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for providing me the opportunity to write this thesis at the Institute for Stochastics at
Karlsruhe Institute of Technology (KIT). I am very thankful for her excellent guidance
and advices whenever I needed it. The numerous fruitful discussions during the three
years of my doctoral research push this thesis forward.

Special thanks go to Prof. Dr. Thorsten Schmidt not only for acting as second exam-
iner, but also for allowing me to learn from his excellent expertise during my mathematics
studies at the TU Chemnitz. The cooperation was very inspiring and has been of great
benefit to me.

Furthermore, I want to thank all members of the Institute for Stochastics. The working
environment here was very positive and motivating all the time, which was far beyond
anything I would have expected. I will always remember the last three years in the most
positive way.

Finally, I want to thank my family. Thanks go to my brother and sisters Jonas, Ju-
dith and Sarah and especially to my parents Monika and Wolf-Dietrich, for always being
there and giving me their caring encouragement, not only during my PhD studies but
also during my entire life. In particular, I want to express my special gratitude to my
wife, Yunqi, for her continued and loving support, patience and understanding as well
as source of energy and optimistic enthusiasm for life.

Karlsruhe, December 2019 Gregor Leimcke

v





Abstract

We herein discuss the surplus process of an insurance company with various lines of
business. The claim arrivals of the lines of business are modelled using multivariate
point process with interdependencies between the marginal point processes, which de-
pend only on the choice of thinning probabilities. The insurer’s aim is to maximize the
expected exponential utility of terminal wealth by choosing an investment-reinsurance
strategy, in which the insurer can continuously purchase proportional reinsurance and
invest its surplus in a Black-Scholes financial market consisting of a risk-free asset and a
risky asset. We separately investigate the resulting stochastic control problem under un-
known thinning probabilities, unknown claim arrival intensities and unknown claim size
distribution for a univariate case. We overcome the issue of uncertainty for these three
partial information control problems using Bayesian approaches that result in reduced
control problems, for which we characterize the value functions and optimal strategies
with the help of the generalized Hamilton-Jacobi-Bellman equation, in which derivatives
are replaced by Clarke’s generalized gradients. As a result, we could verify that the
proposed investment-reinsurance strategy is indeed optimal. Moreover, we analysed the
influence of unobservable parameters on optimal reinsurance strategies by deriving com-
parative results with the case of complete information, which shows a more risk-averse
behaviour under more uncertainty. Finally, we provide numerical examples to illustrate
the comparison results.
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Chapter 1

Introduction

1.1 Motivation and literature overview

Many challenges are currently facing the insurance industry. On the one hand, the num-
ber and volume of insurance losses are growing as a result of the weather fluctuations
due to climate change.1 On the other hand, the current structural low interest rate envi-
ronment and higher volatility on financial markets are making it more difficult to achieve
profitable investments. Further challenges arise from the transparency of insurance con-
tracts provided by comparison portals, as well as the comprehensive inter-connectedness
resulting from the digitalization trend and the data generated from it, which can be used
to identify and record risks. For many years, questions inherited from the first two chal-
lenges regarding effective strategies for reducing the insurance risk and optimal capital
investment have been attracting the attention of researches in actuarial mathematics.
In fact, a classical task in risk theory is to deal with optimal risk control and optimal
asset allocation for an insurance company.

Generally, the risk of an insurer results from the compensation of insurance claims in
exchange for regular premiums, in which an insurance claim is a request to an insurance
company for a payment related to the terms of an insurance policy.2 This risk can be
reduced by ceding claims to a reinsurance company in return for relinquishing part of
the premium income to the reinsurer. More precisely, the reinsurer covers part of the
costs of claims against the insurer. Notice that we refer to the cost of a claim as the
claim size, magnitude, loss or amount of damage.

The surplus of the insurance company arises from the premiums left to the insurer
after transferring the risk to the reinsurer and from the payments to be made by the
insurer. This surplus is deposited in a financial market, which leads to an optimal in-
vestment-reinsurance problem in continuous time under the assumption that the insurer
can continuously purchase a reinsurance contract and invest in a financial market. These
problems have been previously intensively studied in the literature using various opti-
mization criteria, in which maximizing the utility and minimizing the ruin probability
are two frequently used optimization criteria.

Schmidli [110], Promislow and Young [103] and Cao and Wan [34] employed a Black-
Scholes-type financial market and proportional reinsurance (as will be done in this work)
for optimal control problems. While the first two articles provide optimal investment-
reinsurance strategies (a closed-form and analytical expression for the reinsurance strat-
egy, respectively) under the criteria of minimizing the ruin probability, the third article
offers an explicit expression for the problem of maximizing the exponential utility of
terminal wealth. Other articles (with other settings) that are worth mentioning are

1See Faust and Rauch [58].
2See Cambridge Dict. [33].
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2 Chapter 1 Introduction

those by Zhang and Siu [123], in which an optimization problem was formulated as a
stochastic differential game between the insurer and the market; Schmidli [111], who
studied several optimization problems in insurance under different frameworks; and Bai
and Guo [11], who showed in some special cases the equivalence of optimal strategies
for maximizing the expected exponential utility of terminal wealth and minimizing the
probability of ruin.

The cited literature deals with the jump part of the surplus process, which describes
the net claim process (premium income minus claim compensation), in two different
ways. The first way is to use the well-known Cramér-Lundberg model from classical risk
theory (see Bühlmann [15]) to describe the net claim process, as was done by Schmidli
[110]. The Cramér-Lundberg model was first introduced by Filip Lundberg in his work
[88] and was also named after Harald Cramér because of his basic findings with that
model (see [43]). The second way is to use the diffusion approximation considered by
Iglehart [70] for the jump term in the Cramér-Lundberg model, as outlined by Grandell
[66, Sec. 1.2]. Hence, with such an approximation approach, the optimization problem
was studied by Cao and Wan [34] and Promislow and Young [103]. Both approaches
were also examined by Zhang and Siu [123] and Schmidli [111].

In all of the articles mentioned so far, the assumption of full information is used as
a common feature, which means that the insurer has complete knowledge of the model
parameters. However, in reality, insurance companies operate in a setting with partial
information; that is, with regard to the net claim process, only the claim arrival times
and magnitudes are directly observable, but the claim intensity, which is required by all
net claim models, is not observable by the insurer, as pointed out by Grandell [66, Ch. 2].
In the context of financial markets, partial information means that the terms of drift
and volatility are unknown, even though the term of volatility is typically assumed to
be known as it can be estimated very well, whereas the appreciation rate is notoriously
difficult to estimate (see Rogers [107, Sec. 4.2]).

As mentioned, insurers make decisions solely on the basis of the information at their
disposal in practice. Therefore, we herein investigate the optimal investment and rein-
surance problem in a partial information framework. We first emphasize that partial
information control problems are different from partial observation control problems in
that the controls of the latter problems are based on noisy observations of the state pro-
cess. Di Nunno and Øksendal [52] were the first to study a partial information optimal
portfolio problem in the sense that the dealer has access to only some information repre-
sented by a filtration, which is generally smaller than the one generated by the financial
market. This problem was also investigated by Liang et al. [87] in the presence of both
investment and reinsurance, in what partial information refers to the financial market.
In this work, we assume that full information is available on the financial market and
focus on the insurance risk with an unobservable claim intensity.

On the basis of the suggestion of Albrecher and Asmussen [4, p. 165], Liang and
Bayraktar [85] considered the optimal investment and reinsurance problem for maximiz-
ing exponential utility under the assumption that the claim intensity and loss distribution
depend on the state of a non-observable Markov chain (hidden Markov chain), which
describes different environment states, whereby the net claim process is modelled as a
compound Poisson process and the fully observable financial market is modelled as a
Black-Scholes financial market with one risky and one risk-free asset. In this thesis,
we use the same financial market model; moreover, our assumption on the claim inten-
sity can be considered as a special case of one state of the above-mentioned Markovian
regime-switching model; namely, we model the intensity as an unobservable random
variable, which places us in a Bayesian setting. However, literature with a setting of
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partial information focuses only on one line of business (LoB) to gain an optimal rein-
surance strategy. However, in reality, there is often a dependency between the different
risk processes of an insurance company. This results from the fact that customers of a
typical insurance company have insurance policies of different types, such as building,
private-liability or health insurance contracts.

A simplified example of a possible dependency between several types of risk is that
of a storm event accompanied by heavy rainfall, wherein flying roof tiles cause damage
to third parties and flooding leads to damage in buildings. In addition to this depen-
dency between private-liability insurance and building insurance, there may even be a
dependency on motor-liability insurance and health insurance if a car accident occurs
as a result of adverse traffic circumstances due to that heavy rainfall. Therefore, in
order to appropriately model the insurance risks of an insurer, we need to capture the
dependency structure using a multivariate model.

Thinning is a commonly used approach to impose dependency between several types
of insurance risks, which is also the case in this thesis. The idea of this approach is that
the occurrence of claims depends on a certain process that generates events that cause
damage to LoB i with probability pi and to LoB j with probability pj , where all claims
occur simultaneously at the trigger arrival time. Therefore, these models are referred to
as common shock risk models. An example of a shock event is the storm event described
above. Typically, the corresponding claim sizes are determined independently of the
appearance times.

This typical assumption is also considered to be fulfilled in this work. The thinning
approach traces back to Yuen and Wang [122]. Anastasiadis and Chukova [8] provided
a literature overview of multivariate insurance models from 1971 to 2008.

Another multivariate model that avoids referencing an external mechanism was given
by Bäuerle and Grübel [28], who proposed a multivariate continuous Markov chain of
pure birth type with inter-dependency arising from the dependency of the birth rates on
the number of claims in other component processes. Scherer and Selch [108] constructed
the dependency of the marginal processes of a multiple claim arrival process by introduc-
ing a Lévy subordinator serving as a joint stochastic clock, which lead to a multivariate
Cox process in the sense that marginal processes are univariate Cox processes.

Another frequently discussed dependency concept based on copula. Cont and Tankov
[41, Ch. 5] described the dependency structure of multi-dimensional Lévy processes in
terms of Lévy copula. However, as pointed out by Bäuerle and Grübel [27, p. 5], the
dependency modelling for Lévy processes is reduced to the choice of thinning properties
as a consequence of their defining properties. On the basis of this limitation, Bäuerle
and Grübel [27] extended Lévy models by incorporating random shifts in time such that
the timings of claims caused by a single trigger event are shifted according to some
distribution, where some of these claims are thinned out and do not occur. Section 5.9
discusses why such shifts cannot be incorporated in this work. For further multivariate
claim count models, please refer to the literature cited by Scherer and Selch [108, Sec. 1.3].

In connection with optimal reinsurance problems, a Lévy approach was discussed by
Bäuerle and Blatter [25]. They showed that constant investment and reinsurance (pro-
portional reinsurance as well as a mixture of proportional and excess-of-loss reinsurance)
is the optimal strategy for maximizing the exponential utility of terminal wealth.

In addition to the Lévy model, optimization problems with common shock models have
been investigated by Centeno [37], who studied optimal excess-of-loss retention limits for
a bivariate compound Poisson risk model in a static setting. The corresponding dynamic
model was used by Bai et al. [10] to derive optimal excess-of-loss reinsurance policies
(which turned out to be constant) under the criterion of minimizing the ruin probability
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by making use of a diffusion approximation. For the same model, Liang and Yuen [86]
derived a closed-form expression for the optimal proportional reinsurance strategy of the
exponential utility maximizing problem both with and without diffusion approximation
using the variance premium principle. Bi and Chen [16] also investigated the same
problem with the expected value premium principle in the presence of a Black-Scholes
financial market. In the case of an insurance company with more than two LoBs, Yuen
et al. [121] and Wei et al. [117] sought optimal proportional reinsurance to maximize
the exponential utility of terminal wealth and the adjustment coefficient, respectively, in
which the strategies are only stated for two LoBs. However, all optimization problems
with multivariate insurance models are considered under full information.

In this work, we will describe the dependency structure between different LoBs using
the thinning approach while dealing with unobservable thinning probabilities. To our
knowledge, this is the first time an optimal reinsurance and investment problem under
partial information using a multivariate claim arrival model with possibly dependent
marginal processes is studied. In order to solve this optimal control problem, the dy-
namic programming Hamilton-Jacobi-Bellman (HJB) approach will be applied, which
is the most widely used method for stochastic control problems. The HJB equation is
a classical tool for deriving optimal strategies for control problems. This equation can
be obtained by applying the dynamic programming principle, which was pioneered by
Richard Bellman, after whom the HJB equation is named, in the 1950s (see [13, 14]).
In classical physics, the diffusion case of this equation can be viewed as an extended
Hamilton-Jacobi equation, which was named after William Rowan Hamilton and Carl
Gustav Jacob Jacobi.3

The HJB equation is a deterministic (integro-) partial differential equation whose
solution is the value function of the corresponding stochastic control problem under
certain conditions. However, in general, the existence of a solution to this equation is
not guaranteed because of smoothness requirements of the solution. In our setting, we
will have to deal with the strong assumption of differentiability of the value function,
which cannot be guaranteed. Over the past decades, a rich theory has been developed
to overcome this difficulty. In the early 1980s, Pierre-Louis Lions and Michael Crandall
introduced the currently popular concept known as the viscosity solution for non-linear
first-order partial differential equations (see [45]), which claims that the value function is
the unique viscosity solution to the HJB equation under mild conditions (continuity and,
in more general frameworks, even discontinuity).4 The basic idea behind this concept
is to estimate the value function from above and below using smooth test functions.
Fleming and Soner [61] applied the viscosity approach to optimise the control of Markov
processes.

Another approach is to generalize the HJB equation by including Clarke’s generalized
gradient, which is a weaker notation of differentiability. Clarke [39] and Davis [47] came
up with this idea which the strong assumption of differentiability of the value function
can be weakened to local Lipschitz continuity. The generalization concept of the HJB
equation has been applied in an article by Liang and Bayraktar [85] and is also used in
this work.

As indicated above, we consider the surplus process of an insurance company with
various LoBs in which claim arrivals are modelled using a common shock model under
incomplete information (i.e. the claim intensity and the thinning probabilities are un-
known to the insurer). Our aim is to solve the optimization problem facing insurance

3See Section 5.1.2 in Blatter [17] and Section 9.1 in Popp [102].
4For a historical survey for the development of the viscosity solution, we refer the reader to Yong and

Zhou [120, Sec. 4.1] and Fleming and Soner [61, Sec. II.17].
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companies by trying to find investment-reinsurance strategies that maximizes the ex-
pected exponential utility of terminal wealth. Using a Bayesian approach, we overcome
the issue of uncertainty and obtain a reduced control problem, which is investigated with
the help of the dynamic programming principle and a generalized HJB equation. Before
entering the world of our insurance model, let us introduce the outline of the thesis and
highlight the main results.

1.2 Main results and outline

In this thesis, we deal with a multi-dimensional insurance risk model. The main aim
here is to study the impact of partial information regarding the inter-dependencies be-
tween marginal risk processes on the optimal investment and proportional reinsurance
under the criterion of maximizing the expected exponential utility of terminal wealth.
Preparing for the introduction of the risk model and the solution technique of the corre-
sponding control problem, Chapter 2 is dedicated to the fundamentals, starting with the
concept of Clarke’s generalized gradient in Section 2.1. After providing a brief overview
of the basic definitions and properties of stochastic processes in Section 2.2, we recall
some important tools of stochastic analysis in Section 2.3. This is then followed by Sec-
tion 2.4, which is devoted to the (marked) point processes used for modelling the net
claim process. Section 2.4.1 includes basic definitions and notations, and Section 2.4.2
deals with the concept of the intensities of point processes, our main object of interest
for the characterization of point processes. This concept is generalized in Section 2.4.4
to marked point processes. In Sections 2.4.3 and 2.4.5, we proceed with the study of
the innovation method for filtering with point and marked point process observations,
respectively, in a simplified setting, which is sufficient for the following chapters.

Following this introductory chapter, we introduce a control problem under partial
information in Chapter 3. For this purpose, we specify the multivariate claim arrival
model in Section 3.1 as a common shock model, in which the shock generating intensity
(background intensity) and the thinning probabilities describing the affected LoBs are
unobservable, which is considered by modelling these parameters as random variables.
Moreover, we also model the claim size distribution as unknown. In contrast to the
cited literature considering optimal reinsurance problems in a multivariate setting, the
reinsurance strategies of different LoBs are supposed to be equal in our work, which is
equivalent to the assumption of one reinsurance policy for an entire insurance company.
In Section 4.10, we discuss the consequences of various reinsurance contracts. Further-
more, as the focus is on the optimal reinsurance strategy, we use a quite simple financial
market model with one risk-free and one risky asset modelled as geometric Brownian mo-
tion, which is presented in Section 3.2. Subsequently, we introduce investment strategies
(see Section 3.3), proportional reinsurance strategies (see Section 4.3) and a reinsurance
premium principle (see Section 3.5). This results in the definition of the surplus process
in Section 3.6, the basic object of interest in the stochastic control problem under par-
tial information stated in Section 3.7. The next three chapters address the incomplete
information problem under different assumptions for unknown parameters.

For the sake of simplicity, we restrict ourselves to the study of the case of an observable
background intensity and claim size distribution in Chapter 4. This case is specified in
Section 4.1, where we suppose that the vector of thinning probabilities takes values
in a finite set. In order to overcome the difficulty of partial information in thinning
probabilities, we determine an observable estimator of these probabilities by means of
filtering theory for marked point process observations in Section 4.2. With the help of the
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derived filter, we formulate a reduced control model and problem in Section 4.3, for which
we derive the generalized HJB equation in Section 4.4 by replacing the partial derivative
with respect to time by the corresponding Clarke’s generalized subdifferential, which is
introduced in Section 2.1. We then receive candidates for an optimal investment and
reinsurance strategy in Sections 4.5 and 4.6. It then turns out that the candidate for the
optimal investment strategy is deterministic, in particular independent of the reinsurance
strategy, whereas the unique candidate for the optimal reinsurance strategy depends not
only on the safety loading parameter of reinsurance and time, but also on the background
intensity, claim size distribution and the filter process. In Section 4.7, we continue with
the verification procedure by showing that a solution to the HJB equation does indeed
coincide with the value function and that the derived candidates for the optimal strategies
are indeed optimal. Afterwards, we prove the existence of a solution to the HJB equation.
Section 4.8 includes a comparative result of the optimal reinsurance strategy under full
information with the one under partial information, in which we suppose identical claim
size distributions for every LoB. We find that the optimal reinsurance strategy in the
multivariate risk model with known thinning probabilities is always greater than or equal
to the one in the risk model with unknown thinning probabilities. The comparison result
is illustrated in Section 4.9. We close the chapter with a discussion on the generalizations
of the setting used in this chapter, particularly concerning the thinning probabilities.

In Chapter 5 we investigate the partial information problem under the assumptions
of observable claim size distribution, unobservable background intensity taking values
in a finite set and Dirichlet distributed thinning probabilities (see Section 5.1). Using
a filter as an estimator for the background intensity and the conjugated property of
the Dirichlet distribution, we proceed as in the previous chapter by stating the reduced
control problem (see Section 5.3) and the corresponding generalized HJB equation, in
which we need to replace partial derivatives with respect to time and the components of
the filter for the background intensity by the corresponding Clarke’s generalized gradient.
The HJB equation yields the same optimal investment strategy as in Chapter 4, and
the optimal reinsurance strategy has a similar structure. The verification step runs as
before (see Section 5.6) and shows the optimality of the proposed investment-reinsurance
strategy. In Section 5.7, we provide a comparison result similar to the one in the previous
chapter, again under the assumption of identical claim size distributions for all insurance
classes, which is visualized in Section 5.8. Finally, some generalizations of the setting of
this chapter and resulting difficulties regarding the used solution technique are discussed.

Chapter 6 is devoted to the case of an unobservable claim size distribution for the
introduced control problem under partial information, in which the framework is quite
simple as a result of supposing that there are only a finite number of potential claim size
distributions. Section 6.9 establishes the difficulties faced with more general settings. In
order to simplify the optimality analysis, we consider working on the insurance model
with one LoB and observable background intensity (see Section 6.1), with the result
being a similarly optimal investment-reinsurance strategy and correspondingly analogous
verification. Moreover, we develop a similar comparative result as before, which yields
a very small range of possible optimal reinsurance strategies for some scenarios in the
numerical study in Section 6.8.

Appendix A includes auxiliary results for the verification procedure in Chapters 4, 5
and 6, and some useful inequalities are covered in Appendix B.



Chapter 2

Fundamentals

Before getting into the detail of our insurance model and the optimization problem, let
us recall some foundations of stochastic processes and filter results with (marked) point
process observations to make this work self-contained.

2.1 Clarke’s generalized gradient

We start this chapter by briefly introducing a concept of nonsmooth analysis, namely
Clarke’s generalized gradient, which was introduced by Clarke [39, Ch. 2]. We consider
only the case of functions defined on the Euclidean space (Rn, ‖ · ‖2) equipped with the
Euclidean norm ‖ · ‖2 instead of a general Banach space.

Notation. Let r > 0 some scalar and x ∈ Rn some vector. We denote the open ball of
radius r about x by Br(x) := {y ∈ Rn : ‖x− y‖ < r}.

Definition 2.1 ([39], p. 25; [115], Def. 4.6.9; Lipschitz function). Let I ⊂ Rn be a subset
of Rn and f : I → R be a function defined on I.

(i) We say f is Lipschitz on I (of rank K) or satisfies a Lipschitz condition on I (of
rank K) if there exists 0 < K <∞ such that

|f(x1)− f(x2)| ≤ K‖x1 − x2‖2

for all x1, x2 ∈ I.

(ii) The function f is said to be Lipschitz (of rank K) near x ∈ I if there exists
ε = ε(x) > 0 such that f is Lipschitz on I ∩ Bε(x). If f is Lipschitz (of rank K)
near x for all x ∈ I, then we say f is locally Lipschitz on I (of rank K).

We write Lip(I) for the set of all Lipschitz function on I and Liploc(I) for the collection
of all locally Lipschitz function on I.

A useful result is that every convex function defined on an open convex set is locally
Lipschitz.

Theorem 2.2 ([106], Thm. A). Let f be convex on an open convex set I ⊆ Rn. Then
f ∈ Liploc(I) and, consequently, f ∈ Lip(C) for all compact sets C ⊂ I.

Let us mention further result of Lipschitz functions.

Theorem 2.3 ([40], Thm. 3.4.1, Remark 3.4.2; Rademacher’s Theorem). Let I ⊆ Rn be
a subset and f ∈ Liploc(I). Then f is differentiable almost everywhere on I in the sense
of the Lebesgue measure.

7
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To define Clarke’s generalized gradient, we must first introduce the generalized direc-
tional derivation.

Definition 2.4 ([39], p. 25). Let x ∈ Rn be a given point and v ∈ Rn be some other
vector. Moreover, let f be Lipschitz near x. Then the generalized directional derivative
of f at x in the direction v, denoted by f◦(x; v), is defined by

f◦(x; v) = lim sup
y→x
h↓0

f(y + h v)− f(y)

h
.

Justification of the definition. Due to the locally Lipschitz property of f , the difference
quotient is bounded above by K‖v‖2 for some 0 < K < ∞ and for y sufficient near x
as well as h sufficient near 0. Therefore, f◦(x; v) is well-defined since the upper limit is
taken from the bounded difference quotient and no limit is presupposed.

Beside the finite property, the generalized directional derivative admits the following
elementary properties.

Proposition 2.5 ([39], Prop. 2.1.1). Let f be Lipschitz near x ∈ Rn. Then v 7→ f◦(x; v)
is positively homogeneous and subadditive.

These properties justifies the existence of the next defined generalized gradient. On
account of the Hahn-Banach Theorem, we know that any positively homogeneous and
subadditive functional on Rn majorizes some linear functional on Rn. Consequently, the
proposition above implies the existence of at least one linear functional ξ : Rn → R
with f◦(x; v) ≥ ξ(v). It therefore follows by ξ(v) ≤ K‖v‖2 for some 0 < K < ∞
that ξ belongs to the dual space of Rn of continuous linear functionals on Rn. Clarke’s
generalized gradient will be defined as a subset of the continuous linear functionals and
thus is non-empty by the explanation above. Since a continuously linear functional ξ on
Rn can be identified by ξ ∈ Rn, the generalized gradient is a subset of Rn in our setting.

Definition 2.6 ([39], p. 27). Let f be Lipschitz near x ∈ Rn. Then Clarke’s generalized
gradient (generalized gradient for short) of f at x, denoted by ∂Cf(x), is given by

∂Cf(x) :=
{
ξ ∈ Rn : f◦(x; v) ≥ ξ>v ∀ v ∈ Rn

}
.

In the univariate case we call ∂Cf(x) Clarke’s generalized subdifferential (generalized
subdifferential for short) of f at x.

We continue with properties of the generalized gradient.

Proposition 2.7 ([39], Prop. 2.1.2). Let f be Lipschitz near x ∈ Rn. Then ∂Cf(x) is a
convex and compact subset of Rn.

Proposition 2.8 ([39], Prop. 2.2.4). If f is strictly differentiable at x ∈ Rn such
that some differential operator D is defined, then f is Lipschitz near x and ∂Cf(x) =
{Df(x)}. Conversely, if f is Lipschitz near x and ∂Cf(x) reduces to a singleton {ξ},
then f is strictly differentiable at x and Df(x) = ξ.

The next characterization of Clarke’s generalized gradient will be needed to show
existence of a solution of the generalized HJB equation (cf. Theorems 4.33, 5.26 and 6.17)
since it allows us to reduce the case of non-differentiability to the case of differentiability.
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Theorem 2.9 ([39], Thm. 2.5.1). Let f be Lipschitz near x ∈ Rn, Ωf the set of points
at which the function f is not differentiable and S an arbitrary set of Lebesgue-measure
0 in Rn. Then

∂Cf(x) = co
{

lim
n→∞

∇f(xn) : xn → x, xn /∈ S, xn /∈ Ωf

}
,

where co{A} denotes the convex hull of A ⊂ Rn.

2.2 Stochastic processes

We start this chapter with briefly recalling some general definitions and results about
stochastic processes cited from Karatzas and Shreve [73, Ch. 1], Protter [104, Ch. 1, 2],
Capasso and Bakstein [35, Sec. 2.1], Elstrodt [56, Sec. II.6], Bain and Crisan [12, Sec. A.5],
Klebaner [75, Ch. 8] and Chung and Williams [38, Ch. 2], which will be of importance in
the following proceedings. Throughout this chapter all stochastic quantities are defined
on a fixed probability space (Ω,F ,P).

Recall that a stochastic process X on (Ω,F ,P) is a family of Rd-valued random variable
(Xt)t≥0 for d ∈ N. For the sake of convenience, we will use the shorter term process
instead of stochastic process. A process can be seen as a function X : R+× Ω → Rd
where X(t, ·) = Xt is an F-measurable random variable for all t ≥ 0. For a fixed ω ∈ Ω,
the mapping t 7→ Xt(ω) from R+ into R is called a sample path or trajectory of X.

For two processes X and Y , the notation X > Y means Xt(ω) > Yt(ω) for all t ≥ 0 and
all ω ∈ Ω. In particular, X ≥ 0 stands for Xt(ω) ≥ 0 for all ω ∈ Ω and t ≥ 0. Similarly,
we use the notations X ≥ Y , X < Y , X ≤ Y and X = Y . Furthermore, we say X and Y
are the same if and only if X = Y . As we know null sets are normally overlooked in the
present of probability measures. Accordingly, we introduce in the following alternative
concepts of “equality”.

Definition 2.10 ([73], Def. 1.1.2, Def. 1.1.3). Let X and Y be two processes. Then Y is
called a modification or version of X if P(Xt = Yt) = 1 for all t ≥ 0. If P(Xt = Yt, t ≥
0) = 1, then X and Y are said to be indistinguishable.

Remark 2.11 ([104], p. 4). The sample paths of indistinguishable processes differ only
on a P-null set, which does not hold for modifications in general since the uncountable
union of null sets can have any probability between 0 and 1, and it can even be non-
measurable.

Convention. We say that an equation with functions of processes on both sides (e.g. evo-
lution equations for processes) holds up to indistinguishability if the processes described
by the both sides of the equality are indistinguishable.

Next, we move on to some regularity properties of sample paths, which are defined for
almost all ω since indistinguishable processes are regarded as equal.

Definition 2.12. A process X = (Xt)t≥0 is called continuous if lims→tXs(ω) = Xt(ω)
for all t ≥ 0 and P-almost all ω ∈ Ω. Moreover, X is said to be right-continuous (left-
continuous) if lims↓tXs(ω) = Xt(ω) (lims↑tXs(ω) = Xt(ω)) for all t ≥ 0 (t > 0) and
P-almost all ω ∈ Ω. Furthermore, X is called càdlàg if it is right-continuous and the
left-hand limit lims↑tXs(ω) exists for all t > 0 and P-almost all ω ∈ Ω. If X is càdlàg,
then the process X− = (Xt−)t≥0 defined by X0− := 0, Xt− := lims↑tXs for all t > 0 is
said to be the left-hand limit process of X, and the process ∆X = (∆Xt)t≥0 defined by
∆X0 := 0, ∆Xt := Xt −Xt− for all t > 0 is called the jump process of X.
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Lemma 2.13 ([12], Lem. A.14). Let X = (Xt)t≥0 be a càdlàg process. Then {t ≥ 0 :
P(Xt− 6= Xt) > 0} contains at most countably many points.

Proposition 2.14 ([104], Thm. I.2). Let X and Y be two processes where Y is a modi-
fication of X. If X and Y have right-continuous sample paths P-almost surely, then X
and Y are indistinguishable.

Definition 2.15 ([73], Def. 1.1.6; Measurability). A process X = (Xt)t≥0 is called mea-
surable w.r.t. F if the mapping (t, ω) 7→ Xt(ω) :

(
R+ × Ω,B+ ⊗ F

)
→
(
R,B(R)

)
is

measurable, i.e. {(t, ω) ∈ R+ × Ω : Xt(ω) ∈ B,B ∈ B(R)} ∈ B+ ⊗F .

Proposition 2.16. If the process X = (Xt)t≥0 is either left- or right-continuous, then
X is measurable.

Proposition 2.17. If X = (Xt)t≥0 is a measurable process, then the sample path X·(ω) :
R+ → R is B+-measurable for all ω ∈ Ω.

Another important notion in the context of stochastic processes is the filtration. In
insurance mathematics, filtrations are used to model the available information for the in-
surer. Especially for the models with partial information, the measurability of processes
w.r.t. different filtration processes is an important aspect.

Definition 2.18 ([73], p. 3 ff.). A family of σ-algebras F = (Ft)t≥0 with Ft ⊂ F for all
t ≥ 0 is called a filtration if Fs ⊂ Ft for all 0 ≤ s ≤ t. We set F∞ := σ

(⋃
t≥0Ft

)
. For a

filtration F = (Ft)t≥0, we define by Ft+ :=
⋂
s>tFs the σ-algebra of events immediately

after t ≥ 0 and by Ft− := σ
(⋃

s<tFs
)

the σ-algebra of events strictly prior to t ≥ 0,
where F0− := 0. We say the filtration F = (Ft)t≥0 is right-(left-)continuous if Ft = Ft+
(resp. Ft = Ft−) for all t ≥ 0. The probability space (Ω,F ,P) equipped with a filtration
F, denoted by (Ω,F ,F = (Ft)t≥0,P), is called a filtrated probability space.

Notation. To shorten notation we write in the following F to denote F = (Ft)t≥0.

Definition 2.19 ([73], Def. 1.1.9; Adaption). A process X = (Xt)t≥0 defined on a
filtrated probability space (Ω,F ,F,P) is called F-adapted if Xt is Ft-measurable for
each t ≥ 0.

Definition 2.20 ([104], p. 16; Natural filtration). For a process X = (Xt)t≥0, the fil-
tration FX = (FXt )t≥0 defined by FXt := σ(Xs : 0 ≤ s ≤ t) is said to be the natural
filtration of X.

So the natural filtration FX is the smallest filtration making X adapted. It should
be noted that the following two statements do not hold in general: 1. FX0 contains all
P-null sets of F ; 2. FX is right-continuous. However these two statements are important
technical assumptions for numerous results involving stochastic processes. So filtrations
are usually modified as shown below to meet these technical requirements.

Definition 2.21 ([56], Def. 6.1). A probability space (Ω,F ,P) is called complete if for
all A ⊂ B ∈ F with P(B) = 0 implies that A ∈ F .

The assumption of a complete probability space is not a restriction since for any
probability space there exists a unique one which is complete.
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Proposition 2.22 ([56], Thm. 6.3). Let (Ω,F ,P) be a probability space and

N := {A ⊂ N : N ∈ F ,P(N) = 0},
F̃ := {A ∪N : A ∈ F , N ∈ N},
P̃ : F̃ → [0, 1], P̃(A ∪N) := P(A) for A ∈ F , N ∈ N .

Then F̃ is a σ-algebra, P̃ is well-defined and (Ω, F̃ , P̃) is a complete probability space.
Futhermore, F̃ is the smallest σ-algebra such that (Ω, F̃ , P̃) is complete.

Definition 2.23 ([56], p. 64). The probability measure P̃ in Proposition 2.22 is called
a completion of P and the probability space (Ω, F̃ , P̃) in Proposition 2.22 is called a
completion of (Ω,F ,P).

Definition 2.24 ([104], p. 3). A filtered probability space (Ω,F ,F,P) is said to satisfy
the usual conditions if

(i) the probability space (Ω,F ,P) is complete,

(ii) F0 contains all P-null sets of F ,

(iii) F is right-continuous.

Remark 2.25. Proposition 2.22 has shown that for any probability space there exists a
unique completion. A complete probability space (Ω,F ,P) equipped with the filtration F
can be enlarged to a filtrated probability space (Ω,F , F̃,P) satisfying the usual conditions
by

F̃t :=
⋂
s>t

σ(Fs,N ) with N := {A ∈ F : P(A) = 0}.

Obviously, F̃t = F̃t+ for all t ≥ 0 and F̃0 contains all P-null sets of F . Therefore, for any
given filtrated probability space, we can easily find one holding the usual conditions.

In the following, we assume that (Ω,F ,F,P) is a filtrated probability space satisfying
the usual conditions.

We continue by introducing a stricter concept of measurability than in Definition 2.15.

Definition 2.26 ([73], Def. 1.1.11; Progessiv measurability). A process X = (Xt)t≥0

is called an F-progressive process or an F-progressively measurable if (s, ω) 7→ Xs(ω) :
([0, t] × Ω,B([0, t]) ⊗ Ft) → (R,B(R)) is B([0, t]) ⊗ Ft-measurable for all t ≥ 0, i.e.
{(s, ω) ∈ [0, t]× Ω : Xs(ω) ∈ B,B ∈ B(R)} ∈ B([0, t])⊗Ft for all t ≥ 0.

Proposition 2.27. If a process X = (Xt)t≥0 is F-progressively measurable, then X is
measurable and F-adapted.

Proof. Fix t ≥ 0 and B ∈ B(R). From Definition 2.26 follows directly that {Xs ∈ B} ∈
Ft for all s ∈ [0, t] and, in particular, {Xt ∈ B} ∈ Ft, which means that X is F-adapted.
Another consequence of Definition 2.26 is that {(s, ω) ∈ [0, n] × Ω : Xs(ω) ∈ B} ∈
B([0, n]) ⊗ Ft ⊂ B+⊗ F for all n ∈ N. Hence X1[0,n]×Ω is measurable w.r.t. F and,
consequently, X = limn→∞X1Ω×[0,n] as well.

Proposition 2.28 ([73], Prop. 1.1.12). Let X = (Xt)t≥0 be measurable w.r.t. F and
F-adapted. Then X has an F-progressively measurable modification.

Proposition 2.29 ([73], Prop. 1.1.13). If a process X = (Xt)t≥0 is F-adapted and left-
or right-continuous, then X is F-progressively measurable.
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Lemma 2.30. Let X = (Xt)t≥0 be a non-negative F-progressive process. Then the
process (

∫ t
0 Xs ds)t≥0 is F-adapted.

Proof. The proof is given in Brémaud [20], solution of Exercise E10 on page 53.

Proposition 2.31 ([79], Lemma 1.1 (a)). Let (E, E) be a measurable space, where E is a
complete separable metric space. Let X = (Xt)t≥0 be a càdlàg E-valued process defined
on a filtrated probability space (Ω,F ,F,P) satisfying the usual conditions. Furthermore,
let G = (Gt)t≥0 be a right-continuous filtration such that Gt contains all P-null sets of
(Ω,F) and Gt ⊂ Ft for all t ≥ 0. Then there exists a càdlàg modification of the process
(E[f(Xt) | Gt])t≥0 for all measurable bounded functions f defined on E.

Let us recall the basic concept of (local) martingals.

Definition 2.32 ([104], p. 7; Martingale). An F-adapted process M = (Mt)t≥0 with
E[|Mt|] <∞ for all t ≥ 0 is called (P,F)-martingale if E[Mt|Fs] = Ms for all 0 ≤ s < t.
If the equation is weakened to E[Mt|Fs] ≥ Ms (E[Mt|Fs] ≤ Ms) for every 0 ≤ s < t,
then M is said to be a (P,F)-submartingale ((P,F)-supermartingale).

Convention. If it is clear that the underlying probability measure is P, then we omit P
in the appellation (P,F)-martingale and write only F-martingale. A similar convention
applies to all subsequent definitions, in which a probability measure appears.

Notation. M(P,F) denotes the set of all càdlàg (P,F)-martingales starting at zero.

Definition 2.33. Let 0 < C < ∞ be some constant. A process X = (Xt)t≥0 is called
bounded by C if supt≥0 |Xt| < C P-a.s.

Proposition 2.34 ([77], Rem. 21.68). A bounded local martingale is a martingale.

For the definition of local martingales let us recall the notion of stopping time.

Definition 2.35 (Stopping time). An F-measurable function τ : Ω → [0,∞] is called
an F-stopping time if {τ ≤ t} ∈ Ft for all t ∈ [0,∞].

Proposition 2.36 ([104], Thm. I.1). Let τ : Ω → [0,∞] be an F-measurable function.
Then τ is an F-stopping time if and only if {τ < t} ∈ Ft for all t ∈ [0,∞].

Definition 2.37 ([104], p. 4). Let X = (Xt)t≥0 be a real-valued process and A ∈ B(R).
Then τ defined by τ(ω) = inf{t > 0 : Xt ∈ A} is called the hitting time of A for X.

Proposition 2.38 ([104], Thm. I.3, Thm. I.4). Let X be a real-valued F-adapted càdlàg
process and A an open set or a closed set subset of R. Then a hitting time of A for X
is an F-stopping time.

Definition 2.39. A stopping time τ is called finite if P(τ <∞) = 1.

The next defined σ-algebra contains the knowledge included in a filtration up to a
stopping time.

Definition 2.40 ([104], p. 5). Let τ be a finite F-stopping time. Then

Fτ := {A ∈ F : A ∩ {τ ≤ t} ∈ Ft, t ≥ 0}

is said to be the stopped time σ-algebra.
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Definition 2.41. Let C be a class of F-adapted processes. Then X is called a local C-
process if there exists a non-decreasing sequence of F-stopping times (τn)n∈N such that
P(τn ↑ ∞) = 1 as n→∞ and Xτn = (Xτn

t )t≥0 ∈ C for each n ∈ N, where Xτn
t := Xt∧τn .

We write X ∈ Cloc. The sequence (τn)n∈N is called a localizing sequence for X.

In accordance with the definition, the set Mloc(F) denotes the set of local càdlàg F-
martingales that occurs in the definition of a semimartingale. For this definition we have
to recall functions of bounded variation.

Definition 2.42 ([38], p. 75; Partition). A finite ordered set πn[a, b] := {t0, t1, . . . , tn}
for n ∈ N0 such that a = t0 < t1 < · · · < tn = b is called a partition of [a, b].

Definition 2.43 ([80], p. 421, [115], Def. 7.6.1; Bounded variation). Let f be a function
defined on [a, b]. The total variation function of f is defined by

V b
a (f) := sup

πn[a,b]

{
n∑
i=1

|f(ti)− f(ti−1)|

}
. (2.1)

Then the number V b
a (f) is called total variation of f on [a, b]. If V b

a (f) < ∞, we say f
is of bounded variation on [a, b]. The set of all functions of bounded variation on [a, b]
is denoted by BV ([a, b]). Let f now be defined on R+. If V t

0 (f) <∞ for all t ≥ 0, then
f is said to be of locally bounded variation on R+. In the case supt>0 V

t
0 (f) < ∞, f is

called of bounded variation on R+.

Proposition 2.44 ([115], Cor. 11.5.10). Let f : [a, b] → R be a function of bounded
variation. Then f is differentiable almost everywhere (in the sense of the Lebesgue
measure).

A subclass of functions of bounded variation are absolute continuous functions.

Definition 2.45 ([115], Def. 11.5.12). A function f : [a, b] → R is said to be absolutely
continuous if for every ε > 0 there is a δ > 0 such that given any finite sequence
(Ik)i=1,...,n of pairwise disjoint open intervals Ik := (ak, bk) ⊂ [a, b], we have

n∑
i=1

(bk − ak) < δ ⇒
n∑
i=1

|f(bk)− f(ak)| < ε.

We write AC([a, b]) for the set of all absolutely continuous functions on [a, b].

Lemma 2.46 ([115], Lemma 11.5.14). We have Lip([a, b]) ⊂ AC([a, b]) ⊂ BV ([a, b]).

Next we introduce a class of processes with a strong path regularity property.

Definition 2.47 (Protter [104], p. 101; FV process). An F-adapted càdlàg process A =
(At)t≥0 with A0 = 0 is said to be a finite variation process (FV process for short) w.r.t.
P if t 7→ At(ω) is of locally bounded variation on R+ for P-almost all ω ∈ Ω.

Notation. From now on, we write A(P,F) for the set of all F-adapted finite variation
processes w.r.t. P.

Definition 2.48 ([104], p. 102). An F-adapted càdlàg process Y = (Yt)t≥0 is called a
(P,F)-semimartingale if there exists a decomposition of the form

Yt = Y0 +Mt +At, t ≥ 0, (2.2)

where (Mt)t≥0 ∈Mloc(P,F) and (At)t∈I ∈ A(P,F).
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Definition 2.49 (Continuous part). Let X = (Xt)t≥0 be an F-semimartingale. Then
process (X)c = ((X)ct)t≥0 denotes the continuous part of the process X starting at zero,
i.e.

(X)ct = Xt −
∑

0<s≤t
∆Xs −X0, t ≥ 0.

A description of the behaviour of stochastic processes is provided by the quadratic
variation.

Definition 2.50 ([75], p. 218). Let X and Y be two (P,F)-semimartingales. The
quadratic covariation process of X and Y , denoted by [X,Y ] = ([X,Y ]t)t≥0, is defined
by

[X,Y ]t := lim
n−1∑
i=0

(
Xtni+1

−Xtni

)(
Ytni+1

− Ytni
)
, t ≥ 0,

where the limit is understood as the limit in probability and is taken over shrinking
partitions (tni )i of the interval [0, t] when δn = maxi(t

n
i+1 − tni )→ 0. The process [X,Y ]

is also known as the square bracket process. The quadratic variation process X, denoted
by [X] = ([X]t)t≥0, is defined by [X]t = [X,X]t for all t ≥ 0.

Notice that the existence of the quadratic covariation can be shown. Other fundamen-
tal properties are summarized in the next proposition which are cited from Klebaner [75,
p. 218 ff.] as well as Protter [104, p. 66 ff.].

Proposition 2.51. For two (P,F)-semimartingales X and Y the following statements
are satisfied:

(i) [X,Y ] is a càdlàg F-adapted FV process.

(ii) [X,Y ] is bilinear and symmetric.

(iii) [X,Y ] = 1
2

(
[X + Y ]− [X]− [Y ]

)
(polarization identity).

(iv) If one of the processes X or Y is an FV process: [X,Y ]t =
∑

0<s≤t ∆Xs∆Ys for
every t ≥ 0.

(v) [X]c = [Xc].

(vi) For any t ≥ 0, [X]t = [X]ct +X2
0 +

∑
0<s≤t(∆Xs)

2.

(vii) [X,Y ]t = XtYt −
∫ t

0 Xs− dYs −
∫ t

0 Ys−Xs for all t ≥ 0.

(viii) For any t ≥ 0,
[ ∫ ·

0 Hs dXs,
∫ ·

0 Ks dYs
]
t

=
∫ t

0 HsKs d[X,Y ]s for all F-predictable
processes (Ht)t≥0, (Kt)t≥0, where the stochastic integrals exist.

We continue with the notion of predictability, which is an integral part of studying
processes in the present of jumps. An process describing the wealth of an insurances
company is an example for a process with jumps occurring as a result of insurance pay-
ments. Since the wealth process of an insurer is the main objection of our optimization
problem, we have to deal with the notion of predictable processes.

Definition 2.52 ([38], p. 25). Let F = (Ft)t≥0 be a filtration. The family R(F) of
subsets of R+× Ω, defined by

R(F) :=
{
{0} × F0 : F0 ∈ F0

}
∪
{

(s, t]× F : F ∈ Fs, 0 ≤ s < t
}
,

is called the class of F-predictable rectangles.
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Definition 2.53 ([38], p. 25). The σ-algebra P(F) on R+× Ω generated by the class
of predictable rectangles P(F) := σ(R(F)) is called F-predictable σ-algebra. A function
X : R+× Ω→ R is said to be F-predictable (F-previsible) if X is P(F)-measurable.

Theorem 2.54 ([75], p. 213). An F-adapted left-continuous process is P(F)-measurable.

Example 2.55. Let X be an F-adapted and càdlàg process. Clearly, the left-hand
limit process X− is left-continuous as well as F-adapted by assumption. Hence X− is
F-predictable by Theorem 2.54.

Proposition 2.56 ([104], p. 103). Every F-predictable process X is F-progressively mea-
surable.

After this short overview of some basics of stochastic processes, we can now turn to
some important tools of stochastic analysis, which will be intensively used in the analysis
of optimization problems.

2.3 Tools of stochastic analysis

Throughout this section, we suppose that all stochastic quantities are defined on the
filtrated probability space (Ω,F ,F,P) satisfying the usual conditions, see Definition 2.24.
We begin this section with probably the best known formula of stochastic calculus, the
Itô-Doeblin formula named after the Japanese Kiyoshi Itô, who is well-known as one of
the developers of the formula, and the French Wolfgang Doeblin, who as soldier during
the World War II developed a comparable formula to the other one from Itô. The famous
Itô-Doeblin formula is hereafter formulated in the version for general semimartingals. For
a treatment of integration w.r.t. general semimartingales we refer the reader to Protter
[104] and Klebaner [75]. It should be noted that we use the following notation.

Notation. Throughout this work, we use the Riemann integral notation for integrals
w.r.t. the Lebesgue measure λ, i.e. we write∫ b

a
g(s) ds instead of

∫
[a,b]

g(s)λ(ds), a < b,

for any Borel measurable function g.

Theorem 2.57 ([104], Thm. II.32; Itô-Doeblin formula). Let d ≥ 2, D be an open subset
of Rd and f ∈ C1,2(R+× D) be a real valued function. Furthermore, let X = (Xt)t≥0

be an D-valued F-semimartingale. Then f(t,X) = (f(t,Xt))t≥0 is an F-semimartingale
holding

f(t,Xt)− f(0, X0) =

∫ t

0
ft(s,Xs) ds+

d∑
i=1

∫ t

0
fxi(s,Xs−) dXi

s

+
1

2

d∑
i,j=1

∫ t

0
fxixj (s,Xs−) d[Xi, Xj ]cs

+
∑

0<s≤t

(
f(s,Xs)− f(s,Xs−)−

d∑
i=1

fxi(s,Xs−)∆Xi
s

)
, t ≥ 0.

In this work the following version of the Itô-Doeblin formula is applied frequently,
which follows immediately from the definition of the continuous part of the process X
given in Definition 2.48.
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Corollary 2.58. Let the conditions of Theorem 2.57 be satisfied. Then f(t,X) =
(f(t,Xt))t≥0 is an F-semimartingale holding

f(t,Xt)− f(0, X0) =

∫ t

0
ft(s,Xs) ds+

d∑
i=1

∫ t

0
fxi(s,Xs−) d(Xi)cs

+
1

2

d∑
i,j=1

∫ t

0
fxixj (s,Xs−) d[Xi, Xj ]cs

+
∑

0<s≤t

(
f(s,Xs)− f(s,Xs−)

)
, t ≥ 0.

Theorem 2.59 ([104], p. 83; Integration by Parts, Product Rule). Let X = (Xt)t≥0 and
Y = (Yt)t≥0 be two F-semimartingales. Then (Xt Yt)t≥0 is an F-semimartingale holding

Xt Yt −X0 Y0 =

∫ t

0
Xs− dYs +

∫ t

0
Ys− dXs + [X,Y ]t, t ≥ 0.

Theorem 2.60 ([75], Thm. 8.33, Protter [104], Thm. II.37). Let X = (Xt)t≥0 be an F-
semimartingale. Then there exists an unique (up to indistinguishability) F-semimartingale
Z = (Zt)t≥0 that satisfies the stochastic differential equation (SDE for short)

dZt = Zt− dXt, Z0 = 1, t ≥ 0,

where Z is given by

Zt = E(X)t := eXt−X0− 1
2

[X]ct
∏

0<s≤t
(1 + ∆Xs)e

−∆Xs , t ≥ 0,

where the infinite product converges.

Definition 2.61. The process E(X) = (E(X)t)t≥0 defined in the previous theorem is
called the stochastic exponential or the Doléans-Dade exponential of X.

2.4 Simple point processes and marked point processes

In this section we review some standard facts on (marked) point processes, in particular
filter results, based on Brémaud [20], Last and Brandt [80], Jacobsen [71] and Leimcke
[82, Ch. 2, 3]. Throughout this section, all stochastic quantities are defined on the fil-
trated probability space (Ω,F ,F,P) satisfying the usual conditions, see Definition 2.24.

2.4.1 Basic definitions

In this work we only deal with point processes on the non-negative real half-line. In actu-
arial mathematics, simple point processes are useful to describe the arrivals of insurance
claims. A simple model of a claim number process is the Poisson process. We introduce
a large class of point processes which contains almost all the point processes of interest
in insurance mathematics. The main idea behind this concept is that the “nature” of a
point process can be described by an “infinitesimal characterisation”. Before introducing
this characterisation, we give some basic definitions and properties. We start with the
definition of a simple point process verbatim cited from Jacobsen [71, Def. 2.1.1].
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Definition 2.62 (Simple point process). A sequence N = (Tn)n∈N of R+-valued random
variables is called a simple point process (SPP for short) if

P(0 < T1 ≤ T2 ≤ . . .) = 1,

P(Tn < Tn+1, Tn <∞) = 1, n ∈ N,
P( lim
n→∞

Tn =∞) = 1.

(2.3)

Remark 2.63. (i) We will use point processes to model the arrival of insurance claims
or trigger events occurring randomly in time. So we interpret the random variables
(Tn)n∈N as random times. In the following, we also refer to these random times as
jump times since a process, which counts the number of claims, jumps upwards of
size one at these time points.

(ii) It is also possible to define an SPP N = (Tn)n∈N without the condition given in the
last line of (2.3) such that limn→∞ Tn < ∞ is possible. If limn→∞ Tn < ∞, then
the SPP“explodes”at a certain time. That is, there has to be a finite accumulation
point of jump times. As models for claim arrival times, only point processes with
P(limn→∞ Tn =∞) = 1 are of practical interest since it is not a realistic situation
that an infinite number of claims occur in a finite time interval.

A simple point process can be interpreted as a special case of a marked point process.
A marked point process is a double sequence of random variables. The first sequence
is a point process describing times at which certain events occur. The second sequence
represents additional information about the events. We say that the second sequence is
the mark of the arrival times. For instance, the first sequence describes claims arrivals
and the second sequence describes the corresponding amount of claims. The following
notation is used to describe the mark of events that never occur.

Notation. Let (E, E) denote a measurable space called the mark space. Furthermore, ∇
denotes a singleton which is not a point of the set E and we write

E := E ∪ {∇} and E := E ∨ {∇}.

The definition of marked point processes is introduced below following Jacobsen [71,
Def. 2.1.2].

Definition 2.64 (Marked point process). A double sequence Φ = (Tn, Zn)n∈N of R+
-

valued random variables (Tn) and E-valued random variables (Yn) is called a marked
point process with a mark space E (E-MPP for short) if

(Tn)n∈N is an SPP,

P(Yn ∈ E, Tn <∞) = P(Tn <∞), n ∈ N,
P(Yn = ∇, Tn =∞) = P(Tn =∞), n ∈ N.

For every n ∈ N, the random variable Yn is said to be the mark of Tn. The singleton ∇
is called an irrelevant mark.

Remark 2.65. An SPP can be seen as an MPP, which has a mark space of cardinality
one. This case is called the univariate case or the unmarked case.

We will discuss different views of point processes in the following. First of all, a
common interpretation of a simple point process is in terms of a counting process.
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Definition 2.66 (Counting process). For a point process N = (Tn)n∈N the associated
counting process, denoted by N = (Nt)t≥0, is defined by

Nt :=
∑
n∈N

1{Tn≤t}, t ≥ 0.

Remark 2.67. It is easily seen that Nt counts the number of jump times Tn which occur
up to time t. Clearly, (Nt)t≥0 is right-continuous, non-decreasing and piecewise constant
with jumps upwards of magnitude one, which justifies the name counting process. We
have supposed that N is nonexplosive. Moreover, Nt <∞ P-a.s. for every t ≥ 0 due to
the property P(limn→∞ Tn =∞) = 1. Hence (Nt)t≥0 is also càdlàg. Thus (Nt)t≥0 is an
FV process.

It is justified to denote the simple point process N = (Tn)n∈N and the counting
process N = (Nt)t≥0 both by N since there is a one-to-one correspondence between this
two views. Indeed, for a given SPP N = (Tn)n∈N, the associated counting process N =
(Nt)t≥0 can be obtained by its definition. Conversely, suppose that a right-continuous
non-decreasing N0-valued process N = (Nt)t≥0 with jumps upwards of size one is given,
then the sequence N = (Tn)n∈N can be easily recovered by the relationship

Tn = inf{t ≥ 0 : Nt ≥ n}, n ∈ N,

where inf ∅ :=∞. Moreover, we have

{Tn ≤ t} = {Nt ≥ n}, n ∈ N, t ≥ 0.

Due to one-to-one correspondence we can make the following convention.

Convention. From now on, a counting process (Nt)t≥0 associated to a simple point pro-
cess N = (Tn)n∈N is called a simple point process, too.

A third view of an SPP is as random element taking values in the following defined
sequence space.

Notation ([71], p. 10). Let t̄ = (tn)n∈N denote a sequence of values tn ∈ (0,∞] for every
n ∈ N. Set

K := {t̄ ∈ (0,∞]N : t1 ≤ t2 ≤ · · · , tn < tn+1 if tn <∞, n ∈ N},

Furthermore, we define

t̄(A) =
∑
n∈N

1{tn∈A}, A ∈ B+, (2.4)

and the coordinate projections

T ◦n : K → (0,∞], T ◦n(t̄) := tn, n ∈ N,
T ◦∞(t̄) := lim

n→∞
T ◦n(t̄) = lim

n→∞
tn.

Moreover, K denotes the smallest σ-algebra of subsets of K such that all coordinate
projections T ◦n , n ∈ N, are measurable, i.e.

K := σ
(
T ◦n , n ∈ N

)
= σ

(⋃
n∈N

T ◦−1
n (B(0,∞])

)
.
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Thus an SPP can be regarded as a random element with values in the measurable
space (K,K).

Remark 2.68. It can be seen from the analysis above that t̄ can also be treated as a
counting function, which allows the interpretation K as the set of all counting functions.

The view of an SPP as random element will be used to define the so-called mixed
Poisson process, which plays an important role in our claim arrival model introduced
in Section 3.1. It is clear that the perspective of simple point processes as random
sequences or as random elements taking values in the space of sequencesK are equivalent.
Furthermore, according to Last and Brandt [80, Lemma 2.2.2], it holds σ(N) = σ(N(A) :
A ∈ B+) = σ(Nt : t ≥ 0), which means that the σ-algebra generated by the K-valued
random element N is equal to the σ-algebra generated by the family of random variables
{N(A) : A ∈ B+} and {Nt : t ≥ 0}, respectively. This justifies the use of the same
symbol N for the random sequence and the corresponding random counting measure.
Hence we have three different ways to express an SPP, where the three views carry the
same information. The accumulated information of an SPP up to time t is described by
the following filtration.

Notation. The natural filtration FN = (FNt )t≥0 of a point process N = (Nt)t≥0 is given
by FNt = σ(Ns : 0 ≤ s ≤ t) for all t ≥ 0.

Notice that FNt is equal to the σ-algebras generated by the K-valued stochastic process
describing the dynamic evolution of N and by the point process N being viewed as
random counting measure restricted on [0, t], respectively, cf. [80, Eq. (2.2.16)].

Theorem 2.69 ([104], Thm. I.25). The natural filtration FN of a simple point process
N is right-continuous.

The next remark is dedicated to the usual conditions of a filtrated probability space
with FN as filtration which has to be in force for a martingale representation theorem
used in the proof of the filter result stated in Theorem 2.94.

Remark 2.70. The filtrated probability space (Ω,FN∞,FN ,P) can be modified such that
the usual conditions are satisfied. Recall that for any probability space one can find a
unique completion, see Proposition 2.22 and that the natural filtration FN of an SPP N
is right-continuous. Defining F̃N = (F̃Nt )t≥0 by F̃Nt := FNt ∨ N , where N is the family

of P-null sets of FN∞, we obtain that (Ω, F̃N∞, F̃N , P̃) holds the usual conditions since if
FN is right-continuous then F̃N is right-continuous, see Brémaud [20, Thm. A.2.T35].

Now we turn our attention to marked point processes. It is often convenient to regard
a marked point process as a random counting measure. For this purpose, we introduce
the following definitions.

Definition 2.71 ([77], Def. 8.25; Transition kernel). Let (Ω1,A1), (Ω2,A2) be two mea-

surable spaces. A mapping κ : Ω1×A2 → R+
is called a transition kernel from (Ω1,A1)

to (Ω2,A2) (from Ω1 to Ω2 for short) if

(i) κ(·, A2) is A1-measurable for all A2 ∈ A2;

(ii) κ(ω1, ·) is a measure on (Ω2,A2) for P-a.a. ω1 ∈ Ω1.

If in (ii) the measure is a probability measure for P-a.a. ω1 ∈ Ω1, then κ is called a
stochastic kernel, a transition probability kernel or a Markov kernel from (Ω1,A1) to
(Ω2,A2).
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A random measure is a certain transition kernel.

Definition 2.72 ([80], p. 74; Random measure). Let (S,S) be a measurable space. A
transition kernel ν from (Ω,F) to (S,S) is called a random measure on (S,S) (on S
for short) and a stochastic kernel from (Ω,F) to (S,S) is called a random probability
measure on (S,S) (on S for short).

For clarity, we use the same convention as in Last and Brandt [80, pages 74–75].

Convention. Let ν be a random measure on (S,S). Sometimes we write ν(ω, ·) = ν(ω)
for ω ∈ Ω and ν(ω,A) = ν(A) for A ∈ S. Unless otherwise stated, an equation with a
term ν(A) means for all ω ∈ Ω. By definition, ν(ω) is a measure on S for every ω ∈ Ω.
Let (p) be a property of a measure on S. We say ν has the property (p) if ν(ω) has the
property for all ω ∈ Ω.

Now, we define the mentioned random counting measure associated to a marked point
process similar to Jacobsen [71, Eq. (2,4)].

Notation. For an E-MPP Φ = (Tn, Zn)n∈N we define

Φ(dt,dz) :=
∑

n∈N:Tn<∞
δ(Tn,Zn)(dt,dz), (2.5)

where δ(Tn,Zn)(ω,dt,dz) = δ(Tn(ω),Zn(ω))(dt,dz) is the Dirac measure at the point
(Tn(ω), Zn(ω)) on the product space (R+× E,B+⊗ E).

It is easy to verify that Φ(dt,dz) given by (2.5) is a random counting measure on
R+ × E. It might be confusing that Φ is used in (2.5) although Φ also denotes
the MPP. In the following we will see that this notation is justified since an MPP
Φ = (Tn, Zn)n∈N can be identified with a random counting measure given by (2.5).
Before the identification, we define a counting process associated to Φ.

Definition 2.73 ([80], p. 5). Let Φ = (Tn, Zn)n∈N be an E-MPP and let Φ(dt,dz) be
the associated measure. For any ∅ 6= A ∈ E , we define a process (Φ(t, A))t≥0 by

Φ(t, A) := Φ([0, t]×A) =
∑
n∈N

1{Tn<t}1{Zn∈A}, t ≥ 0.

The process (Φ(t, A))t≥0 is called the counting process with marks in A associated to Φ.
Furthermore, we define a process (Φ(t))t≥0 by

Φ(t) := Φ(t, E) =
∑
n∈N

1{Tn<t}

The process (Φ(t))t≥0 is called the counting process associated to Φ.

Definition 2.74. An E-MPP Φ is said to be F-adapted if (Φ(t, B))t≥0 is F-adapted for
all B ∈ E .

Recall that there is a one-to-one correspondence between an SPP expressed as a se-
quence and counting process. It is more difficult to verify that there is a one-to-one
correspondence between a double sequence Φ = (Tn, Zn)n∈N and the associated ran-
dom counting measure Φ(dt,dz). Let Φ = (Tn, Zn)n∈N be an E-MPP. Clearly, we obtain
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Φ(A,B) for every (A,B) ∈ B+⊗E from Φ = (Tn, Zn)n∈N by definition. It is also possible
to recover the sequences (Tn)n∈N and (Yn)n∈N from Φ(dt,dz) by

Tn = inf{t ≥ 0 : Φ(t) ≥ n}, {Yn ∈ B} = {Tn <∞} ∩ {Φ(Tn)×B > 0}, B ∈ E , n ∈ N,

cf. [80, Eq. (2.2.13)]. So we have also a one-to-one correspondence between an MPP
stated as a double sequence and a random counting measure, which justifies the following
convention.

Convention. From now on we call a random counting measure Φ(dt,dz) associated to a
MPP Φ = (Tn, Zn)n∈N also MPP.

Next we characterize the history of an MPP as in Last and Brandt [80, p. 9], which
expresses the accumulated available information.

Notation. Let Φ = (Tn, Zn)n∈N be an E-MPP. We define

FΦ
t := σ

(
Φ((a, b]×B) : 0 ≤ a < b ≤ t, B ∈ E

)
, t ≥ 0. (2.6)

It should be noted that FΦ
t is equal to the σ-algebra generated by the random counting

measure of Φ restricted onto [0, t]× E, see [80, Eq. (2.2.16)]. This equation asserts that
all characterizations of the dynamic evolution of Φ carry the same information at every
time t. So the filtration FΦ := (FΦ

t )t≥0 is the natural filtration of Φ, which gives the
history of Φ, i.e. FΦ

t includes the available information of Φ up to time t.

Theorem 2.75 ([80], Thm. 2.2.4). The filtration FΦ is right-continuous.

Notice that (Ω,FΦ
∞,F

Φ,P) can be altered to a filtrated probability space holding the
usual conditions with the same arguments as in Remark 2.70. With this concluding
remark on the introduction of marked point processes we can move forward to roll out
the mentioned infinitesimal characterisation of simple point processes.

2.4.2 Intensities of simple point processes

In modern point process theory, the behaviour of an SPP is specified by an intensity
defined hereafter.

Definition 2.76 ([20], Def. II.D7). Let N = (Nt)t≥0 be an F-adapted SPP and λ =
(λt)t≥0 a non-negative F-progressively measurable process such that∫ t

0
λs ds <∞ P-a.s., t ≥ 0.

Then we say N admits a (P,F)-intensity λ if

E
[∫ ∞

0
Hs dNs

]
= E

[∫ ∞
0

Hs λs ds

]
(2.7)

for all non-negative F-predictable processes (Ht)t≥0.

If we interpret an SPP with an intensity λ as a claim counting process, then the
intensity λ is also called the claim arrival rate.
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Remark 2.77. Equation (2.7) holds for all non-negative F-predictable processes P =
(Pt)t≥0, that is to say

dNt(ω)P(dω) = λt(ω) dtP(dω) on (R+× Ω,P(F)),

where P(F) denotes the F-predictable σ-algebra defined on R+× Ω, see Definition 2.53.

Here are some important properties of point processes with intensities.

Theorem 2.78 ([20], Thm. II.T8). Let N = (Nt)t≥0 be an F-adapted SPP with the
F-intensity λ = (λt)t≥0 and let M = (Mt)t≥0 be a process defined by

Mt := Nt −
∫ t

0
λs ds, t ≥ 0.

Then the following assertions hold:

(i) N is non-explosive, i.e. Nt <∞ P-a.s. for all t ≥ 0.

(ii) N is integrable if and only if E
[∫ t

0 λs ds
]
<∞ for all t ≥ 0.

(iii) M is a local F-martingale.

(iv) If N is integrable, then M is an F-martingale.

(v) If X is an F-predictable process such that E
[ ∫ t

0 |Xs|λs ds
]
<∞ for all t ≥ 0, then

(
∫ t

0 Xs dMs)t≥0 is an F-martingale.

(vi) If X is an F-predictable process such that P
( ∫ t

0 |Xs|λs ds < ∞
)

= 1 for all t ≥ 0,

then (
∫ t

0 Xs dMs)t≥0 is a local F-martingale.

Proof. Statements (i), (iii), (v) and (vi) can be found in Theorem II.T8 of Brémaud
[20]. Statements (ii) follows by applying Ps = 1{s≤t} to (2.7), which yields E[Nt] =

E
[∫ t

0 λs ds
]
< ∞ for all t ≥ 0. It remains to prove statement (iv) which is a special

case of statement (v) by choosing X ≡ 1. Indeed, statement (iv) yields, if E[
∫ t

0 λs ds] <

∞ for t ≥ 0, then (
∫ t

0 (dNs − λs ds))t≥0 = (Nt −
∫ t

0 λs ds)t≥0 is an F-martingale. By

statement (ii), the condition E[
∫ t

0 λs ds] < ∞ for t ≥ 0 is equivalent to the assertion
that N is integrable. This completes the proof. Note that, by similar argumentation,
statement (iii) is a special case of statement (v).

The following example shows that we can not expect the intensity to be unique.

Example 2.79. Let N be an SPP with an F-intensity λ = (λt)t≥0 that is càdlàg such
that the left-hand limit process λ− = (λt−)t≥0 is well-defined. By Lemma 2.13, the
sample paths of λ and λ− differ at most countably many points. Hence, for any non-
negative F-predictable processes (Ht)t≥0, we have

E
[∫ ∞

0
Hs dNs

]
= E

[∫ ∞
0

Hs λs ds

]
= E

[∫ ∞
0

Hs λs− ds

]
,

where the second equation holds since we are integrating w.r.t. Lebesgue measure. There-
fore, the integrand can be changed at most countably many points without changing the
integral. Consequently, λ− is also an FN -intensity of N .
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We will see that the intensity is unique under the requirement of predictability.

Theorem 2.80 ([20], Thm. II.T12, Thm. II.T13). Let N be an SPP with F-intensity
λ = (λt)t≥0. Then N admits also an F-intensity λ̃ = (λ̃t)t≥0 which is F-predictable.

Furthermore, λ̃ is unique in the sense that if µ = (µt)t≥0 is another F-predictable inten-
sity of N , then

λ̃t(ω) = µt(ω) dNt(ω)P(dω)-a.s.

Convention. If the intensity of an SPP is predictable, we will speak of the intensity
instead of an intensity, according to the uniqueness in that case.

The next proposition deals with a change of the history for intensities.

Proposition 2.81. Let N be an SPP with an F-intensity λ = (λt)t≥0 and let G = (Gt)t≥0

be a smaller filtration than F = (Ft)t≥0. If µ = (µt)t≥0 is a modification of (E[λt | Gt])t≥0

such that µ is G-progressive measurable, then µ is an G-intensity of N .

Proof. This proof is inspired by Brémaud [20, p. 32]. Let (Ht)t≥0 be an arbitrary
non-negative G-predictable process. By definition of λ as F-intensity of N , we have

E
[∫ ∞

0
Hs dNs

]
= E

[∫ ∞
0

Hs λs ds

]
, (2.8)

where we take into account that every G-predictable process is also F-predictable. Since
(Ht λt)t≥0 is non-negative, we can apply Fubini’s theorem which yields

E
[∫ ∞

0
Hs λs ds

]
=

∫ ∞
0

E[Hs λs] ds =

∫ ∞
0

E[E[Hs λs | Gs]] ds

=

∫ ∞
0

E[Hs E[λs | Gs]] ds = E
[∫ ∞

0
Hs E[λs | Gs] ds

]
,

(2.9)

where we have used the fact that Hs is Gs-measurable for all s ≥ 0 (which follows from
the G-predictability, cf. Prop. 2.27). Combining (2.8) with (2.9), we obtain

E
[∫ ∞

0
Hs dNs

]
= E

[∫ ∞
0

Hs E[λs | Gs] ds

]
,

i.e. (E[λt | Gt])t≥0 satisfies condition (2.7) of the definition of the intensity. The assump-
tion allows µ = (µt)t≥0 to be a modification of (E[λt | Gt])t≥0, which is G-progressive
measurable. So we can replace E[λs | Gs] by µs in the last line of (2.9). We are left to
show that

∫ t
0 µs ds <∞ P-a.s. for all t ≥ 0. For this aim let us set for any n ∈ N,

Sn :=

{
inf{t > 0 :

∫ t
0 λs ds ≥ n} if {. . .} 6= ∅,

∞ otherwise.

On account of Proposition 2.38, Sn is an F-stopping time for all n ∈ N. From
∫ t

0 λs ds <
∞ P-a.s. for all t ≥ 0, it follows that Sn ↗ ∞ P-a.s. as n → ∞. Define a nonnegative
process C = (Ct)t≥0 by Ct = 1{Sn≥t} for t ≥ 0. By Proposition 2.36, {Sn < t} ∈ Ft
and, in consequence, {Sn ≥ t} ∈ Ft for every t ≥ 0. Hence C is F-adapted. The left-
continuity of C implies that C is F-predictable, see Theorem 2.54. Writing (2.9) with
Ct, we get

E
[∫ Sn

0
µs ds

]
= E

[∫ Sn

0
λs ds

]
≤ n <∞, n ∈ N0.
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Therefore,
∫ Sn

0 λ̃s ds < ∞ P-a.s. for all n ∈ N. Since Sn ↗ ∞ P-a.s., there exists, for

any t ≥ 0, a number ñ ∈ N such that
∫ t

0 µs ds ≤
∫ Sñ

0 µs ds <∞ P-a.s.

Remark 2.82. It might be not completely clear why the G-intensity µ can not always be
defined as the projection of λt on Gt under the setting of the previous proposition. The
reason is the requirement of G-progressiveness, which is not satisfied by (E[λt | Gt])t≥0 in
general. Nevertheless, the G-intensity µ can also be defined (in an abstract way) without
further assumptions on µ, compare Theorem II.T14 in Brémaud [20].

The last part of this sub-section is devoted to another class of simple point processes
– the so-called doubly stochastic Poisson processes – which turns out to be a sub-class
of point processes with intensity under additional assumptions. Loosely speaking, a
doubly stochastic Poisson process is an inhomogeneous Poisson process with a random
process as intensity, where the sample path of the stochastic intensity is chosen at the
beginning. Afterwards, this trajectory is used to generate a Poisson process by acting as
its intensity. So the doubly stochastic Poisson process has a conditional Poisson property.
There are different definitions of doubly stochastic Poisson processes. We introduce here
the definition given in Brémaud [20], Definition II.D1.

Definition 2.83 (Doubly stochastic Poisson process). Let N = (Nt)t≥0 be an F-adapted
SPP and let λ = (λt)t≥0 be a non-negative measurable process satisfying, for every t ≥ 0,

λt is F0-measurable (2.10)

and ∫ t

0
λv dv <∞ P-a.s. (2.11)

If, for any u ∈ R and 0 ≤ s ≤ t,

E
[
eiu(Nt−Ns)

∣∣∣Fs] = exp

{
(eiu − 1)

∫ t

s
λv dv

}
, (2.12)

then N is called a (P,F)-doubly stochastic Poisson process (DSPP) with intensity λ =
(λt)t≥0.

Remark 2.84. (i) In literature, the doubly stochastic Poisson process is also called
Cox process since the process was introduced by Cox [42].

(ii) Equation (2.12) gives the conditional characteristic function of Nt −Ns given Fs.
Since the characteristic function of the Poisson distribution is stated on the right-
hand side of (2.12), it follows that

P(Nt −Ns = k | Fs) =

( ∫ t
s λv dv

)k
k!

e−
∫ t
s λv dv, k ∈ N0, 0 ≤ s ≤ t.

The equation indicates that a DSPP with intensity (λt)t≥0 is an inhomogeneous
Poisson process1 with intensity measure λt dt conditioned upon the realization of
(λt)t≥0.

Proposition 2.85. Let N = (Nt)t≥0 be an integrable F-DSPP with intensity λ = (λt)t≥0.

Then N is an SPP with intensity λ̃ = (λ̃t)t≥0, where λ̃ is a modification of λ. If λ is

additional left- or right-continuous, then λ̃ and λ are indistinguishable.
1For the definition of an inhomogeneous Poisson process see Brémaud [21, Def. 4.D5].
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Proof. Following the argumentation given at the beginning of Chapter II.2 in Brémaud
[20], it yields

E
[∫ ∞

0
Hs dNs

]
= E

[∫ ∞
0

Hs λs ds

]
for all non-negative F-predictable processes (Ht)t≥0. Due to Eq. (2.10), λ is F-adapted
and hence there exists an F-progressively measurable modification of λ (cf. Prop. 2.28),
which can clearly replace λs in the equation above. Moreover, according to Proposi-
tion 2.29, λ is F-progressively measurable if λ is additional left- or right-continuous.

The next theorem yields a characterization of doubly stochastic Poisson processes.

Theorem 2.86 ([20], Thm. II.T4). Let N = (Nt)t≥0 be an F-adapted SPP and let
λ = (λt)t≥0 be a non-negative measurable process satisfying

λt is F0-measurable, and, (2.13)∫ t

0
λs ds <∞ P-a.s. (2.14)

for all t ≥ 0. Then N is an F-DSPP with intensity λ if

E
[∫ ∞

0
Hs dNs

]
= E

[∫ ∞
0

Hs λs ds

]
, (2.15)

for all non-negative F-predictable processes (Ht)t≥0.

Examples for doubly stochastic Poisson processes are the so-called mixed Poisson
processes, which can be seen as a sub-class of doubly stochastic Poisson processes. A
mixed Poisson process will be an essential component of the claim arrival model in
Section 3.1. According to Grandell [67, Rem. 4.2] there are two common definitions
of mixed Poisson processe: The first one was introduced by Lundberg [89, p. 72] and
involves birth processes, while the second one, cf. e.g. Grandell [67, Def. 4.2], is given
by mixing of Poisson processes. We will use the second one since this will lead to
a Bayesian interpretation of the mixed Poisson process as explained in Section 3.1.
However, Albrecht [6] proved the equivalence of both definitions. There are three more
definitions being found in the literature according to Lyberopoulos et al. [90].

Before stating the definition, recall the introduced space K on page 18, which can be
seen as a set of all counting functions, wherein an SPP N is viewed as a random element
takes values. Furthermore, we need the following notation.

Notation. We denote the distribution of N by ΠN , i.e. ΠN is a probability measure on
(K,K). Moreover, Πλ denotes the distribution of a homogeneous Poisson process with
intensity λ > 0.

The measurability of λ 7→ Πλ(B) (see Grandell [65, Lemma 1.1]) allows us to introduce
the mixed Poisson process as follows.

Definition 2.87 ([67], Def. 4.2; Mixed Poisson process). Let Λ be a positive random
variable with distribution ΠΛ. An SPP N is called a mixed Poisson process with mixing
distribution ΠΛ (mPP(ΠΛ)), if its distribution is given by

ΠN (B) =

∫ ∞
0

Πλ(B) ΠΛ(dλ), B ∈ K.
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The definition states that a mixed Poisson process is the mixture of homogeneous
Poisson processes2 by a given distribution. It can be interpreted that first a realization
λ of the random variable Λ is chosen and given that realization N is a homogeneous
Poisson process with intensity λ. This interpretation makes it clear that a mixed Poisson
process is a special case of a doubly stochastic Poisson process, see Proposition 2.90.

For calculation issues, it is convenient to use the following definition of a mixed Poisson
process, where the equivalence to the definition above holds according to Lyberopoulos
et al. [90, p. 2].

Definition 2.88 ([67], Def. 4.3). Let Λ be a positive random variable with distribution
ΠΛ and Ñ a (standard) homogeneous Poisson process with intensity 1, which is inde-
pendent of Λ. Then the SPP (Nt)t≥0 given by Nt = ÑΛt for every t ≥ 0 is said to be a
mixed Poisson process with mixing distribution ΠΛ.

With this definition, the following elementary property of a mixed Poisson process can
be derived.

Proposition 2.89 (Albrecher et al. [5], p. 144–145). An an mPP(ΠΛ) N satisfies, for
any t ≥ 0,

P(Nt = n) =

∫ ∞
0

(λt)n

n!
e−λt ΠΛ(dλ), E[Nt] = tE[Λ].

Proposition 2.90 ([67], p. 86). Let Λ be an F0-measurable positive random variable
with distribution ΠΛ and let N be an mPP(ΠΛ). Then N is an F-DSPP with constant
intensity (Λ)t≥0.

Proof. The conditions (2.10) and (2.11) of Definition 2.83 of a DSPP are obviously
satisfied by the F0-measurability of Λ. Moreover, the Poisson property (2.12) (compare
also Remark 2.84 (ii)) follows immediately from Proposition 2.89.

Proposition 2.91. Let Λ be a positive random distributed according to distribution ΠΛ

with a finite mean. Then the mixed Poisson process N with the mixing distribution ΠΛ

is an SPP with F-intensity (Λ)t≥0 and FN -intensity (E[Λ | FNt ])t≥0.

Proof. From Proposition 2.89, we can conclude that N is integrable since E[Λ] < ∞.
Hence N admits the F-intensity (Λ)t≥0, which follows by combining Proposition 2.90
with Proposition 2.85. The statement that (E[Λ | FNt ])t≥0 in an FN -intensity of N is
given in Proposition 4.1 in Grandell [67].

After these introductions about the characterization of point processes with intensity
as well as the sub-classes of doubly stochastic Poisson processes and mixed Poisson
processes, we continue with the theory of filtering with point process observations, which
provides a method to make inferences about unknown intensities of point processes.

2.4.3 Filtering with point process observations

Although claim arrivals can be observed, the claim arrival rate of a claim number process
is typically not observable by an insurance company. This leads to a filter problems with
counting observations. In this section we present the innovations method for filtering
with point process observations introduced by Brémaud [20, Sec. IV.1] in a restricted
setting which is sufficient for this work. We assume the unobservable state processes to
be constant as our restriction. More precisely, we have the following setting.

2A definition of the homogeneous Poisson process can be found in Brémaud [21, Def. 4.D4].
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Assumption 2.92. Let (Ω,F ,F,P) be a filtrated probability space satisfying the usual
conditions, Z an F0-measurable random variable and N an integrable SPP with F-
intensity λ = (λt)t≥0. Moreover, we make the following assumptions:

(i) The global filtration F = (Ft)t≥0 records the events outside the observed history
FN = (FNt )t≥0, i.e. FNt ( Ft for all t ≥ 0. Here we even assume that FN∞ ( F0.

(ii) The filtrated probability space (Ω,FN∞,FN ,P) has been modified as shown in Re-
mark 2.70. By abuse notation, we still write (Ω,FN∞,FN ,P) instead of
(Ω, F̃N∞, F̃N , P̃) for the modified space.

Remark 2.93. It should be noted that the assumption above defines a Bayesian setting.
Therefore, the unknown (random) parameter of a distribution given some observations
is described by the posterior distribution of this parameter given the jump times of the
observed point process at the jump times. However, the presented filter method will
yield the evolution between the jump times and will turn out to be valuable for the
stochastic control approach in Section 4.4 and Section 5.4. This issue will be addressed
again in Section 4.2.

To state the filter result, we introduce some notations.

Notation. Throughout this section, (λ̂t)t≥0 denotes an FN -intensity of N and by Ẑ =

(Ẑt)t≥0 a càdlàg modification of (E[Z | FNt ])t≥0, i.e.

Ẑt = E[Z | FNt ] P-a.s., t ≥ 0.

Justification of the notation. Proposition 2.81 ensures that there exists an FN -intensity
of N and the process (E[Z | FNt ])t≥0 admits a càdlàg modification according to Proposi-
tion 2.31.

The first step of the innovations approach is to project the unobservable random
variable Z (process, in general) on the observed filtration, which yields (see Brémaud
[20, Thm. IV.T1])

Ẑt = E[Z0] + m̂t, t ≥ 0,

where (m̂t)t≥0 is an FN -martingale starting at zero. According to the martingale repre-
sentation theorem given in Brémaud [20, Thm. III.T17], there exists an FN -predictable
process (Kt)t≥0 such that m̂t =

∫ t
0 Ks

(
dNs − λ̂s ds

)
for all t ≥ 0. Thus

Ẑt = E[Z0] +

∫ t

0
âs ds+

∫ t

0
Ks dM̂s, t ≥ 0, (2.16)

This equation is called a filter of Z. The process
(
dNs − λ̂s ds

)
t≥0

is said to be the

innovations process and the process (Kt)t≥0 is called innovations gain. The term inno-

vation is justified since dNt describes the observation in [t, t+ dt) and λ̂t dt is what one
expect to happen in [t, t+ dt). Therefore, dNt − λ̂t dt gives the new information.

The filter of Zt given in (2.16) is an abstract existence result since there is no expression
for the innovations gain (Kt)t≥0. Consequently, the next step is to find the innovations
gain, which is made in the following theorem.

Theorem 2.94. Let Assumption 2.92 be in force. Then

Ẑt = E[Z0] +

∫ t

0
(As − Ẑs−) (dNs − λ̂s ds), t ≥ 0, (2.17)



28 Chapter 2 Fundamentals

up to indistinguishability, where (At)t≥0 is an FN -predictable processes λ̂t(ω) dtP(dω)-
uniquely given by

E
[∫ t

0
Hs Z λs ds

]
= E

[∫ t

0
HsAs λ̂s ds

]
, t ≥ 0, (2.18)

for all non-negative bounded FN -predictable processes (Ht)t≥0.

Proof. The assertion follows directly from Theorem IV.T2 in Brémaud [20]. Notice that
the mentioned theorem is stated for multivariate point processes, while we formulate only
a univariate version. To see the direct connection of the stated result and Theorem IV.T2
in Brémaud [20], it should be noted that the process Ψ3 in Theorem IV.T2 can be chosen
to be constant zero if the unobservable state process and N have no common jump
times which is the case in the presented setting since we only consider constant state
processes.

Note that λ̂t(ω) dtP(dω) is a measure on (R+×Ω,P(FN )) which is equal to the measure
dNt(ω)P(dω) on the same measure space. After this remark, we proceed by extending
the filter results to the case of marked point process observations. For this purpose, an
infinitesimal characterization for marked point processes is required.

2.4.4 Intensity kernels of marked point processes

The intensity kernel of an MPP is analogue to the intensity of an SPP. Recall that (E, E)
is some measurable space and for the E-MPP Φ, Φ(ω,dt,dz) is a counting measure on
E for every ω ∈ Ω. Hence, for any measurable function H : R+× Ω× E → R, we have∫ ∞

0

∫
E
H(s, z) Φ(ds, dz) =

∑
n∈N

H(Tn, Zn)1{Tn<∞},∫ t

0

∫
E
H(s, z) Φ(ds, dz) =

∑
n∈N

H(Tn, Zn)1{Tn≤t}, t ≥ 0,

where we use the convention that
∫ b
a is interpreted as

∫
(a,b] if b <∞ and

∫
(a,b) if b =∞.

For the next definition, let us recall Definition 2.53 of the F-predictable σ-algebra
P(F).

Definition 2.95 ([20], p. 235). A function H : R+×Ω×E → R is called an F-predictable
function indexed by E if H is P(F)⊗ E-measurable.

Definition 2.96 ([20], Def. VIII.D2; Intensity kernel). Let Φ = (Tn, Zn)n∈N be an F-

adapted E-MPP. Furthermore, let λ : R+× Ω × E → R+
be a transition kernel from

(R+×Ω,B+⊗F) to (E, E) such that, for any B ∈ E , (λ(t, B))t≥0 is the (P,F)-predictable
(P,F)-intensity of (Φ(t, B))t≥0. Then the family of random measures (λ(t,dz))t≥0 is said
to be the (P,F)-intensity kernel of Φ.

Notice that it is justified to write “the” intensity kernel because of the uniqueness of
predictable intensities, cf. Thm. 2.80. Another important property of intensity kernels
is described in the following theorem.

Theorem 2.97 ([20], Thm. VIII.T3; Projection Theorem). Let Φ = (Tn, Zn)n∈N be
an E-MPP with the (P,F)-intensity kernel (λ(t,dz))t≥0. Then, for any non-negative
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F-predictable function H indexed by E, we have

E
[∫ ∞

0

∫
E
H(s, z) Φ(dt,dz)

]
= E

[∫ ∞
0

∫
E
H(s, z)λ(s, dz) ds

]
.

Here are some elementary properties of a marked point process with intensity kernel.

Corollary 2.98 ([20], Cor. VIII.C4). Let Φ = (Tn, Zn)n∈N be an E-MPP with the (P,F)-
intensity kernel (λ(t,dz))t≥0. Furthermore, let H be an F-predictable function indexed
by E such that ∫ t

0

∫
E
|H(s, z)|λ(s, dz) ds <∞ P-a.s., t ≥ 0.

Then the process M = (Mt)t≥0 defined by

Mt :=

∫ t

0

∫
E
H(s, z)

(
Φ(dt,dz)− λ(s, dz) ds

)
is a local (P,F)-martingale. Moreover, if

E
[∫ t

0

∫
E
|H(s, z)|λ(s, dz) ds

]
<∞, t ≥ 0,

then M is a (P,F)-martingale.

We continue with discussing the theory of filtering with marked point process obser-
vations using the innovations method.

2.4.5 Filtering with marked point process observations

In this section we will cite the filter results given in Brémaud [20, Ch. VIII.2], where we
again limit the results to the case of constant unobservable processes. To state the filter
results, we need intensity kernels with a special structure given in the next definition.

Definition 2.99 (Local characteristic). Let Φ be an E-MPP with the (P,F)-intensity
kernel (λ(t,dz))t≥0 of the form

λ(t,dz) = λt µ(t,dz),

where (λt)t≥0 is a non-negative F-predictable process and µ is a stochastic kernel from
(R+× Ω,B+⊗ F) to (E, E). Then the family of pairs (λt, µ(t,dz))t≥0 is called a local
(P,F)-characteristic of Φ.

We are now in the position to specify the filter framework.

Assumption 2.100. Let (Ω,F ,F,P) be a filtrated probability space satisfying the usual
conditions, Z an F0-measurable random variable and Φ an E-MPP with F-local charac-
teristic (λt, µ(t,dz))t≥0. Moreover, we make the following assumptions:

(i) The global filtration F = (Ft)t≥0 records the events outside the observed history
FΦ = (FΦ

t )t≥0, i.e. FΦ
t ( Ft for all t ≥ 0. Here we even assume that FΦ

∞ ( F0.

(ii) The filtrated probability space (Ω,FΦ
∞,F

Φ,P) has been modified as shown in Re-
mark 2.70, where we keep the same notation for the modified object.

Similar to Section 2.4.3, we use the following notation.
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Notation. Throughout this section, let (λ̂t, µ̂(t,dz))t≥0 denote the FΦ-local characteristic

of Φ and by Ẑ = (Ẑt)t≥0 a càdlàg modification of (E[Z | FΦ
t ])t≥0, i.e.

Ẑt = E[Z | FΦ
t ] P-a.s., t ≥ 0.

With this notation the procedure of Section 2.4.3 can be readily extended to the setting
of this section, which results in the following filter equation.

Theorem 2.101. Let the conditions of Assumption 2.100 be prevailed. Then

Ẑt = E[Z0] +

∫ t

0

∫
E

(
A(s, z)− Ẑs−

) (
Φ(ds, dz)− λ̂s µ̂(s, dz) ds

)
, t ≥ 0, (2.19)

up to indistinguishability, where A is an FΦ-predictable function indexed by E which is
λ̂t(ω)µ̂(t, ω,dz)P(dω)-uniquely given by

E
[∫ t

0

∫
E
Z H(s, z)λs µ(s, dz) ds

]
= E

[∫ t

0

∫
E
A(s, z)H(s, z) Λ̂s µ̂(s, dz) ds

]
, t ≥ 0,

(2.20)
for all bounded FΦ-predictable functions H indexed by E.

Proof. The theorem is an immediate consequence of Thm. VIII.T9 in Brémaud [20].

It is worth noting that λ̂t(ω)µ̂(t, ω, dz)P(dω) is a measure on (R+×Ω×E,P(FΦ)⊗E).
This remark closes the chapter and now we have all the necessary foundations to address
the optimization problem of an insurance company described in the next chapter.
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The control problem under partial
information

We consider an insurance company with several lines of business (LoBs). The aim is
to maximize the expected utility of the terminal surplus of the considered insurance
company by choosing optimal investment and reinsurance strategies. For this purpose,
we need a model for the surplus process. An important component of the surplus process
is the aggregated claim amount process which will be specified in the following section.

3.1 The aggregated claim amount process

In the following, let d ∈ N be the number of LoB of the insurer. The arrival times of the
insurance claims will be described by a d dimensional counting process, which determines
the dependencies between the claim arrival of the various kinds of insurances risks.

The claim arrival process. To impose interdependencies between different types of
insurance risks, we use a common shock risk model inspired from the thinning and shift
model considered in Bäuerle and Grübel [27], where we suppose that there is no time
gap between the shock events and the claim arrival times. To state the claim arrival
model, the following notation will be used.

Notation. We set D := {1, . . . , d} and we denote by P(D) the set of all subsets of D.
Furthermore, we write ` := 2d − 1 for the number of elements of P(D) minus one.
Moreover, F = (Ft)t≥0 denotes the global filtration. That means, F includes all available
information, in particular information the insurer does not have.

For the construction of the claim arrival model, let us introduce an F0-measurable
random variable Λ with distribution ΠΛ. The initial point for the claim arrival model
is a mixed Poisson process N = (Nt)t≥0 with mixing distribution ΠΛ, compare Defini-
tion 2.87. We interpret the arrival times of the mixed Poisson process N , denoted by
(Tn)n∈N, as time points of the events which trigger various kinds of insurance claims.
Therefore, N is called the trigger process with the background intensity Λ and the jump
times (Tn)n∈N are said to be the arrival times of trigger events or of shock events.

Before describing the connection between the shock events and the insurance claims,
let us go deeper into the interpretation of the trigger process. Mixed Poisson processes1

were introduce by Dubourdieu [53] for an actuarial application, namely as a claim ar-
rival model in health and accident insurance business. A common interpretation of a
mixed Poisson processes is as counting processes which consists of various sub-processes

1For full treatment of mixed Poisson processes we refer the reader to Grandell [67].
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behaving as Poisson processes with certain intensities.2 However, Definition 2.87 of a
mixed Poisson process provides the natural interpretation as the Bayesian version of the
Poisson process, where ΠΛ is the prior distribution of the intensity.3 This interpretation
is in accordance with the intention for our use of the mixed Poisson process since, in
practice, the background intensity Λ is unknown to the insurance company. As men-
tioned in Wichelhaus and von Rohrscheidt [118, Ch. 3], it is unreasonable to use a model
with fixed but unknown parameter. To avoid this, we have chosen the intensity of the
process N as positive F0-measurable random variable Λ. So we have a two-step stochas-
tic phenomenon. First, the realisation λ of the background intensity Λ is selected, where
the realisation is unknown to the insurer since F is the global filtration. Secondly, the
trigger arrival times are generated with the chosen intensity λ.

The effects of a shock event on the insurance lines will be discussed next. For this
purpose, we introduce a sequence (Zn)n∈N of categorical variables taking values in a set
with ` elements. Each value is associated to a category describing in which LoBs the
damages by the corresponding shock are caused. We quantify these categories by sets
∅ 6= D ⊆ D. So, for any n ∈ N, Zn is a P(D)\{∅}-valued random element, where the
trigger event at Tn affects the LoBs i ∈ Zn.

Notation. Throughout this work, Z ∼ Z1 denotes a random element which is identical
distributed as Z1.

We assume that assumption P(Z = ∅) = 0, i.e. every shock event leads to at least one
insurance damage, which justifies the following abbreviation.

Notation. For notational convenience, we write D ⊂ D instead of ∅ 6= D ⊆ D. Notice
that D ⊂ D is equal to D ∈ P(D) \ {∅}.

In contrast to the thinning and shift model introduced in Bäuerle and Grübel [27],
our claim arrival model has no time shift between the jump times (Tn)n∈N of N and the
claim arrival times. In this perspective, the model in Bäuerle and Grübel [27] is more
general. Nevertheless, our model is more comprehensive concerning the randomness of
the intensity.

Recall that {i ∈ Zn} is the set of all events where the LoBs i ∈ Zn are affected by
the trigger event at Tn. Therefore, the (multivariate) claim arrival process, denoted by
(N1, . . . , Nd) = (N1

t , . . . , N
d
t )t≥0, is defined by

N i
t :=

∑
n∈N

1{Tn≤t}1{i∈Zn}, t ≥ 0, i = 1, . . . , d.

So (N1, . . . , Nd) is a d-dimensional counting process, where N i
t counts the number of

claims of the ith LoB up to time t.

Remark 3.1. The dependency structure of the marginal counting processes is only given
via the synchronicity of jump times. Notice further that (N1, . . . , Nd) can be seen as
a special case of the multivariate claim arrival model introduced in Scherer and Selch
[108] with (unobservable) constant Lévy subordinator Λ.

Notation. From now on, we set Φ := (Tn, Zn)n∈N. That is, Φ is a P(D)-MPP, cf. Defini-
tion 2.64. We further write FN̄ = (F N̄t )t≥0 for the filtration generated by (N1, . . . , Nd),
i.e. F N̄t := σ(N i

s : 0 ≤ s ≤ t, i = 1, . . . , d) for all t ≥ 0.

2See beginning of Sec. 5.2.3 in Albrecher et al. [5].
3See page 64 in Grandell [67].
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Using the MPP Φ, we can represent the claim arrival process (N1, . . . , Nd) by

N i
t =

∫ t

0
1z(i) Φ(dt,dz), t ≥ 0, i = 1, . . . , d.

Representations of jump processes by integrals w.r.t. a random counting measure will
be proven to be extremely useful for the solution approach of the optimization problem
introduced in Section 3.7.

The insurer is able to observe the claim arrival times. In consequence, the arrival
times of the trigger events (Tn)n∈N and the sequence (Zn)n∈N are observable since, in
the given setting, we can reconstruct the jump times (Tn)n∈N of the trigger process as
well as the P(D)-valued sequence (Zn)n∈N as follows: Let N i = (T in)n∈N, i ∈ D, be the
claim arrival times of the ith LoB. Then the sequence (Tn)n∈N of the arrival times of the
trigger events is iterative given by

T1 = min{T i1 : i = 1, . . . , d},
Tn = min{T im : T im > Tn−1,m ∈ N, i = 1, . . . , d}, n ≥ 2.

(3.1)

At a jump time Tn, we obtain the corresponding Zn by checking which point processes
N i, i = 1, . . . , d, jumps at time Tn, i.e.

Zn =
{
i ∈ D : N i({Tn}) > 0

}
, n ∈ N. (3.2)

Therefore, the filtration FΦ = (FΦ
t )t≥0 of Φ = (Tn, Zn)n∈N, see (2.6), carries the same

information as the filtration FN̄ of (N1, . . . , Nd). That is, FΦ
t = F N̄t for all t ≥ 0. In

particular, the observable trigger arrival times (Tn)n∈N of the mixed Poisson process are
observable for the insurer. Hence they can be used by insurer to make inferences about
the unknown background intensity.

Next we turn our attention to the interdependencies between the LoBs which are also
unknown to the insurance company. To take this uncertainty about the interdependen-
cies between the various kinds of insurance risks into account, we introduce the following
notation.

Notation. We set
αD := P(Z = D | F0), D ⊂ D,

and
ᾱ := (αD)D⊂D.

Furthermore, we write ∆k for the (k − 1)-dimensional probability simplex, k ≥ 2. That
is,

∆k := {x = (x1, . . . , xk) ∈ [0, 1]k : x1 + . . .+ xk = 1}.

We further use the symbol ∆̊k to denote the interior of the probability simplex ∆k.

That is, ᾱ is an F0-measurable vector taking values in ∆`. The vector ᾱ determines
the conditional probability mass function of the distribution of Z conditioned on ᾱ. That
is,

Pᾱ(Z ∈ B) =
∑
D∈B

αD, B ∈ P(P(D)).

The interdependencies between the LoBs are fully determined by ᾱ. We call the
components of ᾱ thinning probabilities since they thin the trigger arrival times. So
(N1, . . . , Nd) is a multivariate counting process with a dependency structure that de-
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pends only on the choice of thinning probabilities ᾱ. The uncertainty about the
interdependencies between the insurance lines is incorporate by the randomness of ᾱ. So
we have also a two-step stochastic phenomenon for the claim arrival dependencies. First,
the realisation of the thinning probability vector ᾱ is chosen, which is not observable for
the insurer. Secondly, the affected LoBs are generated with the selection thinning dis-
tribution. Notice that we obtain information about ᾱ through the observable sequence
(Zn)n∈N. Besides, we make the following assumptions.

Assumption 3.2. We assume that (Zn)n∈N is a sequence of conditional iid random
elements given ᾱ and takes values in (P(D),P(P(D))) with P(Z1 = ∅) = 0. Moreover,
we suppose that the sequences (Tn)n∈N and (Zn)n∈N are independent.

After we have chosen a model for the claim arrival times, we consider the sizes of the
insurance claims at the arrival times to obtain the aggregated claim amount process.

Claim sizes. Beside the unobservable background intensity and thinning probabilities,
there are more restrictions on the available information to the insurance company. The
insurer faces also uncertainty about the claim size distribution. This is taken into account
by the following modelling. Let {Fϑ : ϑ ∈ Θ}, Θ ⊂ Rn, be a family of distributions on
(0,∞)d, where ϑ in unknown. We view ϑ as a random element taking values in Θ, i.e.
we have a parametric Bayesian model for the insurance losses. Moreover, we suppose
that Fϑ is absolutely continuous with density fϑ for every given ϑ, where we use the
following convention.

Convention. We denote by ϑ both the random element and a realisation of the random
element. A similar convention applies for all subsequent definition involving distributions
or densities.

The claim sizes are given by a d-dimensional sequence (Yn)n∈N with Yn = (Y 1
n , . . . , Y

d
n )

of (0,∞)d-valued random variables with distribution Fϑ. It is worth to note that the
claims sizes from various LoBs can be dependent.

Assumption 3.3. We assume that Y1, Y2, . . . are conditional independent and identically
distributed according to Fϑ given ϑ. Furthermore, (Yn)n∈N is supposed to be independent
of the sequences (Tn)n∈N and (Zn)n∈N.

Remark 3.4. Due to the assumption above, Y1, Y2, . . . are independent of (N1, . . . , Nd).

With the knowledge about the claim sizes, we now move on to develop the aggregated
claim amount process.

Representations of the aggregated claim amount process. The sum of the claim
sizes of all d insurance classes which appear at the arrival times of the multivariate
claim arrival process (N1, . . . , Nd) up to time t, gives the aggregated claim amount
process. So the aggregated claim amount process or total claim amount process, denoted
by S = (St)t≥0, is given by

St =
d∑
i=1

∑
n∈N

Y i
n 1{Tn≤t} 1{i∈Zn}, t ≥ 0.

Notice that Y i
n does not describe the nth claim of the ith LoB since some of the

components of Yn will be “deleted” if Zn 6= D. For this reason, (Zn)n∈N is also referred
to as the thinning sequence.
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An alternative representation of the aggregated claim amount process can be given
with the help of the following marked point process.

Notation. From now on, we set Ψ := (Tn, (Yn, Zn))n∈N. That is, Ψ is the (0,∞)d×P(D)-
MPP which contains the information of the claim arrival times, the thinning sequence
and the claim sizes. To shorten notation, we further set Ed := (0,∞)d × P(D) and
Ed := B((0,∞)d)⊗ P(P(D)).

Using the introduced MPP Ψ, it holds

St =

∫ t

0

∫
Ed

d∑
i=1

yi 1z(i) Ψ(ds, d(y, z)), t ≥ 0. (3.3)

It should be noted that the aggregated claim amount process S is observable for the
insurance company and thus the natural filtration of Ψ, denoted by FΨ, is known by the
insurer.

The simulation of the surplus process is a two-step procedure. The first step is to
simulate the realizations of the parameters Λ, ϑ and ᾱ, which is not observable for the
insurer, and secondly, the observable surplus process is generated with theses param-
eters. We demonstrate the construction of the surplus process by an illustration for
d = 2. Table 3.1 displays numerical values for the first four shock event under the as-
sumptions that realization of the background intensity is 2, of the thinning probabilities
is (1/3, 1/3, 1/3) and of the claim size distribution is the convolution of two independent
exponential distributions with parameter 1. These values are graphically illustrated in
Figure 3.1.

n Tn Zn Y 1
n Y 2

n

1 0.134 {1} 2.561 0.134
2 0.761 {1, 2} 1.716 2.051
3 1.212 {2} 0.455 0.680
4 1.510 {1} 0.583 0.963

Table 3.1: Numerical values for the Figure 3.1.

We conclude this paragraph with a further comment on the introduced model for
aggregated losses.

Remark 3.5. (i) The first part of the remark is devoted to the mentioned literatures
in the introduction that consider optimization problems concerning insurance com-
panies with several LoBs. For this purpose, let us suppose that Λ ≡ λ is determin-
istic and we define the process ND = (ND

t )t≥0, D ⊂ D, by

ND
t :=

∑
n∈N

1{Tn≤t}1{Zn=D}, t ≥ 0.

Then
N i
t =

∑
D3i

ND
t , t ≥ 0,

and, in the case d = 2 of two LoBs, the aggregated claim amount process can be
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Figure 3.1: An example combining trigger events, thinning and claim sizes for the values of
Table 3.1.

written as

St =
2∑
i=1

N
{i}
t +N

{1,2}
t∑

j=1

Y i
j , t ≥ 0.

For the aggregated claim amount process with common shock dependency, Yuen
et al. [121], Liang and Yuen [86] and Han et al. [68] discuss optimal proportional
reinsurance problems under various optimization criterion.

(ii) Due to the fact that we are not considering the aggregated claims of every LoB,
S given by (3.3) can be interpreted alternatively as the aggregated claim amount
process of an heterogeneous insurance portfolio, where the random elements Zn
yield the information of which type the claim size distribution of the claim at time
Tn is. By changing {Zn ∈ D} to {Zn = i} in (3.3), we obtain a total claim amount
process for an inhomogeneous portfolio with d kinds of claim size distribution.

Prior and posterior distributions. According to the explanation above, we have
three unknown parameters Λ, ᾱ and ϑ, where the uncertainty about these parameters is
taken into account by modelling these parameters as F0-measurable random elements.
We suppose that the insurance company has a prior belief about these parameters in
form of distributions, which are prior distributions4 from a Bayesian statistical point of
view.

Notation. We denote by ΠΛ the prior distribution of Λ, by Πᾱ the prior distribution of
ᾱ and by Πϑ the prior distribution of ϑ.

In general, ΠΛ is a probability measure on (0,∞), Πα on ∆` and Πϑ on Θ. These
prior distributions could be obtained by estimation based on already existing data using
standard estimation procedures (cf. e.g. Czado and Schmidt [46]) or by expert knowledge.

The prior knowledge can be updated with the help of observed claim arrival times
and claim sizes. Hence we can calculate posterior distributions5 at the claim arrival

4The distribution of a parameter before observing any data is said to be the prior distribution of this
parameter, compare DeGroot and Schervish [48, Chap. 7.2].

5The posterior distribution of a parameter is the conditional distribution of the parameter given observed
data, compare DeGroot and Schervish [48, Chap. 7.2].
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times by using the information at disposal, where the Bayes rule tells us how to compute
them. For example, if we observe the claim sizes Ȳn = ȳn, where Ȳn := (Y1, . . . , Yn)
and ȳn := (y1, . . . , yn), then, according to Klugman et al. [78, Eq. (2.27)], the posterior
distribution of ϑ conditioned on Ȳn = ȳn is given by

Πϑ|Ȳn=ȳn(dϑ) =
Lϑ(ȳn) Πϑ(dϑ)∫
Θ Lϑ(ȳn) Πϑ(dϑ)

,

where Lϑ(ȳn) denotes the likelihood function, i.e.

Lϑ(ȳn) =

n∏
i=1

fϑ(yi)

because of the iid assumption of insurance losses. That is, the posterior distribution
is proportional to the Likelihood function times the prior. The mean of the posterior
distribution is the Bayes estimator which is a minimum mean square error estimator,
compare Klugman et al. [78, Thm. 2.17].

We will specify the prior distributions (and thus the posterior distributions) in the
following chapters to solve the optimization problem stated in Section 3.7.

3.2 Financial market model

The difference between the aggregated premium income and the aggregated claims is the
total wealth or the surplus of the insurance company. This surplus will be invested by
the insurer into a financial market, which will be modelled as the classical Black-Scholes
market, see e.g. Delbaen and Schachermayer [50, Sec. 4.4]. So it is supposed that there
exists one risk-free asset and one risky asset. The price process of the risk-free asset,
denoted by B = (Bt)t≥0, is given by

dBt = rBt dt, B0 = 1,

where r ∈ R denotes the risk-free interest rate. That is, Bt = ert for all t ≥ 0. The price
process of the risky asset, denoted by P = (Pt)t≥0, is given by

dPt = µPt dt+ σPt dWt, P0 = 1,

where µ ∈ R and σ > 0 are constants describing the drift and volatility of the risky
asset, respectively, and W = (Wt)t≥0 is a standard Brownian motion. Therefore

Pt = exp

{(
µ− σ2

2

)
t+ σWt

}
, t ≥ 0.

Notation. We denote by FW = (FWt )t≥0 the augmented Brownian filtration of W .

Notice that the σ-algebra generated by the price process of the risk-free asset B is the
trivial σ-algebra since the process B is deterministic. So FW represents all the available
information about the financial market. We assume that the insurance company can
observe the asset prices on the market which means that FW is observable for the insurer.
This filtration forms together with the natural filtration of Ψ the observable filtration.

Notation. Throughout this work, G = (Gt)t≥0 denotes the observable filtration of the
insurer which is given by

Gt = FWt ∨ FΨ
t , t ≥ 0,
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where G∞ ( F0. That implies that Gt provides all the information at disposal of the
insurance company up to time t and that Λ, ᾱ and ϑ are not observable for the insurer
at any time.

The later solution procedure requires the following independence assumption of the
financial market and the insurance market.

Assumption 3.6. We assume that the Brownian motion W is independent of (Tn)n∈N,
(Yn)n∈N and (Zn)n∈N.

Let us conclude this chapter with a brief discussion regarding the simplicity of the
introduced financial market.

Remark 3.7. The given financial market is a classical Black-Scholes model with one
risky asset. By the Markowitz theory, it is efficient to invest only in a risk-free asset
and a particular fund of risky assets, compare Markowitz [91]. In our model, the risky
asset can be considered as this particular fund of risky assets. However, we will see
that the problem of finding an optimal investments strategy and an optimal strategy
for the reinsurance can be separated into two independent problems. Therefore, we can
expect that the results may be generalized to more general financial market models,
where the corresponding optimal investment problem, maximization exponential utility,
is already solved. However, we will focus on choosing an optimal reinsurance strategy
and therefore we keep the financial market model simple.

3.3 Investment strategy

We assume that the wealth of the insurance company is invested into the previous de-
scribed financial market. The insurer can choose the amount of its surplus that is invested
at time t into the risky asset P , where we also allow short-sell by the insurer which is
represented by a negative volume put into the risky asset. In addition, the insurance
company is permit to lend and borrow an infinitesimal amount of money, respectively.
That means, the invested capital into the risk free asset can take every value in R. These
assumptions are reflected in the following definition of an investment strategy together
with some technical conditions.

Definition 3.8. An investment strategy, denoted by ξ = (ξt)t≥0, is an R-valued, càdlàg
and G-predictable process with∫ t

0
|ξs|2 ds <∞ P-a.s. for all t ≥ 0. (3.4)

The value ξt is the capital put into the risky asset at time t, so Xt − ξt stands for the
amount of money invested into the risk-free asset at time t.

Remark 3.9. On account of the condition (3.4) the integral
∫ t

0 ξs σ dWs in (3.7) is well-
defined. It should be noted that (3.7) is also well-defined with the weaker requirement of
the progressive measurability of ξ since ξ is only integrated w.r.t. continuous processes.
However, the investment strategy might depend on claim arrival times and sizes, which
requires the assumed predictability.

Besides allocating the surplus to the two available assets, the insurance company is
allowed to share risk with another company.
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3.4 Reinsurance strategy

The premium volume is often too small to carry the complete risk, especially the risk
resulting from natural catastrophes,6 which requires the need for risk sharing through a
reinsurance contract. There are different forms of reinsurances. A survey of reinsurance
types can be found in Albrecher et al. [5, Ch. 2], in which they point out that the
proportional reinsurance treaties (quota-share reinsurance) are popular in almost all
insurance businesses by reasons of its conceptual and administrative frugality as well as
its avoidance of the moral hazard of frowzy claim settlement proceedings.

The insurance company which cedes risk to another insurance company is called the
first-line insurer or cedent7. We assume that the first-line insurer has the possibility to
take a proportional reinsurance. Therefore, the part of the insurance claims paid by the
insurer, denoted by h(b, y), satisfies

h(b, y) = b · y (3.5)

with retention level b ∈ [0, 1] and insurance claim y ∈ (0,∞). For example, if the insurer
chooses a retention level of 0.8 at time t, then the reinsurance company pays 20 percent
of the claim y at time t. Here we suppose that the insurer can continuously purchase a
reinsurance contract that allows to reinsure a fraction of its claims with retention level
bt ∈ [0, 1] at every time t. That is, we have a proportional reinsurance depending on
time, in which corresponding process satisfies the following conditions.

Definition 3.10. A reinsurance strategy, denoted by b = (bt)t≥0, is a [0, 1]-valued, càdlàg
and G-predictable process.

Remark 3.11. The assumption of predictability implies the reinsurance strategy is fixed
in advance. Without this assumption, the insurance company could choose a retention
level of zero at time t if there is a claim at time t and otherwise a retention level of one.

Note that the reinsurance strategy is not chosen separately for different LoBs, which
means we have only one strategy for the entire insurance company. For this reason the
reinsurance strategy is an univariate process. A conceivable supposition would be to
suppose that the insurer can choose a reinsurance strategy for each LoB separately. In
this case, the solution of an optimal reinsurance strategy of the later considered control
problem (see Section 3.7) becomes much more complicated, compare Section 4.10.

3.5 Reinsurance premium model

Of course, sharing risk by ceding proportions of claims to a reinsurer reduces the premium
income of the first-line insurer. To discuss this reduction in detail, we first assume that
the policyholder’s payments to the insurance company are modelled by a fixed premium
(income) rate c = (1 + η)κ with a safety loading η > 0 and a fixed constant κ > 0,
which means that the premiums are calculated by the expected value principle.8 If the
insurer chooses retention levels less than one, then the insurer has to pay premiums to the
reinsurer. The part of the premium rate left to the insurance company at retention level
b ∈ [0, 1], denoted by c(b), is c(b) = c−δ(b), where δ(b) denotes the reinsurance premium
rate. We say c(b) is the net income rate. In the case of no reinsurance (retention level of

6See beginning of Sec. 1.7 in Schmidli [112].
7See p. 228 in Schmidli [111].
8The expected value principle, as well as other principles, are discussed e.g. in Schmidli [112, Sec. 1.10].



40 Chapter 3 The control problem under partial information

1), the net income rate is c(1) = c. Moreover, the net income rate c(b) should increase
in b, which is fulfilled by setting δ(b) := (1− b)(1 + θ)κ with θ > η which represents the
safety loading of the reinsurer. Therefore

c(b) = (1 + η)κ− (1− b)(1 + θ)κ = (η − θ)κ+ (1 + θ)κ b, (3.6)

where η − θ < 0. This reinsurance premium model is used e.g. in Zhu and Shi [124].

Due to the assumption that the proportional risk load of the reinsurer is greater than
that of the cedent, full reinsurance leads to a strictly negative income since c(0) =
(η − θ)κ<0 which is a property proposed by Schmidli [111, p. 21]. Notice that other
authors suppose that the net income rate is always non-negative, compare e.g. Schäl
[109, p. 191].

We are now in the position to describe the wealth of the insurer subscribing a propor-
tional reinsurance contract and investing its surplus in the introduced financial market.

3.6 The surplus process

We restrict ourselves to self-financing strategies in a finite time horizon. So, from now
on, we fix some terminal time T > 0 and we only consider those strategies by which
the insurer only invests the wealth obtained from the core business (covering claims in
exchange for premiums and reinvesting those premiums into the financial market) and
neither adds wealth from other businesses nor distributes part of the profit. To be more
precise, the surplus of the considered insurance company, denoted by Xξ,b = (Xξ,b

t )t∈[0,T ],
for a self-financing investment and reinsurance strategy is given by

dXξ,b
t =

Xξ,b
t − ξt
Bt

dBt +
ξt
Pt

dPt + c(bt) dt− bt dSt, Xξ,b
0 = x0,

where Xξ,b
0 = x0 > 0 is the initial capital of the insurance company. It is worth to

note that (Xξ,b
t − ξt)/Bt gives the number of risk-free assets and ξt/Pt the number of

risky assets held by the insurance company at time t. Therefore, the dynamic of the
surplus process Xξ,b can be interpreted as follows: the insurer’s current reserve is the
initial capital plus the aggregated gain/loss by the investments in risky and risk-free
asset plus the net premium income minus the aggregated insurance claims left to the
insurer. Notice further that the surplus could be negative, which in practice means that
the loan amount of the insurance company is greater than the value of all assets of the
insurer.

By the upper indices ξ and b it is taken into account that the surplus process is
controlled by the investment and reinsurance strategy. In the following we deal only
with admissible strategies defined below.

Definition 3.12. A pair (ξ, b) = (ξt, bt)t≥0 of an investment strategy ξ = (ξt)t≥0 and
a reinsurance strategy b = (bt)t≥0 is called an investment-reinsurance strategy. For any
t ∈ [0, T ], the set of all admissible investment-reinsurance strategies in [t, T ] is given by

U [t, T ] :=
{

(ξ, b) : (ξ, b) = (ξs, bs)s∈[t,T ] is a self-financing investment-reinsurance

strategy in [t, T ]
}
.

The set R× [0, 1] in which the admissible strategies take values is said to be the control
set.
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Using the dynamics B and P of the price process of the risky asset and risk-free asset,
respectively, the surplus process Xξ,b = (Xξ,b

t )t∈[0,T ] under an admissible investment-
reinsurance strategy (ξ, b) ∈ U [0, T ] holds

dXξ,b
t = (Xξ,b

t − ξt)r dt+ ξt(µdt+ σ dWt) + c(bt) dt− bt dSt

=
(
rXξ,b

t + (µ− r)ξt + c(bt)
)

dt+ ξtσ dWt − bt dSt.

Remark 3.13. Recall that the investment strategy ξ gives the absolute value of the
wealth invested into the risky asset. As Desmettre [51] pointed out in the introduction
of Chapter 2, it is common to optimize the amount of money in an exponential utility
set-up. When we optimize the proportion of the wealth put into the risky asset, denoted
by π, then the investment strategies π is proportional to 1/Xπ,b. Therefore, it is possible
that an optimal strategy tends to infinity, since the surplus process Xπ,b can attain zero.

An alternative representation of the surplus process with the help of a random measure
will be proved to be useful. By using the (0,∞)d × P(D)-MPP Ψ = (Tn, (Yn, Zn))n∈N
introduced on page 35, the dynamic of the surplus can be written as

dXξ,b
t =

(
rXξ,b

s + (µ− r)ξs + c(bs)
)

dt+ ξsσdWs

−
∫
Ed
bt

d∑
i=1

yi1z(i) Ψ(dt,d(y, z)), t ∈ [0, T ].
(3.7)

Notice that the surplus process Xξ,b is G-adapted, i.e. observable for the insurer. Next
we consider further properties of the surplus process which will be used in the following
procedure.

Proposition 3.14. The SDE (3.7) has a unique strong solution, which is given by

Xξ,b
t = x0e

rt +

∫ t

0
er(t−s)

(
(µ− r)ξs + c(bs)

)
ds+

∫ t

0
er(t−s)ξsσ dWs

−
∫ t

0

∫
Ed
er(t−s)bs

d∑
i=1

yi1z(i) Ψ(ds, d(y, z)), t ∈ [0, T ].

Proof. Fix t ∈ [0, T ]. We will use the general stochastic exponential (see Protter [104,
p. 328]) to derive the asserted solution. For this purpose, we observe that the SDE (3.7)
can be written as

Xξ,b
t = Ht +

∫ t

0
Xξ,b
s dZs, (3.8)

where

Ht := x0 +

∫ t

0

(
(µ− r)ξs + c(bs)

)
ds+

∫ t

0
ξsσdWs −

∫ t

0

∫
Ed
bs

d∑
i=1

yi1z(i)Ψ(ds, d(y, z)),

Zt := r t.

Notice that (Ht)t≥0 is a G-semimartingale and thus (3.7) admits a unique strong solution,
which is a G-semimartingale according to Protter [104, Thm. V.7]. By Protter [104,
Thm. V.52], the unique solution of (3.8) is given by

Xξ,b
t = E(Z)t

(
H0 +

∫ t

0
E(Z)−1

s d(Hs − [H,Z]s)

)
, (3.9)
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where E(Z) is the stochastic exponential of Z, i.e. E(Z)t = exp
{
Zt − 1

2 [Z]t} = ert, cf.
Protter [104, Thm. II.37]. Furthermore, since Z is a continuous FV process, we have
[H,Z]t = 0, which implies

Xξ,b
t = ert

(
x0 +

∫ t

0
e−rs

(
(µ− r)ξs + c(bs)

)
ds+

∫ t

0
e−rsξsσ dWs

−
∫ t

0

∫
Ed
e−rsbs

d∑
i=1

yi1z(i) Ψ(ds, d(y, z))

)
.

This yields the assertion.

Proposition 3.15. Let Xξ,b = (Xξ,b
t )t≥0 be the process given by (3.7). The continuous

part (Xξ,b)c = ((Xξ,b)ct)t≥0 of Xξ,b is given by

d(Xξ,b)ct =
(
rXξ,b

t + (µ− r)ξt + c(bt)
)

dt+ ξtσ dWt, t ≥ 0.

The continuous part [Xξ,b]c = ([Xξ,b]ct)t≥0 of the quadratic variation of Xξ,b is given by

d[Xξ,b]ct = ξ2
t σ

2 dt, t ≥ 0.

The process Xξ,b jumps at the times (Tn)n∈N and satisfies

∆Xξ,b
Tn

= −bTn
d∑
i=1

Y i
n1{i∈Zn}, n ∈ N.

Proof. The statements follow immediately from Equation (3.7).

The surplus process is the main object in the following formulated optimization prob-
lem.

3.7 Optimal investment and reinsurance problem under
partial information

Clearly, the insurance company is interested in an optimal investment-reinsurance strat-
egy. But there are various optimality criteria to specify optimization of proportional
reinsurance and investment strategies. We consider the expected utility of wealth at the
terminal time T as a criterion. It is therefore assumed an exponential utility function
of the insurer U : R→ R with

U(x) = −e−αx, (3.10)

where the parameter α > 0 measures the degree of risk aversion.

Remark 3.16. Recall that the surplus is allowed to be negative. In classical ruin theory,
an insurance company is bankrupt if the surplus process drops below zero, which is not
realistic. Indeed, the loan amount of an insurance company can be greater than the
value of all assets of the insurance company. The possible negativity is one reason why
we use the exponential utility function because the utility function has to be defined for
positive and negative values. This condition rules out the logarithm and power utility
functions. Another reason is that the exponential utility function given by (3.10) has a
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constant absolute risk aversion (CARA):

−U
′′(x)

U ′(x)
=
α2 e−αx

α e−αx
= α.

Such a property is important in actuarial mathematics since utility functions with CARA
are the only functions among which the so-called zero-utility principle yields a fair pre-
mium that does not depend on the surplus level, compare Gerber [63, p. 68].

Before the dynamical version of optimization problem is formulated, we illustrate the
feedback control of the surplus process Xξ,b in the block diagram displayed in Figure 3.29.

Environment

Xξ,b
t controlled surplus

bt dSt jump noise

ξt σ dWt diffusion noise

Xξ,b
t state

ξt control

bt control

Figure 3.2: The surplus process under feedback control in infinitesimal time intervals.

Next, we are going to formulate the dynamical optimization problem. We define, for
any (t, x) ∈ [0, T ]× R and (ξ, b) ∈ U [t, T ],

V̄ ξ,b(t, x) := Et,x
[
U(Xξ,b

T ) | Gt
]
,

V̄ (t, x) := sup
(ξ,b)∈U [t,T ]

V̄ ξ,b(t, x), (P)

where Et,x denotes the expectation conditioned Xξ,b
t = x. As already mentioned, the

insurer wants to choose an optimal strategy. The argument of the supremum, when it
exist within the control domain U [t, T ], is the optimal control. That is, assuming the
surplus at the time point t ∈ [0, T ) is x ∈ R, the insurance company is interested in an
investment-reinsurance strategy (ξ?, b?) ∈ U [t, T ] such that

V̄ (t, x) = V̄ ξ?,b?(t, x).

So our aim is to determine

(ξ?, b?) = argsup
(ξ,b)∈U [t,T ]

V̄ ξ,b(t, x).

Such a strategy is said to be optimal. Note that at time t = 0, the optimal strategy is
given by

(ξ?, b?) = argsup
(ξ,b)∈U [0,T ]

V̄ ξ,b(0, x0).

9The figure is adapted from Figure 6.1 in Hanson [69].
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An important point to note here is that it makes a difference to solve the problem (P)

at time zero, where Xξ,b
0 is known, or at time t > 0, where Xξ,b

t is known. The reason is
that at time zero only the prior distributions of the unobservable parameters Λ, ᾱ and
F are given. In contrast, at time t > 0, the observations of claim arrival times and claim
sizes (which are included in Gt) yield additional information about the unobservable pa-
rameters which can be taken into account for the determination of the optimal strategies.
That is, the optimization problem (P) is different for various time points (due to the
partial information). In consequence, the dynamic programming method can not be ap-
plied directly since the idea of this method is to derive relations between the optimization
problems for different initial states and deduce the optimal solution from this relation
by solving pointwise optimization problems. That is, the optimal control obtained by
the dynamic programming principle cannot incorporate information from the past. To
still use the dynamic programming approach, we need to extend the state process by a
Markov process which represents the information at disposal. This step is referred as
the reduction of the incomplete information problem (P), which requests a character-
ization of the conditional distributions of Λ, ᾱ and F using the available information.
With regard to the block diagram given in Figure 3.2, we have to extend the state in
the bottom right corner by a further one which is affected by the jump diffusion and
provides the available information for the insurer about the known parameters. After
the reduction step, we can try to solve the reduced control problem with the help from
the dynamic programming principle. In the next chapters we address the problem (P)
under different assumptions of the prior distribution for Λ, ᾱ and F .



Chapter 4

Optimal investment and reinsurance
with unknown dependency structure
between the LoBs

We have introduced the control problem (P) in the last chapter, which is not directly
solvable. In this chapter we investigate this problem under partial information focusing
on the unknown interdependencies between the lines of business (LoBs), i.e. on the
thinning probabilities ᾱ. So the background intensity and the claim size distribution are
suppose to be observable for the insurer.

4.1 Setting

First of all, it should be mentioned that the framework from Chapter 3 is valid, in
particular the Assumptions 3.2, 3.3 and 3.6 are in force. In addition, as indicated above,
we suppose the prior distributions ΠΛ and ΠF are one-point distributions. That means,
the background intensity Λ ≡ λ for some λ > 0 and the claim size distribution F are
observable parameters; only the thinning probabilities ᾱ are still assumed to be unknown.

Prior distribution for the thinning probabilities. Recall that the prior distribu-
tion Πᾱ of ᾱ is defined on ∆`. This may lead to an infinite dimensional stochastic control
problem in general. To avoid this, we discretize the probability simplex ∆` such that
the prior distribution Πᾱ is defined on a finite set.

Assumption 4.1. Let m ∈ N be a fixed number. We suppose that ᾱ = (αD)D⊂D
is an F0-measurable random vector taking values in the measure space (A,A), where
A := {a1, . . . , am} with aj = (aDj )D⊂D ∈ ∆̊`, j = 1, . . . ,m and A := P(A).

Remark 4.2. (i) The assumption that A ⊂ ∆̊` (and not A ⊂ ∆`) is required for the
filter equation, see Theorem 4.13.

(ii) The F0-measurability of ᾱ is owed to the fact that the thinning mechanism does
not change in time in this model. Furthermore, F0 contains information which is
not available for the insurer. The knowledge of the insurer at time t = 0 about
ᾱ is F N̄0 = {∅,Ω}. But the insurer makes use of expert knowledge about the
interdependencies between the LoBs expressed by the prior distribution Πᾱ. Such
expert knowledge could be the awareness of high interdependency between the
insurance classes “building storm damages” and “building flood damages”.

Under the assumption above, the prior distribution Πᾱ of ᾱ is a probability measure
on (A,A). Hence, the prior distribution Πᾱ is uniquely determined by the probability

45



46 Chapter 4 Unknown dependency structure between the LoBs

mass function
πᾱ(j) := Πᾱ(aj) = P(ᾱ = aj), j = 1, . . . ,m.

Notation. We will use the notation π̄ := (πᾱ(j))j=1,...,m for the m-dimensional vector
in ∆m, which describes the probability mass function of Πᾱ. Throughout this work we
switch between row and column vectors whenever it is typographically convenient.

Claim size distribution. Beside the requirements for the prior distributions, it is
necessary to put some restrictions on the claims sizes. We have supposed that the
common claim size distribution F is a fixed parameter in this chapter. Insurance claims
from different LoBs are allowed to be dependent, but the exponential moments of the
sum of losses across all lines must be finite.

Assumption 4.3. We assume that

MF (z) := E
[

exp

{
z

d∑
i=1

Y i
1

}]
=

∫
(0,∞)d

exp

{
z

d∑
i=1

yi

}
F (dy) <∞, z ∈ R,

where y := (y1, . . . , yd).

Remark 4.4. The assumption implies that the moment generating function for the
marginal distributions of F exists. That means, the losses of each LoB has finite
exponential moments. This has the consequence that all moments of the claim sizes exist,

due to the relation MY i1
(z) := E

[
ez Y

i
1
]

=
∑∞

n=0
znE[(Y i1 )n]

n! , z ∈ R, cf. Feller [59, p. 285].
Another consequence concerns the variety of possible distributions. The assumption of
existence of the moment generation function rules out a lot of distribution, in particular
heavy tailed distributions, also the lognormal distributions; all moments of the lognormal
distribution exist, but the moment generating function of the lognormal distribution
does not exist. It is worth noting that the assumption is satisfied if claim amounts
from different LoB are independent and the moment generating functions exist for every
marginal loss distribution. A further condition, under which Assumption 4.3 is fulfilled,
is boundedness of the claim sizes. This requirement is no restriction in practice since
every insurance contract includes an insurance sum which is the maximum value the
insurance pays for the insured damages.

Let us mention two consequences of the assumption above.

Lemma 4.5. Let z ∈ R be an arbitrary constant. Then there exist constants 0 < C1 <∞
and 0 < C2 <∞ such that

(i) E
[
Y j

1 exp
{
z
∑d

i=1 Y
i

1

}]
≤ C1, j ∈ D,

(ii) E
[

exp
{
z
∑d

i=1

∑Nt
k=1 Y

i
k

}]
≤ C2, t ∈ [0, T ].

Proof. To show statement (i) the Cauchy-Schwarz inequality comes to our assistance.
For any j ∈ D, we have

E
[
Y j

1 exp

{
z

d∑
i=1

Y i
1

}]
≤
√

E
[(
Y j

1

)2]√√√√E
[

exp

{
2z

d∑
i=1

Y i
1

}]

=

√
E
[(
Y j

1

)2]√
MF (2z) := C1 <∞,
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where the first expectation is finite according to Remark 4.4 and the finiteness of the
second expectation follows from Assumption 4.3. To prove statement (ii), let us fix
t ∈ [0, T ]. According again to Assumption 4.3 as well as to Assumption 3.3 and the law
of total expectation, we obtain

E
[

exp

{
z

d∑
i=1

Nt∑
k=1

Y i
k

}]
=
∞∑
n=0

P(Nt = n)E
[

exp

{
z

Nt∑
k=1

d∑
i=1

Y i
k

}
|Nt = n

]

=
∞∑
n=0

P(Nt = n)
n∏
k=1

E
[

exp

{
z

d∑
i=1

Y i
k

}
|Nt = n

]

=
∞∑
n=0

(λ t)n

n!
e−λ t

(
E
[

exp

{
z

d∑
i=1

Y i
1

}])n
= e−λ t

∞∑
n=0

(
λ tE

[
exp

{
z
∑d

i=1 Y
i

1

}])n
n!

= exp

{
λ t

(
E
[

exp

{
z

d∑
i=1

Y i
1

}]
− 1

)}
≤ exp{λT MF (z)} =: C2 <∞,

which completes the proof.

Our next target is to reduce the partial information control problem (P) within the
introduced framework to one with an extended state process that describes the informa-
tion at disposal about the unknown interdependencies between the LoBs. To obtain such
a control problem, we need to infer the unobservable thinning probabilities ᾱ by using
the relevant observable information. This leads to a stochastic filter problem which will
be studied in the following section.

4.2 Filtering and reduction

It has already been mentioned in the previous chapter that we are in a Bayesian setting.
Therefore, the reduction problem is to determine the posterior distribution of ᾱ given
the information provided by Gt. It is evident that the available information FW about
the financial market contains no information about the interdependencies between the
LoBs; only the filtration FN̄ can be used to make inferences about ᾱ.

The posterior distribution of ᾱ given F N̄t (or equivalent given Z1, . . . , ZNt) provides
all information about ᾱ which is included in the observed information up to every t. We
will see that a characterization of the posterior distribution of ᾱ can be used to reduce
the investment-reinsurance problem under partial information (P) into an equivalent
one, which can be solve with the dynamic programming approach. Within the pre-
sented Bayesian framework, the posterior distribution of ᾱ given (z1, . . . , zn) ∈ P(D)n is
described by

P(ᾱ = aj | z1, . . . , zn) =

∏n
i=1 Paj (Zi = zi)P(ᾱ = aj)∫
A

∏n
i=1 Pᾱ(Zi = zi) Πᾱ(dᾱ)

=

∏n
i=1 a

zi
j πᾱ(j)∑m

k=1

∏n
i=1 a

zi
k πᾱ(k)
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for every j ∈ {1, . . . ,m}. That is,

P(ᾱ = aj |Z1, . . . , ZNt) =
πᾱ(j)

∏Nt
i=1 a

Zi
j∑m

k=1 πᾱ(k)
∏Nt
i=1 a

Zi
k

, j = 1, . . . ,m. (4.1)

However, it has been pointed out in Remark 2.93 that a representation of the poste-
rior distribution by integral processes w.r.t. compensated random counting measures fit
with the stochastic control approach. We obtain such a characterization by using filter
results.

Classical filter results with multivariate point process observations1 can not be ap-
plied to determine a filter for ᾱ (see Brémaud [20, Thm. IV.T8]) since point processes
N1, . . . , Nd have common jump times with probability greater than zero if αD > 0 for
D ⊂ D with |D| ≥ 2. Fortunately, we have seen in Section 3.1 that the natural filtration
of Φ = (Tn, Zn)n∈N carries the same information as the filtration of (N1, . . . , Nd), i.e.
FΦ
t = F N̄t for all t ≥ 0. This allows us to use filter results with marked point process

observations. For the application of filter results, the usual condition needs to hold for
the observed filtration. On this account, we introduce the following notation.

Notation. From now on, (Ω,FΦ
∞,F

Φ,P) denotes the filtrated probability space which is
modified as described in Remark 2.70 such that the usual conditions are satisfied.

To state a filter for ᾱ given by the observed information FΦ, we need the local F-
and FΦ-characteristic of Φ. To establish these characteristics we start with studying the
process (Φ(t,D))t≥0, D ⊂ D. By recalling Definition 2.73, we have

Φ(t,D) =
∑
n∈N

1{Tn≤t}1{Zn=D}, t ≥ 0.

Due to the fact that αD is a random variable, (Φ(t,D))t≥0 can not be a Poisson process;
(Φ(t,D))t≥0 is a Poisson process for deterministic αD according to the thinning property
for Poisson processes, compare e.g. Last and Penrose [81, Cor. 5.9].) It is further known
that doubly stochastic Poisson processes (Cox processes) are invariant under thinning
(see Karr [74, Lemma 1.1]) and that an SPP is a DSPP if and only if it can be obtained by
p-thinning for every p ∈ (0, 1) (see Mecke [92, Satz 5.1]). This indicates that (Φ(t,D))t≥0

may be a doubly stochastic Poisson process.

Lemma 4.6. For any D ⊂ D, (Φ(t,D))t≥0 is an integrable F-DSPP with constant in-
tensity (λαD)t≥0.

Proof. Fix D ⊂ D. The conditions (2.10) and (2.11) of Definition 2.83 of a DSPP are
obviously satisfied by the F0-measurability of αD. Therefore, it remains to show the
condition (2.12). For this purpose, we set Xn = 1{Zn=D} for all n ∈ N. Hence, P(Xn =
1 | F0) = αD = 1−P(Xn = 0 | F0). That is, Xn is conditional Bernoulli distributed given
F0 with parameter αD and conditionally independent of (Nt)t≥0 given F0. Therefore,
Sn :=

∑n
i=1Xn is conditional binominal distributed given F0 with parameter n and αD.

Thus, by the binomial theorem, for any z ∈ [0, 1],

E[zSn | F0] =
n∑
k=0

zkP(Sn = k | F0) =
n∑
k=0

zk
(
n
k

)
αkD(1− αD)n−k =

(
z αD + (1− αD)

)n
.

1Multivariate point process means here that the jump times of the marginal simple point processes
are disjunct almost surely. Multivariate point processes can also be seen as special marked point
processes, compare the definition given on pages 19–20 in Brémaud [20].
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Hence the conditional probability generating function given F0 of St−s, where St := SNt ,
t ≥ 0, holds for every 0 ≤ s ≤ t because of the independence of Nt−s and (Xn)n∈N as
well as the Poisson distribution of Nt−s with parameter λ(t− s),

E
[
zSNt−s | F0

]
=
∞∑
n=0

E[zSn | F0]P(Nt−s = n | F0)

= e−λ(t−s)
∞∑
n=0

(
(zαD + (1− αD))λ(t− s)

)n
n!

= exp
{
λαD(t− s)(z − 1)

}
for all z ∈ [0, 1]. Since the distribution of a discrete random variable is uniquely de-
termined through the probability generating function and the probability generating
function of a Poisson distributed random variable X with parameter λ is given by
exp{λ(z − 1)}, z ∈ [0, 1], we obtain from the equation above that St−s is conditional
Poisson distributed given F0 with parameter λαD(t− s). Consequently, the conditional
characteristic function given F0 of St−s is

E
[
eiuSt−s | F0

]
= exp

{
(eiu − 1)λαD(t− s)

}
, u ∈ R.

An easy computation shows

St − Ss =

Nt∑
i=Ns+1

Xi =
∑
n∈N

1{Tn≤t}1{Zn=D} −
∑
n∈N

1{Tn≤s}1{Zn=D} = Φ(t,D)− Φ(s,D).

Furthermore, we have, for any s, t ≥ 0 and n ∈ N0,

P(St+s − St = n | F0) =
∑

i,j∈N0,j≥i
P

(
j∑

`=i+1

X` = n,Ns = i,Ns+t = j | F0

)

=
∑
i,k∈N0

P

(
k∑
`=1

X` = n | F0

)
P(Ns = i | F0)P(Ns+t −Ns = k | F0)

=
∑
k∈N0

P

(
k∑
`=1

X` = n | F0

)
P(Nt = k | F0)

∑
i∈N0

P(Ns = i | F0)

=
∑
k∈N0

P

(
k∑
`=1

X` = n,Nt = k | F0

)
= P

(
Nt∑
`=1

X` = n | F0

)
= P(St = n | F0).

That is, (St)t≥0 has conditionally stationary increments given F0 (cf. e.g. Schmidt [113,
p. 86] for the definition). Taking this into account, we obtain

E
[
eiu(Φ(t,D)−Φ(s,D)) | Fs

]
= E

[
eiu(St−Ss) | Fs

]
= E

[
eiuSt−s | F0

]
= exp

{
(eiu − 1)λαD(t− s)

}
for every u ∈ R and 0 ≤ s ≤ t, which yields condition (2.12). To complete the proof,
we show the integrability. Since (Φ(t,D))t≥0 is an F-DSPP with intensity (λαD)t≥0 and
ᾱ = (αD)D⊂D takes values in ∆̊` (cf. Assumption 4.1), we get

E[Φ(t,D)] = E [E[Φ(t,D) | F0]] = E

[ ∞∑
k=1

k
(λαD t)

k

k!
e−λαD t

]
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= E

[
λαDte

−λαDt
∞∑
k=1

(λαDt)
k−1

(k − 1)!

]
= λtE

[
αD e

−λαDt
∞∑
k=0

(λαDt)
k

k!

]
= λtE [αD] ≤ λt

for every t ≥ 0.

Lemma 4.7. For any B ∈ P(P(D)), the F-predictable intensity of the SPP (Φ(t, B))t≥0

is
(
λ
∑

D∈B αD
)
t≥0

.

Proof. FixB ∈ P(P(D)). Obviously, the process
(
λ
∑

D∈B αD
)
t≥0

is non-negative and F-

predictable. According to Lemma 4.6 in connection with Proposition 2.85, (Φ(t,D))t≥0

is an SPP with intensity (λαD)t≥0 for every D ⊂ D. Consequently, we have, for any
non-negative F-predictable processes (Ht)t≥0,

E
[∫ ∞

0
Ht dΦ(t, B)

]
= E

[∑
n∈N

HTn1{Tn<∞}1{Zn∈B}

]

= E

[∑
n∈N

HTn1{Tn<∞}
∑
D∈B

1{Zn=D}

]
=
∑
D∈B

E
[∫ ∞

0
Ht dΦ(t,D)

]

=
∑
D∈B

E
[∫ ∞

0
Ht λαD dt

]
= E

[∫ ∞
0

Ht λ
∑
D∈B

αD dt

]

Note that the equation is trivial for B = ∅ since in this case (Φ(t, ∅))t≥0 is constant zero.
This completes the proof

Our aim is to apply the filter result for marked-point-process observations (Theo-
rem 2.101), where the observed filtration is FΦ. For this purpose, we need local charac-
teristics of Φ = (Tn, Zn)n∈N w.r.t. F and FΦ, respectively (see Definition 2.99). These
characteristics are given in the next two propositions using the following notations.

Notation. Let j ∈ {1, . . . ,m}. From now on, we set a∅j := 0 and we denote by pj =

(pj(t))t≥0 a càdlàg modification of the process (P(ᾱ = aj | FΦ
t ))t≥0, i.e.

pj(t) = P(ᾱ = aj | FΦ
t ), t ≥ 0.

Furthermore, for any D ⊂ D, pDj = (pDj (t))t≥0 denotes a càdlàg modification of the

process
(
P(αD = aDj | FΦ

t )
)
t≥0

, i.e.

pDj (t) = P(αD = aDj | FΦ
t ), t ≥ 0.

Moreover, for any D ⊂ D, we set

pDt :=
m∑
k=1

aDk p
D
k (t), t ≥ 0,

i.e. pDt is a càdlàg modification of (E[αD | FΦ
t ])t≥0 since

∑m
k=1 a

D
k p

D
k (t) = E[αD | FΦ

t ]. We
further denote by (pt)t≥0 a process which is defined by pt := (p1(t), . . . , pm(t)), t ≥ 0.

Justification of the notation. It is clear that P(ᾱ = aj | FΦ
t ) = E[1{ᾱ=aj} | FΦ

t ], where

(1{ᾱ=aj})t≥0 is a bounded and càdlàg process. Moreover, the filtration FΦ is right-
continuous according to Thm. 2.69. Consequently, by Proposition 2.31, the process
(P(ᾱ = aj | FΦ

t ))t≥0 admits a càdlàg modification. In the same manner we can see
that the process (P(αD = aDj | FΦ

t ))t≥0 has a càdlàg modification.



4.2 Filtering and reduction 51

The process (pt)t≥0 is called the filter of ᾱ, which can be seen as the posterior proba-
bility mass function of ᾱ given Z1, . . . , ZNt . Therefore, from the insurer’s point of view,
the filter (pt)t≥0 is of main concern. It encapsulates the information gathered so far
about the thinning probabilities which can be expected from the claim arrivals.

Remark 4.8. (i) For t = 0, FΦ
0 is the trivial σ-algebra (i.e. FΦ

0 = {∅,Ω}) and, con-
sequently, pj(0) = P(ᾱ = aj | FΦ

0 ) = P(p̄ = aj) = πᾱ(j), j = 1, . . . ,m. Recall that
π̄ = (πᾱ(1), . . . , πᾱ(m)) describes the probability mass function of the given prior
distribution Πᾱ of ᾱ. So pj(0) is known by the insurer for every j = 1, . . . ,m.

(ii) Notice further that pDt (ω) ∈ (0, 1) for P-a.a. ω ∈ Ω since αD ∈ (0, 1) due to
the assumption that ᾱ = (αD)D⊂D ∈ ∆̊`, compare Assumption 4.1, Moreover,∑

D⊂D p
D
t = E[

∑
D⊂D αD | FΦ

t ] = 1 and thus
∑

D⊂D p
D
t− = 1.

Lemma 4.9. The F-intensity kernel of Φ = (Tn, Zn)n∈N, denoted by (µ(t,dz))t≥0, is
given by

µ(t, B) = λ
∑
D∈B

αD, t ≥ 0, B ∈ P(P(D)).

Proof. Fix B ∈ P(P(D)). Firstly, we have to show that λ is a transition kernel from
(R+×Ω,B+⊗F) to (P(D),P(P(D))), compare Definition 2.96. Since αD is F0-measurable
(in particular, F-measurable), (λ

∑
D∈B αD)t≥0 is an F-adapted and continuous process

and, consequently, measurable w.r.t. F (compare Proposition 2.16), i.e. λ
∑

D∈B αD is
B+⊗ F-measurable. Moreover, it is easily seen that through λ

∑
D∈B αD(ω) a measure

on (P(D),P(P(D))) is defined for every ω ∈ Ω since λ > 0. Secondly, we have to prove
that (λ

∑
D∈B αD)t≥0 is the predictable F-intensity of (Φ(t, B))t≥0 which was already

shown in Lemma 4.7.

Proposition 4.10. The local F-characteristic of Φ = (Tn, Zn)n∈N, denoted by
(λt, µ(t,dz))t≥0, is given by

λt = λ, µ(t, B) =
∑
D∈B

αD, t ≥ 0, B ∈ P(P(D)).

Proof. The announced characteristic follows immediately from Lemma 4.9 and the ob-
vious fact that a stochastic kernel from (R+×Ω,B+⊗F) to (P(D),P(P(D))) is defined
through

∑
D∈B αD.

Proposition 4.11. The local FΦ-characteristic of Φ = (Tn, Zn)n∈N, denoted by
(λ̂t, µ̂(t,dz))t≥0, is given by

λ̂t = λ, µ̂(t, B) =
∑
D∈B

pDt−, t ≥ 0, B ∈ P(P(D)).

Proof. Obviously, (λ)t≥0 is non-negative and it is an FΦ-predictable process. We define
µ̂(t, ω,B) :=

∑
D∈B p

D
t−(ω) for every t ≥ 0, B ∈ P(P(D)) and ω ∈ Ω. According to

Remark 4.8 (ii), it holds µ̂(t,P(D)) =
∑

D⊂D p
D
t− = 1, i.e. µ̂(t, ω, dz) is a probability

measure on P(D) for P-a.a. ω ∈ Ω and all t ≥ 0. Furthermore, for any B ∈ P(P(D)), we
have

R+× Ω 3 (t, ω) 7→ µ̂(t, ω,B) =
∑
D∈B

pDt−(ω)

is (B+⊗ FΦ
∞)-measurable since (pDt−)t≥0 is FΦ-predictable and, hence, FΦ-progressively

measurable (cf. Prop. 2.56), in particular, measurable w.r.t. FΦ
∞. This establishes that
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µ̂(·, dz) is a stochastic kernel from (R+×Ω,B+⊗FΦ
∞) to (P(D),P(P(D))). It remains to

prove that
(
λ
∑

D∈dz p
D
t−
)
t≥0

is the FΦ-intensity kernel of Φ. Clearly, λ
∑

D∈dz p
D
· (·) is a

transition kernel from (R+×Ω,B+⊗FΦ
∞) to (P(D),P(P(D))) since µ̂(·,dz) is a stochastic

kernel from (R+×Ω,B+⊗FΦ
∞) to (P(D),P(P(D))). Next, we fix B ∈ P(P(D)). The task

is now to show that (λ
∑

D∈B p
D
t−)t≥0 is the FΦ-predictable FΦ-intensity of (Φ(t, B))t≥0.

To do this, let us remind that we have seen in Lemma 4.7 that
(
λ
∑

D∈B αD
)
t≥0

is an

F-intensity of
(
Φ(t, B)

)
t≥0

. We know already that
(
λ
∑

D∈B p
D
t

)
t≥0

is a càdlàg mod-

ification of
(
λE[

∑
D∈B αD | FΦ

t ]
)
t≥0

(see notation above) and, hence, FΦ-progressively

measurable. Therefore, by Proposition 2.81, we get that
(
λ
∑

D∈B p
D
t

)
t≥0

is an FΦ-

intensity of (Φ(t, B))t≥0 and, in consequence, (λ
∑

D∈B p
D
t−)t≥0 is the FΦ-predictable

FΦ-intensity.

Notation. We denote by Φ̂(dt,dz) the compensated random measure of Φ(dt,dz) which
defined by

Φ̂(dt,dz) := Φ(dt,dz)− λ µ̂(t,dz) dt, (4.2)

where µ̂ is defined as in Proposition 4.11.

Remark 4.12. Notice that Φ(dt,dz) and Φ̂(dt,dz) + λµ̂(t,dz) dt are equal random
measures on R+×P(D). This plain property will ensure that the reduced control problem
solves the partially observable problem, compare Section 4.3.

We are now in the position to determine an equation for the dynamic of the process
(pj(t))t≥0, j ∈ D, and thus a dynamic for the filter (pt)t≥0.

Theorem 4.13. For any j ∈ {1, . . . ,m}, the process (pj(t))t≥0 satisfies

pj(t) = πᾱ(j) +

∫ t

0

∫
P(D)

(
azj pj(s−)

pzs−
− pj(s−)

)
Φ̂(ds, dz), t ≥ 0. (4.3)

Proof. The aim is to use the filter results for marked point process observations stated
in Theorem 2.101. To do this, let us fix j ∈ {1, . . . ,m} and set Zj := 1{ᾱ=aj}. Ob-
viously, Zj is F0-measurable. Hence Assumption 2.100 is fulfilled and we can apply
Theorem 2.101, which yields under consideration of E[Zj ] = P(ᾱ = aj) = πᾱ(j) and

Ẑj(t) = E[1{ᾱ=aj} | FΦ
t ] = pj(t)

pj(t) = πᾱ(j) +

∫ t

0

∫
P(D)

(
Aj(t, z)− pj(t−)

)(
Φ(ds, dz)− λ µ̂(s, dz) ds

)
, (4.4)

where Aj is an FΦ-predictable function indexed by P(D) satisfying (2.20). It remains to
determine Aj . To do this, we denote throughout the proof by H an arbitrary bounded
FΦ-predictable function indexed by P(P(D)). We know from (2.20) that Aj is computed
from

E

[∫ t

0

∫
P(D)

Zj H(s, z)λµ(s, dz) ds

]
= E

[∫ t

0

∫
P(D)

Aj(s, z)H(s, z)λ µ̂(s, dz) ds

]
. (4.5)

Recall that µ(t,dz) =
∑

D∈dz αD and µ̂(t,dz) =
∑

D∈dz p
D
t− are probability measures on

P(D) for every t ≥ 0 and ω ∈ Ω as well as that the integrand of a Lebesgue integral
can be changed at countably many points without changing the integral. On account of
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these facts as well as Fubini’s Theorem, we conclude that

E

[∫ t

0

∫
P(D)

azj pj(s−)

pzs−
H(s, z)λ µ̂(s, dz) ds

]
= E

[∫ t

0

∫
P(D)

azj pj(s)

pzs
H(s, z)λ

∑
D∈dz

pDs ds

]

= E

[∫ t

0

∑
D⊂D

H(s,D)λ aDj pj(s) ds

]
=

∫ t

0

∑
D⊂D

E
[
H(s,D)λ aDj P(ᾱ = aj | FΦ

s )
]

ds

=

∫ t

0

∑
D⊂D

E

[
H(s,D)λ

m∑
k=1

aDk 1{ak=aj} P(ᾱ = ak, αD = aDk | FΦ
s )

]
ds

=

∫ t

0

∑
D⊂D

E
[
H(s,D)λE[αD1{ᾱ=aj} | F

Φ
s ]
]

ds

=

∫ t

0

∑
D⊂D

E
[
E[H(s,D)λαD 1{ᾱ=aj} | F

Φ
s ]
]

ds

=

∫ t

0

∑
D⊂D

E
[
H(s,D)λαD 1{ᾱ=aj}

]
ds

= E

[∫ t

0

∑
D⊂D

Zj H(s,D)λαD ds

]
= E

[∫ t

0

∫
P(D)

Zj H(s, z)λµ(t,dz) ds

]
.

In the sixth equality, we have used the P(FΦ) ⊗ P(P(D))-measurability of H, which
implies that H(s,D) is FΦ

s -measurable for all s ≥ 0. Recall that, for any D ⊂ D,
pDt ∈ (0, 1) P-almost surely, compare Remark 4.8. By setting

Aj(t, z) :=
azj pj(t−)

pzt−
, t ≥ 0, z ∈ P(D), (4.6)

the calculation above has shown that Aj satisfies condition (4.5). Moreover, Aj is an
FΦ-predictable function indexed by P(D). Indeed, in the light of the FΦ-predictability
of (pj(t−))t≥0 and (pzt−)t≥0, we have that Aj(·, z) is measurable w.r.t. P(FΦ) for every
z ∈ P(D). Furthermore, since P(P(D)) is the set of all subset of P(D), Aj is P(FΦ)⊗
P(P(D))-measurable. Therefore, the proof is completed by inserting the computed Aj
in Equation (4.4).

Remark 4.14. It is worth noting that the process (pj(t))t≥0 given by (4.3) is an FV
process since it is the difference of two Lebesgue-Stieltjes integrals. Notice further that
filter p takes values in ∆m. We verify this by showing that the sum over all j ∈
{1, . . . ,m} of right-hand side in (4.3) is one. For any t ≥ 0, we have (since π̄ ∈ ∆m)

m∑
j=1

(
πᾱ(j) +

∫ t

0

∫
P(D)

(
azj pj(s−)

pzs−
− pj(s−)

)
Φ̂(ds, dz)

)

= 1 +

∫ t

0

∫
P(D)

∑m
j=1 a

z
jpj(s−)

pzs−
−

m∑
j=1

pj(s−)

 Φ̂(ds, dz),

where
m∑
j=1

pj(s) =

m∑
j=1

P(ᾱ = aj | FΦ
t ) = 1
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and, as above, ∑m
j=1 a

z
jpj(s)

pzs
=

∑m
j=1 E[αz1{ᾱ=aj} | FΦ

t ]

E[αz | FΦ
t ]

= 1, z ∈ P(D).

So, by using the left-limit processes of the corresponding càdlàg modifications of the
conditional expectations in the equation above, we obtain∑m

j=1 a
z
jpj(s−)

pzs−
= 1 and

m∑
j=1

pj(s−) = 1, z ∈ P(D),

and thus ∫ t

0

∫
P(D)

∑m
j=1 a

z
jpj(s−)

pDs−
−

m∑
j=1

pj(s−)

 Φ̂(ds, dz) = 1.

Let us mention some elementary properties of the filter (pt)t≥0.

Proposition 4.15. For any j ∈ {1, . . . ,m}, the process (pj(t))t≥0 given by (4.3) is an
FΦ-martingale.

Proof. Fix j ∈ {1, . . . ,m}. Appealing to Corollary 2.98, the process (pj(t))t≥0 given
by (4.3) is an FΦ-martingale if

E

[∫ t

0

∫
P(D)

∣∣∣∣azj pj(s−)

pzs−
− pj(s−)

∣∣∣∣λ ∑
D∈dz

pDs− ds

]
<∞, t ≥ 0.

With the help of Fubini’s theorem, the triangle inequality, Remark 4.8 (ii) and the facts
that aj ∈ ∆̊`, j = 1, . . . ,m, and pj(s), p

D
s > 0, we get

E

[∫ t

0

∫
P(D)

∣∣∣∣azjpj(s−)

pzs−
− pj(s−)

∣∣∣∣λ ∑
D∈dz

pDs− ds

]
=
∑
D⊂D

E

[∫ t

0

∣∣∣∣∣aDj pj(s)pDs
− pj(s)

∣∣∣∣∣λpDs ds

]

≤ λ
∑
D⊂D

E
[∫ t

0
aDj pj(s) ds

]
+ λ

∑
D⊂D

E
[∫ t

0
pj(s) p

D
s ds

]
= λ

∫ t

0
E [pj(s)] ds

∑
D⊂D

aDj︸ ︷︷ ︸
=1

+λ

∫ t

0
E
[
pj(s)

∑
D⊂D

pDs︸ ︷︷ ︸
=1

]
ds

= 2λ

∫ t

0
E
[
E[1{ᾱ=aj} | F

Φ
s ]
]

ds = 2λ

∫ t

0
P(ᾱ = aj) ds = 2λπᾱ(j) t ≤ 2λt <∞,

for all t ≥ 0.

Proposition 4.16. The filter (pt)t≥0 is a pure jump process and the new state of (pt)t≥0

after the jump times (Tn)n∈N is given by

pTn = J
(
pTn−, Zn

)
, n ∈ N,

where

J(p,D) :=

(
aD1 p1∑m
k=1 a

D
k pk

, . . . ,
aDm pm∑m
k=1 a

D
k pk

)
, p = (p1, . . . , pm) ∈ ∆m D ⊂ D. (4.7)
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Proof. Let us fix j ∈ {1, . . . ,m} and t ≥ 0. First, we show that the continuous part
(pcj(t))t≥0 of the process (pj(t))t≥0 is constant zero. By definition of Φ̂ given in (4.2)
and (4.3), it follows

pj(t) = πᾱ(j) +

∫ t

0

∫
P(D)

(
azj pj(s−)

pzs−
− pj(s−)

)
Φ(ds, dz)

−
∑
D⊂D

∫ t

0

∫
P(D)

(
aDj pj(s)

pDs
− pj(s)

)
λ pDs ds,

(4.8)

where the integral w.r.t. Φ is a sum. Hence, due to Remark 4.8 (ii), (pcj(t))t≥0 satisfies

pcj(t) = −λ
∑
D⊂D

t∫
0

(
aDj pj(s)

pDs
− pj(s)

)
pDs ds = −λ

t∫
0

pj(s)

( ∑
D⊂D

aDj︸ ︷︷ ︸
=1

−
∑
D⊂D

pDs︸ ︷︷ ︸
=1

)
ds = 0.

Thus (pj(t))t≥0 is constant between the jumps and pj(t) = πᾱ(j)+
∑

0<s≤t ∆pj(s). That
is, (pt)t≥0 is a pure jump process. Moreover, according to Equation (4.8), we have

∑
0<s≤t

∆pj(t) =

∫ t

0

∫
P(D)

(
azj pj(s−)

pzs−
− pj(s−)

)
Φ(ds, dz).

and consequently

∆pj(Tn) =
aZnj pj(Tn−)

pZnTn−
− pj(Tn−), n ∈ N.

Therefore, the new state of (pj(t))t≥0 at (Tn)n∈N is

pj(Tn) = pj(Tn−) + ∆pj(Tn) =
aZnj pj(Tn−)

pZnTn−
, n ∈ N.

Notice that

pDt =
m∑
k=1

aDk p
D
k (t) =

m∑
k=1

aDk P(αD = aDk | FΦ
t )

=
∑

k∈{1,...,m}:
aDk 6=a

D
j ∀j∈{1,...,m}

aDk
∑

`∈{1,...,m}:
aD` =aDk

P(ᾱ = a` | FΦ
t ) =

m∑
k=1

aDk pk(t),

since ∑
`∈{1,...,m}:
aD` =aDk

P(ᾱ = a` | FΦ
t ), k = 1, . . . ,m,

is the probability mass function of the conditional distribution of the Dth component of
ᾱ given FΦ

t . Thus

pZnTn− =
m∑
k=1

aZnk pk(Tn−).
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This yields pTn = J(pTn−, Zn) for all n ∈ N, where J is defined by (4.7).

Remark 4.17. (i) It should be pointed out that the proof of Proposition 4.16 yields

pj(t) = πᾱ(j) +

∫ t

0

∫
P(D)

(
azj pj(s−)

pzs−
− pj(s−)

)
Φ(ds, dz), t ≥ 0, j = 1, . . . ,m.

(ii) In the proof we have seen that

pDt =
m∑
k=1

aDk pk(t), (4.9)

which is the known relation that the mean of some marginal distribution can be
calculated by replacing the marginal distribution with the common distribution in
the corresponding integral.

The derived pure jump property of the filter (pt)t≥0 is illustrated in Figure 4.1, which
shows a sample path of the filter process in the case of A = {a1, a2, a3} with a1 =
(4/9, 4/9, 4/9), a2 = (5/9, 2/9, 2/9), a3 = (1/3, 1/3, 1/3), where the prior distribution
is given by π̄ᾱ = (2/5, 2/5, 1/5). The trajectory of the filter was simulated under the
assumption that the (unobservable) realization of ᾱ is a2, i.e. P(ᾱ = αj | F0) = 1. This
is recognized by the filter over time since the probability that the dependencies between
the LoBs are given by a2 is nearly 1 at the end of the consider time interval, compare
the red line.
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Figure 4.1: A trajectory of the filter process (pt)t≥0 under the assumptions A = {a1, a2, a3}
with a1 = (4/9, 4/9, 4/9), a2 = (5/9, 2/9, 2/9), a3 = (1/3, 1/3, 1/3) and that
π̄ᾱ = (2/5, 2/5, 1/5) as well as P(ᾱ = a2 | F0) = 1.

The representation of the filter (pt)t≥0 given in Theorem 4.13 allows us to reduce
the partially observable control problem (P) to one with a state process containing
all relevant observable information about the unknown interdependency between the
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insurance classes whose solution solves the original problem. Before moving on to the
reduced control problem, we carry out some useful properties of aggregated claim amount
process and the surplus process.

Properties of the aggregated claim amount process and the surplus process.
For the stochastic control approach, it will be helpful to use a compensated random
measure of the marked point processes Ψ = (Tn, (Yn, Zn))n∈N introduced on page 35
to represent the aggregated claims left to the insurer in the surplus process Xξ,b given
by (3.7). The compensator of Ψ is determined by applying the following lemma.

Lemma 4.18. The F-intensity kernel of Ψ, denoted by (ν(t,d(y, z)))t≥0, is given by

ν(t, (A,B)) = λF (A)
∑
D∈B

αD, t ≥ 0, (A,B) ∈ B((0,∞)d)⊗ P(P(D)).

Proof. Let us fix t ≥ 0 and (A,B) ∈ B((0,∞)d) ⊗ P(P(D)). The task is now to
show that (ν(t, (A,B)))t≥0 =

(
λF (A)

∑
D∈B αD

)
t≥0

is the F-predictable F-intensity of

(Ψ(t, (A,B)))t≥0, where the required non-negativity and F-predictability are obviously
satisfied. Moreover, it holds

∫ t
0 λF (A)

∑
D∈B αD ds = λF (A)

∑
D∈B αD t < λ t < ∞.

From Assumption 3.3 and fact that (λ
∑

D∈B αD)t≥0 is an F-intensity of (Φ(t, B))t≥0

(see Lemma 4.9), it follows

E
[∫ ∞

0
Hs Ψ(ds, (A,B))

]
= E

[∑
n∈N

HTn1{Tn<∞}1{Zn∈B}1{Yn∈A}

]

= E
[∫ ∞

0
HsΦ(ds,B)

]
F (A) = E

[∫ ∞
0
Hsλ

∑
D∈B

αDds

]
F (A) = E

[∫ ∞
0
HsλF (A)

∑
D∈B

αDds

]

for all non-negative FΦ-predictable processes (Ht)t≥0, which finishes the proof.

Remark 4.19. In this chapter, Ψ is a Poisson random measure (PRM) since the back-
ground intensity is deterministic and thusN an homogeneous Poisson process. Therefore,
according to Mikosch [94, Prop. 7.3.3], Ψ is an PRM with a mean measure defined on
R+×(0,∞)d×P(D) which is given by ν(dt,d(y, z)), where ν is defined as in Lemma 4.18.
This property of Ψ is called independent marking of the PRM N . Notice that in the
general setting, if the background intensity Λ of N is randomized, then N has no longer
independent increments (cf. e.g. Scherer and Selch [108, p. 141]) and thus Ψ can only be
understood as a random counting measure in general, not as PRM.

The following result will be proved in the same way as for Proposition 4.11.

Proposition 4.20. The FΨ-intensity kernel of Ψ, denoted by (ν̂(t,d(y, z)))t≥0, is given
by

ν̂(t, (A,B)) = λF (A)
∑
D∈B

pDt−, t ≥ 0, (A,B) ∈ B((0,∞)d)⊗ P(P(D)).

Proof. Fix t ≥ 0. In the proof of Proposition 4.11 we have seen that

R+× Ω× P(P(D)) 3 (t, ω,B) 7→
∑
D∈B

pDt−(ω)
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is a stochastic kernel from (R+×Ω,B+⊗FΦ
t ) to (P(D),P(P(D))). Therefore, since F (A)

is deterministic, positive and constant in time for every A ∈ B((0,∞)d),

R+× Ω× B((0,∞)d)⊗ P(P(D)) 3 (t, ω, (A,B)) 7→ F (A)
∑
D∈B

pDt−(ω)

is a transition kernel from (R+×Ω,B+⊗FΦ
t ) to ((0,∞)d×P(D),B((0,∞)d)⊗P(P(D))).

The only point remaining concerns the intensity property of ν̂(t,d(y, z)). For this pur-
pose let us fix (A,B) ∈ B((0,∞)d) ⊗ P(P(D)). The process (λF (A)

∑
D∈B p

D
t−)t≥0

is obviously non-negative and FΨ-predictable due to the FΦ-predictability of (pDt−)t≥0

and satisfies
∫ t

0 λF (A)
∑

D∈B p
D
s− ds ≤ λF (B) t < ∞. Furthermore, using Assump-

tion 3.3, Fubini’s Theorem and the fact that (λ
∑

D∈B p
D
t−)t≥0 is an FΦ-intensity of

(Φ(t, B))t≥0 (see proof of Proposition 4.11), we obtain by a similar calculation as in
proof of Lemma 4.18

E
[∫ ∞

0
Hs Ψ(ds, (A,B))

]
= E

[∫ ∞
0

Hs Φ(ds,B)

]
F (A)

= E

[∫ ∞
0

Hs λ
∑
D∈B

pDt− ds

]
F (A)

= E

[∫ ∞
0

Hs λF (A)
∑
D∈B

pDt− ds

]
,

for all non-negative FΦ-predictable processes (Ht)t≥0, which completes the proof.

Notation. We denote by Ψ̂(dt,d(y, z)) the compensated random measure of Ψ which is
defined by

Ψ̂(dt,d(y, z)) := Ψ(dt,d(y, z))− ν̂(t,d(y, z)) dt, (4.10)

where ν̂ is defined as in Proposition 4.20.

Using the introduced compensated random measure Ψ̂, we obtain another way to state
the aggregated claims process. Recall the notation of Ed introduced on page 35.

Proposition 4.21. The aggregated claim process S = (St)t≥0 is given by

St =

∫ t

0

∫
Ed

d∑
i=1

yi1z(i) Ψ̂(ds, d(y, z)) + λ
∑
D⊂D

∫ t

0
pDs ds

d∑
i=1

1D(i)E[Y i
1 ], t ≥ 0.

Furthermore, St satisfies

E[St] = λ
∑
D⊂D

m∑
k=1

aDk πᾱ(k)
d∑
i=1

1D(i)E[Y i
1 ] t, t ≥ 0.

Proof. Taking into account (3.3), (4.10) and Proposition 4.20, we get

St =

∫ t

0

∫
Ed

d∑
i=1

yi1z(i) Ψ̂(ds, d(y, z)) +
∑
D⊂D

∫ t

0

∫
(0,∞)d

d∑
i=1

yi1D(i)λF (dy) pDs ds

=

∫ t

0

∫
Ed

d∑
i=1

yi1z(i) Ψ̂(ds, d(y, z)) + λ
∑
D⊂D

∫ t

0
pDs ds

d∑
i=1

1D(i)E[Y i
1 ], t ≥ 0,



4.2 Filtering and reduction 59

which yields the asserted representation of St. Next, we use this representation to infer
the expectation of St. In order to achieve this value, we will show that the process (ηt)t≥0

given by

ηt =

∫ t

0

∫
Ed

d∑
i=1

yi1z(i) Ψ̂(ds, d(y, z)), t ≥ 0,

is an FΨ-martingale. By Corollary 2.98, (ηt)t≥0 is an FΨ-martingale if the function
H : R+× Ω× (0,∞)d × P(D) defined by

H(t, y, z) :=
d∑
i=1

yi1z(i)

is an FΨ-predictable function indexed by (0,∞)d × P(D) and satisfies

E
[∫ t

0

∫
Ed
|H(s, y, z)| ν̂(s, d(y, z)) ds

]
<∞, t ≥ 0.

It is easily seen that H holds the desired predictability property. Having disposed this
preliminary step, we can calculate the expectation above by Proposition 4.20 and we
obtain that the expectation above is equal to

λ
∑
D⊂D

E

[∫ t

0

∫
(0,∞)d

d∑
i=1

yi1D(i)F (dy) pDs ds

]
= λ

d∑
i=1

∑
D⊂D

1D(i)E[Y i
1 ]E

[∫ t

0
pDs ds

]
,

where, by Fubini’s theorem,

E
[∫ t

0
pDs

]
ds =

∫ t

0
E
[
pDs
]

ds =

∫ t

0
E
[
E[αD | FΦ

s ]
]

ds = E[αD] t

=
m∑
k=1

aDk P(αD = aDk ) t =
m∑
k=1

aDk πᾱ(k) t <∞

In consequence, the martingale property of (ηt)t≥0 follows since E[Y i
1 ] <∞, i = 1, . . . , d,

compare Remark 4.4. Moreover, the martingale property of (ηt)t≥0 implies

E[St] = E[ηt] + E

[
λ

d∑
i=1

E[Y i]
∑
D⊂D

1D(i)

∫ t

0
pDs ds

]

= λ
∑
D⊂D

m∑
k=1

aDk πᾱ(k)

d∑
i=1

1D(i)E[Y i
1 ] t

due to the calculation above.

The proposition gains in interest for the following reformulation of the surplus process
Xξ,b = (Xξ,b

t )t≥0:

dXξ,b
t =

(
rXξ,b

s + (µ− r)ξs + c(bs)− λ bt
∑
D⊂D

pDt

d∑
i=1

1D(i)E[Y i
1 ]

)
dt

+ ξsσdWs −
∫
Ed
bt

d∑
i=1

yi1z(i) Ψ̂(dt,d(y, z)), t ≥ 0.

(4.11)
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This representation will be one part of the reduced control model, which will be discussed
in the next section.

4.3 The reduced control problem

The state process of the incomplete information problem (P) consists only of the sur-
plus process. To obtain the reduced control model, we have to integrate the additional
information about the unknown interdependencies between the various business risks
which the insurer receives. For this purpose, we extend the state process by the finite di-
mensional filter process (pt)t≥0 which contains all relevant observable information about
the unobservable thinning probabilities. The extended state process is the reduced con-
trol model, where the G-adaptability of all components ensures the observability of this
process for the insurer.

After this preliminary consideration we are now in the position to present the control
problem in a rigorous way. It should be noted that our aim is to solve the reduced control
problem by applying the dynamic programming method. The basic idea of this method
is that the solution comes from a family of control problems by varying the initial state
values and determining relations between the associated value functions.2 To state this
family of control problems, we fix some initial time t ∈ [0, T ) and consider the state
process on [t, T ]. According to the results above, the complete observable controlled

process (state process) (Xξ,b
s , ps)s∈[t,T ] is an (m + 1)-dimensional process characterized

for (ξ, b) ∈ U [t, T ] by

dXξ,b
s =

(
rXξ,b

s + (µ− r)ξs + c(bs)− λ bs
d∑
i=1

∑
D⊂D

pDs 1D(i)E[Y i
1 ]

)
ds

+ ξsσ dWs −
∫
Ed
bs

d∑
i=1

yi1z(i) Ψ̂(dt,d(y, z)),

(4.12)

dpj(s) =

∫
P(D)

(
azj pj(s−)

pzs−
− pj(s−)

)
Φ̂(ds, dz), j = 1, . . . ,m, (4.13)

for s ∈ [t, T ], where Xξ,b
t = x ∈ R and pt = p with p = (p1, . . . , pm) ∈ ∆m. Recall that

Xξ,b
0 = x0 and pj(0) = P(ᾱ = aj) = πᾱ(j), j = 1, . . . ,m. We see that all processes

involved in the state process are G-adapted whereby the reduced model is observable
for the insurer. Due to this full observable framework concerning the state process, the
reduced control problem stated below is often referred to as the reduced problem under
complete information in the literature.

The block diagram displayed in Figure 4.2 illustrates the feedback control in the
reduced control model, which shows the additional dependency of the control on the
filter process. The block diagram already anticipates that the filter process reasonably
only affect the reinsurance strategy but not the investment strategy, as the filter only
provides information about the insurance risks.

Now, we can formulate the reduced control problem. For any (ξ, b) ∈ U [t, T ], the
objective function is given by

V ξ,b(t, x, p) := Et,x,p
[
U(Xξ,b

T )
]

:= E
[
U(Xξ,b

T ) |Xξ,b
t = x, pt = p

]
, (t, x, p) ∈ [0, T ]× R×∆m.

2See Section 3.1 in Pham [100].
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Environment

Xξ,b
t controlled surplus

bt dSt jump noise

ξt σ dWt diffusion noise

pt state

Xξ,b
t stateξt control

bt control

Figure 4.2: The feedback control in the reduced control problem.

With this optimization criterion, the value function takes the following form:

V (t, x, p) := sup
(ξ,b)∈U [t,T ]

V ξ,b(t, x, p), (t, x, p) ∈ [0, T ]× R×∆m. (P1)

At this point, it is not trivial a priori whether the value function is measurable since the
upper bound of an uncountable set of measurable functions may be a non-measurable
function, which is emphasized in Gihman and Skorochod [64, p. 174]. The measurability
will turn out later. Similar as before, an investment-reinsurance strategy (ξ?, b?) ∈ U [t, T ]
is optimal if

V (t, x, p) = V ξ?,b?(t, x, p), (t, x, p) ∈ [0, T ]× R×∆m.

The insurance company is interested in the optimal strategies (ξ?, b?) ∈ U [t, T ] with

(ξ?, b?) = argsup
(ξ,b)∈U [t,T ]

V ξ,b(t, x, p).

Solving the maximization problem directly over all uncountable many strategies is not
obvious at all. As already indicated above, the introduced formulation of the problem
depending on different initial states allows us to apply the dynamic programming prin-
ciple which splits the optimization problem into a collection of pointwise maximization
separately for every time t. Therefore, an optimal strategy obtained by the dynamic
programming principle (more precisely by the HJB equation, which is derived by the
dynamic programming principle) is always necessarily Markov, where (ξ, b) ∈ U [t, T ]

is called Markov strategy if it is of the form (ξs, bs) = (v(s,Xξ,b
s , ps), w(s,Xξ,b

s , ps)) for
some measurable functions v : [0, T ] × R ×∆m → R and w : [0, T ] × R ×∆m → [0, 1].
The reason for the introduced terminology is that the surplus Xξ,b is a Markov process if
(ξ, b) is a Markov strategy w.r.t. the state process (Xξ,b

t , pt)t. This does not hold in gen-
eral since the investment-reinsurance strategies may depend on the entire past history.
However, since the filter (pt)t≥0 contains the information from the past, the strategies
depend on the history in the view of the original problem.

Before applying dynamic programming ansatz, we have to realize that solving the
reduced control problem (P1) is in fact solving the original problem (P). This is settled
by the circumstance that the valued function V̄ (t, x) defined in (P) depends on the
history G only through the filter (pt)t≥0. So the filter (pt)t≥0 contains the information
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needed to solve the original control problem (P). Furthermore, the representation of
the surplus process in (3.7) and in (4.11) are indistinguishable due to Remark 4.12.
Hence, for any (ξ, b) ∈ U [t, T ],

V ξ,b(t, x, pt) = V̄ ξ,b(t, x) and thus V (t, x, pt) = V̄ (t, x), (t, x) ∈ [0, T ]× R.

An immediate consequence is that an optimal strategy for the reduced control problem
is optimal for the original problem (an vice versa). It should further be noted that the
existence of an optimal strategy is not guaranteed. The existence issue will be addressed
at the end of Section 4.7.2.

After the verification that an solution of our problem (P) can be obtained by dealing
with the problem (P1), we take a closer look at the value function V by the next lemma
which states elementary properties of the value function (similar to Lemma 3.3 in Bäuerle
and Rieder [31]) using the following notation.

Notation. From now on, we denote by ek the k-th unit vector in Rm.

Lemma 4.22. (i) For any t ∈ [0, T ], (ξ, b) ∈ U [t, T ], p = (p1, . . . , pm) ∈ ∆m, and
x ∈ R, it holds

V ξ,b(t, x, p) =
m∑
j=1

pj V
ξ,b(t, x, ej).

(ii) For any t ∈ [0, T ] and x ∈ R, the function ∆m 3 p 7→ V (t, x, p) is convex.

Proof. (i) The equation follows immediately by conditioning.

(ii) Let us fix t ∈ [0, T ], p = (p1, . . . , pm) ∈ ∆m, q = (q1, . . . , qm) ∈ ∆m and β ∈
[0, 1]. From negativity of the utility function U , it follows immediately that V ξ,b is
negative. That is, U [t, T ] 3 (ξ, b) 7→ V ξ,b(t, x, p) is bounded from above. Therefore,
using statement (i) and Proposition B.2, we obtain

V (t, x, βp+ (1− β)q)

= sup
(ξ,b)∈U [t,T ]

m∑
j=1

(βpj + (1− β)qj)V
ξ,b(t, x, ej)

= sup
(ξ,b)∈U [t,T ]

β m∑
j=1

pjV
ξ,b(t, x, ej) + (1− β)

m∑
j=1

qjV
ξ,b(t, x, ej)


≤ β sup

(ξ,b)∈U [t,T ]

m∑
j=1

pjV
ξ,b(t, x, ej) + (1− β) sup

(ξ,b)∈U [t,T ]

m∑
j=1

qjV
ξ,b(t, x, ej)

= βV (t, x, p) + (1− β)V (t, x, q),

for all x ∈ R.

Before focusing on the solution of the reduced problem, we conclude the section with
a discussion on the used reduction approach.

Remark 4.23. To make inferences about the unknown thinning probabilities we have
used a Bayesian approach. Essentially, we make use of the Bayesian estimator for the
thinning probabilities. One might wonder if it is possible to use other estimators as
well. For the answer let us recall the definition of the objective function V̄ ξ,b(t, x) =

E[E[U(Xξ,b
t ) | Gt] |Xξ,b

t = x], (t, x) ∈ [0, T ]×R. The definition of V̄ ξ,b uses the conditional
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expectation, so that the function will not change if we insert a Bayesian estimator. If, on
the contrary, we had used another estimator which is not the projection on the observable
filtration (e.g. the maximum likelihood estimator), then the objection function V̄ ξ,b would
change which means that we could not solve the original problem (P) if other estimators
than the Bayesian were used for the reduction.

4.4 The Hamilton-Jacobi-Bellman equation

To determine an optimal control of the stochastic control problem stated in (P1), we
are going to derive the partial (integro) differential equation of stochastic dynamic pro-
gramming principle, known as the Hamilton-Jacobi-Bellman equation or simply as the
Bellman equation. The HJB equation is derived heuristically with the help of the dy-
namical programming principle (DPP), which yields, as byproduct, a candidate for an
optimal investment-reinsurance strategy. A formal proof of the relationship between the
value function and the HJB equation follows later in the verification step in Section 4.7.
Due to the heuristic derivation of the HJB equation, no proof of the DPP is required at
first.

The starting point for the motivation of the HJB equation is DPP which is also referred
as Bellman principle: Let τ ∈ [t, T ] be a G-stopping time. Then

V (t, x, p) = sup
(ξ,b)∈U [t,T ]

Et,x,p
[
V (τ,Xξ,b

τ , pτ )
]

(4.14)

for all (t, x, p) ∈ [0, T ]×R×∆m. As explained in Pham [100, p. 41], the Bellman equation
can be interpreted as follows: The optimization problem can be split into an optimal
control part from time τ given the state of the surplus Xξ,b

τ and of the filter pτ (i.e.

determine V (τ,Xξ,b
τ , pτ )) and then maximizing the quantity Et,x,p

[
V (τ,Xξ,b

τ , pτ )
]

over
the investment-reinsurance strategies on [t, τ ].

In the following we choose some fixed time point t0 ∈ (t, T ]. Recall that the filter
(pt)t≥0 is a pure jump process, compare Proposition 4.16. We suppose that V is sufficient

smooth such that the Itô-Doeblin formula can be applied to V (t0, X
ξ,b
t0
, pt0) on [t, t0]. It is

convenient to use the modified version of the Itô-Doeblin formula given in Corollary 2.58,
which yields

V (t0, X
ξ,b
t0
, pt0) = V (t,Xξ,b

t , pt) +

∫ t0

t
Vt(s,X

ξ,b
s , ps) ds+

∫ t0

t
Vx(s,Xξ,b

s−, ps−) d(Xξ,b)cs

+
1

2

∫ t0

t
Vxx(s,Xξ,b

s−, ps−) d[Xξ,b]cs +
∑

t<s≤t0

(
V (s,Xξ,b

s , ps)− V (s,Xξ,b
s−, ps−)

)
,

where Vt, Vx and Vxx denote the partial derivatives of V w.r.t. t, x and xx, respectively.
By Propositions 3.15 and 4.16, we get

V (t0, X
ξ,b
t0
, pt0)

= V (t,Xξ,b
t , pt)+

∫ t0

t

(
Vt(s,X

ξ,b
s , ps) + Vx(s,Xξ,b

s , ps)
(
rXξ,b

s + (µ− r)ξs + c(bs)
)

+
1

2
Vxx(s,Xξ,b

s , ps)ξ
2
sσ

2
)

ds+

∫ t0

t
Vx(s,Xξ,b

s−, ps−)ξsσ dWs

+
∑

t<s≤t0

(
V (s,Xξ,b

s , ps)− V (s,Xξ,b
s−, ps−)

)
.

(4.15)
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Next we turn our attention to the sum in the equation above. Since Xξ,b and p jump
only at trigger arrival times (Tn)n∈N, we obtain∑

t<s≤t0

(
V (s,Xξ,b

s , ps)− V (s,Xξ,b
s−, ps−)

)
=
∑
n∈N

(
V (Tn, X

ξ,b
Tn− + ∆Xξ,b

Tn
, pTn)− V (Tn, X

ξ,b
Tn−, pTn−)

)
1{Tn∈(t,t0]}.

According to Proposition 3.15 and Proposition 4.16, we have

∆Xξ,b
Tn

= −bTn
d∑
i=1

Y i
n1{i∈Zn}, pTn = J(pTn−, Zn), n ∈ N.

Therefore∑
t<s≤t0

(
V (s,Xξ,b

s , ps)− V (s,Xξ,b
s−, ps−)

)
=
∑
n∈N

(
V
(
Tn, X

ξ,b
Tn−−bTn

d∑
i=1

Y i
n1{i∈Zn}, J(pTn−, Zn)

)
−V (Tn, X

ξ,b
Tn−, pTn−)

)
1{Tn∈(t,t0]}

=

∫ t0

t

∫
Ed

(
V
(
s,Xξ,b

s− − bs
d∑
i=1

yi1z(i), J(ps−, z)
)
− V (s,Xξ,b

s−, ps−)

)
Ψ(ds, d(y, z))

Using the compensated random measure Ψ̂ given in (4.10), the last line above is equal
to ∫ t0

t

∫
Ed

(
V
(
s,Xξ,b

s− − bs
d∑
i=1

yi1z(i), J(ps−, z)
)
− V (s,Xξ,b

s−, ps−)

)
Ψ̂(ds, d(y, z))

+ λ
∑
D⊂D

∫ t0

t
pDs

∫
(0,∞)d

V
(
s,Xξ,b

s − bs
d∑
i=1

yi1D(i), J(ps, D)
)
F (dy) ds

− λ
∫ t0

t
V (s,Xξ,b

s , ps)
∑
D⊂D

pDs︸ ︷︷ ︸
=1

ds.

Inserting this in (4.15) yields

V (t0, X
ξ,b
t0
, pt0) = V (t,Xξ,b

t , pt)

+

∫ t0

t

(
Vt(s,X

ξ,b
s , ps) + Vx(s,Xξ,b

s , ps)
(
rXξ,b

s + (µ− r)ξs + c(bs)
)

+
1

2
Vxx(s,Xξ,b

s , ps)ξ
2
sσ

2 − λV (s,Xξ,b
s , ps)

+ λ
∑
D⊂D

pDs

∫
(0,∞)d

V
(
s,Xξ,b

s − bs
d∑
i=1

yi1D(i), J(ps, D)
)
F (dy)

)
ds

+ ηt0 − ηt

(4.16)
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where, for any s ∈ [t, T ],

ηs :=

∫ t0

t
Vx(s,Xξ,b

s−, ps−)ξsσ dWs

+

∫ t0

t

∫
Ed

(
V
(
s,Xξ,b

s− − bs
d∑
i=1

yi1z(i), J(ps−, z)
)
− V (s,Xξ,b

s−, ps−)

)
Ψ̂(ds, d(y, z)).

We make the assumption that the process η = (ηs)s∈[t,T ] is a G-martingale. Accord-
ingly, the expectation of ηs is zero for all s ∈ [t, T ], since the process starts at zero.
Consequently, by substitution (4.16) back into (4.14), we obtain

0 = sup
(ξ,b)∈U [t,T ]

Et,x,p
[ ∫ t0

t

(
Vt(s,X

ξ,b
s , ps)− λV (s,Xξ,b

s , ps)

+ Vx(s,Xξ,b
s , ps)

(
rXξ,b

s + (µ− r)ξs + c(bs)
)

+
1

2
σ2Vxx(s,Xξ,b

s , ps)ξ
2
s

+ λ
∑
D⊂D

pDs

∫
(0,∞)d

V
(
s,Xξ,b

s − bs
d∑
i=1

yi1D(i), J(ps, D)
)
F (dy)

)
ds

]
.

It should be noted that we have subtracted V (t, x, p) from both sides. Next, we divide
both sides by t0−t and consider t0 ↓ t. By fundamental theorem of calculus for Lebesgue
integrals (FTCL, cf. Sohrab [115, Thm. 11.5.31]) and Equation (4.9), we obtain under
the assumption that the limit interchanges with both the supremum and the expectation
as well as the Lebesgue integral exists

0 = sup
(ξ,b)∈U [t,T ]

Et,x,p
[
Vt(t,X

ξ,b
t , pt)− λV (t,Xξ,b

t , pt) +
1

2
σ2Vxx(t,Xξ,b

t , pt)ξ
2
t

+ Vx(t,Xξ,b
t , pt)

(
r Xξ,b

t + (µ− r)ξt + c(bt)
)

+ λ
∑
D⊂D

m∑
k=1

aDk pk(t)

∫
(0,∞)d

V
(
t,Xξ,b

t − bt
d∑
i=1

yi1D(i), J(pt, D)
)
F (dy)

]
.

Using ξt ∈ R and bt ∈ [0, 1], we obtain

0 = sup
(ξ,b)∈R×[0,1]

{
Vt(t, x, p)− λV (t, x, p) +

1

2
σ2Vxx(t, x, p)ξ2

+ Vx(t, x, p)
(
rx+ (µ− r)ξ + c(b)

)
+ λ

∑
D⊂D

m∑
k=1

aDk pk

∫
(0,∞)d

V
(
t, x− b

d∑
i=1

yi1D(i), J(p,D)
)
F (dy)

}
,

(4.17)

In case that t = T , the value function holds V (T, x, p) = ET,x,p
[
U(Xξ,b

T )
]

= U(x) for all
(x, p) ∈ [0, T ] ×∆m. Equation (4.17) is the HJB equation for V , which was derived by
sending t0 to t in the DPP given in (4.14) and thus the HJB equation characterises the
local behaviour of the value function in that case. Therefore, the HJB equation can be
seen as the infinitesimal version of the DPP.

The solution of the HJB equation (4.17) could provide a possible candidate for the
value function, which seems difficult to obtain. Therefore, the typical approach is to
simplify the equation by a separation approach. We will be able to separate x and p in
the sense that the value function is represented as the product of two functions, where
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one depends on (t, x) and one on (t, p). This may lead to a more easily solvable equation.
Thus the following separation approach of the value function – which is typical for an
exponential utility function – is important in the solution procedure of the presented
optimization problem.

Lemma 4.24. The value function V holds, for any (t, x, p) ∈ [0, T ]× R×∆m,

V (t, x, p) = −e−αxer(T−t)g(t, p), (4.18)

with
g(t, p) := inf

(ξ,b)∈U [t,T ]
gξ,b(t, p), (4.19)

where

gξ,b(t, p) := Et,p
[

exp

{
−
∫ T

t
α er(T−s)

(
(µ− r)ξs + c(bs)

)
ds

−
∫ T

t
ασ er(T−s)ξs dWs +

∫ T

t

∫
Ed
α bs e

r(T−s)
d∑
i=1

yi1z(i) Ψ(ds, d(y, z))

}]
,

(4.20)

where Et,p denotes the conditional expectation given pt = p.

Proof. From Proposition 3.14 follows

Xξ,b
T = Xξ,b

t er(T−t) +

∫ T

t
er(T−s)

(
(µ− r)ξs + c(bs)

)
ds+

∫ T

t
er(T−s)ξsσ dWs

−
∫ T

t

∫
Ed
bs e

r(T−s)
d∑
i=1

yi1z(i) Ψ(ds, d(y, z)).

Fix (t, x, p) ∈ [0, T ]× R×∆m. Then, with the help of the equation above, we get

V ξ,b(t, x, p)

= Et,x,p
[
− exp

{
− αXξ,b

T

}]
= −e−αxer(T−t)Et,p

[
exp

{
− α

∫ T

t
er(T−s)

(
(µ− r)ξs + c(bs)

)
ds

− α
∫ T

t
er(T−s)ξsσ dWs + α

∫ T

t

∫
Ed
bs e

r(T−s)
d∑
i=1

yi1z(i) Ψ(ds, d(y, z))

}]
.

Defining gξ,b(t, p) as in (4.20), we obtain

V (t, x, p) = sup
(ξ,b)∈U [t,T ]

V ξ,b(t, x, p)

= sup
(ξ,b)∈U [t,T ]

{
−e−αxer(T−t)gξ,b(t, p)

}
= −e−αxer(T−t) inf

(ξ,b)∈U [t,T ]
gξ,b(t, p),

which yields the assertion.

The next presented properties of the function g defined above turn out to be very
useful in the following.
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Lemma 4.25. Let g be defined by (4.19). Then the following statements are satisfied

(i) gξ,b(t, p) > 0 for all (t, p) ∈ [0, T ]×∆m and (ξ, b) ∈ U [t, T ].

(ii) g is bounded on [0, T ]×∆m.

(iii) gξ,b(t, p) =
∑m

j=1 pj g
ξ,b(t, ej) for all (t, p) ∈ [0, T ]×∆m.

(iv) gξ,b(t, J(p,D)) =
∑m

j=1

aDj pj∑m
k=1 a

D
k pk

gξ,b(t, ej) for all (t, p) ∈ [0, T ]×∆m and D ⊂ D.

(v) ∆m 3 p 7→ g(t, p) is concave for all t ∈ [0, T ].

Proof. (i) The statement follows immediately from the definition of gξ,b given in (4.20).

(ii) Fix (t, p) ∈ [0, T ] × ∆m. From the statement above, we have already the lower
bound g(t, p) ≥ 0. It remains to find an upper bound for g. Since g(t, p) =
inf(ξ,b)∈U [t,T ] g

ξ,b(t, p), g is bounded from above if there exists a strategy (ξ̄, b̄) ∈
U [t, T ] such that gξ̄,b̄ is bounded from above. Let (ξ̄, b̄) ∈ U [t, T ] the strategy
which is given by ξ̄s ≡ 0 and b̄s ≡ 0 for all s ∈ [t, T ]. Then

gξ̄,b̄(t, p) = Et,p
[

exp

{
−
∫ T

t
α er(T−s) (η − θ)κds

}]
= exp

{
α (θ − η)κ

∫ T

t
er(T−s) ds

}
= exp

{
α (θ − η)κ

er(T−t) − 1

r

}
≤ exp

{
α (θ − η)κ

erT − 1

r

}
=: K0,

where K0 > 0 is independent of t and p. Thus K0 is an upper bound of g which
completes the proof.

(iii) Similar to Lemma 4.22 (i), we obtain the equation by conditioning.

(iv) Once again, this assertion follows by conditioning.

(v) The concavity can be proven similar to Lemma 4.22 (iii) by using statement (ii).

In the following we use the separation approach given in Lemma 4.24 to rearrange the
developed HJB eqaution (4.17) for V . Equation (4.18) yields

Vt(t, x, p) = −e−αxer(T−t)
(
αx r er(T−t)g(t, p) + gt(t, p)

)
,

Vx(t, x, p) = −e−αxer(T−t)
(
− α er(T−t)g(t, p)

)
,

Vxx(t, x, p) = −e−αxer(T−t) α2 e2r(T−t)g(t, p).

Using this partial derivative and the relation

V
(
t, x− b

d∑
i=1

yi1D(i), p
)

= − exp

{
− α

(
x− b

d∑
i=1

yi1D(i)

)
er(T−t)

}
g(t, p)

= −e−αxer(T−t) exp

{
α b

d∑
i=1

yi1D(i)er(T−t)
}
g(t, p),
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Equation (4.17) becomes

0 = inf
(ξ,b)∈R×[0,1]

{
αx r er(T−t)g(t, p) + gt(t, p)− λ g(t, p)

− α er(T−t)g(t, p)
(
r x+ (µ− r)ξ + c(b)

)
+

1

2
σ2 α e2r(T−t)g(t, p) ξ2

+ λ
∑
D⊂D

m∑
k=1

aDk pk g(t, J(p,D))

∫
(0,∞)d

exp

{
α b er(T−t)

d∑
i=1

yi1D(i)

}
F (dy)

}
,

where the integral w.r.t. F is finite according to Assumption 4.3. The equation is equiv-
alent to

0 = inf
(ξ,b)∈R×[0,1]

{
gt(t, p)− λ g(t, p)

− α er(T−t)g(t, p)
(

(µ− r)ξ + c(b)− 1

2
σ2 α er(T−t) ξ2

)
+ λ

∑
D⊂D

m∑
k=1

aDk pk g(t, J(p,D))

∫
(0,∞)d

exp

{
α b er(T−t)

d∑
i=1

yi1D(i)

}
F (dy)

}
,

(4.21)

which is the HJB equation for g. Since the terminal utility conditioned on Xξ,b
T = x

yields −e−αxg(T, p) = V (T, x, p) = U(x) = −e−αx, a simple final condition follows for g:

g(T, p) = 1, p ∈ ∆m. (4.22)

Now the value function V can be determined by first carrying out the minimization in the
HJB equation (4.21) (depending on g), then inserting the obtained minimum, omitting
the infimum operator and solving the resulting ordinary differential equation (depending
on p) with boundary condition g(T ) = 1. However, g is probably not differentiable w.r.t.
t because of the jump property of the state process. It has already been mentioned in the
introduction that this difficulty can be overcome by using a weaker notion of a solution
for the HJB equation (viscosity solution) or a weaker notion for differentiability, where
we proceed with the second ansatz.

Assuming t 7→ g(t, p) is Lipschitz on [0, T ], we can replace gt by a weaker notion of
differentiability, namely Clarke’s generalized subdifferential introduced in Section 2.1,
compare Definition 2.6. To define the generalized subdifferential of g(t, p) w.r.t. t, we
introduce the following notation.

Notation. For some fixed p ∈ ∆m, we write gp : [0, T ] → (0,∞) for the function given
by

gp(t) := g(t, p), t ∈ [0, T ].

Using the generalized subdifferential instead of gt, Equation (4.21) becomes

0 = inf
(ξ,b)∈R×[0,1]

{
− λ g(t, p)− αer(T−t)g(t, p)

(
(µ− r)ξ + c(b)− 1

2
σ2αer(T−t)ξ2

)
+ λ

∑
D⊂D

m∑
k=1

aDk pk g(t, J(p,D))

∫
(0,∞)d

exp

{
α b er(T−t)

d∑
i=1

yi1D(i)

}
F (dy)

}
+ inf
ϕ∈∂Cgp(t)

{ϕ},

(4.23)

which is said to be the generalized HJB equation for g. Note that we set ∂Cgp(t) = {g′p(t)}
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at the points where the derivative exists. The reason for this convention is that Clarke’s
generalized gradient reduces only to a singleton at those points where the the function is
strictly differentiable (cp. Prop. 2.8); only differentiability is not sufficient. However, in
the case of differentiability the corresponding gradient is contained in Clarke’s generalized
gradient. The reduction of the generalized gradient to a single-point set is required in
Section 4.7.

To state the generalized HJB equation above in a compact way, we introduce the
following operator.

Notation. Throughout this chapter, let L denote an operator acting on functions g :
[0, T ]×∆m → (0,∞) and (ξ, b) ∈ R× [0, 1] which is given by

L g(t, p; ξ, b) := −λ g(t, p)− α er(T−t)g(t, p)
(

(µ− r)ξ + c(b)− 1

2
σ2αer(T−t)ξ2

)
+ λ

∑
D⊂D

m∑
k=1

aDk pk g(t, J(p,D))

∫
(0,∞)d

exp

{
α b er(T−t)

d∑
i=1

yi1D(i)

}
F (dy).

(4.24)

With the help of the operator L , an equivalent representation of Equation (4.23) is

0 = inf
(ξ,b)∈R×[0,1]

{L g(t, p; ξ, b)}+ inf
ϕ∈∂Cgp(t)

{ϕ}. (4.25)

Under the assumption that g is positive, the HJB Equation (4.25) can be written as

0 = −λ g(t, p) + α er(T−t)g(t, p) inf
ξ∈R

f1(t, ξ) + inf
b∈[0,1]

f2(t, p, b) + inf
ϕ∈∂Cgp(t)

{ϕ}, (4.26)

where

f1(t, ξ) := −(µ− r)ξ +
1

2
σ2 α er(T−t)ξ2 (4.27)

and

f2(t, p, b) := − α er(T−t) c(b) g(t, p) + λ
∑
D⊂D

m∑
k=1

aDk pk g(t, J(p,D))×

∫
(0,∞)d

exp

{
α b er(T−t)

d∑
i=1

yi1D(i)

}
F (dy).

(4.28)

Therefore, in order to solve the generalized HJB equation for g, we must first solve the
two minimizing problems. The obtained minimums ξ? and b?, if they exist, are the
candidates for an optimal investment and reinsurance strategy, respectively, which will
be investigated in the next sections. Before determining these candidates, we complete
the section with a discussion concerning the HJB equation.

Remark 4.26. If we use (4.21) (HJB equation without generalization of the partial
derivative) to derive the value function, then the function g (which can be use to deter-
mine the value function V ) is the solution of the equation

gt(t, p) =

(
λ+

1

2

(µ− r)2

σ2
− λ f2(b?(t, p, g))

)
g(t, p),

For a fixed p ∈ ∆m, this equation can be regarded as a linear ordinary differential
equation (ODE) of first order. A solution of this ODE exists if the right-hand side is
continuous in (t, g), compare Peano’s existence theorem (see e.g. Ahmad and Ambrosetti
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[1, Thm. 2.2.8]). But b? depends on g in a very complicated way such that we can neither
expect nor prove that f2(b?(t, p, g)) is continuous. Therefore, we can not show that there
exists a classical solution of the HJB Equation (4.23).

4.5 Candidate for an optimal investment strategy

The generalized HJB equation (4.25) yields as byproduct a candidate for an optimal in-
vestment strategy. Namely, due to the representation of the HJB equation given in (4.26),
we have to minimize the function f1 given by (4.27) w.r.t. ξ under the assumption that
g is positive which is assumed to be satisfied in this section. First of all, we observe
that f1 does not depend on the parameters x and p. Therefore, the optimal investment
strategy is independent of the surplus and the filter process.

In order to derive an optimal investment strategy at some time point, let us fix
t ∈ [0, T ]. It is plain from definition that R 3 ξ 7→ f1(t, ξ) is twice continuously dif-
ferentiable w.r.t. ξ and

∂

∂ξ
f1(t, ξ) = −(µ− r) + σ2 α er(T−t)ξ,

∂2

∂ξ2
f1(t, ξ) = σ2 α er(T−t) > 0.

Therefore, by setting the first derivative of f1 to zero, we get the following unique
minimizer ξ? of f1:

ξ?(t) =
µ− r
σ2

1

α
e−r(T−t), t ∈ [0, T ]. (4.29)

The value of f1(t, ξ) at the minimum w.r.t. ξ is

f1(t, ξ?(t)) = −(µ− r)2

σ2

1

α
e−r(T−t) +

1

2
σ2 α er(T−t)

(
µ− r
σ2

1

α
e−r(T−t)

)2

= −1

2

(µ− r)2

σ2

1

α
e−r(T−t), t ∈ [0, T ].

(4.30)

Thus the calculated value ξ?(t) is the only candidate of an optimal investment strategy
at time t. We see that the unobservable thinning probabilities ᾱ of our claim arrival
model have no effect on the strategy because f1 is independent of p. This was already
expectable from the very beginning since the parameters of the financial market are not
related to the unobservable parameters. That means, there is no connection between
the financial and insurance risks at all, which indicates that we may use every financial
market model where the solution of the optimal investment problem of maximizing the
exponential utility of terminal wealth is already known. Indeed, the solution of the
optimal investment problem in our framework is the well-know solution of the Merton
problem with finite time horizon and exponential utility function (cf. e.g. Merton [93,
Eq. (49)]3), where µ−r

σ can be interpreted as the market price of risk.

Due to the simplicity of the financial market model, the optimal investment strategy
is quite straightforward, while the candidate for the optimal reinsurance strategy, on the
other side, is not straightforward as the insurance risk modelling is more complicated in
comparison to the financial risk modelling. The reason for the higher complexity of the
insurance market lies in particular in the unobservability of the dependencies between
the various business risks, whereby we cannot expect an explicit solution for an optimal

3Equation (49) in Merton [93] states the optimal investment strategy for the more general case of the
family of HARA (hyperbolic absolute risk-aversion) utility functions, which contains the exponential
utility function, compare page 389 in Merton [93].
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reinsurance strategy.

4.6 Candidate for an optimal reinsurance strategy

As in the previous section, g is supposed to be positive. Hence, according again to the
HJB Equation (4.26), we have to minimize the function f2 given by (4.28) to obtain a
candidate for an optimal reinsurance strategy. The function f2 includes the term c(b),
which depends on the reinsurance premium principle. Recall the assumptions made in
Section 3.5 that

c(b) = (η − θ)κ+ (1 + θ)κ b

and thus

f2(t, p, b) = −α er(T−t) g(t, p) (η − θ)κ− αer(T−t) g(t, p) (1 + θ)κ b

+ λ
∑
D⊂D

g(t, J(p,D))
m∑
k=1

aDk pk

∫
(0,∞)d

exp

{
α b er(T−t)

d∑
i=1

yi1D(i)

}
F (dy).

(4.31)

The next lemma yields the first order condition for a candidate of an optimal reinsur-
ance strategy.

Lemma 4.27. For any (t, p) ∈ [0, T ] ×∆m, the function R 3 b 7→ f2(t, p, b) is strictly
convex and

∂

∂b
f2(t, p, b) = −α er(T−t)

(
g(t, p) (1 + θ)κ− λ

∑
D⊂D

g(t, J(p,D))

m∑
k=1

aDk pk×

d∑
i=1

1D(i)

∫
(0,∞)d

yi exp

{
α b er(T−t)

d∑
j=1

yj1D(j)

}
F (dy)

)
.

Proof. We first focus on showing that the differentiation w.r.t. b and integration w.r.t.
F interchange in (4.31). For this purpose, we fix t ∈ [0, T ] and D ⊂ D. Moreover, we
define a function by

h(y, b) := exp

{
α b er(T−t)

d∑
i=1

yi1D(i)

}
, y := (y1, . . . , yd) ∈ (0,∞)d, b ∈ R.

For any b ∈ R,
∫

(0,∞)d |h(y, b)|F (dy) < ∞ according to Assumption 4.3. Furthermore,

for every y ∈ (0,∞)d, the map b 7→ h(y, b) is obviously differentiable w.r.t. b and the
partial derivative is given by

∂

∂b
h(y, b) = α er(T−t)

d∑
i=1

yi1D(i) exp

{
α b er(T−t)

d∑
j=1

yj1D(j)

}
,

where ∣∣∣∣ ∂∂bh(y, b)

∣∣∣∣ ≤ α er(T−t) d∑
i=1

yi exp

{
α b er(T−t)

d∑
j=1

yj

}
,

From Lemma 4.5 (i) follows that the right-hand side is integrable w.r.t. F . Therefore,
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we can apply Theorem 6.28 from Klenke [77], which yields

∂

∂b

∫
(0,∞)d

h(y, b)F (dy) =

∫
(0,∞)d

∂

∂b
h(y, b)F (dy).

Hence

∂

∂b
f2(t, p, b) = −α g(t, p) (1 + θ)κ er(T−t) + α er(T−t)λ

∑
D⊂D

g(t, J(p,D))
m∑
k=1

aDk pk×

d∑
i=1

1D(i)

∫
(0,∞)d

yi exp

{
α b er(T−t)

d∑
j=1

yj1D(j)

}
F (dy)

= −α er(T−t)
(
g(t, p) (1 + θ)κ− λ

∑
D⊂D

g(t, J(p,D))

m∑
k=1

aDk pk×

d∑
i=1

1D(i)

∫
(0,∞)d

yi exp

{
α b er(T−t)

d∑
j=1

yj1D(j)

}
F (dy)

)
.

The convexity can be seen without calculating the second derivative. Indeed, the integral
w.r.t. F is strictly convex since the integrand is strictly convex (both w.r.t. b). Due to
the convexity of the sum of linear and convex functions, we obtain that b 7→ f2(t, p, b) is
convex.

The previous lemma provides a criterion for a candidate of an optimal reinsurance
strategy by setting ∂

∂bf2 to zero. It is convenient to define the following function to
express the first order condition.

Notation. Let (t, p) ∈ [0, T ]×∆m and b ∈ R. We define

hλ,F (t, p, b) := λ
∑
D⊂D

g(t, J(p,D))

g(t, p)

m∑
k=1

aDk pk

d∑
i=1

1D(i)×

∫
(0,∞)d

yi exp

{
α b er(T−t)

d∑
j=1

yj1D(j)

}
F (dy).

(4.32)

Furthermore, we set
Aλ,F (t, p) := hλ,F (t, p, 0),

Bλ,F (t, p) := hλ,F (t, p, 1).
(4.33)

We take the dependencies on the fixed background intensity λ and the claim size
distribution F by the lower indices (λ, F ) into account.

The preceding lemma leads to the following first order condition for the optimal rein-
surance strategy:

(1 + θ)κ = hλ,F (t, p, b). (4.34)

By establishing this equation w.r.t. b we obtain a unique minimizer of f2 w.r.t. b (if a
solution exists) because of the strict convexity of f2 w.r.t. b.

The next proposition states that this equation is solvable and that the solution takes
values in [0, 1] depending on the safety loading parameter θ of the reinsurer. Before
presenting this crucial statement, let us discuss an alternative reinsurance premium
model.
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Remark 4.28. We have modelled the reinsurance premium rate by (1 + θ)κ, compare
Section 3.5. Using the expected value principle, we obtain by Proposition 4.21 that

κ = E[dSt] = λ
∑
D⊂D

m∑
k=1

aDk πᾱ(k)
d∑
i=1

1D(i)E[Y i
1 ],

where
∑m

k=1 a
D
k πᾱ(k) = E[αD]. Instead of using E[αD] it is thinkable to take the available

information about the thinning probabilities into account by replacing E[αD] with the
left-hand limit process of E[αD | FΦ

t ], i.e. with
∑m

k=1 a
D
k pk(t−). That is, κ depends on

the filter process:

κλ,F (p) := λ
∑
D⊂D

m∑
k=1

aDk pk

d∑
i=1

1D(i)E[Y i
1 ].

Reinsurance premium principles depending on filter processes are used in Liang and
Bayraktar [85] and Brachetta and Ceci [18, Example 2.3]. With this model the reinsur-
ance premium rate is given by (1 + θ)κλ,F (pt−), in which the left-hand limit process of
the filter ensures predictability. In fact, the reinsurance premium is time-dependent.4

Using κλ,F (p) instead of κ it can be shown that Aλ,F (t, p)/κλ,F (p) ≥ 1. The proof of
this fact is similar to the procedure in the proof of Theorem 4.41 under use of the order
a1 � a2 � . . . � am, where � is a preorder5 on the set A defined by

ak � a` :⇐⇒
∑
D⊂D

aDk

d∑
i=1

1D(i)E[Y i
1 ] ≤

∑
D⊂D

aD`

d∑
i=1

1D(i)E[Y i
1 ] (4.35)

for every k, ` ∈ {1, . . . ,m}, which is no loss of generality. The vector aj = (aDj )D⊂D ∈ ∆`

can be seen as weights and thus
∑

D⊂D a
D
j

∑d
i=1 1D(i)E[Y i

1 ] as the weighted sum of

(
∑

D⊂D E[Y i
1 ]1D(i))D⊂D with weights aj . So (4.35) is an order of the weights A =

{a1, . . . , am} such that the weighted sum of the sum of the expected claims of the LoBs
i ∈ D are in increasing order. This can be interpreted as an order from the best to the
worst case scenario from the insurer’s point of view. Such a order is typically required
to derive the comparison result of optimal strategies in the case of partial and full
information. (In fact, the order introduced above is too weak to develop a comparison,
compare Section 4.8.2.) Using the premium principle introduced above the optimal
reinsurance strategy is determined by (4.36) with κ replaced by κλ,F (p). Moreover, an
analogous comparison result applies as in Corollary 4.42.

We continue with the result which yields the candidate for an optimal reinsurance
strategy.

Proposition 4.29. For any (t, p) ∈ [0, T ] × ∆m, Equation (4.34) has a unique root,
denoted by rλ,F (t, p), which is increasing w.r.t. the safety loading parameter θ. Moreover,
it holds

(i) rλ,F (t, p) ≤ 0 if θ ≤ Aλ,F (t, p)/κ− 1,

(ii) 0 < rλ,F (t, p) < 1 if Aλ,F (t, p)/κ− 1 < θ < Bλ,F (t, p)/κ− 1,

(iii) rλ,F (t, p) ≥ 1 if θ ≥ Bλ,F (t, p)/κ− 1.

4A time-dependent reinsurance premium is used e.g. in Peng and Hu [98].
5A preorder is a reflexive and transitive binary relation, cf. Bäuerle and Rieder [32, Def. B.3.1].
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Proof. The argumentation is inspired by the techniques used in the proofs of Lemma 4.2
and Proposition 4.1 in Liang and Bayraktar [85]. Fix (t, p) ∈ [0, T ] × ∆m and recall
(1 + θ)κ > 0 as well as hλ,F (t, p, b) > 0 for all b ∈ R. Moreover, the function R 3 b 7→
hλ,F (t, p, b) is strictly convex (follows easily from the same arguments as for the strict
convexity of f2 w.r.t. b, compare Lemma 4.27) and, consequently, continuous. It is also a
simple matter to see that R 3 b 7→ hλ,F (t, p, b) is strictly increasing, i.e. ∂

∂bhλ,F (t, p, b) > 0
for all b ∈ R. Furthermore, hλ,F holds, by the dominated convergence theorem, which
can be applied due to Lemma 4.5 (i), and by the convexity of b 7→ hλ,F (t, p, b)

lim
b→−∞

hλ,F (t, p, b) = 0, lim
b→∞

hλ,F (t, p, b) =∞.

Therefore, hλ,F (t, b) and (1 + θ)κ have a unique point of intersection w.r.t. b, i.e. (4.34)
has a unique root. From now on, rλ,F (t, p) denotes this unique root of (4.34). Notice
that rλ,F (t, p) depends on the safety loading parameter θ. By regarding rλ,F (t, p) as a
function 0 < θ 7→ rλ,F (t, p, θ), differentiation of both sides of (4.34) w.r.t. θ yields

κ =
∂

∂b
hλ,F (t, p, b)

∂

∂θ
rλ,F (t, p, θ)

Thus,
∂

∂θ
rλ,F (t, p, θ) =

κ
∂
∂bhλ,F (t, p, b)

> 0.

That is, θ 7→ rλ,F (t, p, θ) is increasing. Furthermore, we observe that

Aλ,F (t, p) = hλ,F (t, p, 0) < hλ,F (t, p, 1) = Bλ,F (t, p)

according to the strict increasing property of b 7→ hλ,F (t, p, b). Thus the cases for θ
given in the statement are all cases which can occur. In the case 1 + θ ≤ Aλ,F (t, p)/κ,
we obtain

hλ,F (t, p, 0) = Aλ,F (t, p) ≥ (1 + θ)κ.

Due to the properties of hλ,F (strictly increasing, continuous and limb→−∞ hλ,F (t, p, b) =
0), assertion (i) follows, compare (4.34). Dealing with the case Aλ,F (t, p)/κ < 1 + θ <
Bλ,F (t, p)/κ, we have

hλ,F (t, p, 1) = Bλ,F (t, p) > (1 + θ)κ,

which implies statement (ii). In the same manner, we can see that rλ,F (t, p) ≥ 1, if
θ ≥ Bλ,F (t, p)/κ− 1, which finalizes the proof.

Notation. Throughout this chapter, rλ,F (t, p) denotes the unique root from Proposi-
tion 4.29.

It should be noted that the cases (i) and (ii) for θ can be empty sets if Aλ,F (t, p)/κ ≤ 1
and Bλ,F (t, p)/κ ≤ 1, respectively. It has already been noticed that with an alterna-
tive reinsurance premium principle, in which κ depends on the filter process, one can
prove the property Aλ,F (t, p)/κ(t, p) > 1. However, we will proceed with the introduced
reinsurance premium model with constant κ.

Under consideration of the preceding propositions and the [0, 1]-valuation of a rein-
surance strategy, the candidate for an optimal reinsurance strategy can be specified as
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follows: For any (t, p) ∈ [0, T ]×∆m, we set

bλ,F (t, p) :=


0, θ ≤ Aλ,F (t, p)/κ− 1,

1, θ ≥ Bλ,F (t, p)/κ− 1,

rλ,F (t, p), otherwise.

(4.36)

The candidate for an optimal reinsurance strategy (b?λ,F (t))t∈[0,T ] is thus given by b?λ,F (t) :=
bλ,F (t−, pt−), which is unique because of the uniqueness on rλ,F (t, p).

Remark 4.30. According to Proposition 4.29, the value of the optimal reinsurance
strategy increases as the value of θ increases since rλ,F (t, p) is increasing w.r.t. θ. That
is, the cedent expect that the reinsurer pays a greater part of each claim when the
reinsurance premium increases. The increasing property of the reinsurance strategy
w.r.t. the safety loading parameter θ can also be considered as the consequence of the
law of demand which claims that the higher the price the lower the volume demanded,
compare Brachetta and Ceci [19]. If θ ≤ Aλ,F (t, p) − 1, then the reinsurance premium
seems so cheap for the cedent such that she/he chooses a retention level for zero which
means that the reinsurer compensates any potential insurance damage at time t. On the
other hand, when θ ≥ Bλ,F (t, p) − 1, the reinsurance premium is too expensive for the
cedent. As a result the cedent prefers to retain all the risks to itself.

So far we only derived heuristically, under non-trivial assumptions, candidates for a
value function as well as an optimal investment-reinsurance strategy. Instead of proceed-
ing by verifying the made assumption and thus showing that the HJB equation follows
from the stochastic control problem, we turn the story upside down and start with the
HJB equation and assume there exist a solution. This procedure is standard in stochas-
tic control theory and known as verification. Thus in the remainder of this chapter, we
will verify that the value function is indeed determined by the HJB equation and that
the candidate derived for an investment-reinsurance strategy is indeed optimal.

4.7 Verification

4.7.1 The verification theorem

The following formulated verification theorem collects all necessary assumptions on a
function defined on [0, T ]×∆m, which have to be satisfied such that the value function
can be represented by this function and the developed candidate for an optimal strategy
is indeed optimal.

Theorem 4.31. Suppose there exists a bounded function h : [0, T ]×∆m → (0,∞) such
that t 7→ h(t, p) is Lipschitz on [0, T ] for all p ∈ ∆m, p 7→ h(t, p) is continuous on ∆m

for all t ∈ [0, T ] and h satisfies the generalized HJB equation

0 = inf
(ξ,b)∈R×[0,1]

{L h(t, p; ξ, b)}+ inf
ϕ∈∂Chp(t)

{ϕ}, (4.37)

for all (t, p) ∈ [0, T )×∆m with boundary condition

h(T, p) = 1, p ∈ ∆m. (4.38)

Then
V (t, x, p) = −e−αxer(T−t)h(t, p), (t, x, p) ∈ [0, T ]× R×∆m,
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and (ξ?, b?λ,F ) = (ξ?(s), b?λ,F (s))s∈[t,T ] with ξ?(s) given by (4.29) and
b?λ,F (s) := bλ,F (s−, ps−) given by (4.36) (with g replaced by h in Aλ,F (s, p) and Bλ,F (s, p))
is an optimal feedback strategy for the given optimization problem (P1), i.e. V (t, x, p) =
V ξ?,b?λ,F (t, x, p).

One aspect that has to be dealt with in the proof of the verification theorem is a change
of measure to show a martingale property. For the definition of the change of measure
(see Lemma A.3), we have to restrict the set of admissible strategies such that the
investment strategy is bounded and continuous, meanwhile there is no interdependency
between the investment and the reinsurance strategy, compare proof of Lemma A.3.
But it will become apparent that this is not a restriction.

Notation. Throughout this chapter, we set, for any t ∈ [0, T ),

Ũ [t, T ] :=
{

(ξ, b) ∈ U [t, T ] : ∃K > 0 : |ξs| ≤ K ∀ s ∈ [t, T ],

ξ = (ξs)s∈[t,T ] is continuous and FW -adapted, b = (bs)s∈[t,T ] is FΨ-predictable
}
,

(4.39)

i.e. the control set of (ξ, b) ∈ Ũ [t, T ] is [−K,K]× [0, 1]. Moreover, we set

Ṽ (t, x, p) := sup
(ξ,b)∈Ũ [t,T ]

V ξ,b(t, x, p), (t, x, p) ∈ [0, T ]× R×∆m. (4.40)

In order to simplify notation we introduce the following operator.

Notation. We define an operator H acting on functions v : [0, T ] ×∆m → (0,∞) and
(ξ, b) ∈ R× [0, 1] by

H v(t, p; ξ, b) := L v(t, p; ξ, b) + vt(t, p) (4.41)

for all functions v : [0, T ]×∆m → (0,∞), where the right-hand side is well-defined.

Using this notation, the HJB equation (4.25) can be written as

0 = inf
(ξ,b)∈R×[0,1]

{H g(t, p; ξ, b)}

at those points t, where g is differentiable w.r.t. t. Here is used the convention that
∂Cgp(t) = {g′p(t)} at the points t, where g′p(t) exists.

Before considering the proof of the preceding theorem, we would like to point out that
the preliminary result stated in Lemma A.8 plays an important role in the proof of the
verification theorem which is essentially shown by tools from stochastic analysis. Now,
we are in the position to prove the verification theorem.

Proof of Theorem 4.31. Let h : [0, T ] ×∆m → (0,∞) be a function satisfying the con-
ditions stated in the theorem. Notice that every Lipschitz function is also absolutely
continuous, compare Lemma 2.46. We set, for any (t, x, p) ∈ [0, T ]× R×∆m,

f(t, x) := −e−αxer(T−t) and G(t, x, p) := f(t, x)h(t, p).

Let us fix t ∈ [0, T ] and (ξ, b) ∈ Ũ [t, T ]. From Lemma A.8, it follows

G(T,Xξ,b
T , pT ) = G(t,Xξ,b

t , pt) +

∫ T

t
f(s,Xξ,b

s ) H h(s, ps; ξs, bs) ds+ ηξ,bT − η
ξ,b
t , (4.42)
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where (ηξ,bt )t∈[0,T ] is a G-martingale and we set H h(s, ps; ξs, bs) to zero at those points
s ∈ [t, T ], where ht(s, ps) does not exist. Notice that h is partial differentiable w.r.t.
t almost everywhere in the sense of the Lebesgue measure according to the absolute
continuity of t 7→ h(t, p) for all p ∈ ∆m. The generalized HJB equation (4.37) implies

H h(s, ps; ξs, bs) ≥ 0, s ∈ [t, T ].

In consequence ∫ T

t
f(s,Xξ,b

s ) H h(s, ps; ξs, bs) ds ≤ 0,

due to the negativity of f . Thus, by (4.42), we get

G(T,Xξ,b
T , pT ) ≤ G(t,Xξ,b

t , pt) + ηξ,bT − η
ξ,b
t .

Using the boundary condition (4.38), we obtain

G(T, x, p) = f(T, x)h(T, p) = f(T, x) = −e−αx.

Hence
U(Xξ,b

T ) = G(T,Xξ,b
T , pT ) ≤ G(t,Xξ,b

t , pt) + ηξ,bT − η
ξ,b
t .

Now, we take the regular conditional expectation given Xξ,b
t = x and pt = p on both

sides which yields
Et,x,p

[
U(Xξ,b

T )
]
≤ G(t, x, p)

since (ηξ,bs )s∈[t,T ] is a G-martingale. Taking the supremum over all investment-rein-

surance strategies (ξ, b) ∈ Ũ [t, T ], we obtain

Ṽ (t, x, p) ≤ G(t, x, p). (4.43)

As already seen in (4.26), we can rewrite the generalized HJB equation:

0 = inf
(ξ,b)∈R×[0,1]

{L h(s, p; ξ, b)}+ inf
ϕ∈∂Chp(s)

{ϕ}

= −λh(s, p) + α er(T−s)h(s, p) inf
ξ∈R

f1(s, ξ) + inf
b∈[0,1]

f2(s, p, b) + inf
ϕ∈∂Chp(s)

{ϕ},
(4.44)

where f1 is defined by (4.27) and f2 by (4.28). Moreover, ξ?(s) given by (4.29) is the
unique minimizer of f1 on R and bλ,F (s, p) given by (4.36) (with g replaced by h in
Aλ,F (s, p) and Bλ,F (s, p)) is the unique minimizer of f2 on [0, 1]. Since ∂Chp(s) is a
compact subset of R (cf. Prop. 2.7), we know the ∂Chp(s) contains its infimum which we
denote by ϕ?(s, p). Therefore,

L h(s, p; ξ?(s), bλ,F (s, p)) + ϕ?(s, p) = 0.

We set b?λ,F (s) := bλ,F (s−, ps−) for every s ∈ [t, T ]. One aspect that has to be dealt with
is to show that (ξ?, b?) is an admissible investment-reinsurance strategy. First, we observe

that (ξ?(s))s∈[t,T ] is a continuous, bounded by |µ−r|
σ2

1
α and deterministic (i.e. FW -adapted)

process. Secondly, we note that (t, ω) 7→ h(t, pt−(ω)) and (t, ω) 7→ h(t, J(pt−(ω), D)) are
P(FΨ)-measurable for all D ⊂ D, compare the arguments in proof of Lemma A.8. This
implies that (t, ω) 7→ Aλ,F (t, pt−(ω)) and (t, ω) 7→ Bλ,F (t, pt−(ω)) defined by (4.33)
with g replaced by h are FΨ-predictable. Moreover, the P(FΨ)-measurability of right-
hand side of (4.32) has the consequence that the unique root (t, ω) 7→ rλ,F (t, pt−(ω)) is
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P(FΨ)-measurable. In summary, (t, ω) 7→ bλ,F (t, pt−(ω)) is P(FΨ)-measurable. That is,

(bλ,F (s))s∈[t,T ] is an FΨ-predictable, [0, 1]-valued process and thus (ξ?, b?) ∈ Ũ [t, T ]. So
we can deduce that

H h(s, ps; ξ
?(s), b?λ,F (s)) = 0, s ∈ [t, T ].

This implies ∫ T

t
f(s,Xξ?,b?

s ) H h(s, ps; ξ
?(s), b?λ,F (s)) ds = 0.

Consequently,

U(Xξ?,b?

T ) = G(T,Xξ?,b?

T , pT ) = G(t,Xξ?,b?

t , pt) + ηξ
?,b?

T − ηξ
?,b?

t .

Again, taking the regular conditional expectation given Xξ?,b?

t = x and pt = p on both
sides then yields

Et,x,p
[
U(Xξ?,b?

T )
]

= G(t, x, p).

That is,

V ξ?,b?(t, x, p) = G(t, x, p) = −e−αxer(T−t)h(t, p),

which implies

Ṽ (t, x, p) = sup
(ξ,b)∈Ũ [t,T ]

V ξ,b(t, x, p) = V ξ?,b?(t, x, p) = −e−αxer(T−t)h(t, p).

From the representation of the generalized HJB equation given in (4.44), it follows di-
rectly that the optimal investment-reinsurance strategy is an element of Ũ [t, T ] (compare
the arguments above). Therefore,

sup
(ξ,b)∈Ũ [t,T ]

V ξ,b(t, x, p) = sup
(ξ,b)∈U [t,T ]

V ξ,b(t, x, p)

and thus
V (t, x, p) = −e−αxer(T−t)h(t, p)

and the proof is complete.

The verification theorem has validated the optimality of the candidate solution of
the generalized HJB equation and thus the optimality of the candidate investment-rein-
surance strategy. Moreover the theorem shows that the solution of the generalized HJB
equation (if a solution exists) is unique since the solution determines the value function
(in a unique way), which is unique.

While the preceding verification step follows a fairly standardized procedure, the proof
of existence of a solution to the HJB equation given in the next section is quite individual
for each problem.

4.7.2 Existence result for the value function

This section is devoted to the existence of the solution of the generalized HJB equation
and thus of the optimal strategy. More precisely, we will show the existence of a function
h : [0, T ] ×∆m → (0,∞) satisfying conditions stated in Theorem 4.31. To see this, let
us introduce the following function g̃.
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Notation. We set

g̃(t, p) := inf
(ξ,b)∈Ũ [t,T ]

gξ,b(t, p), (t, p) ∈ [0, T ]×∆m, (4.45)

where gξ,b is given by (4.20) and Ũ [t, T ] by (4.39).

The next lemma yields useful properties of g̃.

Lemma 4.32. The function g̃ defined by (4.45) has the following properties:

(i) g̃(t, p) > 0 for all (t, p) ∈ [0, T ]×∆m.

(ii) Ũ [0, T ] 3 (ξ, b) 7→ gξ,b(0, p) is bounded for all p ∈ ∆m.

(iii) There exists a constant 0 < K3 < ∞ such that |g̃(t, p)| ≤ K3 for all (t, p) ∈
[0, T ]×∆m.

(iv) ∆m 3 p 7→ g̃(t, p) is concave on for all t ∈ [0, T ].

(v) [0, T ] 3 t 7→ g̃(t, p) is Lipschitz on [0, T ] for all p ∈ ∆m.

(vi) Let M be the set of all points (t, p) ∈ [0, T ]×∆m, where the partial derivatives of
g̃ w.r.t. t exist. Then there exists a constant 0 < K4 <∞ such that |g̃t(t, p)| ≤ K4

for all (t, p) ∈M .

(vii) There exists a constant 0 < K5 <∞ such that
∣∣L g̃(t, p; ξ, b)

∣∣ ≤ K5 for all (t, p) ∈
[0, T ]×∆m and (ξ, b) ∈ [−K,K]× [0, 1].

(viii) There exists a constant 0 < K6 <∞ such that
∣∣ inf(ξ,b)∈[−K,K]×[0,1] L g̃(t, p; ξ, b)

∣∣ ≤
K6 for all (t, p) ∈ [0, T ]×∆m.

Proof. (i) Fix (t, p) ∈ [0, T ] × ∆m and (ξ, b) ∈ Ũ [t, T ]. Using the change of measure
introduced in Lemma A.3, it follows from the definition of gξ,b given in (4.20) that

gξ,b(t, p) = Et,p
Qξ,bt

[
exp

{∫ T

t

(
− α er(T−t)

(
(µ− r)ξs + c(bs)−

1

2
ασ2 er(T−s)ξ2

s

)
+ λ

∑
D⊂D

pDs

∫
(0,∞)d

exp

{
α bs e

r(T−t)
d∑
i=1

yi1D(i)

}
F (dy)− λ

)
ds

}]
.

Since
α er(T−s)(µ− r)ξs ≤ α erT |µ− r|K,

α er(T−s)c(bs) ≤ α erT c(1) = α erT (1 + η)κ,
(4.46)

for all s ∈ [t, T ], we obtain

gξ,b(t, p) ≥ exp
{
− αT erT

(
|µ− r|K + (1 + η)κ

)
− λT

}
=: C > 0.

Hence, due to the arbitrariness of (ξ, b) ∈ Ũ [t, T ], the infimum of gξ,b(t, p) over all
(ξ, b) ∈ Ũ [t, T ] is greater than or equal to C which yields the statement by definition
of g̃ given in (4.45).

(ii) Fix p ∈ ∆m. Following Bäuerle and Rieder [31, Proof of Lemma 6.1 c)] and
Liang and Bayraktar [85, Proof of Lemma 4.4 (b)], respectively, we make use of
a measurement change to show the announced statement similar to the proof of
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Lemma A.1. We use the probability measure Qξ,b
T introduced in Lemma A.3, which

yields

|gξ,b(0, p)| = E0,p

[
exp

{
−
∫ T

0
αer(T−s)((µ− r)ξs + c(bs)) ds−

∫ T

0
ασer(T−s)ξs dWs

+

∫ T

0

∫
(0,∞)d

α bs e
r(T−s)

d∑
i=1

yi1z(i) Ψ(ds, d(y, z))

}]
= E0,p

Qξ,bT

[
exp

{∫ T

0

(
− α er(T−s)((µ− r)ξs + c(bs)) +

1

2
α2 σ2 e2r(T−s)ξ2

s

+ λ
∑
D⊂D

pDs

∫
(0,∞)d

exp

{
α bs e

r(T−s)
d∑
i=1

yi1D(i)

}
F (dy)

)
ds− λT

}]
.

By similar arguments as in the proof of Lemma A.4, we obtain that the expectation
above is bounded by a finite constant independent of (ξ, b).

(iii) The statement follows immediately from Lemma 4.25 (iii) since Ũ [t, T ] ⊂ U [t, T ].

(iv) For the proof of the concavity, let us fix t ∈ [0, T ]. Using the boundedness of
Ũ [t, T ] 3 (ξ, b) 7→ gξ,b(0, p) from below by zero and Proposition B.4, we can show
the concavity of ∆m 3 p 7→ g̃(t, p) similar to the proof of Lemma 4.22 (ii) for all
t ∈ [0, T ].

(v) The Lipschitz condition is proven in much the same way as in Bäuerle and Rieder
[31, Lemma 6.1 d)]. Let us fix p ∈ ∆m and t ∈ [0, T ]. Due to the dependency of gξ,b

on the time horizon T , we use the notation gξ,bT (t, p). For any (ξ, b) ∈ Ũ [t, T ], we

define (ξ̂, b̂) = (ξ̂s, b̂s)s∈[0,T−t] by (ξ̂s, b̂s) = (ξt+s, bt+s) for all s ∈ [0, T − t]. Using

this notation, it follows gξ,bt (t, p) = gξ̂,b̂T−t(0, p). Now let 0 ≤ t1 < t2 ≤ T . Appealing

to Proposition B.5 (which can be applied since Ũ [0, T ] 3 (ξ, b) 7→ gξ,b(0, p) is
bounded for every T > 0, compare statement (ii)), we get∣∣g̃(t1, p)− g̃(t2, p)

∣∣ =
∣∣∣ inf

(ξ,b)∈Ũ [t1,T ]
gξ,bT (t1, p)− inf

(ξ,b)∈Ũ [t2,T ]
gξ,bT (t2, p)

∣∣∣
=
∣∣∣ inf

(ξ̂,b̂)∈Ũ [0,T−t1]
gξ̂,b̂T−t1(0, p)− inf

(ξ̂,b̂)∈Ũ [0,T−t1]
gξ̂,b̂T−t2(0, p)

∣∣∣
≤ sup

(ξ̂,b̂)∈Ũ [0,T−t1]

∣∣gξ̂,b̂T−t1(0, p)− gξ̂,b̂T−t2(0, p)
∣∣.

Notice that, by T − t2 ≤ T − t1, we have

inf
(ξ̂,b̂)∈Ũ [0,T−t2]

gξ̂,b̂T−t2(0, p) = inf
(ξ̂,b̂)∈Ũ [0,T−t1]

gξ̂,b̂T−t2(0, p).

This is used in the second equality above. Appealing again to Lemma A.3, for any
ε > 0, there exists a strategy (ξ̄, b̄) ∈ Ũ [0, T − t1] such that

sup
(ξ̂,b̂)∈Ũ [0,T−t1]

∣∣gξ̂,b̂T−t1(0, p)− gξ̂,b̂T−t2(0, p)
∣∣

≤
∣∣gξ̄,b̄T−t1(0, p)− gξ̄,b̄T−t2(0, p)

∣∣+ ε
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=

∣∣∣∣∣E0,p

Qξ̄,b̄T−t1

[
exp

{∫ T−t1

0

(
− α er(T−s)((µ− r)ξ̄s + c(b̄s)) +

1

2
α2 σ2 e2r(T−s)ξ̄2

s

+ λ
∑
D⊂D

pDs

∫
(0,∞)d

exp

{
α b̄s e

r(T−s)
d∑
i=1

yi1D(i)

}
F (dy)− λ

)
ds

}]

− E0,p

Qξ̄,b̄T−t2

[
exp

{∫ T−t2

0

(
− α er(T−s)((µ− r)ξ̄s + c(b̄s)) +

1

2
α2 σ2 e2r(T−s)ξ̄2

s

+ λ
∑
D⊂D

pDs

∫
(0,∞)d

exp

{
α b̄s e

r(T−s)
d∑
i=1

yi1D(i)

}
F (dy)− λ

)
ds

}]∣∣∣∣∣+ ε

=

∣∣∣∣∣E0,p

Qξ̄,b̄T−t1

[
exp

{∫ T−t2

0

(
− α er(T−s)((µ− r)ξ̄s + c(b̄s)) +

1

2
α2 σ2 e2r(T−s)ξ̄2

s

+ λ
∑
D⊂D

pDs

∫
(0,∞)d

exp

{
α b̄s e

r(T−s)
d∑
i=1

yi1D(i)

}
F (dy)− λ

)
ds

}
×

(
exp

{∫ T−t1

T−t2

(
− α er(T−s)((µ− r)ξ̄s + c(b̄s)) +

1

2
α2 σ2 e2r(T−s)ξ̄2

s

+ λ
∑
D⊂D

pDs

∫
(0,∞)d

exp

{
α b̄s e

r(T−s)
d∑
i=1

yi1D(i)

}
F (dy)− λ

)
ds

}
− 1

)]∣∣∣∣∣+ ε.

Notice that the family of probability measures
(
Qξ̄,b̄
t

)
t∈[0,T−t1]

is consistent in the

sense that, for any A ∈ Gt, t ∈ [0, T − t1],

Qξ̄,b̄
T−t1(A) = E

[
1AL

ξ̄,b̄
T−t1

]
= E

[
1AE

[
Lξ̄,b̄T−t1 | Gt

]]
= E

[
1AL

ξ̄,b̄
t

]
= Qξ̄,b̄

t (A).

By the same arguments as in the proof of Lemma A.4, we obtain that the first
exponential function in the expectation above is bounded by a constant 0 < K0 <
∞ which is independent of (ξ̄, b̄). Therefore, by reapplying the above mentioned
argumentation to the second exponential function, we obtain∣∣g̃(t1, p)− g̃(t2, p)

∣∣
≤ K0 E0,p

Qξ̄,b̄T−t2

[∣∣∣∣∣ exp

{∫ T−t1

T−t2

(
α erT

(
|µ− r|K + (2 + η + θ)κ+

1

2
ασ2 erT K2

)

+ λMF

(
α erT

))
ds

}
− 1

∣∣∣∣∣
]

+ ε.

On account of the Lipschitz condition for exponential function stated in Proposi-
tion B.1, we get∣∣g̃(t1, p)− g̃(t2, p)

∣∣
≤ K0 E0,p

Qξ̄,b̄T−t2

[∣∣∣∣∣ exp

{(
α erT

(
|µ− r|K + (2 + η + θ)κ+

1

2
ασ2 erT K2

)
+ λMF

(
α erT

))
T

}
(e− 1)

(
α erT

(
|µ− r|K + (2 + η + θ)κ+

1

2
ασ2 erT K2

)
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+ λMF

(
α erT

))
(t2 − t1)

∣∣∣∣∣
]

+ ε

= K0K1 |t2 − t1|+ ε,

where 0 < K1 <∞ is the constant given by

K1 := exp

{(
α erT

(
|µ− r|K + (2 + η + θ)κ+

1

2
ασ2 erT K2

)
+ λMF

(
α erT

))
T

}
(e− 1)

(
α erT

(
|µ− r|K + (2 + η + θ)κ+

1

2
ασ2 erT K2

)
+ λMF

(
α erT

))
,

which is independent of (ξ̄, b̄). Letting ε ↓ 0 yields the assertion.

(vi) Fix (t, p) ∈M . Using the same arguments and notation as in the proof of previous
statement, we obtain

g̃t(t, p) =
∂

∂t
inf

(ξ,b)∈Ũ [t,T ]
gξ,b(t, p)

= lim
h↓0

1

h

(
inf

(ξ,b)∈Ũ [t+h,T ]
gξ,b(t+ h, p)− inf

(ξ,b)∈Ũ [t,T ]
gξ,b(t, p)

)
≤ lim

h↓0

1

h

∣∣∣∣ inf
(ξ,b)∈Ũ [t,T ]

gξ,b(t, p)− inf
(ξ,b)∈Ũ [t+h,T ]

gξ,b(t+ h, p)

∣∣∣∣
≤ lim

h↓0

1

h
sup

(ξ̂,b̂)∈Ũ [0,T−t]

∣∣∣gξ̂,b̂T−t(0, p)− gξ̂,b̂T−(t+h)(0, p)
∣∣∣.

We proceed further as in the proof of the previous statement. For any ε > 0, there
exists a strategy (ξ̄, b̄) ∈ Ũ [0, T − t] such that

sup
(ξ̄,b̄)∈Ũ [0,T−t]

∣∣∣gξ̂,b̂T−t(0, p)− gξ̂,b̂T−(t+h)(0, p)
∣∣∣+ ε

≤
∣∣∣gξ̄,b̄T−t(0, p)− gξ̄,b̄T−(t+h)(0, p)

∣∣∣+ ε ≤ K0|h|+ ε,

where 0 < K0 <∞ is a constant independent of (ξ̄, b̄). Hence

|g̃t(t, p)| ≤
∣∣∣∣ limh↓0 K0|h|

h
+ ε

∣∣∣∣ = K0 + ε,

which yields statement (vi) for ε ↓ 0.

(vii) Fix (t, p) ∈ [0, T ]×∆m and (ξ, b) ∈ [−K,K]× [0, 1]. It follows from the definition
of L given in (4.24) and statement (iii) that

∣∣L g̃(t, p; ξ, b)
∣∣ ≤ K3

(
λ+ α erT

(
|µ− r|K + (2 + η + θ)κ+

1

2
ασ2erTK2

)
+ λMF

(
α erT

))
=: K5.
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(viii) Fix (t, p, q) ∈ [0, T ] × ∆m × N`0. In the same way as in the proof the previous
statement, the following results arise by taking account of (4.26), (4.30) and (4.31):∣∣∣ inf

(ξ,b)∈[−K,K]×[0,1]
L g̃(t, p, q; ξ, b)

∣∣∣
≤ K3

(
λ+ α erT

1

2

(µ− r)2

σ2

1

α
+ α erT (2 + η + θ)κ+ λMF

(
α erT

))
=: K6.

The preceding lemma is a key ingredient to show the following existence result for a
solution of the generalized HJB equation.

Theorem 4.33. The value function of the investment-reinsurance problem stated in (P1)
is given by

V (t, x, p) = −e−αxer(T−t)g(t, p),

where g is defined by (4.19) and g satisfies the generalized HJB equation

0 = inf
(ξ,b)∈R×[0,1]

{L g(t, p; ξ, b)}+ inf
ϕ∈∂Cgp(t)

{ϕ}, (t, p) ∈ [0, T ]×∆m,

with boundary condition g(T, p) = 1 for all p ∈ ∆m. Furthermore,
(ξ?, b?λ,F ) = (ξ?(s), b?λ,F (s))s∈[t,T ] with ξ?(s) given by (4.29) and b?λ,F (s) := bλ,F (s−, ps−)
given by (4.36) is an optimal investment-reinsurance strategy for the Problem (P1).

Proof. Our first concern is to prove that the function g̃ defined by (4.45) satisfies the
generalized HJB equation. The following argumentation is taken from the proof of
Theorem 5.2 in Bäuerle and Rieder [31]. Fix (t, p, x) ∈ [0, T ]×R×∆m and (ξ, b) ∈ Ũ [t, T ].
Let τ be the first jump time of Xξ,b after t. Notice that τ is a G-stopping time since Xξ,b

jumps at the arrival times of the trigger events (Tn)n∈N which are observable. Hence
τ ∧ t′ is a G-stopping time taking values in [t, T ], where t′ ∈ (t, T ] is some fixed time
point. Using the argumentation of proof of Lemma 4.24, we obtain

Ṽ (t, x, p) = f(t, x) g̃(t, p), (t, x, p) ∈ [0, T ]× R×∆m,

where
f(t, x) := −e−αxer(T−t) .

Furthermore, from Lemma 4.32 (iii), we know that ∆m 3 p 7→ g̃(t, p) is concave and, in
consequence, ∆m 3 p 7→ g̃(t, p) is continuous. Moreover, by Lemma 4.32 (iv), [0, T ] 3
t 7→ g̃(t, p) is Lipschitz on [0, T ] for all p ∈ ∆m and hence g̃(t, p) is differentiable w.r.t.
t almost everywhere on [0, T ] in the sense of the Lebesgue measure for all p ∈ ∆m,
compare Theorem 2.3. Therefore, we can conclude from Lemma A.8 that

Ṽ (τ ∧ t′, Xξ,b
τ∧t′ , pτ∧t′)

= Ṽ (t,Xξ,b
t , pt) +

∫ τ∧t′

t
f(s,Xξ,b

s ) H g̃(s, ps; ξs, bs) ds+ ηξ,bτ∧t′ − η
ξ,b
t ,

(4.47)

where (ηξ,bt )t∈[0,T ] is a G-martingale and we set H g̃(s, ps; ξs, bs) to zero at those s ∈ [t, T ],
where the partial derivative of g̃ w.r.t. t does not exist. For any ε > 0 we can construct
a strategy (ξε, bε) ∈ Ũ [t, T ] with (ξεs , b

ε
s) = (ξs, bs) for all s ∈ [t, τ ∧ t′] from the continuity

of V (cf. e.g. proof of Prop. 4.1 in Leobacher et al. [83] and proof of Prop. 3.1 in Azcue
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and Muler [9]) such that

Et,x,p
[
Ṽ (τ ∧ t′, Xξ,b

τ∧t′ , pτ∧t′)
]
≤ Et,x,p

[
Eτ∧t

′,Xξ,b

τ∧t′ ,pτ∧t′
[
U(Xξε,bε

T )
]]

+ ε

≤ Et,x,p
[
U(Xξε,bε

T )
]

+ ε ≤ Ṽ (t, x, p) + ε.

From the arbitrariness of ε > 0 we conclude

Ṽ (t, x, p) ≥ Et,x,p
[
Ṽ (τ ∧ t′, Xξ,b

τ∧t′ , pτ∧t′)
]
.

Inserting (4.47) into the previous equation leads to

0 ≥ Et,x,p
[ ∫ τ∧t′

t
f(s,Xξ,b

s ) H g̃(s, ps; ξs, bs) ds

]
= Et,x,p

[ ∫ t′

t
f(s,Xξ,b

s ) H g̃(s, ps; ξs, bs) ds1{t′<τ}

]
+ Et,x,p

[ ∫ τ

t
f(s,Xξ,b

s ) H g̃(s, ps; ξs, bs) ds1{t′≥τ}

]
,

where we have subtracted V (t, x, p) from both sides. By the law of total variation, the
inequality is equivalent to

0 ≥ Et,x,p
[ ∫ t′

t
f(s,Xξ,b

s ) H g̃(s, ps; ξs, bs) ds | t′ < τ

]
Pt,x,p(t′ < τ)

+ Et,x,p
[ ∫ τ

t
f(s,Xξ,b

s ) H g̃(s, ps; ξs, bs) ds | t′ ≥ τ
]
Pt,x,p(t′ ≥ τ).

Next, we divide both sides in the inequality above by t′ − t and consider t′ ↓ t, which
results in

0 ≥ lim
t′↓t

Et,x,p
[

1

t′ − t

∫ t′

t
f(s,Xξ,b

s ) H g̃(s, ps; ξs, bs) ds | t′ < τ

]
Pt,x,p(t′ < τ)

+ lim
t′↓t

Et,x,p
[

1

t′ − t

∫ τ

t
f(s,Xξ,b

s ) H g̃(s, ps; ξs, bs) ds | t′ ≥ τ
]
Pt,x,p(t′ ≥ τ).

(4.48)

The next aim is to determine the limits in the inequality above. We first determine the
probability Pt,x,p(t′ ≥ τ). For this purpose, we denote the last jump time of Xξ,b before
τ by τ ′. Since Xξ,b jumps at N = (Tn)n∈N, which is a Poisson process with intensity
λ, we know that τ − τ ′ is exponential distributed with parameter λ. Taking this into
account and the memoryless property of the exponential distribution as well as τ > t,
we obtain

Pt,x,p(τ > t′) = P(τ > t′) = P(τ − τ ′ > t′ − τ ′) = P(τ − τ ′ > (t′ − t) + (t− τ ′))
= P(τ − τ ′ > t′ − t)P(τ − τ ′ > t− τ ′) = P(τ − τ ′ > t′ − t)P(τ > t)

= P(τ − τ ′ > t′ − t) = e−λ(t′−t).

Thus
lim
t′↓t

Pt,x,p(τ ≤ t′) = 1− lim
t′↓t

e−λ(t′−t) = 0.
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Consequently,

0 ≥ lim
t′↓t

Et,x,p
[

1

t′ − t

∫ t′

t
f(s,Xξ,b

s ) H g̃(s, ps; ξs, bs) ds1{t′<τ}

]
.

Our next concern will be the interchange of the limit and the expectations. Due to
Lemma 4.32 (vi), (vii), Lemma A.3 and Lemma A.4, we have

Et,x,p
[∣∣∣∣ 1

t′ − t

∫ t′

t
f(s,Xξ,b

s ) H g̃(s, ps; ξs, bs) ds

∣∣∣∣]
≤ Et,x,p

[
1

t′ − t

∫ t′

t
|f(s,Xξ,b

s )|(K5 +K6) ds

]
≤ K5 +K6

t′ − t

∫ t′

t
Et,x,p
Qξ,bs

[∣∣f(s,Xξ,b
s )
∣∣

Lξ,bs

]
ds ≤ (K5 +K6)K1.

Therefore, by dominated convergence theorem, we obtain

0 ≥ Et,x,p
[

lim
t′↓t

1

t′ − t

∫ t′

t
f(s,Xξ,b

s ) H g̃(s, ps; ξs, bs) ds1{t′<τ}

]
.

Next, we want to apply the FTCL, see Sohrab [115, Thm. 11.5.23, 11.5.31]. For this
purpose, we define the function h : [t, T ]→ R by

h(s) := f(s,Xξ,b
s ) H g̃(s, ps; ξs, bs).

Notice that, due to the Lipschitz property of g̃, s 7→ g̃t(s, ·) is bounded on [t, T ] almost
everywhere and càdlàg functions on compact sets are also bounded almost everywhere.
Hence, s 7→ h(s) is Lebesgue integrable on [t, T ]. Therefore, we can apply the FTCL
and we obtain that the function H : [t, T ]→ R given by

H(s) := H(t) +

∫ s

t
f(u,Xξ,b

u ) H g̃(u, pu; ξu, bu) du, s ∈ [t, T ],

is absolutely continuous and H ′(s) = h(s) for almost all s ∈ [t, T ]. Thus,

lim
t′↓t

1

t′ − t

∫ t′

t
h(s) ds = lim

t′↓t

H(t′)−H(t)

t′ − t
= H ′(t) = h(t).

Consequently, by the fact that 1{t′<τ} → 1 P-a.s. for t′ ↓ t since t < τ , we deduce that

Et,x,p
[

lim
t′↓t

1

t′ − t

∫ t′

t
f(s,Xξ,b

s ) H g̃(s, ps; ξs, bs) ds1{t′<τ}

]
= Et,x,p

[
f(t,Xξ,b

t ) H g̃(t, pt; ξt, bt)
]
.

From now on, let (ξ, b) ∈ [−K,K] × [0, 1] and ε > 0 be arbitrary constants as well as
(ξ̄, b̄) ∈ Ũ [t, T ] be a fixed strategy with (ξ̄s, b̄s) ≡ (ξ, b) for s ∈ [t, t+ ε). Hence

Et,x,p
[
f(t,Xξ,b

t ) H g̃(t, pt; ξ̄t, b̄t)
]

= f(t, x) H g̃(t, p; ξ, b)
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at those points (t, p), where g̃ is differentiable w.r.t. t. Consequently,

0 ≥ f(t, x) H g̃(t, p; ξ, b).

On account of the negativity of f(t, x), we get

0 ≤H g̃(t, p; ξ, b).

In the light of the arbitrariness of (ξ, b), we obtain

0 ≤ inf
(ξ,b)∈[−K,K]×[0,1]

{
H g̃(t, p; ξ, b)

}
.

We show next the inequality above if g̃ is not differentiable w.r.t. t. To see this, we define
g̃p(t) := g̃(t, p) and we denote set of point at which g̃p is differentiable by Dg̃p ⊂ [0, T ].
Appealing to Theorem 2.9, we have

∂Cg̃p(t) = co
{

lim
n→∞

g̃′p(tn) : tn → t, tn ∈ Dg̃p

}
.

That is, for every ϕ ∈ ∂Cg̃p(t), there exist u ∈ N and (γ1, . . . , γu) ∈ ∆u such that ϕ =∑u
i=1 γiϕ

i, where ϕi = limn→∞ g̃
′
p(t

i
n) for sequences (tin)n∈N ⊂ Dg̃p with limn→∞ t

i
n = t.

From what has already been proved, it can be concluded that

0 ≤ γiL g̃(tin, p; ξ, b) + γig̃
′
p(t

i
n), i = 1, . . . , u,

and thus, by the continuity of t 7→ g̃(t, p),

0 ≤ γiL g̃(t, p; ξ, b) + γi lim
n→∞

g̃′p(t
i
n), i = 1, . . . , u,

which yields

0 ≤ L g̃(t, p; ξ, b)
u∑
i=1

γi +
u∑
i=1

γi lim
n→∞

g̃′p(t
i
n) = L g̃(t, p; ξ, b) + ϕ.

Due to the arbitrariness of ϕ ∈ ∂Cg̃p(t) and (ξ, b) ∈ [−K,K]× [0, 1], we get

0 ≤ inf
(ξ,b)∈[−K,K]×[0,1]

{
L g̃(t, p; ξ, b)

}
+ inf
ϕ∈∂Cg̃p(t)

{ϕ}.

Our next objective is to evaluate the reverse inequality above. For any ε > 0 and
0 < t < t′ ≤ T , there exists a strategy (ξε,t

′
, bε,t

′
) ∈ Ũ [t, T ] such that

Ṽ (t, x, p)− ε (t′ − t) ≤ Et,x,p
[
U
(
Xξε,t

′
,bε,t
′

T

)]
≤ Et,x,p

[
Ṽ
(
τ ∧ t′, Xξε,t

′
,bε,t
′

τ∧t′ , pτ∧t′
)]
.

Again on the basis of (4.47), it can be deduced that

−ε (t′ − t) ≤ Et,x,p
[ ∫ τ∧t′

t
f
(
s,Xξε,t

′
,bε,t
′

s

)
H g̃(s, ps; ξ

ε,t′
s , bε,t

′
s ) ds

]
,

which is equivalent to

−ε ≤ Et,x,p
[

1

t′ − t

∫ τ∧t′

t
f
(
s,Xξε,t

′
,bε,t
′

s

)
H g̃(s, ps; ξ

ε,t′
s , bε,t

′
s ) ds

]
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≤ Et,x,p
[

1

t′ − t

∫ τ∧t′

t
f
(
s,Xξε,t

′
,bε,t
′

s

)
inf

(ξ,b)∈[−K,K]×[0,1]

{
H g̃(s, ps; ξ, b)

}
ds

]
.

In the same manner as before, we get

−ε ≤ lim
t′↓t

Et,x,p
[

1

t′ − t

∫ t′

t
f
(
s,Xξε,t

′
,bε,t
′

s

)
inf

(ξ,b)∈[−K,K]×[0,1]

{
H g̃(s, ps; ξ, b)

}
ds1{t′<τ}

]
.

Making use of Lemma 4.32 (vi), (viii), we obtain as before

Et,x,p
[

1

t′ − t

∫ t′

t
f
(
s,Xξε,t

′
,bε,t
′

s

)
inf

(ξ,b)∈[−K,K]×[0,1]

{
H g̃(s, ps; ξ, b)

}
ds1{t′<τ}

]
≤ Et,x,p

[
1

t′ − t

∫ t′

t

∣∣∣f(s,Xξε,t
′
,bε,t
′

s

)∣∣∣(K6 +K4) ds

]
≤ K1 (K6 +K4) <∞.

Hence, we can interchange the limit and the infimum again, which yields

lim
t′↓t

Et,x,p
[

1

t′ − t

∫ τ∧t′

t
f
(
s,Xξε,t

′
,bε,t
′

s

)
inf

(ξ,b)∈[−K,K]×[0,1]

{
H g̃(s, ps; ξ, b)

}
ds

]
= Et,x,p

[
f
(
t,Xξε,t

′
,bε,t
′

t

)
inf

(ξ,b)∈[−K,K]×[0,1]

{
H g̃(t, pt; ξ, b)

}
ds
]

= f(t, x) inf
(ξ,b)∈[−K,K]×[0,1]

{
H g̃(t, p; ξ, b)

}
at those points (t, p), where g̃p is differentiable. In consequence

−ε ≤ f(t, x) inf
(ξ,b)∈[−K,K]×[0,1]

{
H g̃(t, p; ξ, b)

}
.

According to f(t, x) < 0 and the arbitrariness of ε > 0, we get by ε ↓ 0,

0 ≥ inf
(ξ,b)∈[−K,K]×[0,1]

{
H g̃(t, p; ξ, b)

}
.

By the same method as before, we obtain that in the case of no differentiability of g̃
w.r.t. t

0 ≥ inf
(ξ,b)∈[−K,K]×[0,1]

{
L g̃(t, p; ξ, b)

}
+ inf
ϕ∈∂Cg̃p(t)

{ϕ}.

In summary, we have

0 = inf
(ξ,b)∈[−K,K]×[0,1]

{
L g̃(t, p; ξ, b)

}
+ inf
ϕ∈∂Cg̃p(t)

{ϕ}

for all t ∈ [0, T ] and p ∈ ∆m. Notice that, similar to (4.26), it holds

inf
(ξ,b)∈[−K,K]×[0,1]

{
L g̃(t, p; ξ, b)

}
= −λ g̃(t, p) + α er(T−t) g̃(t, p) inf

ξ∈[−K,K]
f1(t, ξ) + inf

b∈[0,1]
f2(t, p, b),

where f1 is defined by (4.27) and f2 by (4.28). Furthermore,

|ξ?(t)| =
∣∣∣∣ arg inf

ξ∈R
f1(t, ξ)

∣∣∣∣ =

∣∣∣∣µ− rσ2

1

α
e−r(T−t)

∣∣∣∣ ≤ |µ− r|σ2

1

α
,
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compare Section 4.5. That is, the optimal investment strategy is continuous, bounded
as well as deterministic (in particular FW -adapted) and it holds

inf
(ξ,b)∈[−K,K]×[0,1]

{
L g̃(t, p; ξ, b)

}
= inf

(ξ,b)∈R×[0,1]

{
L g̃(t, p; ξ, b)

}
with K := |µ−r|

σ2
1
α . Therefore, g̃ satisfies the generalized HJB equation with boundary

condition g̃(T, p) = 1, where the boundary condition follows immediately from the defi-
nition of gξ,b given in (4.20). Since, by Lemma 4.32, g̃ : [0, T ]×∆m → (0,∞) is bounded,
p 7→ g̃(t, p) is continuous on ∆m for all t ∈ [0, T ] and t 7→ g̃(t, p) is Lipschitz on [0, T ] for
all p ∈ ∆m, it follows from Theorem 4.31 that

V (t, x, p) = −e−αxer(T−t) g̃(t, p), (t, x, p) ∈ [0, T ]× R×∆m,

and that (ξ?, b?λ,F ) = (ξ?(s), b?λ,F (s))s∈[t,T ] from Theorem 4.31 is an optimal investment-
reinsurance strategy, where g is replaced by g̃ in Aλ,F (s, p) and Bλ,F (s, p). From what
has already been shown, we know that the optimal strategy ξ? = (ξ?(s))s∈[t,T ] is a

bounded, continuous and FW -adapted process. Moreover, b?λ,F = (b?λ,F (s))s∈[t,T ] is an

FΨ-predictable [0, 1]-valued process, compare end of the proof of Theorem 4.31. Hence,
we have

g̃(t, p) = inf
(ξ,b)∈Ũ [t,T ]

gξ,b(t, p) = inf
(ξ,b)∈U [t,T ]

gξ,b(t, p) = g(t, p),

and, in consequence,

V (t, x, p) = −e−αxer(T−t)g(t, p), (t, x, p) ∈ [0, T ]× R×∆m,

which finishes the proof.

We close this section with a discussion on an alternative solution technique.

Remark 4.34. We have seen that the problem of choosing optimal investment-rein-
surance strategies is decomposed in two separate problems: determination of an optimal
investment strategy and of an optimal reinsurance strategy, which are independent from
each other. So it is thinkable to consider the optimal reinsurance problem to be iso-
lated. The behaviour of the derived optimal reinsurance strategy between the trigger
arrival times (Tn)n∈N is deterministic. This is expectable since there appears to be
no new information about the unknown thinning probabilities between the jump times
(Tn)n∈N. The deterministic evolution between the jump times (Tn)n∈N indicates that
we can transform the optimal reinsurance problem in a discrete one, in which at every
claim arrival time a deterministic reinsurance strategy until the next claim is chosen.
Indeed for this problem the state of the optimal reinsurance problem (without financial
market) has a piecewise-deterministic behaviour such that we can define a time-discrete
Markov Decision Process (MDP) with a value function coinciding with the one of the
original optimal reinsurance problem and, in which every control is a function of the
state after the last claim arrival time as well as the time elapsed since the last claim
arrival. Making use of the MDP-theory it should be possible to establish an optimal
control. Typically, this problem is solvable if the corresponding problem in continuous
time is solved. But it is not expectable to obtain a“more explicit” solution in the discrete
approach. For a thorough treatment of Markov Decision Processes we refer to Bäuerle
and Rieder [32] and Davis [47]. A work considering both the generalized HJB-approach
and the MDP-approach for optimal control problems with Markovian jump processes
under incomplete information is Winter [119].
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4.8 Comparison to the case with complete information

This section covers the study of the influence of the uncertainty about the dependen-
cies between the LoBs on the optimal reinsurance strategy. For this aim it is initially
necessary to determine the optimal reinsurance strategy in case of full information.

4.8.1 Solution to the optimal investment and reinsurance under full
information

In this section we investigate the optimal investment and reinsurance problem within
the setting of Section 4.1 under the additional assumption that ᾱ ≡ c̄ = (cD)D⊂D ∈ ∆`

is deterministic. So we are in a framework with known parameters λ, ᾱ and F . The
setup is tantamount to assuming that F0 is known for the insurance company.

Due to the deterministic thinning probabilities, the compensated random measure Ψ̂
of Ψ defined in (4.10) is

Ψ̂(dt,d(y, z)) = Ψ(dt,d(y, z))− λF (dy)
∑
D∈dz

cD dt. (4.49)

The state process in the full observable case is (Xξ,b
s )s∈[t,T ], (ξ, b) ∈ U [t, T ], which evolves

as

dXξ,b
s =

(
rXξ,b

s + (µ− r)ξs + c(bs)− λ bs
∑
D⊂D

cD

d∑
i=1

E[Y i
1 ]1D(i)

)
ds

+ ξsσ dWs −
∫
Ed
bs

d∑
i=1

yi1z(i) Ψ̂(dt,d(y, z)),

(4.50)

for s ∈ [t, T ] with initial time t ∈ [0, T ), where Xξ,b
t = x ∈ R. In contrast to the state

process in the partial observable in Section 4.3, no further process is required to describe
the information at disposal of the thinning probabilities since they are known. Then the
value functions are given by, for any (t, x) ∈ [0, T ]× R and (ξ, b) ∈ U [t, T ],

V ξ,b(t, x) := Et,x
[
U(Xξ,b

T )
]
,

V (t, x) := sup
(ξ,b)∈U [t,T ]

V ξ,b(t, x), (O)

where Et,x denotes the conditional expectation given Xξ,b
t = x. So (O) is the correspond-

ing control problem with full information to the partially observable problem (P).

The HJB equation for the value function V can be established by the same method
as used in Section 4.4 and we obtain

0 = sup
(ξ,b)∈R×[0,1]

{
Vt(t, x)− λV (t, x) +

1

2
σ2Vxx(t, x)ξ2 + Vx(t, x)

(
rx+ (µ− r)ξ + c(b)

)
+ λ

∑
D⊂D

cD

∫
(0,∞)d

V
(
t, x− b

d∑
i=1

yi1D(i)
)
F (dy)

}
,

(4.51)

where V (T, x) = ET,x
[
U(Xξ,b

T )
]

= U(x) for all (x, p) ∈ [0, T ]×∆m.
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Following the proof of separation approach stated in Lemma 4.24, we obtain

V (t, x) = −e−αxer(T−t)g(t), (t, x) ∈ [0, T ]× R, (4.52)

with
g(t) = inf

(ξ,b)∈U [t,T ]
gξ,b(t),

where

gξ,b(t) := E

[
exp

{
−
∫ T

t
α er(T−s)

(
(µ− r)ξs + c(bs)

)
ds

−
∫ T

t
ασ er(T−s)ξs dWs +

∫ T

t

∫
Ed
α bs e

r(T−s)
d∑
i=1

yi1z(i) Ψ(ds, d(y, z))

}]
.

It therefore follows

Vt(t, x) = −e−αxer(T−t)
(
αx r er(T−t)g(t) + g′(t)

)
,

Vx(t, x) = −e−αxer(T−t)
(
− αer(T−t)g(t)

)
,

Vxx(t, x) = −e−αxer(T−t)α2e2r(T−t)g(t),

V
(
t, x− b

d∑
i=1

yi1D(i), p
)

= −e−αxer(T−t) exp

{
α b er(T−t)

d∑
i=1

yi1D(i)

}
g(t),

which yields the following HJB equation for g:

0 = inf
(ξ,b)∈R×[0,1]

{
g′(t)− λg(t)− αer(T−t)g(t)

(
(µ− r)ξ + c(b)− 1

2
ασ2er(T−t)ξ2

)
+ λ g(t)

∑
D⊂D

cD

∫
(0,∞)d

exp

{
α b er(T−t)

d∑
i=1

yi1D(i)

}
F (dy)

} (4.53)

with g(T ) = 1. Equation (4.53) is equivalent to

0 = g′(t)− λ g(t) + αer(T−t)g(t) inf
ξ∈R

f1(t, ξ) + g(t) inf
b∈[0,1]

f2(t, b), (4.54)

where f1 is defined by (4.27) and

f2(t, b) := −α er(T−t) c(b) + λ
∑
D⊂D

cD

∫
(0,∞)d

exp

{
α b er(T−t)

d∑
i=1

yi1D(i)

}
F (dy)

= −α er(T−t)(η − θ)κ− α er(T−t)(1 + θ)κ

+ λ
∑
D⊂D

cD

∫
(0,∞)d

exp

{
α b er(T−t)

d∑
i=1

yi1D(i)

}
F (dy)

From Section 4.5, it is known that the candidate of an optimal investment strategy
(ξ?(t))t∈[0,T ] is again given by

ξ?(t) =
µ− r
σ2

1

α
e−r(T−t), t ∈ [0, T ],
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and

inf
ξ∈R

f1(t, ξ) = f1(t, ξ?t ) = −1

2

(µ− r)2

σ2

1

α
e−r(T−t).

An illustration of the investment strategy ξ? is provided by Figure 4.7 in Section 4.9.

According to the proof of Lemma 4.27, R 3 b 7→ f2(t, b) is strictly convex and

∂

∂b
f2(t, b) = − α er(T−t)

(
(1 + θ)κ

− λ
∑
D⊂D

cD

d∑
i=1

1D(i)

∫
(0,∞)d

yi exp

{
α b er(T−t)

d∑
j=1

yj1D(j)

}
F (dy)

)
.

For declaring the first order condition of the optimal reinsurance strategy, we use the
following notation.

Notation. For any t ∈ [0, T ] and b ∈ R, we set

hλ,c̄,F (t, b) := λ
∑
D⊂D

cD

d∑
i=1

1D(i)

∫
(0,∞)d

yi exp

{
α b er(T−t)

d∑
j=1

yj1D(j)

}
F (dy). (4.55)

Furthermore, we define

Aλ,c̄,F (t) := hλ,c̄,F (t, 0),

Bλ,c̄,F (t) := hλ,c̄,F (t, 1).

The explanation above results in the first order condition:

(1 + θ)κ = hλ,c̄,F (t, b). (4.56)

It should be noted that the previous equation has a unique solution w.r.t. b, compare
proof of Proposition 4.29, which justifies the next notation.

Notation. From now on, rλ,c̄,F (t) denotes the unique root of Equation (4.56) w.r.t. b.

By the same line of arguments as in Proposition 4.29, we obtain that the optimal
reinsurance strategy b̃?λ,c̄,F = (b̃?λ,c̄,F (t))t∈[0,T ] is given by

b̃?λ,c̄,F (t) :=


0, θ ≤ Aλ,c̄,F (t)/κ− 1,

1, θ ≥ Bλ,c̄,F (t)/κ− 1,

rλ,c̄,F (t), otherwise.

(4.57)

Notice that rλ,c̄,F (t), Aλ,c̄,F (t) and Bλ,c̄,F (t) are continuous in t. Consequently, the
optimal reinsurance strategy b̃?λ,c̄,F is continuous. Moreover, b̃?λ,c̄,F is deterministic and
can be calculated easily. Figure 4.4 in Section 4.9 illustrates the evolution of the optimal
reinsurance strategy under complete information.

After solving the minimizing problems in (4.54), we can write the HJB equation for g
as

g′(t) =

(
− λ− 1

2

µ− r
σ2

1

α
e−r(T−t) + f2(t, b?λ,c̄,F (t))

)
g(t).
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The solution of this ODE of first order with boundary condition g(T ) = 1 is

g(t) = exp

{∫ T

t

(
λ+

1

2

µ− r
σ2

1

α
e−r(T−s) − f2(s, b?λ,c̄,F (s))

)
ds

}
, t ∈ [0, T ], (4.58)

cf. e.g. Polyanin and Zaitsev [101, 1.1.4]. Using (4.52), this results in the following
representation of the value function: For any (t, x) ∈ [0, T ]× R

V (t, x) = − exp

{
− αx er(T−t)

∫ T

t

(
λ+

1

2

µ− r
σ2

1

α
e−r(T−s) − f2(s, b?λ,c̄,F (s))

)
ds

}
.

In the case of full information and one LoB (i.e. d = 1), we are in the same framework as
in Section 3 of Liang et al. [84] and our optimal strategies are consistent with the results
in the given reference, cf. Eq. (19) and Thm. 3.1 in Liang et al. [84]. In the mentioned
sources it is shown that the corresponding HJB equation is a classical solution. The same
method can be used to validate the optimality of the classical candidate solution (4.58) to
the HJB Equation (4.53) in the full information case and thus the announced strategies
are indeed optimal. This verification can be seen as a special case of the verification of
the partial information case in Section 4.7.

4.8.2 Comparison results

In this section a comparison result of the optimal reinsurance strategy under partial
information given in Theorem 4.33 and the optimal strategy under full information are
stated. But first we will deduce a priori bounds to the reinsurance optimal strategy,
i.e. bounds which can be calculated at time 0 and thus independent of the observed
accidents. For this purpose, we introduce the following terms.

Notation. Let t ∈ [0, T ] and b ∈ R. Throughout this section, we set

hmin
λ,F (t, b) := λ

∑
D⊂D

min
j∈{1,...,m}

{aDj }
∫

(0,∞)d
yi exp

{
αber(T−t)

d∑
j=1

yj1D(j)

}
F (dy), (4.59)

hmax
λ,F (t, b) := λ

∑
D⊂D

max
j∈{1,...,m}

{aDj }
∫

(0,∞)d
yi exp

{
αber(T−t)

d∑
j=1

yj1D(j)

}
F (dy). (4.60)

Proposition 4.35. Let t ∈ [0, T ]. Then R 3 b 7→ hmin
λ,F (t, b) and R 3 b 7→ hmax

λ,F (t, b) are
strictly increasing and strictly convex. Furthermore, it holds

lim
b→−∞

hmin
λ,F (t, b) = lim

b→−∞
hmax
λ,F (t, b) = 0, lim

b→∞
hmin
λ,F (t, b) = lim

b→∞
hmax
λ,F (t, b) =∞.

Proof. This follows by the same analysis as in the proof of Proposition 4.29.

This proposition ensures the existence of the following notation.

Notation. For some fixed t ∈ [0, T ], we denote the unique root of the equation (1+θ)κ =
hmax
λ,F (t, b) w.r.t. b and the unique root of the equation (1 + θ)κ = hmin

λ,F (t, b) w.r.t. b by

rmax
λ,F (t) and rmin

λ,F (t), respectively.

The announced a priori bounds follow immediately from the next result in connection
with Proposition 4.35, which make use of the function hλ,F given in (4.32).
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Proposition 4.36. For any (t, p) ∈ [0, T ]×∆m and b ∈ R, it holds

hmin
λ,F (t, b) ≤ hλ,F (t, p, b) ≤ hmax

λ,F (t, b).

Proof. Fix (t, p) ∈ [0, T ]×∆m and b ∈ R. For any (ξ, b) ∈ U [t, T ] and D ⊂ D, the use of
Lemma 4.25 (iii) and (iv) results in

gξ,b(t, J(p,D))

m∑
k=1

aDk pk =

m∑
j=1

aDj pj g
ξ,b(t, ej)

≤ max
j∈{1,...,m}

{aDj }
m∑
j=1

pj g
ξ,b(t, ej) = max

j∈{1,...,m}
{aDj } gξ,b(t, p).

Taking the infimum over all (ξ, b) ∈ U [t, T ] on both sides, it yields

g(t, J(p,D))

g(t, p)

m∑
k=1

aDk pk ≤ max
j∈{1,...,m}

{aDj }, D ⊂ D,

which is equivalent to

g(t, J(p,D))

g(t, p)

m∑
k=1

aDk pk

∫
(0,∞)d

yi exp

{
αber(T−t)

d∑
j=1

yj1D(j)

}
F (dy)

≤ max
j∈{1,...,m}

{aDj }
∫

(0,∞)d
yi exp

{
αber(T−t)

d∑
j=1

yj1D(j)

}
F (dy), D ⊂ D.

Summing over D ⊂ D and multiplying with λ gives hλ,F (t, p, b) ≤ hmax
λ,F (t, b). A passage

similar to the above implies hmin
λ,F (t, b) ≤ hλ,F (t, p, b).

Corollary 4.37. The optimal reinsurance strategy (b?λ,F (t))t∈[0,T ] from Theorem 4.33
has the following bounds:

max{0, rmax
λ,F (t)} ≤ b?λ,F (t) ≤ min{1, rmin

λ,F (t)}, t ∈ [0, T ].

It is simply seen that the bounds for the optimal reinsurance strategy do not have
to be in force since argminj∈{1,...,m}{aDj } varies for different D ⊂ D in general. So the

lower bound is only in force if, for any D ⊂ D, minj∈{1,...,m}{aDj } is taken for the same
scenario j ∈ {1, . . . ,m}. The same works for the upper bound. Accordingly, it is to be
expected that the range for a possible optimal reinsurance strategy described by these
bounds is rather large. In fact, this is illustrated by the Figure 4.3 showing the a priori
bounds for the parameters from Section 4.9. The a prior upper bound provides only a
useful bound in period from 0 to 2.5 starting by roughly 0.8 with a sharp positive slope.
The a prior lower bound has a convex and increasing shapely from around 0.15 to 0.35,
i.e. it is never optimal for the insurer to take a full reinsurance.

More interesting bounds involving the optimal reinsurance strategy of the full observ-
able case will be established next. Typically, more uncertainty leads to a more risk-averse
behaviour. This is known from literature with comparative studies of partial and full ob-
servable settings, compare Liang and Bayraktar [85, Prop. 4.3], Bäuerle and Rieder [31,
Thm. 5.6], Bäuerle and Rieder [30, Thm. 6] as well as Bäuerle and Chen [26, Sec. 2.4]. In
the presented framework, more risk averseness means that the insurer takes less reten-
tion, i.e. the insurer cedes a larger proportion of possible claims to the reinsurer. Such
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Figure 4.3: The a priori upper bound (red line) and lower bound (orange line) for the optimal
reinsurance strategy for parameters from Section 4.9.

a result is also valid in our setting.

As already indicated in Remark 4.28, an order of A = {a1, . . . , am} is essential for the
comparison result, but the order given in (4.35) is too weak for this purpose. For the
definition of a stronger order, it should be noted that aj , j = 1, . . . ,m, can be identified
with a probability measure on P(D). From this point of view it is difficult to define an
order of A since there is no natural order of the elements of P(D). However, under the
assumption of identical claim size distributions in every LoB, it is easily seen that the
order defined in (4.35) holds

ak � a` ⇐⇒
∑
D⊂D

aDk |D| ≤
∑
D⊂D

aD` |D| ⇐⇒
d∑
i=1

i
∑
D⊂D:
|D|=i

aDk =

d∑
i=1

i
∑
D⊂D:
|D|=i

aD` , (4.61)

for every k, ` ∈ {1, . . . ,m}, where the sums on right-hand side can be interpreted as
expectations w.r.t. measures on the set D = {1, . . . , d}, which has a natural order. It
will turn out that we actually get a useful order under the following assumptions.

Assumption 4.38. Throughout this section, we suppose that

F (dy) = F̄ (dy1)⊗ F̄ (dy2)⊗ · · · ⊗ F̄ (dym),

where F̄ is a distribution on (0,∞) with existing moment generation function and ⊗ is
the product measure.

Another way of stating the assumption is to say that the claim sizes of every insur-
ance class are independent and identical distributed with distribution F̄ . Notice that
Assumption 4.3 is satisfied under the assumption above, compare Remark 4.4.

The explanation above motivates the following notation.
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Notation. For any k ∈ {1, . . . ,m}, we define

ãk(i) :=
∑
D⊂D:
|D|=i

aDk , i = 1, . . . , d,

and
ãk := (ãk(1), . . . , ãk(d)).

Since aDk describes the probability mass of the set D (w.r.t. the distribution which is
determined by ak), ãk(i) is the aggregated mass on all subsets of D with i ∈ D elements.
Hence any ãk, k = 1, . . . ,m, characterizes a probability measure on the set D, which is
specified in the next notation.

Notation. For any k ∈ {1, . . . ,m}, we denote the probability measure on D by F̃k, which
is defined by

F̃k(B) :=
∑
i∈B

ãk(i), B ∈ P(D).

In contrast to the set P(D), the set D = {1, . . . , d} has a natural order, so we will define
an order for the above defined probability measures on D, which represents equivalence
classes of the set A.

Notation. We denote the equivalence relation on A by ∼, which is defined by

ak ∼ a` :⇐⇒ ãk = ã`,

for every k, ` ∈ {1, . . . ,m}. Furthermore, for any k ∈ {1, . . . ,m}, [ak] is written for the
equivalence class of ak ∈ A under ∼, i.e. [ak] := {a ∈ A : ãk = ã}. Moreover, we set Ã =
{[a1], . . . , [am]}, where [ak] and [a`] are either equal or disjoint for all k, ` ∈ {1, . . . ,m}.

Justification of the notation. A trivial verification shows that the defined binary rela-
tion ∼ on A is reflexive, symmetric, transitive and thus an equivalence relation on A.

Equivalence classes are assumed to be ordered as follows

Assumption 4.39. We suppose that [a1] �st [a2] �st . . . �st [am], where �st is an order
on the set Ã defined by, for any k, j ∈ {1, . . . ,m},

[ak] �st [aj ] :⇐⇒ F̃k(x) ≥ F̃j(x), x ∈ R. (4.62)

Remark 4.40. The defined order can be regarded as the usual stochastic order.6 If
X ∼ F̃k and Y ∼ F̃j and k ≤ j, then the introduced order is equivalent to X �st Y ,
where �st denotes the usual stochastic order. Therefore, the order �st given by (4.62)
is equivalent to ∫

D
f(x) F̃k(dx) ≤

∫
D
f(x) F̃j(dx)

for all increasing functions f : D → R, for which both integrals exist, compare Müller
and Stoyan [96, Thm. 1.2.8]. It is also worth noting that the order �st is consistent with
the order defined in (4.35) by choosing f in the equation above as identity.

With the help of the Assumptions 4.38 and 4.39, we can prove the next result which
implies the desired comparison result.

6For a deeper discussion of the usual stochastic order we refer the reader to Müller and Stoyan [96,
Sec. 1.2].
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Theorem 4.41. Let bλ,F be the function given by (4.36) and b̃?λ,c̄,F be the function given
by (4.57). Then, for any (t, p) ∈ [0, T ]×∆m,

bλ,F (t, p) ≤ b̃?λ,w(p),F (t) t ∈ [0, T ],

with

w(p) :=

(
m∑
k=1

aDk pk

)
D⊂D

.

Proof. Fix (t, p) ∈ [0, T ] × ∆m, b̄ ∈ R as well as (ξ, b) ∈ U [t, T ]. We begin with
the observation that the left-hand sides in (4.34) and (4.56) are equal. According to
Equations (4.34) and (4.56), we can see that it is sufficient to compare hλ,F (t, p, b̄) and
hλ,w(p),F (t, b̄) for the comparison of bλ,F and b̃?λ,w(p),F . We first observe that aj is the
thinning probability under the condition pt = ej and that

gξ,b(t, ej) := Et,ej
[

exp

{
−
∫ T

t
α er(T−s)

(
(µ− r)ξs + c(bs)

)
ds

−
∫ T

t
ασ er(T−s)ξs dWs +

NT−t∑
n=1

α bTn e
r(T−Tn)

|Zn|∑
`=1

Y `
n

}]
,

compare (4.20). Since the integrand above considered to be a function of |Zn| is in-
creasing and aj describes the distribution of |Zn|, it follows from Assumption 4.39 in
connection with Remark 4.40 that

gξ,b(t, e1) ≤ gξ,b(t, e2) ≤ . . . ≤ gξ,b(t, em).

Using this we conclude with the help of Lemma 4.25 (iii), (iv) and Lemma B.6, for any
D ⊂ D,

gξ,b(t, J(p,D))
m∑
k=1

aDk pk

d∑
i=1

1D(i)

∫
(0,∞)d

yi exp

{
α b̄ er(T−t)

d∑
j=1

yj1D(j)

}
F (dy)

=
m∑
`=1

p` a
D
` g

ξ,b(t, e`)
d∑
i=1

1D(i)

∫
(0,∞)d

yi exp

{
α b̄ er(T−t)

d∑
j=1

yj1D(j)

}
F (dy)

≥
m∑
k=1

aDk pk

m∑
`=1

p` g
ξ,b(t, e`)

d∑
i=1

1D(i)

∫
(0,∞)d

yi exp

{
α b̄ er(T−t)

d∑
j=1

yj1D(j)

}
F (dy)

= gξ,b(t, p)

m∑
k=1

aDk pk

d∑
i=1

1D(i)

∫
(0,∞)d

yi exp

{
α b̄ er(T−t)

d∑
j=1

yj1D(j)

}
F (dy),

which yields

g(t, J(p,D))

g(t, p)

m∑
k=1

aDk pk

d∑
i=1

1D(i)

∫
(0,∞)d

yi exp

{
α b̄ er(T−t)

d∑
j=1

yj1D(j)

}
F (dy)

≥
m∑
k=1

aDk pk

d∑
i=1

1D(i)

∫
(0,∞)d

yi exp

{
α b̄ er(T−t)

d∑
j=1

yj1D(j)

}
F (dy), D ⊂ D.

by taking the infimum over all (ξ, b) ∈ U [t, T ]. Summing over all D ⊂ D and multiplying
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by λ, we obtain
hλ,F (t, p, b̄) ≥ hλ,w(p),F (t, b̄),

which completes the proof.

Corollary 4.42. Let b̃?λ,c̄,F be the function given by (4.57). Then the optimal reinsurance
strategy under partial information (b?λ,F (t))t∈[0,T ] from Theorem 4.33 satisfies

b?λ,F (t) ≤ b̃?λ,w(pt−),F (t), t ∈ [0, T ].

It should be noted that (b̃?λ,w(pt−),F (t))t∈[0,T ] is FΦ-predictable, so that it is an ad-

missible reinsurance strategy. Notice further that w(pt) = (E[αD | FΦ
t ])D⊂D. Therefore

w(pt−) is the known conditional average thinning probabilities given the available infor-
mation strict before time t. Therefore Theorem 4.41 makes it legitimate to say that more
uncertainty leads to a less or equal retention level since the optimal reinsurance strategy
with unknown thinning probabilities is less than or equal to the strategy in the model
with known conditional average thinning probabilities given the available information.
The comparison result is illustrated in the next section as well as further comparative
statistics to provide a deep understanding of the optimal reinsurance strategy under
partial information.

4.9 Numerical analyses

In the following some numerical simulations are performed to examine how partial infor-
mation affects the insurer’s optimal reinsurance strategy and to obtain sensitivity anal-
yses of the optimal strategy (under incomplete information). Recall that we have used
Clarke’s generalized subdifferential to overcome the smoothness assumption on the value
function such that a calculation of the solution of the generalized HJB Equation (4.25) is
the first step to attain the optimal reinsurance strategy. Using the solution, the optimal
feedback control can be designed as the second step. However, the generalized integro
PDE 4.25 hardly allows an explicit solution. Therefore we need to rely on numerical
procedures. Here we only draw conclusions about the behaviour of the optimal reinsur-
ance strategy by means of the derived comparative result. In order to do this, we assume
that the considered insurance company has two LoBs (i.e. d = 2) and the insurer’s prior
belief is given by

a1 =

4/9
4/9
1/9

 , a2 =

5/9
2/9
2/9

 , a3 =

1/3
1/3
1/3

 ,

where
aj =

(
a
{1}
j , a

{2}
j , a

{1,2}
j

)
, i = 1, . . . , 3.

The prior probability mass function of ᾱ is supposed to be

π̄ᾱ =

(
2

5
,
2

5
,
1

5

)
.

Since

ã1 =

(
8/9
1/9

)
, ã2 =

(
7/9
2/9

)
, ã3 =

(
2/3
1/3

)
,



98 Chapter 4 Unknown dependency structure between the LoBs

it holds
F̃1(x) ≥ F̃2(x) ≥ F̃3(x), x ∈ R

and thus [a1] �st [a2] �st [a3], compare Remark 4.40.

Furthermore, it is supposed that the claim sizes from the two insurances classes are
independent and identically right-truncated exponential distributed7 with rate 1 and the
truncation is at 10. We denote this distribution by F̄ . That means, the density function
of F̄ , denoted by f̄ , is given

f̄(y) =
e−y

1− e−10
, 0 ≤ y ≤ 10,

and

E[Y 1
1 ] = E[Y 2

1 ] =
1

1− e−10
.

Hence Assumption 4.3 is fulfilled, compare Remark 4.4, and, due to the identically
distributed claim size of each LoB, we can perform the comparison result given in Corol-
lary 4.42 which requested this assumption. Further parameters are fixed in Table 4.1.
We are left to specify the parameter κ of the premium principle. We choose κ = E[dSt].

parameter value

x0 10
T 10
λ 3
r 0.1
µ 0.15
σ 3
α 0.15
θ 0.6
η 0.3

Table 4.1: Simulation parameters for Section 4.9.

That is, by Proposition 4.21, we have

κ = λ
m∑
k=1

πᾱ(k)
∑
D⊂D

aDk

d∑
i=1

1D(i)E
[
Y i

1

]
= λE

[
Y 1

1

] m∑
k=1

πᾱ(k)
∑
D⊂D

aDk |D|

= λE
[
Y 1

1

] m∑
k=1

πᾱ(k)

2∑
i=1

ãk(i) i =
6

5

4

1− e−10
.

In the following we suppose that the (unobservable) realization of ᾱ is a2. Before
we turn our attention to the optimal reinsurance strategy under partial information, let
us perform the full information case, where the optimal reinsurance strategy is given
by (4.57). In order to be consistent with the incomplete information case, we recalculate
κ for the fully observable case by using the same approach and we use the notation κ̄

7The general definition of truncated distributions can be found in Cramér [44, Sec. 19.3].
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instead of κ. With the help of Wald’s equation, we obtain

E[St] = E
[ d∑
i=1

N i
t∑

n=1

Y i
n

]
=

d∑
i=1

E
[
N i
t ]E[Y i

1 ] = E[Y 1
1 ]

d∑
i=1

E
[
N i
t ] = E[Y 1

1 ]
d∑
i=1

λ
∑
D⊂D:
D3i

αD t

= E[Y 1
1 ]λ t, t ≥ 0,

and thus

κ̄ = λE[Y 1
1 ] =

3

1− e−10
.
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Figure 4.4: The development of the optimal reinsurance strategy in time under full information
for the parameter selection of Section 4.9.

The optimal reinsurance strategy under complete information is displayed in Figure 4.4
which shows a rising optimal reinsurance strategy from approximately 0.25 to 0.7 at
time 10. The (exponential) increase of the strategy is explained by the exponential
utility function. In the given parameter choice, the surplus rises (compare Figure 4.9)
in most scenarios and a loss is valued less strongly for a high surplus than for a low
surplus. Therefore the insurer behaves more risky at a high surplus which explains the
more risky reinsurance strategy at the end of the considered time interval. Since the
risk aversion depends on the parameter α, we study graphically the effect of α on the
optimal reinsurance strategy at time 5 in Figure 4.5. It can be seen that it is optimal for
the insurer to retain all the risk to itself for a very small α which is associated with a less
risk aversion. With increasing α, the optimal reinsurance strategy decreases exponential
and converged to zero, where the convergence follows immediately from the first order
condition given in (4.56).

It is also worth considering the effect of the safety loading parameter θ of the rein-
surer on the optimal strategy. This effect is illustrated in Figure 4.6 which displays the
expected behaviour that for a small θ (which means a cheap reinsurance premium) it is
optimal to transfer the entire risk to the reinsurer. After that, the optimal strategy in-
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Figure 4.5: The effect of α on the optimal reinsurence strategy at time t = 5 in the case of
complete information for the parameter selection of Section 4.9.

creases until the premium is so expensive that it is optimal not to purchase a reinsurance
contract.

After having analyzed the optimal reinsurance strategy in the fully information case,
we examine the optimal investment strategy given by (4.29), which is the same as that
under full and partial information. This strategy is illustrated in Figure 4.7 for the
given parameter choice of this section. The increasing property can be explained by the
exponential utility function again as for the optimal reinsurance strategy.

Now we turn to the comparison result from Section 4.8.2. In Figure 4.3 we have already
pictured the a priori bounds for the parameters used in this section. In Figure 4.8, we
show these bounds together with two trajectories (black and blue lines) of the reinsurance
strategy (b̃?λ,w(pt−),F (t))t∈[0,T ] with w(p) = (

∑m
k=1 a

D
k pk)D⊂D, which provide an upper

bound for the optimal reinsurance strategy for each scenario according to Corollary 4.42.
In both scenarios (black and blue lines) the upper bounds, which take the observed data
into account, generate a much better upper bound than the a priori one. In combination
with the a priori lower bound, the insurer obtain a quite small range of possible optimal
reinsurance strategies up to time 7. Afterwards the range becomes bigger.

To conclude the numerical analysis, we consider the path of the surplus process in
an insurance loss scenario for three different reinsurance strategies in Figure 4.9. The
red line displays the path of the surplus process in the case of full reinsurance (i.e.
retention level of 0), which is evident from the fact that this path contains no jumps
because the reinsurer covers all losses. The full reinsurance is purchased through a
negative premium rate which explains the downward trend. For a constant reinsurance
strategy of 0.5, the trajectory of the surplus process is plotted by the blue line. This
path is similar to the path in the case of the reinsurance strategy (b̃?λ,w(pt−),F (t))t∈[0,T ]

with w(p) = (
∑m

k=1 a
D
k pk)D⊂D (black line), which was illustrated in Figure 4.8. The

increasing property of this strategy can be recognized by the circumstance that the
jump sizes (part of the losses the insurer has to pay) are smaller at the beginning of the
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Figure 4.6: The effect of θ on the optimal reinsurence strategy at time t = 5 in the case of
complete information for the parameter selection of Section 4.9.
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Figure 4.7: The Development of the optimal investment strategy in time for the parameter
selection of Section 4.9.
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Figure 4.8: The a priori upper bound (red line) and lower bound (orange line) for the optimal
reinsurance strategy and two paths of the reinsurance strategy (b̃?λ,w(pt−),F (t))t∈[0,T ]

with w(p) = (
∑m
k=1 a

D
k pk)D⊂D.

observed time interval and larger at the end compared to the constant strategy.

4.10 Comments on generalizations

We close the chapter with a discussion about generalizations of the presented setting.

Multivariate reinsurance strategy. It was already pointed out in the introduction
that the reinsurance strategy is multivariate in the literature with multi-dimensional risk
models. However, in the literature with common shock models, the optimal reinsurance
strategies are only stated in the case of two insurance classes since it is necessary to
considered different cases where the number of cases may increase geometrically, compare
Yuen et al. [121, Remark 4.3]. A similar effect can be presumed in our setting, which is
explained below in detail.

To choose a candidate for an optimal multivariate reinsurance strategy (b1λ,F , . . . , b
d
λ,F )

with b`λ,F (t) ∈ [0, 1] for t ≥ 0 and ` ∈ {1, . . . , d} (i.e. a reinsurance strategy for each LoB),
we have to solve the following system of equations w.r.t. (b1, . . . , bd):

(1 + θ`)κ` = λ
∑
D⊂D

g(t, J(p,D))

g(t, p)

m∑
k=1

aDk pk

d∑
i=1

1D(i)

∫
(0,∞)d

yi exp

{
α er(T−t)

d∑
j=1

bj yj1D(j)

}
F (dy), ` = 1, . . . , d,

where θ` denotes the safety risk load parameter of the reinsurer for the `th LoB and
κ` the corresponding parameter of the reinsurance premium principle. Similar to Yuen
et al. [121, p. 5], the uniqueness and existence of the solution to the equation above can
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Figure 4.9: Trajectories of the surplus process for an insurance loss scenario in the cases of full
reinsurance (red line), constant retention level of 0.5 (blue line) and the reinsurance
strategy (b̃?λ,w(pt−),F (t))t∈[0,T ] with w(p) = (

∑m
k=1 a

D
k pk)D⊂D (black line).

be shown. But to make sure that the retention level (b1λ,F , . . . , b
d
λ,F ) takes values in

[0, 1]d, we need to discuss various cases w.r.t. the order of the unique roots (i.e. d! cases,
cf. Yuen et al. [121, p. 5]) which results in a much more complicated optimality analysis.

Regime-switching model. In the present framework, the underlying environment,
which determines the interdependencies between the LoBs, does not change. This as-
sumption can be weakened by introducing an unobservable Markov chain with finite state
space and supposing that the thinning probabilities change over time according to the
state of the hidden Markov model8. Such regime-switching models (also called Markov-
modulated models) have been intensively studied in actuarial mathematics literature,
where the claim arrival intensity and claim size distribution depends on the state of the
chain (cf. e.g. Bäuerle [24]) or the aggregated claim rate of a diffusion risk process (cf. e.g.
Elliott et al. [55]). Extending the Bayesian setting of this chapter to a hidden Markov
model would lead to a different filter equation which can be determined by using the
filter result for marked point process observations given in Brémaud [20, Thm. VIII.T9].
It is expectable that the presented solution procedure can be applied analogously. How-
ever, in the next chapter we will use an alternative approach to deal with unobservable
thinning probabilities which does not allow an extension to a regime-switching model.

8For a general treatment of hidden Markov models see e.g. Elliott et al. [54].





Chapter 5

Optimal investment and reinsurance
with unknown claim arrival intensities

In Chapter 4 we have studied the control problem (P) under the assumption of observ-
ability of the background intensity and the claim size distribution. In this chapter we
relax a part of this assumption, namely we suppose that the background intensity is
unobservable; the claim size distribution is still assumed to be known. Moreover, we
deal with the unknown thinning probabilities in an alternative way.

5.1 Setting

As indicated in the introduction of this chapter, we suppose that the prior distribution
Πϑ is a one-point distribution such that the claim size distribution is observable for the
insurer. In the following, we denote the observable loss distribution by F . Furthermore,
we suppose that the Assumptions 3.2, 3.3 and 3.6 are in force.

Prior distribution for the thinning probabilities. Recall the approach in Sec-
tion 4.1 with the approximation of the (` − 1)-dimensional probability simplex ∆` (the
unknown thinning probabilities ᾱ take values in ∆`) by a finite number of points. So
the prior distribution Πᾱ of ᾱ has been chosen to be defined on a finite set. Under this
assumption we have derived a filter process for the probability mass function using the
available information of the insurer, in which the filter process was finite dimensional
because of the finite discretization. This was the key to obtain a reduced control prob-
lem whose optimal strategy is also optimal for the original incomplete information. In
this chapter we could do the same procedure as in the previous regarding the thinning
probabilities. But the reduction step of the partially observable problem (P) is also pos-
sible without the discretization of the probability simplex ∆` made in Assumption 4.1.
This would lead to a stochastic control problem in infinite dimension in general. How-
ever, in this section, we are going to use a parametric Bayesian approach which avoids
the discretization of the probability simplex. From this point of view, this approach is
more general since the thinning probabilities can take every value in the interior of the
probability simplex.

Before stating the assumptions of this section, let us recall that (Zn)n∈N denotes
a sequence of conditional iid random elements (conditioned on ᾱ) taking values in
(P(D),P(P(D))), where Zn describes the affected LoBs by the trigger event at Tn,
namely the insurance classes i ∈ Zn are affected, compare Section 3.1. For the Bayesian
approach we have to count the realisations of every Zn that occurs up to time t, which
is accomplished with the help of the following notation.

105
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Notation. For any n ∈ N, D ⊂ D and t ≥ 0, we define C0(D) := 0 and

Cn(D) :=

n∑
i=1

1{Zi=D}, Cn :=
(
Cn(D)

)
D⊂D,

qD(t) := CNt(D), qt :=
(
qD(t)

)
D⊂D.

Thus q = (qt)t≥0 is a N`0-valued process and qD(t) counts how many times the realiza-
tions of (Zn)n∈N are D up to time t. Note that we can use (Cn)n∈N instead of (Zn)n∈N
to describe the multivariate claim arrival process N since

{i ∈ Zn} =
{
i ∈ D with Cn(D) > Cn−1(D)

}
.

According to the notation above, for any t ≥ 0, the `-dimensional random vector Cn is
multinomial distributed with parameters n and ᾱ = (αD)D⊂D ∈ ∆`. The probability
mass function of Cn is given by

f(x |n, ᾱ) =
n!∏

D⊂D xD!

∏
D⊂D

αxDD , x = (xD)D⊂D ∈ N`0 with
∑
D⊂D

xD = n,

see e.g. DeGroot [49, Sec. 5.2]. We write shortly

Cn |n, ᾱ ∼ Mult(n, ᾱ).

As indicated at the beginning of this Section, we apply a parametric Bayesian approach
in this chapter. More precisely, we choose the Dirichlet distribution as the prior for the
thinning probabilities ᾱ = (αD)D⊂D.

Definition 5.1 (Dirichlet distribution; [49], p. 49). A random vector X = (X1, . . . , Xk)
has a Dirichlet distribution with parameter vector β̄ = (β1, . . . , βk) ∈ (0,∞)k, if the
probability density function fβ̄(·) of X is given by

fβ̄(x) =
Γ(β1 + . . .+ βk)

Γ(β1) · . . . · Γ(βn)

k∏
i=1

xβi−1
i , x = (x1, . . . , xk) ∈ ∆̊k,

where Γ denotes the gamma function, i.e.

Γ(z) =

∫ ∞
0

xz−1e−x dx

for all complex numbers z with positive real part. We write shortly

X | β̄ ∼ Dir(β̄).

The assumption about the dependence mechanism of the insurance classes ᾱ is sum-
marized in the next assumption.

Assumption 5.2. We suppose that the F0-measurable random vector ᾱ = (αD)D⊂D is
Dirichlet distributed with parameter vector β̄ = (βD)D⊂D ∈ (0,∞)`, i.e.

ᾱ | β̄ ∼ Dir(β̄).

Remark 5.3. Notice that a Dirichlet distributed random vector takes values in the
interior of probability simplex. That is, the probability for every possible dependency
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between the LoBs is positive. The parameter β̄ of the Dirichlet distribution can be chosen
with already existing date by using for example the maximum likelihood method. In
the case of non-existence of pre-information, an uninformed prior can be selected which
is β̄ = (1, . . . , 1) for the Dirichlet distribution such that the thinning probabilities are
uniform distributed on the probability simplex.

The reason for the choice of the Dirichlet distribution as the prior is the conjugated
property of the Dirichlet prior, which is stated next. If the posterior distribution is of
the same type as the prior distribution, then we call the prior conjugated. That is, a
family of distributions which a conjugated prior belongs to, is closed under sampling.

Theorem 5.4 ([49], Thm 9.8.1). The posterior distribution of ᾱ given Cn = c with
c = (cD)D⊂D ∈ N`0 is a Dirichlet distribution with parameter vector β̄+c = (βD+cD)D⊂D,
i.e. the posterior density of ᾱ is

fβ̄(ᾱ | c) =
Γ
(∑

D⊂D(βD + cD)
)∏

D⊂D Γ
(
βD + cD

) ∏
D⊂D

αβD+cD−1
D , ᾱ = (αD)D⊂D ∈ ∆̊`.

It should be noticed that the marginal distribution of the jth component of a Dir(β̄)-
distributed random vector (X1, . . . , Xk), β̄ = (β1, . . . , βk) ∈ (0,∞)k, is Beta distributed1

with parameters βj and
∑k

i=1 βi − βj , compare DeGroot [49, p. 50]. This fact implies
immediately the following result.

Corollary 5.5. The posterior distribution of αD given Cn = c with c = (cD)D⊂D ∈ N`0 is
a Beta distribution with parameters βD + cD and

∑
E⊂D\{D}(βD + cD), i.e. the posterior

density of αD is

fβ̄(αD | c) =
Γ
(∑

D⊂D(βD + cD)
)

Γ
(
βD + cD

)
Γ

( ∑
E⊂D\{D}

(βE + cE)

)αβD+cD−1
D (1− αD)

∑
E⊂D\{D}(βE+cE)−1

for αD ∈ (0, 1) and 0 otherwise.

Notation. Throughout this chapter, ‖ · ‖ denotes the `1-norm, i.e. ‖x‖ =
∑n

i=1 |xi| for
some x = (x1, . . . , xn) ∈ Rn.

According to the theorem and corollary above, we have

ᾱ | β̄, Z1, . . . , ZNt ∼ Dir(β̄ + qt),

αD | β̄, Z1, . . . , ZNt ∼ Beta(βD + qD(t), ‖β̄ + qt‖ − βD − qD(t)).

The next result yields the predictive distribution2 of the categorical variable Z given
observed categories, in which the proof incorporates the following notations.

Notation. From now on, Px denotes the conditional probability measure P given x, where
x is either a random element or a single event, and Ex denotes the corresponding condi-
tional expectation w.r.t. Px.

The notation plays an important role in the determination of Hamilton-Jacobi-Bellman
equation in Section 5.4 and in the next proof.

1For the definition of the Beta distribution we refer the reader to DeGroot [49, Sec. 4.9].
2The predictive distribution is the conditional distribution of a new observation given some date, com-

pare Klugman et al. [78, Def. 2.43].
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Notation. Throughout this chapter, let v : N`0 × P(D)→ N`0 denote a function given by

v(q,D) :=
(
qE + 1{E=D}

)
E⊂D, (5.1)

where q = (qD)D⊂D. Moreover, we write v(q,D)D′ for the D′th component of the
sequence

(
qE + 1{E=D}

)
E⊂D.

Proposition 5.6. For any t ≥ 0, we have

P(ZNt+1 = D |Z1, . . . , ZNt) =
βD + qD(t)

‖β̄ + qt‖
.

Proof. Fix D ⊂ D and t ≥ 0. First of all, let z̄n := (z1, . . . , zn) ∈ P(D)n be a realization
of Z̄n := (Z1, . . . , Zn). Due to the Bayes’ rule, Assumption 3.2 and Theorem 5.4, we
have

P(Zn+1 = D | Z̄n = z̄n) =

∫
∆`

αD fβ̄(ᾱ | Z̄n = z̄n) dᾱ.

Consequently, using the fact that Γ(n+ 1) = nΓ(n) for all n ∈ N, we obtain

P(Zn+1 = D |Z1, . . . , ZNt) =

∫
∆`

αD fβ̄(ᾱ | qt) dᾱ

=
Γ
(∑

E⊂D(βE + qE(t))
)∏

E⊂D Γ(βE + qE(t))

∫
∆`

∏
E⊂D

α
1{E=D}+βE+qE(t)−1

E dᾱ

=
Γ
(∑

E⊂D(βE + qE(t)) + 1
)∑

E⊂D(βE + qE(t))

βD + qD(t)

Γ(βD + qD(t) + 1)
∏
E⊂D\{D} Γ(βE + qE(t))

×∫
∆`

α
βD+qD(t)
D

∏
E⊂D\{D}

α
βE+qE(t)−1
E dᾱ

=
βD + qD(t)

‖β̄ + qt‖
×∫

∆`

Γ
(∑

E⊂D(βE + qE(t)) + 1
)

Γ(βD + qD(t) + 1)
∏
E⊂D\{D} Γ(βE + qE(t))

α
βD+qD(t)
D

∏
E⊂D\{D}

α
βE+qE(t)−1
E dᾱ,

where the integral is 1 since the integrand is the density of the Dirichlet distribution
with parameter vector v(β̄ + qt, D).

The proposition provides the distribution of a new thinning Z given the appeared
categories up to time t. This distribution gains in interest in the proof of Lemma 5.20 (vi).

Due to the conjugation property of the prior for ᾱ, the posterior distribution of ᾱ as
well as the parameter of this distribution, which is described by (pt)t≥0, are known. Thus
(qt)t≥0 provides all available information about ᾱ which is included in the observable
filtration G. Therefore, instead of a filter equation, we can use the process (qt)t≥0, which
describes the parameter of the posterior distribution, for the reduction of the control
problem (P) under partial information to one with complete information.

After the reduction we use the stochastic control approach to solve the reduced prob-
lem. For this purpose, we need the compensated process of (qt)t≥0. To determine this
process, it is necessary to know the dynamics of the projection of the unobservable
background intensity Λ to the observable filtration. So firstly, we have to specify the
assumption about Λ.
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Prior distribution for the background intensity. In contrast to Chapter 4, we
regard the trigger process N as mixed Poisson process with mixing distribution ΠΛ, i.e.
Λ is a positive F0-measurable random variable. We suppose that ΠΛ is defined on a
finite set such that we can derive a finite dimensional filter equation which describes the
background intensity Λ given the available information up to any time t. This ansatz is
similar to the model for the thinning probabilities ᾱ in Section 4.1.

Assumption 5.7. Let m ∈ N be fixed. We assume that Λ is an F0-measurable random
variable taking values in the measure space (A,A), where A := {λ1, . . . , λm} with λj ∈
(0,∞), j = 1, . . . ,m, and A := P(A). Without restriction to generality, we suppose that
λ1 < λ2 < . . . < λm. Furthermore, Λ and ᾱ are assumed to be independent.

Later, bounds for the optimal strategy (Corollary 5.29) and a comparative result with
optimal strategy in the fully observable case (Corollary 5.32) are derived under use of the
order λ1 < λ2 < . . . < λm, which is an order of the possible background intensities from
the best to the worst case scenario from the insurer’s point of view. As already mentioned
in Section 4.8.2, such orders are typically the basis for determining comparison results.
Beside the order of the background intensities, an order is also required for the thinning
probabilities which is not as obvious as for the background intensities since the harm of
a scenario for the thinning probabilities also depends on the claim size distribution. It
will turn out that a proper order can only be given under further assumptions to the
claim size distribution, compare Section 5.7.

According to the assumption above, the prior distribution ΠΛ of Λ is defined on A.
That means, the insurer is aware that the background intensity is one of the values in
A, but it is not known which one. The insurance company has only a prior guess about
the distribution of Λ which represents expert knowledge about the unknown background
intensity. That is,

ΠΛ(B) =
∑

j∈{1,...,m}:λj∈B

πΛ(j), B ∈ A,

where
πΛ(j) := P(Λ = λj), j = 1, . . . ,m.

Notation. We write π̄Λ := (πΛ(1), . . . , πΛ(m)) ∈ ∆m for the m-dimensional vector which
describes the probability mass function of Πλ.

In contrast to the prior for the thinning probabilities, the prior for the background
intensity is a distribution on a finite set. Due to the finiteness, we can describe the update
of the prior guess of the distribution of Λ with a finite dimensional filter equation which
will be determined in the following section. Before we turn to the filter problem, a
further assumption must be made regarding the distribution of the claim sizes.

Claim size distribution. We need the same requirements on the claim sizes as in
Chapter 4. Thus we suppose that Assumption 4.3 is satisfied, i.e.

MF (z) := E
[

exp

{
z

d∑
i=1

Y i
1

}]
=

∫
(0,∞)d

exp

{
z

d∑
i=1

yi

}
F (dy) <∞, z ∈ R, (5.2)

Due to this assumption, we can state the following properties which will be used
for the verification of the solution of the later announced reduced control problem, see
Section 5.3.
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Lemma 5.8. Let z ∈ R be an arbitrary constant. Then there exists constants 0 < C1 <
∞ and 0 < C2 <∞ such that

(i) E
[
Y j

1 exp
{
z
∑d

i=1 Y
i

1

}]
≤ C1, j = {1, . . . , d},

(ii) E
[

exp
{
z
∑d

i=1

∑Nt
k=1 Y

i
k

}]
≤ C2, t ∈ [0, T ].

Proof. The first statement matches Lemma 4.5 (i). Regarding the second statement, we
obtain, by following the same line of arguments as in the proof of Lemma 4.5 with P
replaced by Pλ in the application of law of total variation,

E
[

exp

{
z

d∑
i=1

Nt∑
k=1

Y i
k

}]
= E

[
exp

{
λ t

(
E
[

exp

{
z

d∑
i=1

Y i
1

}]
− 1

)}]
,

where, by definition of the prior distribution ΠΛ,

E
[
exp

{
λ t

(
E
[
exp

{
z

d∑
i=1

Y i
1

}]
− 1

)}]
=

m∑
j=1

πΛ(j) exp

{
λj t

(
E
[
exp

{
z

d∑
i=1

Y i
1

}]
− 1

)}

=
m∑
j=1

πΛ(j) exp
{
λj T MF (z)

}
=: C2

which is finite according to (5.2) for all t ∈ [0, T ].

5.2 Filtering and reduction

The task is to reduce the partially observable control problem (P) within the introduced
framework to one with a state process that describes the available information about
the unknown background intensity and interdependencies between the LoBs. For this
purpose, we proceed for the background intensity as in Section 4.2, i.e. we determine a
filter equation for the background intensity.

Filtering of the background intensity. We want to describe the conditional distri-
bution of λ given the available information up to time t. For this purpose, we are going
to apply the filter result for point-process observations stated in Theorem 2.94, where
the observed filtration is the natural filtration of the background process N denoted by
FN = (FNt )t≥0.

Recall that, by Theorem 2.69, the natural filtration of an SPP is right-continuous.
This justifies the following notation according to Proposition 2.31.

Notation. Throughout this chapter, we denote the càdlàg modification of the process
(E[Λ|FNt ])t≥0 by (Λ̂t)t≥0, i.e.

Λ̂t = E[Λ | FNt ], t ≥ 0.

From Proposition 2.91, we know that (Λ̂t)t≥0 is an FN -intensity of the mixed Poisson
process N since the mixing distribution ΠΛ has a finite mean. The finite mean implies
further that N is integral, compare Theorem 2.78 (ii).

Notation. From now on, (Ω,FN∞,FN ,P) denotes the filtrated probability space which
is modified as described in Remark 2.70 such that the usual conditions are satisfied.
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Furthermore, let N̂ = (N̂t)t≥0 denote the compensated process of N defined by

N̂t := Nt −
∫ t

0
Λ̂s ds, t ≥ 0, (5.3)

and we write (pj(t))t≥0, j = 1, . . . ,m, for the càdlàg modification of the processs (P(Λ =
λj | FNt ))t≥0, i.e.

pj(t) = P(Λ = λj | FNt ), t ≥ 0.

Moreover, let p = (pt)t≥0 denote the m-dimensional process defined by

pt := (p1(t), . . . , pm(t)), t ≥ 0.

Remark 5.9. Notice that Λ̂t ≤ λm for t ≥ 0. Furthermore, it is clear that pj(0) = πΛ(j)
for every j ∈ {1, . . . ,m}.

The following result provides the dynamic of the filter process (pt)t≥0.

Theorem 5.10. For any j ∈ {1, . . . ,m}, the process (pj(t))t≥0 satisfies

pj(t) = πΛ(j) +

∫ t

0

(
λj pj(s−)

Λ̂s−
− pj(s−)

)
dN̂s, t ≥ 0. (5.4)

Proof. Fix j ∈ {1, . . . ,m} and set Xj := 1{Λ=λj}. Clearly, Xj is F0-measurable. There-
fore, Assumption 2.92 is fulfilled and we can apply Theorem 2.94 which yields, under
consideration of E[Xj ] = P(Λ = λj) = πΛ(j) and X̂j(t) = E[1{Λ=λj} | FNt ] = pj(t),

pj(t) = πΛ(j) +

∫ t

0

(
As − pj(s−)

)
dN̂s, t ≥ 0,

where (At)t≥0 is an FN -predictable process satisfying

E
[ ∫ t

0
HsXj Λ ds

]
= E

[ ∫ t

0
HsAs Λ̂s ds

]
, t ≥ 0,

for all non-negative bounded FN -predictable processes (Ht)t≥0. For some fixed non-
negative bounded FN -predictable processes (Ht)t≥0 we obtain, by Fubini’s Theorem and
the FNs -measurability of Hs and with the fact that càdlàg processes has only countable
many jumps, that

E
[ ∫ t

0
Hs

E
[
Λ1{Λ=λj} | FNs

]
Λ̂s

Λ̂s ds

]
=

∫ t

0
E
[
E
[
Hs Λ1{Λ=λj} | F

N
s

]]
ds

=

∫ t

0
E
[
Hs Λ1{Λ=λj}

]
dt = E

[ ∫ t

0
Hs Zj λ ds

]
, t ≥ 0.

Furthermore,

E
[
Λ1{Λ=λj} | F

N
s

]
=

m∑
k=1

λk1{λk=λj}pk(t) = λj pj(t), t ≥ 0.

Therefore, we can choose

At :=
λj pj(t−)

Λ̂t−
, t ≥ 0,



112 Chapter 5 Unknown claim arrival intensities

where (At)t≥0 is obviously FN -predictable.

The filter process (pt)t≥0 carries all available information about the background inten-
sity which is encapsulated in the observable filtration. Let us mention further elementary
properties of the filter (pt)t≥0.

Proposition 5.11. Let j ∈ {1, . . . ,m}. The continuous part (pcj(t))t≥0 of (pj(t))t≥0

satisfies

pcj(t) =

∫ t

0
pj(s)

(
Λ̂s − λj

)
ds, t ≥ 0,

and the new state of the filter p at jump times (Tn)n∈N is

pTn = J
(
pTn−

)
, n ∈ N,

where

J
(
p
)

:=

(
λ1 p1∑m
k=1 λk pk

, . . . ,
λm pm∑m
k=1 λk pk

)
(5.5)

for p = (p1, . . . , pm) ∈ ∆m.

Proof. Fix j ∈ {1, . . . ,m}. Due to the definition of N̂ given in (5.3) and Theorem 5.10,
we have

pj(t) = πΛ(j) +

∫ t

0

(
λj pj(s−)

Λ̂s−
− pj(s−)

)
dNs −

∫ t

0
pj(s)

(
λj − Λ̂s

)
ds, t ≥ 0.

Thus the continuous part (pcj(t))t≥0 of (pj(t))t≥0 satisfies

pcj(t) =

∫ t

0
pj(s)

(
Λ̂s − λj

)
ds, t ≥ 0,

and ∑
0<s≤t

∆pj(s) =

∫ t

0

(
λj pj(s−)

Λ̂s−
− pj(s−)

)
dNs, t ≥ 0.

That is

∆pj(Tn) =
λj pj(Tn−)

Λ̂Tn−
− pj(Tn−), n ∈ N.

Therefore, the new state of the filter p at the jump times (Tn)n∈N is

pj(Tn) = pj(Tn−) + ∆pj(Tn) =
λj pj(Tn−)

Λ̂Tn−
, n ∈ N.

Consequently, pTn = J(pTn−) for every n ∈ N, where J is defined by (5.5).

Next we investigate the dynamic of the filter process (pt)t≥0 between the jump times.

Proposition 5.12. Let n ∈ N0. Assume pTn = p, then the evolution of (pt)t≥0 up to the
next jump time Tn+1 is the solution, denoted by φ(t) = (φj(t))j=1,...,m, of the following
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system of ordinary differential equations
φ̇1 = φ1

(∑m
k=1 λk φk − λ1

)
,

...

φ̇m = φm
(∑m

k=1 λk φk − λm
)
,

φ(0) = p ∈ ∆̊m.

(5.6)

Proof. Fix n ∈ N0. The dynamic of the continuous part (pcj(t))t≥0 of (pj(t))t≥0 calculated
in Proposition 5.11 yields the dynamic of (pj(t))t≥0 for any t ∈ [Tn, Tn+1],

pj(t) = pj(Tn−1) +

∫ t

Tn−1

pj(s)

( m∑
k=1

λk pk(s)− λj
)

ds.

For any j ∈ {1, . . . ,m} and s ≥ 0, we have∣∣∣∣pj(s)( m∑
k=1

λk pk(s)− λj
)∣∣∣∣ ≤ m∑

k=1

λk + λj < (m+ 1)λm,

since pj(s) ≤ 1 and the order λ1 < λ2 < . . . < λm, compare Assumption 5.7. That is, the
integrand above is bounded on [Tn, Tn+1]. Therefore, by the càdlàg property, the inte-
grand is Riemann integrable according to the Lebesgue’s criterion for Riemann integrabil-
ity (cf. e.g. Sohrab [115, Prop. 11.1.3]). Thus the Lebesgue integral above coincides with
the Riemann integral with the same integrand (cf. e.g. Klenke [77, Thm. 4.23]). In con-
sequence, the second fundamental theorem of calculus (cf. e.g. Sohrab [115, Thm. 7.5.8])
implies the announced system of ordinary differential equations (5.6) since the integrand
above is continuous on [Tn, Tn+1).

Remark 5.13. Due to the previous proposition, the filter process (pt)t≥0 is a piecewise
deterministic Markov process.

Here are some elementary properties of the evolution of the filter process between the
jumps.

Proposition 5.14. (i) Let n ∈ N0. For t ∈ [Tn, Tn+1) it holds pt = φ(t− Tn).

(ii) For any p ∈ ∆m, the map t 7→ φ(t) with φ(0) = p is Lipschitz of a rank independent
of p.

Proof. (i) This statement is an immediate consequence of the representation of the
continuous part of (pt)t≥0 given in Proposition 5.11.

(ii) Let φ(0) = p for some p ∈ ∆m. From the first statement, we know that φ̇j(t),
j = 1, . . . ,m, is independent of p. Furthermore, from (5.6) follows that t 7→ φ̇j(t),
j = 1, . . . ,m, is continuous and thus bounded on the compact set [0, T ]. Hence

‖(φ̇1(t), . . . , φ̇m(t))‖2 ≤ K,

where 0 < K < ∞ is independent of p and ‖ · ‖2 denotes the Euclidean norm.
Consequently, on account of the mean value theorem for vector-valued functions
(see Akcoglu et al. [2, Thm. 5.1.13]), we get

‖φ(t1)− φ(t2)‖2 ≤ K |t1 − t2|
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for all t1, t2 ∈ [0, T ].

The first statement of the previous proposition expresses the equivalence of the evo-
lution of (pt)t≥0 after every jump at (Tn)n∈N. This property as well as the jumps can be
seen in Figure 5.1 which displays a path of each component of the filter (pt)t≥0 under the
assumption that A = {2, 4, 5}, π̄Λ = (2/5, 2/5, 1/5) and P(Λ = 4 | F0) = 1. The figure
further shows that no trigger event occurred approximately in the time between 2 and 3,
which increases the probability for the smallest possible parameter 2. This is expressed
by the strongly increasing black line in this period. Subsequently more events occur
(especially in the time between 5 and 6), whereby the probability that the true intensity
is 2 decreases strongly and the filter rank the probability for the correct parameter (here
4) up in the course of time which is represented by the red line.
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Figure 5.1: A trajectory of the filter process (pt)t≥0 under the assumptions that A = {2, 4, 5},
π̄Λ = (2/5, 2/5, 1/5) and P(Λ = 4 | F0) = 1, where pt = (p1(t), p2(t), p3(t)) with
p1(t) = P(Λ = 2 | Gt), p2(t) = P(Λ = 4 | Gt) and p3(t) = P(Λ = 5 | Gt).

Dynamics for the parameters of the posterior distribution of the thinning
probabilities. It has already been mentioned at the beginning of Section 5.1 that we
do not have to a solve filter problem for the thinning probabilities since the posterior
distribution of ᾱ given the available information is known, namely through the process
(qt)t≥0. Therefore, the property of conjugation plays a key role for the reduction in
this chapter. Nevertheless we need to compensate the process (qt)t≥0 for the stochastic
control approach. For this, the next notation and results are required. Before stating
these, let us recall that the MPP Φ = (Tn, Zn)n∈N carries the information about the
claim arrival times, i.e. FΦ is observable for the insurer, see Section 3.1.

Notation. For any D ⊂ D, we denote the càdlàg modification of (E[αD | FΦ
t ])t≥0 by

(α̂D(t))t≥0, i.e.
α̂D(t) = E[αD | FΦ

t ], t ≥ 0.
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Lemma 5.15. The F-intensity kernel of Φ = (Tn, Zn)n∈N, denoted by (λ(t,dz))t≥0, is
given by

λ(t, B) = Λ
∑
D∈B

αD, t ≥ 0, B ∈ P(P(D)).

Proof. It is easily seen that λ is a transition kernel from (R+ × Ω,B+ ⊗ F) to
(P(D),P(P(D))), compare the arguments in the proof of Lemma 4.9. Moreover, we
can show that (Λ

∑
D∈B αD)t≥0 is the predictable F-intensity of (Φ(t, B))t≥0 for some

B ∈ P(P(D)) with the same method as in the proof of Lemma 4.7, which completes the
proof.

Proposition 5.16. The FΦ-intensity kernel of Φ = (Tn, Zn)n∈N, denoted by (µ̂(t,dz))t≥0,
is given by

µ(t, B) = Λ̂t−
∑
D∈B

βD + qD(t−)

‖β̄ + qt−‖
, t ≥ 0, B ∈ P(P(D)).

Proof. The definition of µ clearly forces that µ is a transition kernel from (R+×Ω,B+⊗
FΦ
∞) to (P(D),P(P(D))). Now, the procedure is to show that (µ(t, B))t≥0 is the FΦ-

predictable intensity of (Φ(t, B))t≥0 for some fixed B ∈ P(P(D)). To do this, let us re-
mind that (Λ

∑
D∈B αD)t≥0 is an F-intensity of (Φ(t, B))t≥0, compare Lemma 5.15. Since

(Λ̂t
∑

D∈B α̂D(t))t≥0 is a càdlàg modification of (E[αD | FΦ
t ])t≥0 (see notation above) and

thus FΦ-progressively measurable, it follows, by Proposition 2.81, that
(Λ̂t
∑

D∈B α̂D(t))t≥0 is an FΦ-intensity of (Φ(t, B))t≥0. Notice that

α̂D(t) = E[αD | FΦ
t ] = E[αD |Z1, . . . , ZNt ] =

∫
(0,1)

αD fβ̄(αD |Z1, . . . , ZNt) dαD,

where, by Corollary 5.5, the posterior density fβ̄ of αD given (Z1, . . . , ZNt) is the density
of the Beta distribution with parameters βD + qD(t) and

∑
E⊂D\{D}(βE + qE(t)). Since

the mean of X ∼ Beta(a, b) is E[X] = a
a+b (cf. e.g. DeGroot [49, p. 50]), we obtain

α̂D(t) =
βD + qD(t)

‖β̄ + qt‖
,

and, in consequence, we have that
(
Λ̂t−

∑
D∈B

βD+qD(t−)

‖β̄+qt−‖
)
t≥0

is the FΦ-predictable FΦ-

intensity kernel.

The proof above gives the Bayesian estimator of αD given (Z1, . . . , ZNt), namely

E[αD |Z1, . . . , ZNt ] =
βD + qD(t)

‖β̄ + qt‖
, t ≥ 0. (5.7)

Notation. Let Φ̂(dt,dz) denote the compensated random measure given by

Φ̂(dt,dz) := Φ(dt,dz)− µ(t,dz) dt, (5.8)

where µ is given as in Proposition 5.16.
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Taking this notation into account, we get for any D ⊂ D

qD(t) =

∫ t

0

∫
P(D)

1{z=D} Φ̂(ds, dz) +
∑
E⊂D

∫ t

0
1{E=D}Λ̂s

βE + qE(s)

‖β̄ + qs‖
ds

=

∫ t

0

∫
P(D)

1{z=D} Φ̂(ds, dz) +

∫ t

0
Λ̂s
βD + qD(s)

‖β̄ + qs‖
ds, t ≥ 0.

Properties of the aggregated claim amount process and the surplus process.
The solution method requires a representation of the aggregated claim amount process
and the surplus process w.r.t. the compensated random measure of Ψ which is derived
next.

Proposition 5.17. The FΨ-intensity kernel of Ψ = (Tn, (Yn, Zn))n∈N, denoted by
(ν(t,d(y, z)))t≥0, is given by

ν(t, (A,B)) = Λ̂t− F (A)
∑
D∈B

βD + qD(t)

‖β̄ + qt‖
, t ≥ 0, A ∈ B((0,∞)d), B ∈ P(P(D)).

Proof. The assertion follows by using Proposition 5.16 and the same line of arguments
as in the proof of Proposition 4.20.

Notation. Let Ψ̂(dt,d(y, z)) denote the compensated random measure given by

Ψ̂(dt,d(y, z)) := Ψ(dt,d(y, z))− ν(t,d(y, z)) dt, (5.9)

where ν is defined as in Proposition 5.17.

With assistance of the measure introduced above, we obtain the following character-
istics of the aggregated claim amount process.

Proposition 5.18. The aggregated claim amount process S = (St)t≥0 is given by

St =

∫ t

0

∫
Ed

d∑
i=1

yi1z(i) Ψ̂(ds, d(y, z)) +
∑
D⊂D

∫ t

0
Λ̂s
βD + qD(s)

‖β̄ + qs‖
ds

d∑
i=1

1D(i)E[Y i
1 ]

and satisfies

E[St] =
m∑
k=1

λk πΛ(k)
∑
D⊂D

βD
‖β̄‖

d∑
i=1

1D(i)E
[
Y i

1

]
t

for all t ≥ 0.

Proof. Combining (3.3) and (4.10), we get for any t ≥ 0

St =

∫ t

0

∫
Ed

d∑
i=1

yi1z(i) Ψ̂(ds, d(y, z))

+
∑
D⊂D

∫ t

0

∫
(0,∞)d

d∑
i=1

yi1D(i)Λ̂s
βD + qD(s)

‖β̄ + qs‖
F (dy) ds

=

∫ t

0

∫
Ed

d∑
i=1

yi1z(i) Ψ̂(ds, d(y, z)) +
∑
D⊂D

∫ t

0
Λ̂s
βD + qD(s)

‖β̄ + qs‖
ds

d∑
i=1

1D(i)E[Y i
1 ].
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By Corollary 2.98, the process (ηt)t≥0 defined by

ηt :=

∫ t

0

∫
Ed

d∑
i=1

yi1z(i) Ψ̂(ds, d(y, z)), t ≥ 0,

is an FΨ-martingale if

E
[ ∫ t

0

∫
Ed

∣∣∣∣ d∑
i=1

yi1z(i)

∣∣∣∣ν(s, d(y, z)) ds

]

= E
[ ∫ t

0
Λ̂s
∑
D⊂D

βD + qD(s)

‖β̄ + qs‖

d∑
i=1

1D(i)E
[
Y i

1

]
ds

]
<∞, t ≥ 0.

Notice that the function H(t, y, z) :=
∑d

i=1 yi1z(i) is obviously an FΨ-predictable func-
tion indexed by Ed. Moreover, recall that Λ and ᾱ are independent (compare Assump-
tion 5.7). Therefore, by Fubini’s Theorem and the fact that for any s ≥ 0 and D ⊂ D

E
[
Λ̂s
βD + qD(s)

‖β̄ + qs‖

]
= E

[
E[Λ | F N̄s ]E[αD | FΦ

s ]
]

= E
[
E[ΛαD | FΨ

s ]
]

= E[ΛαD] = E[Λ]E[αD] =

m∑
k=1

λk πΛ(k)
βD
‖β̄‖

, s ≥ 0, D ⊂ D,

since αD ∼ Beta
(
βD,

∑
E⊂D\{D} βE

)
, compare Section 5.1. Therefore,

E
[ ∫ t

0
Λ̂s
∑
D⊂D

βD + qD(s)

‖β̄ + qs‖

d∑
i=1

1D(i)E
[
Y i

1

]
ds

]

=
∑
D⊂D

βD
‖β̄‖

d∑
i=1

1D(i)E
[
Y i

1

] m∑
k=1

λk πΛ(k) t <∞, t ≥ 0,

and the proposition follows.

The proposition yields the following indistinguishable representation of the surplus
process Xξ,b = (Xξ,b

t )t≥0:

dXξ,b
t =

(
rXξ,b

s + (µ− r)ξs + c(bs)− Λ̂t bt
∑
D⊂D

βD + qD(t)

‖β̄ + qt‖

d∑
i=1

1D(i)E[Y i
1 ]

)
dt

+ ξsσdWs −
∫
Ed
bt

d∑
i=1

yi1z(i) Ψ̂(dt,d(y, z)), t ≥ 0.

This dynamic will be one part of the reduced control model discussed in the next section.

5.3 The reduced control problem

Recall that the processes (pt)t≥0 and (qt)t≥0 carry all relevant information about the
unknown parameters λ and ᾱ contained in the observable filtration G of the insurer.
That is, it is sufficient to know the processes (pt)t≥0 and (qt)t≥0 instead of the whole
history G. As in Section 4.3, we consider a family of problems by varying the initial time
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to achieve a relationship among the corresponding value functions. Therefore, the state
process of the reduced control problem with complete observation is the (` + m + 1)-
dimensional process

(Xξ,b
s , ps, qs)s∈[t,T ]

for some fixed initial time t ∈ [0, T ) and (ξ, b) ∈ U [t, T ], where

dXξ,b
s =

(
rXξ,b

s + (µ− r)ξs + c(bs)− Λ̂s bs
∑
D⊂D

βD + qD(s)

‖β̄ + qs‖

d∑
i=1

1D(i)E[Y i
1 ]

)
ds

+ ξsσ dWs −
∫
Ed
bs

d∑
i=1

yi1z(i) Ψ̂(ds, d(y, z)), (5.10)

dpj(s) =

(
λj pj(s−)

Λ̂s−
− pj(s−)

)
dN̂s, j = 1, . . . , d, (5.11)

dqD(s) =

∫
P(D)

1{z=D} Φ̂(ds, dz) + Λ̂s
βD + qD(s)

‖β̄ + qs‖
ds, D ⊂ D. (5.12)

for s ∈ [t, T ], with (
Xξ,b
t , pt, qt

)
= (x, p, q)

with x ∈ R, p = (p1, . . . , pm) ∈ ∆m and q = (qD)D⊂D ∈ N`0. Using this reduced model,
we can formulate the reduced control problem. For any (ξ, b) ∈ U [t, T ], the objective
function is given by

V ξ,b(t, x, p, q) := Et,x,p,q
[
U(Xξ,b

T )
]

:= E
[
U(Xξ,b

T ) |Xξ,b
t = x, pt = p, qt = q

]
and the value function is defined by

V (t, x, p, q) := sup
(ξ,b)∈U [t,T ]

V ξ,b(t, x, p, q), (P2)

for all (t, x, p, q) ∈ [0, T ]×R×∆m ×N`0. As before, an investment-reinsurance strategy
(ξ?, b?) ∈ U [t, T ] is optimal if

V (t, x, p, q) = V ξ?,b?(t, x, p, q),

and the insurer is interested in optimal strategies (ξ?, b?) ∈ U [t, T ], i.e. in strategies

(ξ?, b?) = argsup
(ξ,b)∈U [t,T ]

V ξ,b(t, x, p, q).

Applying the arguments from Section 4.3, we get for any (ξ, b) ∈ U [t, T ]

V ξ,b(t, x, pt, qt) = Ṽ ξ,b(t, x) and thus V (t, x, pt, qt) = Ṽ (t, x), (t, x) ∈ [0, T ]× R.

That is, if we solve the reduced control problem (P2), the original problem (P) is also
solved (under setting of Section 5.1).

The following properties of the value function are analogous to those in Section 4.3,
compare Lemma 4.22.

Lemma 5.19. (i) For any (ξ, b) ∈ U [t, T ] and (t, x, p, q) ∈ [0, T ] × R × ∆m × N`0, it
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holds

V ξ,b(t, x, p, q) =
m∑
j=1

pj V
ξ,b(t, x, ej , q).

(ii) For any (t, x, q) ∈ [0, T ]× R× N`0, the function ∆m 3 p 7→ V (t, x, p, q) is convex.

Proof. The assertions follow from the same arguments as in the proof of Lemma 4.22.

5.4 The Hamilton-Jacobi-Bellman equation

In this section we proceed as in Section 4.4 by developing heuristically the generalized
HJB equation, of which a byproduct is a candidate for an optimal investment-reinsurance
strategy. Thus the starting point is the assumption that the DPP holds, i.e. the value
function V satisfies

V (t, x, p, q) = sup
(ξ,b)∈U [t,t0]

Et,x,p,q
[
V
(
t0, X

ξ,b
t0
, pt0 , qt0

)]
for all (t, x, p, q) ∈ [0, T ] × R ×∆m × N`0 and for some t0 ∈ [t, T ]. Recall that (qt)t≥0 is
a pure jump process and that (pt)t≥0 is an FV process. Therefore, assuming that V is
sufficient smooth, we obtain by Itô-Doeblin’s formula

V
(
t0, X

ξ,b
t0
, pt0 , qt0

)
= V

(
t,Xξ,b

t , pt, qt
)

+

∫ t0

t
Vt
(
s,Xξ,b

s , ps, qs
)

ds+

∫ t0

t
Vx
(
s,Xξ,b

s−, ps−, qs−
)

d(Xξ,b)cs

+

m∑
j=1

∫ t0

t
Vpj
(
s,Xξ,b

s−, ps−, qs−
)

dpcj(s) +
1

2

∫ t0

t
Vxx
(
s,Xξ,b

s−, ps−, qs−
)

d[Xξ,b]cs

+
∑

0<s≤t

(
V
(
s,Xξ,b

s , ps, qs
)
− V

(
s,Xξ,b

s−, ps−, qs−
))
.

According to Proposition 3.15 and Proposition 5.11, we get

V
(
t0, X

ξ,b
t0
, pt0 , qt0

)
= V

(
t,Xξ,b

t , pt, qt
)

+

∫ t0

t

(
Vt
(
s,Xξ,b

s , ps, qs
)

+ Vx
(
s,Xξ,b

s , ps, qs
)(
rXξ,b

s + (µ− r)ξs + c(bs)
)

+

m∑
j=1

Vpj
(
s,Xξ,b

s , ps, qs
)
pj(s)

(
Λ̂s − λj

)
+

1

2
Vxx
(
s,Xξ,b

s , ps, qs
)
σ2ξ2

s

)
ds

+

∫ t0

t
Vx
(
s,Xξ,b

s−, ps−, qs−
)
σξs dWs +

∑
0<s≤t

(
V
(
s,Xξ,b

s , ps, qs
)
− V

(
s,Xξ,b

s−, ps−, qs−
))
.

To calculate the sum in the equation above, recall the notation made on page 108 of
the function v given in (5.1). Once again with the help of Proposition 3.15 and Propo-
sition 5.11 as well as the definition of Ψ̂ given in (5.9), it follows∑

0<s≤t

(
V
(
s,Xξ,b

s , ps, qs
)
− V

(
s,Xξ,b

s−, ps−, qs−
))

=

∫ t

0

∫
Ed

(
V
(
s,Xξ,b

s− − bs
d∑
i=1

yi1z(i), J(ps−), v(qs−, z)
)
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− V
(
s,Xξ,b

s−, ps−, qs−
))

Ψ̂(ds, d(y, z))

+

∫ t

0
Λ̂s
∑
D⊂D

βD + qD(s)

‖β̄ + qs‖

∫
(0,∞)d

V
(
s,Xξ,b

s − bs
d∑
i=1

yi1D(i), J(ps), v(qs, D)
)
F (dy) ds

−
∫ t

0
Λ̂s V

(
s,Xξ,b

s , ps, qs
)

ds.

Therefore

V
(
t0, X

ξ,b
t0
, pt0 , qt0

)
= V

(
t,Xξ,b

t , pt, qt
)

+

∫ t0

t

(
Vt
(
s,Xξ,b

s , ps, qs
)

+ Vx
(
s,Xξ,b

s , ps, qs
)(
rXξ,b

s + (µ− r)ξs + c(bs)
)

+
m∑
j=1

Vpj
(
s,Xξ,b

s , ps, qs
)
pj(s)

( m∑
k=1

λk pk(s)− λj
)

+
1

2
Vxx
(
s,Xξ,b

s , ps, qs
)
σ2ξ2

s

+
m∑
k=1

λkpk(s)
∑
D⊂D

βD + qD(s)

‖β̄ + qs‖

∫
(0,∞)d

V
(
s,Xξ,b

s − bs
d∑
i=1

yi1D(i), J(ps), v(qs, D)
)
F (dy)

−
m∑
k=1

λk pk(s)V
(
s,Xξ,b

s , ps, qs
))

ds+

∫ t0

t
Vx
(
s,Xξ,b

s−, ps−, qs−
)
σ ξs dWs

+

∫ t

0

∫
Ed

(
V
(
s,Xξ,b

s− − bs
d∑
i=1

yi1z(i), J(ps−), v(qs−, z)
)

− V
(
s,Xξ,b

s−, ps−, qs−
))

Ψ̂(ds, d(y, z)).

Using the same arguments as in Section 4.4, we obtain

0 = sup
(ξ,b)∈R×[0,1]

{
Vt(t, x, p, q)−

m∑
k=1

λk pkV (t, x, p, q) +
1

2
σ2Vxx(t, x, p, q)ξ2

+ Vx(t, x, p, q)
(
rx+ (µ− r)ξ + c(b)

)
+

m∑
j=1

Vpj (t, x, p, q)pj

( m∑
k=1

λk pk − λj
)

+

m∑
k=1

λk pk
∑
D⊂D

βD + qD
‖β̄ + q‖

∫
(0,∞)d

V
(
t, x− b

d∑
i=1

yi1D(i), J(p), v(q,D)
)
F (dy)

}
.

(5.13)

Again, we have the following separation approach which follows by similar argumenta-
tions as in the proof of Lemma 4.24: For any (t, x, p, q) ∈ [0, T ] × R × ∆m × N`0, we
have

V (t, x, p, q) = −e−αxer(T−t)g(t, p, q) (5.14)

with
g(t, p, q) := inf

(ξ,b)∈U [t,T ]
gξ,b(t, p, q), (5.15)
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where

gξ,b(t, p, q) := Et,p,q
[

exp

{
−
∫ T

t
α er(T−s)

(
(µ− r) ξs + c(bs)

)
ds

−
∫ T

t
ασ er(T−s)ξs dWs +

∫ T

t

∫
Ed
α bs e

r(T−s)
d∑
i=1

yi1z(i) Ψ(ds, d(y, z))

}]
,

(5.16)

where Et,p,q denotes the conditional expectation given pt = p, qt = q. Before we use the
separation approach to rearrange Equation (5.13), let us mention some useful properties
of the introduced function g.

Lemma 5.20. The function g defined by (5.15) has the following properties:

(i) g is bounded on [0, T ]×∆m × N`0.

(ii) gξ,b(t, p, q) > 0 for all (t, p, q) ∈ [0, T ]×∆m × N`0 and (ξ, b) ∈ U [t, T ].

(iii) gξ,b(t, p, q) =
∑m

j=1 pj g
ξ,b(t, ej , q) for all (t, p, q) ∈ [0, T ] × ∆m × N`0 and (ξ, b) ∈

U [t, T ].

(iv) gξ,b(t, J(p), q) =
∑m

j=1
λj pj∑m
k=1 λk pk

gξ,b(t, ej , q) for all (t, p, q) ∈ [0, T ]×∆m ×N`0 and

(ξ, b) ∈ U [t, T ].

(v) gξ,b(t, p, q) =
∑

D⊂D
βD+qD
‖β̄+q‖ g

ξ,b(t, p, v(q,D)) for all (t, p, q) ∈ [0, T ]×∆m × N`0 and

(ξ, b) ∈ U [t, T ].

(vi) ∆m 3 p 7→ g(t, p, q) is concave for all (t, q) ∈ [0, T ]× N`0.

Proof. (i) This can be shown by the same method as in the proof of Lemma 4.25 (iii).

(ii) This statement follows immediately from the definition of gξ,b given in (5.16).

(iii) As in the proof of Lemma 5.19 (ii), the announced assertions follow by conditioning.

(iv) Once again, the statement follows by conditioning.

(v) Fix (t, p, q) ∈ [0, T ]×∆m ×N`0 and (ξ, b) ∈ U [t, T ]. Notice that gξ,b can be written
as

gξ,b(t, p, q) := Et,p,q
[

exp

{
−
∫ T

t
α er(T−s)

(
(µ− r) ξs + c(bs)

)
ds

−
∫ T

t
ασ er(T−s)ξs dWs + α

NT−t∑
n=1

bTn e
r(T−Tn)

d∑
i=1

Yn1Zn(i)

}]
,

compare (5.16), where p describes the intensity of the of the trigger process (Nt)t≥0

and q the distribution of the thinning probabilities, both given the relevant infor-
mation up to time t. We observe that

gξ,b(t, p, q) =

∫
A×∆̊`

h(λ, α̃)Pt,p,q(Λ ∈ dλ, ᾱ ∈ dα̃)
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with

h(λ, α̃) := Et,p,q
[

exp

{
−
∫ T

t
α er(T−s)

(
(µ− r) ξs + c(bs)

)
ds

−
∫ T

t
ασ er(T−s)ξs dWs + α

NT−t∑
n=1

bTn e
r(T−Tn)

d∑
i=1

Yn1Zn(i)

}
|Λ = λ, ᾱ = α̃

]
,

where, by Assumptions 3.3 and 5.7, Λ and ᾱ are conditional independent given
pt = p and qt = q, i.e.

Pt,p,q(Λ ∈ dλ, ᾱ ∈ dα̃) = Pt,p,q(Λ ∈ dλ)Pt,p,q(ᾱ ∈ dα̃).

Hence

gξ,b(t, p, q) =
m∑
k=1

Pt,p,q(Λ = λk)

∫
∆̊`

h(λk, α̃)Pt,p,q(ᾱ ∈ dα̃)

with Pt,p,q(Λ = λk) = pk and Pt,p,q(ᾱ ∈ dα̃) = fβ̄(α̃ | q)dα̃, where fβ̄(α̃ | q) denotes
the posterior density function of α̃ given qt = q, compare Theorem 5.4. That is,

fβ̄(α̃ | q) =
Γ
(∑

E⊂D(βE + qE)
)∏

E⊂D Γ
(
βE + qE

) ∏
E⊂D

αβE+qE−1
E , α̃ = (αE)E⊂D ∈ ∆̊`.

Consequently, the statement holds if∑
D⊂D

βD + qD
‖β̄ + q‖

fβ̄(α̃ | v(q,D)) = fβ̄(α̃ | q).

Indeed, using Γ(n+ 1) = nΓ(n) for all n ∈ N, we have for any α̃ = (αE)E⊂D ∈ ∆̊`∑
D⊂D

βD + qD
‖β̄ + q‖

fβ̄(α̃ | v(q,D))

=
∑
D⊂D

βD + qD
‖β̄ + q‖

Γ
(∑

E⊂D(βE + qE) + 1
)

Γ
(
βD + qD + 1

)∏
E⊂D\{D} Γ

(
βE + qE

)αβD+qD
D

∏
E⊂D\{D}

αβE+qE−1
E

=
∑
D⊂D

βD + qD∑
E⊂D(βE + qE)

(∑
E⊂D(βE + qE)

)
Γ
(∑

E⊂D(βE + qE)
)(

βD + qD
)∏

E⊂D Γ
(
βE + qE

) αD
∏
E⊂D

αβE+qE−1
E

=
Γ
(∑

E⊂D(βE + qE)
)∏

E⊂D Γ
(
βE + qE

) ∏
E⊂D

αβE+qE−1
E

∑
D⊂D

αD

= fβ̄(α̃ | q),

since
∑

D⊂D αD = 1.

(vi) We can conclude the assertion by using (5.14) and the convexitiy of V w.r.t. p,
compare Lemma 5.19 (ii).

The separation approach (5.14) implies

Vt(t, x, p, q) = −e−αxer(T−t)
(
αx r er(T−t)g(t, p, q) + gt(t, p, q)

)
,

Vx(t, x, p, q) = −e−αxer(T−t)
(
− α er(T−t)g(t, p, q)

)
,
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Vxx(t, x, p, q) = −e−αxer(T−t)α2 e2r(T−t)g(t, p, q),

Vpj (t, x, p, q) = −e−αxer(T−t)gpj (t, p, q), j = 1, . . . ,m.

The partial derivative w.r.t. t and pj , j = 1, . . . ,m, are only defined on the open sets
(0, T ) and (0, 1), respectively. However, we will generalize this partial derivatives later.
Using the relations derived above as well as

V
(
t, x− b

d∑
i=1

yi1D(i), p, q
)

= −e−αxer(T−t) exp

{
α b er(T−t)

d∑
i=1

yi1D(i)

}
g(t, p, q),

we conclude from (5.13)

0 = inf
(ξ,b)∈R×[0,1]

{
gt(t, p, q)−

m∑
k=1

λk pk g(t, p, q) +

m∑
j=1

gpj (t, p, q)pj

( m∑
k=1

λk pk − λj
)

− α er(T−t)g(t, p, q)
(

(µ− r)ξ + c(b)− 1

2
ασ2 er(T−t)ξ2

)
+

m∑
k=1

λk pk
∑
D⊂D

βD + qD
‖β̄ + q‖

g
(
t, J(p), v(q,D)

) ∫
(0,∞)d

exp

{
α b er(T−t)

d∑
i=1

yi1D(i)

}
F (dy)

}
.

(5.17)
Notice that

−e−αxg(T, p, q) = V (T, x, p, q) = ET,x,p,q
[
U(Xξ,b

T )
]

= −e−αx

for all (x, p, q) ∈ R×∆m × N`0, i.e.

g(T, p, q) = 1, (p, q) ∈ ∆m × N`0.

However, g is probably not differentiable w.r.t. t and pj , j = 1, . . . ,m, since every
component of the state process jumps. Assuming (t, p) 7→ g(t, p, q) is Lipschitz on
[0, T ] × ∆m for all q ∈ N`0, we can replace the partial derivatives of g w.r.t. t and pj ,
j = 1, . . . ,m, by Clarke’s generalized gradient, compare Section 2.1. For this purpose,
we introduce the following notation.

Notation. For fixed q ∈ N`0, we write gq(t, p) : [0, T ] × ∆m → (0,∞) for the function
which is given by

gq(t, p) := g(t, p, q), (t, p) ∈ [0, T ]×∆m.

Furthermore, we denote the components of an (m+ 1)-dimensional vector ϕ ∈ ∂Cgq(t, p)
by ϕ = (ϕ0, ϕ1, . . . , ϕm).

We further introduce the following operator.

Notation. Throughout this chapter, let L denote an operator acting on functions g :
[0, T ]×∆m × N`0 → (0,∞) and (ξ, b) ∈ R× [0, 1] which is defined by

L g(t, p, q; ξ, b)

:= −
m∑
k=1

λk pk g(t, p, q)− α er(T−t)g(t, p, q)
(

(µ− r)ξ + c(b)− 1

2
ασ2 er(T−t)ξ2

)
+

m∑
k=1

λkpk
∑
D⊂D

βD + qD
‖β̄ + q‖

g
(
t, J(p), v(q,D)

) ∫
(0,∞)d

exp

{
αber(T−t)

d∑
i=1

yi1D(i)

}
F (dy).

(5.18)



124 Chapter 5 Unknown claim arrival intensities

Using this operator and replacing the partial derivatives of g w.r.t. t and pj , j =
1, . . . ,m, in (5.17) by the generalized gradient, we get the generalized HJB equation for
g:

0 = inf
(ξ,b)∈R×[0,1]

{
L g(t, p, q; ξ, b)

}
+ inf
ϕ∈∂Cgq(t,p)

{
ϕ0 +

m∑
j=1

ϕj pj

( m∑
k=1

λk pk − λj
)}

(5.19)

for all (t, p, q) ∈ [0, T ]×∆m × N`0 with the boundary condition

g(T, p, q) = 1, (p, q) ∈ ∆m × N`0. (5.20)

Note that we set ∂Cgq(t, p) = {∇gq(t, p)} at the points (t, p) where the gradient exists.
In the next section we continue to determine a candidate for an optimal strategy.

5.5 Candidate for an optimal strategy

To obtain candidates for an optimal strategy, we rewrite the generalized HJB equa-
tion (5.19). But first, it should be noted that g(t, p, q) ≥ 0 for all (t, p, q) ∈ [0, T ]×∆m×
N`0 which is an immediate consequence of Lemma 5.20 (i). However, in the following
we need positiveness of the function g, which is assumed from now on throughout this
section. Then we obtain from (5.19)

0 = −
m∑
k=1

λk pk g(t, p, q) + α er(T−t)g(t, p, q) inf
ξ∈R

f1(t, ξ) + inf
b∈[0,1]

f2(t, p, q, b)

+ inf
ϕ∈∂Cgq(t,p)

{
ϕ0 +

m∑
j=1

ϕj pj

( m∑
k=1

λk pk − λj
)}

,

(5.21)

where f1 is defined by (4.27) and

f2(t, p, q, b) := −α er(T−t) c(b) g(t, p, q) +
m∑
k=1

λk pk
∑
D⊂D

βD + qD
‖β̄ + q‖

g
(
t, J(p), v(q,D)

)
×

∫
(0,∞)d

exp

{
α b er(T−t)

d∑
i=1

yi1D(i)

}
F (dy).

Hence we can conclude from Section 4.5 that the unique candidate of an optimal invest-
ment strategy ξ? = (ξ?(t))t∈[0,T ] is given by

ξ?(t) =
µ− r
σ2

1

α
e−r(T−t), t ∈ [0, T ]. (5.22)

We next proceed similar to Section 4.6 to obtain a candidate for an optimal reinsurance
strategy. Using the reinsurance premium model given in (3.6), we get

f2(t, p, q, b) =− α er(T−t) g(t, p, q)(η − θ)κ− α er(T−t) g(t, p, q)(1 + θ)κ b

+
m∑
k=1

λk pk
∑
D⊂D

βD + qD
‖β̄ + q‖

g
(
t, J(p), v(q,D)

)
×

∫
(0,∞)d

exp

{
α b er(T−t)

d∑
i=1

yi1D(i)

}
F (dy).

(5.23)



5.5 Candidate for an optimal strategy 125

The following lemma yields the first order condition for a candidate of an optimal rein-
surance strategy.

Lemma 5.21. For any (t, p, q) ∈ [0, T ]×∆m ×N`0, the function R 3 b 7→ f2(t, p, q, b) is
strictly convex and

∂

∂b
f2(t, p, q, b) = −α er(T−t)

(
g(t, p, q) (1 + θ)κ−

∑
D⊂D

βD + qD
‖β̄ + q‖

g
(
t, J(p), v(q,D)

)
×

d∑
i=1

1D(i)

∫
(0,∞)d

yi exp

{
α b er(T−t)

d∑
j=1

yj1D(j)

}
F (dy)

m∑
k=1

λk pk

)
.

Proof. The lemma can be proven with the same arguments as Lemma 4.27.

The previous lemma provides a criterion for a candidate of an optimal reinsurance
strategy as well as the uniqueness of the candidate. The criterion is expressed with help
of the following notation.

Notation. For any (t, p, q) ∈ [0, T ]×∆m × N`0 and b ∈ R, we define

hF (t, p, q, b) :=
m∑
k=1

λk pk
∑
D⊂D

βD + qD
‖β̄ + q‖

g
(
t, J(p), v(q,D)

)
g(t, p, q)

×

d∑
i=1

1D(i)

∫
(0,∞)d

yi exp

{
α b er(T−t)

d∑
j=1

yj1D(j)

}
F (dy).

(5.24)

Furthermore, we set

AF (t, p, q) := hF (t, p, q, 0),

BF (t, p, q) := hF (t, p, q, 1).

Before we state the announced first order condition for the optimal reinsurance strat-
egy, let us mention an alternative reinsurance premium model.

Remark 5.22. As in Remark 4.28, we discuss shortly a time-dependent premium cal-
culation principle. Recall that by Proposition 5.18

E[dSt] =
m∑
k=1

λk πΛ(k)
∑
D⊂D

βD
‖β̄‖

d∑
i=1

1D(i)E
[
Y i

1

]
= Λ̂0

∑
D⊂D

E[αD]

d∑
i=1

1D(i)E
[
Y i

1

]
.

It has already been explained in Remark 4.28 that it is reasonable to replace the a priori
estimators of unknown parameters in the expression above by the posterior estimators
given the available information such that κ depends on the processes p and q, which
include all relevant available information:

κF (p, q) =
m∑
k=1

λk pk
∑
D⊂D

βD + qD
‖β̄ + q‖

d∑
i=1

1D(i)E
[
Y i

1

]
.
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Then it can be shown by similar arguments as in the proof of Theorem 5.31 that

AF (t, p, q)

κF (p, q)
=

∑
D⊂D

βD+qD
‖β̄+q‖

g(t,J(p),v(q,D))
g(t,p,q)

d∑
i=1

1D(i)E[Y i
1 ]

∑
D⊂D

βD+qD
‖β̄+q‖

d∑
i=1

1D(i)E[Y i
1 ]

≥ 1,

under the assumption (which is no loss of generality) of an increasing order of (v(q,D))D⊂D
w.r.t. �, where � is the order of N`0 defined by

q � q′ :⇐⇒
∑
D⊂D

βD + qD
‖β̄ + q‖

d∑
i=1

1D(i)E[Y i
1 ] ≤

∑
D⊂D

βD + q′D
‖β̄ + q′‖

d∑
i=1

1D(i)E[Y i
1 ] (5.25)

for every q = (qD)D⊂D, q
′ = (q′D)D⊂D ∈ N`0. Using the premium model introduced

above, it may be shown that the optimal strategy is described by (5.27) with κ replaced
by κ(p, q). Furthermore, an analogous comparison result applies as in Corollary 5.32.

Now we move on to the aforementioned condition for the optimal reinsurance strategy
further under the assumption of constant κ. Setting ∂

∂bf2 to zero (cf. Lemma 5.21), we
obtain the first order condition

(1 + θ)κ = hF (t, p, q, a). (5.26)

By establishing this equation w.r.t. a we obtain a minimizer of f2 w.r.t. b. If such a
minimizer exists then the minimizer is unique because of the strict convexity property
of f2 w.r.t. a. The next proposition states that this equation is solvable and the solution
takes values in [0, 1] depending on the safety loading parameter θ of the reinsurer.

Proposition 5.23. For any (t, p, q) ∈ [0, T ]×∆m×N`0, Equation (5.26) has the unique
root w.r.t. a, denoted by rF (t, p, q), which is increasing w.r.t. the safety loading parameter
of the reinsurer θ. Moreover, it holds,

(i) rF (t, p, q) ≤ 0 if θ ≤ AF (t, p, q)/κ− 1,

(ii) 0 < rF (t, p, q) < 1 if AF (t, p, q)/κ− 1 < θ < BF (t, p, q)/κ− 1,

(iii) rF (t, p, q) ≥ 1 if θ ≥ BF (t, p, q)/κ− 1.

Proof. This follows by the same method as in the proof of Proposition 4.29.

Notation. Throughout this chapter, rF (t, p, q) denotes the unique root from Proposi-
tion 5.23.

Notice that the cases (i) and (ii) in the proposition above could be empty sets. These
cases would certainly be possible by using the setting given in Remark 5.22 with the
modified κF (p, q) depending on p and q. However, we carry on with the constant κ >
0. Therefore, the proposition above provides the candidate for an optimal reinsurance
strategy with the same structure as in Section 4.6. For any (t, p, q) ∈ [0, T ]×∆m × N`0,
we set

bF (t, p, q) :=


0, θ ≤ AF (t, p, q)/κ− 1,

1, θ ≥ BF (t, p, q)/κ− 1,

rF (t, p, q), otherwise.

(5.27)
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Then the candidate for an optimal reinsurance strategy (b?F (t))t∈[0,T ] is given by b?F (t) :=
bF (t−, pt−, qt−). It is worth noting that the interpretation about the optimal reinsurance
strategy given in Remark 4.30 applies here as well.

5.6 Verification

This section is devoted to a verification theorem to ensure that the solution of the
stated generalized HJB equation yields the value function (see Theorem 5.24). We also
demonstrate an existence theorem of a solution of the HJB equation (see Theorem 5.26),
where we adapt the method from Section 4.7.

5.6.1 The verification theorem

Theorem 5.24. Suppose there exists a bounded function h : [0, T ]×∆m ×N`0 → (0,∞)
such that t 7→ h(t, p, q) and t 7→ h(t, φ(t), q) with φ(0) = p are Lipschitz on [0, T ] for
all (p, q) ∈ ∆m × N`0 as well as p 7→ h(t, p, q) is concave for all (t, q) ∈ [0, T ] × N`0.
Furthermore, h satisfies the generalized HJB equation

0 = inf
(ξ,b)∈R×[0,1]

{L h(t, p, q, ξ, b)}+ inf
ϕ∈∂Chq(t,p)

{
ϕ0 +

m∑
j=1

ϕj pj

( m∑
k=1

λk pk−λj
)}

, (5.28)

for all (t, p, q) ∈ [0, T )×∆m × N`0 with boundary condition

h(T, p, q) = 1, (p, q) ∈ ∆m × [0, T ]. (5.29)

Then

V (t, x, p, q) = −e−αxer(T−t)h(t, p, q), (t, x, p, q) ∈ [0, T ]× R×∆m × N`0,

and (ξ?, b?F ) = (ξ?(s), b?F (s))s∈[t,T ] with ξ?(s) given by (4.29) and b?F (s) := bF (s−, ps−, qs−)
given by (5.27) (with g replaced by h in AF (s, p, q) and BF (s, p, q)) is an optimal feedback
strategy for the given optimization problem (P2), i.e. V (t, x, p, q) = V ξ?,b?F (t, x, p, q).

Same as in the previous chapter, an auxiliary result is essential to prove the theo-
rem above, which can be shown with the aid of a measurement change introduced in
Lemma A.10. This requires again a restriction of the admissible strategy and further
notation.

Notation. Throughout this chapter, we set, for any t ∈ [0, T ),

Ũ [t, T ] := {(ξ, b) ∈ U [t, T ] : ∃ 0 < K <∞ : |ξs| ≤ K ∀ s ∈ [t, T ],

ξ = (ξs)s∈[t,T ] is continuous and FW -adapted, b = (bs)s∈[t,T ] is FΨ-predictable}.
(5.30)

Moreover, we define
Ṽ (t, x, p, q) := sup

(ξ,b)∈Ũ [t,T ]

V ξ,b(t, x, p, q) (5.31)

for all (t, p, q) ∈ [0, T ] × R × ∆m × N`0 and the operator D acting on function h :
[0, T ]×∆m × N`0 → (0,∞) by

Dh(t, p, q) := ht(t, p, q) +

m∑
j=1

hpj (t, p, q) pj

( m∑
k=1

λk pk − λj
)

(5.32)
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for all functions h, where the right-hand side exists. Furthermore, we define an operator
H acting on functions v : [0, T ]×∆m × N`0 → (0,∞) and (ξ, b) ∈ R× [0, 1] by

H v(t, p, q; ξ, b) := L v(t, p, q; ξ, b) +Dv(t, p, q) (5.33)

for all functions v : [0, T ]×∆m×N`0 → (0,∞), where the right-hand side is well-defined.

Using this notation, the generalized HJB equation (5.19) can be written as

0 = inf
(ξ,b)∈R×[0,1]

{H g(t, p, q; ξ, b)}

at those points (t, p, q) with existing Dg(t, p, q). With this in mind, Lemma A.15 can be
proven which is of decisive importance in the proof of the Verification Theorem 5.24.

Proof of Theorem 5.24. Using the Lemmata A.13, A.14 and A.15, the proof takes place
complete analogously to the proof of Theorem 4.31.

5.6.2 Existence result for the value function

We proceed as in Section 4.7.2 and show that there exists a function h : [0, T ]×∆m×N`0 →
(0,∞) satisfying the conditions stated in Theorem 5.24. For this purpose, let us define

g̃(t, p, q) := inf
(ξ,b)∈Ũ [t,T ]

gξ,b(t, p, q), (t, p, q) ∈ [0, T ]×∆m × N`0, (5.34)

where gξ,b is given by (5.15) and Ũ [t, T ] by (5.30). We begin with some properties of
this function proved in a similar manner as Lemma 4.32.

Lemma 5.25. The function g̃ defined by (5.34) has the following properties:

(i) g̃(t, p, q) > 0 for all (t, p, q) ∈ [0, T ]×∆m × N`0.

(ii) Ũ [0, T ] 3 (ξ, b) 7→ gξ,b(0, p, q) is bounded for all (p, q) ∈ ∆m × N`0.

(iii) There exists a constant 0 < K3 < ∞ such that
∣∣g̃(t, p, q)

∣∣ ≤ K3 for all (t, p, q) ∈
[0, T ]×∆m × N`0.

(iv) ∆m 3 p 7→ g̃(t, p, q) is concave for all (t, q) ∈ [0, T ]× N`0.

(v) [0, T ] 3 t 7→ g̃(t, p, q) is Lipschitz on [0, T ] for all (p, q) ∈ ∆m × N`0.

(vi) [0, T ] 3 t 7→ g̃(t, φ(t), q) with φ(0) = p is Lipschitz on [0, T ] for all (p, q) ∈ ∆m×N`0.

(vii) Let M be the set of all points (t, p, q) ∈ [0, T ]×∆m × N`0, where D g̃ exists. Then
there exists a constant 0 < K4 < ∞ such that |D g̃(t, p, q)| ≤ K4 for all (t, p, q) ∈
M .

(viii) There exists a constant 0 < K5 < ∞ such that
∣∣L g̃(t, p, q; ξ, b)

∣∣ ≤ K5 for all
(t, p, q) ∈ [0, T ]×∆m × N`0 and (ξ, b) ∈ [−K,K]× [0, 1].

(ix) There exists a constant 0 < K6 <∞ such that
∣∣ inf(ξ,b)∈[−K,K]×[0,1] L g̃(t, p, q; ξ, b)

∣∣ ≤
K6 for all (t, p, q) ∈ [0, T ]×∆m × N`0.
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Proof. (i) Let us fix (t, p, q) ∈ [0, T ] ×∆m × N`0 as well as (ξ, b) ∈ Ũ [t, T ]. Using the
change of measure defined in Lemma A.10, it follows from the definition of gξ,b

given in (5.16) that

gξ,b(t, p, q) = Et,p,q
Qξ,bt

[
exp

{∫ T

t

(
− α er(T−s)

(
(µ− r)ξs + c(bs)−

1

2
ασ2 er(T−s)ξ2

s

)
− Λ̂s + Λ̂s

∑
D⊂D

βD + qD(s)

‖β̄ + qs‖

∫
(0,∞)d

exp

{
α bs e

r(T−s)
d∑
i=1

yi1D(i)

}
F (dy)

)
ds

}]
.

Taking (4.46) into account, we obtain

gξ,b(t, p, q) ≥ exp
{
− αT erT

(
|µ− r|K + (1 + η)κ

)
−mλm T

}
=: C > 0.

Hence, due to the arbitrariness of (ξ, b) ∈ Ũ [t, T ], the infimum of gξ,b(t, p, q) over
all (ξ, b) ∈ Ũ [t, T ] is greater than or equal to C which yields the statement by
definition of g̃ given in (5.34).

(ii) Fix (p, q) ∈ ∆m ×N`0. From the definition of gξ,b given in (5.16) and Lemma A.10,
we get

∣∣gξ,b(0, p, q)∣∣ = E0,p,q

Qξ,bT

[
exp

{∫ T

0

(
− αer(T−s)

(
(µ− r)ξs + c(bs)−

1

2
ασ2er(T−s)ξ2

s

)
+ Λ̂s

∑
D⊂D

βD + qD(s)

‖β̄ + qs‖

∫
(0,∞)d

exp

{
α bs e

r(T−s)
d∑
i=1

yi1D(i)

}
F (dy)− Λ̂s

)
ds

}]
≤ exp

{
αerT

(
|µ− r|K + (2 + η + θ)κ+

1

2
ασ2erTK2

)
T +mλmMF (αerT )T

}
,

which yields statement (i), where we have used the same arguments as in the proof
of Lemma A.11 for the last inequality above which is possible since Ũ [t, T ] ⊂ U [t, T ].

(iii) The statement follows immediately from Lemma 5.20 (i).

(iv) The announced assertion is directly implied by Lemma 5.20 (vi).

(v) Let us fix (t, p, q) ∈ [0, T ]×∆m×N`0. Following the proof of Lemma 4.32 (iv) and
using Lemma A.10, for any 0 ≤ t1 < t2 ≤ T and ε > 0, there exists a strategy
(ξ̄, b̄) ∈ Ũ [0, T − t1] such that∣∣g̃(t1, p, q)− g̃(t2, p, q)

∣∣
≤
∣∣∣∣E0,p,q

Qξ̄,b̄T−t1

[
exp

{∫ T−t2

0
Fs ds

}(
exp

{∫ T−t1

T−t2
Fs ds

}
− 1

)]∣∣∣∣+ ε

≤
∣∣∣∣E0,p,q

Qξ̄,b̄T−t1

[
exp

{∫ T

0
|Fs|ds

}(
exp

{∫ T−t1

T−t2
|Fs| ds

}
− e0

)]∣∣∣∣+ ε

where

Fs := −αer(T−s)
(

(µ− r)ξs + c(bs)−
1

2
ασ2er(T−s)ξ2

s

)
+ Λ̂s

∑
D⊂D

βD + qD(s)

‖β̄ + qs‖

∫
(0,∞)d

exp

{
αbse

r(T−s)
d∑
i=1

yi1D(i)

}
F (dy)− Λ̂s.
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Same as in the proof of statement (ii), we have |Fs| ≤ C for every s ∈ [0, T ], where

C := αerT
(
|µ− r|K + (2 + η + θ)κ+

1

2
ασ2erTK2

)
+mλmMF (αerT ).

Therefore, by Proposition B.1,∣∣g̃(t1, p, q)− g̃(t2, p, q)
∣∣

≤
∣∣∣∣E0,p,q

Qξ̄,b̄T−t1

[
eCT eCT (e− 1)

(∫ T−t1

T−t2
|Fs|ds− 0

)]∣∣∣∣+ ε

≤
∣∣e2CT (e− 1)C(T − t1 − T + t2)

∣∣+ ε ≤ e2CT (e− 1)C|t2 − t1|+ ε.

By ε ↓ 0, we get that t 7→ g̃(t, p, q) is Lipschitz on [0, T ] of rank L := e2CT (e− 1)C.

(vi) The approach of this proof is taken from the proof of Lemma 6.1 e) in Bäuerle and
Rieder [31]. Fix (t, p, q) ∈ [0, T ]×∆m × N`0 and 0 ≤ t1 < t2 ≤ T . We first observe
that ∣∣g̃(t2, φ(t2), q)− g̃(t1, φ(t1), q)

∣∣
≤
∣∣− g̃(t2, φ(t2), q)− (−g̃(t2, φ(t1), q))

∣∣+
∣∣g̃(t2, φ(t1), q)− g̃(t1, φ(t1), q)

∣∣.
According to statement (iii), we have∣∣g̃(t2, φ(t1), q)− g̃(t1, φ(t1), q)

∣∣ ≤ K3 |t2 − t1|.

Moreover, in the case that p is located on the boundary of ∆m, we have φ(t1) =
φ(t2) = p and thus

∣∣ − g̃(t2, φ(t2), q) − (−g̃(t2, φ(t1), q))
∣∣ = 0. In the following,

we consider the case p ∈ ∆̊m. By statement (iv), g̃(t2, ·, q) is concave on ∆̊m

and thus it follows from Theorem 2.2 that g̃(t2, ·, q) ∈ Liploc(∆̊m). Due to the
continuity of φ, φmin := mint∈[0,T ] φ(t) and φmax := maxt∈[0,T ] φ(t) ∈ ∆̊m exist

and thus φ : [0, T ] → [φmin, φmax] ⊂ ∆̊m, i.e. φ maps on a compact subset of
∆̊m. Hence, g̃(t2, φ(·), q) ∈ Lip([φmin, φmax]), and, in consequence, there exists a
constant 0 < K7 <∞ such that∣∣− g̃(t2, φ(t2), q)− (−g̃(t2, φ(t1), q))

∣∣ ≤ K7|t2 − t1|.

From Proposition 5.14 (ii), we know that t 7→ φ(t) is Lipschitz of some rank 0 <
K8 <∞, where K8 is independent of p. In summary, we obtain∣∣g̃(t2, φ(t2, p), q)− g̃(t1, φ(t1, p), q)

∣∣ ≤ (K7K8 +K3) |t2 − t1|.

(vii) Fix (t, p, q) ∈M and thus p ∈ ∆̊m. Using statement (v) as well as the local Lips-
chitz property of convex functions on convex open sets, here ∆̊m (see Theorem 2.2),
we obtain∣∣D g̃(t, p, q)

∣∣ ≤ lim
h↓0

1

h

∣∣∣∣g̃(t+ h, p, q)− g̃(t, p, q)

∣∣∣∣
+

m∑
j=1

lim
h↓0

1

h

∣∣∣∣− g̃(t, p+ hej , q)− (−g̃(t, p, q))

)∣∣∣∣ pj ∣∣∣∣ m∑
k=1

pk λk − λj
∣∣∣∣
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≤ lim
h↓0

1

h
L1 h+ lim

h↓0

1

h

m∑
j=1

Lj2 h

∣∣∣∣ m∑
k=1

pk λk − λj
∣∣∣∣ ≤ L1 +

m∑
j=1

Lj2 (m+ 1)λm =: K4

for some constants 0 < L1 <∞ and 0 < L1
2, . . . , L

m
2 <∞.

(viii) Fix (t, p, q) ∈ [0, T ] × ∆m × N`0 and (ξ, b) ∈ [−K,K] × [0, 1]. It follows from the
definition of L given in (5.18) statement (iii) that

∣∣L g̃(t, p, q; ξ, b)
∣∣ ≤ K3

(
mλm + α erT

(
|µ− r|K + (2 + η + θ)κ+

1

2
ασ2erTK2

)
+mλmMF

(
α erT

))
=: K5

(ix) Fix (t, p, q) ∈ [0, T ] × ∆m × N`0. In the same way as in the proof the previous
statement, the following results arise by taking account of (4.30), (5.21) and (5.23):∣∣ inf

(ξ,b)∈[−K,K]×[0,1]
L g̃(t, p, q; ξ, b)

∣∣
≤ K3

(
mλm+αerT

1

2

(µ− r)2

σ2

1

α
+ αerT (2+η+θ)κ+mλmMF (αerT )

)
=: K6.

The proof of the next existence result of a solution of the generalized HJB equation is
quite similar to the proof of Theorem 4.33, for which reason some analogous argumen-
tation is omitted.

Theorem 5.26. The value function of the investment-reinsurance problem stated in (P2)
is given by

V (t, x, p, q) = −e−αxer(T−t)g(t, p, q), (t, x, p, q) ∈ [0, T ]× R×∆m × N`0,

where g is defined by (5.34) and satisfies the generalized HJB equation

0 = inf
(ξ,b)∈R×[0,1]

{L g(t, p, q; ξ, b)}+ inf
ϕ∈∂Cgq(t,p)

{
ϕ0 +

m∑
j=1

ϕj pj

( m∑
k=1

λk pk − λj
)}

for all (t, p, q) ∈ [0, T ]×∆m × N`0 with boundary condition g(T, p, q) = 1 for all (p, q) ∈
∆m × N`0. Furthermore, (ξ?, b?F ) = (ξ?(s), b?F (s))s∈[t,T ] with ξ?(s) given by (4.29) and
b?F (s) = bF (s−, ps−, qs−) given by (5.27) is the optimal investment-reinsurance strategy
of the Problem (P2).

Proof. We follow the proof of Theorem 4.33. Fix t ∈ [0, T ) and (ξ, b) ∈ Ũ [t, T ] and set

f(t, x) := −e−αxer(T−t) , (t, x) ∈ [0, T ]× R.

Let τ be the first jump time of Xξ,b after t, τ ′ the last jump of Xξ,b before τ and
t′ ∈ (t, T ]. Since Ũ [t, T ] ⊂ U [t, T ], it follows from Lemma A.15 that

Ṽ (τ ∧ t′, Xξ,b
τ∧t′ , pτ∧t′ , qτ∧t′)

= Ṽ (t,Xξ,b
t , pt, qt) +

∫ τ∧t′

t
f(s,Xξ,b

s ) H g̃(s, ps, qs; ξs, bs) ds+ ηξ,bτ∧t′ − η
ξ,b
t ,

(5.35)

where (ηξ,bt )t∈[0,T ] is a G-martingale starting at zero and we set H g̃(s, ps, qs; ξs, bs) to
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zero at those s ∈ [t, T ] where the Dg̃(s, ps, qs) does not exist. Using the same arguments
as in the proof of Theorem 4.33, we obtain

0 ≥ lim
t′↓t

Et,x,p,q
[

1

t′ − t

∫ t′

t
f(s,Xξ,b

s ) H g̃(s, ps, qs; ξs, bs) ds | t′ < τ

]
Pt,x,p,q(t′ < τ)

+ lim
t′↓t

Et,x,p,q
[

1

t′ − t

∫ τ

t
f(s,Xξ,b

s ) H g̃(s, ps, qs; ξs, bs) ds | t′ ≥ τ
]
Pt,x,p,q(t′ ≥ τ).

Again according to the proof of Theorem 4.33, we have Pt,x,p,qλ (τ > t′) = e−λ(t′−t) P-a.s.
and, in consequence,

Pt,x,p,q(τ ≤ t′) =

∫
A
Pλ(τ ≤ t′) ΠΛ(dλ) =

m∑
j=1

(
1− e−λ(t′−t)

)
πΛ(j).

Thus

lim
t′↓t

Pt,x,p,q(τ ≤ t′) =
m∑
j=1

(
1− lim

t′↓t
e−λ(t′−t)

)
πΛ(j) = 0.

Consequently,

0 ≥ lim
t′↓t

Et,x,p,q
[

1

t′ − t

∫ t′

t
f(s,Xξ,b

s ) H g̃(s, ps, qs; ξs, bs) ds1{t′<τ}

]
.

Notice that, due to Lemma 5.25 (vii) and (viii) as well as Lemma A.11

Et,x,p,q
[

1

t′ − t

∫ t′

t
f(s,Xξ,b

s ) H g̃(s, ps, qs; ξs, bs) ds1{t′<τ}

]
≤ Et,x,p,q

[
1

t′ − t

∫ t′

t
|f(s,Xξ,b

s )|(K5 +K4) ds

]
≤ K4 +K5

t′ − t

∫ t′

t
Et,x,p,q
Qξ,bs

[
|f(s,Xξ,b

s )|
Lξ,bs

]
ds

≤ K4 +K5

t′ − t
K1(t′ − t) = (K4 +K5)K1 <∞.

Therefore, by the dominated convergence theorem, we can interchange the limit and the
expectation. That is,

0 ≥ Et,x,p,q
[

lim
t′↓t

1

t′ − t

∫ t′

t
f(s,Xξ,b

s ) H g̃(s, ps, qs; ξs, bs) ds1{t′<τ}

]
.

As in the proof of Theorem 4.33, we obtain by the FTLC and 1{t′<τ} → 1 P-a.s. for
t′ ↓ t.

0 ≥ Et,x,p,q
[
f(t,Xξ,b

t ) H g̃(t, pt, qt; ξt, bt) ds

]
.

From now on, let (ξ, b) ∈ [−K,K]× [0, 1] and ε > 0 as well as (ξ̄, b̄) ∈ Ũ [t, T ] be a fixed
strategy with (ξ̄s, b̄s) ≡ (ξ, b) for s ∈ [t, t+ ε). Then

0 ≥ Et,x,p,q
[
f(t,X ξ̄,b̄

t ) H g̃(t, pt, qt; ξ̄t, b̄t) ds

]
= f(t, x)H g̃(t, p, q; ξ, b)
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at those points (t, p, q), where Dg̃(t, p, q) exists. On account of the negativity of f , we
get

0 ≤H g̃(t, p, q; ξ, b).

In the light of the arbitrariness of (ξ, b), we obtain

0 ≤ inf
(ξ,b)∈[−K,K]×[0,1]

{
H g̃(t, p, q; ξ, b)

}
.

We show next the inequality above if Dg̃ does not exist. For this purpose, let Mq ⊂
[0, T ] × ∆m denote the set of points at which ∇g̃q(t, p) exists for any q ∈ N`0. On the
basis of Theorem 2.9, we have, for any q ∈ N`0,

∂Cg̃q(t, p) = co
{

lim
n→∞

∇g̃q(tn, pn) : (tn, pn)→ (t, p), (tn, pn) ∈Mq

}
.

That is, for every ϕ ∈ ∂Cg̃q(t, p) ⊂ [0, T ]×∆m, there exists u ∈ N and (β1, . . . , βu) ∈ ∆u

such that ϕ =
∑u

i=1 βi ϕ
i, where ϕi = limn→∞∇g̃q(tin, pin) for sequences (tin, p

i
n)n∈N with

limn→∞(tin, p
i
n) = (t, p) along with existing ∇g̃q. From what has already been proved, it

can be concluded that, for any i = 1, . . . , u

0 ≤ L g̃(tin, p
i
n, q; ξ, b) + g̃t(t

i
n, q

i
n, q) +

m∑
j=1

g̃pj (t
i
n, p

i
n, q)(p

i
n)j

( m∑
k=1

λk(p
i
n)k − λj

)
,

where (pin)j , j = 1, . . . ,m, denotes the jth component of the m-dimensional vector pin.
Thus, by the continuity of t 7→ g̃(t, p, q), p 7→ g̃(t, p, q) and p 7→ J(p), we get

0 ≤ βiL g̃(t, p, q; ξ, b) + βi lim
n→∞

g̃t(t
i
n, q

i
n, q)

+

m∑
j=1

βi lim
n→∞

g̃pj (t
i
n, p

i
n, q)pj

( m∑
k=1

λk pk − λj
)
, i = 1, . . . , u,

which yields

0 ≤ L g̃(t, p, q; ξ, b)

u∑
i=1

βi +

u∑
i=1

βi lim
n→∞

g̃t(t
i
n, q

i
n, q)

+

m∑
j=1

u∑
i=1

βi lim
n→∞

g̃pj (t
i
n, p

i
n, q)pj

( m∑
k=1

λk pk − λj
)

= L g̃(t, p, q; ξ, b) + ϕ0 +

m∑
j=1

ϕj pj

( m∑
k=1

λk pk − λj
)
.

Due to the arbitrariness of ϕ ∈ ∂Cg̃q(t, p) and (ξ, b) ∈ [−K,K]× [0, 1], we obtain

0 ≤ inf
(ξ,b)∈[−K,K]×[0,1]

{
L g̃(t, p, q; ξ, b)

}
+ inf
ϕ∈∂Cgq(t,p)

{
ϕ0 +

m∑
j=1

ϕj pj

( m∑
k=1

λk pk − λj
)}

.

As next objective we can establish the reverse inequality with the same arguments as in
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the proof of Theorem 4.33. To summarize, we have

0 = inf
(ξ,b)∈[−K,K]×[0,1]

{
L g̃(t, p, q; ξ, b)

}
+ inf
ϕ∈∂Cgq(t,p)

{
ϕ0 +

m∑
j=1

ϕj pj

( m∑
k=1

λk pk − λj
)}

.

With the same arguments as in the proof of Theorem 4.33, we get

inf
(ξ,b)∈R×[0,1]

{
L g̃(t, p, q; ξ, b)

}
= inf

(ξ,b)∈[−K,K]×[0,1]

{
L g̃(t, p, q; ξ, b)

}
and that

g̃(t, p, q) = inf
(ξ,b)∈Ũ [t,T ]

gξ,b(t, p, q) = inf
(ξ,b)∈U [t,T ]

gξ,b(t, p, q) = g(t, p, q).

Therefore, it follows from Lemma 5.25 (i), (iii), (iv), (v), (vi) and Theorem 5.24 that

V (t, x, p, q) = −e−αxer(T−t)g(t, p, q), (t, x, p, q) ∈ [0, T ]× R×∆m × N`0,

and that (ξ?, b?F ) = (ξ?(s), b?F (s))s∈[t,T ] with ξ?(t) given by (4.29). Moreover, we obtain
that b?F (s) := bF (s−, ps−, qs−) given by (5.27) is the optimal investment-reinsurance
strategy of the optimization problem (P2).

We have seen in the previous Theorem that g is the solution of the generalized HJB
equation. Consequently, the generalized HJB equation (5.19) has a unique solution due
to the uniqueness of g by definition.

5.7 Comparison results with the complete information case

We will present in this section a comparison result of the optimal reinsurance strategy
given in Theorem 5.26 and the one in the case with full information given by (4.57). But
first of all we derive bounds to the optimal strategy which can be calculated a priori, i.e.
independent of the filter process (pt)t≥0 and the process (qt)t≥0. For this determination,
we introduce the following terms.

Notation. Let t ∈ [0, T ] and b ∈ R. Throughout this section, we set

hmin
F (t, b) := λ1 min

D⊂D

{
d∑
i=1

1D(i)

∫
(0,∞)d

yi exp

{
α b er(T−t)

m∑
j=1

yj1D(j)

}
F (dy)

}
,

hmax
F (t, b) := λm max

D⊂D

{
d∑
i=1

1D(i)

∫
(0,∞)d

yi exp

{
α b er(T−t)

m∑
j=1

yj1D(j)

}
F (dy)

}
.

Proposition 5.27. Let t ∈ [0, T ]. Then R 3 b 7→ hmin
F (t, b) and R 3 b 7→ hmax

F (t, b) are
strictly increasing and strictly convex. Furthermore, it holds

lim
b→−∞

hmin
F (t, b) = lim

b→−∞
hmax
F (t, b) = 0, lim

b→∞
hmin
F (t, b) = lim

b→∞
hmax
F (t, b) =∞.

Proof. This follows by the same analysis as in the proof of Proposition 4.29.

The proposition justifies the next notation.
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Notation. For some fixed t ∈ [0, T ], we denote the unique root of the equation (1+θ)κ =
hmin
F (t, b) w.r.t. b, and the unique root of the equation (1 + θ)κ = hmax

F (t, b) w.r.t. b by
rmin
F (t) and rmax

F (t), respectively.

The announced a priori bounds are a direct consequence of the following theorem in
connection with Proposition 5.27. Recall the definition of the function hF given in (5.24).

Proposition 5.28. For any (t, p, q) ∈ [0, T ]×∆m × N`0 and b ∈ R, we have

hmin
F (t, b) ≤ hF (t, p, q, b) ≤ hmax

F (t, b).

Proof. Choose some (t, p, q) ∈ [0, T ]×∆m × N`0 and b̄ ∈ R. Recall that λ1 < λ2 < . . . <
λm, compare Assumption 5.7. For any (ξ, b) ∈ U [t, T ], an application of Lemma 5.20 (iv),
(v) and (vi) yields

m∑
k=1

λkpk
∑
D⊂D

βD + qD
‖β̄ + q‖

gξ,b(t, J(p), v(q,D))×

d∑
i=1

1D(i)

∫
(0,∞)d

yi exp

{
α b̄ er(T−t)

m∑
j=1

yj1D(j)

}
F (dy)

=
∑
D⊂D

βD + qD
‖β̄ + q‖

m∑
j=1

λj pj g
ξ,b(t, ej , v(q,D))×

d∑
i=1

1D(i)

∫
(0,∞)d

yi exp

{
α b̄ er(T−t)

m∑
j=1

yj1D(j)

}
F (dy)

≤ hmax
F (t, b̄)

∑
D⊂D

βD + qD
‖β̄ + q‖

m∑
j=1

pjg
ξ,b(t, ej , v(q,D))

= hmax
F (t, b̄)

∑
D⊂D

βD + qD
‖β̄ + q‖

gξ,b(t, p, v(q,D))

= hmax
F (t, b̄) gξ,b(t, p, q).

Hence, by taking the infimum over all (ξ, b) ∈ U [t, T ] on both sides, we get hF (t, p, q, b̄) ≤
hmax
F (t, b̄). The other announced inequality is obtained by analogue arguments.

Corollary 5.29. The optimal reinsurance strategy b?F = (b?F (t))t∈[0,T ] from Theorem 5.26
has the following bounds:

max{0, rmax
F (t)} ≤ b?F (t) ≤ min{1, rmin

F (t)}, t ∈ [0, T ].

The bounds provide only a very large range of optimality due to the rough estimation in
the proposition above. This is illustrated in Figure 5.2, where the bounds are calculated
for the parameter selection from Section 5.7. For this setting, the graphic shows that
the insurer should not take a full reinsurance (i.e. retention level of zero) since the lower
bound (orange line) is always greater than zero. The upper bound (red line) is trivial
in this example. It should be noted again that these bounds can be calculated by the
insurer already at time zero for the entire time horizon, which is why only rough bounds
can be expected.

Let us move on to the comparison result of the partial and the full observable case
which should provide a tighter bound because of the dependence on observations. As
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Figure 5.2: A priori upper bound (red line) and lower bound (orange line) for the optimal rein-
surance strategy.

already explained in Section 4.8.2, a comparison result requires an order of the thinning
probabilities w.r.t. the degree of harm for the insurer. In the given setting the N`0-valued
process (qt)t≥0 encapsulates the gathered information about the thinning probabilities
expected from the claim arrivals. Therefore, an order on N`0 is a necessity. Such an order
is given by (5.25), which can be interpreted as an order of the weighted sum of expected
claims of the LoBs i ∈ D from the best to the worst case scenario from the insurer’s
perspective. However a stronger order than those in (5.25) is required, which is difficult
to define since there is no natural order of the elements of P(D). Under the assumption
of identical claim size distributions in every LoB, it is easily seen that the order defined
in (5.25) satisfies

q � q′ ⇐⇒
∑
D⊂D

βD + qD
‖β̄ + q‖

|D| ≤
∑
D⊂D

βD + q′D
‖β̄ + q′‖

|D|

⇐⇒
d∑
i=1

i
∑
D⊂D:
|D|=i

βD + qD
‖β̄ + q‖

≤
d∑
i=1

i
∑
D⊂D:
|D|=i

βD + q′D
‖β̄ + q′‖

,

for every q = (qD)D⊂D ∈ N`0 and q′ = (q′D)D⊂D ∈ N`0, where the sums in the last line
can be interpreted as expectations w.r.t. measures on the set D = {1, . . . , d}. This
observation is the initial point for the development of an order, which is useful for a
comparison result. So we deal with the comparison under the assumption of identical
claim size distributions for every LoB.

Assumption 5.30. Throughout this section, we suppose that

F (dy) = F̄ (dy1)⊗ F̄ (dy2)⊗ · · · ⊗ F̄ (dym),

where F̄ is a distribution on (0,∞) with existing moment generation function.
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It should be noted that Assumption 4.3 is satisfied under the assumption above, com-
pare Remark 4.4. Due to the assumption, the order given in (5.25) depends only on the
number of elements of D ⊂ D. This motivates the next notation.

Notation. For any q = (qD)D⊂D ∈ N`0, we define q̃ = (q̃(1), . . . , q̃(d)) ∈ Nd0 by

q̃(i) :=
∑
D⊂D:
|D|=i

qD.

Using this notation, we define an equivalence relation on N`0.

Notation. Throughout this section, let ∼ denote the equivalence relation on N`0 which is
defined by

q ∼ q′ :⇐⇒ q̃′ = q̃. (5.36)

for every q, q′ ∈ N`0. Furthermore, [q] is written for the equivalence class of q ∈ N`0.

Justification of the notation. A trivial verification shows that the defined binary relation
∼ on N`0 is reflexive, symmetric and transitive and thus an equivalence relation.

Under consideration of this notation, we can identify every sequence ((βD + qD)/‖β̄+
q‖)D⊂D ∈ ∆` with a probability measure on D.

Notation. Let q = (q(i))i=1,...,d ∈ Nd0. Throughout this chapter, we denote the probabil-
ity measure on D by Fq, which is defined by

Fq(B) :=
∑
i∈B

β̃(i) + q(i)

‖β̄ + q‖
, B ∈ P(D),

where β̃ = (β̃(1), . . . , β̃(d)) with β̃(i) =
∑

D⊂D:|D|=i βD, i = 1, . . . , d.

Notice that ‖β̄‖ = ‖β̃‖. We are now in the position to define an order which turns out
to be useful for the comparison result.

Notation. Let q, q′ ∈ Nd0. Throughout this chapter, we define an order �st on Nd0 by

q �st q
′ :⇐⇒ Fq(x) ≥ Fq′(x), x ∈ R, (5.37)

where Fa(x) denotes the distribution function of Fa at x for some a ∈ Nd0.

The defined order can be regarded as the usual stochastic order since, if X ∼ Fq and
Y ∼ Fq′ , then the introduced order is equivalent to X �st Y , where �st denotes the
usual stochastic order.

The announced comparison result for the optimal reinsurance strategies under partial
and full information is an immediate consequence of the next theorem. The proof of
the theorem makes use of an order for the equivalence classes [v(q,D)], D ⊂ D. Since
[v(q,D)] = [v(q,D′)] if |D| = |D′|, there are d equivalence classes of the set {[v(q,D)] :
D ⊂ D}. For the sake of simplicity, we introduce the following notation for these classes.

Notation. Throughout this section, we write ṽi ∈ N`0 for a represent of the equivalence
class {v(q,D) : D ⊂ D with |D| = i}.
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Using the introduced notations, it holds for ṽi = (ṽi(1), . . . , ṽi(d))

ṽi(j) =

{
q̃(j), i 6= j,

q̃(j) + 1, i = j,

for all i ∈ {1, . . . , d}. Consequently,

n∑
j=1

β̃(j) + ṽ1(j)

‖β̄ + q‖+ 1
≥

n∑
j=1

β̃(j) + ṽ2(j)

‖β̄ + q‖+ 1
≥ . . . ≥

n∑
j=1

β̃(j) + ṽd(j)

‖β̄ + q‖+ 1
, n = 1, . . . , d,

and thus
Fṽ1(x) ≥ Fṽ2(x) ≥ . . . ≥ Fṽd(x), x ∈ R. (5.38)

That is,
ṽ1 �st ṽ2 �st . . . �st ṽd. (5.39)

Notice that the order above is equivalent to∫
D
f(x)Fṽ1(x) ≤

∫
D
f(x)Fṽ2(x) ≤ . . . ≤

∫
D
f(x)Fṽd(dx), (5.40)

for all increasing functions f : D→ R, for which both expectations exist, compare Müller
and Stoyan [96, Thm. 1.2.8]. This order is crucial for the proof of the next theorem.

Theorem 5.31. Let bF be the function given by (5.27) and b̃?λ,c̄,F the function given

by (4.57). Then, for any (t, p, q) ∈ [0, T ]×∆m × N`0,

bF (t, p, q) ≤ b̃?u(p),w(q),F (t)

with

u(p) :=
m∑
k=1

λkpk, w(q) :=

(
βD + qD
‖β̄ + q‖

)
D⊂D

.

Proof. Fix (t, p, q) ∈ [0, T ] × ∆m × N`0, b̄ ∈ R+ and (ξ, b) ∈ U [t, T ]. As in the proof of
Theorem 4.41, it is sufficient to compare hF (t, p, q, b̄) given by (5.24) and hu(p),w(q),F (t, b̄)
given by (4.55) due to the first order conditions (5.26) and (4.56). To draw this com-
parison, we first observe that, by Assumption 5.30,

gξ,b(t, p, q) := Et,p,q
[

exp

{
−
∫ T

t
α er(T−s)

(
(µ− r)ξs + c(bs)

)
ds

−
∫ T

t
ασ er(T−s)ξs dWs + α

NT−t∑
n=1

bTne
r(T−Tn)

|Zn|∑
`=1

Y `
n

}]
,

(5.41)

compare the definition of gξ,b given in (5.16). Notice that q determines the distribution
of ᾱ = (αD)D⊂D and the distribution of |Z| is described by α̃ = (α̃(i))i=1,...,d with

α̃i :=
∑
D⊂D:
|D|=i

αD,

where α̃ ∼ Dir(β̃ + q̃) since ᾱ ∼ Dir(β̄ + q), see DeGroot [49, p. 50]. Furthermore,
by the independence of (Tn)n∈N and (Zn)n∈N (see Assumption 3.2), we have for any
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i ∈ {1, . . . , d}

gξ,b(t, p, ṽi) =

∞∑
m=0

Pt,p,ṽi(NT−t = m)

∫
Dm

Et,p,ṽi
[

exp

{
−
∫ T

t
α er(T−s)

(
(µ− r) ξs

+ c(bs)
)

ds−
∫ T

t
ασ er(T−s)ξs dWs + α

m∑
n=1

bTn e
r(T−Tn)

|Zn|∑
`=1

Y `
n

}∣∣∣∣NT−t = m,

(|Z1|, . . . , |Zm|) = (z1, . . . , zm)

]
Pt,p,ṽi(|Z1| ∈ dz1) . . .Pt,p,ṽi(|Zm| ∈ dzm),

where, by Proposition 5.6, the distribution of |Z1| given qt = ṽi (which represents the
relevant information about the thinning probabilities up to time t) is

Pt,p,ṽi(|Z1| = k) = Pt,ṽi(|Z1| = k) = Pt,ṽi(Z1 = E for all E ⊂ D with |E| = k)

=
∑
E⊂D:
|E|=k

Pt,ṽi(Z1 = E) =
β̃(k) + ṽi(k)

‖β̄ + q‖+ 1
, k = 1, . . . , d.

That is, Pt,ṽi(|Z1| ∈ dz1) = Fṽi(dz1). Combining this with the fact that the integrand
of the expectation of gξ,b(t, p, ṽi) is increasing in |Zn| for every n = 1, . . . ,m, it follows
from (5.40) that

gξ,b(t, p, ṽ1) ≤ gξ,b(t, p, ṽ2) ≤ . . . ≤ gξ,b(t, p, ṽd). (5.42)

Moreover, on account of Assumption 5.30, it holds

d∑
i=1

β̃(i) + q̃(i)

‖β̄ + q‖
i

(∫
(0,∞)

eαb̄e
r(T−t)y1F̄ (dy1)

)i−1 ∫
(0,∞)

y1e
αb̄er(T−t)y1F̄ (dy1)

=
d∑
i=1

∑
D⊂D:
|D|=i

βD + qD
‖β̄ + q‖

|D|
(∫

(0,∞)
eαb̄e

r(T−t)y1F̄ (dy1)

)|D|−1 ∫
(0,∞)

y1e
αb̄er(T−t)y1F̄ (dy1)

=
∑
D⊂D

βD + qD
‖β̄ + q‖

d∑
i=1

1D(i)

∫
(0,∞)

eαb̄e
r(T−t)y11D(1)F̄ (dy1)× . . .∫

(0,∞)
eαb̄e

r(T−t)y11D(i−1)F̄ (dy1)

∫
(0,∞)

y1e
αb̄er(T−t)y11D(i)F̄ (dy1)×∫

(0,∞)
eαb̄e

r(T−t)y11D(i+1)F̄ (dy1) . . .

∫
(0,∞)

eαb̄e
r(T−t)y11D(m)F̄ (dy1)

=
∑
D⊂D

βD + qD
‖β̄ + q‖

d∑
i=1

1D(i)

∫
(0,∞)d

yi exp

{
α b̄ er(T−t)

m∑
j=1

yj1D(j)

}
F (dy),

Furthermore, since
∫

(0,∞) e
αb̄er(T−t)y1F̄ (dy1) ≥ 1, the sequence(

i

(∫
(0,∞)

eαb̄e
r(T−t)y1F̄ (dy1)

)i−1 ∫
(0,∞)

y1e
αb̄er(T−t)y1F̄ (dy1)

)
i=1,...,d

(5.43)

is orderly increasing. Notice that ((β̃i+ q̃i)/‖β̄+q‖)i=1,...,d ∈ ∆d. Consequently, applying
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Lemma 5.20 (iv), (v) and Lemma B.6 (in connection with the increasing orders in (5.42)
and (5.43)) yields

m∑
k=1

λkpk
∑
D⊂D

βD + qD
‖β̄ + q‖

gξ,b(t, J(p), v(q,D))×

d∑
i=1

1D(i)

∫
(0,∞)d

yi exp

{
α b̄ er(T−t)

m∑
j=1

yj1D(j)

}
F (dy)

=

m∑
j=1

pjλj
∑
D⊂D

βD + qD
‖β̄ + q‖

gξ,b(t, ej , v(q,D))×

d∑
i=1

1D(i)

∫
(0,∞)d

yi exp

{
α b̄ er(T−t)

m∑
j=1

yj1D(j)

}
F (dy)

=
m∑
j=1

pjλj

d∑
i=1

β̃(i) + q̃(i)

‖β̄ + q‖
gξ,b(t, ej , ṽi) i

(∫
(0,∞)

eαb̄e
r(T−t)y1F̄ (dy1)

)i−1

×∫
(0,∞)

y1e
αb̄er(T−t)y1F̄ (dy1)

≥
m∑
j=1

pjλj

d∑
i=1

β̃(i) + q̃(i)

‖β̄ + q‖
gξ,b(t, ej , ṽi)

d∑
k=1

β̃(k) + q̃(k)

‖β̄ + q‖
k

(∫
(0,∞)

eαb̄e
r(T−t)y1F̄ (dy1)

)k−1

×∫
(0,∞)

y1e
αb̄er(T−t)y1F̄ (dy1)

=
m∑
j=1

pjλj
∑
E⊂D

βE + qE
‖β̄ + q‖

gξ,b(t, ej , v(q, E))
∑
D⊂D

βD + qD
‖β̄ + q‖

×

d∑
i=1

1D(i)

∫
(0,∞)d

yi exp

{
α b̄ er(T−t)

m∑
j=1

yj1D(j)

}
F (dy)

=

m∑
j=1

pjλjg
ξ,b(t, ej , q)

∑
D⊂D

βD + qD
‖β̄ + q‖

d∑
i=1

1D(i)

∫
(0,∞)d

yi exp

{
αb̄er(T−t)

m∑
j=1

yj1D(j)

}
F (dy),

where we have used the fact that every representation of the equivalence class [v(q,D)]
carries the same information about the distribution of |Z1| in the second equality. Re-
call that λ1 < λ2 < . . . < λm and notice that the background intensity of (Nt)t≥0 in
the definition of gξ,b(t, ej , q), j = 1, . . . ,m, is λj due to the choice of p = ej . It is

well-established that a Poisson process (Ñt)t≥0 with intensity λk pathwise stochastically
dominates a Poisson process (N̄t)t≥0 with intensity λj , if λk ≥ λj , k, j ∈ {1, . . . ,m},
compare Müller and Stoyan [96, Sec. 4.3.3], and thus

∑ÑT−t
n=1 bTne

r(T−Tn)
∑|Zn|

`=1 Y
`
n path-

wise stochastically dominates
∑N̄T−t

n=1 bTne
r(T−Tn)

∑|Zn|
`=1 Y

`
n . Consequently, gξ,b(t, e1, q) ≤

gξ,b(t, e2, q) ≤ . . . ≤ gξ,b(t, em, q), compare (5.41). Therefore, a repeated application of
Lemma B.6 as well as Lemma 5.20 (iii) leads to

m∑
j=1

pjλjg
ξ,b(t, ej , q)

∑
D⊂D

βD + qD
‖β̄ + q‖

d∑
i=1

1D(i)

∫
(0,∞)d

yi exp

{
αb̄er(T−t)

m∑
j=1

yj1D(j)

}
F (dy)
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≥
m∑
k=1

pkλk

m∑
j=1

pjg
ξ,b(t, ej , q)

∑
D⊂D

βD + qD
‖β̄ + q‖

×

d∑
i=1

1D(i)

∫
(0,∞)d

yi exp

{
α b̄ er(T−t)

m∑
j=1

yj1D(j)

}
F (dy)

= gξ,b(t, p, q)
m∑
k=1

pkλk
∑
D⊂D

βD + qD
‖β̄ + q‖

d∑
i=1

1D(i)

∫
(0,∞)d

yi exp

{
αb̄er(T−t)

m∑
j=1

yj1D(j)

}
F (dy).

In summary, we have

m∑
k=1

λkpk
∑
D⊂D

βD + qD
‖β̄ + q‖

gξ,b(t, J(p), v(q,D))×

d∑
i=1

1D(i)

∫
(0,∞)d

yi exp

{
α b̄ er(T−t)

m∑
j=1

yj1D(j)

}
F (dy)

≥ gξ,b(t, p, q)
m∑
k=1

λkpk
∑
D⊂D

βD + qD
‖β̄ + q‖

d∑
i=1

1D(i)

∫
(0,∞)d

yi exp

{
αb̄er(T−t)

m∑
j=1

yj1D(j)

}
F (dy),

which yields hF (t, p, q, b̄) ≥ hu(p),w(q),F (t, b̄) by taking the infimum over all (ξ, b) ∈ U [t, T ]
on both sides and the proof is complete.

Corollary 5.32. Let b̃?λ,c̄,F be the function given by (4.57). Then the optimal reinsurance
strategy under partial information (b?F (t))t∈[0,T ] from Theorem 5.26 satisfies

b?F (t) ≤ b̃?u(pt−),w(qt−),F (t), t ∈ [0, T ].

It should be noted that (b̃?u(pt−),w(qt−),F (t))t∈[0,T ] is G-predictable. Furthermore u(pt−) =

Λ̂t−, which indicates that u(pt−) is the known conditional average background intensity
given the available information strict before time t. Moreover w(qt) = (E[αD | FΦ

t ])D⊂D
and thus w(qt−) can be seen as the known conditional average thinning probabilities
given again the information strict before time t. Consequently, the comparison result
above has the same interpretation as the comparison result in the previous chapter (see
Corollary 4.42); namely, more uncertainty leads to a more cautious optimal reinsurance
strategy (that means, lesser or equal retention level). The comparison result will be
graphically illustrated in the next section.

5.8 Numerical analyses

In this section we illustrate some numerical results in the case of two LoBs (i.e. d = 2).
The set of possible background intensities is A = {2, 4, 5} (i.e. Λ takes values in A) and
the prior probability mass function of Λ is supposed to be

π̄Λ =

(
2

5
,
2

5
,
1

5

)
.
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Furthermore, we assume that the prior parameter of the Dirichlet distribution of the
thinning probabilities ᾱ is

β̄ = (β{1}, β{2}, β{1,2}) = (8, 7, 5).

Next we specify the claim size distribution F . Since we want to present the comparison
result graphically and this result was derived for the assumption of independently and
identically distributed claim sizes for every insurance class, we choose the same claim
size distribution for both LoBs, namely a right-truncated exponential distribution with
rate 1 and truncation at 3, i.e.

E[Y 1
1 ] = E[Y 2

1 ] =
1

1− e−3
.

Notice that Assumption 4.3 is fulfilled according to Remark 4.4. For the parameter κ of
the premium principle, we select E[dSt], which yields, by Proposition 5.18,

κ =
m∑
k=1

λk πΛ(k)
∑
D⊂D

βD
‖β̄‖

d∑
i=1

1D(i)E
[
Y i

1

]
=

m∑
k=1

λk πΛ(k)E
[
Y 1

1

] β̃(1) + 2β̃(2)

‖β̄‖
=

17

4− 4e−3
.

The remaining parameters are chosen as in Table 5.1.

parameter value

x0 10
T 10
r 0.1
µ 0.2
σ 3
α 0.2
θ 0.6
η 0.2

Table 5.1: Simulation parameters for Section 5.8.

The following simulations are generated under the assumption that the realization
of ᾱ is (0.38, 0.48, 0.14) and that the realization of Λ is 4 (i.e. P(Λ = 4 | F0) = 1).
Beside the a priori bounds (red and orange lines), we also illustrated in Figure 5.3 two
trajectories (black and blue lines) of the reinsurance strategy (b̃?u(pt−),w(qt−),F (t))t∈[0,T ]

with u(p) =
∑m

k=1 λkpk and w(q) = ((βD + qD)/‖β̄ + q‖)D⊂D, which provide for each
scenario an upper bound for corresponding optimal reinsurance strategy according to
Corollary 5.32. So the black and blue lines depend on the realized trigger arrival times
and the affected LoBs. In both scenarios, the upper bounds (black and blue line) obtained
from the comparison result are only useful up to approximately time 8. Before this, a
strong dependence on the realizations can be seen.

Concluding the numerical illustration, we show the path of the surplus process in an
insurance loss scenario for three different insurance strategies in Figure 5.4. In the case
of full reinsurance (i.e. retention level of 0) the trajectory of the surplus process tends
downward (red line), which is purchased through a negative premium rate. The blue line
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Figure 5.3: The a priori upper bound (red line) and lower bound (orange line) for
the optimal reinsurance strategy and two paths of the reinsurance strategy
(b̃?u(pt−),w(qt−),F (t))t∈[0,T ] with u(p) :=

∑m
k=1 λkpk and w(q) := ((βD + qD)/‖β̄+

q‖)D⊂D.

displays a trajectory of the surplus for a constant reinsurance strategy of 0.5 and the
black line for the reinsurance strategy (b̃?u(pt−),w(qt−),F (t))t∈[0,T ] with u(p) =

∑m
k=1 λkpk

and w(q) = ((βD + qD)/‖β̄ + q‖)D⊂D. From Figure 5.3, we known that the latter
reinsurance strategy tends upwards, which is evident in Figure 5.4 since the jump sizes
of the black line are higher at the end of the considered time interval than those of the
blue line. But because of the lower level of reinsurance, the surplus between losses rises
stronger (as the premium rate is higher) than in the case of the constant reinsurance
strategy.

5.9 Comments on generalizations

In this section we discuss generalizations of the setting and resulting difficulties with the
used solution technique.

Conjugated prior for background intensity. The first generalization we look at
concerns the prior distribution ΠΛ for the background intensity Λ. It was assumed that
ΠΛ is defined on the finite set A. This assumption can be generalized in the sense that
Λ is a (0,∞)-valued random variable. To obtain a finite dimensional control problem,
the prior distribution ΠΛ has to be a conjugated prior. In Reiss and Thomas [105,
Eq. (3.52)], it is shown that the Gamma distribution is a conjugated prior for Λ, which
essentially follows from the fact that the Gamma distribution is a conjugated prior for
the exponential distribution. More precisely, we have

Λ | γ, ζ ∼ Γ(γ, ζ), γ, ζ > 0,

Λ | γ, ζ, T1, . . . , TNt ∼ Γ(γ +Nt, ζ + t).
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Figure 5.4: Trajectories of the surplus process for an insurance loss scenario in the cases of full
reinsurance (red line), constant retention level of 0.5 (blue line) and the reinsurance
strategy (b̃?u(pt−),w(qt−),F (t))t∈[0,T ] with u(p) :=

∑m
k=1 λkpk and w(q) := ((βD +

qD)/‖β̄ + q‖)D⊂D (black line).

So the trigger process N is a mixed Poisson process with mixing Γ(γ, ζ)-distribution.
Such a process is called Pólya process which is a popular case of the mixed Poisson
process in insurance mathematics, cf. e.g. Example (b) on p. 146 in Albrecher et al. [5].

Due to the conjugated property stated above, all information about the unknown
parameter Λ, which is included in the observable filtration G up to time t, is described by
the processes (Nt)t≥0 and time. In consequence, the state process of the reduced control

problem with complete observation is the (`+ 2)-dimensional process (Xξ,b
s , Ns, qs)s∈[t,T ]

for some fixed initial time t ∈ [0, T ) and (ξ, b) ∈ U [t, T ]. The reduced control problem is
given by

V ξ,b(t, x, n, q) := Et,x,n,q
[
U(Xξ,b

T )
]

:= E
[
U(Xξ,b

T ) |Xξ,b
t = x,Nt = n, qt = q

]
,

V (t, x, n, q) := sup
(ξ,b)∈U [t,T ]

V ξ,b(t, x, n, q),

for all (t, x, n, q) ∈ [0, T ]×R×N0×N`0. Note that the processes (Nt)t≥0 and (qt)t≥0 are
pure jump processes. For this reason, analogue to Chapter 4, the following generalized
HJB equation results:

0 = inf
(ξ,b)∈R×[0,1]

{
− γ + n

ζ + u
g(t, n, q)

− α er(T−t)g(t, n, q)
(

(µ− r)ξ + c(b)− 1

2
ασ2er(T−t)ξ2

)
+
γ + n

ζ + t

∑
D⊂D

βD + qD
‖β̄ + q‖

g(t, n+ 1, v(q,D))

∫
(0,∞)d

exp

{
α b er(T−t)

d∑
i=1

yi1D(i)

}
F (dy)

}
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+ inf
ϕ∈∂Cgn,q(t)

{ϕ}

with boundary condition g(T, n, q) = 1, where

V (t, x, n, q) = −e−αxer(T−t)g(t, n, q),

g(t, n, q) := inf
(ξ,b)∈U [t,T ]

gξ,b(t, n, q)

and

gξ,b(t, n, q) := Et,n,q
[

exp

{
−
∫ T

t
α er(T−s)((µ− r)ξs + c(bs)) ds

−
∫ T

t
ασ er(T−s)ξs dWs +

∫ T

t

∫
Ed
α bs e

r(T−s)
d∑
i=1

yi1z(i) Ψ(ds, d(y, z))

}]
.

With the arguments of Section 4.5 and 4.6, this arises the candidate for an optimal
investment strategy, which is (ξ?t )t∈[0,T ] given by

ξ?t =
µ− r
σ2

1

α
e−r(T−t),

and the candidate for an optimal reinsurance strategy, which is (b?F (t))t∈[0,T ] given by
bF (t−, Nt−, qt−) with

bF (t, n, q) =


0, θ ≤ AF (t, n, q)/κ− 1,

1, θ ≥ BF (t, n, q)/κ− 1,

rF (t, n, q), otherwise,

where, for any (t, n, q, b) ∈ [0, T ]× N0 × N`0,

hF (t, n, q, b) :=
γ + n

ζ + t

∑
D⊂D

βD + qD
‖β̄ + q‖

g(t, n+ 1, v(q,D))

g(t, n, q)
×

d∑
i=1

1D(i)

∫
(0,∞)d

yi exp

{
α b er(T−t)

d∑
j=1

yj1D(j)

}
F (dy)

AF (t, n, q) := hF (t, n, q, 0),

BF (t, n, q) := hF (t, n, q, 1),

and rF (t, n, p) is the unique root w.r.t. b of

(1 + θ)κ = hF (t, n, q, b).

The verification goes through similar to Section 4.7 under the condition that

E
[

exp
{

Λ
(
MF

(
2α erT

)
− 1
)
T
}]
<∞,

which is necessary to define an equivalent change of measure analogue to Lemma A.3, cf.
proof of Lemma A.2. Unfortunately, the expectation above is only finite if the reciprocal
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scale parameter ζ of the prior distribution ΠΛ fulfils

ζ >
(
MF

(
2α erT

)
− 1
)
T.

But in this case the Γ(γ, ζ)-distribution is nearly a dirac distribution depending on the
shape parameter γ. So if γ is chosen, Λ is nearly a known deterministic value. That
means, we are in the case of an observable background intensity as in Chapter 4.

This approach with a conjugated prior for Λ works only for a conjugated prior distri-
bution with existing moment generating function. But there does not exist such a prior
distribution by the best knowledge of the author.

Additional time shift. Another generalization concerns the in insurance industry
well-known acronym IBNR (Incurred But Not Reported) as well as a time gap between
the shock event and the claims. In order to take these aspects into account, the model
must be extended by a further random component which describes an additional time
shift between the time of the trigger event and the occurrence of damages in some insur-
ance lines. Such a model is developed in Bäuerle and Grübel [27, Ch. 3]. An additional
time shift raises numerous problems for the optimization problem under partial infor-
mation since then it is not clear which claim belongs to which trigger event and thus
the category random elements (Zn)n∈N are no longer observable. This problem can be
solved by assuming that the causation of the damage and the trigger events are known.
But even then we cannot proceed as before since at every time point there can arise
another damage as a result of a past trigger event. So only if the time shift is bounded
by some constant 0 < K <∞, we have full information about the sequence Zn at time
Tn +K. Thus we could proceed as described in this chapter with the difference that the
processes (p̃t)t≥0 and (q̃t)t≥0 containing the information about the unknown parameters
at disposal are given by p̃t = pt−K and q̃t = qt−K .

It is worth noting that there exists an estimation procedure for the background inten-
sity λ in the model with shift without the assumptions described above. The estimation
method is developed in Brown [23] for an analogous problem in the queuing theory.
However, it is not readily possible to use other estimators than Bayesian estimators for
the reduction, compare Remark 4.23.

More general trigger process. In the actuarial literature, more general models than
the mixed Poisson process are discussed, which describe claim arrival processes. Schmidt
[114] as well as Albrecher and Asmussen [3] suggest the use of a shot-noise driven claim
arrival model, in particular for catastrophe modelling. An even more general process is
the so-called dynamic contagion process which combines a shot-noise and a self-exciting
property that can be observed for LoBs included claims as a result of abrasion. Anal-
ogous to our setting, the stochastic intensities of such claim arrival models are not
observable, which in consequence requires stochastic filter technique. As seen, for exam-
ple, in Leimcke [82, Thm. 3.29], the filter equation describing all information about the
intensity process of the dynamic contagion process contained in the observed filtration
has infinite dimension. This would lead to an infinite dimensional filter problem if such a
process were used as the claim arrival model (or trigger process) and therefore cannot be
solved with the approach presented in this paper. However, the dynamic programming
HJB method is already extended to infinite-dimensional Hilbert space (compare Fabbri
et al. [57] for an overview) which may be used to solve such kind of problem. Moreover,
Brachetta and Ceci [18] provided recently an approach with backward stochastic differ-
ential equations (BSDEs) for optimal reinsurance problems under partial information
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with infinite dimensional filter equations, in which value process and the optimal rein-
surance strategy are characterized as the unique solution of a BSDE driven by a marked
point process.

Inter-dependency between financial and insurance risks. The last part of this
section concerns the independence of the financial and insurance risks assumed in this
work which results in an optimal investment and reinsurance strategy without interde-
pendencies. But, according to Wang et al. [116, p. 114], there exist at least two reasons
to believe that the insurance and financial risk should be dependent. First, (re)insurance
companies transfer their insurance risks to the capital market by using insurance-linked
securities, like catastrophe bonds, for instance. As a result, an insurer invested in the
financial market is exposed to the insurance risks exported by another insurance com-
pany to the financial market, and there may be dependencies among these risks and the
insurance risks of the insurance company invested in the financial market, for example
through natural catastrophes. A second interconnectedness among financial and insur-
ance risks in insurance contracts for financial guarantees, which can cause systemic risk.
One way to establish a dependency between the financial and insurance market would
be by a financial market with partial information described next. Portfolio optimization
problems in a Bayesian financial market with one risk-free and one risky-asset, in which
the drift rate of the risky asset is modelled as a random variable, whose outcome is un-
known to the investor, have been investigated extensively, cf. e.g. Bäuerle and Grether
[29] and the references given therein. This approach can be generalized by making the
drift dependent on the state of an unobservable Markov chain. A portfolio optimiza-
tion problem with such an unobservable Markov-modulated drift process is considered in
Bäuerle and Rieder [30]. As already described in introduction, it is a common approach
to modulate the claim arrival process by a Markov chain as well. The financial and
insurance markets become dependent when both the drift rate of the risky asset and the
intensity of the claim arrival process are modulated by the same unobservable Markov
chain. The reduction of an optimization problem with such a model requires filter results
with continuous and point process observations as provided by Ceci and Colaneri [36]
since the insurer observes continuously the price process of the risky asset on the one
hand and insurance claims on the other hand. However, even with such filter results,
the solution approach of this paper cannot be applied without further thought, because
we have shown the changes of measure in Lemma A.3 and A.10 and A.17 assuming
independence between insurance and financial risks.





Chapter 6

Optimal investment and reinsurance for
the univariate case with unknown claim
size distribution

So far, we have always analyzed the partially observable problem (P) for a given loss
distribution, but not for an unobservable one yet. This gap will be closed in this chapter,
whereby we assume the background intensity to be observable and consider only one LoB
for simplification.

6.1 Setting

This chapter only deals with one insurance line, i.e. we set d = 1. Therefore, the un-
observable parameter ᾱ, which describes the dependencies between the lines, is trivially
ᾱ ≡ 1 (and the sequence (Zn)n∈N is deterministic) and thus does not have to be taken
into account further. In addition, we suppose that the prior distribution of ΠΛ is a
one-point distribution. This makes the background intensity Λ directly observable for
the insurance company and we set Λ ≡ λ (i.e. ΠΛ = δλ) for some λ > 0. Furthermore,
Assumption 3.6 is considered to be in force.

Claim size distribution. Notice that in this section (Yn)n∈N is the sequence of
(0,∞)-valued random variable describing the amount of losses at the claim arrival times
(Tn)n∈N, in which we assume that the claim size distribution is not observable and that
Assumption 3.3 is satisfied (i.e. (Yn)n∈N and (Tn)n∈N are independent). Next, we precise
the prior distribution Πϑ.

Assumption 6.1. Let m ∈ N be a fixed number. We assume ϑ is an F0-measurable
random variable taking values in the measure space (Θ,P(Θ)), where Θ := {1, . . . ,m}.
We further suppose that F1, . . . , Fm be absolutely continuous distributions on (0,∞)
with densities f1, . . . , fm such that

Mj(z) :=

∫
(0,∞)

ezyfj(y) dy <∞, z ∈ R, j = 1, . . . ,m.

Based on this assumption, the unknownness of the claim size distribution is modelled
similarly to the background intensity in the previous chapter, namely by assuming that
there are m potential loss distributions but the true distribution is unknown to the
insurer. Thus, the entire information about the claim size distribution is encapsulated
in the unknown parameter ϑ which results in the following characterization of the prior
distribution for this parameter.

149
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Notation. We set
πϑ(j) := P(ϑ = j), j = 1, . . . ,m,

and we write π̄ϑ := (πϑ(1), . . . , πϑ(m)) for the m-dimensional vector which describes the
probability mass function of the distribution of ϑ.

Note that, like in the previous chapters, the subsequent considerations require expo-
nential moments of the claim sizes which are ensured by the assumption above. The first
moments of the distributions are also frequently demanded in the following, for that we
introduce the next abbreviation.

Notation. For any j ∈ {1, . . . ,m}, let µj :=
∫∞

0 y fj(y) dy = Ej [Y ] denote the mean of
the jth distribution, where Y |ϑ ∼ Y1 |ϑ and Ej denotes the expectation w.r.t. to the
distribution Fj .

Assumption 6.2. Without loss of generality we suppose that µ1 ≤ µ2 ≤ . . . ≤ µm.

Before we turn our attention to the reduction of the partially observable problem, let
us consider some properties of the claim sizes.

Lemma 6.3. Let z ∈ R be an arbitrary constant. Then there exist constants 0 < C1 <∞
and 0 < C2 <∞ such that

(i) E
[
Y exp

{
z Y
}]
≤ C1,

(ii) E
[

exp
{
z
∑Nt

k=1 Yk

}]
≤ C2, t ∈ [0, T ].

Proof. As in the proof of Lemma 4.5 (i), we get

Ek
[
Y exp

{
z Y
}]
≤ ck, k = {1, . . . ,m},

where 0 < ck <∞. Hence, on account of∫
(0,∞)

g(y)P(Y ∈ dy) =

∫
Θ

∫
(0,∞)

g(y)P(Y ∈ dy, ϑ ∈ dϑ)

=

∫
Θ

∫
(0,∞)

g(y)P(Y ∈ dy |ϑ = ϑ′) Πϑ(dϑ′)

=
m∑
k=1

∫
(0,∞)

g(y)P(Y ∈ dy |ϑ = k)πϑ(k)

=
m∑
k=1

∫
(0,∞)

g(y) fk(y) dy πϑ(k)

(6.1)

for all B((0,∞))-measurable functions g, it follows

E
[
Y exp

{
z Y
}]

=

∫
(0,∞)

y ezy P(Y ∈ dy) =

m∑
k=1

Ek
[
Y exp

{
z Y
}]
πϑ(k) ≤

m∑
k=1

ck πϑ(k),

which is finite since the number of summands is finite. For the second statement we
refer to the proof of Lemma 4.5 (ii) which yields

Ek
[

exp

{
z

Nt∑
k=1

Yk

}]
= exp

{
λ t
(
Ek
[

exp
{
z Y
}]
− 1
)}
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for every k ∈ {1, . . . ,m}. Similar as above, this implies

E
[

exp

{
z

Nt∑
k=1

Yk

}]
≤

m∑
k=1

exp{λT ck}πϑ(k) =: C2,

where 0 < C2 <∞ for all t ∈ [0, T ].

6.2 Filtering and reduction

The aim of this section is to reduce the partially observable control problem (P) within
the given framework in the previous section such that the state process of the reduced
model takes the accident realizations into account, which yield information about the
distribution of the claim sizes. Thus the reduction requires a filter process again. Notice
that in the case of one LoB, the MPP Ψ = (Tn, (Yn, Zn))n∈N can be identified with
the (0,∞)-MPP Ψ = (Tn, Yn)n∈N, which justifies the use of Ψ for both marked point
processes.

Filter for the claim size distribution. By the Bayes rule, the posterior probability
mass function of ϑ given the observation Ȳn = ȳn with Ȳn := (Y1, . . . , Yn) and ȳn :=
(y1, . . . , yn) is

P(ϑ = j | Ȳn = ȳn) =
fȲn(ȳn |ϑ = j)πϑ(j)∑m
k=1 fȲn(ȳn |ϑ = k)πϑ(k)

=
πϑ(j)

∏n
i=1 fj(yi)∑m

k=1 πϑ(k)
∏n
i=1 fk(yi)

(6.2)

for all j ∈ {1, . . . ,m}. However, the solution method necessitates a dynamic representa-
tion of this posterior probability distribution given the information up to any time t. To
achieve that, let us introduce the following notation.

Notation. Throughout this chapter, we denote by (pj(t))t≥0 the càdlàg modification of
the process (P(ϑ = j | FΨ

t ))t≥0 for every j ∈ {1, . . . ,m}, i.e.

pj(t) = P(ϑ = j | FΨ
t ), t ≥ 0.

Moreover, let (pt)t≥0 denote the m-dimensional process defined by

pt := (p1(t), . . . , pm(t)), t ≥ 0.

Remark 6.4. It is worth noting that
∑m

k=1 pk(t)µk ≤
∑m

k=1 µk ≤ mµm for all t ≥ 0,
due to Assumption 6.2. Furthermore, it is readily seen that pj(0) = πϑ(j) for every
j ∈ {1, . . . ,m}.

We are interested in a representation of the process (pt)t≥0.

Proposition 6.5. For any j ∈ {1, . . . ,m}, the process (pj(t))t≥0 satisfies

pj(t) = πϑ(j) +

∫ t

0

∫
(0,∞)

(
pj(s−) fj(y)∑m
k=1 pk(s−) fk(y)

− pj(s−)

)
Ψ(ds, dy), t ≥ 0.

Proof. Fix j ∈ {1, . . . ,m}. From (6.2) follows that the posterior probability mass func-
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tion of ϑ given the observation Ȳn+1 = ȳn+1 has the following recursive structure:

P(ϑ = j | Ȳn+1 = ȳn+1) =
πϑ(j)

∏n
i=1 fj(yi) fj(yn+1)∑m

k=1 πϑ(k)
∏n
i=1 fk(yi) fk(yn+1)

=
fj(yn+1)P(ϑ = j | Ȳn = ȳn)∑m
k=1 fk(yn+1)P(ϑ = k | Ȳn = ȳn)

.

Thus, using the above notation, we get

pj(t) = P(ϑ = j |Y1, . . . , YNt) =
fj(YNt) pj(t−)∑m
k=1 fk(YNt) pk(t−)

,

since pj(t−) = P(ϑ = j |Y1, . . . , YNt−) = P(ϑ = j |Y1, . . . , YNt−1). Clearly, the process
(pj(t))t≥0 jumps only at the claim arrival times (Tn)n∈N (at these time points the insurer
gains new information about the unknown claim size distribution), where the jump size
is

∆pj(Tn) =
fj(Yn) pj(Tn−)∑m
k=1 fk(Yn) pk(Tn−)

− pj(Tn−), n ∈ N.

Therefore,

pj(t) = pj(0) +
∑

0<s≤t
∆pj(s)

= πϑ(j) +

∫ t

0

∫
(0,∞)

(
pj(s−) fj(y)∑m
k=1 pk(s−) fk(y)

− pj(s−)

)
Ψ(ds, dy).

for all t ≥ 0.

Let us state some elementary properties of the filter process (pt)t≥0, which follow
immediately from the representation of the filter given in the previous proposition.

Corollary 6.6. The filter (pt)t≥0 is a pure jump process and the new state of (pt)t≥0

after the jump times (Tn)n∈N with jump size (Yn)n∈N is given by

pTn = J
(
pTn−, Yn

)
, n ∈ N,

where

J(p, y) :=

(
f1(y) p1∑m
k=1 fk(y) pk

, . . . ,
fm(y) pm∑m
k=1 fk(y) pk

)
, (6.3)

for every p = (p1, . . . , pm) ∈ ∆m and y ∈ (0,∞).

Figure 6.1 shows a path of the filter process (pt)t≥0 under the conditions from Sec-
tion 6.8 with three possible loss distributions, in which the second is the true one and
the prior is given by π̄ϑ = (1/3, 1/3, 1/3). We see that the filter tends to increase the
probability of the second (true) claim size distribution over time.

Properties of the aggregated claim amount process and the surplus process.
It is essential to have representations of the aggregated claim amount process and the
surplus process w.r.t. the compensated random measure Ψ for the development of the
HJB equation of the reduced control problem stated in the next section. This measure
is provided by the posterior predictive distribution of Y given the observed claim sizes
up to time t.
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Figure 6.1: A trajectory of the filter process (pt)t≥0 for the setting from Section 6.8 with three
potential claim size distributions under the assumptions that π̄ϑ = (1/3, 1/3, 1/3)
and P(ϑ = 2 | F0) = 1.

Lemma 6.7. For any t ≥ 0, it holds

P(Y ∈ B |Y1, . . . , YNt) =

m∑
k=1

pk(t)Fk(B), B ∈ B((0,∞)).

Proof. With the same arguments as in (6.1) follows for any n ∈ N

fY |Ȳn=ȳn(y) =
fY,Ȳn(y, ȳn)

fȲn(ȳn)
=

m∑
k=1

fY,Ȳn|ϑ=k(y, ȳn)

fȲn(ȳn)
P(ϑ = k)

=

m∑
k=1

fk(y) fȲn|ϑ=k(ȳn)

fȲn(ȳn)
P(ϑ = k) =

m∑
k=1

fk(y)P(ϑ = k | Ȳn = ȳn),

where we have used the conditional independence of the claims sizes given ϑ (cf. As-
sumption 6.1) in the third equality. Hence

fY |Y1,...,YNt
(y) =

m∑
k=1

fk(y) pk(t), t ≥ 0,

which implies the announced statement.

Proposition 6.8. The FΨ-intensity kernel of Ψ = (Tn, Yn)n∈N, denoted by (ν(t,dy))t≥0,
is given by

ν(t, B) = λ
m∑
k=1

pk(t−)

∫
B
fk(y) dy = λ

m∑
k=1

pk(t−)Fk(B), B ∈ B((0,∞)).
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Proof. Fix B ∈ B((0,∞)). We first show that ν is a transition kernel from (R+×Ω,B+⊗
FΨ
∞) to ((0,∞),B((0,∞))). It is clear that (t, ω) 7→ λ

∑m
k=1 pk(ω, t−)Fk(B) is B+⊗FΨ

∞-
measurable due to the measurability w.r.t. FΨ

∞ of the FΨ-predictable process (pk(t−))t≥0,
k = 1, . . . ,m, compare Proposition 2.56 and Proposition 2.27. Moreover, it is easily
seen that through λ

∑m
k=1 pk(t−)Fk(dy), a measure on ((0,∞),B((0,∞))) is defined for

all (t, ω) ∈ R+× Ω since Fk(dy) is a distribution on ((0,∞),B((0,∞))) for every k ∈
{1, . . . ,m}. Now the procedure is to show that (ν(t, B))t≥0 = (λ

∑m
k=1 pk(t−)Fk(B))t≥0

is the predictable FΨ-intensity of (Ψ(t, B))t≥0, where the predictability follows immedi-
ately from the FΨ-predictability of (pk(t−))t≥0 for every k ∈ {1, . . . ,m}. To do this let
(Ht)t≥0 be some non-negative FΨ-predictable process. It follows from Fubini’s theorem
and Lemma 6.7 that

E
[ ∫ ∞

0
Ht ν(t, B) dt

]
= λ

∫ ∞
0

E
[
Ht

m∑
k=1

pk(t)Fk(B)

]
dt = λ

∫ ∞
0

E
[
HtP(Y ∈ B | FΨ

t )
]

dt

= λ

∫ ∞
0

E
[
E
[
Ht 1{Y ∈B} | FΨ

t

]]
dt = λ

∫ ∞
0

E
[
E
[
Ht 1{Y ∈B} |ϑ

]]
dt

= E
[ ∫ ∞

0
E
[
Ht 1{Y ∈B} |ϑ

]
λdt

]
.

Notice that the process (E
[
Ht 1{Y ∈B} |ϑ

]
)t≥0 is a non-negative F-predictable process

due to the F0-measurability of ϑ. Therefore, Brémaud [20, Eq. (2.3)] implies

E
[ ∫ ∞

0
E
[
Ht 1{Y ∈B} |ϑ

]
λ dt

]
= E

[ ∫ ∞
0

E
[
Ht 1{Y ∈B} |ϑ

]
dNt

]
.

It is worth noting that this arguments would also hold if λ is unobservable (i.e. F0-
measurable), which means that we can use the same arguments to determine the FΨ-
intensity for a setting with unobservable claim size distribution. By Assumption 3.3 we
further have

E
[ ∫ ∞

0
E
[
Ht 1{Y ∈B} |ϑ

]
dNt

]
=
∑
n∈N

E
[
E
[
HTn 1{Tn<∞} 1{Y ∈B} |ϑ

]]
=
∑
n∈N

E
[
E
[
HTn 1{Tn<∞} 1{Yn∈B} |ϑ

]]
= E

[∑
n∈N

HTn1{Tn<∞} 1{Yn∈B}

]
= E

[ ∫ ∞
0

Ht Ψ(dt, B)

]
.

In summary, we have

E
[ ∫ ∞

0
Ht ν(t, B) dt

]
= E

[ ∫ ∞
0

Ht Ψ(dt, B)

]
,

i.e. (ν(t,dy))t≥0 is the FΨ-intensity kernel of Ψ = (Tn, Yn)n∈N.

Notation. Let Ψ̂(dt,dy) denote the compensated random measure given by

Ψ̂(dt,dy) := Ψ(dt,dy)− ν(t,dy) dt, (6.4)

where ν is defined as in Proposition 6.8.

This notation leads to the following representation of aggregated claim amount process.
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Proposition 6.9. The aggregated claim amount process S = (St)t≥0 is given by

St =

∫ t

0

∫
(0,∞)

y Ψ̂(ds, dy) + λ

∫ t

0

m∑
k=1

pk(s)µk ds, t ≥ 0.

and satisfies

E[St] = λ
m∑
k=1

πϑ(k)µk t, t ≥ 0.

Proof. An easy verification gives the stated representation of S by combining (3.7)
and (6.4). By Corollary 2.98, the process (ηt)t≥0 defined by

ηt :=

∫ t

0

∫
(0,∞)

y Ψ̂(ds, dy), t ≥ 0,

is an FΨ-martingale since

E
[ ∫ t

0

∫
(0,∞)

y

m∑
k=1

pk(s) fk(y) dy ds

]
= E

[ ∫ t

0

m∑
k=1

pk(s)µk ds

]
= λ

m∑
k=1

∫ t

0
E[pk(s)]µk ds

= λ
m∑
k=1

πϑ(k)µk t < λµm t <∞, t ≥ 0,

which also provides the announced expected value.

Using the proposition, we obtain the following representation of the surplus process,
which is indistinguishable from the one given in (3.7) (with d = 1):

dXξ,b
t =

(
rXξ,b

s + (µ− r)ξs + c(bs)− λ bt
m∑
k=1

pk(s)µk

)
dt+ ξsσdWs −

∫
(0,∞)

bt y Ψ̂(dt,dy)

for all t ≥ 0. Notice further that∫ t

0

∫
(0,∞)

(
pj(s−) fj(y)∑m
k=1 pk(s−)fk(y)

− pj(s−)

)
ν(s, dy) ds

= λ

∫ t

0
pj(s)

∫
(0,∞)

(
fj(y)−

m∑
k=1

pk(s)fk(y)

)
dy ds

= λ

∫ t

0
pj(s)

(
1−

m∑
k=1

pk(s)

)
ds = 0,

since
∑m

k=1 pk(s) = 1 for all s ≥ 0. Hence

dpj(t) =

∫
(0,∞)

(
pj(s−) fj(y)∑m
k=1 pk(s−) fk(y)

− pj(t−)

)
Ψ̂(ds, dy), t ≥ 0.

This result can also be obtained by directly applying the filter result for marked point
process observations from Theorem 2.101.
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6.3 The reduced control problem

In the reduced control model we incorporate accident realization by extending the state
process with the filter process (pt)t≥0. Thus the state process of the reduced control
problem is the (m+ 1)-dimensional process

(Xξ,b
s , ps)s∈[t,T ]

for some fixed initial time t ∈ [0, T ) and (ξ, b) ∈ U [t, T ], where

dXξ,b
s =

(
rXξ,b

s + (µ− r)ξs + c(bs)− λ bs
m∑
k=1

pk(s)µk

)
ds+ ξsσ dWs

−
∫

(0,∞)
bs y Ψ̂(ds, dy),

dpj(s) =

(
fj(y) pj(s−)∑m
k=1 fk(y) pk(s−)

− pj(s−)

)
Ψ̂(ds, dy), j = 1, . . . ,m,

for s ∈ [t, T ], with(
Xξ,b
t , pt

)
= (x, p), x ∈ R, p = (p1, . . . , pm) ∈ ∆m.

Using this reduced model, we can formulate the reduced control problem. For any
(ξ, b) ∈ U [t, T ], the objective function is given by

V ξ,b(t, x, p) := Et,x,p
[
U(Xξ,b

T )
]

:= E
[
U(Xξ,b

T ) |Xξ,b
t = x, pt = p

]
,

and the value function is defined by

V (t, x, p) := sup
(ξ,b)∈U [t,T ]

V ξ,b(t, x, p), (P3)

for all (t, x, p) ∈ [0, T ]×R×∆m. As before, an investment-reinsurance strategy (ξ?, b?) ∈
U [t, T ] is optimal if

V (t, x, p) = V ξ?,b?(t, x, p),

and the insurer is interested in optimal strategies (ξ?, b?) ∈ U [t, T ], i.e. in strategies

(ξ?, b?) = argsup
(ξ,b)∈U [t,T ]

V ξ,b(t, x, p).

The same line of arguments as in Section 4.3 yields, for any (ξ, b) ∈ U [t, T ],

V ξ,b(t, x, pt) = Ṽ ξ,b(t, x) and thus V (t, x, pt) = Ṽ (t, x), (t, x) ∈ [0, T ]× R.

That is, solving the reduced control problem (P3) gives a solution of the original prob-
lem (P) under the framework given in Section 6.1. The solution approach runs as before
with the generalized Hamilton-Jacobi-Bellman equation. Before we get into that, it is a
good point to briefly discuss an extension of the assumptions of this chapter to those in
the previous one.

Remark 6.10. Suppose the framework of Chapter 5 is in force (cf. Sec. 5.1) and the
claim sizes of every insurance line are independent. Then the setting of Chapter 5 can
be readily extended to one with unobservable claim size distribution as presented in this
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chapter. That is, we have for every LoB a finite number of possible loss distributions,
namely mi ∈ N for the LoB i ∈ {1, . . . , d}. Hence the state process of the reduced
control model has (`+m+ 1 +

∑d
i=1mi) components. Accordingly, the generalized HJB

equation and the optimal reinsurance strategy derived from it become very complex
while the verification procedure is still analogue to the one in the previous and this
section.

6.4 The Hamilton-Jacobi-Bellman equation

The heuristic development of the generalized Hamilton-Jacobi-Bellman equation is sim-
ilar to Section 4.4 and is therefore omitted. Using sufficient assumptions, we obtain

0 = sup
(ξ,b)∈R×[0,1]

{
Vt(t, x, p)− λV (t, x, p) +

1

2
σ2Vxx(t, x, p)ξ2

+ Vx(t, x, p)
(
rx+ (µ− r)ξ + c(b)

)
+λ

m∑
k=1

pk

∫
(0,∞)

V
(
t, x− b y, J(p, y)

)
fk(y)dy

}
.

(6.5)

By applying the arguments from the proof of Lemma 4.24, we obtain for any (t, x, p) ∈
[0, T ]× R×∆m

V (t, x, p) = −e−αxer(T−t)g(t, p) (6.6)

with
g(t, p) := inf

(ξ,b)∈U [t,T ]
gξ,b(t, p), (6.7)

where

gξ,b(t, p) := Et,p
[

exp

{
−
∫ T

t
α er(T−s)

(
(µ− r) ξs + c(bs)

)
ds

−
∫ T

t
ασ er(T−s)ξs dWs +

∫ T

t

∫
(0,∞)

α bs y e
r(T−s) Ψ(ds, dy)

}]
,

(6.8)

where Et,p denotes the conditional expectation given pt = p. We reformulate the Equa-
tion (6.5) by using the separation approach above. First, useful properties of the intro-
duced function g should be mentioned.

Lemma 6.11. Let g be defined by (6.7). Then the following statements are satisfied:

(i) gξ,b(t, p) > 0 for all t ∈ [0, T ], p ∈ ∆m and (ξ, b) ∈ U [t, T ].

(ii) g is bounded on [0, T ]×∆m.

(iii) gξ,b(t, p) =
∑m

j=1 pj g
ξ,b(t, ej) for all t ∈ [0, T ] and p ∈ ∆m.

(iv) gξ,b(t, J(p, y)) =
∑m

j=1
fj(y) pj∑m
k=1 fk(y) pk

gξ,b(t, ej) for all (t, p, y) ∈ [0, T ]×∆m × (0,∞).

(v) ∆m 3 p 7→ g(t, p) is concave for all t ∈ [0, T ].

Proof. A passage similar to the proof of Lemma 4.25 implies the statements.



158 Chapter 6 Univariate case with unknown claim size distribution

The separation approach (6.6) implies

Vt(t, x, p) = −e−αxer(T−t)
(
αx r er(T−t)g(t, p) + gt(t, p)

)
,

Vx(t, x, p) = −e−αxer(T−t)
(
− α er(T−t)g(t, p)

)
,

Vxx(t, x, p) = −e−αxer(T−t) α2 e2r(T−t)g(t, p),

V (t, x− b y, p) = −e−αxer(T−t) exp
{
α b y er(T−t)

}
g(t, p),

where the partial derivative w.r.t. t is only defined on (0, T ). However, since g is probably
not differentiable w.r.t. t due ot the jumps of the state process, we replace the partial
derivative gt by Clarke’s generalized subdifferential again. Recall further the notation
gp introduced on page 68.

Using the relations stated above as well as the generalized subdifferential ∂Cgp instead
of gt, we conclude from (6.5)

0 = inf
(ξ,b)∈R×[0,1]

{
− λ g(t, p)− αer(T−t)g(t, p)

(
(µ− r)ξ + c(b)− 1

2
σ2αer(T−t)ξ2

)
+ λ

m∑
k=1

pk

∫
(0,∞)

g(t, J(p, y)) exp
{
α b y er(T−t)

}
fk(y) dy

}
+ inf
ϕ∈∂Cgp(t)

{ϕ}

for all (t, p) ∈ [0, T )×∆m with boundary condition g(T, p) = 1 for all p ∈ ∆m.

Notation. Throughout this chapter, let L denote an operator acting on functions g :
[0, T ]×∆m → (0,∞) and (ξ, b) ∈ R× [0, 1], which is defined by

L g(t, p; ξ, b) := −λ g(t, p)− α er(T−t)g(t, p)
(

(µ− r)ξ + c(b)

− 1

2
ασ2 er(T−t)ξ2

)
+ λ

m∑
k=1

pk

∫
(0,∞)

g(t, J(p, y)) exp
{
α b y er(T−t)

}
fk(y) dy.

(6.9)

Using this notation the generalized HJB equation for g is given by

0 = inf
(ξ,b)∈R×[0,1]

{
L g(t, p; ξ, b)

}
+ inf
ϕ∈∂Cgp(t)

{ϕ} (6.10)

for all (t, p) ∈ [0, T )×∆m with boundary condition

g(T, p) = 1, p ∈ ∆m. (6.11)

Note that we set ∂Cgp(t) = {g′p(t)} at the points t, where the derivative exists. In the
next section we continue to determine a candidate for an optimal strategy.

6.5 Candidate for an optimal strategy

We obtain a candidate for an optimal strategy as byproduct of the generalized HJB
equation (6.10) by rewriting this equation as follows:

0 = −λg(t, p) + αer(T−t)g(t, p) inf
ξ∈R

f1(t, ξ) + inf
b∈[0,1]

f2(t, p, b) + inf
ϕ∈∂Cgp(t)

{ϕ}, (6.12)
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where f1 is defined by (4.27) and

f2(t, p, q) := −α er(T−t) g(t, p) (η − θ)κ− α er(T−t) g(t, p) (1 + θ)κ b

− λ
m∑
k=1

pk

∫
(0,∞)

g(t, J(p, y)) exp
{
α b y er(T−t)

}
fk(y) dy.

Notice that we have used the reinsurance premium model given in (3.6). Hence, it
follows from Section 4.5 that the unique candidate of an optimal investment strategy
ξ? = (ξ?(t))t∈[0,T ] is given by

ξ?(t) =
µ− r
σ2

1

α
e−r(T−t), t ∈ [0, T ]. (6.13)

The first order condition for the candidate of an optimal reinsurance strategy is pro-
vided by the next result.

Lemma 6.12. For any (t, p) ∈ [0, T ] ×∆m, the function R 3 b 7→ f2(t, p, b) is strictly
convex and

∂

∂b
f2(t, p, b) = −α er(T−t)

(
g(t, p) (1 + θ)κ

− λ
m∑
k=1

pk

∫
(0,∞)

g(t, J(p, y)) y exp
{
α b y er(T−t)

}
fk(y) dy

)
.

Proof. The lemma can be proven with the same arguments as Lemma 4.27.

The lemma yields a criterion for a candidate of an optimal reinsurance strategy as
well as the uniqueness of the candidate. We express the criterion by using the following
notation, in which we suppose that g is positive (Lemma 6.11 (i) yields only the non-
negativity of g) throughout this section.

Notation. For any (t, p) ∈ [0, T ]×∆m and b ∈ R, we define

hλ(t, p, b) := λ

m∑
k=1

pk

∫
(0,∞)

g(t, J(p, y))

g(t, p)
y exp

{
α b y er(T−t)

}
fk(y) dy. (6.14)

Furthermore, we set
Aλ(t, p) := hλ(t, p, 0),

Bλ(t, p) := hλ(t, p, 1).
(6.15)

Remark 6.13. This remark is devoted to an alternative reinsurance premium model
similar to Remark 4.28. According to Proposition 6.9, we have

E[dSt] = λ
m∑
k=1

πϑ(k)µk, t ≥ 0,

which is a reasonable choice of κ. As already discussed in Remark 4.28, it makes sense
to replace the prior estimator Πϑ with the posterior estimator pk(t), which takes the
available information into account. Therefore, it makes sense to modify κ so that it
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depends on the filter (pt)t≥0 as follows:

κλ(p) = λ
m∑
k=1

pk µk.

In this case it can be shown (similar as Theorem 6.23) that Aλ(t, p)/κλ(p) ≥ 1 for all
(t, p) ∈ [0, T ] × ∆m and that the optimal strategy is given by (6.17) with κ replaced
by κλ(p) under Assumption 6.18. In addition, a comparison result in analogy to Corol-
lary 6.24 holds.

We continue the discussion with a constant κ and obtain the following first order
condition for the optimal reinsurance strategy by setting ∂

∂bf2 to zero (cf. Lemma 6.12):

(1 + θ)κ = hλ(t, p, b). (6.16)

By establishing this equation w.r.t. b, we obtain a minimizer of f2 w.r.t. b which is
unique due to the strict convexity of f2 w.r.t. b (if such a minimizer exists). The first
order condition is solvable and the solution takes values in [0, 1] depending on the safety
loading parameter θ of the reinsurer.

Proposition 6.14. For any (t, p) ∈ [0, T ] × ∆m, Equation (6.16) has a unique root,
denoted by rλ(t, p), which is increasing w.r.t. the safety loading parameter θ. Moreover,
it holds,

(i) rλ(t, p) ≤ 0 if θ ≤ Aλ(t, p)/κ− 1,

(ii) 0 < rλ(t, p) < 1 if Aλ(t, p)/κ− 1 < θ < Bλ(t, p)/κ− 1,

(iii) rλ(t, p) ≥ 1 if θ ≥ Bλ(t, p)/κ− 1.

Proof. This follows by the same method as in the proof of Proposition 4.29.

Notation. In this chapter, rλ(t, p) denotes the unique root from Proposition 6.14.

There is a possibility that cases (i) and (ii) are empty sets, which can not occur
with the modified κλ(p) described in Remark 6.13. However, using the constant κ,
Proposition 6.14 implies

bλ(t, p) :=


0, θ ≤ Aλ(t, p)/κ− 1,

1, θ ≥ Bλ(t, p)/κ− 1,

rλ(t, p), otherwise,

(6.17)

for every (t, p) ∈ [0, T ] × ∆m, the candidate for an optimal reinsurance strategy
(b?λ(t))t∈[0,T ] is given by b?λ(t) := bλ(t−, pt−). It is worth noting that the interpreta-
tion about the optimal reinsurance strategy given in Remark 4.30 applies here as well.

6.6 Verification

This section shows that the solution of the generalized HJB equation, from which the
optimal strategy is derived, is the determining equation for the value function (Theo-
rem 6.15). Furthermore, we focus on the existence of a solution for the generalized HJB
equation (Theorem 6.17) and thus on the optimality of the given candidates for an opti-
mal investment-reinsurance strategy. We use the same procedure as in the Section 4.7.
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6.6.1 The verification theorem

Theorem 6.15. Suppose there exists a bounded function h : [0, T ]×∆m → (0,∞) such
that t 7→ h(t, p) is Lipschitz on [0, T ] for all p ∈ ∆m, p 7→ h(t, p) is continuous on ∆m

for all t ∈ [0, T ] and h satisfies the generalized HJB equation

0 = inf
(ξ,b)∈R×[0,1]

{L h(t, p; ξ, b)}+ inf
ϕ∈∂Chp(t)

{ϕ},

for all (t, p) ∈ [0, T )×∆m with boundary condition

h(T, p) = 1, p ∈ ∆m.

Then
V (t, x, p) = −e−αxer(T−t)h(t, p), (t, x, p) ∈ [0, T ]× R×∆m,

and (ξ?, b?λ) = (ξ?(s), b?λ(s))s∈[t,T ] with ξ?(s) given by (6.13) and
b?λ(s) := bλ(s−, ps−) given by (6.17) (with g replaced by h in Aλ(s, p) and Bλ(s, p))
is an optimal feedback strategy for the given optimization problem (P3), i.e. V (t, x, p) =
V ξ?,b?λ(t, x, p).

For the proof of the verification theorem a measure change is applied, which is intro-
duced in Lemma A.17. To do this, the set of admissible strategies must be constrained
as follows.

Notation. Throughout this chapter, we set for any t ∈ [0, T )

Ũ [t, T ] := {(ξ, b) ∈ U [t, T ] : ∃K > 0 : |ξs| ≤ K ∀ s ∈ [t, T ],

ξ = (ξs)s∈[t,T ] is continuous and FW -adapted, b = (bs)s∈[t,T ] is FΨ-predictable}.
(6.18)

Moreover, we set

Ṽ (t, x, p) := sup
(ξ,b)∈Ũ [t,T ]

V ξ,b(t, x, p), (t, x, p) ∈ [0, T ]× R×∆m. (6.19)

Notice that Lemma A.22 is crucial to prove the verification theorem, which makes use
of the following operator.

Notation. We define an operator H acting on functions v : [0, T ] ×∆m → (0,∞) and
(ξ, b) ∈ R× [0, 1] by

H v(t, p; ξ, b) := L v(t, p; ξ, b) + vt(t, p) (6.20)

for all functions v : [0, T ]×∆m → (0,∞), where the right-hand side is well-defined.

Using this notation, the HJB equation (6.10) can be written as

0 = inf
(ξ,b)∈R×[0,1]

{H g(t, p; ξ, b)}

at those points t, where g is differentiable w.r.t. t.

Proof of Theorem 6.15. Using the Lemmata A.20, A.21 and A.22, analysis similar to the
proof of Theorem 4.31 yields the announced assertion.
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6.6.2 Existence result for the value function

We demonstrate below that there exists a function h : [0, T ]×∆m → (0,∞) which fulfils
the conditions stated in Theorem 6.15. In order to do this, we introduce the following
function.

Notation. We set

g̃(t, p) := inf
(ξ,b)∈Ũ [t,T ]

gξ,b(t, p), (t, p) ∈ [0, T ]×∆m, (6.21)

where gξ,b is given by (6.8) and Ũ [t, T ] by (6.18).

Properties of the function introduced above are given below.

Lemma 6.16. The function g̃ defined by (6.21) has the following properties:

(i) g̃(t, p) > 0 for all (t, p) ∈ [0, T ]×∆m.

(ii) Ũ [0, T ] 3 (ξ, b) 7→ gξ,b(0, p) is bounded for all p ∈ ∆m.

(iii) There exists a constant 0 < K3 < ∞ such that |g̃(t, p)| ≤ K3 for all (t, p) ∈
[0, T ]×∆m.

(iv) ∆m 3 p 7→ g̃(t, p) is concave for all t ∈ [0, T ].

(v) [0, T ] 3 t 7→ g̃(t, p) is Lipschitz on [0, T ] for all p ∈ ∆m.

(vi) Let M be the set of all points (t, p) ∈ [0, T ]×∆m, where the partial derivative of g̃
w.r.t. t exists. Then there exists a constant 0 < K4 < ∞ such that |g̃t(t, p)| ≤ K4

for all (t, p) ∈M .

(vii) There exists a constant 0 < K5 <∞ such that
∣∣L g̃(t, p; ξ, b)

∣∣ ≤ K5 for all (t, p) ∈
[0, T ]×∆m and (ξ, b) ∈ [−K,K]× [0, 1].

(viii) There exists a constant 0 < K6 <∞ such that
∣∣ inf(ξ,b)∈[−K,K]×[0,1] L g̃(t, p; ξ, b)

∣∣ ≤
K6 for all (t, p) ∈ [0, T ]×∆m.

Proof. The proof runs in the same manner as the proof of Lemma 4.32.

Now we can state the result of the existence of the HJB equation, whose proof works
analogously to Theorem 4.33 in Section 4.7.2 by aid of Lemma 6.16.

Theorem 6.17. The value function of our investment-reinsurance problem (P3) is given
by

V (t, x, p) = −e−αxer(T−t)g(t, p),

where g is defined by (4.19) and satisfies the generalized HJB equation

0 = inf
(ξ,b)∈R×[0,1]

{L g(t, p; ξ, b)}+ inf
ϕ∈∂Cgp(t)

{ϕ}, (t, p) ∈ [0, T )×∆m,

with boundary condition g(T, p) = 1 for all p ∈ ∆m. Furthermore,
(ξ?, b?λ) = (ξ?(s), b?λ(s))s∈[t,T ] with ξ?(s) given by (6.13) and b?λ(s) = bλ(s−, ps−), where
bλ is given by (6.17), is an optimal investment-reinsurance strategy for the optimization
problem (P3).

Proof. Applying the arguments from the proof of Theorem 4.33 again, we obtain the
announced assertion.



6.7 Comparison results with the complete information case 163

6.7 Comparison results with the complete information case

For the considered setting with an unknown claim size distribution, a comparison of
the optimal reinsurance strategy given in Theorem 6.17 and the one in the complete
information case given in (4.57) is derived as in the previous chapters. In addition, we
calculate bounds for the optimal strategy, which are independent of the filter and thus
of the observed claim amounts. Both the comparison result and the a priori bounds can
be only applied under the following assumption.

Assumption 6.18. Throughout this section, we assume that

F1(x) ≥ F2(x) ≥ . . . ≥ Fm(x)

for all x ∈ R.

Remark 6.19. A useful equivalent formulation of the assumption above is∫
(0,∞)

g(x)F1(dx) ≤ . . . ≤
∫

(0,∞)
g(x)Fm(dx)

for all increasing functions g, for which both expectations exist, compare Müller and
Stoyan [96, Thm. 1.2.8]. Hence Assumption 6.2 about the order of the means of the
potential claim size distributions fits with Assumption 6.18 by choosing g as identity
above.

Another way of stating Assumption 6.18 is to say that the claim sizes given ϑ are
stochastically ordered:

Y |ϑ = 1 �st Y |ϑ = 2 �st . . . �st Y |ϑ = m,

where �st denotes the usual stochastic order. It is readily that this order is an order from
the best to the worst case scenario from the perspective of the insurer. The following
notations and results are prerequisites for the representation of the announced a priori
bounds

Notation. Let t ∈ [0, T ] and b ∈ R. Throughout this section, we set

hmin
λ (t, b) := λ

∫
(0,∞)

y
{
α b y er(T−t)

}
f1(y) dy,

hmax
λ (t, b) := λ

∫
(0,∞)

y
{
α b y er(T−t)

}
fm(y) dy.

Proposition 6.20. Let t ∈ [0, T ]. Then R 3 b 7→ hmin
λ (t, b) and R 3 b 7→ hmax

λ (t, b) are
strictly increasing and strictly convex. Furthermore, it holds

lim
b→−∞

hmin
λ (t, b) = lim

b→−∞
hmax
λ (t, b) = 0, lim

b→∞
hmin
λ (t, b) = lim

b→∞
hmax
λ (t, b) =∞.

Proof. This follows by the same analysis as in the proof of Proposition 4.29.

The proposition justifies the next notation, where we refer again to the proof of Propo-
sition 4.29 for details.

Notation. For some fixed t ∈ [0, T ], we denote the unique root of the equation (1+θ)κ =
hmin
λ (t, b) w.r.t. b, and the unique root of the equation (1 + θ)κ = hmax

λ (t, b) w.r.t. b by
rmin
λ (t) and rmax

λ (t), respectively.
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The announced a priori bounds are a direct consequence of the following theorem in
connection with Proposition 6.20.

Proposition 6.21. For any (t, p) ∈ [0, T ]×∆m and b ∈ R+, we have

hmin
λ (t, b) ≤ hλ(t, p, b) ≤ hmax

λ (t, b).

Proof. Choose some (t, p) ∈ [0, T ]×∆m and b̄ ∈ R+. Due to the increasing property of
(0,∞) 3 y 7→ y exp{α b̄ y er(T−t)}, it follows from Remark 6.19 that∫

(0,∞)
y exp

{
α b̄ y er(T−t)

}
f1(y) dy ≤ . . . ≤

∫
(0,∞)

y exp
{
α b̄ y er(T−t)

}
fm(y) dy. (6.22)

Taking this order as well as Lemma 6.11 (iii), (iv) into account, we get

λ
m∑
k=1

pk

∫
(0,∞)

gξ,b(t, J(p, y)) y exp
{
α b̄ y er(T−t)

}
fk(y) dy

= λ
m∑
k=1

pk

∫
(0,∞)

m∑
j=1

pj fj(y)∑m
`=1 p` f`(y)

gξ,b(t, ej) y exp
{
α b̄ y er(T−t)

}
fk(y) dy

= λ

m∑
j=1

pj g
ξ,b(t, ej)

∫
(0,∞)

∑m
k=1 pk fk(y)∑m
`=1 p` f`(y)

y exp
{
α b̄ y er(T−t)

}
fj(y) dy

= λ

m∑
j=1

pj g
ξ,b(t, ej)

∫
(0,∞)

y exp
{
α b̄ y er(T−t)

}
fj(y) dy

≤ hmax
λ (t, b̄)

m∑
j=1

pj g
ξ,b(t, ej) = hmax

λ (t, b̄) gξ,b(t, p)

for every (ξ, b) ∈ U [t, T ], which yields hλ(t, p, b̄) ≤ hmax
λ (t, b̄) by taking the infimum

over all (ξ, b) ∈ U [t, T ] on both sides. The other inequality is obtained by an analogue
argumentation.

Corollary 6.22. The optimal reinsurance strategy b?λ = (b?λ(t))t∈[0,T ] from Theorem 6.17
has the following boundaries:

max{0, rmax
λ (t)} ≤ b?λ(t) ≤ min{1, rmin

λ (t)}, t ∈ [0, T ].

The range of optimality for the reinsurance strategy provided by the corollary above
increases in m (the number of possible claim size distributions) because of the definition
of hmin

λ and hmax
λ . In the case of three potential loss distributions, chosen as stated

Section 6.7 (as well as other parameters), we can see in Figure 6.2 that only the lower
bound (orange line) is useful; the upper one (red line) yields a trivial bound. Due to the
computability of these bounds at time zero for the entire time horizon, they provide the
insurer the a priori information that it is never optimal to transfer the entire risk to the
reinsurer (retention level zero). One reason for the (exponential) rise of the lower bound
from approximately 0.2 to 0.6 lies in the choice of the exponential utility function: As
the level of the surplus process rises, a loss is valued less strongly, which leads to a more
risky behaviour of the insurer when the surplus rises over time.

A tighter upper bound for the optimal strategy is provided by the comparison result of
the optimal reinsurance strategy under partial information and full information, which
is an immediate consequence of the next theorem.
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Figure 6.2: The a priori upper bound (red line) and lower bound (orange line) for the optimal
reinsurance strategy for the setting from Section 6.8.

Theorem 6.23. Let bλ be the function given by (6.17) and b̃?λ,c̄,F the function given
by (4.57). Then, for any (t, p) ∈ [0, T ]×∆m,

b?λ(t, p) ≤ b̃?λ,1,F̄p(t)

with

F̄p(dy) :=
m∑
k=1

pk fk(y) dy.

Proof. Let us fix (t, p) ∈ [0, T ]×∆m and b̄ ∈ R+. As in the proof of Theorem 4.41 it is
sufficient to compare hλ given by (6.14) and hλ,1,F̄p given by (4.55) due to the first order
conditions (6.16) and (4.56). From the proof of Proposition 6.21, we know already that

λ

m∑
k=1

pk

∫
(0,∞)

gξ,b(t, J(p, y)) y exp
{
α b̄ y er(T−t)

}
fk(y) dy

= λ
m∑
j=1

pj g
ξ,b(t, ej)

∫
(0,∞)

y exp
{
α b̄ y er(T−t)

}
fj(y) dy

for every (ξ, b) ∈ U [t, T ]. Remark 6.19 implies that gξ,b(t, e1) ≤ . . . ≤ gξ,b(t, em) because
the integrand of

gξ,b(t, p) = Et,p
[

exp

{
−
∫ T

t
αer(T−s)

(
(µ− r)ξs + c(bs)

)
ds−

∫ T

t
α er(T−s)ξ dWs

+

NT−t∑
n=1

α bTnYn e
r(T−Tn)

}]
,

is increasing in Yn, whose distribution is given by Fj under the condition p = ej , j =
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1, . . . ,m. By considering this order, the order given in (6.22), Lemma 6.11 (iii) as well
as Lemma B.6, we obtain

λ

m∑
j=1

pj g
ξ,b(t, ej)

∫
(0,∞)

y exp
{
α b̄ y er(T−t)

}
fj(y) dy

≥ λ
m∑
j=1

pj g
ξ,b(t, ej)

m∑
k=1

pk

∫
(0,∞)

y exp
{
α b̄ y er(T−t)

}
fk(y) dy

= λ gξ,b(t, p)

∫
(0,∞)

y exp
{
α b̄ y er(T−t)

} m∑
k=1

pk fk(y) dy

for every (ξ, b) ∈ U [t, T ]. In summary, we have for any

λ

m∑
k=1

pk

∫
(0,∞)

gξ,b(t, J(p, y)) y exp
{
α b̄ y er(T−t)

}
fk(y) dy

≥ λ gξ,b(t, p)
∫

(0,∞)
y exp

{
α b̄ y er(T−t)

} m∑
k=1

pk fk(y) dy

for all (ξ, b) ∈ U [t, T ], which gives hλ(t, p, b̄) ≥ hλ,1,F̄ (t, b̄) by taking the infimum over all
(ξ, b) ∈ U [t, T ] on both sides.

Corollary 6.24. Let b̃?λ,c̄,F be the function given by (4.57). Then the optimal reinsurance
strategy under partial information (b?λ(t))t∈[0,T ] from Theorem 6.17 satisfies

b?λ(t) ≤ b̃?λ,1,F̄pt− (t), t ∈ [0, T ].

Since (b̃?
λ,1,F̄pt−

(t))t∈[0,T ] is G-predictable, it is an admissible reinsurance strategy. Fur-

thermore, F̄pt−(dy) can be seen as the known conditional average claim size distribution
given the available information strict before time t. Consequently, the comparison result
above has the same interpretation as the comparison result in Section 4.8.2 and 5.7;
namely, more uncertainty leads to a higher level of protection, i.e. to a lesser or equal
retention level. The comparison result will be illustrated in the next section.

6.8 Numerical analyses

The results of the numerical experiments in this section have the purpose to support
the analytic results of the optimal reinsurance strategy, in particular of the comparison
result from the previous section.

We suppose the Θ = {1, 2, 3} and f1, f2, f3 are the density functions of right-truncated
exponential distributions with rate 3, 2 and 1, respectively, all three truncated at 3. That
is, for any y ∈ R

f1(y) =
3 e−3y

1− e−9
1[0,3](y), f2(y) =

2 e−2y

1− e−6
1[0,3](y), f3(y) =

e−y

1− e−3
1[0,3](y),

and

µ1 =
1

3 (1− e−9)
, µ2 =

1

2 (1− e−6)
, µ3 =

1

1− e−3
.
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Due to this setting, we have for any 0 < x ≤ y ≤ 3

f1(y)

f2(y)
≤ f1(x)

f2(x)
⇐⇒ 3 e−3y

2 e−2y

1− e−6

1− e−9
≤ 3 e−3x

2 e−2x

1− e−6

1− e−9
⇐⇒ e−y ≤ e−x,

where the last inequality is obviously satisfied. Therefore f1(y) f2(x) ≤ f1(x) f2(y) for
all x, y ∈ R with x ≤ y. Hence Y1 |ϑ = 1 �lr Y1 |ϑ = 2, while �lr denotes the likelihood
ration order, see e.g. Müller and Stoyan [96, Def. 1.4.1]. Consequently, Y1 |ϑ = 1 �st

Y1 |ϑ = 2 since the likelihood ration order implies the stochastic order according to
Müller and Stoyan [96, Thm. 1.4.5]. The same conclusion can be drawn for f2 and f3,
i.e. Y1 |ϑ = 2 �st Y1 |ϑ = 3. Thus Assumption 6.18 is fulfilled. The prior probability
mass function of ϑ is supposed to be

π̄ϑ =

(
1

3
,
1

3
,
1

3

)
.

Further parameters are specified in the Table 6.1. The parameter κ of the premium

parameter value

x0 10
T 10
λ 3
r 0.1
µ 0.2
σ 3
α 0.2
θ 0.6
η 0.2

Table 6.1: Simulation parameters for Section 6.8.

principle is choose as E[dSt], i.e.

κ = λ

3∑
k=1

πϑ(k)µk =

3∑
k=1

µk,

compare Proposition 6.9.

Now all parameters are fixed and we can visualize the comparison result from Corol-
lary 6.24 graphically. The following simulation results have been generated under the
assumption that the realization of ϑ is 2, which means that the underlying loss dis-
tribution is F2. In Figure 6.2 we have already illustrated the a priori bounds for
the parameter selection of this section. Figure 6.3 shows these bounds together with
two paths (black and blue lines) of the reinsurance strategy (b̃?

λ,1,F̄pt−
(t))t∈[0,T ] with

F̄p(dy) :=
∑m

k=1 pk fk(y) dy, p ∈ ∆m, which provide an upper bound of the correspond-
ing optimal reinsurance strategy for each scenario according to Corollary 6.24. That
means, the black line and blue line depend on the realized claim arrival times and the
corresponding losses. In the scenario of the black line, the insurer receives rarely useful
information about the choice of the optimal reinsurance strategy since the path of the
strategy serving as upper bound is 1 for almost the entire period. But in the other sce-
nario of the blue line, the range of optimality for the reinsurance strategy (area between
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the blue line and orange line) in the time between 1 and 6 is very small. In summary,
we can conclude that the quality of the upper bound provided by the comparison result
depends strongly on the realized loss amounts.
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Figure 6.3: The a priori upper bound (red line) and lower bound (orange line) for the opti-
mal reinsurance strategy as well as two trajectories (black and blue lines) of the
reinsurance strategy (b̃?

λ,1,F̄pt−
(t))t∈[0,T ] with F̄p(dy) :=

∑m
k=1 pk fk(y) dy.

We conclude the numerical analysis with Figure 6.4, which shows the path of the sur-
plus process in an insurance loss scenario for three different insurance strategies. The
red line displays the trajectory of the surplus process in the case of full reinsurance (i.e.
retention level of 0), which tends upwards in contrast to the corresponding paths in Sec-
tions 4.9 and 5.8. The reason is that the parameter κ selected by means of the expected
value premium principles is smaller than in the other sections under the consideration
of a single LoB. For a constant reinsurance strategy of 0.5, the trajectory of the surplus
process is plotted by the blue line. Up to time 4, this path is similar to the one in
the case of the reinsurance strategy (b̃?

λ,1,F̄pt−
(t))t∈[0,T ] with F̄p(dy) :=

∑m
k=1 pk fk(y) dy

(black line). Since the later reinsurance strategy tends upwards (cf. Figure 5.3) at the
end of the considered time horizon, the (negative) jump sizes become higher in com-
parison to the blue line, but at the same time the path between the claims rises more
strongly because of the lower reinsurance premium.

6.9 Comments on generalizations

The framework of this chapter is one of the simplest conceivable settings for an unobserv-
able claim size distribution. Therefore it is desirable to solve the optimization problem
in a more general setting.
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Figure 6.4: Trajectories of the surplus process for an insurance loss scenario in the cases of full
reinsurance (red line), constant retention level of 0.5 (blue line) and the reinsurance
strategy (b̃?

λ,1,F̄pt−
(t))t∈[0,T ] with F̄p(dy) :=

∑m
k=1 pk fk(y) dy (black line).

Finite mixture model. A generalization is to model the unknown distribution as a
finite mixture distribution1 with an unknown allocation. In general, this would lead to
an infinite dimension control problem, compare the explanation in the paragraph “More
general trigger process” in Section 5.9. Moreover, there are no natural conjugate priors
available for finite mixture models with unknown allocation (see Frühwirth-Schnatter
[62, p. 53]). Therefore, it is not possible to solve the optimization problem within a
finite mixture framework using the methods presented in this paper.

Dirichlet process. Another approach for considering the unknownness of the claim
size distribution is to use the Dirichlet process as the model for the loss distribution,
which was introduced in the breakthrough paper from Ferguson [60]. If α is some finite
measure on (0,∞), then the Dirichlet process with parameter α, written as DP(α),
chooses a discrete claim size distribution on (0,∞). However, the Dirichlet process is
rich in the sense that there is a positive probability that any fixed distribution, which is
absolutely continuous w.r.t. α, is approximate as closely as desired by a sample function
of the Dirichlet process, compare Phadia [99, p. 29 f.]. Therefore the Dirichlet process
approximates every relevant loss distribution, which justifies the use of the Dirichlet
process as a distribution for the claim size distribution. So it is reasonable to assume that
F |α ∼ DP(α), where α is a finite measure on (0,∞) and the claim sizes are conditional
iid with F |α. To obtain the reduced control problem, we have to characterize the
random claim size distribution by using the observed claim sizes. For this purpose, the

1An introduction to finite mixture modelling can be found in Frühwirth-Schnatter [62, Ch. 1].
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following conjugated property of the Dirichlet process can be used

F |α, Y1, . . . , YNt ∼ DP

(
α+

Nt∑
i=1

δYi

)
,

compare Ferguson [60, Thm. 1], where δx denotes the Dirac measure at x. Due to the
conjugated property, the family of random measures

Ct(dx) :=

Nt∑
i=1

δYi(dx) =

∫ t

0

∫
(0,∞)

1{y∈dx}Φ(ds, dy), t ∈ [0, T ],

encapsulates all available information about F , which is included in the observable fil-
tration G. The random counting measure Ct(dx) is uniquely determined by∫

(0,∞)
f(x)Ct(dx) =

Nt∑
i=1

f(Yi) =

∫ t

0

∫
(0,∞)

f(y) Φ(dt,dy), t ∈ [0, T ],

for all functions f ∈ B(0,∞), B(0,∞) denotes the set of all measurable bounded func-
tions defined on (0,∞). Therefore the process π(f) = (πt(f))t∈[0,T ] defined by

πt(f) :=

∫ t

0

∫
(0,∞)

f(y) Φ(dt,dy), t ∈ [0, T ], f ∈ B(0,∞),

characterises the relevant information about F . Therefore the state process of the re-
duced control problem is of infinite dimension, which requires a different solution ap-
proach than the one presented here.

A parametric Bayesian model. A further concept for the claim size modelling is
to choose a parametric Bayesian model with a conjugated prior. Such a model is the
exponential distributions with Gamma distributed rate. So {Fϑ : ϑ ∈ Θ} is a family
of conditional exponential distribution given ϑ, where ϑ is an F0-measurable random
variable taking values in Θ := (0,∞), which is Gamma distributed. That is, the prior
knowledge of the insurer about the unknown rate of the claim size distribution is ex-
pressed by a Gamma distribution. It is well-known that the Gamma distribution is
a conjugated prior for the rate of an exponential distribution, cf. e.g. DeGroot [49,
Thm. 9.4.3]. More precisely, we have the following setting:

Y1, Y2, . . . |ϑ
iid∼ Y

Y |ϑ ∼ Exp(ϑ),

ϑ | γ, ζ ∼ Γ(γ, ζ), γ, ζ > 0,

ϑ | γ, ζ, Y1, . . . , YNt ∼ Γ
(
γ +Nt, ζ + qt

)
with qt :=

∑Nt

i=1
Yi.

The distribution for the claim amounts is an exponential-Gamma mixture model, which
can also be interpreted as the average of individual exponential distributed claim sizes,
where the heterogeneity of the individual losses is taken into account by the mixing,
see Pacáková and Zapletal [97, Sec. III]. However, an easy calculation shows that the
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unconditional density of Y is

fY (y) =

∫
Θ
fY,ϑ(y, ϑ′) dϑ′ =

∫ ∞
0

fY |ϑ=ϑ′(y)hγ,ζ(ϑ
′) dϑ′, y ∈ (0,∞),

where fY |ϑ=ϑ′ = fϑ′ is the density of the exponential distribution with parameter ϑ′ and
hγ,ζ denotes the density of the Gamma distribution with parameter γ and ζ. That is,

fY (y) =

∫ ∞
0

ϑ e−ϑy
ζγ

Γ(γ)
ϑγ−1e−ζ ϑ dϑ =

γζ

Γ(γ)

Γ(γ + 1)

(y + ζ)γ+1

∫ ∞
0

(y + ζ)γ+1

Γ(γ + 1)
ϑγ e−(ζ+y)ϑ dϑ

=
γ ζγ

(y + ζ)γ+1
, y ∈ (0,∞),

and thus

FY (y) = 1−
(

1 +
y

ζ

)−γ
, y ∈ (0,∞),

which is the distribution function of the Lomax-distribution with parameters γ and ζ
(also known as Pareto (II) distribution with location parameter of zero), compare Kleiber
and Kotz [76, Sec. 6.4.2]. That is, the losses are heavy tailed and E[Y exp{α erT Y }] =∞.
But the existence of the expectation is necessary for the proof of a change of measure
(similar to Lemma A.17), which is an integral part of the verification. In consequence, the
solution procedure of this chapter can not be applied to an exponential Gamma-mixture
model for the claim sizes. A possible way out is an approximation of this distribution
by a right-truncated Lomax-distribution. Since such an approximation no longer solves
the original control problem, we must proceed as follows. First of all, it should be noted
that the predictive distribution of an insurance loss given the information at disposal at
time t is Lomax-distributed with parameter γ+Nt and ζ+qt, which follows by the same
calculation as above because of the conjugated property of the Gamma prior. Assuming
that the predictive distribution of Y given Ȳn = ȳn is

f̂Y |Ȳn=ȳn(y) =
(γ + n)

(
(γ +

∑n
i=1 yi)K + (γ +

∑n
i=1 yi)

2
)γ+n

(y + γ +
∑n

i=1 yi)
γ+n+1

(
(ζ +

∑n
i=1 yi +K)γ+n − (ζ +

∑n
i=1 yi)

γ+n
) ,

for 0 ≤ y ≤ K, where K > 0 is some upper bound for the claim sizes. This is the
density function of Lomax-distribution with parameter γ + n and ζ +

∑n
i=1 yi right-

truncated at K. With the notation fγ,ζ,K as density function of Lomax-distribution
with parameter γ and ζ right-truncated at K, the FΨ-intensity kernel of the (0,K)-
MPP Ψ = (Tn, Yn)n∈N is given by ν(t,dy) = λ fγ+Nt,ζ+qt,K(y) dy dt, t ≥ 0, which follows
similar to Proposition 6.8. The processes (Nt)t≥0 and (qt)t≥0 provides the information
at disposal about the claim size distribution. Therefore, the state process of the reduced
control problem is the 3-dimensional process (Xξ,b

s , Ns, qs)s∈[t,T ] for some fixed initial
time t ∈ [0, T ) and (ξ, b) ∈ U [t, T ] with

dXξ,b
s =

(
rXξ,b

s + (µ− r)ξs + c(bs)− λ bs µs
)

ds+ ξsσ dWs −
∫

(0,K)
bs y Ψ̂(ds, dy),

where

µt :=

∫ K

0
y fγ+Nt,ζ+qt,K(y) dy, t ≥ 0,



172 Chapter 6 Univariate case with unknown claim size distribution

is a process describing the conditional mean of the loss distribution given the available
information up to time t. The reduced control problem is given by

V ξ,b(t, x, n, q) := Et,x,n,q
[
U(Xξ,b

T )
]

:= E
[
U(Xξ,b

T ) |Xξ,b
t = x,Nt = n, qt = q

]
,

V (t, x, n, q) := sup
(ξ,b)∈U [t,T ]

V ξ,b(t, x, n, q),

for every (t, x, n, q) ∈ [0, T ]× R× N0 × (0,∞). With the same arguments as before, we
obtain the generalized HJB equation

0 = inf
(ξ,b)∈R×[0,1]

{
− λ g(t, n, q)− αer(T−t)g(t, n, q)

(
(µ− r)ξ + c(b)− 1

2
σ2αer(T−t)ξ2

)
+ λ

∫ K

0
g(t, n+ 1, q + y) exp

{
α b y er(T−t)

}
fγ+n,ζ+q,K(y) dy

}
+ inf
ϕ∈∂Cgn,q(t)

{ϕ}.

An analogous procedure as in the previous chapters provides that the optimal reinsurance
strategy (b?λ(t))t∈[0,T ] is given by bλ(t−, Nt−, qt−) with

bλ(t, n, q) :=


0, θ ≤ Aλ(t, n, q)/κ− 1,

1, θ ≥ Bλ(t, n, q)/κ− 1,

rλ(t, n, q), otherwise,

where

hλ(t, n, q, b) := λ

∫ K

0

g(t, n+ 1, q + y)

g(t, n, q)
y exp

{
α b y er(T−t)

}
fγ+n,ζ+q,K(y) dy,

Aλ(t, n, q) := hλ(t, n, q, 0),

Bλ(t, n, q) := hλ(t, n, q, 1),

and rλ(t, n, p) is the unique root w.r.t. b of

(1 + θ)κ = hλ(t, n, q, b).
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Auxiliary Results

A.1 Auxiliary results to Section 4.7

The following two results will be used to provide a change of measure in Lemma A.3
Recall the definition of Ũ [t, T ] given in (4.39).

Lemma A.1. Let ξ = (ξt)t∈[0,T ] be some continuous, bounded and FW -adapted invest-
ment strategy. Furthermore, let A = (At)t∈[0,T ] be the process which is given by

Aξt := −
∫ t

0
ασ er(T−s)ξs dWs, t ∈ [0, T ]. (A.1)

Then the stochastic exponential E(Aξ) = (E(Aξ)t)t∈[0,T ] of A is an FW -martingale on
[0, T ].

Proof. Fix some continuous, bounded and FW -adapted investment strategy ξ = (ξt)t∈[0,T ].
Applying Theorem 5.2 in Klebaner [75], we obtain

E(A)t = exp

{
−
∫ t

0
ασ er(T−s)ξs dWs −

1

2

∫ t

0
α2 σ2 e2r(T−s)ξs ds

}
, t ∈ [0, T ].

The process E(A) = (E(A)t)t∈[0,T ] is obviously FW -adapted. From the boundedness of
ξ follows, by the Novikov condition (cf. e.g. Corollary 3.5.13 in Karatzas and Shreve
[73]), the announced martingale property of E(A).

Lemma A.2. Let b = (bt)t∈[0,T ] be some FΨ-predictable reinsurance strategy. Further-

more, let Bb = (Bb
t )t∈[0,T ] be the process which is defined by

Bb
t :=

∫ t

0

∫
Ed

(
exp

{
α bs e

r(T−s)
d∑
i=1

yi1z(i)

}
− 1

)
Ψ̂(ds, d(y, z)). (A.2)

Then the stochastic exponential E(Bb) = (E(Bb)t)t∈[0,T ] of Bb is given by

E(Bb)t = exp

{∫ t

0

∫
Ed
α bs e

r(T−s)
d∑
i=1

yi1z(i)Ψ(ds, d(y, z)) + λ t

−
∫ t

0
λ
∑
D⊂D

pDs

∫
(0,∞)d

exp

{
α bs e

r(T−s)
d∑
i=1

yi1D(i)

}
F (dy)ds

}
.

Furthermore, E(Bb) is an FΨ-martingale on [0, T ].

173
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Proof. Fix some FΨ-predictable reinsurance strategy b = (bt)t∈[0,T ]. According to Theo-
rem 2.60, we have

E(Bb)t = eB
b
t−Bb0−

1
2

[Bb]ct
∏

0<s≤t

(
1 + ∆Bb

s

)
e−∆Bbs ,

where, by Proposition 2.51 (v) and the definition of Ψ̂ given in (4.10),

[Bb]c = [(Bb)c] =

[ ∫ ·
0

∫
Ed

(
exp

{
α bs e

r(T−s)
d∑
i=1

yi1z(i)

}
− 1

)
ν̂(s, d(y, z)) ds

]
≡ 0

and ∏
0<s≤t

(
1 + ∆Bb

s

)
e−∆Bbs = exp

{
−
∑

0<s≤t
∆Bb

s

} ∏
0<s≤t

(
1 + ∆Bb

s

)
with

∏
0<s≤t

(
1 + ∆Bs

)
=
∏
n∈N

(
1 +

(
exp

{
α bTn e

r(T−Tn)
d∑
i=1

Y i
n1Zn(i)

}
− 1

)
1{Tn≤t}

)

=
∏
n∈N

(
exp

{
α bTn e

r(T−Tn)
d∑
i=1

Y i
n1Zn(i)

}
1{Tn≤t} + 1{Tn>t}

)

= exp

{∑
n∈N

α bTn e
r(T−Tn)

d∑
i=1

Y i
n1Zn(i)1{Tn≤t}

}

= exp

{∫ t

0

∫
Ed
α bs e

r(T−s)
d∑
i=1

yi1z(i)Ψ(ds, d(y, z))

}
and

exp

{
−
∑

0<s≤t
∆Bb

s

}

= exp

{
−
∑
n∈N

(
exp

{
α bTn e

r(T−Tn)
d∑
i=1

Y i
n1Zn(i)

}
− 1

)
1{Tn≤t}

}

= exp

{
−
∫ t

0

∫
Ed

(
exp

{
α bs e

r(T−s)
d∑
i=1

yi1z(i)

}
− 1

)
Ψ(ds, d(y, z))

}
.

Therefore, again in accordance with (4.10), we obtain

E(Bb)t = exp

{∫ t

0

∫
Ed
α bs e

r(T−s)
d∑
i=1

yi1z(i)Ψ(ds, d(y, z))

−
∫ t

0

∫
Ed

(
exp

{
α bs e

r(T−s)
d∑
i=1

yi1z(i)

}
− 1

)
ν̂(s, d(y, z)) ds

}
,
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which reduces to, by Proposition 4.20 and
∑

D⊂D p
D
t = 1,

E(Bb)t = exp

{∫ t

0

∫
Ed
α bs e

r(T−s)
d∑
i=1

yi1z(i)Ψ(ds, d(y, z)) + λ t

−
∫ t

0
λ
∑
D⊂D

pDs

∫
(0,∞)d

exp

{
α bs e

r(T−s)
d∑
i=1

yi1D(i)

}
F (dy)ds

}
.

We continue by analysing the process E(Bb) for the desired martingale property. The
process E(Bb) = (E(Bb)t)t∈[0,T ] is obviously FΨ-adapted. By definition of the stochastic
exponential, we have

E(Bb)t =

∫ t

0
E(Bb)s− dBb

s

=

∫ t

0

∫
Ed
E(Bb)s−

(
exp

{
α bs e

r(T−s)
d∑
i=1

yi1z(i)

}
− 1

)
Ψ̂(ds, d(y, z)), t ∈ [0, T ].

Therefore, according to Corollary 2.98, E(Bb) is an FΨ-martingale on [0, T ] if

E
[ ∫ T

0

∫
Ed

∣∣∣∣E(Bb)t−

(
exp

{
α bt e

r(T−t)
d∑
i=1

yi1z(i)

}
− 1

)∣∣∣∣ν̂(dt,d(y, z))

]
<∞.

Notice that the integrand process above is obviously FΨ-predictable due to the FΨ-
predictability of (bt)t≥0. By the triangle inequality, Assumption 4.3, bt ≤ 1 and∑

D⊂D p
D
t = 1, we obtain that the expectation above is less or equal to

E

[∫ T

0

∫
Ed

exp

{∫ t

0

∫
Ed
α bs e

r(T−s)
d∑
i=1

yi1z(i) Ψ(ds, d(y, z)) + λ t

}
×

(
exp

{
α bt e

r(T−t)
d∑
i=1

yi1z(i)

}
+ 1

)
λ
∑
D∈dz

pDs F (dy) dt

]

≤ E
[ ∫ T

0
exp

{
α e|r|T

d∑
i=1

Nt∑
n=1

Y i
n + λT

}
×

λ
∑
D⊂D

pDs

(∫
(0,∞)d

exp

{
α e|r|T

d∑
i=1

yi

}
F (dy) + 1

)
dt

]

=
(
MF

(
αe|r|T

)
+ 1
)
λ eλT

∫ T

0
E
[

exp

{
αe|r|T

d∑
i=1

Nt∑
k=1

Y i
k

}]
dt,

where, by Lemma 4.5 (ii), the expectation above is finite as well as the other term.

Now the aforementioned change of measure will be introduced.

Lemma A.3. Let t ∈ [0, T ] and let (ξ, b) ∈ Ũ [0, T ] be an arbitrary admissible strategy.
We set

Lξ,bt := exp

{
−
∫ t

0
ασ er(T−s)ξs dWs −

1

2

∫ t

0
α2 σ2 e2r(T−s)ξ2

s ds
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+

∫ t

0

∫
E
α bs e

r(T−s)
d∑
i=1

yi1z(i) Ψ(ds, d(y, z)) + λ t

−
∫ t

0
λ
∑
D⊂D

pDs

∫
(0,∞)d

exp

{
α bs e

r(T−s)
d∑
i=1

yi1D(i)

}
F (dy) ds

}
.

Then, a probability measure on (Ω,Gt) is defined by Qξ,b
t (A) :=

∫
A L

ξ,b
t dP, A ∈ Gt, for

every t ∈ [0, T ], i.e.
dQξ,bt

dP := Lξ,bt . The probability measures Qξ,b
t and P are equivalent.

Proof. Fix (ξ, b) ∈ Ũ [0, T ]. We define a process Lξ,b = (Lξ,bt )t∈[0,T ] as solution of the
stochastic differential equation

dLξ,bt = Lξ,bt− dZξ,bt , Lξ,b0 = 1,

with Zξ,bt := Aξt + Bb
t , t ∈ [0, T ], where Aξt is defined by (A.1) and Bb

t by (A.2). That
is, Lξ,b is the Doléans-Dade exponential of Zξ,b which is denoted by E(Zξ,b). Let us fix
some t ∈ [0, T ]. From Theorem II.38 in Protter [104], it follows

Lξ,bt = E(Zξ,b)t = E(Aξ)t E(Bb)t,

where E(Aξ) = (E(Aξ)t)t∈[0,T ] and E(Bb) = (E(Bb)t)t∈[0,T ] are the Doléans-Dade expo-

nential of Aξ = (Aξt )t∈[0,T ] and Bb = (Bb
t )t∈[0,T ], respectively. Therefore, Lemma A.1

and Lemma A.2 imply

Lξ,bt = exp

{
−
∫ t

0
ασ er(T−s)ξs dWs −

1

2

∫ t

0
α2 σ2 e2r(T−s)ξ2

s ds

+

∫ t

0

∫
Ed
α bs e

r(T−s)
d∑
i=1

yi1z(i)Ψ(ds, d(y, z)) + λ t

−
∫ t

0
λ
∑
D⊂D

pDs

∫
Ed

exp

{
α bs e

r(T−s)
d∑
i=1

yi1z(i)

}
F (dy)ds

}
.

We are left with the task of showing that Lξ,b is a (P,G)-martingale. Recall that E(Aξ) is
a (P,FW )-martingale on [0, T ] and that E(Bb) is a (P,FΨ)-martingale on [0, T ], compare
Lemma A.1 and Lemma A.9. Recall that the Brownian motion (Wt)t≥0 is independent
of (Tn)n∈N, (Yn)n∈N and (Zn)n∈N according to Assumption 3.6. Therefore, since Gt =
FWt ∨FΨ

t , t ≥ 0, and the product of two independent martingales (each with respect to its
natural filtration) is a martingale (with respect to the natural filtration of the product),
compare Theorem 2.1 of Chapter ”Some particular Problems of Martingale Theory” in
Kabanov et al. [72], it follows that Lξ,b is a (P,G)-martingale on [0, T ]. Thus E[Lξ,bt ] = 1.

Therefore, we can define a new measure Qξ,b
t on (Ω,Gt) by Qξ,b

t (A) =
∫
A L

ξ,b
t dP for every

A ∈ Gt, where it is easily seen that Qξ,b
t and P are equivalent.

The point of the lemma is that it allows one to prove that E[exp{−α er(T−t)Xξ,b
t }] is

bounded for all t ∈ [0, T ]. This condition will be needed in the proof of the important

Lemma A.8. It is clear that exp{−α er(T−t)Xξ,b
t } <∞ P-a.s. due to the càdlàg property

of Xξ,b (since a càdlàg function is bounded on a compact set). To show the boundedness
of the expectation, the basic idea is to change the measure P to an equivalent probability
measure such that the expectation only includes Lebesgue integrals bounded on [0, T ].
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And this is where the lemma above comes into picture.

Lemma A.4. Let f : [0, T ] × R → R be a function defined by (A.3). Furthermore, let

(ξ, b) ∈ Ũ [0, T ] and let Lξ,b = (Lξ,bt )t∈[0,T ] be the density process of Lemma A.3. Then
there exists a constant 0 < K1 <∞ such that∣∣f(t,Xξ,b

t )
∣∣

Lξ,bt
≤ K1 P-a.s.

for all t ∈ [0, T ].

Proof. Fix t ∈ [0, T ] and (ξ, b) ∈ Ũ [0, t]. From Proposition 3.14, we know

∣∣f(t,Xξ,b
t )
∣∣ = exp

{
− αx0 e

r(T−t)ert − α
∫ t

0
er(T−t)er(t−s)

(
(µ− r) ξs + c(bs)

)
ds

− α
∫ t

0
σ er(T−t)er(t−s)ξs dWs + α

∫ t

0

∫
Ed
bs e

r(T−t)er(t−s)
d∑
i=1

yi1z(i) Ψ(ds, d(y, z))

}
.

Consequently∣∣f(t,Xξ,b
t )
∣∣

Lξ,bt
= exp

{
− αx0e

rT +

∫ t

0

(
− α er(T−s)

(
(µ− r) ξs + c(bs)

)
+

1

2
α2 σ2 e2r(T−s)ξ2

s

+ λ
∑
D⊂D

pDs

∫
(0,∞)d

exp

{
α bs e

r(T−s)
d∑
i=1

yi1D(i)

}
F (dy)

)
ds− λt

}
≤ exp

{∫ t

0

(
− α er(T−s)

(
(µ− r) ξs + c(bs)

)
+

1

2
α2 σ2 e2r(T−s)ξ2

s

+ λ
∑
D⊂D

pDs

∫
(0,∞)d

exp

{
α bs e

r(T−s)
d∑
i=1

yi1D(i)

}
F (dy)

)
ds

}
.

Using Assumption 4.3, |ξs| ≤ K,
∑

D⊂D p
D
s = 1, c(bt) = (1 + η)κ− (1− bt)(1 + θ)κ and

ex ≤ e|x| for all x ∈ R, we obtain

exp

{∫ t

0

(
− α er(T−s)

(
(µ− r) ξs + c(bs)

)
+

1

2
α2 σ2 e2r(T−s)ξ2

s

+ λ
∑
D⊂D

pDs

∫
(0,∞)d

exp

{
α bs e

r(T−s)
d∑
i=1

yi1D(i)

}
F (dy)

)
ds

}
≤ exp

{(
αe|r|T

(
|µ− r|K + (2 + η + θ)κ+

1

2
ασ2e|r|TK2

)
+ λMF

(
αe|r|T

))
T

}
=: K1,

where 0 < K1 <∞ is independent of t ∈ [0, T ] as well as (ξ, b).

Corollary A.5. Let f : [0, T ] × R → R be a function defined by (A.3). Furthermore,

let (ξ, b) ∈ Ũ [0, T ] and let L̃ξ,b = (L̃ξ,bt )t∈[0,T ] be the density process of Lemma A.3 with
α replaced by 2α. Then there exists a constant 0 < K2 <∞ such that(

f(t,Xξ,b
t )
)2

L̃ξ,bt
≤ K2 P-a.s.

for all t ∈ [0, T ].
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Proof. Let f : [0, T ]× R→ R be defined by (A.3). Since, by Proposition 3.14,

(
f(t,Xξ,b

t )
)2

= exp

{
− 2αx0 e

r(T−t)ert − 2α

∫ t

0
er(T−t)er(t−s)

(
(µ− r) ξs + c(bs)

)
ds

− 2α

∫ t

0
σ er(T−t)er(t−s)ξs dWs + 2α

∫ t

0

∫
Ed
bs e

r(T−t)er(t−s)
d∑
i=1

yi1z(i) Ψ(ds, d(y, z))

}
,

the assertion follows as in the proof of Lemma A.4.

The next two lemmata are used to prove Lemma A.8.

Lemma A.6. The function f : [0, T ]× R→ R given by

f(t, x) := −e−αxer(T−t) , (t, x) ∈ [0, T ]× R, (A.3)

satisfies

f(t,Xξ,b
t ) = f(0, Xξ,b

0 ) +

∫ t

0

(
f(s,Xξ,b

s )αer(T−s)
(1

2
ασ2er(T−s)ξ2

s − (µ− r)ξs − c(bs)
)

+ λ
∑
D⊂D

pDs f(s,Xξ,b
s )

∫
(0,∞)d

exp

{
α bs e

r(T−s)
d∑
i=1

yi1D(i)

}
F (dy)− λ f(s,Xξ,b

s )

)
ds

−
∫ t

0
f(s,Xξ,b

s−)ασer(T−s)ξs dWs

+

∫ t

0

∫
Ed
f(s,Xξ,b

s−)

(
exp

{
α bs e

r(T−s)
d∑
i=1

yi1z(i)

}
− 1

)
Ψ̂(ds, d(y, z)),

for all t ∈ [0, T ].

Proof. The proof is a straightforward application of Itô-Doeblin’s formula. Set

f(t, x) := −e−αxer(T−t) , t ∈ [0, T ], x ∈ R.

An easy verification shows that f ∈ C1,2((0, T )× R) and, for any (t, x) ∈ (0, T )× R,

ft(t, x) = −αx r er(T−t) e−αxer(T−t) = αx r er(T−t)f(t, x),

fx(t, x) = α er(T−t)e−αxe
r(T−t)

= −α er(T−t)f(t, x),

fxx(t, x) = −α2 e2r(T−t)e−αxe
r(T−t)

= α2 e2r(T−t)f(t, x),

where ft(t, x), fx(t, x) and fxx(t, x) denote the partial derivatives of f at (t, x). Fix
t ∈ [0, T ]. By Corollary 2.58 (Itô-Doeblin’s formula), we have

f(t,Xξ,b
t ) = f(0, Xξ,b

0 ) +

∫ t

0
ft(s,X

ξ,b
s ) ds+

∫ t

0
fx(s,Xξ,b

s−) d(Xξ,b)cs

+
1

2

∫ t

0
fxx(s,Xξ,b

s−) d[Xξ,b]cs +
∑

0<s≤t

(
f(s,Xξ,b

s )− f(s−, Xξ,b
s−)
)
.
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Therefore, by Proposition 3.15,

f(t,Xξ,b
t ) = f(0, Xξ,b

0 ) +

∫ t

0
f(s,Xξ,b

s )α er(T−t)
(
rXξ,b

s −
(
rXξ,b

s + (µ− r)ξs + c(bs)
)

+
1

2
ασ2 er(T−s)ξ2

s

)
ds−

∫ t

0
f(s,Xξ,b

s−)ασ er(T−s)ξs dWs

+
∑

0<s≤t

(
f(s,Xξ,b

s )− f(s,Xξ,b
s−)
)
.

Furthermore, since Xξ,b jumps only at the arrival times of the trigger events N =
(Tn)n∈N, ∑

0<s≤t

(
f(s,Xξ,b

s )− f(s,Xξ,b
s−)
)

=
∑
n∈N

(
f
(
Tn, X

ξ,b
Tn− − bTn

d∑
i=1

yi1{i∈Zn}

)
− f

(
Tn, X

ξ,b
Tn−
))
1{Tn≤t}

=

∫ t

0

∫
Ed

(
f
(
s,Xξ,b

s− − bs
d∑
i=1

yi1z(i)
)
− f(s,Xξ,b

s−)

)
Ψ(ds, d(y, z))

Using the compensated random measure Ψ̂ defined in (4.10), we obtain∑
0<s≤t

(
f(s,Xξ,b

s )− f(s,Xξ,b
s−)
)

=

∫ T

0

∫
Ed

(
f
(
s,Xξ,b

s− − bs
d∑
i=1

yi1z(i)
)
− f(s,Xξ,b

s−)

)
Ψ̂(ds, d(y, z))

+ λ
∑
D⊂D

∫ t

0

∫
(0,∞)d

(
f
(
s,Xξ,b

s− − bs
d∑
i=1

yi1z(i)
)
− f(s,Xξ,b

s−)

)
λ pDs F (dy) ds.

Due to the relation

f
(
t, x− b

d∑
i=1

yi1D(i)
)

= − exp

{
− α

(
x− b

d∑
i=1

yi1D(i)

)
er(T−t)

}

= − exp
{
− αx er(T−t)

}
exp

{
α b

d∑
i=1

yi1D(i)er(T−t)
}

= f(t, x) exp

{
α b

d∑
i=1

yi1D(i)er(T−t)
}
,

(A.4)

we get, by
∑

D⊂D p
D
s = 1,∑

0<s≤t

(
f(s,Xξ,b

s )− f(s,Xξ,b
s−)
)

=

∫ t

0

∫
Ed
f(s,Xξ,b

s−)

(
exp

{
αbs

d∑
i=1

yi1z(i)e
r(T−s)

}
− 1

)
Ψ̂(ds, d(y, z))
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+

∫ t

0
λ
∑
D⊂D

pDs f(s,Xξ,b
s )

∫
(0,∞)d

exp

{
αbs

d∑
i=1

yi1D(i)er(T−s)
}
F (dy) ds

−
∫ t

0
λ f(s,Xξ,b

s ) ds.

This yields the assertion.

Lemma A.7. Let h : [0, T ] × ∆m → (0,∞) be a function such that t 7→ h(t, p) is
absolutely continuous on [0, T ] for all p ∈ ∆m. Then

h(t, pt) = h(0, p0) +

∫ t

0

(
ht(s, ps)− λh(s, ps) + λ

∑
D⊂D

pDs h
(
s, J(ps, D)

))
ds

+

∫ t

0

∫
P(D)

(
h
(
s, J(ps−, z)

)
− h(s, ps−)

)
Φ̂(ds, dz), t ∈ [0, T ].

Proof. According to the assumption of absolutely continuity of [0, T ] 3 t 7→ h(t, p) for all
p ∈ ∆m and the piecewise constancy of the filter (pt)t≥0 between the jump times (Tn)n∈N
(see Proposition 4.16, it follows that the function F (t) := h(t, pt) is absolutely continuous
on [Tn−1, Tn] for every n ∈ N. Hence the FTCL (cf. Sohrab [115, Thm. 11.5.23, 11.5.31])
implies

F (t) = F (Tn−1) +

∫ t

Tn−1

F ′(s) ds, n ∈ N,

where F ′ is Lebesgue integrable. The absolutely continuity of t 7→ h(t, p) also implies
that the derivative of h(t, p) w.r.t. t exists almost everywhere on [0, T ] in the sense of the
Lebesgue measure, compare Proposition 2.44 in connection with Lemma 2.46. Hence

h(t, pt) = h(Tn−1, pTn−1) +

∫ Tn−

Tn−1

ht(s, ps) ds, t ∈ [Tn−1, Tn], n ∈ N,

and, in consequence,

h(t, pt) = h(0, p0) +

∫ t

0
ht(s, ps) ds+

∑
0<s≤t

(
h(s, ps)− h(s, ps−)

)
, t ∈ [0, T ],

where, by Proposition 4.16 and the definition compensated random measure Φ̂ in (4.2),∑
0<s≤t

(
h(s, ps)− h(s−, ps−)

)
=
∑
n∈N

(
h
(
Tn, J(pTn−, Zn)

)
− h(Tn, pTn−)

)
1{Tn≤t}

=

∫ t

0

∫
P(D)

(
h(s, J(ps−, z))− h(s, ps−)

)
Φ̂(ds, dz)

+ λ
∑
D⊂D

∫ t

0
h
(
s, J(ps, D)

)
pDs ds− λ

∫ t

0
h(s, ps) ds,

which yields the assertion.

The next result is crucial for the proof of the Verification Theorem 4.31. It makes use
of the notation of the operator H given by 4.41.

Lemma A.8. Suppose that (ξ, b) ∈ Ũ [0, T ] is an arbitrary strategy and h : [0, T ]×∆m →
(0,∞) is a bounded function such that t 7→ h(t, p) is absolutely continuous on [0, T ] for
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all p ∈ ∆m and p 7→ h(t, p) is continuous on ∆m for all t ∈ [0, T ]. Then, the function
G : [0, T ]× R×∆m → R defined by

G(t, x, p) := −e−αxer(T−t) h(t, p)

satisfies

dG(t,Xξ,b
t , pt) = −e−αX

ξ,b
t er(T−t) H h(t, pt; ξt, bt) dt+ dηξ,bt , t ∈ [0, T ],

where (ηξ,bt )t∈[0,T ] is a G-martingale starting at zero and we set H h(t, p; ξ, b) to zero at
those points (t, p) where the partial derivative of h w.r.t. t does not exist.

Proof. Let (ξ, b) ∈ Ũ [0, T ] be an arbitrary strategy and let h : [0, T ] × ∆m → (0,∞)
be a function satisfying the conditions stated in the lemma, where 0 < K0 < ∞ is
some constant which bounds h, i.e. |h(t, p)| ≤ K0 for all (t, p) ∈ [0, T ]×∆m. Let us fix
(t, x, p) ∈ [0, T ]× R×∆m and set

G(t, x, p) := −e−αxer(T−t)h(t, p) and f(t, x) := −e−αxer(T−t) .

From Lemma A.6, we get

df(t,Xξ,b
t ) =

[
f(t,Xξ,b

t )αer(T−t)
(1

2
σ2αer(T−t)ξ2

t − (µ− r)ξt − c(bt)
)

+ λ
∑
D⊂D

pDt f(t,Xξ,b
t )

∫
(0,∞)d

exp

{
α bt e

r(T−t)
d∑
i=1

yi1D(i)

}
F (dy)− λ f(t,Xξ,b

t )

]
dt

− f(t,Xξ,b
t− )ασer(T−t)ξt dWt

+

∫
Ed
f(t,Xξ,b

t− )

(
exp

{
α bt e

r(T−t)
d∑
i=1

yi1z(i)

}
− 1

)
Ψ̂(dt,d(y, z)),

(A.5)
Moreover, Lemma A.7 yields

dh(t, pt) =

(
ht(t, pt)− λh(t, pt) + λ

∑
D⊂D

pDt h
(
t, J(pt, D)

))
dt

+

∫
P(D)

(
h
(
t, J(pt−, D)

)
− h(t−, pt−)

)
Φ̂(dt,dz).

(A.6)

Since, G(t,Xξ,b
t , pt) = f(t,Xξ,b

t )h(t, pt), the product rule (cf. Thm. 2.59) implies

dG(t,Xξ,b
t , pt) = h(t−, pt−) df(t,Xξ,b

t ) + f(t,Xξ,b
t− ) dh(t, pt) + d

[
f(·, Xξ,b

· ), h(·, p·)
]
t
.

(A.7)
From Proposition 2.51 (iii), (v) and (vi) follows[

f(·, Xξ,b
· ), h(·, p·)

]
t

=
1

2

(
[f(·, Xξ,b

· ) + h(·, p·)]t − [f(·, Xξ,b
· )]t − [h(·, p·)]t

)
=

1

2

(
[f(·, Xξ,b

· ) + h(·, p·)]ct +
(
f(0, Xξ,b

0 ) + h(0, Xξ,b
0 )
)2

+
∑

0<s≤t

(
∆f(s,Xξ,b

s ) + ∆h(s, ps)
)2 − [f(·, Xξ,b

· )]ct − f(0, Xξ,b
0 )2
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−
∑

0<s≤t

(
∆f(s,Xξ,b

s )
)2 − [h(·, p·)]ct − h(0, p0)2 −

∑
0<s≤t

(
∆h(s, ps)

)2)
.

Since h(·, p·) is an FV process, we have

[f(·, Xξ,b
· ) + h(·, p·)]ct =

∫ t

0
f(s,Xξ,b

s )2α2σ2e2r(T−s)ξ2
s ds = [f(·, Xξ,b

· )]ct

and
[h(·, p·)]ct = 0.

Thus, [
f(·, Xξ,b

· ), h(·, p·)
]
t

=
1

2

(
2 f(0, Xξ,b

0 )h(0, p0) + 2
∑

0<s≤t
∆f(s,Xξ,b

s ) ∆h(s, ps)
)

= f(0, Xξ,b
0 )h(0, p0) +

∑
0<s≤t

(
f(s,Xξ,b

s )− f(s,Xξ,b
s−)
)(
h(s, ps)− h(s−, ps−)

)
= f(0, Xξ,b

0 )h(0, p0) +
∑

0<s≤t

(
f(s,Xξ,b

s )
(
h(s, ps)− h(s−, ps−)

)
− f(s,Xξ,b

s−)
(
h(s, ps)− h(s−, ps−)

))
.

Due to the jumps of Xξ,b and p at the arrival times of the trigger events (Tn)n∈N, we
obtain, by using Proposition 4.16,[

f(·, Xξ,b
· ), h(·, p·)

]
t

= f(0, Xξ,b
0 )h(0, p0)

+
∑
n∈N

(
f
(
Tn, X

ξ,b
Tn− − bTn

d∑
i=1

yi1{i∈Zn}

)(
h
(
Tn, J(pTn−, Zn)

)
− h(Tn−, pTn−)

)
− f(Tn, X

ξ,b
Tn−)

(
h(Tn, J(pTn−, Zn))− h(Tn−, pTn−)

))
1{Tn≤t}

= f(0, Xξ,b
0 )h(0, p0)

+

∫ t

0

∫
Ed
f
(
s,Xξ,b

s− − bs
d∑
i=1

yi1z(i)
) (
h(s, J(ps−, z))− h(s−, ps−)

)
Ψ(ds, d(y, z))

−
∫ t

0

∫
P(D)

f(s,Xξ,b
s−)

(
h(s, J(ps−, z))− h(s−, ps−)

)
Φ(ds, dz)

Once again, we use the compensated random measures Φ̂ and Ψ̂ (compare (4.2) and (4.10),
respectively) and we obtain

d
[
f(·, Xξ,b

· ), h(·, p·)
]
t

=∫
Ed
f
(
t,Xξ,b

t− − bt
d∑
i=1

yi1z(i)
)(

h
(
t, J(pt−, z)

)
− h(t−, pt−)

)
Ψ̂(dt,d(y, z))

+ λ
∑
D⊂D

pDt

(
h
(
t, J(pt, D)

)
− h(t, pt)

)∫
(0,∞)d

f
(
t,Xξ,b

t − bt
d∑
i=1

yi1D(i)
)
F (dy) dt
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−
∫
P(D)

f(t,Xξ,b
t− )

(
h
(
t, J(pt−, z)

)
− h(t−, pt−)

)
Φ̂(dt,dz)

− λ
∑
D⊂D

pDt f(t,Xξ,b
t )

(
h
(
t, J(pt, D)

)
− h(t, pt)

)
dt.

Using the relation (A.4), we get

d
[
f(·, Xξ,b

· ), h(·, p·)
]
t

=

[
λ
∑
D⊂D

pDt f(t,Xξ,b
t )
(
h
(
t, J(aD, pt)

)
− h(t, pt)

)
×

∫
(0,∞)d

exp

{
α bt e

r(T−t)
d∑
i=1

yi1D(i)

}
F (dy)

+ λ f(t,Xξ,b
t )h(t, p)− λ

∑
D⊂D

pDt f(t,Xξ,b
t )h

(
t, J(pt, D)

)]
dt

+

∫
Ed
f(t,Xξ,b

t− )h
(
t, J(pt−, z)

)
exp

{
α bt e

r(T−t)
d∑
i=1

yi1z(i)

}
Ψ̂(dt,d(y, z))

−
∫
Ed
f(t,Xξ,b

t− )h(t−, pt−) exp

{
α bt e

r(T−t)
d∑
i=1

yi1z(i)

}
Ψ̂(dt,d(y, z))

−
∫
P(D)

f(t,Xξ,b
t− )

(
h
(
t, J(pt−, z)

)
− h(t−, pt−)

)
Φ̂(dt,dz).

(A.8)

Inserting (A.5), (A.6) and (A.8) into (A.7), we obtain

dG(t,Xξ,b
t , pt) =

[
h(t, pt) f(t,Xξ,b

t )α er(T−t)
(1

2
σ2αer(T−t)ξ2

t − (µ− r)ξt − c(bt)
)

+ h(t, pt)λ
∑
D⊂D

pDt f(t,Xξ,b
t )

∫
(0,∞)d

exp

{
α bt e

r(T−t)
d∑
i=1

yi1D(i)

}
F (dy)

− λh(t, pt) f(t,Xξ,b
t )

]
dt− h(t−, pt−) f(t,Xξ,b

t− )σ α er(T−t)ξt dWt

+

∫
Ed
h(t−, pt−) f(t,Xξ,b

t− )

(
exp

{
α bt e

r(T−t)
d∑
i=1

yi1z(i)

}
− 1

)
Ψ̂(dt,d(y, z))

+ f(t,Xξ,b
t )

(
ht(t, pt)− λh(t, pt) + λ

∑
D⊂D

pDt h
(
t, J(pt, D)

))
dt

+

∫
P(D)

f(t,Xξ,b
t− )

(
h
(
t, J(pt−, z)

)
− h(t−, pt−)

)
Φ̂(dt,dz)

+

[
λ
∑
D⊂D

pDt f(t,Xξ,b
t )
(
h
(
t, J(pt, D)

)
− h(t, pt)

)
×

∫
(0,∞)d

exp

{
α bt e

r(T−t)
d∑
i=1

yi1D(i)

}
F (dy)

+ λ f(t,Xξ,b
t )h(t, pt)− λ

∑
D⊂D

pDt f(t,Xξ,b
t )h

(
t, J(aD, pt)

)]
dt
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+

∫
Ed
f(t,Xξ,b

t− )h
(
t, J(pt−, z)

)
exp

{
α bt e

r(T−t)
d∑
i=1

yi1z(i)

}
Ψ̂(dt,d(y, z))

−
∫
Ed
f(t,Xξ,b

t− )h(t−, pt−) exp

{
α bt e

r(T−t)
d∑
i=1

yi1z(i)

}
Ψ̂(dt,d(y, z))

−
∫
P(D)

f(t,Xξ,b
t− )

(
h
(
t, J(pt−, z)

)
− h(t−, pt−)

)
Φ̂(dt,dz),

which reduces to

dG(t,Xξ,b
t , pt) =

[
h(t, pt) f(t,Xξ,b

t )α er(T−t)
(1

2
σ2αer(T−t)ξ2

t − (µ− r)ξt − c(bt)
)

+ λ
∑
D⊂D

pDt f(t,Xξ,b
t )h

(
t, J(pt, D)

) ∫
(0,∞)d

exp

{
α bt e

r(T−t)
d∑
i=1

yi1D(i)

}
F (dy)

− λh(t, pt) f(t,Xξ,b
t ) + f(t,Xξ,b

t )ht(t, pt)

]
dt

− h(t−, pt−) f(t,Xξ,b
t− )σ α er(T−t)ξt dWt

+

∫
Ed
f(t,Xξ,b

t− )

(
h
(
t, J(pt−, z)

)
exp

{
α bt e

r(T−t)
d∑
i=1

yi1z(i)

}
− h(t−, pt−)

)
Ψ̂(dt,d(y, z)).

Thus

dG(t,Xξ,b
t , pt)

= f(t,Xξ,b
t )

[
− λh(t, pt)− α er(T−t)h(t, pt)

(
(µ− r)ξt + c(bt)−

1

2
σ2αer(T−t)ξ2

t

)
+ λ

∑
D⊂D

pDt h
(
t, J(pt, D)

) ∫
(0,∞)d

exp

{
α bt e

r(T−t)
d∑
i=1

yi1D(i)

}
F (dy) + ht(t, pt)

]
dt

+ dηξ,bt ,

where
ηξ,bt := η̂ξ,bt − η̃

ξ,b
t , t ∈ [0, T ], (A.9)

with

η̂ξ,bt :=

∫ t

0

∫
Ed
f(s,Xξ,b

s−)

(
h
(
s, J(ps−, z)

)
exp

{
α bs e

r(T−s)
d∑
i=1

yi1z(i)

}
− h(s−, ps−)

)
Ψ̂(ds, d(y, z)), t ∈ [0, T ],

(A.10)

and

η̃ξ,bt :=

∫ t

0
h(s−, ps−) f(s,Xξ,b

s−)σ α er(T−s)ξs dWs, t ∈ [0, T ]. (A.11)

By the absolute continuity of t 7→ h(t, p) for all p ∈ ∆m, the partial derivative of h w.r.t.
t exists almost everywhere in the sense of the Lebesgue measure. Therefore, due to the
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definition of the operator H given by (4.41) and relation (4.9), we obtain

dG(t,Xξ,b
t , pt) + f(t,Xξ,b

t ) H h(t, pt; ξt, bt) dt+ dηξ,bt ,

where we set H h(t, pt, ξt, bt) to zero at those points t ∈ [0, T ] where the partial derivative
ht(t, pt) does not exist. The only point remaining concerns the martingale behaviour of

(ηξ,bt )t∈[0,T ]. Appealing to Corollary 2.98, the process (η̂ξ,bt )t∈[0,T ] is a G-martingale if the
function

F : [0, T ]× Ω× (0,∞)d × P(D)→ R

defined by

F (t, ω, y, z) := f(t,Xξ,b
t− (ω))

(
h
(
t, J(pt−(ω), z)

)
exp

{
α bt(ω) er(T−t)

d∑
i=1

yi1z(i)

}
− h(t−, pt−(ω))

)
,

is a G-predictable function indexed by Ed = (0,∞)d × P(D) and holds

E
[ ∫ T

0

∫
Ed

∣∣F (s, y, z)
∣∣λ ∑

D∈dz

pDs F (dy) ds

]
<∞.

We begin with verifying that F is a G-predictable function indexed by (0,∞)d × P(D).
First we observe that ∆m 3 p 7→ h(t, p) is B(∆m)-measurable due to the assumed conti-
nuity of p 7→ h(t, p). Since t 7→ h(t, p) is also continuous, h is a Carathéodory function
and thus B([0, T ])⊗B(∆m)-measurable, cf. Def. 4.50 and Lemma 4.51 in Aliprantis and
Border [7]. Next, we define a function

g : [0, T ]× Ω× P(D)→ [0, T ]×∆m

by

g(t, ω, z) =

(
t

J(pt−(ω), z)

)
.

Notice that the function ∆m 3 p 7→ J(p, z) is continuous in every component. Hence J :
Ω×∆m×P(D)→ ∆m is B(∆m)⊗P(P(D))-measurable and thus (t, ω, z) 7→ J(pt−(ω), z)
is P(G)⊗P(P(D))-measurable due to the G-predictability of (pt)t≥0. Obviously, the first
component of the vector above is B([0, T ])-measurable, in particular P(G) ⊗ P(P(D))-
measurable. Hence g is P(G) ⊗ P(P(D))-measurable, compare Klenke [77, Thm. 1.90].
Since (h ◦ g)(t, ω, z) = h(t, J(ps−(ω), z)) and h is B([0, T ]) ⊗ P(P(D))-measurable, it
follows that (t, ω, z) 7→ h(t, J(pt−(ω), z)) is P(G) ⊗ P(P(D))-measurable, in particular
P(G)⊗B((0,∞)d)⊗P(P(D))-measurable. Moreover, it is easily seen that (0,∞)d 3 y 7→
F (t, ω, y, z) is continuous in every component for all (t, ω, z) ∈ [0, T ]×Ω×P(D). Hence,
F is a Carathéodory function. Thus F is P(G) ⊗ B((0,∞)d) ⊗ P(P(D))-measurable,
i.e. F is a G-predictable process indexed by (0,∞)d × P(D) = Ed. Next we can turn
our attention to the finiteness of the expectation above. Using the triangle inequality,
Assumption 4.3, the boundedness of h with constant K0 and Remark 4.8 (ii), we see
that

E
[ ∫ T

0

∫
Ed
|F (s, y, z)|λ

∑
D∈dz

pDs F (dy) ds

]
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= λ
∑
D⊂D

E

[∫ T

0

∫
(0,∞)d

∣∣∣∣f(s,Xξ,b
s )

(
h
(
s, J(ps, D)

)
exp

{
α bs e

r(T−s)
d∑
i=1

yi1D(i)

}

− h(s, ps)

)∣∣∣∣ pDs F (dy) ds

]

≤ λ
∫

(0,∞)d
exp

{
α e|r|T

d∑
i=1

yi

}
F (dy)E

[ ∫ T

0

∑
D⊂D

pDs

∣∣∣f(s,Xξ,b
s )h

(
s, J(ps, D)

)∣∣∣ds]

+ λE
[ ∫ T

0

∣∣∣f(s,Xξ,b
s )h(s, ps)

∣∣∣ ds]
≤ λMF

(
αe|r|T

)
K0E

[ ∫ T

0

∣∣f(s,Xξ,b
s )
∣∣ds]+ λK0E

[ ∫ T

0

∣∣f(s,Xξ,b
s )
∣∣ ds]

= λ
(
MF

(
αe|r|T

)
+ 1
)
λK0 E

[ ∫ T

0

∣∣f(s,Xξ,b
s )
∣∣ds]. (A.12)

Due to Lemma A.3, Lemma A.4 and Fubini’s theorem, we obtain

E
[ ∫ T

0

∣∣f(s,Xξ,b
s )
∣∣ ds] =

∫ T

0
EQξ,bs

[∣∣f(s,Xξ,b
s )
∣∣

Lξ,bs

]
ds ≤ K1 T,

which yields the desired finiteness of (A.12). To see the martingale property of (η̃ξ,bt )t∈[0,T ],
we have to show that the process H = (Ht)t∈[0,T ] defined by

Ht := h(t−, pt−) f(t,Xξ,b
t− )σ αer(T−t)ξt, t ∈ [0, T ],

is G-progressively measurable and satisfies
∫ T

0 E[H2
s ] ds < ∞, cf. Theorem 4.7 in Kle-

baner [75]. It is easily seen that H is G-progressively measurable due to the càdlàg

property and adaptedness of ξ as well as the G-predictability of (h(t−, pt−)f(t,Xξ,b
t− ))t≥0

(which follows from the continuity of h and f in both components). Moreover, by the
boundedness of h with K0 and ξ with K as well as Corollary A.5, we have

E[H2
s ] ≤ α2e2|r|T K2

0 K
2K2.

In summary, we can make the desired conclusion that (ηξ,bt )t∈[0,T ] is a G-martingale which
starts obviously at zero.

A.2 Auxiliary results to Section 5.6

The following result will be used to provide a change of measure in Lemma A.10

Lemma A.9. Let b = (bt)t∈[0,T ] be some FΨ-predictable reinsurance strategy. Further-

more, let Bb = (Bb
t )t∈[0,T ] be the process which is defined by

Bb
t :=

∫ t

0

∫
Ed

(
exp

{
α bs e

r(T−s)
d∑
i=1

yi1z(i)

}
− 1

)
Ψ̂(ds, d(y, z)). (A.13)
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Then the stochastic exponential E(Bb) = (E(Bb)t)t∈[0,T ] of Bb is given by

E(Bb)t = exp

{∫ t

0

∫
Ed
α bs e

r(T−s)
d∑
i=1

yi1z(i) Ψ(ds, d(y, z)) +

∫ t

0
Λ̂s ds

−
∫ t

0
Λ̂s
∑
D⊂D

βD + qD(s)

‖β̄ + qs‖

∫
(0,∞)d

exp

{
α bs e

r(T−s)
d∑
i=1

yi1D(i)

}
F (dy) ds

}
.

Furthermore, E(Bb) is an FΨ-martingale on [0, T ].

Proof. Fix some FΨ-predictable reinsurance strategy b = (bt)t∈[0,T ]. As in the proof of

Lemma A.2, we obtain, by definition of Ψ̂ given in (5.9),

E(Bb)t = exp

{∫ t

0

∫
Ed
α bs e

r(T−s)
d∑
i=1

yi1z(i) Ψ(ds, d(y, z))

−
∫ t

0

∫
Ed

(
exp

{
α bs e

r(T−s)
d∑
i=1

yi1z(i)

}
− 1

)
ν(ds, d(y, z))

}
,

which reduces to, by Proposition 5.17,

E(Bb)t = exp

{∫ t

0

∫
Ed
α bs e

r(T−s)
d∑
i=1

yi1z(i) Ψ(ds, d(y, z)) +

∫ t

0
Λ̂s ds

−
∫ t

0
Λ̂s
∑
D⊂D

βD + qD(s)

‖β̄ + qs‖

∫
(0,∞)d

exp

{
α bs e

r(T−s)
d∑
i=1

yi1D(i)

}
F (dy) ds

}
.

The process E(Bb) = (E(Bb)t)t∈[0,T ] is obviously FΨ-adapted. By definition of the
stochastic exponential, we have

E(Bb)t =

∫ t

0
E(Bb)s− dBb

s

=

∫ t

0

∫
Ed
E(Bb)s−

(
exp

{
α bs e

r(T−s)
d∑
i=1

yi1z(i)

}
− 1

)
Ψ̂(ds, d(y, z)), t ∈ [0, T ].

Therefore, according to Corollary 2.98, E(Bb) is an FΨ-martingale on [0, T ] if

E
[ ∫ T

0

∫
Ed

∣∣∣∣E(Bb)t−

(
exp

{
α bt e

r(T−t)
d∑
i=1

yi1z(i)

}
− 1

)∣∣∣∣ν(dt,d(y, z))

]
<∞.

Notice that the integrand process above is obviously FΨ-predictable due to the FΨ-
predictability of (bt)t≥0. By the triangle inequality, we obtain that the expectation
above is less or equal to

E
[ ∫ T

0

∫
Ed

exp

{∫ t

0

∫
Ed
α bs e

r(T−s)
d∑
i=1

yi1z(i) Ψ(ds, d(y, z)) +

∫ t

0
Λ̂s ds

−
∫ t

0
Λ̂s
∑
D⊂D

βD + qD(s)

‖β̄ + qs‖

∫
(0,∞)d

exp

{
α bs e

r(T−s)
d∑
i=1

yi1D(i)

}
F (dy) ds

}
×
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(
exp

{
α bt e

r(T−t)
d∑
i=1

yi1z(i)

}
+ 1

)
Λ̂t
∑
D∈dz

βD + qD(t)

‖β̄ + qt‖
F (dy) dt

]

≤ E
[ ∫ T

0
Λ̂t exp

{∫ t

0

∫
Ed
α bs e

r(T−s)
d∑
i=1

yi1z(i) Ψ(ds, d(y, z)) +

∫ t

0
Λ̂s ds

}
×

∑
D⊂D

βD + qD(t)

‖β̄ + qt‖

(∫
(0,∞)d

exp

{
α bt e

r(T−t)
d∑
i=1

yi1z(i)

}
+ 1

)
dt

]
.

By (5.2), bt ≤ 1 and Remark 5.9, we get the following finite upper bound for the
expectation above

λm
(
MF (αe|r|T ) + 1

)
E
[ ∫ T

0
exp

{
αe|r|T

d∑
i=1

Nt∑
k=1

Y i
k + λm T

}
dt

]

≤ λm
(
MF (αe|r|T ) + 1

)
eλmT

∫ T

0
E
[

exp

{
αe|r|T

d∑
i=1

Nt∑
k=1

Y i
k

}]
dt <∞,

where the finiteness follows from Lemma 5.8 (ii).

Recall the definition of Ũ [t, T ] given in (5.30).

Lemma A.10. Let t ∈ [0, T ] and let (ξ, b) ∈ Ũ [0, T ] be an arbitrary admissible strategy.
We set

Lξ,bt := exp

{
−
∫ t

0
ασ er(T−s)ξs dWs −

1

2

∫ t

0
α2 σ2 e2r(T−s)ξ2

s ds

+

∫ t

0

∫
Ed
α bs e

r(T−s)
d∑
i=1

yi1z(i) Ψ(ds, d(y, z)) +

∫ t

0
Λ̂s ds

−
∫ t

0
Λ̂s
∑
D⊂D

βD + qD(s)

‖β̄ + qs‖

∫
(0,∞)d

exp

{
α bs e

r(T−s)
d∑
i=1

yi1D(i)

}
F (dy) ds

}
.

Then, a probability measure on (Ω,Gt) is defined by Qξ,b
t (A) :=

∫
A L

ξ,b
t dP, A ∈ Gt, for

every t ∈ [0, T ], i.e.
dQξ,bt

dP := Lξ,bt . The probability measures Qξ,b
t and P are equivalent.

Proof. Fix (ξ, b) ∈ Ũ [0, T ]. We define a process Lξ,b = (Lξ,bt )t∈[0,T ] as stochastic expo-

nential of the process Zξ,b = (Zξ,bt )t∈[0,T ] given by Zξ,bt = Aξt +Bb
t with

Aξt := −
∫ t

0
ασ er(T−s)ξs dWs,

Bb
t :=

∫ t

0

∫
Ed

(
exp

{
α bs e

r(T−s)
d∑
i=1

yi1z(i)

}
− 1

)
Ψ̂(ds, d(y, z)).

According to Theorem II.38 in Protter [104], we have

Lξ,bt = E(Zξ,b)t = E(A)t E(B)t, t ∈ [0, T ],

where E(Aξ) = (E(Aξ)t)t∈[0,T ] and E(Bb) = (E(Bb)t)t∈[0,T ] are the Doléans-Dade expo-

nential of Aξ = (Aξt )t∈[0,T ] and Bb = (Bb
t )t∈[0,T ], respectively. Therefore, Lemma A.1
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and Lemma A.9 imply

Lξ,bt = exp

{
−
∫ t

0
ασ er(T−s)ξs dWs −

1

2

∫ t

0
α2 σ2 e2r(T−s)ξ2

s ds

+

∫ t

0

∫
Ed
α bs e

r(T−s)
d∑
i=1

yi1z(i) Ψ(ds, d(y, z)) +

∫ t

0
Λ̂s ds

−
∫ t

0
Λ̂s
∑
D⊂D

βD + qD(s)

‖β̄ + qs‖

∫
(0,∞)d

exp

{
α bs e

r(T−s)
d∑
i=1

yi1D(i)

}
F (dy) ds

}
.

Recall that E(Aξ) is a (P,FW )-martingale on [0, T ] and that E(Bb) is a (P,FΨ)-martingale
on [0, T ], compare Lemma A.1 and Lemma A.9, respectively. Recall further that the
Brownian motion (Wt)t≥0 is independent of (Tn)n∈N, (Yn)n∈N and (Zn)n∈N according to
Assumption 3.6. Consequently, E(Aξ) and E(Bb) are independent processes. Therefore,
since Gt = FWt ∨FΨ

t , t ≥ 0, and the product of two independent martingales (each with
respect to its natural filtration) is a martingale (with respect to the natural filtration of
the product), compare Theorem 2.1 of Chapter ”Some particular Problems of Martingale
Theory” in Kabanov et al. [72], it follows that Lξ,b is a (P,G)-martingale on [0, T ]. Thus

E[Lξ,bt ] = 1. Therefore, we can define a new measure Qξ,b
t on (Ω,Gt) by Qξ,b

t (A) =∫
A L

ξ,b
t dP for every A ∈ Gt, where it is easily seen that Qξ,b

t and P are equivalent.

Lemma A.11. Let f : [0, T ]×R→ R be the function defined by (A.3). Furthermore, let

(ξ, b) ∈ Ũ [0, T ] and let Lξ,b = (Lξ,bt )t∈[0,T ] be the density process of Lemma A.10. Then
there exists a constant 0 < K1 <∞ such that∣∣f(t,Xξ,b

t )
∣∣

Lξ,bt
≤ K1 P-a.s.

for all t ∈ [0, T ].

Proof. Fix t ∈ [0, T ] and (ξ, b) ∈ Ũ [0, t]. A line of arguments as in the proof of Lemma A.4

in connection with
∑

D⊂D
βD+qD(s)

‖β̄+qs‖
= 1 and Remark 5.9 yields∣∣f(t,Xξ,b

t )
∣∣

Lξ,bt

= exp

{
− αx0e

rT −
∫ t

0
αer(T−s)

(
(µ− r)ξs + c(bs)−

1

2
ασ2er(T−s)ξ2

s

)
ds

+

∫ t

0
Λ̂s
∑
D⊂D

βD + qD(s)

‖β̄ + qs‖

∫
(0,∞)d

exp

{
α bs e

r(T−s)
d∑
i=1

yi1D(i)

}
F (dy) ds−

∫ t

0
Λ̂s ds

}
≤ exp

{(
αe|r|T

(
|µ− r|K + (2 + η + θ)κ+

1

2
ασ2e|r|TK2

)
+ λmMF

(
αe|r|T

))
T

}
=: K1,

where 0 < K1 <∞ is independent of t ∈ [0, T ] as well as (ξ, b).

Corollary A.12. Let f : [0, T ] × R → R be a function defined by (A.3). Furthermore,

let (ξ, b) ∈ Ũ [0, T ] and let L̃ξ,b = (L̃ξ,bt )t∈[0,T ] be the density process of Lemma A.10 with
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α replaced by 2α. Then there exists a constant 0 < K2 <∞ such that(
f(t,Xξ,b

t )
)2

L̃ξ,bt
≤ K2 P-a.s.

for all t ∈ [0, T ].

Proof. The assertion follows directly from the proof of Lemma A.11 with that same
argument as in the proof of Corollary A.5.

Lemma A.13. The function f : [0, T ]× R→ R given by (A.3) satisfies

f(t,Xξ,b
t ) = f(0, Xξ,b

0 ) +

∫ t

0
f
(
s,Xξ,b

s

)(
αer(T−s)

(1

2
ασ2 er(T−s)ξ2

s − (µ− r)ξs − c(bs)
)

+ Λ̂s
∑
D⊂D

βD + qD(s)

‖β̄ + qs‖

∫
(0,∞)d

exp

{
α bs e

r(T−s)
d∑
i=1

yi1D(i)

}
F (dy)− Λ̂s

)
ds

−
∫ t

0
f(s,Xξ,b

s−)ασ er(T−s)ξs dWs

+

∫ t

0

∫
Ed
f(s,Xξ,b

s−)

(
exp

{
α bs e

r(T−s)
d∑
i=1

yi1z(i)

}
− 1

)
Ψ̂(ds, d(y, z)),

for all t ∈ [0, T ].

Proof. Fix t ∈ [0, T ]. Notice that the surplus process Xξ,b given in (5.10) satisfies the
properties stated in Proposition 3.15. Therefore, a similar argumentation as in the proof
of Lemma A.6 yields

f(t,Xξ,b
t ) = f(0, Xξ,b

0 )

+

∫ t

0
f(s,Xξ,b

s )α er(T−t)
(
− (µ− r)ξs − c(bs) +

1

2
ασ2 er(T−s)ξ2

s

)
ds

−
∫ t

0
f(s,Xξ,b

s−)ασ er(T−s)ξs dWs +
∑

0<s≤t

(
f(s,Xξ,b

s )− f(s,Xξ,b
s−)
)
,

where, by the definition of compensated random counting measure Ψ̂ given in (5.9),∑
0<s≤t

(
f(s,Xξ,b

s )− f(s,Xξ,b
s−)
)

=

∫ t

0

∫
Ed

(
f
(
s,Xξ,b

s− − bs
d∑
i=1

yi1z(i)
)
− f(s,Xξ,b

s−)

)
Ψ̂(ds, d(y, z))

+

∫ t

0

∫
Ed

(
f
(
s,Xξ,b

s− − bs
d∑
i=1

yi1z(i)
)
− f(s,Xξ,b

s−)

)
ν(ds, d(y, z)).

By Proposition 5.17 and (A.4), the last line above is equal to

∑
D⊂D

∫ t

0
Λ̂s

(∫
(0,∞)d

f
(
s,Xξ,b

s − bs
d∑
i=1

yi1D(i)
)
F (dy)− f(s,Xξ,b

s )

)
βD + qD(s)

‖β̄ + qs‖
ds
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=

∫ t

0
Λ̂s f(s,Xξ,b

s )
∑
D⊂D

βD + qD(s)

‖β̄ + qs‖

∫
(0,∞)d

exp

{
α bs e

r(T−s)
d∑
i=1

yi1D(i)

}
F (dy) ds

−
∫ t

0
Λ̂s f

(
s,Xξ,b

s

)
ds,

which implies the statement of the lemma.

The next result make use of the functions J and v introduced in (5.5) and (5.1),
respectively.

Lemma A.14. Let h : [0, T ]×∆m × N`0 → (0,∞) be a function such that t 7→ h(t, p, q)
and t 7→ h(t, φ(t), q) with φ(0) = p are absolutely continuous on [0, T ] for all (p, q) ∈
∆m×N`0, and p→ h(t, p, q) is concave for all (t, q) ∈ [0, T ]×N`0. Then, for any t ∈ [0, T ],

h(t, pt, qt) = h(0, p0, q0) +

∫ t

0

(
Dh(s, ps, qs)− Λ̂s h(s, ps, qs)

+ Λ̂s
∑
D⊂D

βD + qD(s)

‖β̄ + qs‖
h
(
s, J(ps), v(qs, D)

))
ds

+

∫ t

0

∫
P(D)

(
h
(
s, J(ps−), v(qs−, z)

)
− h(s, ps−, qs−)

)
Φ̂(ds, dz).

Proof. Recall that the processes (pt)t≥0 and (qt)t≥0 jump at the arrival times (Tn)n∈N
of the trigger events. In the light of the absolutely continuity of s 7→ h(s, φ(s), q) with
φ(0) = p for all (p, q) ∈ ∆m × N`0 and the fact that (qt)t≥0 is a pure jump process,
the function F (t) := h(t, pt, qt) is absolutely continuous on [Tn−1, Tn] for every n ∈ N.
Hence, by the FTCL (cf. Sohrab [115, Thm. 11.5.23, 11.5.31]), we have

F (t) = F (Tn−1) +

∫ t

Tn−1

F ′(s) ds, t ∈ [Tn−1, Tn],

where F ′ is Lebesgue integrable. Since t 7→ h(t, p, q) is absolutely continuous for all
(p, q) ∈ ∆m × N`0 and p 7→ h(t, p, q) is concave for all (t, q) ∈ [0, T ] × N`0, the partial
derivatives ht and hpj , j = 1, . . . ,m, exist almost everywhere, compare Theorem 2.2 and
Theorem 2.3. Hence

F ′(t) = ht(t, pt, qt) +
m∑
j=1

hpj (t, pt, qt)φ̇j(t) for a.a. t ∈ (Tn−1, Tn), n ∈ N

with φ(0) = pTn−1 . Using the operator D introduced in (5.32), the representation of φ̇j
given in (5.6) as well as Proposition 5.14 (i), we obtain

F ′(t) = Dh(t, pt, qt) for a.a. t ∈ (Tn−1, Tn), n ∈ N.

That is,

h(t, pt, qt) = h(Tn−1, pTn−1 , qTn−1) +

∫ Tn−

Tn−1

Dh(s, ps, qs) ds, t ∈ [Tn−1, Tn], n ∈ N.
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Therefore, for any t ∈ [0, T ]

h(t, pt, qt) = h(0, p0, q0) +

∫ t

0
Dh(s, ps, qs) ds+

∑
0<s≤t

(
h(s, ps, qs)− h(s, ps−, qs−)

)
,

where, the definition of the compensated random measure Φ̂ given in (5.8),∑
0<s≤t

(
h(s, ps, qs)− h(s, ps−, qs−)

)
=

∫ t

0

∫
P(D)

(
h
(
s, J(ps−), v(qs−, z)

)
− h(s, ps−, qs−)

)
Φ̂(ds, dz)

+

∫ t

0
Λ̂s
∑
D⊂D

βD + qD(s)

‖β̄ + qs‖
h
(
s, J(ps), v(qs, D)

)
ds−

∫ t

0
Λ̂s h(s, ps, qs) ds,

which finishes the proof.

The next result is crucial for the proof of the Verification Theorem 5.24. It makes use
of the notation of the operator H given by 5.33.

Lemma A.15. Suppose that (ξ, b) ∈ Ũ [0, T ] is an arbitrary strategy and h : [0, T ] ×
∆m × N`0 → (0,∞) is a bounded function such that t 7→ h(t, p, q) and t 7→ h(t, φ(t), q)
with φ(t) = p are absolutely continuous on [0, T ] for all (p, q) ∈ ∆m × N`0 as well as
p 7→ h(t, p, q) is concave for all (t, q) ∈ [0, T ] × N`0. Then, the function G : [0, T ] × R ×
∆m × N`0 → R defined by

G(t, x, p, q) := −e−αxer(T−t) h(t, p, q)

satisfies

dG(t,Xξ,b
t , pt, qt) = −e−αX

ξ,b
t er(T−t) H h(t, pt, qt; ξt, bt) dt+ dηξ,bt , t ∈ [0, T ],

where (ηξ,bt )t∈[0,T ] is a G-martingale and we set H h(t, p, q; ξ, b) zero at those points
(t, p, q) where Dh does not exist.

Proof. The proof follows closely the proof of Lemma A.8. Let (ξ, b) ∈ Ũ [0, T ] and
h : [0, T ] ×∆m × N`0 → (0,∞) be some function satisfying the conditions stated in the
lemma, where 0 < K0 <∞ is some constant which bounds h, i.e. |h(t, p, q)| ≤ K0 for all
(t, p, q) ∈ [0, T ]×∆m × N`0. Furthermore, we set

G(t, x, p, q) := −e−αxer(T−t) h(t, p, q) and f(t, x) := −e−αxer(T−t) ,

for any (t, x, p, q) ∈ [0, T ] × R × ∆m × N`0. Let us fix t ∈ [0, T ]. Applying the product

rule (compare Theorem 2.59) to G
(
t,Xξ,b

t , pt, qt
)

= f
(
t,Xξ,b

t

)
h(t, pt, qt), we get

dG
(
t,Xξ,b

t , pt, qt
)

= h(t, pt−, qt−) df
(
t,Xξ,b

t

)
+ f

(
t,Xξ,b

t−
)

dh(t, pt, qt)

+ d
[
f
(
·, Xξ,b
·
)
, h(·, p·, q·)

]
t
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and hence, by Lemmata A.13 and A.14,

dG
(
t,Xξ,b

t , pt, qt
)

= f
(
t,Xξ,b

t

)
h(t, pt, qt)

(
αer(T−t)

(1

2
ασ2er(T−t)ξ2

t − (µ− r)ξt − c(bt)
)

+ Λ̂t
∑
D⊂D

βD + qD(t)

‖β̄ + qt‖

∫
(0,∞)d

exp

{
α bt e

r(T−t)
d∑
i=1

yi1D(i)

}
F (dy)− Λ̂t

)
dt

− f
(
t,Xξ,b

t−
)
h(t, pt−, qt−)ασ er(T−t)ξt dWt

+

∫
Ed
f
(
t,Xξ,b

t−
)
h(t, pt−, qt−)

(
exp

{
αbte

r(T−t)
d∑
i=1

yi1z(i)

}
−1

)
Ψ̂(dt,d(y, z))

+ f
(
t,Xξ,b

t

)(
Dh(t, pt, qt)− Λ̂th(t, pt, qt)+

Λ̂t
∑
D⊂D

βD + qD(t)

‖β̄ + qt‖
h
(
t, J(pt), v(qt, D)

))
dt

+

∫
P(D)

f
(
t,Xξ,b

t−
)(
h
(
t, J(pt−), v(qt−, z)

)
− h(t, pt−, qt−)

)
Φ̂(dt,dz)

+ d
[
f
(
·, Xξ,b
·
)
, h(·, p·, q·)

]
t
.

(A.14)

Since h(·, p·, q·) is an FV process, it holds[
f
(
·, Xξ,b
·
)

+ h(·, p·, q·)
]c ≡ [f(·, Xξ,b

·
)]c

und
[
h(·, p·, q·)

]c ≡ 0,

and, consequently, Proposition 2.51 (iii), (v) and (vi) (compare proof of Lemma A.8 for
details) yields[

f
(
·, Xξ,b
·
)
, h(·, p·, q·)

]
t

= f
(
0, Xξ,b

0

)
h(0, p0, q0) +

∑
0<s≤t

f
(
s,Xξ,b

s

)(
h(s, ps, qs)− h(s, ps−, qs−)

)
−
∑

0<s≤t
f
(
s,Xξ,b

s−
)(
h(s, ps, qs)− h(s, ps−, qs−)

)
= f

(
0, Xξ,b

0

)
h(0, p0, q0) +

∫ t

0

∫
Ed
f
(
s,Xξ,b

s− − bs
d∑
i=1

yi1z(i)
)
×(

h
(
s, J(ps−), v(qs−, z)

)
− h(s, ps−, qs−)

)
Ψ(ds, d(y, z))

−
∫ t

0

∫
P(D)

f
(
s,Xξ,b

s−
)(
h(s, J(ps−), v(qs−, z))− h(s, ps−, qs−)

)
Φ(ds, dz).

Using the introduced compensated random measures Φ̂ and Ψ̂ given in (5.8) and (5.9),
respectively, as well as Equation (A.4), the variation becomes[

f
(
·, Xξ,b
·
)
, h(·, p·, q·)

]
t

= f
(
0, Xξ,b

0

)
h(0, p0, q0) +

∫ t

0

∫
Ed
f
(
s,Xξ,b

s−
)

exp

{
α bs e

r(T−s)
d∑
i=1

yi1z(i)

}
×(

h
(
s, J(ps−), v(qs−, z)

)
− h(s, ps−, qs−)

)
Ψ̂(ds, d(y, z))
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−
∫ t

0

∫
P(D)

f
(
s,Xξ,b

s−
)(
h
(
(s, J(ps−), v(qs−, z)

)
− h(s, ps−, qs−)

)
Φ̂(ds, dz)

+

∫ t

0
Λ̂s f

(
s,Xξ,b

s

) ∑
D⊂D

βD + qD(s)

‖β̄ + qs‖

∫
(0,∞)d

exp

{
α bs e

r(T−s)
d∑
i=1

yi1D(i)

}
F (dy)×(

h
(
s, J(ps), v(qs, D)

)
− h(s, ps−, qs−)

)
ds

−
∫ t

0
Λ̂s f

(
s,Xξ,b

s

) ∑
D⊂D

βD + qD(s)

‖β̄ + qs‖
h(s, J(ps), v(qs, D)) ds

+

∫ t

0
Λ̂s f

(
s,Xξ,b

s

)
h(s, ps, qs) ds.

Substituting this into (A.14), we obtain

dG
(
t,Xξ,b

t , pt, qt
)

= f
(
t,Xξ,b

t

)(
− α er(T−t)h(t, pt, qt)

(
(µ− r) ξt + c(bt)−

1

2
ασ2 er(T−t)ξ2

t

)
+ Λ̂t

∑
D⊂D

βD + qD(t)

‖β̄ + qt‖
h(t, J(pt), v(qt, D))

∫
(0,∞)d

exp

{
α bt e

r(T−t)
d∑
i=1

yi1D(i)

}
F (dy)

− Λ̂t h(t, pt, qt) +Dh(t, pt, qt)

)
dt

− f
(
t,Xξ,b

t−
)
h(t, pt−, qt−)ασ er(T−t)ξt dWt − f

(
t,Xξ,b

t−
)
h(t, pt−, qt−) dN̂t

+

∫
Ed
f
(
t,Xξ,b

t−
)

exp

{
α bt e

r(T−t)
d∑
i=1

yi1z(i)

}
h(t, J(pt−), v(qt−, z))Ψ̂(dt,d(y, z)).

Therefore, by definition of the operator H given in (5.33), we have

dG
(
t,Xξ,b

t , pt, qt
)

= f
(
t,Xξ,b

t

)
H h(t, pt, qt; ξt, bt) dt+ dηξ,bt ,

where
ηξ,bt := η̂ξ,bt − η̄

ξ,b
t − η̃

ξ,b
t

with

η̂ξ,bt :=

∫ t

0

∫
Ed
f
(
s,Xξ,b

s−
)

exp

{
α bs e

r(T−s)
d∑
i=1

yi1z(i)

}
×

h
(
s, J(ps−), v(qs−, z)

)
Ψ̂(ds, d(y, z)),

η̄ξ,bt :=

∫ t

0
f
(
s,Xξ,b

s−
)
h(s, ps−, qs−) dN̂s,

η̃ξ,bt :=

∫ t

0
f
(
s,Xξ,b

s−
)
h(s, ps−, qs−)ασ er(T−s)ξs dWs.

To complete the proof we need to show that (ηξ,bt )t∈[0,T ] is a G-martingale on [0, T ] start-
ing at zero, where the last property is obviously satisfied. According to Corollary 2.98
(η̂ξ,bt )t∈[0,T ] holds the stated martingale property if the function

F : [0, T ]× Ω× (0,∞)d × P(D)→ R
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defined by

F (t, ω, y, z) := f
(
t,Xξ,b

t− (ω)
)

exp

{
α bt(ω) er(T−t)

d∑
i=1

yi1z(i)

}
×

h
(
s, J(pt−(ω)), v(qt−(ω), z)

)
is a G-predictable function indexed by Ed and satisfies

E
[ ∫ T

0

∫
Ed
|F (t, y, z)|ν(t,d(y, z)) dt

]
<∞. (A.15)

In order to show the measurability property of F , we first observe that q 7→ h(t, p, q)
is P(P(D))-measurable and p 7→ h(t, p, q) is B(∆m)-measurable due to the assumed
continuity. Hence (p, q) 7→ h(t, p, q) is B(∆m)⊗P(P(D))-measurable for all t ∈ [0, T ]. We
further observe that, by assumption, t 7→ h(t, p, q) is continuous for all (p, q) ∈ ∆m×N`0.
That is, h is a Carathéodory function and thus B([0, T ])⊗B(∆m)⊗P(P(D))-measurable,
compare Def. 4.50 and Lemma 4.51 in Aliprantis and Border [7]. Next, we define a
function

g : [0, T ]× Ω× P(D)→ [0, T ]×∆m × N`0
by

g(t, ω, z) =

 t
J(pt−(ω))
v(qt−(ω), z)

 .

Notice that the function J : ∆m → ∆m defined by (5.5) is continuous. Hence J ◦ p·−(·) :
[0, T ] × Ω → ∆m is P(G)-measurable. That is, the second component of the vec-
tor above is P(G)-measurable. Furthermore, it is easily seen that the first compo-
nent of the vector above is B([0, T ])-measurable and the third one P(G) ⊗ P(P(D))-
measurable. In particular, all components are P(G)⊗ P(P(D))-measurable. Hence g is
P(G)⊗P(P(D))-measurable, compare e.g. Klenke [77, Thm. 1.90]. Since (h◦g)(t, ω, z) =
h(t, J(ps−(ω)), v(qt−(ω), z)) and h is B([0, T ])⊗B(∆m)⊗P(P(D))-measurable, it follows
that (t, ω, z) 7→ h(t, J(pt−(ω)), v(qt−(ω), z)) is P(G) ⊗ P(P(D))-measurable, in partic-
ular P(G) ⊗ B((0,∞)d) ⊗ P(P(D))-measurable. At the same time, the other terms of
the function F are P(G) ⊗ B((0,∞)d) ⊗ P(P(D))-measurable as well, according to its
continuity. That is, F is a G-predictable process indexed by (0,∞)d × P(D) = Ed.
Next we show the finiteness of the expectation in (A.15). According to the combined
information of Proposition 5.17, the boundedness of h, Remark 5.9, Equation (5.2) and
Lemma A.11, an upper bound for the expectation in Equation (A.15) is

K0E
[ ∫ T

0
Λ̂t
∣∣f(t,Xξ,b

t

)∣∣ ∫
(0,∞)d

exp

{
αe|r|T

d∑
i=1

yi

}
F (dy)dt

]

≤ K0MF (αe|r|T )λm

∫ T

0
EQξ,bt

[∣∣f(t,Xξ,b
t

)∣∣
Lξ,bt

]
dt ≤ K0MF (αe|r|T )λmK1 T <∞.

Now we turn our attention to the process (η̄ξ,bt )t∈[0,T ] which is a G-martingale on [0, T ]

if the process f(·, Xξ,b
·− )h(·, p·−, C·−) is G-predictable and

E
[ ∫ T

0

∣∣f(t,Xξ,b
t− )h(t, pt−, qt−)

∣∣ Λ̂t dt

]
<∞.
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We first show the predictability. Since (pt−)t∈[0,T ] and (qt−)t∈[0,T ] are P(G)-measurable,
the process h(·, p·−, q·−) is G-predictable due to the above shown measurability of h.

Moreover, by its continuity, f(·, Xξ,b
·− ) is G-predictable as well which yields the required

predictability. Furthermore, the same arguments as above imply

E
[ ∫ T

0

∣∣f(t,Xξ,b
t− )h(t, pt−, qt−)

∣∣ Λ̂t dt

]
≤ K0 λmK1 T <∞.

The last part of the proof is devoted to the martingale property of (η̃ξ,bt )t∈[0,T ]. According

to Klebaner [75, Thm. 4.7], (η̃ξ,bt )t∈[0,T ] is a G-martingale on [0, T ] if the process H =
(Ht)t∈[0,T ] defined by

Ht := f
(
t,Xξ,b

t−
)
h(t, pt−, qt−)ασer(T−t)ξt

is G-progressively measurable and satisfies
∫ T

0 E[H2
t ] dt < ∞. From the already shown

and the G-progressive measurability of ξ follows the requested G-progressive measura-
bility of H. Using Corollary A.12 as well as the boundedness of h and of ξ, we conclude∫ T

0 E[H2
t ] dt ≤ α2σ2e2|r|TK2K2

0K
2
2T <∞. In summary, we obtain the desired martingale

property of (ηξ,bt )t≥0 and the proof is complete.

A.3 Auxiliary results to Section 6.6

The following result will be used to provide a change of measure in Lemma A.17

Lemma A.16. Let b = (bt)t∈[0,T ] be some FΨ-predictable reinsurance strategy. Further-

more, let Bb = (Bb
t )t∈[0,T ] be the process which is defined by

Bb
t :=

∫ t

0

∫
(0,∞)

(
exp

{
α bs y e

r(T−s)}− 1
)
Ψ̂(ds, dy).

Then the stochastic exponential E(Bb) = (E(Bb)t)t∈[0,T ] of Bb is given by

E(Bb)t = exp

{∫ t

0

∫
(0,∞)

α bs y e
r(T−s) Ψ(ds, dy) + λ

∫ t

0

m∑
k=1

pk(s)µk ds

− λ
∫ t

0

m∑
k=1

pk(s)

∫
(0,∞)

exp
{
α bs y e

r(T−s)} fk(y) dy ds

}
.

Furthermore, E(Bb) is an FΨ-martingale on [0, T ].

Proof. Fix some FΨ-predictable reinsurance strategy b = (bt)t∈[0,T ]. As in the proof of

Lemma A.2, we obtain, by definition of Ψ̂ given in (6.4),

E(Bb)t = exp

{∫ t

0

∫
(0,∞)

α bs y e
r(T−s) Ψ(ds, dy)

−
∫ t

0

∫
(0,∞)

(
exp

{
α bs y e

r(T−s)}− 1
)
ν(ds, dy)

}
,
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which reduces to, by Proposition 6.8,

E(Bb)t = exp

{∫ t

0

∫
(0,∞)

α bs y e
r(T−s) Ψ(ds, dy) + λ

∫ t

0

m∑
k=1

pk(s)µk ds

− λ
∫ t

0

m∑
k=1

pk(s)

∫
(0,∞)

exp
{
α bs y e

r(T−s)} fk(y) dy ds

}
.

The process E(Bb) = (E(Bb)t)t∈[0,T ] is obviously FΨ-adapted. By definition of the
stochastic exponential, we have

E(Bb)t =

∫ t

0
E(Bb)s− dBb

s

=

∫ t

0

∫
(0,∞)

E(Bb)s−
(

exp
{
α bs y e

r(T−s)}− 1
)
Ψ̂(ds, dy), t ∈ [0, T ].

Therefore, according to Corollary 2.98, E(Bb) is an FΨ-martingale on [0, T ] if

E
[ ∫ T

0

∫
(0,∞)

∣∣E(Bb)t−
(

exp
{
α bt y e

r(T−t)}− 1
)∣∣ν(dt,dy)

]
<∞.

Notice that the integrand process above is obviously FΨ-predictable due to the FΨ-
predictability of (bt)t≥0. By the triangle inequality, we obtain that the expectation
above is less or equal to

E
[ ∫ T

0

m∑
k=1

pk(s) exp

{∫ t

0

∫
(0,∞)

α bs y e
r(T−s) Ψ(ds, dy) + λ

∫ t

0

m∑
k=1

pk(s)µk ds

}
×∫

(0,∞)

(
exp

{
α bt e

r(T−t)}+ 1
)
fk(y) dy dt

]
.

Due to bt ≤ 1, pk(s) ≤ 1, k = 1, . . . ,m, as well as Assumption 6.1 and Remark 6.4, we
get the following finite upper bound for the expectation above

m∑
k=1

(
MFk(αe|r|T ) + µk

)
eλmµk T

∫ T

0
E
[

exp

{
αe|r|T

Nt∑
k=1

Yi

}]
dt <∞,

where the finiteness follows from Lemma 6.3 (ii).

Recall the definition of Ũ [t, T ] given in (5.30).

Lemma A.17. Let t ∈ [0, T ] and let (ξ, b) ∈ Ũ [0, T ] be an arbitrary admissible strategy.
We set

Lξ,bt := exp

{
−
∫ t

0
ασ er(T−s)ξs dWs −

1

2

∫ t

0
α2 σ2 e2r(T−s)ξ2

s ds

+

∫ t

0

∫
(0,∞)

α bs y e
r(T−s) Ψ(ds, dy) + λ

∫ t

0

m∑
k=1

pk(s)µk ds

− λ
∫ t

0

m∑
k=1

∫
(0,∞)

exp
{
α bs y e

r(T−s)} fk(y) dy ds

}
.
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Then, a probability measure on (Ω,Gt) is defined by Qξ,b
t (A) :=

∫
A L

ξ,b
t dP, A ∈ Gt, for

every t ∈ [0, T ], i.e.
dQξ,bt

dP := Lξ,bt . The probability measures Qξ,b
t and P are equivalent.

Proof. Using Lemma A.1 and Lemma A.16, the proof runs as for Lemma A.10.

Lemma A.18. Let f : [0, T ]×R→ R be the function defined by (A.3). Furthermore, let

(ξ, b) ∈ Ũ [0, T ] and let Lξ,b = (Lξ,bt )t∈[0,T ] be the density process of Lemma A.17. Then
there exists a constant 0 < K1 <∞ such that∣∣f(t,Xξ,b

t )
∣∣

Lξ,bt
≤ K1 P-a.s.

for all t ∈ [0, T ].

Proof. Fix t ∈ [0, T ] and (ξ, b) ∈ Ũ [0, t]. In the case of one LoB (d = 1), Proposition 3.14
yields

∣∣f(t,Xξ,b
t )
∣∣ = exp

{
− αx0 e

r(T−t)ert − α er(T−t)
∫ t

0
er(t−s)

(
(µ− r) ξs + c(bs)

)
ds

− α er(T−t)
∫ t

0
σ er(t−s) ξs dWs + α er(T−t)

∫ t

0

∫
(0,∞)

er(t−s) bs yΨ(ds, dy)

}
.

Consequently, we obtain with the help of Lemma A.17, Assumption 6.1 and Remark 6.4∣∣f(t,Xξ,b
t )
∣∣

Lξ,bt

= exp

{
− αx0e

rT +

∫ t

0

(
− αer(T−s)

(
(µ− r) ξs + c(bs)−

1

2
ασ2 er(T−s)ξ2

s

)
− λ

m∑
k=1

pk(s)µk + λ
m∑
k=1

pk(s)

∫
(0,∞)

exp
{
α bs y e

r(T−s)} fk(y) dy

)
ds

}

≤ exp

{(
αe|r|T

(
|µ− r|K + (2+η+θ)κ+

1

2
ασ2e|r|TK2

)
+ λ

m∑
k=1

MFk

(
αe|r|T

))
T

}
=:K1,

where 0 < K1 <∞ is independent of t ∈ [0, T ] as well as (ξ, b).

Corollary A.19. Let f : [0, T ] × R → R be a function defined by (A.3). Furthermore,

let (ξ, b) ∈ Ũ [0, T ] and let L̃ξ,b = (L̃ξ,bt )t∈[0,T ] be the density process of Lemma A.17 with
α replaced by 2α. Then there exists a constant 0 < K2 <∞ such that(

f(t,Xξ,b
t )
)2

L̃ξ,bt
≤ K2 P-a.s.

for all t ∈ [0, T ].

Proof. The assertion follows directly from the proof of Lemma A.18 with that same
argument as in the proof of Corollary A.5.
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Lemma A.20. The function f : [0, T ]× R→ R given by (A.3) satisfies

f(t,Xξ,b
t ) = f(0, Xξ,b

0 ) +

∫ t

0
f
(
s,Xξ,b

s

)(
αer(T−s)

(1

2
ασ2 er(T−s)ξ2

s − (µ− r)ξs − c(bs)
)

+ λ
m∑
k=1

pk(s)

∫
(0,∞)

exp
{
α bs y e

r(T−s)} fk(y) dy − λ
m∑
k=1

pk(s)µk

)
ds

−
∫ t

0
f(s,Xξ,b

s−)ασ er(T−s)ξs dWs

+

∫ t

0

∫
(0,∞)

f(s,Xξ,b
s−)
(

exp
{
α bs y e

r(T−s)}− 1
)
Ψ̂(ds, dy),

for all t ∈ [0, T ].

Proof. Fix t ∈ [0, T ]. As in the proof of Lemma A.6, we obtain yields

f(t,Xξ,b
t ) = f(0, Xξ,b

0 )

+

∫ t

0
f(s,Xξ,b

s )α er(T−t)
(
− (µ− r)ξs − c(bs) +

1

2
ασ2 er(T−s)ξ2

s

)
ds

−
∫ t

0
f(s,Xξ,b

s−)ασ er(T−s)ξs dWs +
∑

0<s≤t

(
f(s,Xξ,b

s )− f(s,Xξ,b
s−)
)
,

where, by the definition of compensated random counting measure Ψ̂ given in (6.4),∑
0<s≤t

(
f(s,Xξ,b

s )− f(s,Xξ,b
s−)
)

=

∫ t

0

∫
(0,∞)

(
f(s,Xξ,b

s− − bs y)− f(s,Xξ,b
s−)
)
Ψ̂(ds, dy)

+ λ

∫ t

0

m∑
k=1

pk(s)

∫
(0,∞)

f(s,Xξ,b
s − bs y) fk(y) dy ds− λ

∫ t

0
f(s,Xξ,b

s )
m∑
k=1

pk(s)µk ds

=

∫ t

0

∫
(0,∞)

f(s,Xξ,b
s−)
(

exp
{
α bs y e

r(T−s)}− 1
)
Ψ̂(ds, dy)

+ λ

∫ t

0
f(s,Xξ,b

s )
m∑
k=1

pk(s)

∫
(0,∞)

exp
{
α bs y e

r(T−s)} fk(y) dy ds

− λ
∫ t

0
f(s,Xξ,b

s )
m∑
k=1

pk(s)µk ds,

since f(t, x− b y) = f(t, x) exp{α b y er(T−t)}.

The next result make use of the function J introduced in (6.3).

Lemma A.21. Let h : [0, T ] × ∆m → (0,∞) be a function such that t 7→ h(t, p) is
absolutely continuous on [0, T ] for all p ∈ ∆m. Then

h(t, pt) = h(0, p0) +

∫ t

0

(
ht(s, ps)− λh(s, ps)

m∑
k=1

pk(s)µk
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+ λ
m∑
k=1

pk(s)

∫
(0,∞)

h(s, J(ps, y)) fk(y) dy

)
ds

+

∫ t

0

∫
(0,∞)

(
h(s, J(ps−, y))− h(s, ps−)

)
Ψ̂(ds, dy), t ∈ [0, T ].

Proof. Applying the arguments from the proof of Lemma A.7, we get

h(t, pt) = h(0, p0) +

∫ t

0
ht(s, ps) ds+

∑
0<s≤t

(
h(s, ps)− h(s, ps−)

)
, t ∈ [0, T ],

where, by the definition compensated random measure Ψ̂ in (6.4),∑
0<s≤t

(
h(s, ps)− h(s−, ps−)

)
=

∫ t

0

∫
(0,∞)

(
h(s, J(ps−, y))− h(s, ps−)

)
Ψ̂(ds, dy)

+ λ

∫ t

0

m∑
k=1

pk(s)

∫
(0,∞)

h(s, J(ps, y)) fk(y) dy ds− λ
∫ t

0
h(s, ps)

m∑
k=1

pk(s)µk ds,

which yields the assertion.

The next result is crucial for the proof of the Verification Theorem 6.15. It makes use
of the notation of the operator H given by 6.20.

Lemma A.22. Suppose that (ξ, b) ∈ Ũ [0, T ] is an arbitrary strategy and h : [0, T ]×∆m →
(0,∞) is a bounded function such that t 7→ h(t, p) is absolutely continuous on [0, T ] for
all p ∈ ∆m and p 7→ h(t, p) is continuous on ∆m for all t ∈ [0, T ]. Then, the function
G : [0, T ]× R×∆m → R defined by

G(t, x, p) := −e−αxer(T−t) h(t, p)

satisfies

dG(t,Xξ,b
t , pt) = −e−αX

ξ,b
t er(T−t) H h(t, pt; ξt, bt) dt+ dηξ,bt , t ∈ [0, T ],

where (ηξ,bt )t∈[0,T ] is a G-martingale and we set H h(t, p; ξ, b) to zero at those points (t, p)
where the partial derivative of h w.r.t. t does not exist.

Proof. The proof follows closely the proof of Lemma A.8. Fix (ξ, b) ∈ Ũ [0, T ] and let
0 < K0 < ∞ be some constant such that |h(t, p, q)| ≤ K0 for all (t, p) ∈ [0, T ] × ∆m,

where K0 exists by assumption. Furthermore, we set f(t, x) := −e−αxer(T−t) for all
(t, x) ∈ [0, T ] × R. Let us fix t ∈ [0, T ] and apply the product rule (cf. Thm. 2.59) to

G
(
t,Xξ,b

t , pt
)

= f
(
t,Xξ,b

t

)
h(t, pt), which yields

dG
(
t,Xξ,b

t , pt
)

= h(t, pt−) df
(
t,Xξ,b

t

)
+ f

(
t,Xξ,b

t−
)

dh(t, pt) + d
[
f
(
·, Xξ,b
·
)
, h(·, p·)

]
t
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Hence, with the help of Lemmata A.20 and A.21, we get

dG
(
t,Xξ,b

t , pt
)

= f
(
t,Xξ,b

t

)
h(t, pt)

(
αer(T−t)

(1

2
ασ2er(T−t)ξ2

t − (µ− r)ξt − c(bt)
)

+ λ

m∑
k=1

pk(t)

∫
(0,∞)

exp
{
α bt y e

r(T−t)}fk(y) dy − λ
m∑
k=1

pk(t)µk

)
dt

− f
(
t,Xξ,b

t−
)
h(t, pt−)ασ er(T−t)ξt dWt

+

∫
(0,∞)

f
(
t,Xξ,b

t−
)
h(t, pt−)

(
exp

{
α bt y e

r(T−t)}− 1
)

Ψ̂(dt,dy)

+ f
(
t,Xξ,b

t

)(
ht(t, pt)− λh(t, pt)

m∑
k=1

pk(t)µk

+ λ

m∑
k=1

pk(t)

∫
(0,∞)

h(t, J(pt, y)) fk(y) dy

)
dt

+

∫
(0,∞)

f
(
t,Xξ,b

t−
)(
h(t, J(pt−, y))− h(t, pt−)

)
Ψ̂(dt,dy)

+ d
[
f
(
·, Xξ,b
·
)
, h(·, p·)

]
t
.

(A.16)

Notice that h(·, p·, q·) is an FV process and thus[
f
(
·, Xξ,b
·
)

+ h(·, p·)
]c ≡ [f(·, Xξ,b

·
)]c

und
[
h(·, p·)

]c ≡ 0,

Consequently, Proposition 2.51 (iii), (v) and (vi) (compare proof of Lemma A.8 for
details) implies[
f
(
·, Xξ,b
·
)
, h(·, p·, q·)

]
t

= f
(
0, Xξ,b

0

)
h(0, p0) +

∑
0<s≤t

f
(
s,Xξ,b

s

)(
h(s, ps)− h(s, ps−)

)
−
∑

0<s≤t
f
(
s,Xξ,b

s−
)(
h(s, ps)− h(s, ps−)

)
= f

(
0, Xξ,b

0

)
h(0, p0) +

∫ t

0

∫
(0,∞)

f
(
s,Xξ,b

s− − bs y
)(
h(s, J(ps−, y))− h(s, ps−)

)
Ψ(ds, dy)

−
∫ t

0

∫
(0,∞)

f
(
s,Xξ,b

s−
)(
h(s, J(ps−, y))− h(s, ps−)

)
Ψ(ds, dy).

Using the introduced compensated random measures Ψ̂ given in (6.4) as well as the
relation f(t, x− b y) = f(t, x) exp{α b y er(T−t)}, the variation becomes

d
[
f
(
·, Xξ,b
·
)
, h(·, p·, q·)

]
t

=

∫
(0,∞)

f
(
t,Xξ,b

t−
)(
h(t, J(pt−, y))− h(t, pt−)

)(
exp

{
α bt y e

r(T−t)}− 1
)

Ψ̂(dt,dy)

+ λ f
(
t,Xξ,b

t

) m∑
k=1

pk(t)

∫
(0,∞)

h(t, J(pt, y)) exp
{
α bt y e

r(T−t)} fk(y) dy dt
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− λ f
(
t,Xξ,b

t

)
h(t, pt)

m∑
k=1

pk(t)

∫
(0,∞)

exp
{
α bt y e

r(T−t)} fk(y) dy dt

− λ f
(
t,Xξ,b

t

) m∑
k=1

pk(t)

∫
(0,∞)

h(t, J(pt, y)) fk(y) dy dt

+ λ f
(
t,Xξ,b

t

)
h(t, pt)

m∑
k=1

pk(t)µk dt.

Substituting this into (A.16), we obtain

dG
(
t,Xξ,b

t , pt, qt
)

= f
(
t,Xξ,b

t

)(
− α er(T−t)h(t, pt)

(
(µ− r) ξt + c(bt)−

1

2
ασ2 er(T−t)ξ2

t

)
+ λ

m∑
k=1

pk(t)

∫
(0,∞)

h(t, J(pt, y)) exp
{
α bt y e

r(T−t)} fk(y) dy

− λh(t, pt)

m∑
k=1

pk(t)µk + ht(t, pt)

)
dt

− f
(
t,Xξ,b

t−
)
h(t, pt−)ασ er(T−t)ξt dWt − f

(
t,Xξ,b

t−
)
h(t, pt−) dN̂t

+

∫
(0,∞)

f
(
t,Xξ,b

t−
)
h(t, J(pt−, y)) exp

{
α bt y e

r(T−t)}Ψ̂(dt,dy).

Therefore, by definition of the operator H given in (6.20), we have

dG
(
t,Xξ,b

t , pt, qt
)

= f
(
t,Xξ,b

t

)
H h(t, pt, qt; ξt, bt) dt+ dηξ,bt ,

where
ηξ,bt := η̂ξ,bt − η̄

ξ,b
t − η̃

ξ,b
t

with

η̂ξ,bt :=

∫ t

0

∫
(0,∞)

f
(
s,Xξ,b

s−
)
h(s, J(ps−, y)) exp

{
α bs y e

r(T−s)}Ψ̂(ds, dy),

η̄ξ,bt :=

∫ t

0
f
(
s,Xξ,b

s−
)
h(s, ps−) dN̂s,

η̃ξ,bt :=

∫ t

0
f
(
s,Xξ,b

s−
)
h(s, ps−)ασ er(T−s)ξs dWs.

To finish the proof we need to show that (ηξ,bt )t∈[0,T ] is a G-martingale on [0, T ], which
can be obtained as in the proof of Lemma A.8 and the proof is complete.



Appendix B

Useful inequalities

The first inequality of this chapter is a Lipschitz condition for exponential function.

Proposition B.1 ([22], Prop. 2.3.19). Let A > 0 and c ≤ x ≤ y ≤ d. Then

Ac
(

1− 1

A

)
(y − x) ≤ Ay −Ax ≤ Ad(A− 1)(y − x).

For the following inequalities, let E denote some non-empty set.

Proposition B.2. Let f, g : E → R be bounded functions from above. Then

sup
x∈E

(
f(x) + g(x)

)
≤ sup

x∈E
f(x) + sup

x∈E
g(x).

Proof. The statement follows directly from f(x) + g(x) ≤ supx∈E f(x) + supx∈E g(x)
for all x ∈ E.

Remark B.3. The boundedness from above ensures that we obtain a useful inequality.
Unless, we would have the trivial equality supx∈E(f(x) + g(x)) ≤ ∞.

Proposition B.4. Let f, g : E → R be bounded functions from below. Then

inf
x∈E

(
f(x) + g(x)

)
≥ inf

x∈E
f(x) + inf

x∈E
g(x).

Proof. We obtain the stated assertion by applying Proposition B.2 to the functions −f
and −g.

Proposition B.5. Let f, g : E → R be bounded functions. Then∣∣∣∣sup
x∈E

f(x)− sup
x∈E

g(x)

∣∣∣∣ ≤ sup
x∈E
|f(x)− g(x)|,

∣∣∣∣ inf
x∈E

f(x)− inf
x∈E

g(x)

∣∣∣∣ ≤ sup
x∈E
|f(x)− g(x)|.

Proof. From f = f − g + g and f − g ≤ |f − g| on E, it follows by Proposition B.2 that

sup
x∈E

f(x) ≤ sup
x∈E

(
f(x)− g(x)

)
+ sup
x∈E

g(x) ≤ sup
x∈E

∣∣f(x)− g(x)
∣∣+ sup

x∈E
g(x).

Thus
sup
x∈E

f(x)− sup
x∈E

g(x) ≤ sup
x∈E

∣∣f(x)− g(x)
∣∣.

By exchanging f and g in the inequality above, we obtain the first stated inequality in
the proposition. Using this inequality and − infx∈E f(x) = supx∈E(−f(x)) leads to the
second announced inequality.
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The following result can be found in Mitrinovic et al. [95] or the proof of Lemma 4.1
in Liang and Bayraktar [85].

Lemma B.6. Let α1 ≤ . . . ≤ αn and β1 ≤ . . . ≤ βn be real numbers and (p1, . . . , pn) ∈
∆n. Then

n∑
j=1

pjαjβj ≥
n∑
j=1

pjαj

n∑
k=1

pkβk.
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[31] Bäuerle, N. and Rieder, U. (2007). Portfolio optimization with jumps and unob-
servable intensity process. Mathematical Finance, 17(2):205–224.
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