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Abstract
Electrical impedance tomography is a non-invasive method for imaging 
the electrical conductivity of an object from electrode measurements on its 
surface. The underlying mathematical problem is highly nonlinear, severely 
ill-posed, and several model parameters are usually not known accurately. 
Despite the strong nonlinearity, iterative Newton-type methods are widely 
used to tackle the problem numerically.

This work presents and analyzes tailored transformations for the 
conductivity and for electrode parameters which are favourable in two 
regards: they remove the constrainedness of the unknown parameters and 
simultaneously decrease the nonlinearity of the underlying problem. We study 
the impact of various transformations on the nonlinearity of the problem and 
demonstrate improved speed of convergence for Newton-type methods while 
avoiding local minima in the solution space. The presented transformations 
can conveniently be incorporated into existing iterative solvers as they 
improve stability and do not require hand-tuned regularization parameters or 
line-search strategies, thereby bridging a gap between a variety of established 
conductivity estimation methods and practical applications.

Keywords: electrical impedance tomography, parameter transformation, 
electrode geometry, nonlinearity, constrainedness, iterative inversion, 
Newton method
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1.  Introduction

1.1.  Background

The primary mathematical problem behind electrical impedance tomography (EIT) is the 
recovery of the spatial conductivity distribution inside an object from electrode measurements 
on its surface, called inverse conductivity problem (ICP). To solve the ICP numerically, the 
boundary configuration of the measurement setup, i.e. the surface shape, the electrode sizes 
and positions and their contact impedances, must be known. In contrast to other imaging 
modalities such as computed tomography or magnetic resonance imaging, the ICP is highly 
nonlinear, highly sensitive to measurement and modelling errors, and the boundary configu-
ration is not known accurately. As a consequence, methods have been developed to solve 
an extended ICP, that is, to recover the boundary configuration along with the conductivity 
from the electrode measurements [1–3]. All methods rely on the Fréchet differentiability of 
the forward operator which maps the conductivity and the model parameters to the observed 
current-to-voltage behaviour at the electrodes.

The forward operator is nonlinear in all its input parameters: the current-to-voltage behav-
iour depends nonlinearly on the conductivity, the electrode contact impedances, their size 
and position, and the boundary shape. Moreover, all parameters are bounded by physical 
restrictions: the conductivity and the electrode contact impedances are strictly positive, the 
electrodes have finite positive sizes, and their positions are restricted such that they do not 
touch or overlap.

1.2.  Motivation for using transformations

At first glance, it might not be intuitive to solve the extended ICP with Newton-type meth-
ods, which solve parameter problems locally by iterative linearization and may have pitfalls 
when parameters are constrained. In fact, a wide variety of techniques was developed to avoid 
high linearization errors, out-of-bounds parameters and oscillatory solutions. These include 
line-search strategies (e.g. in [2, section 7.2]), ‘hand tuning’ of regularization parameters for 
the Tikhonov–Phillips regularization or in the Bayesian framework (e.g. in [4, algorithm 1]), 
inexact Newton methods [5] or—with more computational effort—cross-validation [6] and 
L-curve techniques [7].

A popular method for lifting the positivity constraint of the conductivity is to consider 
the log-conductivity, that is, to apply Newton’s method to the logarithm of the conductivity, 
which is unconstrained. The inverse (exponential) transformation guarantees the positivity of 
the conductivity after each Newton update. This way, measurement, modelling or linearization 
errors cannot lead to a violation of the physical model.

Moreover, it was observed that parameter transformations can increase the speed of conv
ergence of Newton-type methods. In the most trivial case of a spatially constant conductiv-
ity and in the absence of contact impedances, the electrode measurements are linear in the 
resistivity, the reciprocal of the conductivity. This means that Newton’s method converges 
after one iteration, and there are stable least-squares estimates in case of measurement errors1  
[8, 9]. However, the linearity is violated for non-constant conductivities, and the recipro-
cal again has a positivity constraint. This sparked the discussion whether conductivity, log-
conductivity or resistivity should be recovered (e.g. in [10]), and lead to the investigation of 
conductivity transformations (e.g. in [9, 11, 12]). Recently, theoretical foundations for the 

1 This approach is popular to obtain an initial guess for Newton-type methods.
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properties of a logarithmic EIT forward operator have been derived, and its advantage in terms 
of forward accuracy and linearization error for one-step reconstruction has been highlighted 
numerically, in [13]. Moreover, a transformation of the electrode contact impedances was also 
considered, while the boundary geometry was assumed to be known.

Moreover, using the Fréchet-differentiability of an extended forward operator with respect 
to the electrode configuration provides a natural extension for correcting boundary model 
uncertainties and was studied extensively both regarding theoretical properties [1–3] and in 
practical applications, where it was found to be superior to other techniques for handling mod-
elling errors [14]. Thus, it is natural to investigate whether applying transformations is also 
beneficial for recovering boundary model parameters.

The results of this work are focused at (pointwise) conductivity and boundary parameter 
transformations, but can be conveniently combined with other well-established methods for 
improving the stability and speed of convergence of the inverse conductivity problem, such as 
sensitivity-based domain discretizations (investigated theoretically and numerically for vari-
ous models e.g. in [15–20]), which are not addressed explicitly here.

1.3.  Scope and outline

In this work, we pick up and extend the analysis of conductivity transformations from [9]. To 
that end, we present transformations yielding one-sided (‘log-type’) and two-sided (sigmoi-
dal) bounds to the conductivity in section 2.6. Then, we investigate the impact of transforma-
tions on the nonlinearity for constant and certain non-constant conductivities in sections 3.1 
and 3.2 with the help of highly accurate semi-analytic evaluations of the forward operator.

Moreover, we carry over the transformation approach to the boundary parameters in sec-
tion 2.7 and investigate its impact on the nonlinearity in section 3.3. The result is an uncon-
strained parameter space for the extended ICP which is favorable for Newton-type methods. It 
can moreover be used to control the trade-off between conductivity and boundary changes dur-
ing simultaneous reconstruction, which allows the user to incorporate accuracy assumptions 
for the boundary configuration. Numerical results for conductivity and boundary parameter 
transformations within an inexact Newton reconstruction framework are shown in section 4.

In summary, the purpose of this work is to give further insight into the nonlinearity of the 
ICP and to provide an easy-to-use extension to existing Newton-type methods for EIT applica-
tions. MATLAB examples are provided at www.math.kit.edu/ianm3/~winkler/de.

2.  Properties of the complete electrode model

To maintain consistent notation, we briefly restate relevant properties of the ICP and the under-
lying complete electrode model (CEM). The CEM describes measurements on a finite set of 
electrodes attached to the object surface and models contact impedances on the electrode-
domain-interface. It is generally assumed to be the most realistic among the commonly used 
electrode models and was verified to reproduce data from tank experiments to measurement 
precision [21, 22].

2.1.  Definition of the complete electrode model

For a compact, simply connected and piecewise smooth Lipschitz domain Ω ∈ Rn, n ∈ {2, 3}, 
we identify a set of L ∈ N�2 simply connected and pairwise separated electrodes E1, . . . , EL 
with the subset on ∂Ω that they cover, that is,

R Winkler﻿Inverse Problems 35 (2019) 114007
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E1, . . . , EL ⊂ ∂Ω closed and simply connected on ∂Ω,
El ∩ Em = ∅ for l, m ∈ {1, . . . , L} , l �= m.

For n  =  2, we assume w.l.o.g. that the electrodes are ordered consecutively along the boundary. 
We briefly restate the definition of the CEM in our notation and refer to [23, section 2.1.3.] for 
a more detailed introduction of the model and its weak formulation using the same notation.

Definition 2.1 (Complete electrode model and measurement operator).  Let 
Ω ⊂ Rn  and E1, . . . , EL ⊂ Ω as above. Further, denote by σ ∈ L∞

+ (Ω) a conductivity on Ω 
and by z1, . . . , zL ∈ R>0 a set of contact impedances. The set of equations

−∇ · (σ∇u) = 0 on Ω,� (1)

f + zljν = Ul on El, l = 1, . . . , L,� (2)

∫

El

jν dS = Il, l = 1, . . . , L,� (3)

jν = 0 on ∂Ω \ {E1 ∪ . . . ∪ EL} ,� (4)

where f = u|∂Ω and jν = ν · σ∇u, is called the CEM. Herein, ν  denotes the boundary normal 
on ∂Ω. For any current vector

I = (I1, . . . , IL)
� ∈ RL

� =
{

x ∈ RL :
L∑

l=1

xl = 0
}

,

there is a unique u ∈ H1(Ω) and a unique potential vector U = (U1, . . . , UL)
� ∈ RL

�  satisfy-
ing (1)–(4), and vice versa. The current-to-potential map

Rσ ∈ L(RL
�), I �→ RσI = U,

is thus well-defined and one-to-one and moreover bounded, linear, and symmetric; see [22]. 
We call the map

F : L∞
+ (Ω) ⊃ D(F) → L(RL

�), σ �→ F(σ) := Rσ = (I �→ U),

the forward operator of the CEM. For M ∈ N, a measurement pattern is defined as

I =
(

I(1)| . . . |I(M)
)
∈ (RL

�)
M , where I(m) ∈ RL

� for m = 1, . . . , M,

and its corresponding measurement data is defined as

U = (U(1)| . . . |U(M)) = RσI ∈ (RL
�)

M .

The operator

FI : L∞
+ (Ω) ⊃ D(F) → (RL

�)
M , σ �→ F(σ)I = U ,

is called the measurement operator of the CEM. Note that rank(I) = L − 1 if and only if 
I(1), . . . , I(M) form a frame of RL

�. A measurement frame of theoretical interest, called �-frame 
in this work, consists of M  =  L  −  1 (or sometimes M  =  L) current vectors with entries

R Winkler﻿Inverse Problems 35 (2019) 114007
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(I�)
(m)
l =

{ L−1
L , m = l,

− 1
L , otherwise,

for m, l = 1, . . . , L, yielding I+
� = I� (+ denotes the pseudo-inverse). Thus, FI� = F.

The ICP in this setting reads

Problem statement 2.2 (Inverse conductivity problem for the complete elec-
trode model).  Given a current frame I  and corresponding noisy potential measurements 
Uδ ∈ RM×L , find σ ∈ D(F) satisfying F(σ) ≈ Uδ .

2.2.  Differentiability and Newton-type methods for the complete electrode model

Newton-type methods in EIT rely on the Fréchet differentiability of FI  [24, 25]. For a sin-
gle current vector I, the Fréchet derivative of FI at a conductivity σ ∈ L∞

+ (Ω) in direction 
η ∈ L∞(Ω) is denoted by F′

I(σ)η := U′, where U′ is the unique solution of a weak for
mulation; see [25, theorem 4.1] and [24]. The standard method for computing the Fréchet 
derivative is to solve this variational (adjoint state) formulation using the finite element 
method2 (FEM). The Fréchet derivative of FI  is a concatenation of single current vector 
derivatives and is denoted by

F′
I =

(
F′

I(1) , . . . , F′
I(M)

)
.

Given a conductivity estimate σ(k) ∈ D(F), k ∈ N, a Newton iteration for the ICP consists 
of the following steps:

	(1)	�Find a conductivity update η(k) ∈ L∞(Ω) such that σ(k) + η(k) ∈ D(F) and 
F′
I(σ

(k))η(k) ≈ Uδ − F(σ(k)); 
	(2)	�Set σ(k+1) = σ(k) + η(k).

Finding an approximate solution in step (1) and choosing a stopping criterion are the main 
design parameters for Newton-type methods.

2.3.  Recovering boundary parameters

In practical applications, the boundary parameters of the CEM, i.e. the contact impedances, 
the electrode positions and the boundary shape, are rarely known accurately. Thus, it can 
be necessary to recover them simultaneously with the conductivity from measured data. For 
spacial dimension n  =  2, these four quantities are coupled by conformal equivalence: when 
allowing non-constant contact impedances, there are distinct settings which have an identical 
measurement operator.

Conformal equivalence was already used in [26] for Calderón’s model on the unit disk and 
extended to the CEM in [20, 22, 27]. This was used in [20] and [28] to compensate model-
ling errors by electrode movements, an effect which was further investigated in [29]. For that 
reason, we fix the boundary geometry in the scope of this work to avoid under-determination 
due to conformal equivalence. However, we want to optimize for the electrode geometry, thus 
we consider an extension of the classical EIT problem.

2 A MATLAB implementation for the 2D problem is provided by the author under www.math.kit.edu/
ianm3/~winkler/. Both 2D and 3D solvers are also available in the EIDORS software at http://eidors3d.sourceforge.
net/.
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In awareness of a fixed, but possibly inaccurate boundary shape model, we consider the 
reconstruction result as an approximation to a conformal equivalent of the true, unknown set-
ting. For that reason, we add the individual electrode sizes as an additional degree of freedom 
since even if they might be known accurately, the sizes of their conformal images are not.

Definition 2.3 (Extended forward operator).  We define an extended forward operator 
F  depending on the conductivity, the electrode locations, sizes and contact impedances by

F : D(F)×Dθ ×D|E| ×Dz → L(RL
�),

F
(
σ, (θ1, . . . , θL), (|E1| , . . . , |EL|), (z1, . . . , zL)

)
�→ (I �→ U),

where (θ1, . . . , θL) ∈ Dθ ⊂ [0, |∂Ω|)L parametrizes the center points of each electrode,  
(|E1| , . . . , |EL|) ∈ D|E| ⊂ [0, |∂Ω|)L parametrizes the electrode sizes, and (z1, . . . , zL) ∈
Dz ⊂ RL

>0 denote the electrode contact impedances. The corresponding extended measure-
ment operator is denoted by

FI : D(F) → (RL
�)

M .

In [2, theorem 4.1 and corollary 4.2], the Fréchet derivative of the forward operator with 
respect to an electrode perturbation is given about the origin, that is, at their current shape. In 
the 2D case, perturbing the electrode boundary simply means to move the end-points of an 
electrode. Moreover, the integral over the electrode boundary appearing in [2, corollary 4.2] is 
simply a point-evaluation of the interior potential u at the electrode edges in this case. Since 
u|∂Ω ∈ H1−α(∂Ω) for any α > 0, this point evaluation is well-defined.

The explicit formulas in our notation are given in the following for the 2D case. To that 
end, let

El = {γ(θ) : − ωl � θ − θl � ωl} ,

for an electrode mid-point θl ∈ [0, |∂Ω|) and an electrode half-width ωl > 0, l = 1, . . . , L ,  
where γ : [0, |∂Ω|] → R2 is a continuous, piecewise smooth parametrization of ∂Ω with 
γ(0) = γ(|∂Ω|) and ‖γ′(θ)‖2 = 1 almost everywhere. To avoid cumbersome notation, we 
consider the argument θ of γ  modulo the length of the boundary |∂Ω|, where required.

2.4.  Fréchet derivative of the extended operator

By equally perturbing both electrode edges in the same direction, a Fréchet derivative with 
respect to the electrode movement is given about its current position. For the lth electrode, it 
is given component-wise (omitting the arguments) by
(

∂

∂θl
F
)

k,m
:=

(
F
′
θl

)
k,m

:= − z−1
l

[(
U(k)

l − u(k)(γ(θl + ωl))
)(

U(m)
l − u(m)(γ(θl + ωl))

)

−
(

U(k)
l − u(k)(γ(θl − ωl))

)(
U(m)

l − u(m)(γ(θl − ωl))
)]

,

where 
(
u(k), U(k)

)
 are the solutions of (1)–(4) for the kth current I(k)

�  of the �-frame and for 
conductivity σ. When perturbing both electrode edges by the same amount in opposite direc-
tion, a Fréchet derivative with respect to the electrode size is given about its current size. For 
the lth electrode size, it reads

R Winkler﻿Inverse Problems 35 (2019) 114007
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(
∂

∂ |El|
F
)

k,m
:=

(
F
′
|El|

)
k,m

:= − z−1
l

[(
U(k)

l − u(k)(γ(θl + ωl))
)(

U(m)
l − u(m)(γ(θl + ωl))

)

+
(

U(k)
l − u(k)(γ(θl − ωl))

)(
U(m)

l − u(m)(γ(θl − ωl))
)]

.

In particular, F
′
θl

 and F
′
|El| only differ by one sign in the sum.

The Fréchet derivative of the forward operator with respect to the contact impedance zl of 
the lth electrode, studied e.g. in [3], is given by

(
∂

∂zl
F
)

k,m
:=

(
F
′
zl

)
k,m

= − 1
z2

l

∫

El

(
U(k)

l − u(k)
)(

U(m)
l − u(m)

)
dS,

where (u(k), U(k)) is the solution of (1)–(4) for the current vector I(k)
� . The integral can be 

approximated e.g. with a quadrature rule on the point values of FEM approximations of u(k) 
and u(m), k, m = 1, . . . , L.

The Fréchet derivative for an extended measurement operator with arbitrary measurement 
pattern I  can be obtained by a multiplication with the particular currents, i.e.

(
F
′
I,θl

)
k,m

=
(

F
′
θl

I(m)
)

k
,

(
F
′
I,|El|

)
k,m

=
(

F
′
|El|I

(m)
)

k
and

(
F
′
I,zl

)
k,m

=
(

F
′
zl

I(m)
)

k

for k, l = 1, . . . , L and m = 1, . . . , M, respectively, where again I =
{

I(1), . . . , I(M)
}

.

2.5.  Newton’s method for the extended inverse conductivity problem

A Newton iteration for the extended ICP can be defined analogous to the classical ICP. Denote 
by σ(k) the conductivity estimate after the kth Newton iteration and further by

z(k) = (z(k)
1 , . . . , z(k)

L ),

θ(k) = (θ
(k)
1 , . . . θ(k)

L ) and

ω(k) = (ω
(k)
1 , . . . ,ω(k)

L )

the contact impedance estimates and electrode configuration estimate after the kth iteration. 
The task of Newton’s method for the extended ICP in the k  +  1th iteration is to find a Newton 
update

∆(k) =
(
η(k),∆z(k),∆θ(k),∆ω(k)

)
∈ L∞(Ω)× RL × RL × RL

satisfying

F′
I(σ

(k); z(k)
L ; E(k)

1 , . . . , E(k)
L )[∆(k)] ≈ Uδ − FI(σ

(k); z(k); E(k)
1 , . . . , E(k)

L )

such that

σ(k) + η(k) ∈ D(F),� (5)

R Winkler﻿Inverse Problems 35 (2019) 114007
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z(k) +∆z(k) � 0,� (6)

and such that E(k+1)
1 , . . . , E(k+1)

L  is an admissible electrode configuration, where

E(k+1)
l =

{
γ(θ) : − (ω

(k)
l +∆ω

(k)
l ) � θ − (θ

(k)
l +∆θ

(k)
l ) � (ω

(k)
l +∆ω

(k)
l )

}
.

� (7)

2.6. Transformed forward operator

Instead of linearizing the measurement operator directly, we want to apply the Newton 
step to a transformation of the conductivity coefficient. To that end, we consider injective 
C1-transformations

t∗ : (0,∞) → R, σ �→ t∗(σ) =: σ∗.

Assuming, for simplicity, that the conductivity can be evaluated pointwise, we consider a 
transformed forward operator F* defined as

F∗(t∗(σ)) = F(σ), that is, F∗(σ∗) = F(t−1
∗ (σ∗)),� (8)

where t* operates pointwise on σ, i.e. σ∗(x) = t∗(σ(x)) for x ∈ Ω. This extends  
straightforward to general σ ∈ L∞

+ (Ω). The transformed measurement operator (F∗)I  is 
defined analogously.

Table 1 displays the identity transformation tId, the negative log-conductivity tlog, the resis-
tivity transformation (reciprocal conductivity) tρ, the σ-ρ-transformation tσρ as well as the 
tan-log-transformation ttl. The latter transformation is special since its domain enforces the 
conductivity to be strictly bounded from two sides, 0 < cmin � σ � cmax < ∞. The σ-ρ-trans-
formation is a convex combination of the negative conductivity and the resistivity, namely 
α(−σ) + (1 − α)σ−1 for α = 1

4. As the sum of two strictly decreasing functions, it is one-
to-one. The choice of α satisfies a certain optimality condition, although the exact value is 
uncritical. Moreover, this transformation has the asymptotic of the identity for σ → ∞ and the 
asymptotic of the resistivity for σ → 0. For details, see [23, section 4.2].

2.7. Transformed extended forward operator

Similarly to the conductivity constraints, we have restrictions for the electrode geometry: all 
electrodes have positive size, do not change order, and do not overlap. To implicitly enforce 

Table 1.  Definition, inverse transformation and range of various conductivity 
transformations.

Transformation t∗  Inverse t−1
∗ (σ∗) Domain and range

tId(σ) := σ σ∗ tId ((0,∞)) = (0,∞)

tlog(σ) := − log(σ) e−σ∗ tlog ((0,∞)) = (∞,−∞)

tρ(σ) := σ−1 σ−1
∗ tρ ((0,∞)) = (∞, 0)

tσρ(σ) := 3−σ2

4σ

√
3 + 4σ2

∗ − 2σ∗
tσρ ((0,∞)) = (∞,−∞)

ttl(σ) :=

tan
(

π(log(σ)−log(cmin))
log(cmax)−log(cmin)

− π
2

) exp
[
log(cmin) + (log(cmax)− log(cmin)) ·

π−1
(
tan−1(σ∗) +

π
2

)] ttl ((cmin, cmax)) = (−∞,∞)

R Winkler﻿Inverse Problems 35 (2019) 114007
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these conditions when applying Newton type updates, we again consider transformations from 
bounded to unbounded parameter spaces. We want to perform electrode changes indepen-
dently of the neighboring electrodes, thus we introduce per-iteration barriers at the electrode 
gap centers. The gap centers are parametrized by

θ̂l :=
1
2
[(θl+1 − ωl+1)− (θl + ωl)] .

This situation is depicted in figure 1, where the electrode center and their parameters θl are 
depicted in red, while the gap centers and their parameters θ̂l are depicted in blue.

Now we allow each electrode El, l = 1, . . . , L , to move and change size within the bound-
ary section

{
γ(θ) : θ̂l−1 < θ < θ̂l

}
,

i.e. we want the updated parameters θ(k+1)
l  and ω(k+1)

l  to satisfy

θ̂
(k)
l−1 < θ

(k+1)
l − ω

(k+1)
l < θ

(k+1)
l + ω

(k+1)
l < θ̂

(k)
l (modulo |∂Ω|), l = 1, . . . , L,

after the kth Newton step. This is a coupled restriction for each electrode size and position. 
To decouple the conditions, we further split this available space into one part for the electrode 
movement and another part for the electrode size change, as shown in figure 2. Therein, the 
yellow sections of the boundary depict the parts of the boundary ‘reserved’ for the electrode 
resizing, and the green sections depict the parts for the electrode movement.

For the electrode sizes and the parameters of the locations, we thus obtain restrictions from 
below and from above. One possibility to handle this restriction is to use a sigmoidal trans-
formation for the parameters, mapping the interval boundaries to ±∞. First, we introduce a 

lower bound ζ(k)
l  satisfying

0 < ζ
(k)
l < ω

(k+1)
l

for the updated half-width w(k+1)
l  of the lth electrode after the kth iteration to ensure numerical 

stability for the FEM forward solutions3. In our numerical examples, ζ(k)
l := 2

3ω
(k)
l  is used. 

Moreover, define

El−1 El El+1

γ(θl−1) γ(θl)
γ(θl+1)γ(θ̂l−1) γ(θ̂l)

γ(θl − ωl) γ(θl + ωl)

Figure 1.  Parametrization of the electrodes on the boundary. The gap centers 
γ(θ̂1), . . . , γ(θ̂L) will act as barriers for the electrode movement and deformation in 
each Newton iteration.

3 The forward model might get unstable when electrodes or gaps shrink to a point.
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δl :=
1
2
min

{
θ̂l − (θl + ωl), (θl − ωl)− θ̂l−1

}
> 0, (electrode growth bound)

δl := θ̂l − θl − ωl − δl > 0, and (right movement bound)

δl := θl − θ̂l−1 − ωl − δl > 0, (left movement bound),

for each l = 1, . . . , L , all possibly modulo |∂Ω|. Using these quantities, we restrict the elec-
trode movement in the kth Newton step to

−δ
(k)
l + θ

(k)
l < θ

(k+1)
l < δ

(k)
l + θ

(k)
l� (9)

and the electrode resizing to

ζ
(k)
l < ω

(k+1)
l < ω

(k)
l + δ

(k)
l .� (10)

In figure 2, introduced quantities simply parametrize the boundaries of the yellow and green 
sections for the electrode resizing and movement, respectively.

One possibility for defining a sigmoidal transformation is to choose again the tangent, i.e.

t(k)
θl,tan(θ) = tan

(
π

δ
(k)
l + δ

(k)
l

(
θ + δ

(k)
l − θ

(k)
l − π

2

))

for the position update and

t(k)
ωl,tan(ω) = tan

(
π

ω
(k)
l + δ

(k)
l − ζ

(k)
l

(
ω − ζ

(k)
l

)
− π

2

)

for size update of the lth electrode in the kth iteration, respectively. These transformations map 
the admissible interval for the position and size updates to the real line.

3.  Nonlinearity of the forward operator

The nonlinearity of the ICP for non-constant conducitivities is obvious: for example, when 
σχB → ∞ on a subset B ⊂ Ω of the domain with positive distance to the boundary, we still 
obtain a finite Neumann–Dirichlet problem in the limit case, and thus ‖F‖ �→ ∞.

Figure 2.  Green: reserved for electrode movement. Yellow: reserved for electrode 
resizing. Dark gray: preserved minimum electrode width in the kth iteration.
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We next demonstrate the impact of several conductivity transformations on the nonlinearity 
of F. To that end, we generate highly accurate references using semi-analytic solutions of the 
CEM on a circular domain with

	 (a)	�a homogeneous conductivity,
	(b)	�(possibly non-centered) circular inhomogeneities,

as introduced in [20]. We choose a generic electrode setup with L  =  16 equally distributed 
electrodes with |E|l =

2π
32 , l = 1, . . . , L , and z  =  10−4, on the unit disk Ω = B1(O). On this 

domain we define, for any ξ > 0,

σξ(x) := ξ, x ∈ Ω,� (11)

for the homogeneous conductivity case (a) and

σξ(x) :=
{

1, x ∈ Ω \ B,
ξ, x ∈ B,� (12)

for some circular inclusion B ⊂ Ω for case (b). Then, we study the behaviour of 
‖F(σξ)− F(σ1)‖Fro as well as the conductivity nonlinearity indicator

κcond(ξ, t∗) :=
‖F(σξ)− F(σ1)‖Fro

‖t∗(σξ)− t∗(σ1)‖∞
for various (pointwise) conductivity transformations t∗ : (0,∞) → R. If F is linear in the 
transformed conductivity t*, then κcond is constant in ξ (the converse is not necessarily true). 
In that sense, the variation of κcond in ξ is an indicator for the nonlinearity of F in the trans-
formed conductivity.

3.1.  Nonlinearity for homogeneous conductivities

For vanishing contact impedance and homogeneous conductivity, the forward operator is lin-

ear in the resistivity. Thus for small contact impedances z � 1
‖σξ‖∞

, we expect the forward 
operator to be almost linear. Figure 3(a) shows the behaviour of the nonlinearity indicator 
κcond(ξ, t∗) versus the parameter ξ for the conductivity transformations tId, tρ, tlog and tσρ. 
A non-constant line indicates nonlinearity of the forward operator with respect to the trans-
formed conductivity parameter. We observe how the σ-ρ-transform tσρ behaves similar to the 
resistivity transform tρ for small conductivities and similar to the identity tId for large conduc-
tivities. The forward operator is almost linear in the resistivity, whereas the log-transform and 
the σ-ρ-transform give a good trade-off between nonlinearity and unconstrainedness.

3.2.  Nonlinearity for inhomogeneous conductivities

Figures 3(b)–(d) show the behaviour of the nonlinearity indicator κcond(ξ, t∗) versus the 
parameter ξ for the conductivity transformations tId, tρ, tlog and tσρ for conductivities with 
circular inhomogeneities of decreasing radius, i.e. (b) B = B0.8(O), (c) B = B0.5(O) and (d) 
B = B0.2(O), respectively. At high contrast (ξ � 1 or ξ � 1), for decreasing size of the inho-
mogeneity, the nonlinearity for the log-transform decreases, while the nonlinearity for the 
σ-ρ-transform increases.

This suggests that the log-transform might be better suited for recovering small, high-
contrast inclusions inside a homogeneous medium, while the σ-ρ-transform might be better 
suited for recovering large inhomogeneities with lower contrast.
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3.3.  Nonlinearity of the extended forward operator

In section 2.7, we introduced parameter transformations also for the extended problem, i.e. 
for recovering the electrode shapes, sizes, and contact impedances. Analogously to the con-
ductivity nonlinearity indicator, we introduce indicators for the nonlinearity with respect to 
the electrode positions as

κpos( p, tθ,∗) =

∥∥F
(
. . . , (θ1 + p1, . . . , θL + pL), . . .

)
− F

(
. . . , (θ1, . . . , θL), . . .

)∥∥
Fro∑L

l=1 |tθl,∗(θl + pl)− tθl,∗(θl)|
, p = ( p1, . . . , pL) ∈ RL,

Figure 3.  (a) Nonlinearity indicator κcond versus conductivity parameter ξ for 
homogeneous conductivities, defined in (11). The forward operator is almost linear 
in the resistivity, which can be seen from the almost constant nonlinearity indicator 
κcond(ξ, tρ). The σ-ρ-transform behaves similar to the resistivity for small conductivities 
and similar to the identity for large conductivities. (b)–(d) As in (a), but with ξ being 
a conductivity with a centered circular inhomogeneity, as defined in (12). At high 
contrast, for decreasing size of the inhomogeneity, the nonlinearity for the log-transform 
decreases, while the nonlinearity for the σ-ρ-transform increases. Note the scale 
difference in (b)–(d). (b) Inhomogeneity with radius 0.8. (c) Inhomogeneity with radius 
0.5. (d) Inhomogeneity with radius 0.2.

R Winkler﻿Inverse Problems 35 (2019) 114007



13

with respect to the electrode sizes as

κsize(s, tω,∗) =

∥∥F
(
. . . , (ω1 + s1, . . . ,ωL + sL), . . .

)
− F

(
. . . , (ω1, . . . ,ωL), . . .

)∥∥
Fro∑L

l=1 |tωl,∗(ωl + sl)− tωl,∗(ωl)|
, s = (s1, . . . , sL) ∈ RL,

and with respect to the contact impedances as

κcontact(c, tz,∗) =

∥∥F
(
. . . , z1 + c1, . . . , zL + cL

)
− F

(
. . . , z1, . . . , zL

)∥∥
Fro∑L

l=1 |tzl,∗(zl + cl)− tzl,∗(zl)|
, c = (c1, . . . , cL) ∈ RL,

respetively.
Using the same 16 electrode setup as before, we evaluate κpos using again semi-analytic 

solutions and letting

p = ( p1, 0, . . . 0) for p1 ∈
(
− 2π

32 · 1.05
,+

2π
32 · 1.05

)
� (13)

(to avoid electrode gaps going to zero). The scaling parameters in the tangent-transform are 
set as δ1 = δ1 = 2π

32 . The result is shown in figure 4(a). We observe an increase of the nonlin-
earity indicator when the electrode approaches its left or right neighbor in the untransformed 
case, indicating that linearization might over-estimate electrode location changes and lead 
to invalid (overlapping) electrode configurations. This effect is compensated when using the 
tangent transform, which by design prevents illegal electrode configurations.

Similarly, we use

s = (s1, 0, . . . , 0) for s1 ∈
(
− 2π

64 · 1.05
,+

2π
32 · 1.05

)
� (14)

to perturb the size of the first electrode for the same 16 electrode setup. The resulting non-
linearity indicators κsize(s, tω,Id) and κsize(s, tω,tan) are shown in figure 4(b). The nonlinearity 
increases as the electrode size tends to zero, indicating that linearization may lead to an under-
estimation and even negative electrode sizes in the untransformed case. Again, the damping 
effect of the tangent transform prevents this.

Finally, consider varing contact impedances with a base value of z  =  1 and contact imped-
ance deltas (on a logarithmic scale) of

c = (c1, c1, . . . , c1) for c1 ∈ (10−3 − 1, 10+3 − 1).� (15)

The resulting nonlinearity indicators κcontact(c, tz,Id), κcontact(c, tz,σρ) and κcontact(c, tz,log) are 
shown in figure 4(c). The identity transform does not resolve the constrainedness of the contact 
impedance, but κcontact(c, tz,Id) indicates that it is almost linear in this setting. In contrast, the 
log-transform resolves constrainedness, but higher nonlinearity is indicated by κcontact(c, tz,log). 
The σρ-transform resolves constrainedness and κcontact(c, tz,σρ) indicates that it also keeps the 
nonlinearity limited in this setting. In particular, the indicator is almost constant for very high 
contact impedances, which may occur e.g. when electrodes are badly attached.

4.  Numerical evaluations

The conductivity and boundary parameter transformations introduced in sections  2 and 3 
can be incorporated into any solver making use of the linearization of the forward opera-
tor. The numerical evaluations here use the well-established CG-REGINN [30] applied to 
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the ICP for the CEM [25], using the initializations, error model, sensitivity-based weighting 
scheme and stopping criterion as presented in [9], called model-aware Newton-type Inversion 
scheme (MANTIS). In particular, MANTIS estimates an initial constant conductivity and 
corresponding electrode contact impedances based on an optimality condition, and moreover 
provides an estimate for the measurement noise level. Details for the assembly of the extended 
system equations in this setting are beyond the scope of this work and can be found in [23].

After introducing the considered setting in section 4.1, we will present EIT reconstructions 
of the MANTIS algorithm using the extended forward operator and the introduced transfor-
mations for a configuration simulating badly attached electrodes (section 4.3), highly fluc-
tuating contact impedances (section 4.4), wrong boundary geometry (section 4.5) and the 
combination of fluctuating contact impedances and wrong boundary geometry (section 4.6). 

Figure 4.  (a) Nonlinearity indicator κpos versus electrode location perturbation p  
as defined in (13). For the untransformed conductivity, the nonlinearity increases as 
the electrode approaches the neighboring electrodes. (b) Nonlinearity indicator κsize 
versus electrode size change s as defined in (14). As the electrode size decreases, 
the nonlinearity indicator in the untransformed case increases as well, suggesting 
that electrode size changes are over-estimated during linearization. (c) Nonlinearity 
indicator κcontact versus contact impedance z  +  c as defined in (15). The log and σρ  
transformation have similar damping behaviour near vanishing contact impedances, 
but the σρ  transformation behaves similar to the untransformed case for high contact 
impedances. 
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For reference, we will also show the the reconstruction results when no corrections for bound-
ary parameters are estimated at all, i.e. when the extended forward operator is not used.

The number of Newton steps k∗ ∈ N is a practical indicator for the nonlinearity of an 
inverse problem: (unregularized) linear problems converge after a single iteration. The value 
is given, along with the relative reconstruction error erel � 0, for each reconstruction, see [23, 
chapter 4.4.5. and equation (6.1)] for definitions and further background.

4.1.  Setting

The setting considered in this section is a 2D domain resembling the cross section of a human 
thorax with a highly conductive inclusion (‘heart’, σ = 0.75), two resistive inclusions (‘lungs’, 
σ = 0.24), and one highly resistive inclusion (‘spine’, σ = 0.05) in an otherwise homoge-
neous background (‘soft tissue’, σ = 0.42). The conductivity values are chosen to agree with 
those of the experimental setup [31]. The domain Ω is scaled to fit into the square [−1,1]2, 
resulting in a total circumference of |∂Ω| ≈ 7.377. We assume to have a boundary model with 
L  =  32 electrodes equi-spaced electrodes covering 50% of the surface. This is depicted in 
figure 5. The contact impedances are z1, . . . , zL = 0.05 unless stated otherwise.

Measurement data for this setting is simulated using the same FEM forward solver, but on 
a much finer mesh, which is not a refinement of the mesh used for reconstruction, to minimize 
inverse crime. Noise is added according to the noise model of [23, chapter 2.2.2.] with a rela-
tive noise level of δrel = 0.1%.

4.2.  Reconstructions for perfectly known boundary parameters

For reference, we first show the reconstruction for perfectly modelled boundary geometry and 
the conductivity transformations tId and tlog in figure 6. The result for tσρ is visually indistin-
guishable from tlog and converges with k*  =  16 and erel = 14.94%.

4.3.  Badly attached electrodes

Now we consider a setting with with two electrodes in the non-convex part of the boundary 
(marked red in figure 5) having a high contact impedance:

0.1

0.2

0.5

1.0

Figure 5.  2D setting resembling a human thorax cross section.
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zl =

{
1, l ∈ {10, 25} ,
0.05, l ∈ {1, . . . , 32} \ {10, 25} .

In practice, this can happen e.g. when the electrodes are badly attached. Results without 
and with simultaneous reconstruction of conductivity and contact impedances are shown 
in figure 7. Not accounting for varying contact impedances (MANTIS initialized them with 
z1, . . . , zL = 0.082) yields highly oscillating interior conductivities shown in figures 7(a) and 
(d) for conductivity transformations tId and tlog, respectively. They correspond to local minima 
of the ICP. Recovering the contact impedances simultaneously (using tz,log or tz,tan) removes 
these oscillations, tremendously improves the conductivity reconstruction and improves 
speed of convergence (figures 7(b), (c), (e) and (f)). For reference, using tσρ as conductiv-
ity transformation yields k*  =  48, erel = 42.97% with fixed contact impedances and k*  =  28, 
erel = 14.52% when using the tz,tan for the contact impedances.

We observe that best results are achieved when using the tlog as a conductivity transforma-
tion and tz,tan with limits [10−4, 10+4] as a contact impedance transformation. The contact 
impedances are recovered accurately; see figure 8.

4.4.  Fluctuating contact impedances

This setting is similar to section 4.3, but now all contact impedances are randomly chosen:

zl ∈ [10−3, 0.2], l = 1, . . . , 32.

The reconstructions are shown, analogously to section 4.3, in figure 9. The true and esti-
mated contact impedances are shown in figure 10.

Again, best performance is achieved using tlog as conductivity transformation and tz,tan as 
contact impedance transformation. Using conductivity transformation tσρ yields almost iden-
tical performance and is therefore omitted here.

4.5.  Wrong boundary geometry

Now, we assume that the exact boundary geometry of the setting is unknown for reconstruc-
tion and perform the estimation on an elliptically shaped domain. When estimating the elec-
trode sizes and positions using the extended forward operator, as described in section 2.3, we 

Figure 6.  Reconstructions for the MANTIS algorithm to F and using exact 
boundary parameters. (a) Using F, tId: k∗ = 19, erel = 15.00%. (b) Using F, tlog: 
k∗ = 18, erel = 14.97%.
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allow the estimator to converge towards a solution which is conformally equivalent to the true 
geometry. The computed relative error of the solution is measured versus a conformal equiva-
lent of the thorax shaped setting on the ellipse. It was obtained using the Schwarz–Christoffel 
toolbox (version 2.3) provided by Tobin Driscoll on www.math.udel.edu/~driscoll/SC.

The results are shown in figure 11. Ignoring the wrong boundary geometry yields highly 
oscillating, completely useless solutions, regardless of the conductivity transformation used 
(a)–(c). In contrast, considering the boundary geometry by simultaneously estimating a con-
formally equivalent electrode configuration results in smooth conductivity estimations, which 
resemble the interior geometry of the true conductivity distribution (d)–(f). The best result is 
achieved when using the conductivity transformation tσρ.

(a) Using F , tId:
k∗ = 87, erel = 80.77%.

(b) F , tId, tz,log:
k∗ = 29, erel = 14.12%.

(c) F , tId, tz,tan:
k∗ = 19, erel = 18.86%.

(d) F , tlog:
k∗ = 26, erel = 28.42%.

(e) F , tlog, tz,log:
k∗ = 36, erel = 14.55%.

(f) F , tlog, tz,tan:
k∗ = 21, erel = 14.07%.

Figure 7.  Reconstructions in the presence of two unknown high contact impedances. 
Contact impedances are not estimated in (a) and (d) and estimated using a logarithmic 
parameter transformation ((b) and (e)) or a tangential transformation with limits 
[10−4,10  +  4] ((c) and (f)). Top row: conductivity is recovered directly. Bottom row: 
conductivity is recovered using tlog. (a) Using F, tId: k∗ = 87, erel = 80.77%. (b) 
F , tId, tz,log: k∗ = 29, erel = 14.12%. (c) F , tId, tz,tan: k∗ = 19, erel = 18.86%. (d) F, 
tlog: k∗ = 26, erel = 28.42%. (e) F , tlog, tz,log: k∗ = 36, erel = 14.55%. (f) F , tlog, tz,tan: 
k∗ = 21, erel = 14.07%.

1 4 8 12 16 20 24 28 320

0.5

1

Figure 8.  Exact (black) and recovered (red) contact impedances at the 32 electrodes the 
of setting considered in section 4.3.
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4.6.  Wrong contact impedances and wrong boundary geometry

Finally, we consider the thorax setting with both unknown boundary shape and unknown 
contact impedances. The ICP is now solved using the extended forward operator including 
the estimation of contact impedances, electrode positions and sizes simultaneously using the 
transformations tσρ, tz,tan, tθ,tan and tω,tan, respectively.

The result is shown in figure 12 and compared to the solution of the untransformed conduc-
tivity estimation with fixed boundary parameters. In figure 12(b), we observe that the resulting 
conductivity estimate succeeds and is visually similar to the reconstruction of figure 6 with 
accurately known boundary configuration. Moreover, the relative estimation error is also on 
the same level. For reference, using tlog in the otherwise identical extended forward operator 
yields slightly worse results (k*  =  72, erel = 17.97%).

(a) Using F , tId:
k∗ = 36, erel = 41.43%.

(b) F , tId, tz,log:
k∗ = 16, erel = 14.41%.

(c) F , tId, tz,tan:
k∗ = 13, erel = 14.96%.

(d) F , tlog:
k = 24, erel = 43.16%.

(e) F , tlog, tz,log:
k = 22, erel = 14.54%.

(f) F , tlog, tz,tan:
k = 17, erel = 14.36%.

Figure 9.  Reconstructions in the presence of unknown fluctuating contact 
impedances, analogous to figure  7. (a) Using F, tId: k∗ = 36, erel = 41.43%. (b) 
F , tId, tz,log: k∗ = 16, erel = 14.41%. (c) F , tId, tz,tan: k∗ = 13, erel = 14.96%. (d) F, 
tlog: k∗ = 24, erel = 43.16%. (e) F , tlog, tz,log: k∗ = 22, erel = 14.54%. (f) F , tlog, tz,tan: 
k∗ = 17, erel = 14.36%.

1 4 8 12 16 20 24 28 320

0.1

0.2

Figure 10.  Exact (black) and recovered (red) contact impedances at the 32 electrodes 
setting considered in section 4.4.
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Further reconstructions, including some based on data from measured tank experiments, 
are presented in [23].

4.7.  Reconstructions using untransformed boundary parametrizations

We have studied in section 3 how electrode parameter transformations do not only lift the 
constrainedness, but also can reduce nonlinearity and ‘over-shooting’ of parameter-updates 

(a) Using F , tId:
k∗ = 37, erel = 58.03%.

(b) F , tlog:
k∗ = 34, erel = 48.63%.

(c) F , tσρ:
k∗ = 34, erel = 45.21%.

(d) F , tId, tθ,tan, tω,tan:
k∗ = 69, erel = 24.21%.

(e) F , tlog, tθ,tan, tω,tan:
k∗ = 73, erel = 17.07%.

(f) F , tσρ, tθ,tan, tω,tan:
k∗ = 73, erel = 14.52%.

Figure 11.  Reconstructions of the thorax data on an elliptically shaped domain. Top row: 
only conductivity is estimated. Bottom row: conductivity and (transformed) electrode 
positions and sizes are estimated simultaneously. (a) Using F, tId: k∗ = 37, erel = 58.03%. 
(b) F, tlog: k∗ = 34, erel = 48.63%. (c) F, tσρ: k∗ = 34, erel = 45.21%. (d) F , tId, tθ,tan, 
tω,tan: k∗ = 69, erel = 24.21%. (e) F , tlog, tθ,tan, tω,tan: k∗ = 73, erel = 17.07%. (f) F , 
tσρ, tθ,tan, tω,tan: k∗ = 73, erel = 14.52%.

(a) Using F , tId:
k∗ = 40, erel = 71.92%

(b) F , tσρ, tz,tan, tθ,tan and tω,tan:
k∗ = 65, erel = 14.28%.

Figure 12.  Reconstructions of the thorax setting for inaccurate boundary shape and 
unknown, fluctuating contact impedances, (a) using the untransformed forward 
operator F and (b) using the transformed extended forward operator F . (a) Using F, 
tId: k∗ = 40, erel = 71.92%. (b) F , tσρ, tz,tan, tθ,tan and tω,tan: k∗ = 65, erel = 14.28%.
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due to linearization errors. For reference, the following reconstruction were performed using 
the extended forward operator with untransformed electrode parametrization. To avoid ille-
gal electrode configurations, the updated electrode positions and sizes were projected back 
to an admissible configuration using the boundaries depicted in figure 2, while the contact 
impedances were, as implicitly done before, clamped to the interval [10−4,10+4]. To distin-
guish between the impact of the interior and boundary transformation, both transformed and 
untransformed conductivity reconstruction is shown in figure 13.

Although the reconstruction of the untransformed contact impedances for known boundary 
configuration succeeds (with more iterations), the reconstruction of the untransformed elec-
trode geometry fails. The author observed that during the iterations, some electrode positions 
and sizes tended to ‘oscillate’. Moreover, some contact impedances had negative Newton 
updates (before clamping) even at the lower contact impedance limit, which would it make 
difficult to apply simple, commonly used line search strategies.

5.  Summary and conclusion

We presented an extended, transformed forward operator for the ICP in section 2 which makes 
use of the Fréchet-differentiability with respect to the boundary configuration and implicitly 
ensures the admissibility of the configuration after Newton updates. For that reason, it can be 
conveniently integrated it into established Newton-type solvers for the ICP, like CG-REGINN, 
without setting-specific parameter tuning or line-search heuristics.

F , tId, tz,Id:
k∗ = 72, erel = 15.69%.

F , tId, tθ,Id, tω,Id:
k∗ = 84, erel = 45.43%.

F , tσρ, tz,Id, tθ,Id, tω,Id:
k∗ = 156, erel = 168.6%

F , tσρ, tz,Id:
k∗ = 73, erel = 15.75%,
Setting of section 4.4.

F , tσρ, tθ,Id, tω,Id:
k∗ = 77, erel = 41.24%,
Setting of section 4.5.

F , tσρ, tz,Id, tθ,Id, tω,Id:
k∗ = 160, erel = 193.0%,
Setting of section 4.6.

Figure 13.  Reconstructions of the thorax data when omitting electrode parameter 
transformations. Top row: without conductivity transformation. Bottom row: with 
conductivity transformation.
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Moreover, we have motivated the theoretical advantage in terms of reduced nonlinearity 
when using favourable transformations in section 3 by investigating simple settings for which 
semi-analytic solutions are available.

Based on the numerical results in section 4, we conclude that the estimation of the con-
ductivity succeeds in case of inaccurately boundary shape and unknown contact impedances 
when using the proposed extended and transformed forward operator F  in the inexact Newton 
scheme CG-REGINN within the MANTIS reconstruction framework. In particular, the pro-
posed solution can handle measurements with badly attached electrodes, fluctuating contact 
impedances, inaccurately known boundary geometry. These solutions are on par with the solu-
tion for perfectly known boundary geometry both visually and in terms of the relative recon-
struction error.
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