Bj .
All that is left to show is that (5.1) holds for this i. However, since i /∈ IK , we

have C ′[M, i, 1 . . . n′] = C[M, i, 1 . . . n], and thus we may replace C ′[M, i, 1 . . . n′]
by C[M, i, 1 . . . n] in (5.1). Since τ is regular for C, we have that τ [i] is regular
for C[M, i, 1 . . . n] by Lemma 5.9. Therefore (5.1) must hold due to the correctness
of FSSAS.

Next, we will prove the security of our generic construction given above.

Theorem 5.11. Let FSSAS be a key-evolving SAS scheme, F be a cover-free family
with incidence matrixM, and Σ be the scheme described above. If there exists a PPT
algorithm A that breaks the security of Σ with success probability εA, then there exists
a PPT attacker B that breaks the FS-SAS-EUF-CMA-security of FSSAS with success
probability εB ≥ εA.

Again, we first give a proof sketch before moving to the formal proof. Note that the
verification algorithm of our scheme outputs the logical OR of allM[i, 1 . . . n] for all
valid rows i. Thus, to break the security, the attacker must create a forgery where a
non-trivial claim is contained in a valid row, which constitutes a successful attack on
the underlying scheme FSSAS.

Proof. The proof is mostly analogous to the proof from [Har+16]. Define B as follows.
B internally simulates the security experiment for forward-secure SAS schemes with list
verification for A. B’s input consists of a public key pk∗ and the number of epochs 1T .
B forwards these to A. In the following, we describe how B responds to A’s oracle
queries.

Signature Oracle.
When A queries its signature oracle with a claim sequence Cj−1, a signature τj−1
and a message mj , then B queries its signature oracle multiple times, one time
for each row i ofM withM[i, j] = 1. For each such i, B queries its signature
oracle with inputs Cj−1[M, i, 1 . . . j− 1], τj−1[i] and mj and obtains τj [i]. For all
remaining i ∈ rows(M), B sets τj [i] := τj−1[i]. B returns the resulting signature τj
to A.
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Epoch Switching Oracle.
When A queries its epoch switching oracle, B does the same and returns the
string “ok” to A.

Break-In Phase.
If A decides to break in, B does the same in the FS-SAS-EUF-CMA experiment,
and thereby obtains the secret key skt, where t is the current epoch. B then
returns skt to A.

Finally, A outputs a claim sequence C∗ of length n∗ and a signature τ∗. If A does
not win the experiment, then B aborts. For the remainder of this proof, assume that
A wins the experiment. Then (by definition) C∗ contains a non-trivial claim c∗ =
(pk∗, t∗,m∗) = C∗[j∗] (for a j∗ ∈ [n∗]) such that V [j∗] = 1, where V := Σ.Verify(C∗, τ∗).

Since V [j∗] = 1 and V is the logical OR of allM[i, 1 . . . n∗] where

FSSAS.Verify(C∗[M, i, 1 . . . n∗], τ∗[i]) = 1, (5.2)

there must be an index i such thatM[i, j∗] = 1 and (5.2) holds. B searches for such a
claim c∗ and a row index i. B then outputs C∗[M, i, 1 . . . n∗] and τ∗[i] as forgery for
FSSAS. This concludes the description of the attacker B.

Non-Triviality. We now argue that B’s output is non-trivial. In each epoch, B outputs
exactly the same messages to its signature oracle that A outputs. Therefore, if A did
not output m∗ to its signature oracle during epoch t∗, then B did not output m∗ to its
signature oracle during epoch t∗ either, and so the claim c∗ is non-trivial for B, too.
Moreover, we haveM[i, j∗] = 1, so c∗ is contained in B’s output C∗[M, i, 1 . . . n∗].

Validity. (5.2) holds by the choice of i.

Summary. We now argue that εB ≥ εA. First observe that B perfectly simulates the
FS-SAS-EUF-CMA experiment for A. If A wins, then B’s output is valid and contains
a non-trivial claim c∗, hence B wins the security experiment for FSSAS. Thus, εB ≥ εA.
Furthermore, B runs in polynomial time if A does.

Corollary 5.12. If FSSAS is FS-SAS-EUF-CMA-secure then Σ is FS-SAS-EUF-CMA-
secure.

5.3.4. Discussion

We now review our scheme and discuss some of its properties as well as possible
extensions.
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Selective Verification.

Let C be a claim sequence, n := len(C), and τ be a signature for C. Suppose one is
interested in verifying a specific claim c = C[j] (j ∈ [n]), but not the claim sequence as
a whole. To achieves this, one might simply run Verify on C, and check if the output at
position j is 1. However, our scheme features a more efficient way of checking individual
claims.
Observe that the output of the Verify algorithm is the bitwise logical OR of all

rows i of the incidence matrixM where FSSAS.Verify(C[M, i, 1 . . . n], τ [i]) = 1. Thus,
there is no need to check rows i whereM[i, j] = 0, since these rows are irrelevant to
the outcome for the claim c. Moreover, once a row with a valid signature τ [i] and
M[i, j] = 1 has been found, there is no more need to check the other rows, since V [i]
has been set to 1, and adding further rows by bitwise logical OR will not change the
outcome for claim c. Thus, it may be possible to verify the claim c by just checking a
single row ofM.

Unbounded CFFs.

Note that our scheme described above cannot aggregate an unbounded number of
signatures: Each message is associated to one of the blocks of the cover-free family
(and hence, to one of the columns of the CFF’s incidence matrix). Thus, once a CFF
has been fixed, the CFF limits the number of signatures (and hence messages) which
can be aggregated. We now discuss how to deal with this issue.
Firstly, one might accept this limitation, provided that the number of messages

which can be aggregated is “large enough”. For example, when fixing the parameter d,
the number of blocks of the CFF given in Appendix A grows exponentially in the size
of the CFF’s universe (see [Har+16]). Hence, it is possible to aggregate signatures for
an exponential number of messages, while only needing to store a polynomial number
of (aggregate) signatures. Rephrasing this, it is possible to “compress” signatures for n
messages to O(logn) aggregate signatures while maintaining fault-tolerance. Table A.1
(see page 140) gives some example parameters for CFFs supporting at least one billion,
240, 250 and 264 blocks.

[Har+16] showed that this logaritmic behaviour is asymptotically optimal: It is
necessary for a fault-tolerant signature to have at least Ω(logn) bits, where n is the
number of blocks of the CFF. This follows from an information-theoretical argument,
see [Har+16] for details.

However, if one prefers to have a logging scheme which can support a truly unbounded
number of messages, then a different solution is needed. [Har+16] proposed to use
“unbounded” CFFs, which can be “enlarged” once the available blocks are exhausted.
However, the simple construction of unbounded CFFs given by [Har+16] has a linear
relationship between the size of the CFF’s universe and the number of blocks, instead
of the desired logarithmic one. Idalino and Moura [IM18] give for more efficient
constructions of unbounded CFFs.
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Generalization to More Types of Changes.

Recall Definition 5.5: We say that a claim sequence C ′ contains d errors with respect
to a claim sequence C iff they differ on l positions (for an l ∈ N0) and their lengths
n := len(C), n′ := len(C ′) differ by d − l. According to this definition, the following
types of modifications to C are counted as a single error:

• changing or replacing one claim in C,

• appending a new claim to C, and

• removing the last claim of C.

In contrast, if an attacker deleted some claim ci for some i < len(C) and the trailing
claims are “moved forward”, then (according to this definition) the resulting claim
sequence C ′ had n− i+ 1 errors with respect to C. Similarly, if an attacker inserted
a new claim between positions i − 1 and i, such that the new claim is at position i
and all trailing claims are moved towards higher indices, then C ′ had n− i+ 2 errors
with respect to C. This behavior stands in contrast to our expectations, if we consider
these types of modifications as just a single change. We now briefly outline an idea
that might be followed towards solving this problem.
One might consider not assigning the columns to the messages in a left-to-right

fashion, but choosing the column by hashing the respective message. For example,
given a hash function H : {0, 1}∗ → [n] and a CFF’s incidence matrixM with at least
n columns, one might assign a message m to the column H(m). We now discuss some
effects that would be caused by this modification to our scheme.

Hash Collisions. Naturally, this change affects fault-tolerance if hash collisions occur:
If two messages m1, m2 are hashed to the same column, then modification of a single
one of them (say, m1) will prevent the verification of the second one (m2) since the
rows from which m2 can be verified are the same as the rows for m1, and all of them
are affected by the change to m1.

We identify two options to deal with this issue: Firstly, one might simply accept this
situation. In an application where messages are not chosen maliciously, a universal
hash function together with a CFF having enough blocks may be a satisfactory solution.
In this case, one would need to define a probabilistic notion of fault-tolerance.

If messages are chosen maliciously, however, one should consider our second option:
using a collision-resistant hash function instead of a universal one. This guarantees
that no PPT attacker has a non-negligible chance of finding two messages hashing
to the same column index, and thus one would require a computational version of
our definition of fault-tolerance. Moreover, this requires a hash function with a very
large output space, and thus a CFF with a very large number of blocks. Table A.1
(see page 140) shows some instantiations of the CFF given in Appendix A where the
number of blocks is slightly greater than 2256, such that the CFF could be used with
practical hash functions such as SHA-256 and SHA3-256.
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Reduction of Fault Tolerance. Another effect caused by the hashing approach is that
in order to tolerate d changes, we expect that one would require a 2d-CFF (instead of
a d-CFF).

Example 5.13. Consider the 1-CFF defined by the matrix given in Section 5.1. Let
C = (c1, c2) = ((pk, t1,m1), (pk, t2,m2)) be a claim sequence, where H(m1) = 2 and
H(m2) = 4. A regular signature τ for C would be generated as:

τ :=


AggSign(skt2 , (), λ,m2)
AggSign(skt1 , (), λ,m1)

AggSign(skt2 , (c1),AggSign(skt1 , (), λ,m1),m2)
λ


Now let C ′ = (c1, c

′
2), where c′2 = (pk, t2,m′2) for m′2 6= m2, and H(m′2) = 1. Now

Verify(C ′, τ) would check if

τ [1] is valid for (c′2),
τ [2] is valid for (c1, c

′
2),

τ [3] is valid for (c1), and
τ [4] is valid for ().

Thus, we expect the verification on the first three rows to fail, and thus expect that
Verify would output (0, 0). Hence, even though C ′ only has a single error with respect
to C, the unmodified claim c1 can no longer be verified. We attribute this change to
the fact that when c2 was replaced by c′2, this affected two columns: both the column
H(m2) and the column H(m′2). This leads to the conjecture that for the variant of
our scheme discussed here, a 2d-CFF is needed in order to tolerate d changes.

Future Work. Formally examining this approach is left as future work. Moreover,
finding a different approach towards building a fault-tolerant scheme which better
tolerates addition and removal of claims at arbitrary positions is another interesting
open problem.

5.4. Robust Secure Logging
We now focus on building a robust logging scheme with sub-linear storage overhead.
Our construction makes use of an arbitrary fault-tolerant forward-secure SAS scheme
and a plain forward-secure signature scheme. We use the approach highlighted in
Section 4.3 to obtain truncation-security.
The syntax of our logging scheme is similar to the syntax of FT-FS-SAS schemes.

The key difference is that the function of the verification algorithm is distributed over
two algorithms: The first algorithm (called VerifyLog) checks the overall log file and
outputs either 1 or 0. Secondly, there is a ValidEntries algorithm which outputs a
bit vector V indicating which of the log entries in the log file have a valid signature.
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This algorithm behaves very similar to the verification algorithm of a fault-tolerant
forward-secure SAS scheme. It should be called if the VerifyLog algorithm detects an
error, in order to obtain more fine-grained information about which log entries are
valid.

Note that even if the signature is valid in the sense that all claims are returned by
ValidEntries, an attacker might have truncated the log. In this case VerifyLog returning 0
points towards this possibility.

For simplicity, we keep using claim sequences as inputs to the algorithms given below.
This implies that (formally) the same public key may be given multiple times to the
verification algorithm. In practice, it is obviously unnecessary to store the public key
once per log entry, or give multiple copies of this key to the verification algorithms.

Definition 5.14 (Logging Scheme with List Verification). A logging scheme with list
verification LS = (KeyGen, Append, Update, ValidEntries, VerifyLog) is a tuple of five
PPT algorithms, where:

KeyGen(1κ, 1T )→ (sk1, pk, τ0)
takes as input the security parameter κ and an a priori upper bound T (encoded
in unary) on the number of epochs. It outputs a key pair (sk1, pk), where sk1 is
the secret key for the first epoch, and an initial signature τ0 for the empty log
file C0 = ().

Append(skt, Ci−1, τi−1,mi)→ τi
takes as input a secret key skt for epoch t, a claim sequence Ci−1, a corresponding
signature τi−1 and a message mi. It outputs a signature τi for the new claim
sequence Ci := Ci−1 ‖(pk, t,mi).

Update(skt, C, τ)→ skt+1
takes as input the secret key skt of period t, the current claim sequence C and
a signature τ for C. If t ≥ T the output is undefined. If t < T it computes the
secret key skt+1 for period t+ 1 and securely erases the old key skt. Update may
modify C by appending additional claims to it, and τ may be modified arbitrarily.

ValidEntries(C, τ)→ V
takes as input a claim sequence C of length n ∈ N0 and a signature τ for C and
outputs a bit string V ∈ {0, 1}n (also of length n). Claims C[i] (for i ∈ [n]) with
V [i] = 1 are taken to be valid, claims with V [i] = 0 are considered invalid.

VerifyLog(C, τ)→ 0/1
outputs either 1, if C is deemed completely valid and authentic, or 0 otherwise.

We require that a logging scheme with list verification is correct as defined below.

The notion of regular signatures is defined analogously to the definition for categorized
key-evolving audit log schemes (see Definition 4.9):
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Definition 5.15 (Valid and Regular Signatures). Let LS be a tuple as defined above,
and κ ∈ N. We say a signature τ is valid for a claim sequence C iff VerifyLog(C, τ) = 1.
We say that τ is valid for index i of C, iff ValidEntries(C, τ)[i] = 1, where i ∈ [len(C)].
In this case, we may also say that τ is valid for the i-th claim in C. When i and C are
clear from the context, we may simply say that τ is valid for the claim c = C[i].

Additionally, we say that τ is regular for C iff (C, τ) are in the image of the following
process for some number of epochs T = T (κ) ∈ poly(κ), a log file length l ∈ N0, a log
file M = (m1, . . . ,ml), and a monotonically increasing sequence (t1, . . . , tl+1) of epoch
numbers (each in [T ]):

1. Let (sk1, pk, τ)← KeyGen(1κ, 1T ), t := 1, C0 := ().

2. Iterate over all i ∈ [l] in increasing order:
a) While ti > t, compute skt+1 := Update(skt, Ci−1, τ) and set t := t + 1. As

above, Update may modify Ci−1 and τ .
b) Set τ := Append(skt, Ci−1, τ,mi).
c) Set ci = (pk, ti,mi) and Ci := Ci−1 ‖ ci.

3. While tl+1 > t, keep setting skt+1 := Update(skt, Cl, τ) and t := t+ 1.

4. Output (Cl, τ).

This concludes our definition of regular signatures. We now define fault tolerance for
key-evolving logging schemes with list verification. The definition is analogous to the
definition for key-evolving sequential aggregate signature schemes (see Section 5.3).

Definition 5.16 (Fault Tolerance). Let LS be a tuple as defined above, C, C ′ be two
claim sequences where C ′ contains at most d errors with respect to C, let τ be a regular
signature for C, and V := ValidEntries(C ′, τ). LS is tolerant against d errors iff for all
such claim sequences C, C ′, we have

V [i] = 1 for all i ∈ [min(len(C), len
(
C ′
)
)] where C[i] = C ′[i].

LS is d-fault-tolerant if it is tolerant against d errors. We say that LS is fault-tolerant,
if it is d-fault-tolerant for some d ≥ 1.

We ask that for a given claim sequence C and a signature τ , the behavior of ValidEntries
and VerifyLog is consistent: If VerifyLog indicates that a claim sequence C is completely
valid, then ValidEntries should identify all claims in C as valid.

Note that we do not require the converse property, since it is perfectly possible
that all claims in a claim sequence are valid, but the entire claim sequence does not
correspond to the “true” log file, i.e. if the log file has been truncated.

Definition 5.17 (Verification Consistency). Let LS be a tuple as defined above. LS
is verification-consistent iff for each claim sequence C and each signature τ with
VerifyLog(C, τ) = 1, we have that ValidEntries(C, τ) = 1len(C).
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Finally, we may now define:

Definition 5.18 (Correctness and Robustness). Let LS be a tuple as defined above. LS
is correct iff it is verification-consistent and for all claim sequences C and all signatures τ
regular for C, we have that τ is valid for C. If LS moreover is fault-tolerant, then it is
robust.

5.4.1. Security Notion

As our next step, we define our security notion for logging schemes with list verification.
The experiment of this notion is similar in spirit to the security experiment for logging
schemes supporting excerpts, given in Definition 4.13 (see page 73). However, there is
a notable difference:
We do not return log file signatures to the attacker by default. Observe that if the

experiment returned the log file signature after each query to the attacker’s Append
oracle, then the attacker had obtained valid signatures for each intermediate state of
the log file, and hence all truncation attacks had to be considered trivial. However
modeling truncation attacks is one of the goals of our research. Thus we let the attacker
(adaptively) specify the log file states for which to obtain a signature. More specifically,
the attacker must explicitly request the log file signature for specific log file states via
a separate GetSignature oracle. This may help an attacker in forging signatures, but
truncation attacks to one of the states for which the attacker requested the signature
are considered trivial after such a query.
Observe that in the security experiment for logging schemes supporting excerpts

given in Definition 4.13 (see page 73) the extraction oracle implicitly realized the
function of the GetSignature oracle.
At the end of the experiment, the attacker outputs a forgery. We require that the

forged claim sequence is valid and non-trivial, or there is a valid and non-trivial claim.

Definition 5.19 (Forward-Secure Existential Unforgeability under Chosen Log Mes-
sage Attacks). For a log scheme with list verification LS = (KeyGen,Append,Update,
ValidEntries,VerifyLog), a PPT adversary A, the number of epochs T and the security
parameter κ ∈ N, the security experiment is defined as follows:

Setup Phase.
The experiment generates a key pair with an initial signature (sk1, pk, τ0) :=
KeyGen(1κ, 1T ), and initializes the log file C0 := (). It maintains an epoch
counter t with an initial value of 1, initializes i := 1, and then starts A with
inputs pk, 1T .

Query Phase.
During the query phase, A may adaptively issue queries to the following oracles:
LogAppend Oracle.

When the attacker specifies a message mi, the experiment updates the
signature via τi := Append(skt, Ci−1, τi−1,mi), where Ci−1 is the current
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log file and τi−1 is the current signature. The experiment then appends
the message mi to the log file, i.e. it sets Ci = Ci−1 ‖(pk, t,mi), and sets
i := i+ 1. The experiment returns “ok” to A.

Epoch Switching Oracle.
The NextEpoch oracle updates the secret key, the log and its signature via
skt+1 := Update(skt, Ci−1, τi−1), increments the epoch counter t := t+ 1 and
returns “ok”. It may be queried at most T − 1 times.

GetSignature Oracle.
Whenever A calls the GetSignature oracle, the experiment responds with the
current signature τi of the log.

Break-In Phase.
Once A signals it is done with the query phase, the experiment enters the break-in
phase. During the break-in phase, A is no longer allowed queries to the oracles
provided during the query phase. Instead, the adversary may use a BreakIn oracle
to obtain the current secret key skt. If A does, the experiment sets tBreakIn := t.
Otherwise, let tBreakIn :=∞.

Forgery Phase.
A outputs a log file C∗, and a forged signature τ∗ for C∗.

We say that C∗ is trivial, iff:

• C∗ equals the contents of some Ci during any of A’s GetSignature oracle
queries, or

• there is a claim c∗ = (pk∗, t∗,m∗) ∈ C∗ such that pk∗ 6= pk, or

• A used the BreakIn oracle in some epoch tBreakIn and C ′ is a prefix of C∗,
where C ′ is the state of the log file after the epoch switch from epoch
tBreakIn− 1 to epoch tBreakIn (including changes made by Update, if any). We
let C ′ = () if tBreakIn = 1.

A claim c∗ = (pk∗, t∗,m∗) is called trivial iff pk∗ 6= pk, t∗ ≥ tBreakIn, A queried m∗
at its LogAppend oracle during epoch t∗, or c∗ is equal to a claim that was
appended by one of the Update calls performed by the epoch switching oracle.

The experiment outputs 1 iff

• C∗ is non-trivial and τ∗ is valid for C∗ or

• there is an index i∗ ∈ [len(C∗)] such that τ∗ is valid for index i∗ of C∗ and
c∗ := C∗[i∗] is non-trivial.

Otherwise, the experiment outputs 0.

We say that A wins the experiment, iff the experiment outputs 1, otherwise, A loses
the experiment.
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A logging scheme with list verification LS is said to be forward-secure existentially
unforgeable under chosen log message attacks (FS-EUF-CLMA-secure) iff for all T =
T (κ) ∈ poly(κ) and all probabilistic polynomial time attackers A:

Pr[A wins] ≤ negl(κ).

Note that we consider forgeries where the attacker does not use the challenge public
key out-of-scope for this security definition. As explained above, we only keep using
the claim sequence notation for simplicity, but expect that in practice the public key is
stored just once for all log entries. Thus, the definition given above formally requires
the attacker to use the “correct” public key since forgeries where the attacker uses
other keys are considered trivial.

5.4.2. Generic Construction

We now turn to our generic construction of a robust logging scheme. The scheme is built
from an arbitrary fault-tolerant forward-secure SAS scheme and a plain forward-secure
signature scheme. Much of the functionality of this scheme is inherited from the
underlying fault-tolerant scheme, but our transformation adds message counters to
protect against message reordering and epoch markers (together with signatures on the
log file length) to achieve security against truncation attacks. Recall our assumption
that messages are properly encoded before signing (see Section 2.4). This encoding
must be injective, i.e. it must be guaranteed that no two distinct objects are mapped
to the same bit string. This assumption is required for our proof of security.

We claim that the construction given below simultaneously achieves security, robust-
ness and sub-linear storage overhead, if the applied encoding is injective, the underlying
schemes are secure and correct, and the CFF given in Appendix A is used.
Let AS be a key-evolving SAS scheme with list verification and FS a key-evolving

signature scheme. We define the logging scheme with list verification LS = (KeyGen,
Append,Update,ValidEntries,VerifyLog) as follows:

KeyGen(1κ, 1T )→ (sk1, pk, τ0)
creates key pairs of the underlying schemes AS and FS as

(skAS, pkAS)← AS.KeyGen(1κ, 1T ),
(skFS, pkFS)← FS.KeyGen(1κ, 1T )

and returns sk1 = (skAS, skFS) and pk = (pkAS, pkFS). The signature for the
empty log file C0 = () is τ0 := (λ,FS.Sign(skFS, 0)).

Append(skt, Ci−1, τi−1,mi)→ τi
takes as input a secret key skt = (skAS, skFS) for period t, a claim sequence Ci−1 =
(c1, . . . , ci−1) = ((pk, tj ,mj))i−1

j=1, its corresponding signature τi−1 = (σi−1, si−1)
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and a message mi to sign. Let CAS = ((pkAS, tj , (j,mj)))i−1
j=1. Both signature

components are obtained from the signature algorithms of AS and FS via

σi := AS.AggSign(skAS, CAS, σi−1, (i,mi)) and
si := FS.Sign(skFS, i).

Then Append securely and irrecoverably erases the old signature si−1 on the log
file length. The resulting signature τi := (σi, si) is returned.

Update(skt, Ci−1, τi−1)→ skt+1
takes as input the secret key skt = (skAS, skFS), a claim sequence Ci−1 and a
corresponding signature τi−1, and appends an epoch marker to the log file that
is valid for the current epoch t, via

τi := Append(skt, Ci−1, τi−1,mi),

where mi := (“End of epoch:”, t). It then updates the components of skt
via sk′AS := AS.Update(skAS) and sk′FS := FS.Update(skFS). (These algorithms
securely erase the old keys.) The new secret key is skt+1 = (sk′AS, sk′FS), the new
claim sequence is Ci = Ci−1 ‖(pk, t,mi), and the new signature is τi.

ValidEntries(C, τ)→ V
takes as input a claim sequence C and a signature τ = (σ, s) for C. It out-
puts AS.Verify(CAS, σ), where CAS is the claim sequence generated from C by
prepending the message number i to mi and replacing the public key pk with the
respective key pkAS for all claims in C. More precisely, if C = ((pk, ti,mi))ni=1
(for some n ∈ N0), then CAS = ((pkAS, ti, (i,mi)))ni=1.

VerifyLog(C, τ)→ 0/1
takes as input a claim sequence C = (ci)ni=1 = ((pki, ti,mi))ni=1 (for some n ∈ N0)
and a signature τ = (σ, s) for C. Firstly, it verifies that the public keys of all
claims in C are equal. If there are different keys, then VerifyLog outputs 0.
Secondly, for all epoch markers ci in C (that is, for all claims where mi is not a
bit string), VerifyLog checks if mi = (“End of epoch:”, ti). Moreover, it verifies
that for all i ∈ [len(C)− 1], we have

ti+1 = ti + 1 if ci is an epoch marker, and
ti+1 = ti otherwise.

If one of these conditions is not met, then VerifyLog returns 0.
Let t be the maximum of all ti. Thirdly, the algorithm verifies the FS signature s
using

b := FS.Verify((pkFS, t, len(C)), s).
If b = 0, it returns 0.
Finally, VerifyLog checks whether ValidEntries(C, τ) = 1len(C), and returns 1 if so.
Otherwise, it returns 0.
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We defer the proof of correctness and robustness to Appendix B, since the proof is
essentially straightforward, but a little lengthy. Here, we only claim:

Theorem 5.20 (Correctness and Robustness). If FS is correct and AS is correct, then
LS is correct. If moreover AS is fault-tolerant for a d > 0, then LS is d-fault-tolerant
and hence robust.

We now prove the security of our scheme. Once again, recall our convention from
Section 2.4 that all mathematical objects are encoded to bit strings in some uniquely
invertible fashion before signing. Furthermore, observe that the VerifyLog algorithm
verifies that the epoch markers ti of the input claim sequence C form a monotonically
increasing sequence, and there are no “gaps”: The difference between two consecutive ti
is at most 1.

Theorem 5.21. Let LS be the logging scheme with list verification defined above
and AS, FS be the underyling signature schemes. If there is a PPT adversary A
who breaks the FS-EUF-CLMA-security of LS with success probability εA, then there
exists a PPT adversary B who breaks the FS-SAS-EUF-CMA-security of AS with
success probability at least εB ≥ εA

2 , or there exists a PPT adversary C who breaks the
FS-EUF-CMA-security of FS with success probability εC ≥ εA

2 .

Let us first give some overview and intuition about the proof. To win the security
experiment, an attacker A must either truncate the log file to a state he has not seen
the signature for, or create a valid signature for a log file modified w.r.t. an epoch
before his break-in. If A truncates the log file without detection, he must create a new
signature s for the length of the log file, which violates the security of FS. If A forges a
signature for a log file modified w.r.t. a previous epoch, then A has broken the security
of AS. Since we assume that both base schemes are secure, our resulting construction
must be secure, too.

Proof. A FS-EUF-CLMA adversary A can adaptively query the three oracles Append,
GetSignature and NextEpoch before he may break in, and then outputs a forgery
(C∗, τ∗), where τ∗ = (σ∗, s∗).

If A uses the BreakIn oracle during some epoch tBreakIn, let C ′ be the state of the log
file directly after A’s last call to the NextEpoch oracle, switching from epoch tBreakIn− 1
to epoch tBreakIn. (Let C ′ := () if A did break in during epoch tBreakIn = 1.) We consider
four different events:

• E1 occurs, iff A wins the game, but VerifyLog(C∗, τ∗) = 0.

• E2 occurs, iff A wins the game, VerifyLog(C∗, τ∗) = 1, and A sent GetSignature
request while the length of the log file was len(C∗).

• E3 occurs, iff A wins the game, VerifyLog(C∗, τ∗) = 1, A did not send a
GetSignature request while the length of the log file was len(C∗), and the last
claim in C∗ has t ≥ tBreakIn.
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• E4 occurs, iff A wins the game, VerifyLog(C∗, τ∗) = 1, A did not send a
GetSignature request while the length of the log file was len(C∗), and the last
claim in C∗ has t < tBreakIn.

We have εA ≤ Pr[E1]+Pr[E2]+Pr[E3]+Pr[E4] and thus Pr[E1]+Pr[E2]+Pr[E3] ≥ εA
2

or Pr[E4] ≥ εA
2 . In the following paragraphs sktAS and sktFS denote the secret keys of

epoch t for the respective schemes.

Attack on the FS-SAS-EUF-CMA Security of AS.

First we construct a FS-SAS-EUF-CMA adversary B on AS, who uses a successful FS-
EUF-CLMA adversary A and has to simulate the FS-EUF-CLMA security experiment
for A. The challenger in the FS-SAS-EUF-CMA-security experiment generates a key
pair (sk1

AS, pkAS) := AS.KeyGen(1κ, 1T ) and sends pkAS and the maximal number of
epochs T (encoded in unary) to B. B uses FS to generate a key pair (sk1

FS, pkFS) :=
FS.KeyGen(1κ, 1T ), and sets pk := (pkAS, pkFS). B initializes the log and signature it
maintains towards A as C0 := (), σ0 := λ and sets i := 1, t := 1 and LFS := (sk1

FS).
B then and starts executing A with inputs pk and 1T .

We describe how B simulates the three oracles and the break-in phase for A:

LogAppend Oracle.
A sends a query mi. B sets Ci := Ci−1 ‖(pkAS, t, (i,mi)) for the current period t.
B then sends an AggSign query (i,mi) with claim sequence Ci−1 and signature
σi−1 to his challenger who responds with a signature σi. Finally, B sets i := i+ 1
and sends the string “ok” to A.

Epoch Switching Oracle.
When A sends a NextEpoch query, B aborts if t ≥ T , otherwise B sets mi :=
(“End of epoch:”, t) and Ci := Ci−1 ‖(pkAS, t, (i,mi)). B obtains the signature
σi for Ci from his AS.AggSign oracle the same way as before. B then sends an
epoch switching query to the challenger, who computes skt+1

AS := AS.Update(sktAS).
B computes skt+1

FS := FS.Update(sktFS) by its own. B sets i := i+ 1, t := t+ 1 and
LFS := LFS ‖ skt+1

FS and returns “ok”.

GetSignature Oracle.
When A calls the GetSignature oracle, B determines the length i of the current
claim sequence Ci and the period tlast of the last claim in Ci, which is either the
current period t or t − 1 (since an epoch switch always adds an end-of-epoch
claim). B retrieves sktlast

FS from LFS and computes si := FS.Sign(sktlast
FS , i). B sends

τi := (σi, si) as the signature for Ci to A.

Break-In Phase.
When A breaks in, B sets tBreakIn := t and sends the challenger a BreakIn request.
B gets the current secret key sktAS and sends the current secret key skt =
(sktAS, sktFS) to A.
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If none of the events E1, E2, E3 take place, then B aborts. Define l∗ := len(C∗), and
let C∗AS be the claim sequence which is obtained by prepending the message index i
to mi in each of the claims from C∗ and replacing the public key pk by pkAS. More
formally, if C∗ = ((pk, t∗i ,m∗i ))l

∗
i=1, then let C∗AS = ((pkAS, t

∗
i , (i,m∗i )))l

∗
i=1. B outputs

(C∗AS, σ
∗). We now must show that B’s output C∗AS contains a non-trivial claim at some

position i∗ and σ∗ is valid for the claim C∗AS[i∗].

Valid and Non-Trivial Claim for E1. If E1 takes place, then τ∗ is not valid for C∗,
so A must have won the game by producing a signature that authenticates a non-
trivial claim c∗ = C∗[i∗] = (pk∗, t∗,m∗) (for i∗ ∈ [len(C∗)]). We will show that
c∗AS = C∗AS[i∗] = (pk∗AS, t

∗, (i∗,m∗)) is a valid and non-trivial claim in the FS-SAS-EUF-
CMA game.
To see that c∗AS is valid, observe that ValidEntries(C∗, τ∗) outputs the result of

AS.Verify(C∗AS, σ
∗). Hence, if τ∗ is valid for position i∗ of C∗, then σ∗ must be valid

for position i∗ of C∗AS, too, and thus c∗AS is valid. We now verify that c∗AS is non-trivial.
Firstly, c∗AS by construction uses pkAS as the public key. Secondly, since c∗ is non-trivial
we have that t∗ < tBreakIn in the FS-EUF-CLMA game. Since B queries its epoch
switching oracle whenever A does and B breaks in iff A does, we also have t∗ < tBreakIn
in the FS-SAS-EUF-CMA game. Finally, since c∗ is non-trivial in the FS-EUF-CLMA
game, A did not query m∗ at the log appending oracle during epoch t∗, and c∗ was not
added during Update neither. Hence, B never queried (i∗,m∗) at its signature oracle.
Thus, c∗AS is in fact non-trivial.

Validity for E2 and E3. If E2 or E3 occur, then A’s signature τ∗ is valid for C∗ (in
the FS-EUF-CLMA experiment with LS). By the verification consistency of LS, this
implies that ValidEntries(C∗, τ∗) = 1len(C∗), and so σ∗ is valid for all claims in C∗AS (in
the FS-SAS-EUF-CMA experiment with AS).

Non-Triviality for E2 and E3. We now need to show that C∗AS contains a non-trivial
claim. Let Clast be the state of the log file at the end of the FS-EUF-CLMA experiment
simulated by B. First note that all claims c in C∗AS by construction have pkAS as public
key. Hence, the first condition for the non-triviality is met by all of these claims. We
now show that if either E2 or E3 happen, then there exists an index i∗ such that
c∗ := C∗[i∗] 6= Clast[i∗] and the epoch number t∗ of c∗ is less than tBreakIn. This part of
the proof depends on whether E2 or E3 occur. We begin with E2.

Candidate Non-Trivial Claim for E2. We show that there is an index i∗ ∈ [l∗] such
that C∗[i∗] 6= Clast[i∗]. Since E2 occured, A did a GetSignature query while the log file
maintained by the experiment had length l∗. Let Cl∗ be the state of the log file during
that query. Since A’s forgery is non-trivial, C∗ does not equal Cl∗ . Thus, since C∗ and
Cl∗ are of the same length but not equal, there must be an index i∗ where Cl∗ and C∗
differ. Moreover, Cl∗ is a prefix of Clast, so we have Clast[i∗] = Cl∗ [i∗] 6= C∗[i∗]. Hence,
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we have shown that such an index i∗ exists. In the following, let i∗ denote the least
index such that Clast[i∗] = C∗[i∗].

Epoch Number for E2. To see that t∗ < tBreakIn, assume for the sake of a contradiction
that t∗ ≥ tBreakIn. This immediately implies that tBreakIn 6=∞, hence A broke in. Since
i∗ is the least index with Clast[i∗] 6= C∗[i∗], we have that Clast[i] = C∗[i] for all i < i∗.
But if t∗ ≥ tBreakIn, then the epoch switch from epoch tBreakIn − 1 to epoch tBreakIn
happened before index i∗, hence C∗ is a mere continuation of Clast truncated to the
most recent epoch switch, and hence C∗ is trivial. This is a contradiction to the
occurrence of the event E2. Thus our assumption was false, and therefore t < tBreakIn.
We have found an index i∗ with the properties claimed above.

Candidate Non-Trivial Claim for E3. We now argue that there is an index i∗ with
the claimed properties in the event of E3 as well. If the epoch number of the last log
entry in C∗ is at least tBreakIn, then obviously tBreakIn 6=∞ and thus A broke in during
the experiment. Thus, since C∗ is non-trivial, C ′ is not a prefix of C∗, where C ′ is the
state of the log file maintained by B directly after A’s last NextEpoch query. Since τ∗
is valid, the sequence of epoch numbers in C∗ must be monotonically increasing. Let
C ′∗ be the longest prefix of C∗ such that all epoch numbers in C ′∗ have t < tBreakIn,
and let C ′ be the state of the log file maintained by B after A’s last NextEpoch query.
Define l′∗ := len(C ′∗), l′ := len(C ′).

We claim (again) there is an index i∗ ∈ [min(l∗, l′)] such that C ′[i∗] 6= C ′∗[i∗] = C∗[i∗].
Assume for the sake of a contradiction there is no such index. Then for all i ∈ [min(l∗, l′)]
we have C ′[i] = C∗[i]. Hence, since C ′ is not a prefix of C∗, we have l∗ < l′, and thus C∗
is a prefix of C ′. This implies, however, that the epoch number t of the last index of C∗
must be at most the epoch number from the last log entry from C ′, which is tBreakIn− 1
(by construction). Hence, t ≤ tBreakIn − 1, which contradicts t ≥ tBreakIn, as required
by E3. Thus, we have shown there exists an index i∗ with C∗[i∗] 6= C ′[i∗] = Clast[i∗].
In the following, again let i∗ be the least such index.

Epoch Number for E3. We now show that the claim c∗ = C∗[i∗] has epoch number
t∗ < tBreakIn. Assume for the sake of a contradiction that t∗ ≥ tBreakIn. Since i∗ is
the least index such that C∗[i∗] and Clast[i∗] differ, we have that C∗[i] = Clast for
all i < i∗. Since t∗ ≥ tBreakIn, the epoch marker marking the transition from epoch
tBreakIn − 1 to epoch tBreakIn must have occured in C∗ before index i∗, i.e. its index is
i∗EM < i∗ ≤ min(l∗, l′). However, in C ′, this epoch marker occurs at index iEM = l′,
i.e. it is the last claim in C ′. Since i∗EM < l′ = iEM, C∗ and C ′ must differ on position
i∗EM < i∗, which contradicts the fact that i∗ is the first index where C∗ and C ′ differ.
Hence, our assumption was false, and t∗ < tBreakIn.
Thus, regardless whether E2 or E3 take place, we have found an index i∗ where

c∗ = C∗[i∗] 6= Clast[i∗] and t∗ < tBreakIn.
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“Freshness.” We now argue that c∗AS := C∗AS[i∗] = (pk∗AS, t
∗, (i∗,m∗i∗)) is a non-trivial

claim. We have already shown that all claims in C∗AS have the public key pk∗AS = pkAS
(by construction), hence the first condition for a non-trivial claim is met. Moreover,
we have shown that the claim c∗ = C∗[i∗] has t∗ < tBreakIn. Since c∗AS has the same
epoch number t∗, this applies to c∗AS, too. Thus, in order to show that c∗AS is in fact
non-trivial, it only remains to show that B did not query (i∗,m∗i∗) at its signing oracle
during epoch t∗.
Note that for each i B only performs a single request to its signing oracle, namely

for (i,mi). Moreover, the claims in CAS directly correspond to B’s queries to the
signature oracle for AS: For each claim c = (pkAS, t, (i,mi)) in CAS, B performed the
query (i,mi) during epoch t. Hence, only the i∗-th query of B can possibly equal
(i∗,m∗i∗). However, we have shown that C∗[i∗] 6= Clast[i∗]. Since C∗ is non-trivial, the
public key of C∗ is the challenge public key pk, and thus these two claims must differ
in their epoch number or their message. Hence, CAS[i∗] and C∗AS[i∗] must differ in their
epoch number or their message, too. We have thus shown that B did not query the
signature oracle for (i∗,m∗i∗) during epoch t∗, which concludes the proof that C∗AS[i∗] is
non-trivial.

Summary of B. We have shown that if E1, E2 or E3 occur, then B’s output contains
a valid and non-trivial claim, hence B wins the FS-SAS-EUF-CMA experiment. Since
B perfectly simulates the FS-EUF-CLMA experiment for A, we thus have

εB := Pr[B wins] ≥ Pr[E1] + Pr[E2] + Pr[E3].

Moreover, B only requires polynomial time (in κ), if A is a PPT algorithm.

Attack on the FS-EUF-CMA-security of FS.

Next, we construct a FS-EUF-CMA adversary C on FS, who uses a successful FS-
EUF-CLMA attacker A and has to simulate the FS-EUF-CLMA security experiment
for A. The challenger in the FS-EUF-CMA security experiment generates a key pair
(sk1

FS, pkFS)← FS.KeyGen(1κ, 1T ) and sends pkFS and the maximal number of epochs
T to C. C uses the AS scheme, generates a key pair (sk1

AS, pkAS)← AS.KeyGen(1κ, 1T )
and forwards pk := (pkAS, pkFS) and 1T to A. C initializes the log and signature it
maintains towards A as C0 := (), σ0 := λ and sets i := 1, t := 1, t′ := 1, LFS := ∅.
C then starts executing A. We describe how C simulates the three oracles and the
break-in phase for A:

LogAppend Oracle.
When A sends a log appending query mi, C sets Ci := Ci−1 ‖(pkAS, t, (i,mi)) for
the current period t and σi := AS.AggSign(sktAS, Ci−1, σi−1, (i,mi)). Then C sets
i := i+ 1 and returns the string “ok” to A.

Epoch Switching Oracle.
When A sends a NextEpoch query, C stops if t ≥ T and outputs ⊥, otherwise C sets
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mi := (“End of epoch:”, t) and Ci := Ci−1 ‖(pkAS, t, (i,mi)), and computes σi
in the same way as before. C computes skt+1

AS := AS.Update(sktAS) by its own,
sets i := i+ 1, t := t+ 1 and returns “ok”.

GetSignature Oracle.
When A calls the GetSignature oracle, C determines the length i of the current
claim sequence Ci. If LFS contains a tuple (i, s) for some signature s, then C
returns (σi, s). Otherwise, C determines the period tlast of the last claim in Ci.
If tlast − t′ =: d 6= 0, then C sends d NextEpoch queries to his challenger, who
computes sktlast

FS by updating the current key skt′FS d times. C sets t′ := tlast.
Then C sends a signature query m = i to his challenger, who responds with
si := FS.Sign(sktlast

FS , i). C stores (i, si) in LFS by setting LFS := LFS ∪ {(i, si)}.
Finally, C returns τi := (σi, si) as the signature for Ci to A.

Break-In Phase.
When A sends a BreakIn request, C sets tBreakIn := t. If t − t′ =: d 6= 0, then
C sends d NextEpoch queries to his challenger. After that, C sends a BreakIn
request. The FS-EUF-CMA experiment returns the current secret key sktFS to C,
who sends the current secret key skt = (sktAS, sktFS) to A.

If event E4 does not occur, then C aborts. If event E4 does take place, then A outputs
a valid and non-trivial forgery (C∗, τ∗), where the length l∗ := len(C∗) of C∗ was never
the current length of the log file during any GetSignature query by A and the epoch
number t∗ of the last claim in C∗ is less than tBreakIn. Let τ∗ = (σ∗, s∗). C outputs
(l∗, t∗, s∗) as its forgery in the FS-EUF-CMA experiment. We need to show that this
forgery is valid and non-trivial.

Validity. Since A’s forgery is valid, we must have that FS.Verify((pkFS, t
∗, l∗), s∗) = 1,

by the construction of the VerifyLog algorithm. Hence, s∗ is valid for (pkFS, t
∗, l∗).

Non-Triviality. We now argue that C’s output is non-trivial (in the FS-EUF-CMA
game). Firstly, C only performed signature queries for those lengths l for which A did
a signature query. Hence, if event E4 occurs, then C never performed a signature query
for the length l∗. Secondly, since E4 occured, we have t∗ < tBreakIn, as required.

Summary of C. We have shown that if E4 takes place, then C wins the FS-EUF-CMA
experiment. Since C perfectly simulates the FS-EUF-CLMA experiment for A, we thus
have

εC := Pr[C wins] ≥ Pr[E4].

Moreover, C runs in polynomial time (in κ) if A does.

Summary of the Proof. In total, we have shown εB ≥ Pr[E1] + Pr[E2] + Pr[E3] and
εC ≥ Pr[E4]. Hence, since we must have Pr[E1] + Pr[E2] + Pr[E3] ≥ εA

2 or Pr[E4] ≥ εA
2 ,
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we have εB ≥ εA
2 or εC ≥ εA

2 , as claimed. Moreover, B and C run in time polynomial
in κ.

Corollary 5.22. If AS is FS-SAS-EUF-CMA-secure and FS is FS-EUF-CMA-secure
then LS is FS-EUF-CLMA-secure.

5.5. Implementation and Performance Results
We implemented our generic construction from Section 5.4.2 and conducted various
benchmarks. Our scheme uses the BGLS-FS-SAS scheme [MT07a] and the BM-FSS
scheme [BM99]. Our results are shown in Table 5.1.
Our implementation is written in C++11, and is available from [Har19a]. For the

BM-FSS scheme, we chose a modulus size of 1024 bits, roughly equivalent to a security
level of 80 bit. The BGLS scheme was instantiated using elliptic curve groups with
160 bits group size, and the base field had 1024 bits. We used an instantiation of
the cover-free family based on polynomials, described in Appendix A. For a CFF
supporting n = 100, 1000, and 10000 messages, we chose the field size q = 5, 11, and
23, respectively, and fixed the polynomial degree at k = 2. This led to d = 2, 5 and 11,
respectively. (The resulting CFFs were slightly larger than required: They supported
125, 1331, and 12167 messages, respectively.) Whenever a hash function was needed,
we used SHA-256. We used a constant string of 200 bytes for all messages.

Our experiments were conducted on a laptop computer with an Intel Core i5-2430M
CPU [Int] with a clock rate of 2.4GHz. (Our implementation is not parallelized and
therefore did not make use of the additional processor cores.) The processor has private
(per-core) caches of 128KB (Level 1) and 512KB (Level 2), and a shared Level 3
Cache of 3072KB [Int12, Section 1.1] The system was equipped with 5.7GiB of RAM
and running a 64-bit desktop version of the Fedora 23 GNU/Linux operating system,
equipped with Linux Kernel version 4.4.9-300. All code was compiled with the GNU
C Compiler (version 5.3.1) and optimization level set to -O2. We used Shoups NTL
library [Sho] (version 9.4.0) for the implementation of the BM-FSS scheme and the PBC
library [Lyn] (version 0.5.14) for the implementation of the BGLS-FS-SAS scheme.

Methodology.

For our experiments, we defined several sets of processes. Each process was repeated
three times. The averages and standard deviations shown in Table 5.1 have therefore
been computed from a sample of size 3.

For the first set of processes, we called the KeyGen algorithm with the given parame-
ter T and measured its total run-time. In the second set, we created a random key
for T epochs, and then measured the run-time of updating the key T times, without
computing any signatures. Table 5.1 shows the average run-time per invocation of
Update.

The third process consisted of creating a key-pair valid for n epochs, and then calling
the AggSign algorithm n times, switching epochs every ` messages. For each epoch
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Table 5.1.: Runtimes of our robust secure logging schemes based on the BGLS-FS-SAS
from [Ma08]. See the methodology section for an explanation of this table.

Algorithm Parameter ` avg [ms] STD [ms]

KeyGen T =
100 451 25.7

1000 3822 38.5
10 000 38 053 241

Update T = 10 000 18.6 0.033

AggSign + Update n =

100 10 67.2 0.80
100 100 60.5 1.63

1000 10 67.5 0.014
1000 100 60.4 0.048
1000 1000 59.7 0.019

Verify n =

100 10 129 1.50
100 100 23.8 0.49

1000 10 271 2.05
1000 100 227 1.87
1000 1000 22.5 0.15

switch, we created and signed an epoch marker first, and then updated the secret
key. The process also included signing the current counter value with a forward-secure
digital signature scheme and updating that scheme. The time shown in Table 5.1 is the
total time of all signing and updating operations, divided by the number of messages,
so it represents the average time needed for adding a single log entry to the log file.
The standard deviation was computed over the average signing time in each run.

The measurements in the last set of processes were obtained by calling Verify after a
completion of a process from the third set. The time given in Table 5.1 is an average of
the run-time of three executions divided by the number of messages that were verified.
Hence, it represents the average verification time per message. The standard deviation
was computed over the run-times of an individual execution divided by n. We did not
consider invalid signatures in our experiments.

5.6. Conclusion

Cryptographic logging schemes must be able to reliably detect modifications to log
files. However, they also should be “tolerant” to modifications, in the sense that even
if some log entries have been illicitly manipulated, the logging system should still
be able to provide assurance of authenticity and integrity of log records which have
not been modified. We have introduced the notion of robustness for logging schemes,
which captures this requirement, and for the first time presented logging scheme which
simultaneously is robust and has sub-linear storage overhead.
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The scheme utilizes the approach outlined in Section 4.3 to achieve security against
truncation attacks, and is proven to be secure according to our notion.
Finally, we evaluated the performance of a prototype implementation of our space-

efficient and truncation-resistant robust secure logging scheme.
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This thesis has introduced several new techniques for the construction of cryptographic
logging schemes which can be used to detect retroactive modifications of log files, as
well as cryptanalyzed three schemes proposed in the literature. The contributions
offered by this thesis are briefly summarized below.

Logging with Excerpts. This thesis introduced a logging scheme which can create
excerpts from log files, which can not only be checked for integrity and authenticity,
but also for completeness. To the best of the author’s knowledge, this scheme was the
first scheme in the standalone model where completeness of excerpts can be checked
by the verifier. The notion of completeness is formalized in the security notion given
in Section 4.4.3, and the SALVE scheme given in Section 4.5 provably satisfies this
notion.

Combining Aggregation with Robustness. Additionally, this thesis presented a new
technique for constructing logging schemes in the standalone model which have sub-
linear storage overhead and can successfully verify log entries even if other log entries
have been modified. This thesis constructed a logging scheme using this technique, and
showed that this scheme is secure and robust.

Truncation Security. This thesis moreover presented new formal security notions
capturing truncation security and introduced a new technique to obtain logging schemes
which can detect truncations of log files. This technique was applied to the previously
described logging schemes, and the resulting schemes were proven secure according to
our notions.

Attacks on Logging Schemes. Furthermore, we showed a total of four attacks on
LogFAS [YPR12b], and the BM- and AR-FssAgg schemes [Ma08]. The attacks are
entirely practical, and completely break the respective schemes. We have analyzed the
security proof of the schemes and pointed out errors in them, resolving the contradiction
between our attacks and the supposedly proven security of the schemes.

6.1. Open Questions and Future Work

We briefly point out some open problems and suggestions for future work.
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Full Truncation Security. The schemes introduced in this thesis as well as certain
schemes from the literature [MT08; MT09] only offer security against the deletion of
log entries added before the break-in epoch. To the best of the author’s knowledge,
there is no logging scheme in the standalone model which offers full truncation security,
i.e., which can protect against deletion of log entries added during the break-in epoch.
While it is possible to side-step this limitation of existing schemes by simply per-

forming an epoch switch each time after a log entry has been recorded, the resulting
schemes must typically support a very large number of epochs, incurring higher costs
in computational resources such as runtime and storage.
In particular, the construction of an aggregate signature scheme which can offer

protection against removal of individual signatures from aggregate signatures might
lead to a scheme with full truncation security. In the context of secure logging, one
would additionally require that the removal of individual signatures is intractable even
given the current secret key.

Better Confidentiality for Logging with Excerpts. As discussed in Remark 4.19, the
SALVE scheme introduced in Section 4.5 does not conceal how many log entries were
added to which category during which epoch. Enhancing our scheme with some form
of encryption (or designing a new scheme which can support excerpts and offer stricter
confidentiality) is an interesting open problem.

Robustness to a Broader Range of Changes. Section 5.3.4 already discussed some
limitations of the notion of “changes” tolerated by our fault-tolerant sequential aggre-
gate signature scheme given in Section 5.3 and hence by our robust logging scheme
in Section 5.4.

Section 5.3.4 proposed an approach that might be followed towards generalizing our
scheme such that it offers more resistance to such changes. Analyzing this approach is
left as future work.

Designing a fault-tolerant (sequential) aggregate signature scheme following a different
approach than the one taken in this thesis might lead to other solutions to this problem,
but is outside of the scope of this thesis.

New Forward-Secure Sequentially Aggregate Signature Schemes. Considering that
the BM- and AR-FssAgg signature schemes are broken by the attacks presented in
Section 3.3, the author is not aware of any secure constructions of forward-secure
sequential aggregate signature schemes except for the BGLS-FssAgg scheme outlined in
Section 2.3.2. Designing new forward-secure sequentially aggregate signature schemes
is an important topic for future research.
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A. Example CFF Instantiation

We briefly present a simple instantiation (due to [KRS99, Section 5]) of a cover-free
family.
Let k ∈ N0, p be a prime number, and Fp be the finite field of integers modulo p.

The CFF’s base set S is the set of all points in the plane over Fp, i.e.

S = F2
p.

We construct the blocks B of the CFF as follows. Fix a polynomial f ∈ Fp[X] of degree
at most k. The block B associated with f is the set of all points on the graph of f , i.e.

Bf = {(x, f(x)) : x ∈ Fp}.

The set of all blocks is obtained by repeating this process for all polynomials f of
degree at most k, i.e.

B = {Bf : f ∈ Fp[X] and deg(f) ≤ k},

where deg(f) is the degree of f .
Since the graphs of two distinct polynomials f, g ∈ Fp[X] can intersect on at most k

points, we have that |Bf \Bg| ≥ p− k. This is illustrated in Figure A.1. Extending
this argument to up to d polynomials g1, . . . , gd ∈ Fp[X] (with f 6= gi for all i ∈ [d]),
we have ∣∣∣∣∣Bf \

(
d⋃
i=1

Bgi

)∣∣∣∣∣ ≥ p− dk.
Hence, if p > dk, then the union of the d sets Bgi does not cover Bf , and thus
F = (S,B) is a d-CFF. This CFF has |S| = p2 and |B| = pk+1. It is easy to define an
order on B by interpreting the coefficients of a polynomial f as digits (in base p) of a
natural number, and then ordering the functions by the standard order on N. The set
S = F2

p can be ordered analogously. Thus, we may consider this CFF to be ordered.
Table A.1 shows some parameters that might be used to instantiate the CFF described

above. For our construction given in Chapter 5, the number of blocks |B| corresponds to
the number of log entries that can be handled by the scheme, the number r corresponds
to the number of (sequentially aggregate) signatures to be kept, and d corresponds
to the maximum number of log entries that can be modified by an attacker without
affecting the verifiability of unmodified log entries.
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x

y

1 2 3 4

1

2

3

4

0

f(X) = 1
2X

= 3X
g(X) = −1

2(X − 2.5)2 + 31
8

= 2X2

Figure A.1.: Illustration of two blocks of the CFF construction with p = 5 and k = 2.
The blue line illustrates the graph of the polynomial f(X) = 1

2X =
3X ∈ Fp[X], while the green line depicts the graph of the polynomial
g(X) = −1

2(X−2.5)2 +31
8 = 2X2 ∈ Fp[X]. The two polynomials intersect

in the points (0, 0) and (4, 2), hence |Bf \Bg| = 3 ≥ p− k = 3. While Fp
is not a continuous but a discrete set, we have nonetheless drawn (dashed)
lines to depict the graphs in order to appeal to the reader’s intution.

Table A.1.: Example parameters for the CFF construction of [KRS99]. Taken from
[Har+16] and extended by additional rows.

p k d r = |S| n = |B|

5 2 2 25 125
11 2 5 121 1331
17 2 8 289 4913
17 4 4 289 ≈ 1.42 · 106

29 2 14 841 24389
53 2 26 2809 148877
101 2 50 10201 ≈ 1.03 · 106

251 3 83 63001 ≈ 3.97 · 109

401 4 100 160801 ≈ 9.43 · 240

503 5 100 253009 ≈ 14.4 · 250

601 6 100 361201 ≈ 1.54 · 264

1021 2 510 1042441 ≈ 1.06 · 109

1213 24 50 1471369 ≈ 1.08 · 2256

2243 24 100 5031049 ≈ 1.01 · 2256
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This appendix shows that the logging scheme from Section 5.4.2 (see page 112 and
following) is robust, as specified in Definition 5.18 (see page 110). We begin with a
straightforward lemma, which almost immediately implies the fault-tolerance of our
scheme.
In the following, let LS be the logging scheme with list verification defined in

Section 5.4.2 and AS, FS be the underlying signature schemes, respectively.

Lemma B.1. Let C = ((pk, ti,mi))li=1 be a claim sequence (for l ∈ N0) and τ = (σ, s)
be regular for C, and pk = (pkAS, pkFS) be the public key in C. Then σ is regular for
CAS = ((pkAS, ti, (i,mi)))li=1, and s is regular for len(C).

Proof. We show the claim by induction. For the induction start, let l = 0. Then C = (),
and τ = (σ0 = λ, s0 = FS. Sign(skFS, 0)), where skFS is the secret key for FS (for the
first epoch) generated by KeyGen. Thus by definition, σ0 is regular for CAS = (), and
s0 is regular for len(C) = 0.

Now assume that the lemma’s claim holds for all claim sequences of a specific length
l ∈ N0. We show the claim holds for all claim sequences of length l + 1, too.

Let C be an arbitrary claim of length l+1, C ′ be the length-l prefix of C, cl+1 = C[l+
1] = (pk, tl+1,ml+1) be the last claim in C, and τ = (σ, s) be a regular signature for C.
Since τ is regular, (C, τ) is in the output of the process described in Definition 5.15.
Hence C is either the result of a modification done by Update in step 3 of the process,
or the result of concatenating some claim to C in step 2c. In either case, C is the result
of the concatenation of C ′ and cl+1, and τ is computed as Append(sktl+1 , C

′, τ ′,ml+1),
where τ ′ = (σ′, s′) is regular for C ′.

By the induction hypothesis, σ′ is regular for C ′AS = ((pkAS, ti, (i,mi)))li=1. Thus,
since Append computes σ as AS.AggSign(skAS, C

′
AS, σ

′, (l+ 1,ml+1)), we have that σ is
regular for CAS = C ′AS ‖(pkAS, tl+1, (l + 1,ml+1)), as claimed.
Moreover, Append computes s as FS. Sign(skFS, l + 1), so, again, s is regular for

l + 1 = len(C) by definition. This concludes the proof.

Using the lemma above, we now show the fault tolerance of our scheme.

Corollary B.2 (Fault Tolerance). LS is d-fault-tolerant if AS is d-fault-tolerant.

Proof. Let C be a claim sequence, τ be a regular signature for C, and C ′ be a claim
sequence containing d errors with respect to C. Let CAS be the claim sequence built
by the ValidEntries algorithm when called with the arguments C and τ , and C ′AS be
the claim sequence built by ValidEntries when called with the parameters C ′ and τ . If
C ′ contains d errors with regard to C, then C ′AS contains d errors with respect to CAS,
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too, and these positions are the same as for C ′ and C. Since AS is d-fault-tolerant
and σ is regular for CAS (see Lemma B.1), AS.Verify(C ′AS, σ) returns 1 on at least all
positions i where CAS[i] = C ′AS[i], and hence where C[i] = C ′[i]. This output also is
the return value of ValidEntries, and thus LS is d-fault-tolerant, too.

We have thus shown that our logging scheme is fault-tolerant if it is instantiated
with a fault-tolerant key-evolving SAS scheme. Towards showing the correctness and
robustness of our scheme, we still need to show that it is verification-consistent. This
proof is straightforward, too:

Lemma B.3 (Verification Consistency). LS is verification-consistent.

Proof. Let C be an arbitrary claim sequence and τ be a signature. VerifyLog only
outputs 1 iff ValidEntries(C, τ) = 1len(C). Hence, we have

ValidEntries(C, τ) 6= 1len(C) =⇒ VerifyLog(C, τ) 6= 1.

This is logically equivalent to its converse

VerifyLog(C, τ) = 1 =⇒ ValidEntries(C, τ) = 1len(C).

We may now prove our theorem from Section 5.4.2:

Theorem 5.20 (Correctness and Robustness). If FS is correct and AS is correct, then
LS is correct. If moreover AS is fault-tolerant for a d > 0, then LS is d-fault-tolerant
and hence robust.

Proof. We begin by showing correctness. We have already shown that LS is verification-
consistent, which is the first requirement for correctness. For the second requirement,
we need to show that for all claim sequences C and signatures τ = (σ, s) such that τ is
regular for C, we have that VerifyLog(C, τ) = 1.

For the first check performed by VerifyLog, observe that the process for creating reg-
ular signatures (see Definition 5.15) only outputs claim sequences where all public keys
are the same. Thus, the first check passes for all regularly created claim sequences C.
The second and third check of LS.VerifyLog passes by construction of the Update

algorithm of LS, which adds the respective epoch markers and thus makes sure that
ti+1 − ti ∈ {0, 1}.
By Lemma B.1, s is regular for len(C). Since FS is correct, the next check in

LS.VerifyLog will pass, too. Finally, by Lemma B.1, σ is regular for the corresponding
sequence CAS built by ValidEntries. Since AS is correct AS.Verify outputs 1len(C), and
thus LS.ValidEntries does, too.
Thus, the final check of LS.VerifyLog passes and the algorithm outputs 1. We have

thus shown the correctness of LS. All that remains to show is the robustness of LS.
Assume that AS is d-fault-tolerant for a d > 0 (and FS is correct). Then, by

Corollary B.2, LS is d-fault-tolerant, too, and hence it is robust, as claimed.
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